
A Predicate Transformer
for Unification
Livio Colussi
Dipartimento di Matematica Pura ed Applicata
Universita di Padova
Via Belzoni 7, 35131 Padova, Italy
colussi@pdmatl. uni pd.it

Elena Marchiori
Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
elena@cwi.nl
and
Dipartimento di Matematica Pura ed Applicata
Universita di Padova
Via Belzoni 7, 35131 Padova, Italy

Abstract

In this paper we study unification as predicate transformer. Given a unifica
tion problem expressed as a set of sets of terms U and a predicate P, we are
interested in the strongest predicate R (w.r.t. the implication) s.t. if P holds
before the unification of U then R holds when the unification is performed. We
introduce a Dijkstra-style calculus that given P and U computes R. We prove
the soundness, completeness and termination of the calculus. The predicate
language considered contains monotonic predicates together with some non
monotonic predicates like var, -,ground, share and -,share. This allows to use
the calculus for the static analysis of run-time properties of Prolog programs.

1 Introduction

The standard view of logic programming is declarative, i.e. a program describes
some predicate or function without referring to the way it will be computed.
Nevertheless computational aspects become fundamental for the study of run
time properties of Prolog programs, like the actual form of the arguments of a
goal before and after its call. In Prolog unification is the main computational
mechanism since it produces the value of the variables during the execution of a
goal in a program. To study its effect on the values of variables we study unifica
tion by means of predicate transformers. The use of predicate transformers for
semantic analysis has been studied in the setting of imperative programming: it

68

was advocated by Floyd [5] and by Dijkstra [3] for program verification. The use
of predicate transformers in the framework of logic programming is new. Given
a unification problem expressed by a set of sets of terms U, we introduce the
predicate transformer sp.U such that spU .P is semantically equivalent to the
strongest predicate R (w.r.t. implication) s.t. if P holds before the unification
of U, then R holds when the unification is performed. We show that sp.U.P
could be computed in one step if P were a monotonic predicate. Since our aim
is to infer run-time properties of Prolog programs, then the predicate language
considered contains also non-monotonic predicates like 11ar or share. For this
reason a careful analysis of some intermediate steps of the unification process
is necessary. This yelds to a non-trivial system of syntactic rules to compute
spU .P. The soundness, completeness and termination of the system is proved.
The calculus can be used to infer run-time properties of logic programs. In
Cousot and Cousot's original paper on abstract interpretation of imperative pro
grams (2] everything was couched in terms of predicate transformers. Predicate
transformers were used to define deductive semantics. Deductive semantics was
used to design approximate program analysis frameworks. To propose a similar
approach for logic programs we need the correspondent of program point for a
logic program. In [7} Nilsson introduced a scheme for inferring run-time prop
erties of logic programs based on a semantic description of logic programs that
uses the concept of program point. We will show that the predicate transformer
sp can be easily cast in such a. theory.
The rest of the pa.per is organized as follows. The next section contains some
preliminaries and introduces the predicate transformer spU. Section 3 intro
duces the transformation rules to compute spU.P. In section 4 the soundness,
completeness and termination of the calculus are proved. In section 5 we illus
trate the use of the calculus for defining a forward semantics of Prolog programs.

2 Unification as Predicate Transformer

The computational meaning of unification in Prolog relies on the concept of
substitution. A substitution is a mapping from variables to terms such that
dom(1?) ~! {v Iv~ i: v} is finite. The notion of unification can be given w.r.t.
a set of sets of terms [4} or w.r.t. a set of equations [6}. We choose the first
approach. Let U be a finite set of sets of terms. A unifier for U is a substitution
1? such that every set in U, under the application of fJ, becomes a singleton, i.e.
"i/S E U Vt, t' E S (ttJ = t'fl). A mo.st general unifier for U is a unifier 1? such
that for every unifier u there exists a substitution -y such that iJ-y = u. The
set of idempotent most general unifiers for U will be denoted by mgu(U). The
operational meaning ofU can be described as the partial function >.a.aµ, where
a is a substitution andµ is a fixed mgu in mgu(Ua); clearly >.a.aµ is undefined if
mgu(Ua) = 0. We study unification by means of the predicate transformer spU
(where sp stands for strongest postcondition (5]) with the following operational

69

meaning.

Definition 2.1 spU.P is true in precisely those substitutions aµ such that Pa
is true andµ E mgu(Ua).

The choice to represent the unification process as set of sets of terms is motivated
by the following observations:
mgu({{f(t1, ... , t,.), f (s1, ... , s,.)}}) = mgu({{ ti. s1}, ... , { t,., s,.}}) a.nd
mgu({8i. .. . , 8,.}) = mgu({S1U82,83, ... , 8,.}) if 81n82 f. 0.
These two equalities will be used in our calculus for sp.U and they clearly lead to
consider sets of sets of terms. For sake of clarity, we use double square brackets
to enclose sets of terms 8 = [t1, ... , tm] and braces to enclose sets of sets of
terms U = {S1, ... , 8,.}.

