
JOURNAL OF COMPLEXITY 9, 339-365 (1993)

Efficient Comparison Based String Matching

DANY BRESLAUER*

Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 Si Amsterdam.
The Netherlands

AND

Zv1 GAuLt

Columbia University, New York. New York 10027, and Tel-Aviv University, Rama1-Auiv.
Tel-Aviv 69978, Israel

Received December I, 1991

DEDICATED TO JOSEPH F. TRAUB ON THE OCCASION

OF HIS 60TH BIRTHDAY

We study the exact number of symbol comparisons that are required to solve
the string matching problem and present a family of efficient algorithms. Unlike
previous string matching algorithms, the algorithms in this family do not "forget"
results of comparisons, what makes their analysis much simpler. In particular, we
give a linear-time algorithm that finds all occurrences of a pattern of length m in a
text of length n in

[·4 log m + 2 l
n + (n - m)

m

comparisons. 1 The pattern preprocessing takes linear time and makes at most 2m
comparisons. This algorithm establishes that, in general, searching for a long
pattern is easier than searching for a short one. We also show that any algorithm in
the family of the algorithms presented must make at least

ln - mJ n + [logmj -­
m

symbol comparisons, for m = 21 - l and any integer k 2: I.
Press, Inc.

1993 Academic

* Partially supported by the IBM Graduate Fellowship while studying at Columbia Uni­
versity and by the European Research Consortium for Informatics and Mathematics post­
doctoral fellowship.

t Partially supported by NSF Grants CCR-90-14605 and CISE Institutional Infrastructure
Grant CDA-90-24735.

1 All logarithms are to the base 2 unless specified otherwise.

339
0885-064X/93 $5.00

Copyright{') 1993 by A~ademii..: Press. Inc
All rights of reprodw.:tion in an) form n:-~erved.

340 BRESLAUER AND GAUL

l. INTRODUCTION

String matching is the problem of finding all occurrences of a short
string of length m called a pattern in a longer string of length n called a
text. In this paper we study the number of comparisons performed by
string matching algorithms that have access to the input strings by com­
paring pairs of symbols to test whether they are equal or not. We are
interested in the exact number of comparisons rather than in an asymp­
totic bound. The study of the exact number of comparisons that are
required to solve a problem is now new; there is an extensive study on
order statistics problems [2, 4, 14, 18-20, 22-25].

Several algorithms solve the string matching problem in linear time. For
a survey on string matching algorithms see Aho' s paper [l]. Most of these
algorithms work in two steps: in the first step the pattern is preprocessed
and some information is stored and used later in a text processing step.
The Knuth-Morris-Pratt [21] algorithm makes at most 2n comparisons in
its text processing step. The Boyer-Moore algorithm makes about 3n
comparisons in the worst case as proved recently by Cole [8], but per­
forms better in practice. A variant of that algorithm which makes 2n
comparisons was designed by Apostolico and Giancarlo [3] and other
variants are discussed in [l I, 12]. The Galil-Seiferas [17] algorithm and
the Cronchemore-Perrin [13] algorithm work in linear time and use only a
constant additional space. These algorithms can be implemented in linear
time even on a multi-head two-way finite automation. The Crochemore­
Perrin algorithm performs at most 2n comparisons, but uses order com­
parisons, which give less-than, equal-to, or greater-than answers, in its
pattern preprocessing step.

This paper is primarily concerned with the complexity of the string
matching problem in the deterministic comparison model. It might be
impossible to match the number of comparisons performed by a compari­
son model algorithm with an algorithm that works in linear time on a
conventional model. For this reason, the number of comparisons per­
formed by the algorithms which are described in this paper is analyzed
first and efficient implementations in a conventional model are discussed
only later.

All previous string matching algorithms are oblivious in the sense that
they sometimes "forget" or do not use information that was obtained in
previous comparisons. In fact, Colussi [10] developed his algorithm by
using formal program correctness proof techniques to avoid performing
comparisons which are implied from the results of previous comparisons.
The algorithms which are described in this paper do not "forget" answers
to comparisons, what makes their analysis much simpler.

Galil and Giancarlo [16] distinguish between on-line and off-line string
matching algorithms. An on-line algorithm has access to the text through

COMPARISON BASED STRING MATCHING 341

a sliding window whose length is equal to the length of the pattern. This
means that such an algorithm has to report if there is an occurrence at a
certain text position i before examining any text position larger than or
equal to i + m. On the other hand, an off-line algorithm has access to the
whole text.

Colussi [10] showed that the string matching problem can be solved
using I.Sn - .S(m - 1) comparisons improving the best previous bound of
2n - m comparisons [3, 5, 13, 21]. Gali! and Giancarlo [16] proved that the
number of comparisons performed by Colussi's algorithm is also bounded
by

l() min(7Ti, m - 7T 1)J ln - mJ n+ n-m <n+ --m - 2 '

where 7T 1 is the length of the shortest period of the pattern (periods are
defined in Section 3). They also gave an improved version of Colussi's
algorithm that makes

l . (min(7Ti, m - 1Ti) + 2)J 4 1
n + (n - m)mm 1/3, Zm :5 3 n - 3 m

comparisons in the worst case.
Gali! and Giancarlo [15] proved lower bounds for the on-line and the

off-line problems. These lower bounds match their upper bounds for parti­
tions of length I, 2, and 3. These lower bounds were later generalized and
improved by Zwick and Paterson [27].

In this paper we generalize Colussi's [10] algorithm and Galil and Gian­
carlo's [16] algorithm and present a family of on-line algorithms with a
similar behavior. One of the algorithms in this family is shown to perform
at most

14 log m + 2 ()l n+ n-m
m

symbol comparisons. This algorithm and its pattern preprocessing step
that makes 2m comparisons can be implemented in linear-time on a con­
ventional computation model. We also show that any algorithm in the
family of string matching algorithms presented must make at least

ln - mJ n + llog ml --;;;-

symbol comparisons, for m = zk - 1 and any integer k 2: 1.

342 BRESLAUER AND GAUL

We have learned recently that Cole and Hariharan [9] independently
discovered an on-line algorithm that makes only

8
n + 3(m + I) (n - m)

svmbol comparisons. Their algorithm can be implemented in linear-time
b.ut it uses a pattern preprocessing step that takes O(m2) time. Cole and
Hariharan also give tighter lower bounds for the on-line and the off-line
problems.

The paper is organized as follow. In Section 2 we describe the new
family of string matching algorithms. Section 3 is devoted to periodicity
properties of strings and their uses in this family of algorithms. Sections
4.1-4.2 include the details of two algorithms in this family. In Section 5
we present a lower bound for the family of algorithms discussed. Section
6 gives the details of an implementation in a conventional model. We
conclude with a brief discussion of the relation to previous work in Sec­
tion 7 and a list of open problem in Section 8.

2. A FAMILY OF STRING MATCHING ALGORITHMS

In this section we outline the structure of a family of efficient on-line
string matching algorithms. Two important properties of these algorithms
that make them comparison efficient and easier to analyze are:

I. They do not "forget" any comparison.
2. The comparisons are accounted for during the computation.

In the next sections we describe two algorithms in this family and
analyze the number of comparisons they perform. The reader should keep
in mind that the following presentation is in the comparison model where
only comparisons are accounted and all other computation is free. In fact,
the obvious implementation takes quadratic time. An efficient implemen­
tation on a conventional model is discussed in Section 6.

Each comparison that the algorithms make will be charged either to a
text position or to a special fund. The number of comparisons charged to
the special fund has to be analyzed separately for each version of the
algorithm, while the number of comparisons that are changed to text
positions is smaller than n as we prove in this section.

The new algorithms proceed by comparing text symbols from left to
right in a "forward step" leaving some "holes", which are text positions
that are not known. These holes will be "filled" or compared-to later, if
necessary, in a "backward step" that compares symbols from right to
left.

