
Applied Numerical Mathematics 13 (1993) 251-270
North-Holland

APNUM 441

Analysis of local uniform grid refinement

J .G. Verwer and R.A. Trompert
CW!, P. 0. Box 4079, 1009 AB Amsterdam, Netherlands

Received 22 September 1992
Revised 13 November 1992
Accepted 16 November 1992

Abstract

251

Verwer, J.G. and RA. Trompert, Analysis of local uniform grid refinement, Applied Numerical Mathematics
13 (1993) 251-270.

Numerical methods for time-dependent PDEs usually integrate on a fixed grid, a priori chosen for the whole
time interval. Similar to a fixed stepsize, a fixed grid may be inefficient when solutions possess large local
gradients. While most schemes can easily adapt the stepsize, as in genuine ODE and method-of-lines schemes,
the question of how to automatically adapt the grid to rapid spatial transitions is much more involved. The
subject of this paper is local uniform grid refinement (LUGR) for finite different methods. The idea of LUGR
is to cover the spatial domain with nested, finer-and-finer, locally uniform subgrids. LUGR is applicable both
to stationary and time-dependent problems. For time-dependent problems the local subgrids are adapted at
discrete values of time to follow moving transitions. The aim of this paper is to discuss, for the class of finite
difference methods under consideration, a general error analysis that shows the interplay between local
truncation and interpolation errors. This analysis points the way to a theoretically optimal strategy for the
local refinement, optimal in the sense that this strategy controls accumulation of interpolation errors and
simultaneously strives for the spatial accuracy that would be obtained on the finest grid when used without
adaptation. Attention is paid to both the stationary and time-dependent case, while for time-dependent
problems the emphasis lies on combining LUGR with Runge-Kutta time stepping.

Keywords. Time-dependent partial differential equations; numerical analysis; adaptive-grid methods; local
uniform grid refinement; error analysis.

1. Introduction

Numerical methods for time-dependent PDEs usually integrate on a fixed grid, a priori
chosen for the whole time interval. Similar to a fixed temporal stepsize, a fixed grid may be
disadvantageous when solutions possess large local gradients. However, while most schemes can
easily adapt the stepsize by local error control, as in genuine ODE applications and in
method-of-lines schemes, the question of how to automatically adapt the grid to the spatial
solution behaviour is much more involved.

Co"espondence to: J.G. Verwer, CWI, P.O. Box 4079, 1009 AB Amsterdam, Netherlands.

0168-9274/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

252 J. G. Verwer, R.A. Trompe rt / Local uniform grid refinement

For time-dependent PDEs we distinguish two main categories of adaptive-grid methods, viz.
dynamic and static ones. While dynamic (in time) methods adapt the grid in a continuous-time
manner, like classical Lagrangian and moving-grid methods, static (in time) methods adapt the
grid only at discrete times such that a time step is carried out on a fixed grid. Static methods
bear a close resemblance to similar methods developed for stationary (elliptic boundary-value)
problems. These methods again can be divided into two types. We mean the local-pointwise-re
finement methods, where truly nonuniform grids arise, and the local-uniform-grid-refinement
methods. Obviously, for each type of method one can envisage advantages and drawbacks. In
this paper we refrain from discussing these and instead will focus on a particular class of static
local-uniform-grid-refinement (LUGR) methods.

The basic idea of local uniform grid refinement [1,3,6] is to cover the spatial domain, say D,
with nested, finer-and-finer, locally uniform subgrids so as to accurately resolve steep spatial
transitions. In addition, for time-dependent problems these local subgrids are adapted in time
to follow the moving transitions. In our approach, within a time step the integration then starts
at the coarsest (base) grid covering n and during this time step the PDE is subsequently
reintegrated on these nested subgrids. Loosely speaking, per time step interval an initial
boundary value problem is solved on each local subgrid. For each local subgrid required initial
values are defined by interpolation from the next coarser subgrid or are taken from a possibly
existing subgrid from the previous time step interval. Likewise, boundary values required at
internal boundaries are also interpolated from the next coarser subgrid. Having completed the
integration on the finest level, the LUGR process is then repeated for the next time step by
again starting at the base grid, but by using the most accurate solution available while also grid
points already living at a certain level of refinement are used in the step continuation. So to
say, to each grid level a numerical integration in time is attached on a discretely moving
integration domain.

Both from the practical and theoretical point of view the first question to address is how to
select the regions in n that ought to be refined. Albeit in essence LUGR is a straightforward
adaptive-grid technique, the error analysis and resulting implementation issues readily become
complicated. The aim of the present paper is to discuss, for the class of methods and problems
under consideration, a general error analysis that shows the interplay between the local
truncation and interpolation errors. In theory this analysis points the way to an optimal strategy
for the local refinement, optimal in the sense that this strategy controls accumulation of
interpolation errors and simultaneously strives for the spatial accuracy that would be obtained
on the finest grid when used without any adaptation. Needless to say that this is a natural goal
to be achieved when grid adaptivity is employed.

The class of methods and the error analysis were discussed before in [10,11,16]. In these
papers only time-dependent problems are considered. However, the same ideas apply to
stationary problems and because then the analysis is somewhat simpler to describe, we here
first discuss the stationary case and then turn to time-dependent problems. We work with a
general class of semi-discrete PDEs obtained through a finite different space discretization. Of
course, we have in mind specific problems possessing steep local transitions. However, we
restrict ourselves to problems having solutions with a sufficiently large number of derivatives
and hence discard those with truly discontinuous solutions (like nonlinear hyperbolic problems
with shocks).

:rid methods, viz.
continuous-time

ethods adapt the
l. Static methods
boundary-value)
cal-pointwise-re.
-grid-refinement
:d drawbacks. In
ar class of statie

Id • . omam, say n,
lve steep spatial
adapted in time
ation then starts
is subsequentfy
:erval an initial
required initial
from a possibfy
ues required at
~ completed the
xt time step by
while also grid

inuation. So to
:cretely moving

dress is how to
straightforward
readily become
; and problems
v-een the local
ptimal strategy
:cumulation of
ld be obtained
a natural goal

L,16]. In these
:ieas apply to
~ribe, we here
e work with a
:retization. Of
However, we
of derivatives
olic problems

J.G. Verwer, R.A. Trumpt•rt /Luca/ umform grui rt•/inement 253

2. LUGR: the stationary case

2.1. The semi-discrete problem

Consider a (system of) well-posed, real, abstract Cauchy problem(s)

u 1 =L(x,t,u), xEfl, t>O.

u(x, 0) = u0 (x),
(2.1)

where L is a D-space dimensional PDE operator of at most second order, supplemented with
appropriate boundary conditions. Assume that the boundary of [l is locally parallel to
coordinate axes and that (the interior oO n can be covered with a uniform base grid, here
denoted by fl 1. In addition, let n", 2 ~ k ~ r, be uniform space grids such that nk covers the
Whole Of (the interior of) {1 while fl k +I is Obtained from fl k by bisectional Cellular refinement.
On each fl" we introduce a semi-discrete counterpart of (2.l) denoted by

d
dtudt)=Fk(t,u"(t))+adt), t>O, udO)given, (2.2)

where uk(t) is the (pointwise) restriction of u(x, t) and a"(t) the spatial truncation error
induced by the difference operator Fk. It is assumed that the semi-discrete boundary conditions
have been worked into (2.2). Neglecting ak yields the ODE system

d
-Uk(t)=F"(t,Uk(t)), t>O, U"(O)=udO), (2.3)
dt

where 1 < k < r. We assume that r, the number of grid levels, is fixed in time (in [l l] r is
allowed to be variable). For the stationary case we remove the temporal variable t to obtain the
similar stationary equations

Fk(ud+ak=O, k=l, ... ,r,

F"(U")=O, k=l,. .. ,r.

