
Theoretical Computer Science 113 (1993) 293-348 
Elsevier 

Modular specification of process 
algebras* 

Rob van Glabbeek** 

293 

lnstitut fur Infimnatik der Technischen Universitiit, Post(ach 20 24 20, D-8000 Munchen 2, Germany 

Frits Vaandrager 
CW!, Postbus 4079, /009 AB Amsterdam, The Netherlands 

Communicated by A.R. Meyer 
Received July 1988 
Revised November 1991 

Abstract 

van Glabbeek, R.J. and F.W. Vaandrager, Modular specification of process algebras, Theoretical 
Computer Science 113 (1993) 293-348. 

This paper proposes a modular approach to the algebraic specification of process algebras. This is 

done by means of the notion of a module. The simplest modules are building blocks of operators and 

axioms, each block describing a feature of concurrency in a certain semantical setting. These 

modules can then be combined by means of a union operator +,an export operator o, allowing to 

forget some operators in a module, an operator H, changing semantics by taking homomorphic 

images, and an operator S which takes subalgebras. These operators enable us to combine modules 

in a subtle way, when the direct combination would be inconsistent. 

We give a presentation of equational logic, infinitary conditional equational logic -of which we 

also prove the completeness -and first-order logic and show how the notion of a formal proof of 

Correspondence to: F.W. Vaandrager, CW!, Postbus 4079, 1009 AB Amsterdam, The Netherlands. Email: 

fritsv(wcwi.nl. 
*This is a substantial revision of part of our paper Modular specifications in process algebra-with 

curious queues, Report CS-R8821, CW!, Amsterdam 1988, which appeared partly in [ 46] and entirely in 

[24]. An extended abstract of that paper has been published as [25]. This revision intends to be an 

improvement; however, for more applications of our module approach, e.g. to the specification of more 

curious queues and to the verification of the concurrent alternating bit protocol, as well as for the treatment 

of many-sorted module logic, we refer to the old version. 
The research of the authors was supported by ESPRIT project no. 432, An Integrated Formal Approach 

to Industrial Software Development (METEOR), and by Sonderforschungsbereich 342 of the Technical 

University of Munich. The research of the second author was also supported by RACE project no. 1046, 

Specification and Programming Environment for Communication Software (SPECS). 

Most of the work on the revision was done during a visit from the second author at the Technical 

University of Munich. 
**Present address: Computer Science Department, Stanford University, Stanford, CA 94305, USA. 

Email: rvg(1vcs.stanford.edu. 

0304-3975/93/$06.00 (~~; 1993-~Elsevier Science Publishers B.V. All rights reserved 



294 R.J. van Glabbeek, F. W. Vaandrayer 

a formula from a theory can be generalized to that of a proof of a formula from a module. This 
module logic is then applied in process algebra. We show how auxiliary process algebra operators 
can be hidden when this is needed. Moreover, we demonstrate how new process combinators can be 
defined in terms of more elementary ones in a clean way. As an illustration of our approach, we 
specify some FIFO-queues and verify several of their properties. 

Introduction 

During the last decade, a lot of research has been done on process algebra: the 
branch of theoretical computer science concerned with the modeling of concurrent 
systems as elements of an algebra. Besides the Calculus of Communicating Systems 
(CCS) of Milner [34, 35], a large number of related formalisms have been developed, 
such as the theory of Communicating Sequential Processes (CSP) of Hoare [29], the 
Meije calculus of Austry and Boudol [3] and the algebra of communicating processes 
(ACP) of Bergstra and Klop [10, 12, 13]. There are a number of factors that help 
explain why so many different proposals occur in the literature. 

A central idea in process algebra is that two processes which cannot be distin­
guished by observation should preferably be identified: the process semantics should 
be fully abstract with respect to some notion of testing [21, 34]. This means that the 
choice of a suitable process algebra may depend on the tools an environment has to 
distinguish between certain processes. In different applications the tools of the 
environment may be different and, therefore, different applications may require 
different process algebras. 

Another factor which plays a role has to do with the operators of process algebras. 
For theoretical purposes it is, in general, desirable to work with a single, small set of 
fundamental operators. We doubt, however, that a unique optimal and minimal 
collection exists. What is optimal depends on the type of results one likes to prove. 
This becomes even more clear if we look towards practical applications. Some 
operators in process algebra can be used for a wide range of applications, but we agree 
with Jifeng and Hoare [30] that we may have to accept that each application will 
require a derivation of specialized laws and operators to control its complexity. 

Many people are embarrassed by the multitude of process algebras occurring in the 
literature. They should be aware of the fact that there are close relationships between 
the various process algebras: often, one process algebra can be viewed as a homomor­
phic image, subalgebra or restriction of another one. The aim of this paper is to show 
how that semantical reality, consisting of a large number of closely related process 
algebras, can be reflected, and even used, on the level of algebraic specifications and in 
process verifications. 

This paper is about process algebras, their mutual relationships, and strategies to 
prove that a formula is valid in a process algebra. Still, we do not present any 
particular process algebra here. We only define classes of models of process modules. 
One reason for doing this is that the semantical notions we refer to are well 
documented in the literature [10, 27, 29, 35] and a detailed description of all the 



Modular specification of process algebras 295 

particular process algebras we use would make this paper needlessly long. 
Another reason is that there is often no clear argument for selecting a particular 
process algebra. In such situations we are interested in assertions stating that a 
formula is valid in all algebras satisfying a certain theory. Finally, we would like 
to stress that the verifications in this paper are completely model independent, 
and there is no better way of doing that than by presenting no models at all. 
However, a number of times we need results stating that some formulas cannot 
be proven from a certain module. A standard way to prove this is to give a model 
of the module where the formulas are not true. For this reason we will sometimes 
refer to particular process algebras which have been documented elsewhere in the 
literature. 

The discussion of this paper takes place in the setting of ACP. We think, however, 
that the results can be carried over to CCS, CSP, Meije, or any other process algebra 
formalism. 

The creation of an algebraic framework suitable to deal with realistic applications 
gives rise to the construction of building blocks, or modules, of operators and 
axioms, each block describing a feature of concurrency in a certain semantical 
setting. These modules can then be combined by means of a module combinator 
+ in a lot of ways. Some combinations are interesting, for other combinations no 
interesting applications exist. Didactical aspects aside, a major advantage of the 
modular approach is that results which have been proved from a module M, can also 
be proved from a module M + N. This means that process verifications become 
reusable. 

It turns out that certain pairs of modules are incompatible in a very strong 
sense: with the combination of two modules strange and counter intuitive 
identities can be derived (so-called trace inconsistencies, which do not hold in 
any known process algebra). In [8], for example, it is shown that the combination 
of failure semantics and the priority operator is trace inconsistent. Another 
example can be found [14], where it is pointed out that the combination of failure 
semantics and Koomen's fair abstraction rule (KFAR) leads to unwanted identifica­
tions. 

In the first section we present, besides the combinator +,some other operators on 
modules. We discuss an export operator o, allowing to forget some operators in 
a module, an operator H, changing semantics by taking homomorphic images, and an 
operator S which takes subalgebras. These operators enable us to combine modules in 
a subtle way, when the direct combination would be inconsistent. In Section 2 we 
describe a large number of process modules which play a role in the ACP framework. 
Section 3 contains two examples of applications of the new module operators in 
process algebra: 

(l) In a setting with internal actions, the left-merge operator of ACP cannot be 
combined in a trace-consistent manner with e.g. the usual Jaws of failure semantics. 
However, we will show in this paper that use of the module approach makes it 
possible to do failure semantics with r's but still benefit from the left-merge in 



296 R.J. van G/abbeek, F. W. Vaandrager 

verifications. The idea is that a verification takes place by writing the proof on two 
pages. On one page the left-merge may be used; on the other one the laws of failure 
semantics can be applied. Then there are some rules that say which intermediate 
results may be moved from one page to the other. 

(2) A problem with defining operators in terms of other operators is that often 
auxiliary atomic actions are needed in the definition. These auxiliary actions then 
cannot be used in any other place because that would disturb the intended semantics 
of the operator. In the laws that can be derived for the defined operator, the auxiliary 
actions occur prominently. These 'side effects' are often quite unpleasant. However, we 
will show that also this problem can be solved in a clean way via the module 
approach. 

The concept of hiding auxiliary operators in a module is quite familiar in the 
literature (see [11]), but the use of module operators Hand S, and their application in 
combining modules that would be incompatible otherwise, is, as far as we know, new. 
The Hand S operations are, in spirit, related to the abstract operation of Sannella and 
Wirsing [42] and Sannella and Tarlecki [41], which also extends the model class of 
a module. 

In previous papers on ACP, the underlying logic used in process verifications was 
not made explicit. The reason for this was that a long definition of the logic would 
distract the reader's attention from the more essential parts of the paper. It was felt 
that filling in the details of the logic would not be too difficult and that, moreover, 
different options were equivalent. In this paper we generalize the classical notion of 
a formal proof of a formula from a theory to the notion of a formal proof of a formula 
from a module. The definition of this last notion is parametrized by the underlying 
logic. What is provable from a module really depends on the logic that is used, and 
this makes it necessary to consider in more detail the issue of logics. In this paper we 
present three alternatives: (1) Equational logic. This logic is suited for dealing with 
finite processes, but not strong enough for handling infinite processes. (2) Infinitary 
conditional equational logic. This is the logic used in most process verifications in the 
ACP framework until now; we take the opportunity to prove its completeness. (3) 
First-order logic with equality. 

Our investigations into the precise nature of the calculi used in process algebra led 
us to alternative formulations of some of the proof principles in ACP which fit better 
in our formal setup. We present a reformulation of the recursive specification principle 
(RSP) and also an alphabet operator which returns a process instead of a set of 
actions. 

As an illustration of the techniques developed in Sections 1-3, we present in 
Section 4 some examples dealing with FIFO-queues. Amongst others, we give 
an example of an identity that holds intuitively (there is no experiment that 
distinguishes between the two processes) but is not valid in bisimulation semantics. 
We use the machinery developed in Sections 1-3 to extend the axiom system in 
a neat way (avoiding trace inconsistencies) so that we can prove the processes to be 
identical. 



Modular specification of process algebras 297 

1. Module logic 

In this paper, as in many other papers about process algebra, we use formal calculi 
to prove statements about concurrent systems. In this section we answer the following 
questions: 
- Which kind of calculi do we use? 
- What do we understand by a proof? 
In the next sections we will apply this general setup to concurrent systems. 

I.I. Statements about concurrent systems 

In many theories of concurrency it is common practice to represent processes - the 
behaviors of concurrent systems -as elements in an algebra. This is a mathematical 
domain, on which some operators and predicates are defined. Algebras which are 
suitable for the representation of processes are called process algebras. Thus, a state­
ment about the behavior of concurrent systems can be regarded as a statement about 
the elements of a certain process algebra. Such a statement can be represented by 
a formula in a suitable language which is interpreted in this process algebra. Some­
times we consider several process algebras at the same time and want to formulate 
a statement about concurrent processes without choosing one of these algebras. In 
this case we represent the statement by a formula in a suitable language which has an 
interpretation in all these process algebras. Hence, we are interested in assertions of 
the form: "formula </> holds in the process algebra d", notation d I=</>, or "formula 
</>holds in the class of process algebras~", notation ~I=</>. Now we can formulate the 
goal that is pursued in the present section: to propose a method for proving assertions 

.~I=</>, or ~I= c/J. 

1.2. Proving formulas from theories 

Classical logic gave us the notion of a formal proof of a formula</> from a theory T. 
Here a theory is a set of formulas. We write TI-</> if such a proof exists. The use of this 
notion is revealed by the following soundness theorem: If TI-</> then </> holds in all 

algebras satisfying T. Here an algebra Sil satisfies T, notation Sil I= T, if all formulas of 
T hold in this algebra. Thus, if we want to proved I=</>, it suffices to prove Tl-<P and 
d I= T for a suitable theory T. Likewise, if we want to prove ~I=</>, with ~ a class of 
algebras, if suffices to prove Tl-<P and ~I= T. 

At first sight, the method of proving d I=</> by means of a formal proof of</> out of 
T seems very inefficient. Instead of verifying d I=</>, one has to verify d I= If; for all 
If; e T and, moreover, the formal proof has to be constructed. However, there are two 
circumstances in which this method is efficient, and in most applications both of them 
apply. First of all, it may be the case that </> is more complicated than the formulas of 
T and that a direct verification of d I= <P is much more work than the formal proof 
and all verifications d I= If; together. Secondly, it may occur that a single theory 



298 R.J. van G/abbeek, F. W. Vaandrager 

Twith d I= T is used to prove many formulas rj>, so that many verifications d I= rj> are 
balanced against many formal proofs of </> out of T and a single set of verifications 
d I= t/1. Especially when constructing formal proofs is considered easier than making 
verifications .Gi' I= cp, this reusability argument is very powerful. It also indicates that 
for a given algebra .ef we want to find a theory T from which most interesting 

formulas </> with .#I= 1> can be proved. 
Often, there are reasons for representing processes in an algebra that satisfies 

a particular theory T, but there is no clear argument for selecting one of these 
algebras. In this situation we are interested in assertions<(} I= rj>, with C(f the class of all 
algebras satisfying T. Of course, assertions of this type can be conveniently proved by 
means of a formal proof of 1> from T. 

1.3. Proving formulas from modules 

In process algebra one often wants to modify the process algebra currently used to 
represent processes. Such a modification might be as simple as the addition of another 
operator, needed for the proper modeling of yet another feature of concurrency, but it 
can also be a more involved modification, such as factoring out a congruence, in order 
to identify processes that should not be distinguished in a certain application. It is our 
explicit concern to organize proofs of statements about concurrent systems in such 
a way that, whenever possible, our results carry over to modifications of the process 
algebra for which they were proved. 

Now suppose.# is a process algebra satisfying the theory Tand a statement.# I= 1> 
has been proved by means of a formal proof of 1> out of T. Furthermore, suppose that 
:JB is obtained from .ef by factoring out a congruence relation on .# (so, :JB is 
a homomorphic image of d) and for a certain application &Bis considered to be a more 

suitable model of concurrency than .#. Then in general !!8I=1> cannot be concluded 
but, if 1> belongs to a certain class of formulas (the positive ones), it can. So, if 1> is 
positive, we can use the following theorem: "If.# I= T, Tj-rj>, rj> is positive, and :JB is 

a homomorphic image of.#, then !J& I= 1> ".This saves us the trouble offinding another 
theory U, verifying that 88 f= U and proving U 1-1> for many formulas 1> that have 
been proved from T already. Another way of formulating the same idea is to introduce 
a module H(T). We postulate that one may derive "H(T)I-</>" from "Tj-rj>" and "<P 

is positive", and H ( T) I-</> implies that <P holds in all homomorphic images of 
algebras satisfying T. 

Thus, we propose a generalization of the notion of a formal proof. Instead of 
theories, we use the more general notion of module. Like a theory a module character­
izes a class <(6 of algebras, but besides the class of all algebras satisfying a given set of 
formulas, CC can, for instance, also be the class of homomorphic images or subalgebras 
of a class of algebras specified earlier. Now, a proof in the framework of module logic 
is a sequence or tree of assertions MI- <P such that in each step either the formula <jJ is 
manipulated, as in a classical proof, or the module M is manipulated. Of course, we 
will establish a soundness theorem as before, and then an assertion d f= 1> can be 



Modular specification of' process algebras 299 

proved by means of a module M with .rd I= Mand a formal proof of</; out of M. We 

now turn to the formal definitions. 