COMPARISON BASED STRING MATCHING 343

The algorithms maintain an integer s that is the current text position
that is considers and a set <t>I = {<Pf Is - m < <Pi< <P~ < ... < <P~(s; s} of
all positions of the text up to s that can still start occurrences of the
pattern and have not been reported as occurrences yet. Each member of
<P1 may have a single credit assigned to it or no credit at all. The following
invariants will be maintained:

1. The set <PI contains exactly all indices in the text, up to s, that are
possible occurrences of the pattern by answers to comparisons so far.

2. If we align copies of the pattern starting at all text positions in <t>I
and look at the columns under text positions <P~ · · · s, the symbols in all
copies of the pattern at each of these columns are identical.

Note that invariant one does not imply invariant two since some com­
parisons are skipped in the forward steps.

The third invariant concerns credits. Initially, each text positions has a
credit which can be used for a single comparison. Each credit can be
assigned and later reassigned to a member of <t>I.

3. The credit of a text position can be assigned or reassigned only to
a larger or equal member of <t>I. In addition, the members of <t>I without
credits are always the first ones.

We maintain this invariant by reassigning credits only to larger mem­
bers of <t>I; i.e., credits in <PI can only move to the right.

The algorithm starts with s = I and ct>0 = 0. We describe how the set Cl:>

is updated in the forward step after the algorithm advances from text
positions - I to the next text position S· The set <t>I is initialized by adding
s to <t>l- 1 and then it may undergo modifications. Namely, members of<f>I
will be deleted until the invariants are satisfied. In the description below
we assume that each time some members are deleted from <t>I the remain­
ing members are renumbered and called <Pi · · · <P~,.

The initial value of the set <t>I obviously satisfies invariant one which
will be maintained by removing from the set cf>I only members for which
there is evidence that they can not start an occurrence of the pattern.
However, invariant two might be violated. We repeat the following until
invariant two is satisfied. We distinguish between two cases:

• Invariant two is satisfied. This means that if we align copies of the
pattern starting at all text positions in <t>I and look at the column under
text position s, the symbols in all copies of the pattern at that column are
identical.

Ifs E <PI (initially s E <t>I, but it can be removed in one of the iterations),
the credit of text position 'is assigned to <Pti = ' in the set <t>I satisfying
invariant three.

Note that text positions has not been successfully compared. We call
text position s a hole and record it for a later processing. See Fig. 1 for an
example.

344 BRESLAUER AND GALIL

• Invariant two is violated. This means that if we align copies of the
pattern starting at all text positions in <I>' and look at the column under
text position'' then there are some different symbols.

Comparisons are performed between text position ' and the symbol
that is under ' in a copy of the pattern that is aligned starting at one of the
text positions in <I>' and the set <I>' is modified according to the outcome of
the comparisons, until invariant two is satisfied. This loop will eventually
terminate since at each step some members of <P' are removed.

If all members of <I>' except ' have credits assigned to them, we com­
pare text position ' with the symbol under this position in the first copy of
the pattern aligned starting at <Pl. We call this choice of comparison the
standard choice.

If some members of <I>' except ' do not have credits assigned to them,
the symbol we compare to text position ' depends on the version of the
algorithm and will be discussed later.

-The comparison results in an equal answer.
We remove from <I>' all text positions that if we align a copy of the

pattern starting at these positions the symbol under text position ' is not
the same as the symbol in text position '· Invariants one and two are
satisfied and the construction of <I>' is completed. The comparison is
charged to the credit of text position '· This text position will never be
compared again since we know which symbol of the pattern is there.

Since at least one of the members of <I>' was eliminated, if any of the
eliminated members had a credit and if' E <I>', that credit can be reas­
signed to cp~, = '· Note that in this case the credit is reassigned to a larger
position without violating invariant three. If no credit is assigned to ' E
<I>'. all deleted members of <I>' had no credit and at least one was deleted.
In any case the number of members of <I>' that have no credit is not larger
than the number of members without credit that the set <P' had before this
comparison was made.

We now may have to shift credits in <I>' to the right to maintain invariant
three.

-The comparison results in an unequal answer.
We remove from <I>' only the text positions that if we align a copy of the

pattern starting at these positions the symbol under text position ' is the
same as the symbol that we compared to text position '· These are only
text positions in <I>' for which we have evidence of not starting an occur­
rence of the pattern.

If all members of <I>' except ' had a credit we compared text position '
to the symbol under text position' in the copy of the pattern aligned at cµ].
Since the comparison failed, cpJ was eliminated from <P' and the compari­
son is charged to the credit <t>] had.

If some members of <I>' except 'did not have a credit we compared text

The text

COMPARISON BASED STRING MATCHING

12345678(

abaabababa
a a b a b a a b a a

a a b a b a a b a a
a a b a b a. a b a a

345

FIG. I. The state of the algorithm at text position (= 9. Holes are listed in boldface.
Note that there is a hole at text position 9 since symbols at this column in the copies of the
pattern aligned starting at text positions in <t>< = {3, 8, 9} are all the same. This means that no
comparison is made at this text position and <t> 10 will initially inherit all the text positions in
<1>9• Later, a comparison must be performed at text position { + l = 10 because the column
under this position contains different symbols. Since all text positions in <t> 10 have credits,
the symbol at text position 10 will be compared to "b," the symbol aligned with it in the
copy of the pattern that is aligned starting at text position 3, which is the smallest in <1> 10 • The
comparison fails, <1> 10 = {9, 10}, and a hole is left at text position 10. If we compared to "a"
instead, the comparison would have succeeded and we would have gotten the same set <1> 10 •

but we would not have a hole at text position JO.

position ~ to some symbol depending on the version of our algorithm we
describe later. In this case the comparison is charged to the special fund.

The total number of comparisons charged to the special fund depends
on the version of the algorithm we use and will be analyzed separately for
each version.

We now must go back to check if invariant two is satisfied. See Fig. 1.
If the set Cl>(is not empty after its construction has been completed, we

must check if <t>1 + m = ' + I since our algorithm is on line and it cannot
examine a text position larger than ' before reporting if there is an occur­
rence starting at text position <f>l.

In this case we must check if there is actually an occurrence of the
pattern starting at text position c/>l and remove <t>1 from et>(. To verify that
there is such an occurrence we must go back to fill the holes we left while
constructing the set cp(_ We scan the holes that are in text positions larger
than or equal to 1>1 in decreasing order and compare the symbol at the text
positions of the holes to the corresponding symbol of a copy of the pattern
aligned at text position <P1 until a mismatch is found or all holes at text
positions greater than or equal to <t>1 are exhausted. This will be referred
to as a backward step.

The comparisons performed are charged to the initial credit that the
text position at each hole had. By invariant three this credit could be
assigned only to a member of Cl>(that is larger than or equal to the text
position of the hole. This credit has not been used yet since credits of
members of <P are used only when <P 1, the smallest member of <t> is
removed from et> and the original text position the credit belonged to will
never be examined later. Credits that were assigned to members of <t> that
were removed at some point and were not reassigned could not have been
used either. These credits may also pay for comparing holes.

346 BRESLAUER AND GALIL

After this backward step is completed, the list of holes is emptied and
all members of <1>' lose their credits. This is the only way that additional
members without credit are introduced to the set <1>.

In the backward step in case of a mismatch all members of <I>' which are
smaller than or equal to the position of the mismatch are removed from
<I>'. This must be done to satisfy invariant one because all copies of the
pattern aligned at these text positions have the same symbol in the column
of the mismatch by invariant two.

If the comparisons in all the holes succeed an occurrence of the pattern
can be reported at text position <t>i which is deleted from <I>'. In any case
the algorithm resumes in a forward step with the new set <I>', and all
members of<I>' do not have credits. Note that all holes that are larger than
or equal to the new ct>i have been filled by successful comparisons and
these symbols will not be compared to again. This justifies emptying the
list of holes. The skeleton of the algorithm is summarized in Fig. 2. Note
that the standard choice means choosing 8 = I in Fig. 2.