(2.2,)

(2.3')

We will formulate and analyse the LUGR method for the semi-discrete equations (2.3) and
(2.3'), like in the method-of-lines approach. We tacitly assume second-order finite differencing,
by imposing at interior points the standard central scheme and, if necessary, on boundaries the
one-sided three-point scheme. The error analysis is valid for other finite difference discretiza
tions as well.

2.2. The method formulation

For 1 ~ k < r let S" be the vector space of grid functions on ilk. Let lk: S" - Sk denote the
unit matrix. Introduce an interpolation operator Pk-ik :Sk-t -sk from flk-t to flk. Let
Dk: S" - S" denote a certain diagonal matrix with entries (D");; either unity or zero. Suppose
that D 1 = 11• For the sequence of stationary problems (2.3') the multilevel LUGR method is
then defined by

F1(U1) = 0,

DkFdUk) +(I" -D")(U" -Pk-tkUk-t -bd = 0, k = 2, .. ., r.
(2.4)

254 J.G. Verwer, R.A. Trompert /Local uniform grid refinement

The second formula is to be interpreted as a difference-interpolation equation to be solved
on the grids Dk in the order k = 2, 3, The matrix Dk is supposed to be known prior to the
computation at grid nk. These diagonal matrices define the local subgrids upon which the
actual finite difference calculations are carried out. Specifically, for nodes in the interior of the
local subgrids (Dk)ii = 1, while for all other nodes where interpolation is carried out (Dk)ii = 0.
The actual definition of Dk, and hence the actual selection of the local subgrids, is made by the
refinement strategy. The nesting property of the local subgrids is also induced by this strategy
and cannot be recovered from the above formulation, as it is hidden in the definition of Dk. In
the analysis the matrices Dk play an important role. Note that if we substitute Dk= Ik for all
k, we recover the usual single grid finite difference scheme at all specified grids.

For 2 .::;; k .::;; r an equivalent formulation is

(Ik -Dk)(Uk -Pk-lkUk-1-bk)=0,

DkFk(Uk) = 0,

(2.5a)

(2.5b)

which separates the interpolation part (2.5a). In this part we have included a grid function bk
which serves to collect certain terms possibly emanating from the physical boundary conditions.
We include bk since in (2.2) we have eliminated the semi-discrete unknowns at boundaries. Its
presence is purely formal and for the analysis below this term plays no role. The choice of
interpolant is in principle still free, although we advocate higher-order interpolation, e.g.
fourth-order Lagrangian. Formula (2.5b) represents the finite difference computation over the
local subgrid in use, which is carried out after the interpolation (2.5a). Note that (2.5b) is
coupled to (2.5a), since the function evaluation in (2.5b) calls for solution components of Uk
living at grid interfaces (internal boundaries) through the coupling in the finite difference grid.
These grid interface components are defined by (2.5a).

At this stage we should emphasize that (2.4) defines approximations in the spaces Sk whose
associated grids Dk cover the entire domain D. Of course, in practice we only execute (2.5b) at
nodes for which the associated entry of Dk equals one and interpolate only at level k nodes
where needed in reality, rather than over the whole of the grid n k. For the time being,
however, we act as if we truly work in S k and will futher comment on the (restricted)
interpolation in Section 2.4.

2.3. The refinement condition

An essential feature of any LUGR method is that a grid point will never be part of a future
local subgrid at a higher refinement level once it gets outside the current local subgrid. This
naturally implies that the accuracy at a grid point which is allowed to leave the local subgrid
must satisfy a rather stringent test. We now present a general refinement condition defining
such a test. In theory this condition guarantees the spatial accuracy that would be obtained on
the finest grid when used without any adaptation, up to a grid-independent constant.

We rewrite (2.4) as

-DkFk(Uk) + (Ik - Dk)(Uk - Pk-lkUk-1 - bk)= 0, k = 1,. . ., r, (2.6)

and note that for k = 1 the interpolation part is auxiliary since DI = 11 (on the base grid n 1

there is no interpolation). Substitution of the PDE solution uk yields

-DkFk(uk) + (Ik-Dk)(uk-Pk-1kuk-1 -bk) =8k, k = l, .. .,r, (2.7)

J.G. Verwer, RA. Tramper! /Local uniform grid refinement 255

where the defect ok is composed of the spatial truncation error ak and the interpolation error
y k as follows,

ok = Dkak + (lk - Dk)yk,

ak= -Fk(uk), Yk=uk-Pk-lkuk-1-bk.
(2.8)

The minus sign in front of DkFk(Uk) has been introduced to get Dkak in (2.8), rather than
- Dk a k. Note that this is allowed in view of (2.5b). If we subtract (2.6) from (2. 7), then the
global error ijJ k = u k - Uk in the space S k is seen to satisfy

Zkifik = (Ik-Dk)Pk_lkifik-1 + ok,

Zk= -DkMk+lk-Dk,

where Mk is the Jacobian matrix

Mk = f 1[aFk(Ouk + (1 - O)Uk)laU] dO,
()

which results from applying the mean-value theorem for vector functions.
The refinement condition is now argued as follows. First we rewrite (2.9) to

Zkij;k = Dkak + (Ik -Dk)Pk, Pk= Yk + Pk-1kifik-P
and observe that we have two parts in this equation. The first part

-DkMkijJk = Dkak

(2.9a)

(2.9b)

(2.10)

(2.11)

(2.12)

is defined on the interior of the local subgrid. Here the error is determined by the usual spatial
truncation error Dkak and the error components on the subgrid interface. These latter
components are defined in the second part

(Ik -Dk)i/Jk = (Ik -Dk)pk, (2.13)
which is defined on the interface and outside the local subgrid. All error components in (2.13)
are determined by Pk· This error contains the interpolation error Yk and the prolongation of
the previous global error ifik-1' according to (2.11). In the ideal situation Uk -Dk)pk is not
larger than D ka k, because then the maximum of the error ijJ k will more or less be determined
by the truncation error expression (2.12). This means that the maximum error is nearly equal to
the maximum error found if no grid adaptivity was employed. The refinement condition derived
below indeed achieves that on grid fJr the parasitic error U, - D,)p, will not be larger than
D,a,.