1.4. Signatures 

Let Names be a given set of names and let N be the set of natural numbers. 

A junction declaration is an expression IF(f, n) with fENames and nEN. A function 

declaration IF(f, 0) of arity 0 is sometimes called a constant declaration. 

A predicate declaration is an expression IR(p, n) with pE Names and nE N. 

A signature a is a set of function and predicate declarations. 

1.5. a-Algebras 

Let r:J be a signature. A a-algebra d is a pair of a set D.o1 and a function on a that 

maps 
IF(f, n)Ea to a function fw :D':,;-.,.D.w and 

IR(p, n)Er:J to a predicate p.w s; Dd· 
Let d and J8 be a-algebras. J8 is a subalgebra of s1 if D . .f!J ~ D.o1 and if f"1 restricted 

to D':,; is just f'.f!J for all function and predicate declarations IF(f,n) and IR1(f, n) in a. 

A homomorphism h: sf_, J8 is a mapping h: D.,,;_, D JJ such that 

for all IF(}; n)Ea and all X;ED.w (i= I, ... ,n), 

p4 (xi. ... ,Xn)~p.!&(h(xi), ... ,h(xn)) 

for all IR(p,n)Ea and all x;EDo1 (i=l,. .. ,n). 

f?8 is a homomorphic image of s/ if there exists a surjective homomorphism h: sf _,qg_ 

Let .rd be a a-algebra. The restriction p :.J d of sd to the signature p is the 

p n r:J-algebra !?8, defined by 

D1&=D.o1, 

f Jd = rJ for all IF(}; n )Ep n r:J, 

p'dfi = p·M for all IR(p, n )E p n r:J. 

A congruence on a r:J-algebra sd is an equivalence relation = on D.w satisfying, for 

x;, Y;ED.w, the following congruence properties: 

- 'v'IF(j;n)Ea: ifx;:=y;(i=l,. .. ,n) then f""(x 1, .. .,Xn)=f"(y1, ... ,yn), 

· 'v'IR(p,n)Ea: if X; = y; (i= 1, .. ., n) then pe1(x1, ... ,xn)~p"(yi, ... ,y.). 

(Sometimes (weak) congruences appear in the literature, that are not required to 

satisfy the congruence properties for predicates.) For x E D.o1, the congruence class( x ).,, 

of x is the set of all yED.rd with y = x. 



300 R.J. van Glabbeek, F.W. Vaandrager 

For .s1 a a-algebra and = a congruence on d, the a-algebra .s1 / .. , called 

.s1 modulo =, is defined by 

D,911., = { (x)= I XEDs1 }, 

r"l"((xi):;, .. .,(x.):)=(f·"°'(x1, .. .,x.)),.., 

((xi),.,. . .,(x.) 2 )Ep«>'/., ~ (x1,. . .,x.)Ep.91. 

Due to the congruence properties, this definition is independent of the choice of the 

representing X;E(x;)=. 

1.6. Logics 

A logic .ff! is a complex of prescriptions, defining for any signature a 
- a set F! of formulas over a such that F! nF{f =F!r.p, 
- a binary relation I=! on a-algebras x F.;f such that for all p-algebras .s1 and 

cjJEF{r.p: aodl=!r.pc/J ~di={{ cp, and 
- a set I! of inference rules~ with P ~ F'!f and c/JEF.;f. 
If sd l='!f cp, we say that the a-algebra .s1 satisfies the formula c/J, or that cP holds in d. 
A theory over a is a set of formulas over a. If T is a theory over a and d I=;;' cP for all 
cjJE T, we say that s1 satisfies T, notation .s1 I='!! T. We also say that dis a model of T. 
An inference rule~ with P=0 is called an axiom and will be denoted simply by c/J. 

A logic .ff! is sound if~ El;[ implies .s1 I=! P => .s1 l='!f cp for any a-algebra d. 
A formula c/JEF;' is preserved under subalgebras if .s1 F='!f cjJ implies f!J I=! cp, for any 

subalgebra f!J of sf. 
A formula cjJEF;( is preserved under homomorphisms if .s1 l='!f cp implies f!J I='!! c/J, for 

any homomorphic image f!J of d. 
Without doubt, the definition of a "logic" as presented above is too general for most 

applications. However, it is suited for our purposes and anyone can substitute his/her 
favorite (and more restricted) definition whenever he/she likes. 

In the process algebra verifications of this paper we will use equational logic and, 
sometimes, infinitary conditional equational logic. The definition of these logics can 
be found below. At some places, we will refer to first-order logic with equality and, 
therefore, a definition of this logic is included in Appendix A. 

1.6.1. Variables and terms 
Since all logics announced above share the concepts of variables and terms, these 

will be treated first. 
Let "Ji' be a given infinite set of variables, disjoint from Names. 
Let a be a signature. The set lr(a) of a-terms is defined inductively by 

xElr(a) for any variable x, 

if IF(f, n) is in a and t;Elr(a) for i= 1, .. .,n then f(t 1 , •• ., t.)ET(a). 



Modular specification of process algebras 301 

A O"-term that contains no variables is called closed. We use T(<J) to denote the set of 
closed O"-terms. 

A O"-substitution (or just substitution) is a mapping (: y,·-> 11 ( <J). By t [ (] we denote 
the result of simultaneous substitution for xE 'f/ of ( (x) for all occurrences of x in t. By 
u/ x we denote the substitution which maps variable x to u and all other variables to 
themselves. So, t[u/x] is the result of substituting u for all occurrences of x in t. 

A valuation in a O"-algebra d is a function ( that takes every variable x into an 
element of.'!/!.<¥. The (-evaluation [rrEf2J.o1 of a O"-term tin .id is defined by 

[ x] ~ = ((x), 

[ f ( t 1 , · · · , t n)] ~ = f .of ( [ t 1] ~, · · ·, [ t n] ~ ). 

1.6.2. Equational logic 
The set F;q1 of equations or equational ji:1rmulas over O" is defined by 

if l;E lr ( <J) for i = 1, 2 then (t 1 = t 2 )E F ;qi. 

Let </> be an equation (t 1 =t2 )EF;q1. We say that</> is ~-true in a <J-algebra d, notation 
.cit, ~ 1=~41 <.b, if [ t d ~ = [ tz] ~. </> is true in d, notation sf l=~qi </>, if .w, ~ l=;q1 </> for all 
valuations (. 

An inference system I ~41 for equational logic is displayed in Table 1, where t, u and 
v are terms over O" and x is a variable. 

1.6.3. Conditional equational logic 
The set F~1 of atomic formulas over O" is defined by 

if IR(p,n) is in O" and t;Elr(<J) for i= 1, ... ,n then p(t 1 , .. .,tn)EF~'. 

The set F~cql of conditional equational formulas over a is defined by 

if Cs F~1 and aEF~1 then ( C = a)EF~eql. 
Let (be a substitution. For aEF~1 , Cs F~1 and </>EF~eql, a[(], C[(J and</>[(] are 

defined as the result of applying ( to all terms in ex, C and </>, respectively. 
The ~-truth of formulas cpEF~1 u F~eql in a O"-algebra .w is defined by 

.c{, ~ l=~eql </> if </>EF~41 and .w, ~ l=~ql </>, 

I 'f ( [ ] ~ [ ] ~) .<1 .w,(f=~eq p(t 1,. .. ,t,,) I 11 ,. •• , tn Ep , 

.of, ( l=~eql C =ex if d, ~F ~eql fj for some fiEC or .cit, ~ l=~eql a. 

</> is true in .c>/, notation .. ef 1=~•41 </>, if d, ( F=~eqI </> for all valuations ~-

Table I 

u = l' t = u, ti = v U=V u=v 
t = t 

v=u t=v t[u/x]=t[v/x] u[t/x]=v[t/x] 



302 

Tahk ~ 

I I : u l; : ( II. tl I : > ll I I 

An inference sy;;tcm /~,"" 1 fnr cnnditiunal equa1ional logic is displayed in Table 2. 

where 1 and 1 1 an: at11mic formula-,. C is a set uf atnmic formulas. </1 is a conditional 

1!4ua1ional formula.~ is a substitution. 1.11 and c arc terms (1vcr" and 'is a variable. 

A conditional cquatinnal furmula \) :. 1 is denoted hy 1. 

The logic dcsL:rihcd in Tahk 2 is infrniran· rnnditionu/ t'</lWtimwl luuic. Finitary 

comlitional t'(fllUtimw/ iih/ic is obtained hy the extra requirement that in conditional 

cquational formulas ( · :· 1 the '>et of conditions C should he finite. In that case the 

infcrcnc.c rule 

(/~ 

</i t 1 .x I 

Furthcrnwrc. (in )/lllitan n111di1iunu/ /nyic i'> ohtainn! hy omitting all rdcrcncc to the 

equality pn:dicatc . Nole that all thcst: logiL·'> and abo the tir~t-order logic of 

Appcnd1\ A \ati\I\ the gcneral rt:quir-:mcnts for logics \Cl out ahmt:. 

/.6../. !:\prn111c111"11 

011e can tra11-.Jatc an cquatwn '-' f"'11 hy a ( finitary) \.'(mditional cquational for­

mula~),~. 1 and a tinitary conditional t:quatinnal fonnu!a 1 1 , .• .• 1", :· x into a first­

order formula (·Li"···· t Ynl •'l hi.:e Appendix i\1. l'sing thi\ translation we have 

F~'11 1-~1"" 1 • F~"1 "4 and. furthcnnon:. './ ''11 1/i ""'" .•./ ~"11 1f1 for <fH' F~qt and 

d ~,"1 1 i/J ·~:· d ~' 1 "1 1/1 f11r F;,''"11 . This means that first-order logn.: with cqt1ality is 

more cxpri.:s~l>e than cquatlonal log11.: and linitary conditinnal cquational logic is 

~onu:where in bct\\cen. However, lirq-ordcr with equality and infinitary ..:ondi­

tional t:quational log11.: h;1vc im:rnnparabk expn.:s;.ivc power. 

I . . ( "fw,s in ii lug 11 

/),·riia/tliur A (/•[l/"OOf nf a formula f ;; from a !henry r' F ~ using the !ogii..: 

'/' i-; a wdl-fnundcd. upwardly hranching tree of which the nodes arc lahclc<l hy O"· 

f<1rmub .... sui:h t ha! 

• the root JS landed hy 1;1, and 

• if~' i~ the lahd of a node</ and /' !', the '>Cl uf lahd), of the node~ directly above 

11 then 



Modular specification of process algebras 

- either I/JET and P=0, 
p lg - or ;pE ". 

303 

If a a-proof of <P from Tusing!£ exists, we say that <Pisa-provable from T by means of 
!£, notation TI-;' c/J. 

Truth. Let <fl be a class of a-algebras and efJeF;'. Then <P is said to be true in <fl, 
notation <fl J='[f </>,if <P holds in all a-algebras .s:I e<fj. By Alg( a, T) we denote the class of 
all a-algebras satisfying T. 

Soundness theorem. If!£ is sound then TI-! <P implies Alg(a, T)f=! <f>. 

Proof. Straightforward by induction. D 

If no confusion is likely to result, the subscripts and superscripts of I= and I- may 
be dropped without further warning. 

1.8. Equational logic 

This section recalls the soundness and completeness theorem for equational logic, 
that was first established by Birkhoff [16, Theorem 10], and presents an alternative 
notion of proof that is tailored to equational logic and more convenient in the 
applications of this paper. We establish that the new concept of proof induces the 
same notion of provability as the proof concept of Section 1.7. 

Theorem 1.1. Tl-~qi <P =-Alg( a, T) 1=;q1 c/J. 

An instance of an equation (u=v)eF;q1 is an equation t[u/x] [(] = t[v/x] [CJ. An 
equational a-proof of an equation (u=v)eF;qi is a string t0 =t1 =···=tn (nEN) of 
a-terms t;, with t0 =u and tn=v, such that, for i= 1, ... ,n, (t;- 1 =t;) or (t;=ti-d is an 

instance of an equation from T. Write u ; v if such a proof exists. 

Theorem 1.2. u ,I;, v =- Tl-~q 1 (u=v). 
" 

Proof. Straightforward by induction on the size of the proofs. D 

1.9. Conditional equational logic 

This section presents an alternative notion of proof that is tailored to infinitary 
conditional equational logic and more convenient in the applications of this paper. 
We establish that this new concept of proof induces the same notion of provability as 
the proof concept of Section 1.7, and, simultaneously, we give a short and elegant 
proof of the (soundness and) completeness of infinitary conditional equational logic. 



304 R.J. van Glabbeek, F. W. Vaandrager 

The completeness of finitary conditional equational logic without predicates has 
already been proven in [ 40, 43]. 

A substitution instance of a conditional equational formula <P is a conditional 
equational formula of the form </J[G A conditional equational (J-proof of a formula 
( C =>IX )E p~eqI from a theory T s F~eql is a well-founded, upwardly branching tree of 
which the nodes are labeled by atomic (J-formulas, such that 
• the root is labeled by IX, and 
• if fJ is the label of a node q and D is the set of labels of the nodes directly above 

q then 
-- either /JEC and D=0, or 
-- D => fJ is a substitution instance of a conditional equational formula <P from Tor 

the bottom part of Table 2. 

An example of a (fragment of) a conditional equational proof is given in 
Fig. 2 in Section 3.1.1. Write C ~IX if such a proof exists. 

a 

Theorem 1.3. The following three statements are equivalent: 
T 

(I) C71X, 

(2) Tf-- ~eql C => IX, 
(3) Alg((J,T)t=~•q'C=>IX. 

Proof. The implications (I)=> (2) and (2) => (3) can be proved by straightforward 
induction on the size of proofs. Here we only present the difficult part of the proof, 
which is the implication (3) => (1). 

Suppose Alg( (J, T) l=~eql C =>IX. Let <(} be the (J-algebra with 

f'6(t1, ... ,t.)=f(ti. ... ,t.) for IF(f, n)E(J, and 

Define the relation = on D,,, by t = u iff ( C ~ ( t = u)). By definition of ,J;. , _ 1s 
a congruence; so, <(} / = is again a (J-algebra. a a 

Any function~: 'fl'--> l ( (J) is both a valuation in<(} and a (J-substitution. Let ~/,,, be 
the valuation in<(}/= defined by ~/:(x)=(~(x)),,,. Any valuation~' in<(}/,,, is of the 
form ~I= for certain~: take ~(x)E~'(x) for xE"f/". By induction, one easily establishes 
that, for any tEl( (J), [ t] ~; .. =([ t] ~),,, = (t [ ~])=. 



Modular specification of' process algebras 305 

Claim. For any /3EF~1, we have (<fi/=,~I= l=/3)'*'>( Cf /3[(]). 

Proof of the Claim. Let /3 be p (t 1 , ... , t") for certain IR(p, n )EIJ and t 1 , ..• JnElr ( IJ ). 

Then 

Proof of Theorem 1.3 (conclusion). Using this claim, we prove that <f! / = is a model of 

T. Suppose (D = y)ETand U= is a valuation in Cf,/=, with Cf,'/ =, (/= l=/3 for all [JED. 
T 

Then C =g- fi [ n for all f3 ED. The corresponding proof trees (one for each f3 ED) can be 

combined into one big proof tree, proving C f y[n, by applying the substitution 

instance ( D = y) [ n of the conditional equational formula (D = y)E T. Hence 

<(,I=,~/"' f= y, which had to be proved. 