We call a predicate P monotonic if it is (semantically) invariant under in
stantiation, that is for all substitutions a, f3 if Pa is true then Pa/3 is true.
Now let U be {[t~, ... , t!,], ... , [ti, ... , t~_]}: we denote by U the predicate
((t~ = ... = t!,) /\ ... /\ (ti = ... = t:,J). Then the following lemma holds.

Lemma 2.2 Let P be a monotonic predicate. Then P /\ U is equivalent to
spU.P.

Proof. Let a be s.t. Pa is true and letµ E mgu(Ua). Then Uaµ is true and
from P monotonic it follows that Paµ is true.
Viceversa let a be s.t. (P /\ U)a is true. Then Pa is true and e E mgu(Ua). So
by Definition 2.1 (sp.U.P)a is true. D

Lemma 2.2 allows to compute spU.P when P is a monotonic predicate.

2.1 The Language

However we are interested also in properties that describe the structure of terms,
like var or -.ground, since we want to use the predicate transformer to infer run
time properties of logic programs. Thus we introduce the language A defined
on the alphabet containing the following classes of symbols:

- a countable set V AR of variables;
- a set FUN of functions;
- a set PRE D = Pred U {/ ree, var, -.ground, share, -.share, inst} of predicate
symbols where Pred is a finite set of monotonic predicate symbols s. t. - ,
ground, -ivar, -<, :;, invar are in Pred;
- the connectives /\ and V;
- the existential quantifier :3;
- (and) as punctuation symbols.

Variables will be normally denoted by the letters u, v, w, x, y, z (possibly
subscripted or superscripted) and functions will be normally denoted by the

70

letters f,g,h (possibly subscripted). Let TERM be the set of terms built on
FUN and VAR. Terms will be normally denoted by the letters r, s, t (possibly
subscripted or superscripted). Given a term t, the set vars(t) ~ V AR denotes
the set of variables that occur in t. We call structured term a term of the form
f (t11 .•• , tm), where m ;:::: 1; we call proper subterm oft every sub term oft but
t. We assume that sequences are contained in A. We denote by t a sequence
tl> ... , tk and we write t{1.:) or (ti. •.. , t1.:) if respectively the size or the elements
of the sequence are relevant. Moreover we indicate with YJ the sequence of
terms obtained applying the substitution p to every element of the sequence ~·
We call atom a predicate of the form p(t1, ... , t,.) where p is a predicate symbol
of arity n and t 1, ... , t.,. are terms. When ambiguity does not arise we write
r(t1 , ... , tm) as a shorthand for the predicate r(t 1) /\ ... /I. r(tm), where r is a
predicate symbol of arity 1.

The truth value of a predicate P E A w.r.t. a substitution a s.t. vars(P) ~
dom(a) is defined inductively on the structure of P, and the meaning of an
atom is specified as follows:

- --.var(t)a is true iff to: <f. V AR;
- ground(t)a is true iff vars(ta) = 0;
- (t1 = tz)a is true iff t 1a: = tza syntactically;
- (s :S t)a is true iff so: is a subterm of ta;
- (s -< t)a is true iff so: is a proper subterm of ta;
- invar(s, t)a is true iff vars(sa) ~ vars(ta);
- free(x)a is true iff xa E V AR and xa <f:. vars(ya) for all y E dom(a) s. t.
y ::Jr.;
- var(x)a is true iff xa: E V AR;
- --.ground(t)a is true iff vars(ta:) :f. 0;
- share(s, t)a is true iff vars(sa) n va.rs(ta) :f. 0;
- --ishare(s,t)a is true iff vars(sa) n vars(ta) = 0;
- inst(x, r1, rz, y)a is true i:ff r 1a is the sequence (xi, ... , xm), with x; E
vars(xa) and x; </:. va.rs(ya:) for i E [1, m], r 2a is the sequence (t 1 , ... , tm) and
{x1/t1 1 •• .,xm/tm} E mgu.({[xa,ya]}).

Notice that x and yin inst(x, ri, r 2 , y) represent two terms the second of which
is an instance of the first. Thus the predicate inst expresses a special case of
the unification.
Given two predicates P and Q, we write P =: Q to indicate that P and Q
are semantically equivalent. We can assume that the predicates TRUE (the
predicate true w.r.t. all substitutions) and FALSE (the predicate false w.r.t.
all substitutions) are in A, since TRUE =: (var(:z:) V --.var(x)) and FALSE =
(var(x) /\--ivar(x)).