The derivation goes as follows (cf. [10, Section 6]). The error p, is first brought in the form

where

p r = Ar + P, - I r: t: { i D 1 xi} (z k) - l (I k - Dk) A k '

X.=(Z·)- 1(1-D)P 1·, I l l l 1- I

Ak=yk+Pk 1k(Zk-1)- 1Dk-1ak-1·
Let II· II be the maximum norm (in all spaces Sk) and introduce the norm bounds

JJ(zk)-1 J[~ Cpo, \\Pk-1k II~ C1,

(2.14)

(2.15)

(2.16)

256 J.G. Verwer, R.A. Trompert /Local uniform grid refinement

where both constants are independent of the grids. Note that for linear interpolation C 1 = 1,
while for higher-order interpolants C1 > 1. The constant C FD will be very close to the bound
that naturally exist for all (Mk)- 1, since in (2.9b) a part of the rows of Mk remain unchanged
and the remaining ones are replaced by unit rows. Inserting the bounds (2.16) in (2.14) yields
the inequality

r-1

ll(Zr)- 1(/r -Dr)Pr II~ C max !!Uk -Dk)Ad, C = CFo = L (CFnc1r-k ·
2,;;,k,;;,r k=2

Hence, if we succeed in imposing, for two arbitrary constants c and C *, the condition

l!(Ik-Dk)Akll~ ;Jl(Zr)- 1Drarll, k=2, ... ,r,

then insertion of (2.17) in (2.11), for k = r, implies

(2.17)

(2.18)

(2.19)

In conclusion, if we manage to satisfy (2.18), then the adaptive-grid global error rfir satisfies
the same bound as the global error rfir := (-M)- 1ar that exists on the globally uniform grid
Dr, up to a grid-independent constant. In other words, asymptotically spoken, (2.18) removes
the contribution from interpolation and the use of coarser grids, and thus achieves that there
will be no true loss in spatial accuracy by using coarser grids.

Condition (2.18) is the refinement condition referred to above. Note that (2.18) is a result of
first bounding terms in (2.14) and then adding norm bounds, resulting in (2.17). Hence (2.18)
will tend to be a conservative condition and (2.19) a conservative estimate. The choice of the
two parameters c and C * plays a role too, of course. Their use here is argued as follows. If C
would be known, or an upper bound for it, it is natural to put C * = C, so that in (2.19) the
extra error bound term due to the interpolation and the use of coarse grids then becomes
cCFD 11ar11. This extra error bound term can then be controlled by the parameter c. Generally
C is unknown. In the remained we therefore put C * = r - 1, which is motivated by the
observation that, if C would be ~ r- 1, then the extra error bound term cCFD II ar II applies.
We have C ~ r - 1 in reality if we would interpolate linearly and C FD ~ 1. In applications we
advocate higher-order interpolation, though. As long as the interpolation takes place in low
error regions, the influence of a bound C 1 > 1 is expected to be minor. The stability of the
discretization, and thus the size of CF0 , is of greater importance.

For actual implementation we use the refinement condition

C* = r - 1, k = 2, ... , r,

where, componentswise, the grid function Ck is defined by

(Ck);= !('Yd; I+ l(Pk-1k(Zk-1)- 1 Dk-1ak-1)J

(2.20)

(2.21)

Condition (2.20) implies (2.18). Replacing Ak by ~k thus provides an extra safety margin.
In theory (2.20) can always be satisfied by adjusting the refinement matrices Dk. An extreme

solution would be Dk= Ik, implying no local refinement. Note that this also results for c = 0.

J. G. Ve1Wer, R.A. Trompert / Local umform grid refinement 257

Obviously the size of the local subgrids is partly determined by the parameter c which is still
free. A natural choice is c == 1, which is assumed henceforth. The larger c is chosen, the easier
it will be to satisfy (2.20), but also the larger the estimated error contribution from interpolation
and coarser grids will be that arises in the upperbound

II I/I r II ~ (1 + C r ~ l) II (Z r) - 1 Dr a: r II ~ (1 + C r ~ l) C FD II a r II. (2.19')

Finally, if the order of the interpolation error is larger than the order of the truncation error
and the interpolation takes place in low error regions, then from (2.21) we see that the
interpolation error contribution will play a minor role, as is to be expected. This matter,
however, is more complicated for time-dependent problems since there the temporal stepsize
plays a role too. We will encounter this later in the paper.

2.4. Implementation aspects of the refinement condition

In this section we pay attention to implementation issues for (2.20) (cf. [10, Section 6]). Note
that if we are able to efficiently solve the general nonlinear finite difference system (2.3') on a
single fine grid, then we can also solve each of the related systems (2.4). Hence typical solving
issues are not discussed here (see also [4]), neither do we discuss the data structure (see [12]).
For (2.20) the main issues are discussed in the following subsections.

2.4.1. The restricted interpolation and nesting property
Suppose we have computed U1 on the global grid !2 1• Then at all points of !22 the numerical

version of (2.20) is checked for determining the local subgrid of level 2. Let w2 denote this local
subgrid. If at the ith point 1((2); I is not small enough, then this ith point is placed into w 2

((D 2);; = 1) and otherwise outside ((D 2);; = 0). The numerical condition (2.20) is now satisfied
at level 2 so we can compute U2 from (2.5). We then first execute the interpolation (2.5a), but
only at the internal boundary points of w 2 to omit redundant work. Then we solve the finite
difference system (2.5b) at level 2. Because we have omitted the full interpolation (2.5a), we
have not computed the whole of U2 and, so to say, have left the computational space S 2 . If a
third level is needed, then the next step is to determine w3 and we proceed with the numerical
condition (2.20) in the same way as at level 2. However, we check it only at the intersection of
!23 and w 2 and thus omit that part of the space domain which at level 2 was found sufficiently
accurately resolved. Consequently, w 3 will then be nested into w 2 • Higher levels are dealt with
likewise.

The point we wish to make here is that by not interpolating everywhere and checking (2.20)
only at the intersection of !2k and wk_ 1, we are no longer in Sk and thus deviate from the
theory. This deviation, however, is not essential and our claim is that would we stay in S k and
check (2.20) on the whole of !2k, local subgrids wk would be found equal or very close. To see
this we consider (2.20) and (2.21) again for k = 2. For k = 2 the check has been carried out on
!22 . Hence, due to the absolute values, outside w 2 we have

(2.22)

(for the analytic expressions their numerical counterparts are substituted). Now consider k = 3.