Thus,<£/= EAlg(tJ, T); so, we have <fi/=, (' l=(C = O:'.) for any valuation(' in <ti'/ =·In 

particular, this holds for ~'=id/"'' with id the identity valuation in <fi, defined by 

id(x)=x for xE 'fi·. By means of a trivial proof (a one-node-only proof tree), one 

establishes that CJ..,. fi [id] for any f3 EC. Hence, by the claim, <fi /=•id/= I= /3 for jJEC. 
a 

Thus, by the definition of truth in conditional equational logic, we must have 

C /,,,,id/= I= O:'.. Applying the claim once more gives C f O:'.. [J 



306 R.J. van Glabbeek, F.W. Vaandrager 

I .JO. Module logic 

The set vft of module expressions is defined inductively by 

if u is a signature and Ta theory over u then ( u, T)E.fi, 

if M E.-f! and NE..,# then M + N Evil, 

if u is a signature and ME.it then u rJ M Evft, 

if MEvfl then H(M)E.4~!, 

if ME.# then S(M)E.lt. 

Here + is the composition operator, allowing one to organize specifications in 
a modular way, and D is the export operator, restricting the visible signature of 
a module, thereby hiding auxiliary items. These operators occur in some form or other 
frequently in the literature on software engineering. Our notation is taken from [11], 
where also additional references can be found. The homomorphism operator H and 
the subalgebra operator S are, as far as we know, new in the context of algebraic 
specifications. Of course, they are well known in model theory; see, for instance, [36]. 

The visible signature L:(M) of a module expression M is defined inductively by 

I(u, T)=u, 

I(M +N)=X(M)uI(N), 

I(u D M)= O'n E(M), 

E(H(M))= I(M), 

E ( S ( M)) =I ( M ). 

Truth. The class Alg(M) of models ofa module expression Mis defined inductively 
by 

.91 is a model of (a, T) if it is a o--algebra satisfying T, 

.91 is a model of M+N ifit is a E(M+N)-algebra such that 
1: ( M) ,_Lw is a model of M and E( N) LJ .W is a model of N, 

.91 is a model of O' oM if it is the restriction of a model of M to the 
signature O', 

.#is a model of H(M) if it is a homomorphic image of a model of M, 

.#is a model of S(M) if it is a subalgebra of a model of M. 



Modular specification of process algebras 307 

Note that Alg(M) is a generalization of Alg( <J, T) as defined earlier. All the elements of 
Alg(M) are E(M)-algebras. A l"(M)-algebras deAlg(M) is said to satisfy M. A 

formula cpeF~MJ is satisfied by a module expression M, notation M l=Y cp, if 
Alg(M)l=f;MJ<P; thus, if <P holds in all E(M)-algebras satisfying M. A 
theory Tr;;.. F~MJ is satisfied by a module expression M, M l=.:e T, if M !=2 <f> for 
all cpE T. 

Derivability. A proof of a formula <f>eF"MJ from a module expression Musing the 
logic !f' is a well-founded, upwardly branching tree of which the nodes are labeled by 
assertions NI-if;, such that 
• the root is labeled by M f- cp, and 
• if N f- if; is the label of a node q and P is the set of labels of the nodes directly above 

q, then N ~I/I is one of the inference rules of Table 3. 
In Table 3, positive and universal are syntactic criteria, to be defined for each logic 
!f' separately, ensuring that a formula is preserved under homomorphisms and 
subalgebras, respectively. In equational logic all formulas are both positive and 
universal. In conditional equational logic all formulas are universal and the positive 

formulas are the atomic ones. We write N f- if; for N ~I/I' and omit braces in the 
conditions of inference rules. If a proof of <P from M using !f' exists, we say that <P is 
provable from M by means of !11, notation M f- 2 <f>. 

Lemma 1.4. ~f M f-2' <P then <f>eF{rMJ· 

Proof. By induction. The only non trivial cases are the rules for + and D. These follow 
:£' 2' 2' :I' !I' . 1 from F" r;;.. F aup and F" n F P r;;.. F ""P' respective y. D 

Theorem 1.5. If ff is sound then M f-2' <P implies M l=..:t' </J. 

Table 3 

(a,T)f--</> 

Mf--</>; (jEJ) 

M f--</> 

Mf--<P 
M+Nf--</> 

Mf--r/J 

auMf--<P 

Mf--<f; 
H(M) f--</J 

Mf--<P 
S(M)f--r/J 

if r/JE T 

rP; {jEJ) 2' 
whenever --r/J-E/ IIMI 

N f--<P 
M+Nf--c/J 

if </JEF;f' 

if <P is positive 

if <P is universal 



308 R.J. i·an Glabheek, F. ifl. Vaandrager 

Proof. By induction to the size of proof trees. Suppose M !-2' <P by means of a proof 
tree whose last step is an application of an inference rule M~<P from Table 3. By 
induction, we may assume that for all assertions N f- if; in P, being the roots of smaller 
proof trees, we have N 1=2' if;. It has to be established that MI=.'!' cp, i.e. that, for all 
models .s:I of M, we have .s:i l=f;MJ cp. Now six cases can be distinguished. 

(I) P=0, M=(C!, T) and cpET. 
Let .cl be a model of M = (CJ, T). Then .id I= :¥;M J <P' for all <P 'ET; so, in particular, 

' 2' ,c/ F.l:tMI cp. . 
(2) P={Mf-<PjlJEJ} and </>j(~EJJElf;MJ· 
Let s1 be a model of M. By induction .id l=f;MJ <Pj for jEJ. Thus, .s>/ l=f;MJ cp, since 

Y) is sound. 
(3) M=N 1 +N 2 and P={Nif-cp} (i= l or 2). 
By Lemma l.4, cjJEFftN,1=FftN;)nE(M)· Let .c:! be a model of M= { N1 + Nz}. Then 

L:'(NJD.w is a model of Ni; hence, by induction, E(Ndod l=ItN,)nE(M) ef>. Taking 
Cl="E(Nd and p=E(M) in the requirement of a logic that for all p-algebras .wand 
cpEF%'n 11 : CJ o.w 1=%'np <P => .c:! l=l' cp, we find .9/ l=f;Ml </J. 

(4) M=CJCJN, P={Nf-cp} and cpEF!f. 
By Lemma 1.4, cpEF!f;NJ; so, cpEF!f nFr;NJ=F;nE(N)· Let .c/ be a model of 

M=CJDN. Then there is a model 88 of N with si=CJDfJD. By induction, fJDl=f;N><P· 
Taking p ="E(N) in the requirement of a logic that for all p-algebras .wand cpEF!~P: 

"' Y' fi / ff " . I .:!' '" ucl.idf=rnp<P <= .wf=p cp, we nd Cl-J.:16'1=;,.nE(Ni'I'• i.e . . c:! =r(MJ'I'· 
(5) M=H(N), P={Nf-<P} and ef> is positive. 
Let .!¥' be a model of M = H ( N ), i.e . . w is the homomorphic image of a model !18 of 

N. By induction,.~ F=.¥;~n ef> and since <P is positive.!¥' l=f;MJ ef>. 
(6) M=S(N), P={Nf-<P} and ef> is universal. 
Let s1 be a model of M=S(N), i.e. dis a subalgebra of a model :JB of N. By 

induction, dlJ F=:f;Ml <P and since cjJ is universal .id i=t';MJ cp. D 

Modules. This paper deals with module expressions, which are syntactic objects, 
rather than modules, in the sense of semantic objects which are denoted by module 
expressions. Nevertheless, it may be helpful to have an idea what these modules could 
be. Here several options are available (see for instances [l l]). One possibility is that 
a module expression denotes the class of its models, or the class of its countable models. 
Another possibility is that it denotes the set of all formulas which are derivable from it. 
In each of these cases the operators of the module language can be easily interpreted. 
However, the simplest and least abstract interpretation, which may be considered to be 
the one employed in this paper, is the one in which a module is an annotated and 
structured collection of axiom systems: a module expression simply denotes itself. 

1.11. Completeness 

All logics mentioned in Section 1.6 and Appendix A are sound and complete: 

Alg(CJ, T)I=; cp "*> Tf-; cp. (1.1) 



Modidar specification o( prncess algebras 309 

As a corollary, using the translations of Section 1.6.4, we have 

(1.2) 

and 

(1.3) 

For this reason in most process algebra papers it is not made explicit which logic is 
used in verifications: the space needed for stating this could be saved, since the 
resulting notion of provability would be the same anyway. However, the situation 
changes when formulas are proved from module expressions. Equational logic and 
conditional equational logic are not complete anymore (for counterexamples see 
Theorems 3.4 and 3.9, respectively) and for first-order logic with equality this is 
still an open problem (as far as we know). Here a logic ff:' is complete if 
M l=Y' <P => M 1--Y' </J. It is easily proved that 

(1.4) 

M '-ceql ,;, => M 1-foleq ,;, > ,/., F fceql 
1 '+' '+' 1or '+'E rtM)' (1.5) 

but the reverse directions do not hold (as is also shown by the counterexamples of 
Theorems 3.4 and 3.9). Thus, we should state exactly in which logic our results are 

proved. 

1 .12. Towards applications 

This paper employs infinitary conditional equational module logic. However, 
proofs in the sense of Section 1.10 will hardly occur. In this section we show that in 

most applications we may use simpler proof methods. 

Lemma 1.6. If M 1-2' </>has been established before, then M 1-<P may occur as a leaf in 

a proof tree. Likewise, if TI-'/ <P has been established before, then </> may be used in the 

construction of a proof as if it were a member of T. 

Proof. The figurative leaf can be expanded into a proof tree in order to make the 

proof correct. D 

Proof. ( => ): Replace all modules that appear on the left of turn-styles in a proof of 

ip from (ao, To)+ ... +(an, T,,) by cu;=O O';, u;=O Ti) and remove the applications of 
the inference rules for +. 

( <= ): Also straightforward. D 



310 R.J. van Glabbeek, F. W. Vaandrager 

Lemma 1.8. (O',T)j-.'l' </> <=> Tl-t </>. 

Proof. Trivial. D 

These three lemmas say that (parts of) proofs from modules that do not contain the 
operators o, H or S may be given in classical logic instead of module logic. In case of 
conditional equational logic, a conditional equational proof can then be given. 
Alternatively, using Lemma 1.6 again and observation (1.2), any part of a conditional 
equational proof that deals with equations only, may be given in equational logic 
instead. For these parts-which are most numerous in this paper-the equational 
proof method of Section 1.8 applies. 

1.13. Notation 

In this paper a module ( O', T) will sometimes be introduced by mentioning only T. 
In such cases O' is understood to be the signature of all functions and predicates 
appearing in T. Outside this Section 1 and Appendix A inference rules~ do not occur, 
but all conditional equational formulas C = rx are written as f, as is usual. However, 
the suggested similarity between inference rules and conditional equational formulas 
is misleading: ~ holds in an algebra sd if (sf,~ I= if; for all tjJ E P and all valuations ~) 
implies ( sd, ~I=</> for all valuations o, while ~ holds in d if for all valuations ~: 
( d, ~I= fJ for all /3E C implies ,cit, ~I= ix). 

2. Process algebra 

This is not an introductory paper on process algebra. Our only aim here is to show 
how the ACP formalism can be presented in a precise and structured way using our 
notion of a module. For a comprehensive presentation of the ACP formalism, we refer 
the reader to [JO]. We will use, as much as possible, the notations and terminology 
from this reference. 

2.1. ACF' 

In this paper a central role will be played by the module ACP', the algebra of 
communicating processes with abstraction. A first parameter of ACP' is a finite set 
A of actions. For each action a in A there is a constant a in the language, representing 
the process which starts with an a-action and terminates (successfully) after some time. 

The first two composition operations we consider are " denoting sequential com­
position, and + for alternative composition. If x and y are two processes, then x · y is 
the process that starts execution of y after successful completion of x, and x + y is the 
process that either behaves like x or like y. We do not specify whether the choice 
between x and y is made by the process itself, or by the environment. 

We have a special constant b, denoting deadlock, inaction, a process that does 
nothing at all. In particular, b does not terminate successfully. We write A~= Au { b }. 



Modular spec(fication of process algebras 311 

Next we have a parallel composition operator II. x II y denotes the process corres­
ponding to the parallel execution of x and y. Execution of x II y either starts with a step 
from x, or with a step from y, or with a synchronization of an action from x and an 
action from y. Synchronization of actions is described by the second parameter of 

ACP', which is a partial communication function y: A x A~ A which is commutative 
and associative: 

y(a, b) = y(b, a) y(a, y(b, c)) = y(y(a, b ), c). 

In the above equations we also imply that one side of an equation is defined exactly 
when the other side is. By y(a,b)l we indicate that y(a,b) is defined. If, for some 
a,b,cEA, y(a,b)=c, this means that actions a and b can synchronize. The syn­

chronous performance of a and b is then regarded as a performance of the commun­
ication action c. Formally, we should add the parameters to the name of a module: 
ACP'(A, y). However, in order to keep the notation simple, we will always omit the 
parameters if this can be done without causing confusion. In order to axiomatize the 
II-operator, we use two auxiliary operators l (left-merge) and I (communication 
merge). xly is x II y, but with the restriction that the first step comes from x, and xl y 

and x II y but with a synchronization action as the first step. 
Next we have for each H £A an encapsulation operator (JH· The operator (JH blocks 

actions from H. The operator is used to encapsulate a process, i.e. to block synchron­
ization with the environment. 

When describing concurrent systems and reasoning about their behavior, it is often 
useful to have a distinguished action that cannot synchronize with any other action. 

Such an action is denoted by the constant r$A 6 • We write A:; for Au { o, r }. The fact 
that r cannot synchronize makes, in some sense, this action unobservable. Therefore, 

it is often called the silent action. For each I£ A the language contains an abstraction 
or hiding operator r1 . This operator hides actions in I by renaming them into r, thus 

expressing that certain actions in a system behavior cannot be observed. 
In Table 4 we summarize the signature of module ACP'. Table 5 contains the 

theory of the module ACP'. All axioms in Table 5 are in fact axiom schemes in a, b, H 

Table 4 

binary operators + 

II 
l 
I 

unary operators i'J H 

r, 
constants a 

b 

alternative composition (sum) 
sequential composition (product) 
parallel composition (merge) 
left-merge 
communication merge 
encapsulation, for any H s;; A 
abstraction, for any Is;; A 
for any atomic action a EA 
inaction, deadlock 
silent action 



312 R.J. t'an G/abbeek, F. W. Vaandrager 

Table 5 

x+y=y+x 
x+(y+z)=(x+y)+z 
x+x=x 
(x+y)z=xz+y: 
(xy):=x(yz) 
x+cl=x 
iix=tl 

x 11.r=xILY+.r1L x + x I y 
a llx=ax 
(ax) lly=a(x 11 y) 

(x+y)llz=xllz+yllz 

aH(a)=a if a$H 
OH(a)=b if aEH 
aH(x+ y)=aH(X)+aH(Y) 
aH(xyJ=aH(xJ·aH(.vl 

(Al) 
(A2) 
(A3) 
(A4) 
(AS) 
(A6) 
(A7) 

(CM!) 
(CM2) 
(CM3) 
(CM4) 

(DI) 
(D2) 
(D3) 
(D4) 

xr=x 
x(r(y+z)+ y)=x(y+z) 

a I b=y(a,b) if y(a, bH 
a I b = b, otherwise 

(ax)lb=(alb)x 
al(bx)=(alb)x 
(ax)I (hy)=(al b)(x II y) 
(x+y)[z=xlz+y[z 
xl(y+z)=xly+xlz 

r1(a)=a ifa$I 
r 1(a)=r ifaEI 
T1(X + }') = T1(X )+ !1(.V) 
T1(xy) = T1(X )·r1(Y) 

(BI) 
(B2) 

(CF!) 
(CF2) 

(CMS) 
(CM6) 
(CM?) 
(CM8) 
(CM9) 

(Tll) 
(TI2) 
(TB) 
(TI4) 

and I. Here a and b range over A1 (unless further restrictions are made in the table) 
and H,I £A. In a product x·y we will often omit the" We take· to be more binding 
than other operations and + to be less binding than other operations. In case we are 
dealing with an associative operator, we also leave out parentheses. In this paper we 
present ACPr as a monolithic module. In [10] however, it is shown that ACPr can be 
viewed as the sum of a large number of submodules which are interesting in their own 
right. The module consisting of axioms A 1-5 only is called BPA (from basic process 
algebra). If we add axioms A6-7, we obtain BPA0 , and BPA0 plus axioms B 1-2 gives 
BPA1. The module ACP consists of the axioms Al-7, CFl-2, CMl-9 and Dl-4. 