Predicates in A are not in general monotonic, since all atoms built on predicate
symbols not in Pred are non-monotonic by definition. So Lemma 2.2 is not
sufficient to characterize sp.U: consider for instance the unification {[:z:, a.]} and

71

the predicate var(x). Thus a careful analysis of the effect of the unification
process on non-monotonic predicates is necessary. The fact that the connective
..., is not in our language guarantees that atoms built on predicate symbols not
in Pred a.re the only non-monotonic atoms of the language; this allows a case
analysis of the effect of unification on non-monotonic predicates.

We introduce now some assumptions that will be used to simplify the form
of the rules for sp.U that will be introduced in the next section.
Predicates a.re of the form 3:;;.P where P doesn't contain any quantifier, it is in
disjunctive normal form (i.e. it is a. disjunction of conjunctions of atoms) and
the equalities that occur in each conjunct are expressed by a set of equations in
solved form. Atoms with predicate symbol free, var, ...,var, ground, --,ground,
share, --,share, invar have variables a.s arguments. For any formula. sp.U .P the
predicate P does not contain (existential) quantifiers.
All assumptions are not restrictive. Here the proof for the last one.

Lemma 2.3 If the variable x does not occur in U then sp.U.3xP is equivalent
to 3x(sp.U.P) w.r.t. Definition 2.1.

Proof. Since x doesn't occur in U then the truth value of 3x(sp.U.P)f3 and
of (sp.U.3xP){J does not depend on x{J. Thus we can assume without loss of
generality x rt_ dom({J). Then (sp.U.3xP)f3 is true i:ff there exist a andµ s.t.
x rt_ dom(a), x rt_ dom(µ), µ E mgu(Ua), (3xP)a is true and f3 = O'.µ iff there
exist a, µand t s.t. x 't. dom(a), x 't. dom(µ), µ E mgu(Ua), P(a U {x/t})
is true and /3 =aµ iff there exist a,µ and t s.t. µ E mgu(U(a U {x/t})),
P(a U {x/t}) is true and (/3 U { x/t}) = (a U {x/t})µ iff (sp.U .P)(/3 U {x/t})
is true iff (3xsp.U .P)/3 is true. 0

3 A Calculus for sp.U

The following conditions on P and U characterize the types of formulas which
will specify the scope of applicability of the rules for spU.P.

(i) P is a conjunction of atoms.
(ii) For each equation x = t in P, x does not occur in U.
(iii) For every x occurring in U either var(x) or --,var(x) occurs in P.
(iv) For all distinct variables x occurring in U and y occurring in P either
share(x, y) or -,share(x, y) occurs in P.
(v) U = {S1, ... , S.,} contains disjoint sets, i.e. S; n Si= 0 for i -:f j.
(vi) Each set in U contains more than one element.
(vii) Each set in U contains at most one structured element f(v1, .. .,v,..) and
in such a case free(v1), ... , free(v,..) occur in P.
(viii) Every element x of a set SEU is s.t. free(x) occurs in P if x occurs in
the structured element of another set in U and -ivar(x) occurs in P otherwise.
Moreover, each set that contains a structured element also contains an element

72

y s.t. free(y) occurs in P. (Hence y occurs in the structured element of another

set).

We introduce 3 types of formulas sp.U.P as follows.

type 1: those which satisfy conditions (i)-(iii).
type 2: those which satisfy conditions (i)-(vii).
type S: those which satisfy conditions (i)-(viii).

Each type of formula characterizes a simpler form of P and U. The final form
will be a disjunction of formulas in the so called reduced form.

A formula spU.P is in reduced form if Pisa conjunction of atoms, for each
equation :t = t in P :t does not occur in U, U contains only disjoint sets of two
or more variables, for all x occurring in U both -ivar(x) and -iground(x) occur
in P and for all x occurring in U and y occurring in P either share(x, y) or
-ishare(a:, y) occurs in P.

We are now ready to present the rules for sp.U .P. The notation Ef will be used
to indicate the formula obtained by replacing the occurrences of x in E with t.

- If P = P1 V ... VP,. then

sp.U.P =: sp.U.P1 V ... V sp.U.Pn

- If :i: occurs in U and neither var(x) nor -ivar(x) occurs in P then

sp.U.P = sp.U.(P /\ var(x)) V spll.(P /\-ivar(x))

- If P is a conjunction of atoms and x = t occurs in P then:

sp.U .P :::: sp.Uf .P

- sp.U.FALSE =:FALSE

The following eight rules may be applied only to type 1 formulas.