258 J.G. Verwer, RA. Trompert /Local uniform grid refinement

For k = 3 the deviation comes from not checking (2.20) outside w2 . However, there the second
term of (2.21) is zero for k = 3, just by definition. So there would be no deviation if also I (y 3) i I
satisfies (2.22) outside w 2• This is a reasonable assumption in view of the fact that the
interpolation error on a fine grid may be expected to be smaller than on a coarse grid. We
repeat this argument for k = 4, etc.

2.4.2. The estimation of the interpolation and truncation error in (2.21)
Because we work at uniform grids this is well feasible. The expression for Yk is explicitly

known once the interpolant is chosen. The truncation error ak-I = -Fk(uk_ 1) is estimated
from -(Ft(uk_ 1) -Fk(uk_ 1)), where Ft is a second, higher-order finite difference operator.
We use a Fk* of order four. Note that we tacitly assume that substitution of the numerical
solution into the theoretical error expressions is allowed in the sense that the numerical
estimate is also asymptotically correct with the same order of accuracy. Further, for linear
problems the Jacobian matrix Zk-i is always available. In case of nonlinear problems the
approximate Jacobian appearing in the iterative Newton process is used. The greater part of
the work thus is an additional linear solve to compute the global error expression
(Zk-1)- 1Dk-1 ak-1 ·

2.4.3. The estimation of the global error expression at level r in (2.20)
Here we exploit the asymptotics of the local truncation error. Let p be the order of

consistency of ak. We then use the asymptotic relation

ll(z,)- 1 D,a, II== 2-p(r-k)ll(zkf 1 Dkak II, r ~ k + 1, (2.23)

and reuse this every time k is increased to improve the reliability of the estimation for
increasing k.

2.4.4. Accuracy in the estimation
The LUGR method is designed to solve PDEs with steep solutions. Yet the refinement

condition (2.20) with the various order relations, like (2.23), are based on asymptotics, which
means that they can only be accurate if the solution is sufficiently smooth on the grid in use. At
first sight this constitutes a contradiction, because initially error estimations on coarse grids are
carried out. However, to our experience the estimation procedure works well in practice and, so
far, the results are in very good agreement with the theory. We believe the reason is that even
when the estimation is not so accurate, it will still indicate where the error is large and where
not. If the error is considered too large at a certain part of the space domain, the finite
difference computation is simply redone there. So there is a built-in safety in the algorithm in
the sense that it locally refines until the solution becomes smooth relative to the local grid in
use. Further, mostly the estimation will be in the same order of magnitude as the true error and
then the refinement strategy based on (2.20) and (2.23) should work without any serious
difficulty.

2.5. Numerical illustration

To illustrate our local refinement condition (2.20), we have applied the LUGR scheme (2.4)
to

[l = (0, 1) x (0, 1), (2.24)

J. G. Verwer, RA. Trompe rt / Local uniform grid refinement

Table 1
Results for problem (2.24)

2 3

2 1 1.1410-1
2 2.5810-2

3 1 1.1410-1
2 2.5710-2
3 5.66 10 -3

4 1 1.1410-1
2 2.5810-2
3 6.3310-3
4 1.3110-3

5 1 1.1410-1
2 2.5810-2
3 6.2910-3
4 1.5810-3
5 3.5210-•

Column 1: r =number of levels.
Column 2: k = the refinement level.

4

1.0710-1

1.0710-1
2.4810-2

1.0710-1
2.4810-2
6.2110-3

l.07w-1
2.4810-2
6.2310-3
1.5510-3

Column 3: Maximum of true global error on subgrid.

5

441
299

441
705
625

441
1455
1431
2161

441
1681
2559
4737
7281

Column 4: Maximum of numerical estimation of globar error on subgrid.
Column 5: Number of points of subgrid.
Column 6: Number of points of uniform grid.
Column 7: Maximum of true global error on uniform grid.

6 7

1681 2.5810-2

6561 6.2810-J

25 921 1.5610-3

103041 3.9010-•

259

with exact solution u(x, y) =exp(-A[(x - 0.5) 2 + (y - 0.75) 2]) and Dirichlet boundary condi
tions. Although not really very difficult, this linear elliptic model problem provides a nice
example to illustrate the LUGR method and its anticipated error and convergence behaviour.
Note that the solution is strongly peaked for A large. In our computation A= 160. We have
used fourth-order Lagrangian interpolation and recall that the finite difference operators Fk
and Fk* are of accuracy order two and four, respectively.

Table 1 shows results for four experiments using, respectively, two, three, four, and five
levels of refinement. The coarsest grid is always 21 x 21, hence the coarsest and finest
meshwidths used are 1/20 and 1/320. The free parameter c, left in the refinement condition
(2.20), has been put equal to 2. Table 1 shows also results for four additional computations
carried out on, respectively, the uniform 41 x 41, 81 X 81, 161 x 161, and 321 x 321 grid. Figure
1 shows the five-level grid and computed solution on this grid.

From the table we conclude that for the linear elliptic model problem the LUGR scheme
works as predicted by the theory. When adding a new level, the true global error decreases by a
factor of 4, approximately, reflecting the second-order convergence of the difference approxi
mation. Note that the numerical global error estimation is very accurate, even on the coarse
grids. Also note that the local subgrids at levels k < r grow for increasing r, according to the
theory. The correspondence with the accuracy found on the uniform grids is striking. Such an
excellent correspondence is of course attractive, but it also indicates that the refinement
condition indeed may work out too conservative, as already indicated above. This reduces

260 JG. Verwer, R.A. Trompert /Local uniform grid refinement

. ___ , .. ___ ____._ ____,.. -~----..--+---------~-+-~----<--+---~~---·-~ .

Fig. 1. Problem (2.24): grid and solution for the five-level computation.

J.G. Verwer, RA. Trompert /Local uniform grid refinement 261

efficiency, since it means that the local subgrids have been chosen unnecessarily large, due to a
too small parameter c. We have repeated the five-level experiment for c = 3, 4, and 5 and
found the following maximal global error on the fifth level: 3.6510 -4, 4.19 10-•, and 4.20 10-4

respectively. Note that these are still very close to the maximal global error on the 321 x 321
grid.

The systems of linear equations, arising in (2.Sb) and (2.21), are solved in sufficiently high
accuracy using a BI-CGSTAB iteration method with ILU preconditioning (a code taken from
NETLIB, see [4] for details, authors, and references). For this iterative approach the LUGR
technique offers an advantage due to the nesting of the higher-level subgrids, which implies
decreasing condition numbers of the associated linear systems when compared with those
found for the corresponding globally uniform grids. Hence, in general a more rapid conver
gence of the linear solver is experienced on the higher-level subgrids. The convergence is
further accelerated by using as initial guess the interpolated solution from the previous level,
like in straightforward nested iteration. A drawback is that each level requires a new ILU
decomposition. However, preconditioning is still very effective.