Let D = { d 1 , ... , d"} be a finite set and let td,, ... , td" be process expressions. We use 
the notation LED td for the expression td, + .. · + td". IdE 0 td= (j by definition. 

Proposition 2.1. AC Pr f- a( rx II y) = a(x llY ). 

Proof. a(rxlly)cM 3 (a(rx))ll_y~((ar)x)ll_y~axll_ycM 3 a(x lly). D 

2.1.1. Surnmand inclusion 

In process verifications the summand inclusion predicate s; turns out to be a useful 
notation. We write x £ y as an abbreviation for x+ y= y. From the ACP'-axioms Al, 
A2 and A3, respectively, it follows that £ is antisymmetrical, transitive and reflexive, 
and, hence, a partial order. 

Most of the operators of ACPr are monotonic with respect to the summand 
inclusion ordering. For instance, if f is a unary AC Pr operator, then we can prove the 
following conditional formula: 

xs;y 

f(x) £f(y) · 



Modt1lar specification of process algehras 313 

For reasons to be explained in Section 3, we prefer to state properties of ACPr­
processes in an equational rather than a conditional form. Therefore, we write the 
above monotonicity property as 

j(x) £f(x+ y). 

The reader may check that both formulas are equivalent in a setting with the laws 
A 1-3. Using essentially the distributivity of the operators over +,one can prove from 
ACP': 

- x + z £ x + y + z, 
- x·z£(x+y)·z, 

- xllz£(x+y)llz, 
- xlz£(x+y)lz, 

- a H ( X) £ 0 H ( X + Y ), 
- rh;:) £ r 1(x+ y). 
Due to branching time (see [23] ), we cannot prove z· x £ z·(x + y ), x II z s;;(x + y) II z or 
z lL x s;; z lL (x + y ). However, we do have the following weak form of monotonicity for 
the merge operator: 

- r( x 11 z) s;; ( rx + y l 11 z. 
The last formula follows since 

r( x II z) = TX lL z £ ( TX + y) lL z £ ( TX + y) 11 z. 

2.2. Standard Concurrency 

Often one adds to ACPr the module SC of standard concurrency (Table 6). These 
axioms are not included in ACP' because they can be derived for all closed ACPr­
terms. 

Proposition 2.2. ACP' +SC f-­
(i) x 11 y = y II x, 

(ii) xll(yllz)=(xliY)llz. 

Proof. See [ 10]. D 

2.3. Renamings 

For every function f: A:\--> A;; with the property that f ( fJ) = fJ and f ( r) = r, the 
module RN introduces a unary operator p 1 . Axioms for P.r are presented in Table 7 
(where a ranges over A 1 and id is the identity function). Module RN is parametrized 

by A. 
For tEA)i and H s;; A, we define mappings r1.u: A:\-> A)i by 

{ 
t if aEH, 

r, H(a)= . 
· a otherwise. 



314 

Table 6 

(x \Ly) \L: =x \L(y II;) 
(xly)\Lz=xl(y\L:) 
xly=ylx 
xl(ylz)=(xlyllz 

R.J. van Glabbeek, F.W. Vaandrager 

(SCI) 
(SC2) 
(SC3) 
(SC4) 

Table 7 

P1(a)=f(a) 
P1(X + y)= Pr(x)+ P1(Y) 
P r(xy)= P r(x)· P r(Y) 
P1d(x)=x 
PJ 0 p9 (x)= Pfog(X) 

(RNl) 
(RN2) 
(RN3) 
(RN4) 
(RN5) 

In the rest of this paper we will implicitly identify the operators OH and p,,, 11 , and also 
the operators -r:1 and Pr,,,: encapsulation is just renaming of actions into c5, and 
abstraction is renaming of actions into the silent step r. 

2.4. Chaining operators 

A basic situation we will encounter is one in which processes input and output 
values in a domain D. Often, we want to "chain" two processes in such a way that the 
output of the first one becomes the input of the second. In order to describe this, we 
define chaining operators ~ and ~.In the process x ~ y the output of process x serves 
as input of process y. Operator ~ is identical to operator~ but hides, in addition, the 
communications that take place at the internal communication port. The reason for 
introducing two operators is a technical one: the operator ~ (in which we are 
interested most) often leads to the possibility of an infinite sequence of internal actions 
corresponding to hidden synchronizations between the two arguments of the operator 
(a form of unguarded recursion, cf. Definition 2.3). In order to deal with such behaviors, 
it is useful to view ~ as the composition of two operators: the ~ operator and an 
abstraction operator that hides the internal communications. We will define the 
chaining operators in terms of the operators of ACP' +RN. In this way we obtain 
a simple, finite axiomatization of the operators. The operator ~ occurs (in different 
notations) already in [28, 34]. 

Let for deD, !d be the action of reading d, and jd be the action of sending d. 
Furthermore, let ch(D) be the following set of actions: 

ch(D) = { jd, !d, s(d), r(d), c(d) I dED }. 

Here r(d),s(d) and c(d) (deD) are auxiliary actions used in the definition of the 
chaining operators. The module for the chaining operators is parametrized by an 
action alphabet A satisfying ch(D) ~A. The module should be used in a context with 
modules ACP'(A,y) and RN(A), where 

range( y )n {!d, jd, s(d), r(d) I deD} = 0 

and communication on ch(D) is defined by 

y(s(d), r(d))=c(d) 



Modular specification of process algebras 315 

(all other communications on or with ch(D) are undefined). The renaming functions ls 
and Lr are given by 

js(ld)=s(d) and Lr(Ld)=r(d) (deD) 

and ls( a)= Lr(a)=a for every other aeA~. Now the "concrete" chaining of processes 
x and y, notation x~ y, is defined by means of the axiom (H = { s(d), r(d) I deD} ): 

x~ y=oa(Prs(x) II Pir(Y)) (CHl). 

The "abstract" chaining of processes x and y, notation x ~ y, is defined by means of 
the axiom (J={c(d)ldeD}): 

x ~ y=r1 (x~ y) (CH2). 

The module CH+ consists of axioms CH 1 and CH2, and is parametrized by A. The 
"+"in CH+ refers to the auxiliary actions in the module, which will be removed in 
Section 3.2. 

The following laws can be easily proven from module AC Pt+ SC+ RN +CH+. 
Here dO and eO are elements of D and d and e are variables ranging over D. LS follows 
using Proposition 2.1: 

(Ll) 

jdO·x ~ leO·y=leO·(idO·x ~ y), (L2) 

( L Ld·xd) ~ ( L Le·y·)= L Ld·(xd~( L te-y·)). 
deD eeD deD eeD 

(L3) 

( L Ld·xd)~leO·y= L Ld·(xd~leO·y)+jeO·(( L Ld·xd)~y), 
deD deD deD 

(L4) 

a(rx ~ y)=a(x ~ ry)=a(x ~ y). (LS) 

The laws are equally valid when the operator ~ is replaced by~. except for law Ll, 
where, in addition, the r has to be replaced by c(dO). 

Example. Let D = {O, 1 }. Process AND reads two bits and then outputs 1 if both are 1, 
and 0 otherwise: 

AND= LO·OO·jO+ Ll ·lO) + Ll ·(LO·lO+ Ll ·ll). 

Process OR reads two bits, outputs 0 if both are 0, and 1 otherwise: 

OR= LO·OO·lO+Ll ·ll)+ Ll ·OO·ll +Ll ·ll). 



316 R.J. l'Un Glabbeek, F. W. Vaandrager 

Process NEG reads a bit b and outputs I - b: 

NEG= lO·jl + ll ·ro. 
These processes can be composed using chaining operators. It is not too hard to prove 
from ACP"+RN+CH+ that 

(NEG·NEG ~AND) ~NEG=OR. 

Note, however, that we do not have 

(NEG· NEG~AND)~NEG=OR 

since in the LHS process internal computation steps are still visible. 

2.5. Projection 

The unary operators n" (nEN) stop processes after they have performed n atomic 
actions, with the understanding that r-steps are transparent. The axioms for n" are 
presented in Table 8, where a ranges over A0 . Module PR is parametrized by A. 

In this paper, as in other papers on process algebra, we have an infinite collection of 
unary projection operators. Another option, which we do not pursue here, but which 
might be more fruitful if one is interested in finitary proofs, is to introduce a single 
binary projection operator n: N x P-+ P (here P is the sort of processes). 

2.6. A!phabe1s 

Intuitively, the alphabet of a process is the set of atomic actions which it can 
perform. This idea is formalized in [6], where an operator et. from processes to sets of 
actions is introduced, with axioms such as 

et.(b)=0, 

et. ( ax) = {a } u ex ( x ), 

ex( x + y) = a(x)u a(y ). 

In this approach the question arises what axioms should be adopted for the set 
operators u, n, etc. One option, which is implicitly adopted in previous papers on 
process algebra, is to take the equalities which are true in set theory. This collection is 
unstructured and too large for our purposes. Therefore, we propose a different, more 

Tahle 8 

n,,(r)=r (PR!) 
n 0 (ax)=1\ (PR2) 
rr,,t 1 (ax)=a·nn(X) (PR3) 
n,,(rx)=r·rr,,(x) (PR4) 
n,,(x+y)=n,,(x)+nn(Y) (PR5) 



Modular specification of process algebras 317 

algebraic solution. We view the alphabet of a process as a process again: a is an 
operator from processes to processes; a( x) is the alternative composition of the 
actions which can be performed by x. In this way were represent a set of actions by 
a process. A set B of actions is represented by the process expression B=cter LbeB b. So, 
the empty set is represented by 6, a singleton set {a} by the expression a, and a set 
{a, b} by expression a+ b. Set union corresponds to alternative composition. The 
process algebra axioms Al-3 and A6 correspond to similar axioms for the set union 
operator. The notation s; for summand inclusion between processes (Section 2.1.l), 
fits with the notation for the subset predicate on sets. 

The axioms in Table 9 can be used to compute the alphabet of finite processes. In 
the table a ranges over the set A of actions which occurs as a parameter of module AB. 
In order to compute the alphabet of infinite processes, we introduce an additional 
module AA (Table 10) which is also parametrized by A. 

It is not hard to see that the axioms of AA are derivable for all closed BPAa-terms. 

Example (Baeten et al. [6]). Let P,Q,R be processes satisfying P=a·P, Q=r:ai(P) 
and R=Q·b (with b #a). We derive the alphabet of R: 

TI 1 
rx(R)=cx(Qb)=cx(r: 11 :(P)·h) = cx(r:a: (P)·r{a}(h)) 

TI4 AA3 RN5 
= cx(r: 11 :(Pb)) s '{al ')o:a: 0 a(Pb) = 0: 11 : ''rx(Pb). 

Since 

AB2 
rx.(Pb)=cx(aPb) = a+a(Ph), 

we have that a Sex( Pb). On the other hand, we derive, for nEN, 

cx(nn(Pb))=cx(a"·fJ) £a 

and, therefore, by the application of axiom AA4, a( Pb) s a. Consequently, a( Pb)= a 
and 

ex( R) = o:a: 0 cx(Pb )= o:a: (a)= b. 

Table 9 

o:(b)=b 

o:(ax)=u+o:(x) 

o:(x+ y)=a(x)+a(y) 

:x(T)=<I 

:x(rx)=O:(X) 

(ABl) 
(AB2) 
(AB3) 
(AB4) 
(ABS) 

Table 10 

o:(x)<;;:A 

a(x II y)=O'.(x)+o:(y)+o:(x) I o:(y) 

O'. 'Pr(X) <;;: f!.r'' OH'" o:(x) 
(where H = [ aEA lf(a)=r)) 

\lnEN a(n,,(x))<;;:y 

'.X(X) S::: y 

(AAl) 
(AA2) 
(AA3) 

(AA4) 



318 

Table 11 

o:(x)s;B VbEB: f(b)=b 
P1(x)=x 

R.J. van Glabbeek, F. W. Vaandrager 

ct(x):;; B, a(y) s;; C ., b j' (bf( )) -------\/cEC: f(c)=j-(c) /\ (\/bEB: f 0 y( ,c)= 0 y , c) 
PJ(x II y)=P1(x II P1(Yl) 

(RRl) 

(RR2) 

Information about alphabets must be available if we want to apply the rules of 
Table 11. These rules, which are a generalization of the conditional axioms of [6], 
occur in a slightly different form also in [45]. Rules like these are an important tool in 
system verifications based on process algebra. Module RR (Table 11) is parametrized 
by A and}'. Observe that axioms AAI and RRl together imply axiom RN4 of Table 7. 
Axiom RR2, which describes the interaction between renaming and parallel composi­
tion, looks complicated, but that is only because it is so general. The axioms RR are 
derivable for closed terms. 

2.7. Recursion 

A recursive specification E is a set of equations { x = tx I XE VE}, with VE a set of 
variables and tx a process expression for xE VE. Only the variables of VE may appear in 
tx. Recursive specifications are used to define (or specify) infinite processes. 

For each recursive specification E and xE VE, the module REC introduces a con­
stant < x I E ), denoting the x-component of a solution of E. Here a solution of E is an 
interpretation of the variables of VE as processes (in a certain domain), such that the 
equations of E are satisfied. 

In most applications the variables X EVE in a recursive specification E will be 
chosen freshly, so that there is no need to repeat E in each occurrence of <X I£). 
Therefore, the convention will be adopted that once a recursive specification has been 
declared, <x I E) can be abbreviated by X. If this is done, X is called a formal variable. 
Formal variables are denoted by capital letters. So, after the declaration X = aX, 
a statement X = aaX should be interpreted as an abbreviation of < X IX= 
aX)=aa<X IX =aX). 

Let E = { x = tx I XE VE} be a recursive specification, and ta process expression. Then 
< t I E) denotes the term t in which each free occurrence of xE VE is replaced by < x I E). 
In a recursive language we have, for each E as above and xE Ve, an axiom 

(xlE)=(txlE) (REC). 

If the above convention is used, these formulas seem to be just the equations of E. The 
module REC is parametrized by the signature in which the recursive equations are 
written. In the presence of module REC each system of recursion equations over this 
signature has a solution. 