THEOREM 2.1. The algorithm correctly finds and reports all occur­
rences of the pattern in the text. All comparisons are either charged to a
text position or to the special fund. At most one comparison is charged to
every text position. The number of comparisons charged to the special
fund depends on the version of the algorithm and will be determined
later.

Proof If there is a occurrence of the pattern starting at a text position
w, after <I>"'+m-1 has been constructed it must include q,rm-I = w by
invariant one. At this point holes are filled. Since an actual occurrence of
the pattern starts at text position w, all comparisons must succeed and an
occurrence will be reported. Conversely, if w is reported as an occur­
rence, then all the symbols must have been compared and found equal.

A comparison is charged to a text position directly only when it is
successful or in a backward step. If the comparison was successful the
algorithm knows what the text symbol at that position is and it will not
compare that symbol again. A comparison that is unsuccessful in a back­
ward step can be also charged to the text position compared since the set
<I>' is shifted ahead over the position of the mismatch and that text posi­
tion will never be examined again. Other comparisons that are unsuccess­
ful are charged either to a member of <I> or to the special fund. A compari­
son is charged to a member of <1> only if it is the first member and it had a
credit. In this case this member will be removed from <I> and since the
credit originally belonged to a text position smaller than or equal to this
member, we are guaranteed that it will never be used again.

Thus except for comparisons that were charged to the special fund, all

COMPARISON BASED STRING MATCHING

- The pattern is given as 'P(l..m] and the text as T(!..n].
,p• = 0
(= 1
repeat

<P' = ,p(-1 u {(}
if 41J + m > n + 1 then

347

STOP - No need to proceed if the text is not long enough to include more occurrences.
while there are two members 41I, 41] E ,p< such that 'P((- (II:+ l] #- 'P[(- 41] + l] do

end

If all members of ,p<, except (, have credits assigned to them, choose 6 "' 1.
Otherwise choose 6 according to the version of the algorithm we are using.

if 7'((- 4>; + l] = T[(] then - This is a.n actual comparison.
Charge the last comparison to text position (.
Remove all 11;•s such that 'P((- 41; + l] # 'P((- 11; + 1) from ,p<.

else
If (llJ has credit assigned to it, the last comparison is charged to its credit.

Otherwise the comparison is charged to the special fund.
Remove 41; a.nd all 41;•s such that 'P((- 4>~ + l] :o 'P((- 4>~ + l] from ,P(.

end
end
If no successful comparison was ma.de a.t the last iteration of the while loop,

then ma.rk text position (as a. hole.
If (E !li<, then we need to assign a. credit to (.

If (is a hole it gets the initial credit of the text position.
Otherwise, a.t least one member of !li< was removed.

If a member that wa.s removed ha.d a. credit, (inherits its credit.
If all members that were removed did not have a. credit a.nd some members of iii'

have credits, the credit of the smallest member of ,p< that has a credit is
reassigned to (.

- The number of members without credit wa.s not increased.
if 4>] + m = (+ I then

Let h, be the indices of all holes a.I text positions larger tha.n or equal to (llJ.
scan h, in decreasing order

end

if 'P[h, - 4>J + l] #- T[h,] then - This is an actual comparison.

end

Remove all i;I~ :5 h, from !li'.
Stop scanning holes.

- There is no occurrence of the pattern starting at text position t,6~.

U nma.rk all holes.
If the comparisons at all holes succeeded, report a.n occurrence

of the pattern starting a.t text position 41f a.nd remove c>J from <P'.
- All members of ,pc lose their credits.

end
(=(+!

FIG. 2. The skeleton of the new algorithms.

other comparisons use credits that were originally assigned to different
text symbols. •

3. PERIODS IN STRINGS

DEFINITION 3.1. A string 9'[1, .. , k] has a period of length 7T if
9'[i] = 9'[i + 7T] for i = 1, ... , k - 7T. We define the set ffl'lt, ... ,kJ =

348 BRESLAUER AND GALIL

{1d!O = 1T~ < · · · < 1T~ = k} to be the set of all periods of 9'[1, . . , k].
1TL the shortest non-trivial period of 9' is called the period of 9'.

The following is a well known property of periods:

LEMMA 3.2. If a string 9'[1, ... , k] has two periods 1Ta and 7Th, such
that 7Ta s 7Tb and 7T11 + 7Tb s k, then it also has a period 7Tb - Tra·

Proof By the definition of a period 9' [1, . . . , k - 7T .] =
9'[7Ta + 1, ... , k] and 9'[1, ... , k - 7Tb] = 9'[7Tb + l, ... , k]. But
1Ta s 7Tb and 7Ta + 7Tb s k, and therefore,

9'[7Tb - 7Ta +I, ... , 1Tb] = 9'[7Tb +I,· • · , 1Tb + 7Ta] = 9'[1, · · · '7Ta]

and,

9'[7Tb + I, ... , k] = 9'[1, ... , k - 7Tb]

= 9'[7Ta + 1, ... , k - 1Tb + 1Tu]•

Thus, 9'[], ... , k - 7Tb + 1Ta] = 9'[7Tb - 1Ta + 1, · · · , k]. •

There is a close relation between the set <I>' defined in the previous
section and the sets of periods of prefixes of the pattern as we show in the
following lemma. This relation means that most information that is re­
quired at each step of the new algorithm can be precomputed in a pattern
preprocessing step.

LEMMA 3.3. If the set <I>' is not empty after its construction is com­
pleted, then it is equal to the set of all periods of the prefix of the pattern
\!P[I, ... , ' - <P~ + I], except (- <Py + I, shifted by <PY. That is,
<I>' U {(+ I}= {7r + <PYl7T E II~[l ,,-<f>j+ 11}.

Proof Assume the set <I>' is not empty. By invariant one, it contains
exactly all text positions, up to '· that can still start occurrences of the
pattern. Furthermore, any text position larger than ' has not been exam­
ined yet. So <Pl can start an occurrence of the pattern. But then all text
positions in the set {7T + <P117T E II~lI,. . .,{-cf>j+IJ} and 7T f. (- <Pi + l} can
also start occurrences since if we aligned copies of the pattern at these
text positions the overlapping parts of these copies with the first copy
aligned at <Pl are identical up to text position (. This means that <I>' must
include all these text positions and

By invariant two if we aligned copies of the pattern at all text positions
in <I>' the symbols at each column starting from the column under text
position <Pi to the column under text position (in all copies of the pattern

COMPARISON BASED STRING MATCHING 349

are identical. Thi~ means that for all <Pi E <I>', <Pi - cpy are periods of
~[1, ... , f- <Pi.+ 1]. Thus, <l>'_LJ {' + l} ~ {rr + <P111T E IJli'll ,-<1>\+11},
smce ' - <P 1 + 1 is always a penod length of a string of this length. •

COROLLARY 3.4. If </Ji E <I>' initially and </Ji < cp < ,, then <f> E <I>'
initially if and only if <f> - <Pi is a period of~[l, ... , ' - <J>i].

4. EFFICIENT ALGORITHMS

The number of members without credit in the set <1>' is crucial to the
analysis of our algorithms since comparisons are charged to the special
fund only if a mismatch occurs when the set <1>' has members without
credit. Members without credit are introduced to the set <P only in a
backward step to fill holes. We refer to these backward steps as land­
marks and denote by '4> the first member of <P that the algorithm was trying
to verify an occurrence of the pattern at, in the last backward step. We
also define a round to start in a forward step and to end after a backward
step is completed or when the end of the string is reached.