OR

VARl

EQ

F

- If :i: occurs in U and y occurs in P and neither share(x, y) nor -ishare(x, y)
occurs in P then

sp.U.P = sp.U.(P /\ share(x, y)) V sp.U.(P /\ -ishare(x, y))

- If U = {[fi(~), h(t), ...] , S2, ... , Sn} and fi -::j:; h, then

sp.U.P =:FALSE

SHl

MISl

- IfU = {[:i:,s,t],S2, ... ,S,.} a.nd either x E vars(s) or the conjunct x-< s
occurs in P then

spU.P::: FALSE MIS2

73

- If U = {[f(~k)), ... , !(!(~))], S2, ... , S,,} then

sp.U.P := sp.U'.P

where U' = {[!}m)];E[l,k]• S2, ... , Sn}

STRl

- If U = {[J(!!{k)), ... , f(!{k)), x;+1 1 ••• , xm], S2, ... , S,,} with i < m and either

i ::'.'. 2 or at least one sj is not a variable or at least one s; is a variable such that

--ivar(sj) occurs in P, then

sp.U.P := 3'!!.(i.)(sp.U'.P')

where U' = {[f(E4kl)' X;+1, ... , Xm], [yj, !y)];E[l,k]• S2, .. . , Sn},

P' = P /\ f ree(y_(I,)) and '¥.(k) are fresh variables.

- If U = {[t, ~m)], [t, ~m')], S3, ... , Sn} then

sp.U.P := sp.U'.P

where U' = {[t, ~m)• !!{m•)], S3 , •.. , Sn}

- If U = {[t], S2 , .•• , S,.} then

sp.U .P := sp.U' .P

where U' = {S2 , ••• , S,.}

The following two rules may be applied only to type 2 formulas.

STR2

SH2

SI

- If U = {[t, ~m)], S2, ... , Sn} where x"' does not occur in the structured term
of any set of U, var(Xm) and -is hare(Xm, y) occurs in P for all y E vars(t), then

sp.U.P:::: :Jl sp.U'.R VAR2

where U' = {[t, ~m-l)], S2, ... , Sn},
R = (f\zEz inst(zp, (xmp), (t),z) /\ P' /\ Xm = t),
2'. = (z E v-ars(P) \ P::? share(z, xm)), 2'.' = z_p is a variant of z: disjoint from
P and P' =Pi-.

- If U = {[J(~k)), ~(m)], Sz, ... , Sn} and •var(x1), ... ,•var(xm) occur in P
then

VAR3

where U' = {[s;,11J=l]iE[l,k],S2 , •.. ,S,.} and'!'. is the sequence 11tk)' ····'¥.(~)of
fresh variables.

The following three rules may be applied only to type 3 formulas.

74

- If there is a set S E U that contains a structured term then

spU.P::FALSE MISS

- If :c occurs in U and neither ground(:z:) nor -.ground(:c) occurs in P then

spU.P:: sp.U.(P /\ ground(:c)) V spU.(P /\ -.ground(:z:)) GRl

- IfU = {~m)],S2 1 ••• ,S,.} and ground(:z:.,.) occurs in P then

spU .P = 3!!<_1, z'!!_, Y!. spU' .R

where U' = {S2, ... , S,.},

GR2

!!<. = (:z: E vars(P) I P ~ share(:z:, :z:;) for some i E (1, m - l]), !!<_1 = Y> is a
variant of ~ disjoint from P, z,,, and y,,, are the sequences of fresh variables z.,
and y., with :c E ~. P' = P~ and R is the predicate

/\.,e'!!(inst(:cp, z.,, y.,. :z:) /\;IP=>ihare(.,,z,) inva.r(z.,, Zz;) /\yevari(P) --ishare(z.,, y))
/\P' /\ :z:1 = ... = :cm.

To a. formula in reduced form we can apply the following rule.

- If sp.U.P is in reduced form, where U = {[!(m1)], ••• , [~m~)]}, then

spU.P:: 3~', z'!!_, Y!. (R /\ U)

where U is the predicate (:c i = ... = :i:~,) /\ ... /\ (:ci = . · . = :c~J,
RF

~ = (:c E va.r8(P) I P ~ share(:c, :c1) for some i E [l, m;],j E [l, n]), ~' = Y is
a variant of~ disjoint from P, z., and Yz are the sequences of fresh variables z.,
and y., with :c E ~. P' = P~ and R = (l\,.e~ inst(xp, z.,, y.,, :c) /\ P').

The previous rules are natural abstractions of the relative unification step except
rules MIS3,VAR2, GR2 and RF. Rule MISS relies on the condition that the
formula is of type 3 and U contains at least a set with a structured element. In
this case it can be proven that U has no unifier.
Rules VAR2, GR2 and RF take into account how sharing among variables
can propagate the bindings produced by the considered transformation and
how the transformations affect the truth of the non-monotonic a.toms. To keep
track of the way the predicate is modified suitable variables a.re renamed with
fresh variables existentially quantified and suitable predicates a.re introduced to
specify the link among the original variables and the renamed ones.
All the rules a.re syntactic. Thus the set of rules provides a (nondeterministic)
algorithm. We will see in the following section that this algorithm terminates
and computes spU.P. We conclude this section with some examples.