Our iteration strategy has not been thoroughly optimized, but works so far very satisfactorily
(see also [4,13]). For example, in the five-level computation of Table 1 we counted, respectively,
11, 17, 19, 22, and 19 iterations to compute the numerical solution on the five subgrids and 10,
16, 19, and 22 iterations in the four global error estimations. The total effort for these nine
iterations is to be compared with the iteration costs for the uniform 321 X 321 grid, plus the
costs of the ILU decomposition. The number of iterations for the uniform 21 x 21, 41 x 41,
81x81, 161 x 161, and 321x321 grids are, respectively, 11, 21, 41, 61, and 82.

3. LUGR: the time-dependent case

We now turn our attention to time-dependent problems (2.3) and show how the stationary
LUGR scheme (2.6) can be modified by attaching to each grid level a numerical integration in
time on a discretely moving local subgrid. The approach here is that of a step-by-step one, by
which we mean that the local refinement is carried out over all levels, time step after time step.
Hence the time variable itself does not play a role in the local refinement.

3.1. The implicit and explicit Euler LUGR schemes

Let T = t n - t n - 1 denote the stepsize and R rk : s r-+ s k the natural pointwise restriction
operator from Dr to Dk. The implicit Euler scheme then reads, k = 1, ... , r,

DZ [(ukn - R,kurn-i)/T - Fk(tn, Ut)) + (Ik - DZ)[Ut - Pk-lkukn-1 - bZ] = 0, (3.1)

where un is the numerical solution at time t = tn and grid [lk· This integration/interpolation
scheme ~an be interpreted as to be obtained from the stationary scheme (2.6) by first replacing
-Fk(Uk) by the time-dependent expression dUk(t)/dt -Fk(t, Uk(t)) and then invoking the
first-order backward difference

(3.2)

262 J.G. Venver, RA. Trompert /Local uniform grid refinement

Taking Rrkurn-l instead of ukn- 1 means that for time stepping the finest grid solution from the
past time level is used. Similar to (2.6), scheme (3.1) is applied for k = 1, 2, ... , but now for
each time step tn- l - t11 • The matrices n;: are adjusted per time step which means that the
local subgrids, or integration domains, move in time in a discrete manner. Note that D~ = 11, so
that in (3.1) the interpolation part is to be ignored for k = 1. Also note that for r - oo the
stationary equation (2.6) is recovered.

In [10] we use the equivalent formula

Ut =Dk(Rrkurn-l + rFk(tn, un] + (Ik -Dk)[Pk-lkUt-1 +bk], (3.3)
k = 1, ... , r,

which is obtained after multiplying (3.1) by r and reordering terms. The explicit Euler LUGR
scheme is now also immediately found to be

Ut = D;:(Rrkurn-i + rFk(tn-1' Rrku/- 1)] + (/k -D;:)[Pk-lkUt-1 +bk], (3.4)
k = 1, ... , r.

In fact, the stationary LUGR approach can be coupled to any existing time stepping technique
of interest to PDEs. To illustrate this, the next section is devoted to the class of Runge-Kutta
LUGR methods [11] for which (3.3) and (3.4) are special cases. The discussion will again focus
on the refinement condition.

Note that in our method description we follow the method of lines approach of first
converting PDEs to continuous in time ODE systems through spatial discretization. Starting
from the alternative Rothe method, also called the method of discretization in time [9],
Deuflhard and his coworkers developed interesting finite element type adaptive multilevel
methods (see [5,7] and the references therein).

3.2. The Runge-Kutta LUGR schemes

For ease of presentation we use the direct product notation where augmented variables and
operators will be underlined. For ODE systems (2.3) the general s-stage RK formula thus reads

(3.5)

where we have included the output stage in the formula for the intermediate stages. Hence, A
is here the Butcher matrix (a;) of order s + 1, rather than of order s, whose (s + l)st column
contains zeros and whose remaining entries in the (s + l)st row are just the weights of the final
output stage. Scheme (3.5) lives in the augmented space §.k = (Sk)s+ 1• The augmented vector
U{ is composed of the intermediate stage vectors

s

U(i) - un-I + """ F (t + UU)) k - k T £.,., a ij k n-1 C jT' k '
J=I

and the output vector
s

Ut = ukn-l +TE as+ljFk(tn-I + CjT' uy>).
j= 1

1 ~ i ~ s, (3.6)

(3.7)

•
J. G. Ve1Wer, R.A. Trompe rt / Local uniform grid refinement 263

For l<,,i.:;;,,s the ith component vector of .fk is Fk(tn_ 1 +c;r,UJil), while the (s+l)st
component vector of Ek is the zero vector. We assume the usual condition c; = a;1 + · · · +a;s·

Analogous to the implicit Euler scheme (3.3), we now introduce the general RK-LUGR
scheme

!l.t = Dk [B r k (e © Urn - I) + T (A © I k) .f k (t n - 1 ' Y.n l
+(!k-Q;:)[Ek-lkUt-1 +f?k],

where 1 .:;;,, k .:;;,, r and

if a 1j = 0, 1 .:;;,, j .:;;,, s,

otherwise.

(3.8)

(3.9)

An important observation is that the multistage nature of the RK method is carried over. This
means that, completely similar to the Euler case, grid interface components at intermediate
stages are defined by the scheme itself. Note that (3.8) contains the class of all explicit and
implicit one-step RK methods. The definition of Qk avoids interpolation at the first stage if
a1j = 0, 1 .:;;,,j.:;;,, s, which holds for all explicit methods, but e.g. also for the implicit trapezoidal
rule. Hence in these cases the first (trivial) stage value is assigned to the restriction of the finest
grid approximation Rrku,n- 1• The Euler methods (3.3) and (3.4) are obtained by elaborating
(3.8), respectively, for the Butcher matrices

A = (i ~) and A = (~ ~) . (3.10)

Finally we note that levelwise (3.8) takes the same temporal stepsize. For explicit RK
methods this naturally leads to a too small stepsize on the coarser grids since for these methods
the stepsize is readily constrained by stability dictated by the finest grid. For implicit methods
this stability constraint normally does not exist. Of course, although the coarse grid computa
tions are the cheapest ones, using the same stepsize leads to extra overhead. Taking a larger
stepsize on coarser grids, as in [12], may be advantageous. It should be backed, however, by a
solid error analysis.