Our analysis will bound the number of members without credit that the
set <I> can have and show that each time a comparison is charged to the
special fund the number of these members decreases. In all other cases
during a round this number can not increase. To bound the total number
of comparisons charged to the special fund throughout the algorithm we
will show that at each round, if any comparison is charged to the special
fund, then the set <I> is shifted forward by at least f m/21 positions; i.e., <P)
has increased by at least f m/21 since the last backward step. Note that we
start with the smallest member of the set <P equal to I and when it be­
comes larger than n - m + 1 the algorithm terminates.

The following lemmata provide bounds on the number of members of
<P' without credits after a backward step.

LEMMA 4.1. Let ;j) be the smallest member in the set <P' before a
backward step to fill holes and verify an occurrence of the pattern is
performed and let t be the text position of the first mismatch to verify a
hole that failed and t = 4) if all comparisons succeeded. Then all text
positions smaller or equal to t are removed from the set <P' and the
remaining members of the set <P' corresp_!!nd to the periods of the patter!!..
that are larger than or equal to t - cf> + l, except m, shifted by <f>

positions.

Proof. The proof follows immediately from Lemma 3.3 and the modifi­
cations to the set <P' in a backward step to fill holes. •

COROLLARY 4.2. Immediately after a backward step is perforf'!!._ed, the
set <I> is shifted forward by at least 1T1 positions. That is, <P) - <f> ;:::; 7T1.

350 BRESLAUER AND GAUL

Furthermore, the number of members of$(without credit is smaller than
or equal tom - 1T1.

Proof Immediate from Lemma 4.1. 1111

By Corollary 4.2, if m s 27Ti, then the set <P is shifted forward by at

least [m/21 positions after the backward step. If m > 2171, even though the
initial shift is small, we will show that <f>(is shifted by at least [m/21
positions after the first subsequent charge to the special fund.

After a backward step, if the set <f>(was not shifted by at least [m/21
positions, the two versions of our algorithm that are described later re­
sume executing the algorithm described in Section 2 using the standard
rule (choosing o = 1) until a mismatch or the next backward step. This has
an important advantage as the next two lemmas show.

LEMMA 4.3. After a backward step, if 1T 1 < { - <P) + 1 and a compari­
son between text position { and pattern position { - c/>\ + I in a forward
step fails, the set <f>(is modified and some members including the smallest
member, c/>\, are removed. The new member <P\ satisfies { - <P) + l s 77 1 •

Furthermore, after the construction of <f>{ is complete, the number of
members of <f>{ without credit is smaller than or equal to 1T 1•

Proof Before the comparison is performed, the members of <f>{ - {{}
correspond to periods of the prefix of the pattern 0'l[l, ... , { - cJ>\],
except { - cl>\, shifted by <P) positions by Lemma 4.1. Assume that after

the comparison has failed. some <Pi < { - 77 1 + I becomes the smallest
member of <fl{. By invariant two 0'll{ - cl>) + 1 - 1Ti] = 0'll{ - <P~ + 1 -
1Ti]. Since 1T1 is a period of any prefix of the pattern also 0'l[{ - <P\ + l] =

0'l[{ - <Pi + I]. But efl{ - <P\ + I] =I= 2T[{] and c/>!, must also be removed
from the set q:ii; a contradiction that shows that all <P ~ < { - 1T 1 + I are
removed from <fl(.

Since { - <P) + I ::;;; 1T 1, the total number of members in <fl{ is at most
7T1. Ill

LEMMA 4.4. If { - c/>l + 1 s 1T 1, then the set <fl{ was shifted forward by
at least [m/21 positions since the last backward step. That is, <P) - ";j; ~
[m/21.

_Proof Before the backward step to fill holes was executed we had
c/> + m = { + I. Since then, {has been increased and also { - <P) + I s 1T 1•

Therefore, the smallest member of <f>{ was shifted forward by cp{ - ~ ~
. . I

m - 7T1 pos1t10ns. But by Corollary 4.2 we know that the shift is at least 1T 1

so we must have a shift of at least max(7Ti, m - 7TJ) :=::: fm/21. 11

To summarize:

LEMMA 4.5. If all comparisons that are performed between text posi­
tion { and the symbol under it in the first copy of the pattern aligned

COMPARISON BASED STRING MATCHING 351

starting at text position <Pf until we reach the next backward step succeed,
then no comparison was charged to the special fund. Otherwise, after the
first comparison fails we are guaranteed that the set <I> was shifted for­
ward at least by f m/21 positions since the last backward step and the
number of members in <I>' is at most lm/2J.

Proof Comparisons are charged to the special fund only if they fail
and some members of <l>' do not have credits. If all comparisons succeed,
no comparison is charged to the special fund.

After the first comparison fails, by Lemma 4.3, { - <f>f + 1 :S 7T 1• By
Lemma 4.4 the set <I>' was shifted by at least fm/21 position since the last
backward step.

The number of members in <l>' immediately after a backward step is
smaller than or equal to m - 7T1 by Corollary 4.2. If <I>' was shifted by
more than f m/21 positions then it has at most fm/21 members. Otherwise,
7r1 s f m/21 and after the first mismatch by Lemma 4.4 the number of
members of <I>' is smaller than 7T 1 ::.; f m/21. •

At the beginning of each round after a shift of<l>' by f m/21 text positions
is guaranteed (either immediately or after the first mismatch in a forward
step) we resume the execution of the algorithm in Fig. 2 with a choice of 8
that depends on the version of the algorithm.

4.1. Binary Patterns

In this section we propose a version of our algorithm that gives slightly
better bounds when the pattern symbols are chosen from a constant-size
alphabet. This version is much simpler than the general alphabet version
that is given in the next section and provides an easy introduction to the
arguments used. We describe how this version of the algorithm works for
patterns over a binary alphabet and claim that this can be generalized for
any constant-size alphabet.

Recall, that the number of comparisons charged to text positions is
accounted for in Section 2 and is not larger than n. We need only to bound
the number of comparisons charged to the special fund.

Our first goal is to show that the set <I> is shifted forward by at least
f m/21 positions. This can be achieved at the cost of at most one mismatch
charged to the special fund by Lemma 4.5. After this goal is achieved the
number of members of <I>' (without credits) is guaranteed to be at most
f m/21. After the shift of r m/21 positions is guaranteed we proceed with the
algorithm described in Fig. 2 in a manner that will reduce the number of
members of <I> without credit by half each time there is a mismatch.

We look at the column under text position {in copies of the pattern
aligned starting at all text positions in <l>' that do not have credit and
compare text position { with a symbol that appears in the largest
number of copies.

352 BRESLAUER AND GALIL

LEMMA 4.6. A mismatch reduces the number of members without
credit in the set <I>' by at least a factor of two.

Proof. Since the pattern alphabet is binary, if a comparison fails at
least half of the members without credit are removed from <I>'. •

THEOREM 4.7. This algorithm makes at most

r2 log m + 2 ()l n + n - m
m

comparisons.

Proof. Since in each round, if there is a mismatch that is charged to
the special fund the set <I> is shifted forward by at least f m/21 positions, we
can have at most

n-m

fm/21

such rounds.
Each round starts with at most one mismatch that is charged to the

special fund. After that, there can be no more than log m comparisons
charged to the special fund since each time a comparison is charged to the
special fund the number of members of et>' without credit is decreased by
at least a factor of two. The total number of comparisons charged to the
special fund is therefore bounded by

r2 log::: + 2 (n - m) l
If we count also the comparisons charged to text positions, the bound
becomes

r2 log m + 2 ()l n+ n-m. •
m

If the size of the pattern alphabet is a larger constant o-(rzl') a similar
argument gives a bound of

r2 log<T(2Pli<o-(?J>J-nm + 2 ()l n+ n-m.
m

4.2. General Patterns

In this section we present a version of our algorithm that works for
patterns over any alphabet. Each forward step consists of up to three

COMPARISON BASED STRING MATCHING 353

parts. The first and the third part use the standard rule (o = 1) to guide the
choice of comparison. The second part uses the special rule defined be­
low. The first part was discussed in Section 4. It appears in all executions
of the forward step except the first one and its goal is to guarantee a shift
of <I> by at least f m/21 positions. The forward step can end during each one
of the parts.