Let P = free(:c, y) and U = {[f(:i:),y], [g(y),:z:]}. Since spU.P is of type 3,
then by rule MISS it is equivalent to FALSE. In fact an occur check does
occur.

75

Let P = (free(x, y) /\ -ishare(:z:, y)) and U = {[f(y), :z:]}. Since sp.U.P is of
type 2, then we can apply rule VAR2. We obtain

3:z:'(sp.{[/(y)]}.(P:', /\ inst(:z:', (:z:'), (f(y)}, :z:) /\ :z: = f(y))).
By rules SI and RF we obtain

3:z:'(P:', /\ inst(:z:', (:i:'), (f(y)}, :z:) /\ :i: = f(y)),
which is equivalent to (free(y) /\ :z: = /(y)).

Let P = (ground(y) /\ -ivar(:z:) /\ -iground(:z:) /\ -ishare(:i:, y)) and U = {[:z:, y]}.
Since spU.P is of type 3, then we can apply rule GR2. We obtain
3:z:', z,., y,.(sp.{ }.
(P;', /\ inst(:z:', z.,, y,., :z:) /\invar(z,., z,.) /\-.share(z,., :z:) /\-.share(z.,, y) /\:z: = y)).
By rule RF we obtain

3:z:', z,., y,.(P:', /\ inst(:z:', z.,, y,., :i:) /I. invar(z.,, z.,)/I.
-.share(z,., :z:) /I. --.share(z.,, y) /I. :z: = y)

which is equivalent to (grou.nd(y) /I. -.var(y) /\ y = :i:).
Let P = (--.var(:z:,y) /\ -iground(:z:,y) /\ share(x,y)) and U = {[:z:,y]}. Since
sp.U.P is in reduced form, then we can apply rule RF. We obtain

3:z:', y', z.,, y.,, Zy, y11 (P;,',~· /\ inst(:z:', z.,, y.,, :z:)/\
inst(:z:', z.,, y.,, y) /\ inst(y', z11 , y11 , y) /I. :z: = y)),

which is equivalent to (:z: = y /I. --.var(x, y)), if CON contains at least a function
of arity greater than one and a constant; otherwise it is equivalent to (:z: =
y /I. --.var(:z:, y) /I. --.ground(x, y)).

4 Soundness and Completeness of the Calculus

We indicate by ?t,p the set of rules but RF. We first show that all the rules
are equivalences. Then we show that a formula sp.U .P can be reduced in a
finite number of steps to a disjunction of formulas in reduced form, by applying
rules from 'lt,p. Finally rule RF applied to each disjunct will give the desired
predicate (of A) relative to sp.U.P.

Theorem 4.1 All rules are equivalences (with respect to Definition 2.1)

Proof. The proof is not difficult except for rules MIS3, VAR2, GR2 and RF
which have a quite technical proof.

MIS3 By hypothesis the formula is of type 3 and U contains at least a set with
a structured element. Then by condition (vii) each set that contains a struc
tured element /(111 , ... , 1111:) also contains at least a variable :z: that occurs in the
structured element of another set. In such a situation we can eventually extract
from U a subset {S1 , ... , St} of sets such that

S1 = [Ji(... , :z:t, ...), :z:1, ...]
S2 = [h(... , :z:1, ...), :z:2, ...]

76

s, = [!1(... , :Z:1-1, ...), :z:,, ...].
Clearly {S1, ... , S1}a has no unifier.

In the next proofs we use the following properties of most general unifiers:
1) Let U = W.(m)], S2, ... S,.}. If p E mgu({IU(;)]}) andµ E mgu(UP) then
µ U µ' E mgu(U), where µ' = (Pµ)Jdom(/3)-
2) mgu({[t],S2 1 ... S.,}) = mgu({S2, ... S.,}).

VAR2 Let a be such that Pa is true and let µ E mgu(Ua). Let a' be such
that

if :Z: = :Z:m,
if :z: = zp,
otherwise.

Let A' be an atom in P'. Then A'= A;, with A atom in P. If A' is monotonic

then A'a' is an instance of Aa. Otherwise A'a' = Aa. Thus in both cases A'a'
is true. From ta'= ta it follows that inst(zp, (xmp), (t),z)a' and (:z:m = t)a'
are both true. Then Ra' is true. Now letµ' be s.t. µ = µ'U{xma/taµ'}. Then
from U'a' = (Ua)~;;a it follows by property 1) thatµ' E mgu(U'o:'). Thus
(spU'.R)o.'µ' is true and, since xo.µ = xo.'µ' for all :z: in P, then (:J~' sp.U'.R)aµ
is true.
Viceversa. let a' be such that Re/ is true and let µ' E mgu(U' a'). Let a be such
that

{ :z:pa' if :z: in z,
XO. - -

- :z:o:' otherwise.