3.3. The local space error for the RK-LUGR scheme

For simplicity of presentation we assume now that (2.3) is of the constant coefficient linear
type

(3.11)

Let!:!:~ be the augmented vector composed of the true PDE solution vectors u~i> = ur(tn- l + C;T),

1.:;;,, i.:;;,, s + 1, where u~s+l> = u~. Introduce the global error~~'=!:!:~ - !l/ committed by (3.8) in
the augmented space s_,. An elementary calculation [11] shows that 5::~ is defined by a general
error scheme

(3.12)

264 J.G. Verwer, RA. Trompert /Local uniform grid refinement

where the amplification operator Grn and the local error i/l;t + lf!rns are defined by recursions
connecting the grid levels. The part lf!:'t contains all temporal error contributions from the RK
method, while lf!;s is the local error part composed of all existing spatial truncation and
interpolation errors. In the remainder we will call i/l;s the local space error (at level r). It is
emphasized that this local space error is the counterpart of the stationary (global space) error
If!, featuring in Section 2.3.

We now concentrate on l{l;5 • In connection with local refinement this error is the most
interesting one since it is i/J,n5-that we wish to dictate the local refinement. We note in passing
that both the stability and the temporal accuracy will not differ significantly from what we
experience in the usual single-grid application, as long as interpolation takes place in low error
regions. Hence a good refinement strategy which guarantees this is most desirable. In [11] it is
shown that p_;s can be written in the form

~r~ = (Z:f lrQ;q,n + (l,-Q;)f>~]' (3.13)

where z; =J,-rQ;(A ®M,) can be recognized as an RK operator, rD;qrn as the contribu
tion to the local space error inside the rth-level integration domain, and (f, - Q;)p~ as the
contribution to the local space error outside the rth-level integration domain fnote the
correspondence with (2.11)). Specifically, q,n is the space truncation error expression

a:n =(A® I)[a<l)T a<s)T a<s+l)T]T
-r r r '· · • ' r ' r '

i.e. the ith component u,<il of q,n is given by the sum

a-U>=a. aOl+ ... +a. a(s)
r Ii I 1s r '

where a~il is the space truncation error in S, at time t = tn-I + cjr (see (2.2)).
The error E~ depends on all previous levels and, similar to f!, in (2.14), is given by

e~=~~+f,-1,'E1 {.n (Kt)}(zk)- 1(!k-QZH1,
k=2 1=r-l

Kt = (Z;f 1cL-Qnfi-1i•
where

(3.14)

(3.15)

(3.16)

(3.17)

Like in the stationary case, the local error expression (3.13) plays a crucial role as it uncovers
the local space error r(z;>- 1Q;q,n of the RK method defined in ~' on the rth-level
integration domain. The idea is again to control by a sensible choice of all refinement matrices
QZ the parasitic error p~ in such a way that the adaptive-grid local error (3.13) satisfies a
similar bound as the fixed-grid local space error r(Zn)- 1un.

-r -r

3.4. The refinement condition for the RK-LUGR scheme

The derivation of the refinement condition goes completely similar as in the stationary case.
It reads

(3.18)

J. G. Verwer, R.A. Trompe rt / Local uniform grid refinement 265

where II· II is again the maximum norm and both c and C* are arbitrary constants. Condition
(3.18) implies the local space error bound

where

r-1

C = CRK + L (CRKCr)r-k,
k=2

and C RK is a constant, independent of k, that still ought to be specified.

(3.19)

(3.20)

For the (one-stage) Euler methods (3.3) and (3.4) the augmented formulation is of course
redundant and it is more transparant to present the counterparts of (3.18)-(3.20) directly for
(3.3) and (3.4).

The common local space error that exists on the single rth-level grid satisfies an entirely
similar bound as the adaptive-grid bound (3.19) Uust take c = 0). Hence, if CRK can be taken as
a grid-independent constant, we may conclude that imposing (3.18) guarantees that in the
asymptotic sense the spatial accuracy will not decrease by using coarser grids. This result is very
similar to that drawn earlier for the stationary case. However, for time-dependent problems an
additional comment must be made, which has to do with the dependency of the local subgrids
on the temporal stepsize r. From (3.18) we see that if T decreases, more and more entries of
DJ: must be taken zero to satisfy this condition. Hence the smaller T, the larger the local
subgrids must be in order to keep control of the interpolation errors. In fact, if r ~ 0, then the
interpolation error yf: can no longer be controlled so that necessarily QJ: __. lk· This is what we
should expect to happen for a static-regridding method due to the fact that interpolation errors
can accumulate for evolving time. Our refinement condition prevents this, even though we
interpolate at each time step.

The norm ll<Zk')- 1 \I naturally depends on r, on all coefficients of the RK method, on D;:
and on the finite difference operator Mk. Assuming a sensible choice of RK method and a ratio
between stepsize T and finest mesh width dictated by the usual time step stability, in actual
application l\(Zf:)- 1 1\ indeed can be bounded by a grid-independent constant CRK since
otherwise a contradiction exists with the supposed applicability of the RK method. Further,
CRK will be very close to the constant that exist for application on the entire grids nk. Note
that CRK is supposed to be independent of k. This assumption is allowed since we take the
same stepsize r at all levels. Because (ZJ:)- 1 is an augmented operator, the intermediate stages
do play a role in the determination of CRK· It is not possible to get rid of these intermediate
stages for the simple fact that interpolation must take place there, which shows up in the local
error analysis (and also in the stability analysis which is not discussed here, see [11]). Finally, we
observe that when implementing the refinement condition (3.18), working in the augmented
space may be too costly so that a simplification of (3.18) towards the output stage, for example,
becomes a necessity. Normally such a simplification will not be essential in the sense that the
local grid refinement would no longer comply to our claim that the use of coarse grids does not
truly diminish the overall spatial accuracy of the global finest grid (see [11} where a three-stage
DIRK method has been implemented).

266 J.G. Verwer, RA. Trompert /Local uniform grid refinement

4. Practical experience

So far we only have practical experience with time-dependent problems in two space
dimensions. In [12] the explicit Runge-Kutta-Chebyshev method is applied in an LUGR
manner to a nonlinear parabolic model problem from combustion theory. The grid selection,
however, is still heuristic and does not underlie the current error analysis. On the other hand,
this heuristic strategy is expected to work satisfactorily in many practical cases. In [10] the
implicit Euler method (3.3) is discussed in detail and applied to a linear parabolic model
problem. In [11] a specific three-stage DIRK method belonging to class (3.8) is discussed in
detail and applied to a linear parabolic model problem. There we also discuss the use of a
variable number of grid levels in time, which in many practical cases can lead to an additional
reduction of workload. For a combination of LUGR with the second-order linear multistep
BDF method we refer to [13-15]. In these three papers the application is centered around a
specific groundwater flow system dealing with transport of brine in porous media. The system is
constituted by a nonlinear elliptic equation for the pressure and two nonlinear convection-dif
fusion equations for the salt mass fraction and temperature, respectively. Due to the elliptic
equation, at the semi-discrete level we here obtain a stiff DAE system. It has turned out that
for DAE systems the current local refinement analysis may not be adequate and needs to be
adapted for proper use. Recall that in this paper we assume either a genuine ODE system (2.3),
or a genuine stationary system (2.3'). While in [13] the grid selection is still heuristic, and
similar to that in [12], it is shown in [14,15] how such an adaptation towards DAE systems can
be accomplished, thereby concentrating on the brine transport problem.