Modular specification of process algebras 319 

2.8. Boundedness 

The unary predicates B,, (nEN) state that the nondeterminism displayed by a pro­
cess before its nth atomic steps is bounded. If for all nE N: B,,( x ), we say x is bounded. 
Axioms for B,, are in Table 12. Module Bis parametrized by A. In the table a ranges 
over aE AJ. Boundedness predicates were introduced in [22]. 

2.9. Approximation induction principle 

AIP- is a proof rule which is vital if we want to prove statements about infinite 
processes. The rule expresses the idea that if two processes are equal to any depth, and 
one of them is bounded, then they are equal. 

(AIP-) VnEN n11(x)=n11 (y), B,,(x) 
x=y 

The " - " in AIP-, distinguishes the rule from a variant without predicates B11 (see 
[22] ). 

Definition 2.3. Let t be an open BPA{,-term. An occurrence of a variable x in t is 
guarded if t has a subterm of the form a- t', with aE A, and this x occurs in t'. Otherwise, 
the occurrence is unguarded. 

Let E = { x = tx I xE VE} be a recursive specification in which all tx are BPA;j-terms. 
For x,yE VE we define: 

x .!'..+ y -= y occurs unguarded in t x. 

We call E guarded if relation .!'..+ is well-founded (i.e. there is no infinite sequence 
x .!'..+ y .!'..+ z .!'..+ ... ). 

Theorem 2.4 (Recursive specification principle (RSP)). Let E be a guarded recursive 
specification over the signature of BPA{, and let xEVE. Then: BPA{,+REC+ 
PR+B+AIP-1-

E 
(RSP) x=(xlE)" 

Table 12 

B0 (x) 
B11 (r) 

B11 (x) 

B11 (rx) 

B,,(x) 

B 11 + 1 (ax) 

B.(x), B11 (y) 

B11 (x+y) 

(BI) 
(B2) 

(B3) 

(B4) 

(B5) 



320 R.J. van G/abbeek, F. W. Vaandrager 

In earlier papers on process algebra, RSP referred to the assumption, stated in plain 

English, that a guarded recursive specification has at most one solution. The RSP we 

present here says exactly the same in the language ofinfinitary conditional equational 

logic. Because suppose we have two collections of processes {Py I YE VE} and 

{ qv I yE VE} which are both solutions of the equations of E, that is, if we substitute for 

each occurrence of a variable y in E the corresponding processes Py and l]y, respect­

ively, then we obtain valid statements. In such a situation RSP allows us to conclude 

that P.,= (.x I E) and also that lJx=(xl E).Here it is important to note that (x I E) is 

a constant and that we are not allowed to substitute for variables occurring in it. 

Consequently, we have for each yEVE: py=lJy· This means that E has a unique 

solution. 

Example. Let 

E = { X =(a+b)· X} and F = { Y =a·(a +b)· Y +h· Y} 

be two recursive specifications. Since 

(X I E)=(a+b)·(X\ E)=a·(X\ E)+b·(XI E) 

=a·(a+b)-(X I E) +b·(X I E), 

the constant (X I£) satisfies the equation of F. Because the specification F is 

guarded, RSP now gives that (XIE)= ( YI F). 

2.10. ACP; 

The combination of all modules presented thus far will be called ACP~. Formally, 

the module is defined by 

ACP~=ACPr+sc+RN +cH+ +PR+AB 

+AA+RR+REC+ B+AIP-. 

Branching bisimulation semantics, as described, for instance, in [10], gives a model for 

the module ACP~. 

2.11. RSP+ 

For many verifications RSP is not really practical and one would like to use a more 

powerful principle. Therefore, we present below a more general version of RSP, which 

we call RSP +. Section 4 contains a number of examples which illustrate the use of 
RSP and RSP +. 

Definition 2.5. A process expression tET(E(ACP~)) is called guardedly specifiable if 

there exists a guarded recursive specification E with xE VE such that 

ACP~ f- t=(x\E). 



Modular specification of process algebras 321 

Theorem 2.6 (Generalized recursive specification principle (RSP +) ). Let < x I E) be 
a guardedly specifiable process expression. Then ACP~ I-

(RSP+) E 
x=<xlE) 

Proof. Suppose < x I E) is a guardedly specifiable process expression. Then there 
exists a guarded recursive specification F with yE VF such that 

ACP~ f- <xlE)=<ylF). 

Let p be a conditional equational proof of <x I E) =<YI F) from the theory ACP~. 
Let p' be the node-labeled tree obtained by replacing, for each zE VE, all occurrences of 
<z I E) in p by z. We claim that p' is a conditional equational proof of E => x = < y IF). 
The proof goes by a straightforward induction on the size of p. The important case is 
where p consists of a single node only, with a label of the form < x I E) = < tx I E ), 
obtained as an instance of axiom REC. Via the substitution this is turned into the 
equation x = txo which we are allowed to use as a leaf in p' since it is an equation from 
E. Using the rules from Table 2 for symmetry and associativity of"=", it is easy to 
combine the proofs p and p' to a conditional equational proof of E =>x = <x I E). 0 

Remark. In the definition of the notion "guardedly specifiable", it is essential that the 
identity t = < x I E) is provable. If we would only require t = < x I E), then the corres­
ponding version of RSP+ would not be provable from ACP~, since this rule would 
then not be valid in the action relation model of [22]. Strictly speaking, in [22] 
a recursion construct < x I E) is viewed as a kind of variable which ranges over the 
x-components of the solutions of E. Since any process x satisfies x = x, the identity 
< x I { x = x}) = b does not hold under this interpretation. However, if one interprets 
the construct < x I E) as a constant in the model of [22], then the most natural choice 
is to relate to < x I E) the bisimulation equivalence class of the term < x I E ). Under 
this interpretation, (xl{x=x})=b. Hence, <xl{x=x}>=<Yl{y=b}>=b. Since 
the specification { y = b} is guarded, this would mean that the expression < x I { x = x}) 
is guardedly specifiable. But then RSP + gives that for arbitrary z: z = < x I { x = 

x}) =b. This is clearly false. 
We conjecture that an expression t is guardedly specifiable iff it is provably 

bounded, i.e. for all nEN, ACP~f-Bn(t). 

3. Applications of module logic in process algebra 

In the previous section we have illustrated how the +-construct for modules can be 
used to present a large number of operators and axioms for processes in a structured 
way. In this section we will present some less trivial applications of module logic in 
process algebra which involve use of the module constructs H and S. 



322 R.J. van G/abbeek, F.W. Vaandrager 

3.1. The H-construct 

In general, a user of a process algebra module wants that this module proves the 
equality p = q of two closed process expressions p and q, whenever' p and q "have the 
same interesting properties". So it depends on what properties are interesting for 
a particular user, whether the module (s)he uses should be designed to prove p=q or 
not. For this reason, the semantical branch of process algebra research generated 
a variety of process algebras in which different identification strategies are pursued. In 
branching bisimulation semantics with explicit divergence [26], for instance, a distinc­
tion will be made between any two processes that differ in the precise timing of choices 
or divergencies (infinite -r-sequences); in trace semantics, on the other hand, only 
processes are distinguished which can perform different sequences of actions; and 
somewhere in between, failure semantics identifies processes if they have the same 
traces (can perform the same sequences of actions) and have the same deadlock 
behavior in any context. A lot of the process algebras which have been proposed in the 
literature can be organized as homomorphic images of each other, as indicated in 
Fig. I. (In fact, the standard branching bisimulation semantics of [26] cannot be 
mapped homomorphically to failure semantics; see [14].) 

For concrete process algebra (without -r-moves) these semantical notions have been 
defined in [23] relative to some very simple process language. If two process expres­
sions p and q represent the same process in branching bisimulation semantics with 
explicit divergence, they have many properties in common; if they represent the same 
process only in trace semantics, this guarantees only that they share some of these 
properties; and, descending from branching bisimulation semantics to trace semantics, 
less and less distinctions are made. Now a user should state exactly in which 
properties of processes (s)he is interested. Suppose (s)he is only interested in traces and 

branching bisimulation semantics with explicit divergence [26] 

l 
weak bisimulation semantics with explicit divergence [14] 

l 
ready trace semantics [8] 

/~ 
readiness semantics [37] failure trace semantics [38] 

.~./ 
failure semantics [14, 17, 21, 29] 

l 
trace semantics [28] 

Fig. I. The linear-time-branching-time spectrum. 



Modular specification of process algebras 323 

deadlock behavior, then we can tell that for this purpose failure semantics suffices. 
This means that if processes p and q are proven equal in failure semantics, this 
guarantees that they have the same relevant properties. If they are identified only in 
trace semantics (somewhere in the lattice below failure semantics) such a conclusion 
cannot be drawn, but if they are identified in a semantics finer than failure semantics 
(such as branching bisimulation semantics with explicit divergence), then they cert­
ainly have the same interesting properties, and probably some uninteresting ones as 
well. Hence, a proof in branching bisimulation semantics with explicit divergence is 
just as good as one in failure semantics (or even better). 

This is the reason that we prefer to carry out our proofs using a module, for instance 
ACPfi, which is sound with respect to branching bisimulation semantics with explicit 
divergence. However, if two processes are different in this semantics, we will never 
succeed in proving them equal from ACPfi. In such a case we may add some axioms to 
the system, that represent the extra identifications made in a less discriminating 
semantics. If we find a proof from this enriched module, it can be used by anyone 
satisfied with the properties of this coarser semantics. 

3.1.1. Weak bisimulation semantics and the communication merge 
It is in the light of the above considerations that one should judge the appearance of 

the module WBS (Table 13). 
The laws of this module do not hold in branching bisimulation semantics (we refer 

to [10, 26] for a detailed comparison of branching and weak bisimulation), but they 
do hold in all other semantics of Fig. 1 in a setting with the language of BPA~. In fact, 
in combination with the laws ofBPA~. the laws of Table 13 completely axiomatize the 
semantical notion of weak bisimulation for this language. Thus, any identity derived 
from ACPfi + WBS holds in weak bisimulation semantics and, hence, also in the 
coarser ones like failure and trace semantics, or so it seems ... 

Even without explaining the semantical notions, it is possible to point out that there 
is a problem here. We will show that the module ACP~+ WBS proves some very 
unintuitive identities. More specifically, we will introduce the notion of trace consist­
ency and show that ACPfi + WBS is not trace consistent. However, first we have to 
introduce some auxiliary notation. 

Notation for sequences. Let K be any set. K * stands for the set of finite sequences of 
elements of K, and K + stands for the set of nonempty finite sequences over K. The 
empty sequence is denoted by 2 and sequence p *a is the concatenation of sequences 
panda. The sequence consisting only of keK is denoted by k as well. 

Table 13 

xr=x TI 
rx+x=rx T2 
a(rx+ y)=a(rx+ y)+ax T3 



324 R.J. ran Glabbeek, F. W. Vaandrager 

Definition 3.1. Let t be a closed expression in the signature of BPA:;. The trace set 
tr(t) oft is defined inductively by 

tr(b)={).}, 

tr(-r)= {A, j}, 

tr(a)= p, a, a* j}, 

tr( s + t) = tr( s) u tr( t ), 

tr(s·t)=(tr(s)nA *)u{ O-* p I <7* jE tr(s) and pEtr(t) }. 

Thus, trace sets are nonempty and prefix-closed. The special symbol J, which may 
occur at the end of a trace, denotes successful termination. 

Definition 3.2. Let M be a process module with I:(M) ~ I:(BPAb)· Mis called trace­
consistent if, for all closed BPA :;-expressions s and t, 

M f- s=t implies tr(s)=tr(t). 

A model .d of M is trace-consistent if, for all closed BPA :;-expressions s and t, 

.d I= s=t implies tr(s)=tr(t). 

The module ACP# is trace-consistent because branching bisimulation semantics, as 
described in [10], gives a consistent model for this module. The module ACP# + WBS, 
however, is in general not trace-consistent. 

Proposition 3.3. Let ACP# and WBS be parametrized by a set A of actions which 
contains at least three different elements a, b and c with y (a, b) =c. Then the module 
ACP~ + WBS is not trace-consistent. 

Proof. We derive: 

c=ba+c=(-rl b)a+c=(w I b)+a I b 

=(w+a)ib~ ralb=(-rlb)a=c5. 

This means that the module cannot be trace-consistent since 

tr(c)={A,c,C*)}i:{A}=tr(b). D 

This sudden inconsistency must be the result of a serious misunderstanding. And 
indeed, what is wrong is the use of ACP:i in weak bisimulation semantics. It happens 
that weak bisimulation congruence (see [7]), which is the notion of equivalence used 
to construct algebras in the setting of weak bisimulation semantics, is a congruence for 
the +-operator but not for the I-operator. This is the source of all the troubles. We 



Modular specification of process algebras 325 

should point out here that in [7] a communication merge operator is defined in 
a setting with weak bisimulation congruence. However, even though it plays a similar 
role, this operator is different from the communication merge on the domain of 
branching bisimulation semantics (as defined in [10]), in the sense that both operators 
cannot be related by a homomorphic mapping. 

Module logic provides us with the tools to solve the above problem in a simple and 
rigorous way. First we make the observation that in practical applications one will 
never use the operators lL and I directly. The lL and I are only auxiliary operators, 
needed to give a finite complete axiomatization of the merge operator, but of no use 
for the specification of communicating processes. However, operators like lL and I in 
ACP< are needed to do calculations and without them even the most elementary 
equations cannot be derived. 

Our solution to this problem is based on the following idea. Suppose one would like 
to prove an equation p = q in which no I-operator occurs and which holds in weak 
bisimulation semantics but not in branching bisimulation semantics. Then we first 
prove an intermediate result from ACP': one or more equations valid in branching 
bisimulation semantics (with explicit divergence) and in which no I appears. Since, 
except for the I-operator, the branching bisimulation model can be mapped 
homomorphically on the weak bisimulation model, this intermediate result is preser­
ved after carrying out the homomorphic mapping, and can be combined consistently 
with the module WBS. Thus, the proof of p = q can be completed. In our language of 
modules we describe this as follows. Let 

a Ii M = (l"(M)-O")DM 

denote the module M in which the operators and predicates from signature a are 
hidden. Consider the module 

sACP< = H( { 0:(1, 2)} Ii ACP<). 

This module does not contain the operator I in its visible signature. Since weak 
bisimulation semantics can be obtained as a homomorphic image of branching 
bisimulation semantics for all operators of ACP' except for I, and since ACP' is sound 
w.r.t. branching bisimulation semantics, we conclude that sACP< is sound w.r.t. weak 
bisimulation semantics. Thus, sACP' is a suitable module for proving statements in 
weak bisimulation semantics, and can be combined consistently with the module 
WBS. 

We would like to stress that the use of the H-operator is essential here. The 
H-operator makes only positive formulas from module sACP< provable. The follow­
ing example shows what goes wrong if we also allow non positive formulas. Analogous 
to the derivation which we used to show that ACP<+ WBS is not trace-consistent, we 

prove that 

{ 0:(1,2)} tiACP< + WBS 1-c=b. 



326 R.J. van Glabbeek, F. W. Vaandrager 

Fig. 2. 

Applying the results of Section l.12 properly, this is one of the rare occasions where we 
have to construct a nontrivial conditional equational proof (Fig. 2). The leafs 
c = ( rn +a) I b and ra I b = c5 in this proof tree have been established before using 
equational logic. Thus, 

ACPr I- ta+a=ta. 
C=b 

One application of the rule for the export operator in Table 3 gives 

flF(I 2) 1 ilACP' 1- ra+a=ra 
I ' f C=b . 