The goal of the second part is to reduce the number of members of <I>'
without credit to less than log m. We maintain a text position x to guide
the comparisons while following the special rule. The second part starts
immediately after a shift by r m/21 positions is guaranteed after a backward
step and can continue until the next backward step. We start with x = <P).
The only members considered by the special rule are greater than x. Other
members will be considered in the third part.

When x becomes the largest member of <I>' we proceed to the third part.
Let <Pi be the smallest member of <I>' that is larger than X· By Lemma 3.3
we have initially <I>'= {7r + <P)lrr E Il~[l ,,-<t>P} and during the iterations
some members of <I>' are deleted. Any two initial members that have the
same symbol in the column under text position ' were either both deleted
or are still in <I>'. By Corollary 3.4., if = </>£ - x is a (not necessarily the
smallest) period of 9J> [1, . . . , ' - x].

The special rule will repeat the following step until it finds two consecu­
tive members x and <Pi of <I>', such that the period if = <P~ - x repeats
twice in 9J>[l, ... , ' - xl. This step is applied in the beginning of each
round after the shift of <I> by f m/21 positions is guaranteed, starting with
x = <Pl. and after each comparison is performed by the special rule.

If the period if = <P~ - x does not repeat twice in the pattern prefix
9J>[l, ... , ' - xL that is if</>£ + Ti;::: ,, we set x = <PL increment e by
one and repeat until either x is the largest member of <I>' or until the period
is repeated twice (i.e., <Pi + if< O.

If x is the largest member of <I>' then we proceed with the third part,
otherwise we continue with the special rule.

LEMMA 4.8. The members of the set <I>' = <1>'- 1 U {n that
are larger than x corresponds to periods of the prefix of the pattern
9J> [I, . . . , C - xJ. Some of these periods might continue to periods of

9J>[l, •.• '' - x + l].
Let <1>£ be the smallest member of <P' that is larger than x and let Ti =

<P£ - X· The following properties are satisfied at the beginning when <P' =
<P'- 1 U {'}and during any step of the construction of<I>':

1. <Pi + oif E <I>' for non-negative integers values of o such that

<Pi+ STi < '·
The symbols in the column under text position ' in the copies of the

pattern that are aligned starting at all these text positions are the same.

354 BRESLAUER AND GALIL

2. All other members of <P' that are larger than x are also larger than

' - 7f.
Proof. The proof follows from simple properties of periods.

I. Since the prefix ~[l, ... , ' - x] has period length 7f it
has also periods of any integral multiple of 7f. Some the periods of
~[l, ... , ' - x] might not extend to ~[l, ... , ' - x + 1].

But since ' - <Pi < ' - x. we have that ~[' - <Pi - 87f + 1] =
~[' - <Pi + 1] and all the symbols in the corresponding column are the
same. Since cf>i is still in <I>' (8 = 0) so are the others.

2. Assume cf>f is the smallest member of <I>' such that x < ct>f < 'and
is not of the form <Pi + 87f. By Corollary 3.4, ~[l, ... , ' - x] has a
period of ct>E - x in addition to the period 7f = <Pi - x.

If <PE:::;' - if, then lj>f - x + 7f :S' - x and by Lemma 3.2, ~[1,
... , ' - x] has also a period cf>f - x - 7f. By Corollary 3.4, initially also
<Pi - 7f was in <I>'.

But ~[' - x] has period 7f and therefore \iJl[' - <Pf + 1] =
~[' - <Pf - 7f + l]. These are the symbols in the column under text
position ' in the copies of the pattern aligned starting at lj>f and <Pf - 7f.
So <Pf - 7f must still be in <I>'; a contradiction to the minimality of <Pf. •

The special rule performs comparisons in the following manner:
At this point it is guaranteed that the period 7f = !f>i - x of the prefix

of the pattern ~[I, ... , ' - xJ repeats twice in this prefix.
The comparison is performed between text position 'and the symbol

aligned with this text position in the copy of the pattern that is aligned
starting at </ii. This corresponds to the choice 8 = e in Fig. 2.

The set <I>' is modified if necessary according to the outcome of the
comparison and the loop above is repeated to update X·

• If the comparison succeeded x will be updated only if its current
value was removed from the set <P'. In this case x will be assigned to the
previous value of <Pi that is still in <I>' because the comparison succeeded.
In this case the loop above has to be repeated to compute a new x.

Note that if x was not removed from <P' than the period of
~ [1, . . . , ' - x + 1], 7f still repeats twice. If x was removed, the period
may or may not repeat twice.

• If the comparison failed, x may or may not have been removed
from <I>' but it will be updated in any case. The new value of x is set to the
smallest surviving member of <P' that is larger than X· If such member
does not exist we proceed to the third part. The reason x is updated is that
by Lemma 4.8 all members of the form <Pi + 87T are removed from et>' and
the next member of et>' is larger than ' - 7f and the period does not repeat
twice. After the update the new x is larger than ' - 7f.

COMPARISON BASED STRING MATCHING 355

LEMMA 4.9. The number of members offP' that are smaller than x is
less than log m at any point while the special rule is guiding the compari­
sons to be performed. The number of mismatches that can occur is also
smaller than log m.

Proof After each mismatch x is updated. Since the number of mem­
bers of fP' that are smaller than x increases only when x is updated, we
have to consider only these occasions. Note that the number of members
of fP' that are smaller than x can be reduced at any time. We prove that
even if none is removed the bound still holds.

We show that each time x is updated the potential length of a period if
of \IJl[l, ... , ' - x] that repeats twice is halved. At the beginning the
potential length for such a period is Lm/2J.

Immediately after a mismatch has occurred,' - x <if and the longest
period that repeats twice that can be found must be shorter than 7T /2. This
means that at most one member of cp could be added to the set of members
that are smaller than x at the cost of halving the length of a potential
period 1T that repeats twice.

Now, when the loop is executed to find such a period that repeats
twice, each time the value of x is modified, one members of cp becomes
smaller than X· But since the period did not repeat twice, ' - x is halved
and the bound on a potential period that can repeat twice is also halved.

Therefore, the total number of mismatches while working under the
special rule and the number of members of fP' that are smaller than x are
bounded by log m. •

The third part is applied when x is the largest member of fP'. At the
beginning when we start applying the third part, the number of members
of fP' without credit is smaller than log m by Lemma 4.9.

THEOREM 4.10. The algorithm makes at most

r4 log m + 2 ()l n+ n-m
m

comparisons.

Proof As in Theorem 4.7 there are at most

n - m

rm/21

rounds that have comparisons charged to the special fund. There is one
mismatch charged to the special fund during the first part of a forward

356 BRESLAUER AND GALIL

step. By Lemma 4.9 the number of mismatches charged to the special
fund during the second part is at most log m. By Lemma 4. 9 the number of
members of <J>t without credit at the beginning of the third part is at most
log m and thus the number of mismatches charged to the special fund in
the third part is at most log m and at most 2 log m + 1 during a forward
step. Therefore, the number of comparisons charged to the special fund is
bounded by

and the total number of comparisons performed by the algorithm is
bounded by

r4 log m + 2 ()l n+ n-m. •
m

5. A LOWER BOUND

In this section we prove a lower bound on the number of comparisons
performed by any algorithm in the family of algorithms described.

THEOREM 5.1 Consider a string matching algorithm that scans the
input text string from left to right and moves to the next text symbol only
when all candidates for occurrences of the pattern that have not been
ruled out by comparisons made so far have the same symbol aligned with
the current text position. Then, any such algorithm must make at least

ln - mj n + llog mJ -m-

symbol comparisons, form = 2k - 1 and any integer k.