5. Concluding remarks

5.1. Survey

Adaptive-grid methods are meant for problems possessing rapid local transitions in their
solution. By their very nature, these problems remain difficult to solve accurately and cheaply,
also when using adaptive grids. We believe a promising approach to adaptive grids is based on
LUGR. This approach of computing on nested, finer-and-finer, local uniform subgrids, overlay
ing one another, is widely applicable in any number of space dimensions and provides much
flexibility in the selection of discretization schemes and solvers. The technique is equally well
applicable to stationary and evolutionary problems. Note that a finite difference cartesian grid
structure, which for certain applications can be too restrictive for geometrical reasons, is not
necessary. Finite element or finite volume schemes on structured grids can be developed too.

The main theoretical and practical question for any LUGR method should be how to govern
the local refinement. The refinement analysis presented in this paper underlies the assumption
that the spatial error of the multilevel scheme should be "equal" to the spatial error of the
finest grid level used without any adaptation. This is an optimal situation for local grid
refinement methods, but of course has a price in terms of overhead. Obviously, an heuristic
strategy, as used in [12,13] where no additional linear solves are needed, has less overhead. On
the other hand, a strategy that takes the true spatial discretization and interpolation errors into
account is generally expected to be more reliable and therefore in the long run may also

wo space
n LUGR
selection

' her hand
' I [10] the

lie model
cussed in
use of a

tdditional
multistep
around a
system is
~tion-dif

ie elliptic
I out that
eds to be
tern (2.3),
istic, and
;terns can

; in their
l cheaply,
based on
, overlay
:les much
Jally well
~sian grid
ns, is not
)ped too.
to govern
sumption
or of the
ocal grid
heuristic
h.ead. On
~rors into
may also

l.G. Verwer. R.A. Trompert /Local uniform grid refinement 267

expected to be more efficient. Finally we note that we have not yet thoroughly investigated the

validity of the estimation of the interpolation and truncation errors (cf. Section 2.4.2) in
connection with substituting the numerical solution values into the estimators.

5.2. Efficiency

In general it remains a difficult question to tell which strategy and/or static adaptive

technique is to be preferred, local pointwise or local uniform, since this may depend on a

variety of interfering factors. We mention datastructure overhead, interpolation and estimation

overhead, accuracy on uniform versus accuracy on nonuniform grids, implicit solution costs,

and no doubt the computer architecture plays a role. However, whether a local uniform or

pointwise approach is followed-assuming a reliable refinement strategy-for computing

solutions with greatly varying gradients, grid adaptivity may be very cost-effective in terms of

CPU time. To illustrate this for the class of LUGR methods here discussed, we carry out a
simple comparison based on the following scenario.

Suppose that the volume of a subgrid is decreased by a factor g D < 1 any time a new grid

level is introduced. Let N be the number of grid points of fl 1. The total number of grid points
processed in one full LUGR computation then equals, approximately.

N[l + (2g)D + ... +(2g)D(r-l)]. (5 .1)

Note that we may consider this both for a stationary problem and per time step for a
time-dependent one, assuming that the local subgrid integrations span the same time interval
(cf. Section 3). The number of points of fl, is approximately equal to 2D(r- 1w. Dividing the

two yields a first measure of the expected gain factor in CPU time. This factor is to be

corrected for all overhead costs not encountered on a single uniform grid. If the final factor is

substantially larger than one, it pays to use local refinement. Table 2 lists expected CPU gain

factors for the volume-decrease factor g = 2/3 and a CPU overhead factor of 3/2, which
means that in the table the entries have been divided by 3/2.

This simple comparison of course assumes that the accuracies of the LUGR computation

and the standard rth-level computation are equal. In connection with the spatial accuracy this

assumption is allowed in view of our refinement strategy. Further, one can show that the

temporal local error is the same on all grid levels, thanks to using the same stepsize and to

always injecting finest grid values into coinciding coarse grid points [10,11]. Hence this

assumption is not unrealistic. Also note that the CPU overhead factor is taken relative to the

uniform rth-level computation, so that 3 /2 is substantial since coarse grid computations are

Table 2
Expected CPU gain factors

r=2 r=3 r=4 r=5 r=6

D= l: 0.6 0.7 0.8 1.1 1.5
D=2: 0.9 1.8 3.7 7.9 17.4

D=3: 1.6 4.7 15.3 50.6 169.7

..... -------------------------------------·-

268 .f. G. Verwer, R.A. Trompe rt / Local uniform grid refinement

much cheaper and thus involve relatively little overhead. Yet we believe this factor may be
realistic.

We conclude that for the current scenario there is no gain for one-dimensional problems,
unless a very large number of levels is used. Although for smaller volume-reduce factors g and

a smaller CPU overhead factor larger gains are found, we think for one-dimensional problems

the nested LUGR technique is probably not so worthwile if reduction of CPU time is the main
objective. On the other hand, in two dimensions, and particularly so in three dimensions, a very
substantial gain can be realized.

For stationary problems-and time-dependent problems when an implicit integration tech

nique is used-an efficiency comparison should definitely take into account the costs of solving

systems of nonlinear and linear algebraic equations, since it is here that readily most of the

CPU time is spent. The choice of solution method then may play a decisive role. When good
iterative solvers are used, like in [4,13) the LUGR technique offers an advantage due to the

decreasing volume of the higher-level grids, which implies (relatively) decreasing condition

numbers of the associated linear systems. Hence, in general, a more rapid convergence of the

linear solver is experienced on the higher-level subgrids when compared with the convergence

on the corresponding globally uniform grid (see also the numerical example of Section 2.5).

5.3. Adjusting the temporal stepsize leuelwise

In this paper local subgrid integrations span the same time step interval (cf. Section 3). For

time stepping this is attractive because it means that at each grid level the same local temporal

errors arise [10,11], which simplifies stepsize control. Although more complicated, it is conceiv

able to include also the time variable in the local refinement and to work with so-called local

timeslabs, determined by the selected temporal stepsize on £2 1• In this approach this coarse-grid

stepsize is halved every time a new grid level is introduced, in accordance with the spatial
refinement. We have heuristically implemented it in [12].

To illustrate what additional gain in CPU time it might yield, we repeat the comparison

based on the scenario of Section 5.2. The total number of grid points processed in the full
LUGR computation over one timeslab then approximately equals

(5.2)

and the number of points of £2, processed over this timeslab is given by :::::: 2r- 12D<r-IJN. For

g = 2/3, a CPU overhead factor of 3/2, and considering one local timeslab, Table 3 is the
counterpart of Table 2.