Then Po: = P'a' is true. Letµ=µ' U {:z:mo:/to:µ'}. By inst(zp, (:z:mp), (t), z)o.'
true for all z in ~it follows that U'a' = (Uo:):;". Then by property 1) µ E
mgu(Ua). Thus (sp.U.P)o.µ is true and, since :Z:mo.'µ' =ta.'µ'= to:µ'= :i:mo:µ,
then (spU.P)o.'µ' is true.

GR2 Let a andµ be such that Pa is true andµ E mgu(Ua), letµ; = µ1~ar1(o:;a)·
From ground(:i:m)o: true it follows that :i::;o:µ = :z:.,.o: for i E [1, m - 1]. Let o:'
be s.t.

if w = :i:p with :i:: in ~.
ifw = :i::; for i E [l,m1],
ifw = z,, with :i:: in~.
ifw = y,, with :i:: in~.
otherwise.

where y• is the sequence of variables in vars(xo.) n vars(:i:;a) for i E [1, m - 1].
Let A' be an a.tom of P'. Then A' = A;, with A a.tom in P. If A' is monotonic

then A'o.' is an instance of Aa. If A' is ion-monotonic then A'a' = Aa. In both
cases A'a.' is true. Moreover (:i:1 = ... = :i:m)a' is true because :i:ma' = :i:mo: =
:i::;o:' for all i E [1, m- 1], -.share(z.,, :i:)a' is true because all variables in z,,a'
occur in :z:;a for some i E [1, m-1] and :i::a' is obtained replacing the variables in

77

all x1a with ground terms, inst(xp, z,,, y,,, x)a' is true because xpa' = xa, xa' =
(:z:a);:~: and -ishare(z,,, x)a' true imply {z,,a'/y,,a'} E mgu({[xpa', xa1});
finally invar(z,,, (z,, 1 , ••• , z"'m-l))a' is true by construction. Thus Ra' is true.
Now letµ'= µlvara(U'a'). We have that µ1 ... ~-1 is in mgu({[xi, ... , xm]}a),
range(µ1 .. -~-1) = 0 because Xma is ground, U'a' = U'aµ 1 ... ~-l· Then
µ = µ' U µ1 .. ·~-1 and by properties 1) and 2) µ'is in mgu(U'a'). Then
(spU' .R)a' µ' is true and, since xa' µ' = xaµ for all x occurring in P, then
(3~, z,,, y,, sp.U.R)aµ is true.
Vicevers;let a' be such that Ra' is true and letµ' E mgu(U'a'). Let a be s.t.

xa = { xpa'
xa'

if x in ~.
otherwise.

Then Pa= P'a' is true. Letµ= µ'U/3 with,B = {(z.,,a'/y,,,a')iE[l,m-1]}· From
inst(xp, z,,, Yz, x)a', -ishare(z.,;, x)a' and invar(z,,, (z,, 1 , •.• , z"m-l))a' true it
follows that xa' = xa,B for all x E ~· If x rf= ~then from -ishare(zy,x)a'

true for all y it follows that xa' = (xa')/3 = xa/3. Then xo:' = -xo:/3 for all
x occurring in P. Then U'o:' = U'af3. From x1a' = ... = Xmo:' true, Xma'

ground and inst(x;p,z,,,,yz.,x;)a' true for all i E [1,m - l] it follows that
/3 E mgu({[xi, ... ,xm]}a). Then by properties 1) and 2) it follows thatµ E
mgu(Ua). Thus (spU.P)aµ is true and, since xa'µ' = (xa:)f3µ' = xa:µ for all
x occurring in P, then (sp.U .P)a' µ' is true.

RF Let a: and µ be such that Pa is true, µ E mgu(Uo:). Let o:' be s.t.

{

xa if w = xp with x in~,

wa:' = waµ ~f w occurs ~n P,.
y lf W = z., with X ID ~'
~µ if w = y., with x in :£.

where ¥_is the sequence of variables occurring in dom(µ1var1(za))· Now Uc.'

is true because x~a' = x{aµ for every i E [l,mj], j E [1,n]. Let A' be an
atom of P'. Then A' = A~-, with A atom in P. If A' is monotonic then

A'a:' is an instance of Aa. If A' is non-monotonic then A'a:' = Ao:. In both
cases A'a:' is true. Moreover inst(xp, z,,, y,,, x)a' is true because xpa' = xa,

xa' = xa:µ and the substitution relative to the two sequences z,,a' and y,,a:'

is equal to µlvari(za)· Since µ is idempotent by hypothesis, then µlva.rs(o:a) E
mgu({[xa:, xaµ]}). Then (R /\ U)a:' is true and, since xa:' = xaµ for every x

occurring in P, then (3:£', z,,, y,,(R /\ U))a:µ is true.
Viceversa let o:' be s. t. (R i\ U)a:' is true. Let a be s. t.

{ xpa:' if x in :£,
xa: = xa' otherwise.