Consequently, one can prove a trace inconsistency if one adds law T2: 

{IF(l,2)}ilACPr+WBS I- c=b. 

So, although the formulas provable from module {IF (I, 2)} Li AC Pr contain no com­
munication merge, some of them (which are non positive) cannot be combined consist­
ently with the laws of weak bisimulation semantics. 

The above observations allow us to prove the following incompleteness result. 

Theorem 3.4. Equational logic fc>r modules is not complete. 

Proof. We prove that 

{1F(i,2)}ilACP'+WBS l=eqi c=c5 

even though 

{1F(l,2J}ilACPr+wBS 1t-•q1 c=c5. 

In the previous paragraph we have shown that 

{IF(J,2J}ilACPr+WBS 1-ceqi c=b. 



Modular specification of process algebras 327 

Due to the soundness of conditional equational logic and Theorem 1.5, this implies 

that 

which, since c = b is an equational formula, is equivalent to 

{IF(l,2)}AACPr+WBS l=eqi c=b 

(as follows from an observation in Section 1.6.4). However, even though the equation 

c = b holds in all models, it cannot be proved with equational logic. In the previous 

paragraph, we have argued that in a setting with conditional equational logic, the 

module 

H( { IF(I, 2)} AACPr)+ WBS 

is trace-consistent and, therefore, does not prove c=c5. This result carries over to the 

setting of equational logic ( cf. ( 1.4) in Section 1.11 ). The key observation we can make 

now is that, since in equational logic all formulas are positive, a module M proves an 

equation iff the module obtained from M by removing all H's proves this equation. 

Thus, 

{IF(l,2)}AACPr+WBS fi--cqi c=b. D 

3.1.2. The axiom T4 and the left-merge operator 

We think that the example of the previous section, which shows how the H­

construct can be used to solve a problem with the communication merge, is highly 

generic. It is a general phenomenon that if one tries to establish a homomorphism 

from one algebra to another, it might be that for certain operators on the source 

domain no corresponding versions exist on the target domain. Module logic provides 

a way to handle this type of situations on the logical level. It is not hard to come up 

with several other examples of process algebra operators that do not "survive" 

a homomorphic mapping. One can think of the operation of action refinement which 

"lives" in certain noninterlea ved models of concurrency but for which no correspond­

ing operator exists in the interleaving world (see [24] ). In the introduction we already 

mentioned the example of the priority operator of [8], which can be defined in 

bisimulation semantics and ready trace semantics (at least in a setting without r) but 

not in failure trace semantics. Below, we show that the left-merge operator cannot be 

added to trace-consistent algebras in which the following axiom T4 is valid: 

r(rx+y)=rx+y (T4). 

In a setting with the operators from BPA;\, axiom T4 holds in all the semantics of 

Fig. 1 except for branching and weak bisimulation semantics. So, in particular, it 

holds in ready trace semantics. The following example shows that not all operators 

from sACPr can be added to the ready trace model for BPA:;. 



328 R.J. van Glabbeek, F. W. Vaandrager 

Proposition 3.5. Let sACP' be parametrized by a set A of actions which contains at least 
three elements a, b and c. Then the module sACP' + T4 is not trace-consistent. 

Proof. ACP' + T4 ~ r(ac+ ea)+ be= r(r(ac +ea)+ be +c( ra + b )), as 

r(ra+b) lL_c=(ra+b) lL_c=r(a II e)+bc=r(ac+ca)+bc 

and 

r(ra+b) lL_c=r((ra+b) II c)=r(r(ac+ca)+bc+c(ra+b)). 

But this implies that the module is not trace consistent since e * b~tr( r(ae +ea)+ be) 
but c * bEtr( r( r(ae +ea)+ be +c( ra + b))). 0 

The problem in this case is the left-merge operator which cannot be defined on the 
semantic domain of (for instance) ready trace semantics. Again we should note that 
operators which resemble our left-merge operator and which play a similar role in 
axiomatizing the merge operator may be defined on the domains of ready trace and 
other semantics. Aceto [1], for instance, has defined a kind ofleft-merge operator in 
a setting of testing (i.e. failure) semantics without +. However, given our belief that 
a framework for the specification and verification of concurrent and reactive systems 
should provide a user with a spectrum of semantic domains, and not just with a single 
domain, we think that in general it is preferable to have essentially only a single 
left-merge and a single communication merge operator, and not a whole spectrum of 
different versions of these operators. 

The same approach that was used in Section 3.1.1 to solve the problem with the 
communication merge can, of course, be used also to solve the present problem with 
the left-merge operator. Consider the module 

SACP' = H( { lF( lL, 2), lF( I, 2)} fi (ACP' +SC)). 

This module is sound w.r.t. all semantics of Fig. 1 and can be combined consistently 
with the axiom T4. 

3.2. The S-construet 

In order to axiomatize certain operators which one would like to use for the 
specification of concurrent/reactive systems, one will often introduce other, auxiliary 
operators. These auxiliary operators are not intended for use in specifications. There­
fore, it seems to be a natural idea to hide in a module all auxiliary operators using the 
o-construct. In this way one accentuates the auxiliary status of these operators and 
one makes it impossible to use them in specifications. Just like the left-merge and the 
communication merge are used in order to axiomatize the parallel composition 
operator, also new atomic actions are often used for axiomatizing a new operator. 
This is especially the case when new operators are defined in terms of the basic 
combinators using a single axiom. As an example, we mention the actions s(d) and 



Modular specification of process algebras 329 

r(d) which are used in the definition of the chaining operators. Defined operators can 
be very useful, but still one can just view them as notations. Since the set of actions 
occurs as a parameter in modules like ACP', one may think that by varying this 
parameter the underlying theory will not really change and that, after hiding of 
auxiliary actions, no traces of them will be left in the resulting module. In this section 
we will argue that in general this is not the case and that in order to erase all traces of 
auxiliary operators one sometimes has to use, in addition, the S-construct. If one adds 
new atomic actions to a process module, then, in order to preserve trace-consistency 
on the semantic level, one has to extend the domains of the algebras. If, in a sub­
sequent step, one removes these auxiliary actions from the signature, one still has to 
face the fact that on the semantical level one has "larger" algebras. In order to 
illustrate that this can be problematic, we consider the case of the chaining operators. 
One of the properties of these operators which we use most is that they are "asso­
ciative". However, due to the auxiliary actions, the chaining operators are in general 
not associative in trace-consistent models. Here is a counterexample: 

(r(d) ~ (s(d)+s(e))) ~ r(e)=c(d)·b, 

r(d) ~ ((s(d)+s(e)) ~ r(e))=c(e)·b. 

We do have associativity under some very weak assumptions. In the model of 
branching bisimulation semantics, the following conditional law is valid (here 
A' =A-{s(d), r(d) I deD} ): 

oc(x)£A', oc(y)£A', oc(z)s;A' (CC). 

(x~y)~z = x~(y~z) 

However, rather than using the above law, we would prefer a solution in which the 
auxiliary actions are hidden and, for the chaining operators, we have associativity in 
general. In this section we will see how this can be accomplished by means of the 
S-construct of our module logic. 

Although the rule CC holds in the model of bisimulation semantics, we have not 
been able to prove it algebraically from the module ACP~. The obvious proof strategy 
would be to eliminate the ~·s via an application of axiom CHl, then to move the 
various encapsulation and renaming operators to their proper place via axioms RN 
and RR, and then to reintroduce the ~·s again via CHl. Unfortunately, this does not 
work because since both chaining operators synchronize processes via the same 
auxiliary actions, the side conditions of axiom RR2 do not hold; so, we cannot apply 
this crucial axiom. However, we can prove algebraically a weaker version of rule CC if 
we make some additional assumptions about the alphabet: we assume that besides 
actions ch(D), the alphabet A contains actions 

H={s(d),r(d)ldeD} and .(i={~(d},:r(d}ldeD}. 



330 R.J. l'an Glahbeek, F.W. Vaandrager 

One may think about these actions as special fresh atoms which are added to A only 
in order to prove the associativity of the chaining operators. 1 

Let H={r(d),s(d)ldED} and let H=HuHulj. We assume that actions from 
H do not synchronize with the other actions in the alphabet, and that 
range(y)nH=0. On H communication is given by (dED): 

y(S( d), r(d)) = y(s( d), r(d)) =y(s( d), r( d)) = y(s(d), r(d)) 

= y(1( d), r_( d)) =y(1( d), r(d)) = y (s( d), r_( d)) = c(d) 

For the proof of the following two theorems we refer to Appendix B. Here 
A-=A-if.. 

Theorem 3.6. SACP'+RN +CH+ +AB+AA+RRf-

cx(x)sA-, cx(y)sA-, cx(z)sA­

(x~y)~z = x~(y~z) 

Theorem 3.7. SACP' +RN+ CH++ AB +AA+ RR f­

cx(x) s A - , cx(y)sA-, cx(z)sA-

(x ~ y) ~ z = x ~ (y ~ z) 

We will now apply the module approach to remove all traces of the auxiliary atoms 
which were used in the definition of the chaining operators and to obtain general 
associativity. As a first step, consider the module 

CH - = ( { IF (a, 0) I a EH } u { IF ( p f, 1 ) If: A 1 --+ A 1 } ) 

~(SACP'+RN +CH+ +AB+AA+RR). 

This module is parametrized with an alphabet B satisfying jdEB ~ LdEB, and not 
containing the auxiliary actions s(d), r(d), ... From B one derives the alphabet 

A= B 0 { s(d), r(d), s(d)J( d), ~(d), r_(d) I jdEB}, 

which is the parameter of its constituent components SACP', RN, CH+, etc. Of 
course, B=A-. 

The module CH+ can neither be used to prove any formula containing atoms in 
ii. nor to prove the general associativity of the chaining operators. The reason is that 
the auxiliary atoms, although removed from the language, are still present in the 
models of module CH-. The counterexample r(d) ~ (s(d)+ s(e)) ~ r(e) still works in 

1 The fresh atom principle (FAP) states that we can use new (or "fresh") atomic actions in proofs. In [9], 
it is shown that FAP holds in bisimulation semantics. We have not included FAP in the theoretical 
framework of this paper. Therefore, if we need certain" fresh" atoms in a proof, then, formally, we have to 
assume that they were in the alphabet right from the beginning. 



Modular specification of process algebras 331 

any model that is the restriction of a trace-consistent model of SACP' + 
RN +CH+ +AB+AA+RR. Consequently, we have to modify the class of models of 
CH- a bit. The right class of models can be denoted with the help of operator S: 
consider the module 

CH= S(CH- )+ (a(x) £A - ). 

Some models of module CH- have consistent submodels which do not contain 
auxiliary atoms at all. In these models the law a(x) £A - holds. Thus, module CH has 
consistent models. Using Theorems 3.6 and 3.7 one can easily establish that module 
CH proves the general associativity of the chaining operators: 

CH f-- x~(y~z) = (x~y)~x 
and 

CH I- x ~ (y ~ z) = (x ~ y) ~ x. 

Since in conditional equational logic all formulas are universal, the module 
CH- + < a(x) £A - ) has the same derivational power as CH. In particular, this 
module is trace consistent, even though its models are not. When using first-order 
logic, however, we see that the use of the S-construct in CH is essential. 

Proposition 3.8. Let the module CH- be parametrized by an alphabet B =A - such that 
there is at least one action id in B. Then 

Proof. The constituent components of CH - are parametrized with a set A of actions 
containing an action r(d). We claim that 

SACP'+RN+AB f-roieq (a(r(d))£A---+ jd=Ci). 

The proof is constructed by applying on both sides of the equation ix(r(d))+ A - =A - , 
a renaming operator that takes r(d) into jd and all actions from A- into b. The 
formula (a(r(d)) £A - --+ jd = J) plays the role of1 (a(r(d)) £A-), which cannot be 
proven from SACP' +RN+ AB. From this one derives 

SACP'+RN +AB f-roieq 3x(a(x) £A- --+ jd=li) 

(a formal derivation requires fluency in first-order logic or the use of several lemmas). 
Since in this formula no hidden items occur, we obtain 

CH- f-foleq 3x(a(x)£A---+ jd=b) 

and, thus, 

We conclude Section 3.2 with an incompleteness result. 



332 R.J. van G/abbeek, F. W. Vaandrager 

Theorem 3.9. Jnfinitary conditional logic for modules is not complete. 

Proof. Similar to the proof of Theorem 3.4, using the Proposition 3.8. D 

3.3. SACP; 

Module SACP# is an "improved" version of module ACP; in which auxiliary 
operators are hidden in an appropriate way. It is defined by 

SACP~=SACP'+RN +CH+PR+AB 

+AA+ RR+ REC+B+AIP-. 

Module SACP# is parametrized by an alphabet A which does not include the 
auxiliary actions s( d), r( d), ... The rules RSP and RSP + can still be used in a setting 
with module SACPJi: we have SACPH-RSP and SACP#l-RSP+. Also Proposition 
2.1 and the results of Sections 2.1.l and 2.4 carry over to the new setting. For this it is 
crucial that the properties of Section 2.1.1 are stated in an equational and not in 
a conditional form. 

4. Curious queues 

The aim of this section is to present a somewhat more substantial example of the 
use of our module logic in process algebra verifications. We have chosen here to deal 
with some variants of FIFO queues with unbounded capacity. In the specification 
of concurrent systems these queues often play an important role. We give some 
examples: 
- The semantical description of languages with asynchronous message passing such 

as CHILL (see [19]), 
- The modeling of communication channels occurring in computer networks (see 

[31, 44]), 
- The implementation of languages with many-to-one synchronous communication, 

such as POOL (see [2, 45] ), 
Consequently, the questions how queues can be specified, and how one can prove 
properties of systems containing queues, are important. For a nice sample of queue­
specifications we refer to the solutions of the first problem of the STL/SERC 
workshop [20]. Some other references are [18, 29, 39]. 

4.1. An infinite specification of a queue 

Also in the setting of ACP a lot of attention has been paid to the specification of 
queues. Below we present an infinite recursive specification of a queue. We assume 



Modular specification of process algebras 333 

a finite set D of data. In the equations we use the notations for sequences that were 
introduced in Section 3.1.1. Further, d ranges over D and (J ranges over D*: 

QUEUE=Q;.= L ld·Qd, 
dED 

Qo-.d= L le·Qe•<r•d+ld·Qa. 
eeD 

Note that this infinite specification uses only the signature of BPA,i (see Section 2.1). 
We have the following fact. 

Theorem 4.1. Using read/send communication, the process QUEUE cannot be specified 
in ACP by finitely many recursion equations. 

Proof. See [ 4, 15]. D 

It turns out that if one allows an arbitrary communication function, or extends the 
signature with an (almost) arbitrary additional operator, the process QUEUE can be 
specified by finitely many recursion equations. For some nice examples we refer to 
[13, 5]. 

4.2. Definition of the queue by means of chaining 

All process algebra verifications involving queues that we encountered in the 
literature were rather complex. For example, let BUF! denote a buffer with capacity 
one: 

BUF! = L ld·BUFl d, 

deD 

BUFI d =Id· BUF!. 

In process verifications one often needs propos1t10ns like QUEUE }> 

BUFI =QUEUE. However, proofs of such facts starting from the infinite specifica­
tion happen to be rather complicated. We claim that the following specification of 
a queue by means of the (abstract) chaining operator allows for a simple proof of the 
above proposition and numerous other useful identities. A similar specification is also 

described by Hoare [29, p. 158]: 

Q= L ld·(Q ~ BUFI d). 
deD 

The first thing we have to prove is that the process described above is a queue indeed. 