Table 3
Expected CPU gain factors

r=2 r=3 r=4 r=5 r=6

D=l: 0.7 0.9 1.5 2.1 3.2

D=2: 1.2 2.5 5.5 12.3 27.6

D=3: 2.2 7.2 24.3 81.8 276.0

J. G. Verwer, R.A. Trompert / Local uniform grid refinement 269

We see that the one-dimensional case is still questionable for application. In the two- and
three-dimensional case the expected decrease in CPU time compared to the situation of
Section 5.2 is certainly of some interest, but not really dramatic. The present comparison of
course also assumes that the accuracies of the LUGR computation based on local time steps
and of the standard rth-level computation are equal. Amongst others this implies that the
accuracy on the coarser grids may not suffer from the larger stepsizes in time. In situations
where stability is dictated by the finest grid, as usually occurs with explicit time stepping, this
threat will readily be absent. On the other hand, when approaching a steady state with an
implicit method, there is no reason to take a smaller stepsize on a finer level. A more thorough
examination seems justified.

5. 4. Treating the time variable globally and global error estimation

To include the time variable in the local refinement, it is even conceivable to treat time in a
global manner, just like the spatial variables. This means that given a time-dependent problem,
we create stationary type systems (2.2') on a sequence of finer-and-finer space-time grids. The
solution step on the base space-time grid then involves that the numerical solution is
considered over the entire (finite) time interval. After this, the local refinement is carried out,
simultaneously in space and time, followed by the second solution step on the now locally
refined, global space-time grid, etc. Note that the refinement analysis of Section 2 is general
enough to encompass this global approach. For the temporal discretization one can in principle
consider the use of common integration formulas of linear multistep or RK type, in which case
any solution step can be carried out in the traditional step-by-step way, or one can choose
alternative boundary-value type discretizations as discussed in [2,8].

There exists a clear drawback, though. The complete solution computed over the space-time
domain must be kept in storage for error estimation and local refinement purposes. This of
course may become an obstacle when the PDE already has two or three space dimensions. Also
note that when the boundary-value approach of [2,8] is followed, the dimension in the
discretization scheme itself is increased by one, which may require special solvers [8]. However,
there also exists a distinct advantage from the theoretical point of view, viz. this way the local
refinement is governed by estimates of the true global error (recall that in the stationary case i/J,
is a global error, whereas in the time-dependent case l/J, 5 is local). Taking the global error into
account is of interest for the simple fact that we then mimic the local error propagation of the
time integration in the error estimation procedure. For example, if the computation is highly
stable, as often happens for dissipative problems like parabolic PDEs or stiff ODEs, the local
errors are rapidly damped so that past local errors readily play no role in the global accuracy.
On the other hand, in other cases, notably hyperbolic PDEs, the computation is often
marginally stable and local errors really add up. Also for DAE systems, e.g. originating from
elliptic-parabolic problems, the error propagation may considerably differ per component
which in turn may interfere with the local error estimation [15].

Hence it may be of interest to mimic local error propagation. The global approach provides
this possibility and in view of our positive experiences with LUGR for the spatial variables, it
seems worthwile to combine and extend the ideas to global error estimation for time-dependent
problems. This will make codes more reliable and therefore, in the long run, also more
efficient. Finally, in connection with PDEs a most interesting point is that this also opens up

270 J.G. Venver, RA. Trompert /Local uniform grid refinement

possibilities for balancing spatial and temporal errors through locally adjusting the temporal
and spatial mesh widths. Balancing of spatial and temporal errors is of interest in itself for
attempting to increase efficiency of PDE calculations.

References

[1] S. Adjerid and J.E. Flaherty, A local refinement finite element method for two-dimensional parabolic systems,
SIAM J. Sci. Statist. Comput. 9 (1988) 792-811.

[2] A.0.H. Axelsson and J.G. Verwer, Boundary value techniques for initial value problems in ordinary differential
equations, Math. Comp. 45 (1985) 153-171.

[3] M.J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput.
Phys. 53 (1984) 484-512.

[4] J.G. Blom, J.G. Verwer and R.A. Trompert, A comparison between direct and iterative methods to solve the
linear systems arising from a time-dependent 2D groundwater flow model, CWI Report NM-R9205, Amsterdam
(1992).

[5] F.A. Bornemann, An adaptive multilevel approach to parabolic equations I: general theory and ID-implementa
tion, IMPACT Comput. Sci. Engrg. 2 (1990) 279-317.

[6] W.D. Gropp, Local uniform mesh-refinement with moving grids, SIAM J. Sci. Statist. Comput. 8 (1987) 292-304.
[7] J. Lang and A. Walter, A finite element method adaptive in space and time for nonlinear reaction-diffusion-sys

tems, Preprint SC 92-5, Konrad-Zuse-Zentrum, Berlin (1992).
[8] J.M.L. Maubach, Iterative methods for nonlinear partial differential equations, Ph.D. Thesis, Catholic Univer

sity of Nijmegen, Netherlands (1991).
[9] K. Rektorys, The Method of Discretization in Time, Series Mathematics and Its Applications 4 (Reidel,

Dordrecht, Netherlands, 1992).
[10] R.A. Trompert and J.G. Verwer, Analysis of the implicit Euler local uniform grid refinement method, SIAM J.

Sci. Complll. 14 (1993) 259-278.
[11] R.A. Trompert and J.G. Verwer, Runge-Kutta methods and local uniform grid refinement, Math. Comp. 60

(1993) 591-616.
[12] R.A. Trompert and J.G. Verwer, A static-regridding method for two-dimensional parabolic partial differential

equations, Appl. Numer. Math. 8 (1991) 65-90.
[13] R.A. Trompert, J.G. Verwer and J.G. Blom, Computing brine-transport in porous media with an adaptive-grid

method, lntemat. J. Numer. Methods in Fluids. 16 (1993) 43-63.
[14] R.A. Trompert, Local uniform mesh refinement and brine transport in porous media, Presented at the

Conference on Numerical Methods for Fluid Dynamics, Reading, UK (1992).
[15] R.A. Trompert, Local uniform grid refinement and systems of coupled partial differential equations, Appl.

Numer. Math. 12 (1993) 331-356.
[16] J.G. Verwer and R.A. Trompert, An adaptive-grid finite-difference method for time-dependent partial differen

tial equations, in: D.F. Griffiths and G.A. Watson, eds., Proceedings 14th Biennial Conference on Numerical
Analysis, Dundee, Scotland, 1992, Pitman Research Notes in Mathematics Series 260 (Pitman, London, 1992)
267-284.

Applied
North-H

j

c
D

c

1. lot

In
functi
accel1
cumu
funct
splim
with
quin1

Su

whic

whe
com
In ~
thee

Con
135(
*T

016l