Proof Define ;!;+1 = ;J/fl,;+1;!; where the 'fl,;'s are different alphabet
symbols. Thus, ;11 = "a," ;12 = "aha," '::f3 = "abacaba," etc.

Given a pattern string '::f k. k - I = [log m], we describe a strategy for an
adversary to force a string matching algorithm which satisfies the condi­
tions of the theorem to make at least

rn - ml n + llog mJ -m-

symbol comparisons.

COMPARISON BASED STRING MATCHING 357

abacabadabacaba? ...
abacabadabacaba

a b a c a b a d a b a c a b a
a b a c a b a a a b a c a b a

a b a c a b a d a b a c a b a

FIG. 3. The lower bound for the pattern ~4 = "'abacabadabacaba."

The adversary chooses a text string that starts with an occurrence of
the pattern Y'k· After the algorithm detects this occurrence of the pattern,
there are exactly k - l potential occurrences of the pattern that overlap
this occurrence and one more that starts immediately after this occur­
rence. If a copy of the pattern is aligned with the text starting at each of
these potential occurrences, then there are k different symbols aligned
with the next text position. See Fig. 3.

The adversary can force the algorithm to make k - I unsuccessful
comparisons at this text position before the algorithm can move to the
next text position. Since after k - I unsuccessful comparisons one of the
candidates for occurrences of the pattern survives, the adversary can fix
an occurrence of the pattern starting at this candidate. This argument can
be continued and the text string can be completely covered with occur­
rences of the pattern. This means that the algorithm will be forced to
make for a text string of length n exactly n successful comparisons and at
least k - I = l!og mj unsuccessful comparisons every m positions. 11

6. IMPLEMENTATION DETAILS

In this section we show that the general alphabet algorithm can be
implemented in the standard random access machine model with uniform
cost [2] in linear time with a linear time pattern preprocessing step that
makes at most 2m comparisons. The comparisons made in the pattern
preprocessing step of the Knuth-Morris-Pratt [21] algorithm are the only
comparisons required for the pattern preprocessing of our algorithm.

LEMMA 6.1 (Knuth, Morris, and Pratt [21]). Given a string
0J>[1, ... , m], the periods 7TflI, sJ of all prefixes 0P[I, ... , g],
I :s g s m, can be computed in linear time and 2m comparisons.

The set of all periods of each pattern prefix <!f' [I, . . . , g] can be
produced from the Knuth-Morris-Pratt pattern preprocessing when
needed as shown in the next lemma. There is no need to store these sets
explicitly.

LEMMA 6.2. Given 7TflI,yJ, for 1 s y s g, the set ff'i>lt, ... ,fl of all
periods of the pattern prefix <!f' [I, . . . , g] can be computed in time that
is linear in its size without any additional comparisons.

358 BRESLAUER AND GALIL

~~ (

I I

I I

<l>i e: :Z u 1=(-~~+1 </J~

</J~
I I

</J~ c::::IJ::
I I

</J~ ~
FIG. 4. The algorithm at text position ~-

Proof It is easy to verify that IT'J>[IfJ = {O} U {7rf!I •...• t"J + 7T[7T E
IJ'1'[1, ... ,{-7Tjll .. llJ}. •

Consider Fig. 4. Let g = ~ - ct>i. Then g + 1 is the pattern position in the
column under text position ~ in a copy of the pattern that is initially
aligned starting at text position ct>i. The preprocessing consists of the
computation of three arrays in addition to the periods of the prefixes of
the pattern computed in Lemma 6.1.

The number of different pattern symbols initially in the column under
text position~ will be used in the implementation of the while loop in Fig.
2. Define the array f[!, ... , m], so that f[g + 1] is the number of
different pattern symbols initially in the column under text position ~-

LEMMA 6.3. f[I, ... , m] can be computed in O(m) time without
additional comparisons.

Proof. The array f[I, ... , m] can be computed by the following
recurrence.

f[l] = 1

f'[w] = , {
f[w - 7Tf[I , ... ,w- ll]

f[w - 1TT[l, ... ,w-1]] + 1

if 7Trr1 •...• w1 < w

if 7Tf[J, ... ,w1 = w.

Obviously f[I] = I. If 7Trri •... ,wJ < w, then by the definition of a period
Ql>[w] = Ql>[w - 1TT[I, ...• wl] and f[w] = f[w - 7Tf[I, ... ,w-Il]. Otherwise, QJ>[w] :f=
Ql>[w - 7T"1'[1, ... ,w-I]] for all 7Tfl'>[l, ... ,w-l] E IJ!Y'[I, ... ,w-1] 1T!Y'[1, ... ,w-IJ > 0 and
,,. ,.. e ' e ' e '
f[w] = f[w - 1Tf[I, ... ,w-ll] + 1. •

The key observation to the efficient implementation is that comparisons
between pattern symbols that are in the column under the currently con­
sidered text position can be answered from the information computed in

COMPARISON BASED STRING MATCHING 359

the Knuth-Morris-Pratt pattern preprocessing. By Lemma 3.3, initially
<1>1: = {7r = <Pil7T E ff'P[I,. .. ,{-ci>jl}. The algorithm in Fig. 2 groups the mem-

bers of <P' by the symbols 0J' [g - rr~[I. ... ,fl + l] in the column under text

position ~· We compute the lists Y[l, ... , m] of the smallest members
of fI'il'lI, fl that have a particular symbol in the column under text position

~ and generate the rest as we show in the next lemma.

Define the array Y[l, ... , m], so that Y[g + l] is a set of size t[g + 1]

and for each different pattern symbol 0J'[g - 7T;ti rJ + l] initially in the

column under text position~' g - 7T;t 1 gi + I E Y[g + J] where 77!11 {\

is the smallest member on rr~J>[I, ... el that satisfies '2P[g - 7T~1 1 • /\ + I] =
9J>[g - 7T~[l, ... ,g] + l].

LEMMA 6.4. If 7T:[l, .. ,gJ E ff'P[I, ... ,gJ, then all 7Tf11 {J E ffY'lI. ... §1 such
that 7T;1i, .. ,gJ :s; 7TW'[I ... ,;1 and0J'[g - 7T;ti ... ,g1 + l] = '2P[g - 7Ttti ;1 +I],

are given as {7T!ii {J + 7Tl7T E n~m {-rr:11 .(l+!J}. In particular, if
7T~[I,{J E Ylg + 1], then all members of ffil'II fl that satisfy
9J>[g - 7T;ti, ... el + 1] = '2P[g - 7T:11. e1 + I] are given by this set.

Proof. 7T:1i ,gJ - 7T~!I ,fl is a period of0J'[I, ... , g - rr:1i, .. ,g1]. lt is

aperiodof0l'[l, ... ,g-7T;11 •• el+ I]ifandonlyif'2P[g-7T;11, ... e1+ l]
= 0"[g - 7T:[l,. ,{] + l]. 1111

LEMMA 6.5. Y[1, . . . , m] can be computed in O(m) time and space
without additional comparisons.

Proof. The array Y[l, ... , m] can be computed by the following
recurrence.

Y[w] = {w} U {vlv E Y[w - 7TflI, w-!JJ and el'[w] =f. '2P[v]}

The condition that 0"[w] = 0"[v] does not require any comparison since it
is equivalent to w - rrf lI. wJ = v. The space required to represent the

Y[l, . . . , m] array and the time it takes to compute it are O(m) since

r[w] - 1 of the f[w] groups of periods of 0" [1, . . . , w - I] terminate
at 0"[w]. 11

Define the array Il[I, ... , m], so that Il[w] is the length of the short­

est nonempty border of '2P [1, . . . , w]. A border is a prefix which is also a

suffix; a string of length w has a border of length w - 7T if and only if it has

a period of length 7T. That is,

Il[w] = min{w - 7Tl7T E ff'1'lI, ... ,wJ and rr < w}.