Theorem 4.2. SACP~ f- Q =QUEUE. 



334 R.J. ran Glabbeek. F. W. Vaandrager 

Proof. Define for nEN process Q" as the chaining of Q with n empty buffers with 
capacity one: 

Qo=Q, 

By induction, we prove that, for all 11, 

Q"= I ld·(Q" ~ BUF! d). 
dE /) 

(4.1) 

(4.2) 

(4.3) 

The case n = O follows trivially using ( 1 ). So, suppose that the statement has been 
shown for n:;;:; k. Using the laws of Section 2.4, we derive 

i~ ( I ld·(Qk ~ BUF! d)) ~ BUF! 
dED 

L 3~CH I ld·(Qk ~ (BUFld ~ BUFl)) 
dED 

Ll = L ld·(Qk ~ r·(BUFl ~ BUF! d)) 
deD 

~ I ld·(Qk ~ (BUF! ~ BUF! d)) 
dED 

CH~4.2 I ld·(Qk+I ~ BUF!d). 
dED 

This completes the proof of the induction step. 
Define for (JED+ processes B" by 

Bd=BUFld, 

B"*d=B" ~ BUF!d. 

By simple inductive arguments one can show that 

BJ."= BUF! d ~ B", 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

We can now derive the following recursive equations (from now on the laws L 1-5 and 
the associativity of ~ will be used without being mentioned explicitly): 

dED deD 



Modular specification of process algebras 335 

Qn ~ Bd 4 · 3~4 · 4 L !e·(Qn ~ (BUFl e ~ Bd))+ jd·(Qn ~ BUFl) 
eeD 

4.2~4.6 L !e·(Qn ~ B'*d)+jd·Qn+l, 
eeD 

Qn ~ B''*d 4 · 3~4 · 7 L !e·(Qn ~(BUFle ~ B<r*d))+jd·((Q" ~ BUFl) ~B") 
eeD 

4.2~4.6 L !e·(Qn ~ B"*"*d)+jd·(Qn+l ~ B<r). 
eeD 

Consider the following guarded recursive specification with variables Q~ for aED* 
and nE l\J: 

Q1= I !d·Q~. 
deD 

Q~.d= I !e·Q~*<1•d+Td·Q~+ 1 • 
eeD 

Since QUEUE satisfies the defining equations of Q~, the RSP gives that 
QUEUE=Q~. Because Q0 also satisfies the equations for Q~, another application of 
RSP gives Q 0 =Q~. Consequently, QUEUE=Q 0 =Q. 0 

The proof above shows the "view of a queue" that lies behind the specification of Q. 
During execution there is a long chain of 1-datum buffers passing messages from "the 
left to the right". After the input of a new datum on the left, a new buffer is created, 
containing the new datum and placed at the leftmost position in the chain. Because no 
buffer is ever removed from the system, the number of empty buffers increases after 
every output of a datum. 

Corollary 4.3. SACP~ f-Q ~ BUFl = Q. 

Proof. From equations (4.1)-(4.3) it follows that 

Q ~ BUFI = I !d·((Q ~ BUFI) ~ BUFI d). 
deD 

Since the specification for QUEUE is guarded, we know from Theorem 4.2 that Q is 
guardedly specifiable. Therefore, since Q ~ BUFI satisfies the defining equations of Q, 
we can use RSP + to conclude that Q = Q ~ BUFl. D 

Proposition 4.4. SACP~ f-Q ~ Q = Q. 



336 R.J. van G/abbeek, F. W. Vaandrager 

Proof. 

Q ~ Q= L !d·((Q ~ BUF1 4 ) ~ Q) 
deD 

= L !d·(Q ~ (BUFl d ~ Q)) 
deD 

= L !d·(Q ~ r·(BUFl ~ (Q ~ BUFl 4 ))) 

deD 

= L !d·(Q ~(BUFl ~(Q ~ BUF1 4))) 

deD 

= L !d·((Q ~ BUFl) ~ (Q ~ BUF1 4 )) 

deD 

= L !d·(Q ~ (Q ~ BUFl 4 )) (by Corollary 4.3) 
deD 

= L !d·((Q ~ Q) ~ BUFl 4 ). 

deD 

Now apply RSP+. D 

Remark. It will be clear that the implementation which is suggested by the specifica­
tion of process Q is not very efficient: at each time the number of empty storage 
elements equals the number of data that have left the queue. But we can do it even 
more inefficiently: the following queue doubles the number of empty storage elements 
each time a datum is written: 

Q= I !d·CQ ~ fd·Q). 
deD 

A standard proof gives that Q =QUEUE. From the point of view of process algebra 
this specification is very concise. It is the shortest specification of a FIFO-queue 
known to the authors, except for a 5-character specification due to Pratt [39]: 
! j x D *. A problem with Pratt's specification, however, is that a neat axiomatization 
of the orthocurrence operator x is not available. Our Q-specification has the disad­
vantage that it does not allow for simple proofs of identities like Q ~ Q = Q. 

4.3. A queue that can lose data 

When dealing with communication protocols, one often encounters transmission 
channels that can make errors: they can lose, damage or duplicate data. All process 
algebra specifications of these channels we have seen thus far were lengthy and often 
incomprehensible. Consequently, it was difficult to prove properties of systems con­
taining these queues. Now, interestingly, the same idea that was used to specify the 
normal queue by means of the chaining operator, can also be used to specify various 
types of faulty queues. One just has to replace the process BUFl in the definition of 
Q by a process that behaves like a buffer but can Jose, damage or duplicate data. 



Modular specification of process algebras 337 

Here we describe a queue FQ that can lose every datum contained in it at every 
moment, without any possibilities for the environment to prevent this from happen­
ing. The basic component of this queue is the following faulty buffer with capacity one: 

FBUFl = L !d·FBUFl d, 

deD 

FBUFl d=(jd +r)· FBUFl. 

If the faulty buffer contains a datum, then this can get lost at any moment through the 
occurrence of a r-action. In the equation for FBUFl d there is no r-action before the 
id-action because this would make it possible for the buffer to reach a state where 
datum d cannot get lost. 

We use the above specification in the definition of the faulty queue FQ: 

FQ = L !d·(FQ ;?> FBUFl d). 
deD 

The idea behind this specification of the faulty queue is illustrated in Fig. 3. Each 
faulty buffer process is represented by a "conductor". These conductors also occur on 
the emblem of the Dutch REX project (Research and Education in Concurrent 
Systems). On the REX emblem one can see them engaged in their profession, which is 
parallel conducting of a symphony orchestra. In Fig. 3, they are depicted while 
helping one of their colleagues who is moving, passing on to each other various types 
of boxes. These boxes, of course, correspond to the elements of the set D of data. As 
one can see, the conductors are not really good in this type of work and now and then 
a box just slips out of their hands into the deep abyss that lurks right under the 
corridor in which all activity takes place. The aspect of process creation which is 
present in the specification of FQ is not captured in the figure. One should imagine 
that whenever a new box arrives at the beginning of the corridor, also a new 
conductor arrives and reluctantly starts to work by either passing on the box or 
letting it slip away. 

Lemma 4.5. 

SACP~ ~ r·(FBUFl d ;?> FBUFl)= r·(FBUFl) ;?> FBUFl d). 

? -

Fig. 3. The faulty queue. 



338 

Proof. 

R.J. i•an Glabbeek, F. W. Vaandrager 

r·(FBUF!d ~ FBUFl)=r·(r-(FBUFl ~FBUFld) 

+r·(FBUFl ~ FBUFl)) 

= r·(r·(r·(FBUFl ~ FBUFl)+ FBUFI ~ FBUFl d) 

+r·(FBUFl ~ FBUFl)) 

~r·(r·(FBUFl ~ FBUFl)+ FBUFl ~ FBUFl d) 

Compare the simple definition of FQ with the following BPA1-specification of the 
same process. 

For <JED*, let R(<J) be the finite set of residuals which can be obtained by deleting 
one arbitrary datum from <J. Now FQUEUE is defined by the following recursive 
specification: 

FQUEUE=FQ;,= I ld·FQd, 
deD 

FQa•d= L le·FQe•a.d+jd·FQ"'+ L r·FQP. 
eeD pER(!l*d) 

Theorem 4.6. SACP; f- FQ=FQUEUE. 

Proof. Analogous to the proof of Theorem 4.2. Use Lemma 4.5. 0 

Analogous versions of the identities we derived for the normal queue can be derived 
for the faulty queue in the same way. 

Proposition 4.7. SACP~ 1-
(i) FQ ~ FBUFl = FQ, 

(ii) r·(FBUFI" ~ FQ)=r·(FBUFl ~(FQ ~ FBUFl d)), 
(iii) Q ~ FQ=FQ ~FQ=FQ. 

4.4. An identity that does not hold 

In this section we will discuss the identity 

FQ=Q ~ FBUFl. 

"Intuitively", the processes FQ and Q ~ FBUFl are equal since both behave like 
a FIFO-queue that can lose data. Furthermore, with both processes the environment 
cannot prevent in any way that a datum gets lost. We can think of no "experiment" 



Modular specification of process algebras 339 

that distinguishes between the two processes. Still, the identity cannot be proved from 
the module SACP'. In fact, we have proved the following, even stronger, result. 

Theorem 4.8. If parameter D of operator ~ contains more than one element, then 
SACPfi+ WBS ~ FQ=Q ~ FBUFl. 

Proof. We show that the identity is not valid in the model of process graphs modulo 
weak bisimulation congruence of Baeten et al. [7] (see also [10] ). Suppose that there 
exists a bisimulation between processes FQ and Q ~ FBUFl. Consider the situation 
in which process FQ has read successively two different data, starting from the initial 
state. Because of the bisimulation, it must be possible for the process Q ~ FBUFl to 
read the same data in such a way that the resulting state is bisimilar to the state 
process FQ has reached. Suppose that next process FQ executes a -r-step and forgets 
the second datum. We claim that process Q ~ FBUFl is not capable to perform 
a corresponding sequence of zero or more r-step. This is because there are only two 
possibilities: 

(I) Q ~ FBUFl forgets the second datum. But this means that also the first datum 
is forgotten. In the resulting state Q ~ FBUFI cannot output any datum (before 
reading one), whereas process FQ can do this. 

(2) Q ~ FBUFl does not forget the second datum. In the resulting state 
Q ~ FBUFl can output this datum. Process FQ cannot do that. 

The argument is illustrated in Fig. 4. D 

The next theorem states that, if we add law T4, the two faulty queues can be proven 
equivalent. 

FQ 0 » FBUF 1 

-----------------

~·· 
... --- ... --- .... -------... -- -.. : .. ;·· 

•.. ·····~" 
~··'"· 

(e lostl 

Fig. 4. 



340 R.J. van Glabbeek, F. W. Vaandrag<. 

Theorem4.9. SACP~+WBS+T4f-- FQ=Q~FBUFl. 

Proof. Define the process QF by 

QF=QF,= I ld·QFJ, 
deD 

QFcr•d= L le·QFe-<Hd+(jd+r)·QF,,. 
eeD 

Analogous to the proof of Theorem 4.2, using in addition the identity Q ~ BUFl = Q, 
one can prove from SACP~ that Q ~ FBUFl =QF. 

The main trick in the proof is that we introduce yet another "view of queues": 
process Q F" is split into two parts, a read process and a (faulty) send process. The 
read process takes care of reading new data and stores them in a queue. The send 
process outputs the data in CJ or forgets them and after that it starts behaving like 
a faulty buffer with capacity one which receives input from the read process. The fact 
that the length of the sequence of data in the send process can only decrease (until the 
moment that it starts behaving like a faulty buffer) allows us to use induction. 

Define the faulty send process for CJED* by 

FS, = FBUF!, 

It is routine to prove from SACP~ that Q ~ FS,, = QF O'' Until here one does not need 
the additional axioms. The crucial part in the proof is the following claim. 

Proof (by induction on the length of CJ). If CJ= ,1 then the claim holds trivially. Assume 
that the claim is proved for jCJj:(n. Suppose CJ=ii*e with liil=n. We derive 

r· FS,,.a.e= r·( je· FSa•if + r· FSa•a) = 

(this is the only step where we use axiom T4) 

(because, on the one hand, je· FScr•if £ fe· FScr•J.a by induction and axiom T3, and, 
on the other hand, r·FSa.a£r·FS,,•d•ii by induction and T2) 

This finishes the proof of the claim. As a corollary, we can prove that r·QFp•cr £ 
QFp•d•cr: 



Modular specification of process algebras 341 

(use the observation of Section 2.1.1 that r(x II z) £ ( -rx + y) II z ). 

We have shown that process QF,, is indistinguishable from a process that can lose 

each datum at every moment. Using the notation of Section 4.3, we can write the 

following equation for processes QF .,..J: 

eED peR(r1* d) 

Application of RSP gives that the process FQUEUE of Section 4.3 equals process QF. 

But according to Theorem 4.6 also FQUEUE = FQ. Thus FQ = FQUEUE = 
QF=Q ~ FBUFl. 0 

5. Conclusions and open problems 

In this paper we presented a language making it possible to give modular specifica­

tions of (classes of) process algebras. The language contains constructs + and D, 

which are standard in the theory of structured algebraic specifications, and, moreover, 

two new constructs H and S. Two applications have been presented of the new 

constructs: we showed how the left- and communication merge operators can be 

hidden if this is needed and we described how the chaining operator can be defined in 
a clean way in terms of more elementary operators. It is clear that there are much 

more applications of our approach. Numerous other process combinators can be 

defined in terms of more elementary operators in the same way as we did with the 

chaining operators. Maybe also other model-theoretic operations can be used in 

a process algebra setting (cartesian products?). 
Strictly speaking, we have not introduced a "module algebra" as in [11]: we do not 

interpret module expressions in an algebra. However, this can be done without any 

problem. An interesting topic of research is to look for axioms to manipulate module 

expressions. Due to the presence of the operators H and S, an elimination theorem for 

module expressions as in [11] will probably not be achievable. 
An important open problem for us is the question whether the proof system of 

Table 3 is complete for first-order logic. 
In this paper the modules are parametrized by a set of actions. These actions 

themselves do not have any structure. The most natural way to look towards actions 

like s(d0 ), however, is to view them as actions parametrized by data. We would like to 

include the notion of a parametrized action in our framework but it turns out that this 

is not trivial. Related work in this area has been done by Mauw [32] and Mauw and 

Veltink [33]. 
In order to prove the associativity of the chaining operators, we needed auxiliary 

actions s( d),F( d), etc. Also in other situations it often turns out to be useful to 



342 R.J. van Glabbeek, F.W. Vaandrager 

introduce auxiliary actions in verifications. At present, we have to introduce these 
actions right at the beginning of a specification. This is unsatisfactory for a reader who 
does not know about the future use of these actions in the verification. But, of course, 
also the authors do not like to rewrite their specification all the time when they work 
on the verification. Therefore, we would like to have a proof principle stating that it is 
allowed to use "fresh" atomic actions in proofs. We think that it is possible to add 
a "fresh atom principle" (F AP) to our formal setting, but some work still has to be 
done. 