Then Pa = P'a:' is true. Let µ be the substitution relative to the sequences
z,,{a:', Y,,{a:' for all i E [l,mj], j E [1,n]. Thenµ E mgu(Ua:). Thus (sp.U.P)aµ

is true and, since xcr.µ = xpcr.' µ
(sp.U.P)cr.' is true.

78

xcr.' for every x that occurs in P, then
D

Theorem 4.2 The system 'H.,r> is terminating.

Proof. (Sketch)
We show that no proof tree built using ?tap has an infinite branch. Rules F,

MISl, MIS2 and MIS3 have a predicate as right hand side, so they cannot
belong to an infinite branch. To prove that only finitely many applications of
the remaining rules are allowed, consider the tuple

r = (leq, comp, ju.net, elem, disj, u.nvar, u.nshare, u.ngrou.nd)
of natural numbers with the lexicographic order. A structured term f(t 1 , ..• , t,.)
will be called compound if either some t; is not a variable or the variables
ti, ... , tn are not distinct. Then leq denotes the number of variables in U that
occur as left hand side of an equation in P, comp denotes the number of oc
curences of compound subterms of terms in U, fu.nct denotes the number of
occurences of functor symbols in U, elem denotes the total number of elements
in the sets of U, disj denotes the number of disjuncts in the disjunctive normal
form of P, unvar denotes the number of variables x in P such that neither
P => var(x) nor P => -.var(x) holds, u.nshare denotes the number of variables
x in P such that neither P => share(x, y) nor P => --,share(x, y) holds for some
variable y distinct by x, unground denotes the number of variables x in P such
that neither P => ground(x) nor P => --,ground(x) holds.
It is not difficult to check that the application of every rule of 1t,p decreases the
value of r. D

Corollary 4.3 Rules of 'H.,p transform sp.U.P in a (semantically unique) dis
junction of formulas in reduced form.

Proof. (Sketch)
By Theorem 4.1 all transformations are equivalences (w.r.t. Definition 2.1).

By Theorem 4.2 there is a final form. Thus the final form is semantically
unique. By contrapposition it is not difficult to show that if the final form is
not a disjunction of formulas in reduced form then one of the rules in 1t,p may
be applied. D

5 Applications

Predicate transformers are related to the core of abstract interpretation of im
perative programs. In [2] predicate transformers are used to define deductive
semantics. Deductive semantics is used to design approximate program analysis
frameworks. To propose a similar approach in the setting of logic programming
we need the correspondent of program point for a logic program. In [7] Nilsson
introduced a scheme for inferring run-time properties oflogic programs based on

79

a semantic description oflogic programs that uses the concept of program point.
The predicate transformer sp can be easily cast in such a theory. A clause of a
logic program 'P is interpreted as a sequence of pro~edure calls. To each call A
there corresponds a calling point ,A and a success point A 0 • The leftmost and
rightmost points in the body of a clause C are called respectively entry- and
ezit points of the clause and are indicated respectively by • C and G,. Goals
are represented as elements of the set Cgoa/s := (Points x £nv)", where Points
denotes the set of program points of 'P and £nv is the set of predicates A. A
transition system for P can be defined through two state transition schemes
that transform elements of Cgoals as follows.

(G,; R) :: y f:= y,

(.A; R) :: y f= ((,G; TRUE) :: (A.; R) :: y))(To- -1),

where A is a body atom, C<r is a variant of a clause C of P s.t. vars((.A; R) ::
y) n vars(C<r) = l/J, T::::: sp.{[A, head(Co-)]}.(Rt\ free(vars(C<r))) ~FALSE.
We assume that the program clauses are disjoint and that the definition of U
in sp is generalized in the obvious way to atoms or terms. The application of a
predicate R to a C-goal is defined as follows:
(nil)R = R,
((:z:; T) :: y)R = (x; T • R) :: yR,
where T • R is (equivalent to) T' t\ R, with T' the strongest assertion (w.r.t.
implication) s.t. T-+ T' and (T' t\ R) 1 FALSE. Notice that T • R is defined
when R is consistent. For instance if T = (x = y t\ var(x)) and R = ground(y)
then T • R::::: (x = y /\ ground(y)).

The previous transitions schemes are obtained from those in [7] by taking as en
viroment £nv predicates instead of substitutions, by using the predicate trans
former sp instead of the mgu as operation in the transition and the operation •
to model the application of a predicate to a C-goal.
To each program point i is associated a set 8 1 of states which specifies when
the program point becomes current. The set of states is defined as Cgoals x
Cgoals, where the first component describes the C-goal that invoked the clause
containing point i and the second component is the C-goal when the point is
current. The semantics of P is defined as the least fi:x:point of the system of
equations relative to its program points. Every program point is either the
entry point of a clause or the success point of a body atom. Then it is sufficient
to define the meaning of entry- and success points:

e.a = UA~a{(Gi;G;+i) \ 3G((G;G;) E e,A /\G; f= 0 G1+1)},

eA. = UA~c{(G; tai/(Gj)) I 3G;((G; G;) E e,A t\ (G;; Gj) E ea.)}.