The following lemma provides a way to access information that is re­

lated to each group efficiently, given any member of the gr~up. The algo­

rithms will use the array Il[l, ... , m] to access the array Y[l, ... , m]

efficiently.

360 BRESLAUER AND GAUL

LEMMA 6.6. Il[l, ... , ml can be computed in O(m) time without
additional comparisons. In addition, supposed that TTL 11'~ E ff'Plt, .. .,€J and
7T€ < 7T€ Then 7T€ 7T€ are in the same group that is 1!P[c - 7T'!J>[t,. . .,fl + 1]

a 13· ' a' f3 ... ' 4!:i a
= 1!P[g - 7T:[t, eJ + l], if and only ijll[g - 7Tt + 1] = Il[g - 7T~ + 1].

Proof The array TI[l, ... , m] can be computed by the following
recurrence.

{
filw - 7Tf[l, ... ,,,,1J if 11f[l ,,,,i < w

Il[w] =
w if 7Tfll,. . .,,,,i = w.

If 7Tfll, ... ,,,,J = w, then the shortest nonempty border of 1!P[1, . . . , w]
is clearly 0'>[1, . . . , w] itself. Otherwise, since any border of
1!P[l, . . . , w - 7Tfll, ... ,,,,l] is also a border of 0'>[1, . . . , w], the required
border is the shortest border of 0'>[1, ... , w - 7TflI,. . .,,,,l].

Assume that 11'€ 7T€ E II'lf>!t €1 and 7Te < 7T€ If 0'>[c - 7T21>[t,. .. ,€J + 1] =
,,, f3 " {3" ~ "

1!P[g - 7T:ll €J + 1], then by the definition of a period 7T:li ,€J - 7T;'lt, .. .,€J

E II'lf>lt €-,,.~1 •• •11 +1J and fi[g - 7Tt + 1] = fi[g - 7T€ + l]. On the
A A ""[f3 l other hand, if II[{ - 7T~[t €J + 1) = II[g - 7T~ t, e + 1], then

1!P[l, ... , g - 7T;ci €J + l] and 0'>[1, ... , g - 7T:[t, ... ,eJ + 1]
have the same nonempty border and 1!P[g - 7T;11, ... ,e1 + 1) =
1!J>[{ - 7T:[I, .. .,€] + 1). •

The pattern preprocessing step can be summarized as follows.

LEMMA 6. 7. The pattern preprocessing consists of computing the ar­
rays f[l, ... , m], Il[l, ... , m], Y[l, ... , m] and 1Tfll, ... ,yJjor-y = 1,
... , m. It can be done in O(m) time and space using at most 2m
comparisons.

THEOREM 6.8. The general alphabet algorithm can be implemented in
O(n) time on the standard model with O(m) additional space and an O(m)
time pattern preprocessing step that makes at most 2m comparisons.

Proof. Assume that the pattern preprocessing step of Lemma 6. 7 was
computed. We show that all parts of the general alphabet algorithm from
Section 4.2 can be implemented in linear time and O(m) space.

• The set <J:>I. We show how to maintain a somewhat redundant repre­
sentation that allows to access the set cpl by a variety of operations.

The set <J:>I is represented by a doubly linked list. In addition, the set cpl
has an array representation that allows direct access to check if a specific
member is in <I>I and access its linked list representation. To avoid moving
the array representation, the array will be indexed modulo m. A separate
pointer is maintained for the first member of <J:>I. The set <J:>I is initialized
when the algorithm reaches next position ' by adding ' to the set cp1- 1•

Note that the algorithm can spend some constant time per each member
of <J:>I which is removed since each text position is removed from some <I>'

COMPARISON BASED STRING MATCHING 361

only once during the computation. Since initially there are f[g + 1] differ­
ent pattern symbols in the column under text position ~and f[g + I] - l
will be removed before the algorithm advances to the next text position, it
is possible to spend O(f[g + 1]) time.

In order to access the set Y[l, . . . , m] efficiently, the algorithm
maintains an array @[1, . . . , m] which is initialized when the algorithm
first moves to text position '· The initialization assigns @[Il[v]] = v, for
each v E Y[<f + l]. Note that this initialization takes O(f[<f + 1]) time.

Given <P~ the algorithm sometimes has to delete the group of all <P~ E <P'
such that 21'[' - <Pi+ l] = \lf'[' - <P~ + 1]. By Lemma 6.6, IT[' - <P~ + 1] is
equal for every member of the same group and different for members of
different groups. In particular Ill' - <Pi + l] = fI[v], for one member v E

Y[<f + I], and 0[fI[' - </>~, + 1]] = v. Therefore, by Lemma 6.4, the group
is equal to {7T;1i, ... ~1+11'111' E f11 1• .• e[IilH,i+ 111J}. By Lemma 6.2 this group

can be generated in time that is linear in its size. The elements of the
group are deleted from <l>{ and the time to generate the group and delete its
elements is charged to the deleted elements.

If a comparison to 5"['] results in an unequal answer, only one group is
removed. If a comparisons results in an equal answer all groups but one
are removed. In the latter case, the algorithm uses the original Y[g + I] to
access all groups of <P' which have to be removed.

• The special rule for choosing o. The only part of the special rule
that requires separate attention is the loop that finds a new x such that the
period 7Tf' 1• · ,{-xl is repeated twice.

Note that by Lemma 4.5 the special rule is applied only after a mis­
match and the set <P was shifted forward by at least f m/21 positions. After
two forward steps in which the special rule is applied the members of cf>
are completely different.

Since in each forward step that the special rule is used, x is moved
forward, any given text position in <P is considered at most twice. Thus,
the total time spent in updating x is linear.

• The credits. Since the members of et>{ with credits are always the
last ones, it suffices to maintain an integer <P which is the first member of
<P' that has a credit and c:p = x if all members of <P' do not have a credit.
There are two cases in which c:p has to be updated:

l. If c:p was removed from <Pl.
2. If' E <PI after the while loop has terminated, 'does not have a

credit assigned to it and none of the members with credit has been re­
moved.
<P can be updated in constant time as members of <PI are removed or after
the while loop has completed, if no member with credit had been removed
and ' E <l>{ does not have a credit.

• The while loop. In each iteration of the while loop, the algorithm
compares 5"[\;] to 21'[' - <Pi + I], for some <Pi E <Pl. If the comparison
results in an unequal answer, then some members of <PI are removed and

362 BRESLAUER AND GAUL

the number of different pattern symbols in the column under text position
' is reduces by one. The while loop terminates either when a comparison
results in an equal answer or if text position ' is left as a hole when all
pattern symbols left in the column aligned with this text position are
identical. The latter case happens exactly after f[g + l] - l iterations.
Therefore, the while loop can be implemented in f[g + l] - l iterations
with a special exit condition in case of a successful comparison.

• The holes. The only operations involving holes are:
I. Marking the current text position ' as a hole.
2. Scanning the holes in a decreasing order. Only holes which are

at text positions larger than or equal to <P! need to be remembered.
These operations can be trivially implemented if the holes are main­

tained as a doubly linked list. New holes are added on one side and old
holes are removed as <t>1 is updated.

Finally, we give the time analysis. Members of <I> are text positions that
never rejoin <I> after they are deleted. The algorithm spends a constant
time for each such member. Thus the total time is O(n). •

Note that by Theorem 6.8, the family of algorithms in Fig. 2 except the
rule for choosing o can be implemented on the standard model within the
same bounds. By using similar methods one can also implement the bi­
nary alphabet algorithm of Section 4.1.

7. PREVIOUS WORK

The exposition in this paper not only generalizes the algorithms of
Colussi [10] and Galil and Giancarlo [16], but can also be used to simplify
the analysis of these algorithms. The differences between these algo­
rithms and the family of algorithms which is presented in this paper are
described below. For a more detailed discussion see Breslauer's Thesis
[6].