Example Consider the following simple case of concatenation of two lists:

Co : <-1 append([a], [], z)2.
C 1 : append([HJLI], L2, [H\L3]) <-3 append(LI, L2, L3)4.

80

C2 : append([], L, L) +-s .

Here the program points are explicitely labelled by integers. The meaning of
this program, when append([a], [], z) is called with z free variable, can be given
as least fixpoint of the following set of equations, where we use the notation of

(7].

01 ={(nil; (.Co; free(z)) :: nil!},
8 2 = {(G;tail(Gj)) I 3G;((G;G;) E 8 1 A((G;;Gj) E 84 V (G;;Gj) E 0s))},
03 = {(G;; Gt+1) I 3G(((G; G;) E 01 V (G; G;) E 83) AG; Fe, G;+l)},
04 = {(G;tail(G;)) I 3G;((G;G;) E 83A((G;;Gj) E 84 V (G;;Gi) E 8s))},
0s = {(G1; G1+1) I 3G(((G; G;) E 01 V (G; G;) E 03) /\ G; Fe, G;+1)}.

Notice that in this case the fixpoint can be computed in finite time since the
program terminates. We first calculate 8 3 . We need to compute

sp.{[append([a], (], z), append{[HIL1], L2, [HIL3])]}.(free(z, H, LI, L2, L3)).

By rule STRl, rule VAR2 applied to 12 and z, rules SI, STRl and rule
VAR2 applied to H and Ll we obtain the predicate

T::: (H =a/\ L1 = (]A 12 = []A z = (alL3] /\ free(L3)).

Since (free(z) •T) = T then (,C0 ; free(z)) :: nil Fe, (,C1 ; T) :: (Co,; T) :: nil.

By rules STRl and MISl
sp.{[append(Ll, L2, 13), append([H'ILl'], 12', [H'IL3'])]}.

(free(H', L1', 12', L3') AT)
is equivalent to FALSE. Hence

83 = { ((,Co; f ree(z)) :: nil; (aC1; T) :: (Co,; T) :: nil)}.

Consider now 8 5 • We need to compute

sp.{[append([], L, L), append(L 1, L2, L3)]}.(f ree(L) /\ T).

By rule STRl, rule EQ applied to Ll and 12, rule SI, rule SH2 applied to L
and rule VAR2 applied to L and L3 we obtain the predicate

R::: ((H =a/\ Ll = 12 = L3 = L = []A z = [a]).

Since T • R = R then

(.Ci;T) :: (Co,;T) ::nil Fe, (.C2;R) :: (C1,;R) :: (Co,;R) :: nil.

By rules STRl and MISl
sp.{[append([a], [], z), append([], L, L)]}.(free(L) AT)

is equivalent to FALSE. Hence

8s = {((.C1; T) :: (Co,; T) :: nil; (0 C2; R) :: (C1 ,; R) :: (C00 ; R) :: nil)}.

Finally 62 and 84 can be easily calculated.

81

02 ={(nil; (Co,; R) :: nil)};

04 = {((.Co; free(z)) :: nil; (Ci.; R) :: (Co.; R) :: nil)}.

Every set 0i describes the states associated to the program point i. Thus
for instance 03 specifies that the program point 3 becomes current only when
the goal append([a], [], z) invokes C1 with z free variable and in such a case
H becomes equal to a, Ll and L2 become equal to the empty list [] and L3
remains a free variable.

Acknowledgements This research was supported by "Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo" ofCNR under the grant n. 89.00026.69.

References

[1] P. Cousot, R. Cousot. Abstract Interpretation : a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix
points. Proceedings of the 4th ACM Symposium on Principles of Program
ming Languages, 238-251, 1977.

[2] P. Cousot, R. Cousot. Systematic Design of Program Analysis Frameworks.
Proceedings of the 6th ACM Symposium on Principles of Programming Lan
guages, 269-282, 1979.

[3] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] E. Eder. Properties of Substitutions and Unifications. Journal of Symbolic
Computation, 1: 31-46, 1985.

[5] R.W. Floyd. Assigning Meanings to Programs. Proc. Symp. Appl. Math.,
American Math. Society, Providence, Rhode Island, 19: 15-32, 1967.

[6] J-L. Lassez, M.J. Maher, K. Marriott. Unification revisited. Fundations of
Logic and Functional Programming, LNCS 906, 1987.

[7] Ulf Nilsson. Systematic Semantics Approximations of Logic Programs. Pro
ceedings of P LILP '90, Springer- Verlag, 1990.