I. Colussi's algorithm is very similar to the family of algorithms
given in Fig. 2 with the standard choice o = l that guides the comparisons.
Galil and Giancarlo's improvement of Colussi's algorithm is essentially
using the choice o = 2 in special cases.

2. Colussi's algorithm associates holes with pattern positions. If a
comparison fails, then the pattern template is shifted ahead and the holes
are moved with it. The results of some comparisons may be "forgotten."

3. Colussi's algorithm removes from <I>' only some of the first mem­
bers <t>L ... , <t>f. In many cases more members that are not numbered
consecutively could be removed. Consequently, Colussi's algorithm "for­
gets" comparisons and some might be repeated. This phenomenon is

COMPARISON BASED STRING MATCHING 363

demonstrated by the pattern "abaa" when the last pattern symbol is
compared.

8. OPEN PROBLEMS

The exact complexity of string matching is not determined yet and there
are several open problems left. The recent work of Cole and Hariharan [9]
still leaves a small gap between the lower and the upper comparison
bounds for string matching. The gap is even larger if the pattern prepro­
cessing is accounted for in the bounds.

1. What is the exact number of comparisons required for the string
matching problem if the pattern preprocessing is not accounted for? If the
pattern preprocessing is accounted for? Is there a single algorithm which
is optimal in both cases?

2. Galil and Giancarlo [15, 16] also consider the number of compari­
sons required by algorithms that only test if there is an occurrence of the
pattern in the text and do not find all occurrences. What are the bounds
for this problem?

3. Do algorithms that compare pairs of text symbols have an advan­
tage over algorithms that compare only pattern symbols to text symbols?
It seems easier to obtain lower bounds for algorithms that do not compare
pairs of text symbols [15, 27]. Zwick [26] has recently shown that for
some patterns, pairwise comparisons of text symbols can help.

Zwick and Paterson [27] call an algorithm that has access to the text
through a sliding window of length m + k a k-look-ahead algorithm (in our
terminology a zero-look-ahead algorithm is on-line and infinite-look­
ahead algorithm is off-line). They show that a look-ahead is useful, at least
in some cases. Currently, all general comparisons efficient string match­
ing algorithms are on-line.

4. What is the exact number of comparisons that are required for an
/-look-ahead algorithm?

5. Is a finite look-ahead sufficient? Namely, is there a finite look­
ahead value l that depends only on the pattern length and suffices to
obtain the same comparison bounds as an off-line algorithm?

A more ambitious question would be:
6. What is the exact number of comparisons required to match a

given pattern QJ>[l, ... , m].
Similar questions can be asked about other string problems. A closely

related question that might help in determining the complexity of string
matching including pattern preprocessing is the following.

7. What is the exact number of comparisons required to find the
period of a string? All periods of a string? The periods of all prefixes of a

364 BRESLAUER AND GALIL

string? In a recent work Breslauer, Colussi, and Toniolo [7] give some
lower bounds for the last problem.

ACKNOWLEDGMENTS

We thank Raffaele Giancarlo, Laura Toniolo, and Uri Zwick for comments on early
versions of this paper.

REFERENCES

[!] AHO, A. V. (1990), Algorithms for finding pattern in strings. in "Handbook of Theoreti­
cal Computer Science" (J. van Leeuwen, Ed) pp. 257-300, Elsevier, Amsterdam.

[2] AHO, A. V., HoPCROFT, J.E., AND ULLMAN, J. D. (1974). "The Design and Analysis
of Computer Algorithms," Addison-Wesley, Reading, MA.

[3] APOSTOUCO, A., AND GIANCARLO, R. (1986), The Boyer-Moore-Gali! string search­
ing strategies revisited, SIAM J. Comput. 15(1), 98-105.

[4] BENT, S. W., AND JOHN, J. W. (1985), Finding the median requires 2n comparisons, in
"Proc. 17th ACM Symp. on Theory of Computing," pp. 213-216.

[5] BOYER, R. S., AND MooRE, J. S. (1977), A fast string searching algorithm, Comm.
ACM 20, 762-772.

[6] BRESLAUER, D. (1992), "Efficient String Algorithmics," Ph.D. thesis, Dept. of Com­
puter Science, Columbia University, New York, NY.

[7] BRESLAUER, D .. COLUSSI, L., AND TONIOLO, L. (1993), Tight comparison bounds for
the string prefix-matching problem, Inform. Process. Lett., to appear.

[8] COLE, R. (1991), Tight bounds on the complexity of the Boyer-Moore pattern matching
algorithm, in "Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms," pp. 224-233.

[9] COLE, R., AND HARIHARAN, R. (1992), Tighter bounds on the exact complexity of
string matching, in "Proc. 33rd IEEE Symp. on Foundations of Computer Science,"
pp. 600-609.

[IO] CoLUSSI, L. (1991), Correctness and efficiency of string matching algorithms, Inform.
and Control. 95, 225-251.

(11] CROCHEMORE, M .. GASIENIEC, L., AND RYTTER, w. (July 1992), Turbo-BM, Techni­
cal Report 92.61, Laboratoire lnformatique Theorique et Programmation, Universite
Paris 7, Paris, France.

[12] CROCHEMORE, M., LECROQ, T., CZUMAJ, A., GASIENIEC, L., JAROMINEK, S., PLAN­
DOWSKI, W., AND RYTTER, W. (1992), Speeding up two string-matching algorithms. in
"Proc. 9th Syrop. on Theoretical Aspects of Computer Science," Lecture Notes in
Computer Science, Vol. 577, pp. 589-600, Springer-Verlag, Berlin.

[13] CROCHEMORE, M., AND PERRIN, D. (1991), Two-way string-matching, J. Assoc. Com­
put. Mach. 38(3), 651-675.

[14] FORD, L. R., AND JOHNSON, S. M. (1959), A tournament problem, Amer. Math.
Monthly 66, 387-389.

[15] GAUL, z .. AND GIANCARLO, R. (1991), On the exact complexity of string matching:
Lower bounds, SIAM J. Comput. 20(6), 1008-1020.

[16] GAUL, Z., AND GIANCARLO, R. (1992), The exact complexity of string matching:
Upper bounds, SIAM J. Comput. 21(3), 407-437.

[17] GAUL, z .. AND SEIFERAS, J. (1993), Time-space-optimal string matching, J. Comput.
System Sci. 26, 280-294.

COMPARISON BASED STRING MATCHING 365

(18] KIRKPATRICK, D. G. (1974), Topics in the complexity of combinatorial algorithms.
Technical report, Dept. of Computer Science, University of Toronto, Toronto. Can­
ada.

(19] KIRKPATRICK, D. G. (1981), A unified lower bound for selection and set partitioning
problems, J. Assoc. Comput. Mach. 28, 150-165.

(20] KISLITSYN, S. S. (1964), On the selection of the kth element of an ordered set by
pairwise comparison, Sibirskii Mat. Zh. 5, 557-564.

(21] KNUTH, D. E., MORRIS, J. H., AND PRATT, V. R. (1977), Fast pattern matching in
strings, SIAM J. Comput. 6, 322-350.

[22] POHL, I. A sorting problem and its complexity, (1972), Comm. ACM 15, 462-464.
[23] SCHON HAGE, A., PATERSON, M., AND PIPPENGER. N. (1976), Finding the median,

J. Comput. System Sci. 13, 184-199.
[24] SCHREIER, J. (1932), On tournament elimination systems, Mathesis Polska 7, 154-160.
(25] YAP, C. K. (1979), New upper bounds for selection, Comm. ACM 19, 501-508.
(26] ZWICK, U. (1992), Personal communication.
(27] ZWICK, U., AND PATERSON, M. S. (1991), Lower bounds for string matching in the

sequential comparison model, manuscript.