In our view Section 4 convincingly shows that chaining operators are useful in 
dealing with FIFO-queues. We think that, in general, it will often be the case that 
a new application requires new operators and laws. In Section 4.4 we presented 
a simple example of a realistic situation where bisimulation semantics does not work: 
a FIFO-queue which can lose data at every place is different from a FIFO-queue 
which can only lose data at the end. Adding law T4, which holds in ready trace 
semantics (and hence in failure semantics), made it possible to prove the two queues 
equal. 

Appendix A: First-order logic 

In this appendix first-order logic is defined, in order to allow comparison with the 
two logics of Section 1. 
The set F~oleq of first-order formulas with equality over <J" is defined by 

if A.Eproleq then I A.Epfoleq 
l.fJ a '+" a ' 

if x is a variable and </JEF~010 q then Vx(</J)EF~010q, 

if x is a variable and c/JEF~01cq then :Jx(</J)EF~01eq. 

The ~-truth of a formula <jJEF~010q in a O"-algebra sl!! is defined by 



Modular specification o( process algebras 

.o:f, ~ F~oleq </>--+ i/J 

.sd, ~ l=~oleq </> /\ if; 

.sd, ~ F~oleq </> V if; 

,o:I, ~ F~oleq </>+-+if; 

,o:I, ~ F~oleq \Ix ( </>) 

.o:I, ~ l=~oleq :::Ix(</>) 

if .o:t, ~ If= ~oleq <P or .o:t, ~ I= ~01eq if;, 

if .o:t, ~ l=~oleq </>and sit,~ l=~oleq I/!, 

if .o:t, ~ l=~oleq </> or .o:t, ~ l=~oleq ifl, 

if .o:t, ~I= ~oleq q) if and only if .sd, ~ l=~oleq lj;, 

if .o:t,~' l=~o1eq</> for all valuations~, with 

~'(y)=~(y) for all variables y#x, 

if .. o:t, t l=~01 •q </> for some valuation ~' with 
('(y)=~(y) for all variables y#x. 

</> is true is .o:t, notation .o:t l=~oieq </>, if .o:t, ~ l=~o!eq </> for all valuations ~. 

343 

An inference system /~oieq for first-order logic with equality is displayed in Table 14, 

where </>,if; and p are first-order formulas in F~oieq, ix is an atomic formula in F~t, t, u 

and v are terms over (J and x is a variable. An occurrence of a variable x in a formula 

</> is bound if it occurs in a subformula \lx(l/l) or :Jx(ifl) of</>. Otherwise, it is free. 

A variable is free in a formula </>if all its occurrences in </> are free. </> [t/x] denotes the 

result of substituting u for all free occurrences of x in t. Nowt is free for x in </> if all 

free occurrences of variables in t remain free in </> [ t / x]. 
First-order logic is obtained from first-order logic with equality by omitting all 

reference to =. It is also possible to present first-order logic without the connectives 

/\, v and+-+ and the quantifier :J, and introduce them as notational abbreviations. In 

that case the third block of Table 14 can be omitted. 
In first-order logic (with equality) the positive formulas are the ones without the 

connectives 1, --+ and +-+,and the universal ones are the formulas without quantifiers. 

Model theory (see, for instance, [36]) teaches us that a formula </> is preserved under 

homomorphisms (subalgebras) iff there is a positive (universal) formula if; with 
f-foleq if;+-+</>. 

Table 14 

Modus ponens 
</> 

lfx( </>) 

</>->(I/I-></>) } 
{</>->(I/I_, p)) _, { (</J ->i/1)--> (</J--> p)} 
{lfx( <P ->i/J)}-> { <P _, lfx(i/J) }, if x is not free in <P 

(--i</>-></>)-></J 
-i</J->(</J->i/I) 
lfx(</>)-></>[t/x], if t is free for x in</> 

(</>t-.i/1)-></J 
(</>A ijl)-> i/J 
</>->{ijl->(</>t-.i/I)} 

t=t 

</>->(</Jvijl) 
ijJ ->(!/! v ijl) 
(</>vi/1)->(-i</>->ifJ) 

(u=v)->(v=u) 

(u=v)->(o:[u/x] .-.o:[v/x]) 

Generalization 

Deduction axioms 

Axiom of the excluded middle 
Axiom of contradiction 
Axiom of specialization 

(</J +-+ijl) _, {(!/!--> i/l)t-.(i/1-></>)} 
{(</>->ijl)A (ijl -></>)} ->(rp+->ijl) 
3x(</>)+->-ilfx(-i</>) 

{(t=U)A(U=v)) ->(t=v) 



344 R.J. van Glabbeek, F. W. Vaandrager 

Appendix B. The associativity of the chaining operators 

In this appendix we present the proofs of Theorems 3.6 and 3.7 about the associativ­
ity of the chaining operators. Define for v, wE{ j, l, s, r, s, 1"'", ~, d the renaming function 
vw by 

{ 
w(d) if a=v(d) for some dED, 

vw(a)= . 
a otherwise. 

First we need an auxiliary lemma. 

Lemma B.1. 

SACP"+RN +CH+ +AB+AA+RR f­

aa(x)=x, aa(y)= y, aa(z)=z 

Proof. We prove only the first equality. The second follows by symmetry. 

aJ/(Pp·(x)llP1rlY))=(Note 1 below, RRI) 

=aJ/ 0 Ps.<i 0 Prr(Prs(x) II P1rCY))=(RN5, y=aa(y)) 

=aJ'l 0 Pss 0 PrrlPr•(x)llPrr 0 Plr(Y))=(Note 2, RR2) 

=aJ'l 0 Ps.i 0 p,;(PF(x) II Ptr(Y))=(SC4, RN5, x=aa(x)) 

=aJ[ 0 Prr 0 Pss(Pir(Y) II Pss 0 Prs(x))=(as in Note 2, RR2) 

=aJ/ 0 Prr 0 Pss(Pir(Y) II Prs(x))=(RN5) 

=OH 0 OJ'l(P lr(Y) II Pis (x)) =(Note 3, RRl, SC4) 

=aH(Prs(x) 11 P1r(Y))=(CHl) 

Note 1. Let B=A-H. We claim that a(prs(x)llPF(y))s;;B (recall that 
B=cter LbeBb ). This is proved as follows. 

RN5 (use that x s;; y => x I z s;; y lz. Use further that x = oa(x) = aH 0 OFi(X) = aH(X )) 



Modular specification of process algebras 345 

(use that range(y)n H =0) 

RNS 
£ C("0H 0 Prdx)+tx 0 0H 0 Ptr(y)+B£ 

AA3+RN5 
<;; ()Hoao Pr.s(x)+oHoaopv-(Y)+Bc;; 

(Use that x <;; y implies p1 (x) £ p1 (y)) 

AAl 
s; oH(A) + oH(A) + B= B. 

This finishes the proof of the claim. 

Nate 2. Application of axiom AA 1 gives a 0 Prs-(x) £A and a 0 p lr (y) <;;A. In order 

to apply axiom RR2, we first have to check that, for all cE A, rf( c) = rf 0 rf( c ). This is 

obviously the case. Because range(y)nH=0, we have, for all b,cEA, rr 0 y(b,c)= 

y( b, c ). Now the last thing to be checked is that, for b, CEA, y( b, c) = y( b, ri'( c )). 

Note 3. Let C=A-H. We claim that a(p1r(Y) II Prs(x)) £C. The proof is similar to 

the proof in Note 1. 

This finishes the proof of the lemma. It should be noted, however, that although the 

proof looks equational, it is in fact a conditional equational proof. The appropriate 

adjustment of its format is left to (the imagination of) the reader. D 

Theorem 8.2. 

SACP'+RN +CH+ +AB+AA+RR f­

oa(x)=x, oa(y)=y, oa(z)=z 

x~(y~z)=(x~y)~z 

Proof. This is essentially Theorem 1.12.2 of [ 45]. We give a sketch of the proof. 

RJ~? Ofi 0 0ij(Prs·(x) llP v(Pr~(y) II P1~(z))) 

RJ~? OJ{ 0 0H(Prs(x) II P1r(Pir 0 Pr~(y) llP1~(z))) 



346 R.J. !'an Glabbeek, F. W. Vaandrager 

R~l OEJ 0 a.H(Pr~(Prdx) II Pl1"(y)) II P1c(z)) 

R~2 OEJ 0 0lf(OR 0 Pr~(Prs(x)ll P1r(y)) llP1~(z)) 

R~i 0EJ(oa 0 Pr~(Prdx) II P1dY)) llP1c(z)) 

R~sa EJ(Pr~ 0 a a (Pf.;(x) II P !F(_v)) II P ic ( z)) 

=(x~y)~z 0 

Theorem B.3. 

SACP'+ RN +CH++ AB+AA+ RR f­

oa(x)=x, oij(y)= y, oa(z)=z 

x ~ (y ~ z)=(x ~ y) ~ z 

Proof. Let I= { c( d) I dED }. We derive: 

TheoremB.2 (( ::;:,... ) ::;:,... ) ( ) = r1 x~y~z=···=x~y~z. 0 

Theorems 3.6 and 3.7 follow from the above Theorems B.2 and B.3, respectively in 
combination with axiom RRl. 

Acknowledgment 

Our thanks to Jan Bergstra for his help in the development of the H-operator and 
to Kees Middelburg for helpful comments on an earlier version. Furthermore, we 
thank the referees for their useful suggestions. 



Modular specification of process af?;ebras 347 

References 

[l] L. Aceto, A theory of testing for ACP, Computer Science Report 3/90, University of Sussex, Brighton, 
1990. 

[2] P. America, Definition of the programming language POOL-T, ESPRIT project 415, Document no. 
91, Philips Research Laboratories, Eindhoven, 1985. 

[3] D. Austry and G. Boudol, Algebre de processus et synchronisations, Theoret. Comput. Sci. 30 (1984) 
91-131. 

[4] J.C.M. Baeten and J.A. Bergstra, Global renaming operators in concrete process algebra. Inform. and 
Comput. 78 (1988) 205-245. 

[5] J.C.M. Baeten and J.A. Bergstra, Recursive process definitions with the state operator, Report 
CS-R8920, CWI, Amsterdam; Theorer. Comput. Sci. 82 (1991) 285-302. 

[6] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Conditional axioms and c:t.//3 calculus in process algebra, 
in: M. Wirsing, ed., Formal Description of Programming Concepts·--lll, Proc. 3rd IFIP WG 2.2 

Working Co11f., Ebberup, 1986 (North-Holland, Amsterdam, 1987) 53-75. 
[7] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, On the consistency of Koomen's fair abstraction rule, 

Theoret. Comput. Sci. 51 (1987) 129-176. 
[8] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Ready-trace semantics for concrete process algebra with 

the priority operator, Comput. J. 30 (1987) 498-506. 
[9] J.C.M. Baeten and R.J. van Glabbeek, Merge and termination in process algebra, in: K.V. Nori, ed., 

Proc. 7th Con{ on Foundations of Software Technology and Theoret. Compul. Sci., Pune, India, 
Lecture Notes in Computer Science, Vol. 287 (Springer, Berlin, 1987) 153-172. 

[10] J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in Theoret. Comput. Sci. Vol. 
18 (Cambridge U niv. Press, Cambridge, 1990). 

[11] J.A. Bergstra, J. Heering and P. Klint, Module algebra, J. ACM 37 (1990) 335-372. 
[ 12] J.A. Bergstra and J.W. Kl op, Algebra of communicating processes with abstraction, Theoret. Comput. 

Sci. 37 (1985) 77-121. 
[13] J.A. Bergstra and J.W. Klop, Process algebra: specification and verification in bisimulation semantics, 

in: M. Hazewinkel et al., eds., Mathematics and Computer Science II, CWI Monograph 4 (North­
Holland, Amsterdam, 1986) 61-94. 

[14] J.A. Bergstra, J.W. Klop and E.-R. Olderog, Failures without chaos: a new process semantics for fair 
abstraction, in: M. Wirsing, ed., Formal Description of Programming Concepts -III, Proc. Jrd IFIP 

WG 2.2 Working Conf Ebberup 1986 (North-Holland, Amsterdam, 1987) 77-103. 
[15] J.A. Bergstra and J. Tiuryn, Process algebra semantics for queues, Fund. Inform. 10 (1987) 213-224; 

also appeared as MC Report IW 241, Amsterdam, 1983. 
[16] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935) 433-454. 
[17] S.D. Brookes and A.W. Roscoe, An improved failures model for communicating processes, in: S.D. 

Brookes, et al., eds., Seminar on Concurrency, Lecture Notes in Computer Science, Vol. 197 (Springer, 
Berlin, 1985) 281 -305. 

[18] M. Broy, Views on queues, Sci. Compul Programming ll (1988) 65-86. 
[19] CHILL, Recommendation Z.200 (CHILL Language Definition), CCITT Study Group XI, 1980. 
[20] T. Denvir, W. Harwood, M. Jackson and M. Ray, The analysis on concurrent systems, Proc. of 

a Tutorial and Workshop, Cambridge Univ., 1983, Lecture Notes in Computer Science, Vol. 207 
(Springer, Berlin 1985). 

[21] R. De Nicola and M. Hennessy, Testing equivalences for processes, Theoret. Comput. Sci. 34 (1984) 

83-133. 
[22] R.J. van Glabbeek, Bounded nondeterminism and the approximation induction principle in process 

algebra, in: F.J. Brandenburg, et al., eds., Proc. ST ACS '87, Lecture Notes in Computer Science, Vol. 

247 (Springer, Berlin, 1987) 336-347. 
[23] R.J. van Glabbeek, The linear time-branching time spectrum, in: J.C.M. Baeten and J.W. Klop, eds., 

Proc. CONCUR '90, Amsterdam, Lecture Notes in Computer Science, Vol. 458 (Springer, Berlin, 

1990) 278-297. 
[24] R.J. van Glabbeek, Comparative concurrency semantics and refinement of actions, Ph.D. Thesis, Free 

Univ., Amsterdam, 1990. 
[25] R.J. van Glabbeek and F.W. Vaandrager, Modular specifications in process algebra-with curious 



348 R.J. van Glabbeek, F. W. Vaandrager 

queues (extended abstract), in: M. Wirsing and J.A. Bergstra, eds., Algebraic Methods: Theory, Tools 
and Applications, 1987, Lecture Notes in Computer Science, Vol. 394 (Springer, Berlin, 1989) 465-506. 

[26] R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in bisimulation semantics, 
Report TUM-19052, Technical Univ. of Munich, 1990; [24, Chapter 3]. 

[27] M. Hennessy, Algebraic Theory of Processes (MIT Press, Cambridge, MA, 1988). 
[28] C.A.R. Hoare, Communicating sequential processes, in R.M. McKeag and A.M. Macnaghten, eds., 

On the Construction of Programs-an Advanced Course (Cambridge Univ. Press, Cambridge, 1980) 
229-254. 

[29] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985). 
[30] He Jifeng and C.A.R. Hoare, Algebraic specification and proof of a distributed recovery algorithm, 

Distributed Computing 2 (1987) 1-12. 
[31] K.G. Larsen and R. Milner, A complete protocol verification using relativized bisimulation, in: 

Th. Ottmann, ed., Proc. JCALP' 87, Karlsruhe, Lecture Notes in Computer Science, Vol. 267 
(Springer, Berlin, 1987) 126-135. 

[32] S. Mauw, An algebraic specification of process algebra, including two examples, Report FYI 87-06, 
Dept. of Computer Science, Univ. of Amsterdam, 1987; extended abstract in: M. Wirsing and J.A. 
Bergstra, eds., Algebraic Methods: Theory, Tools and Applications, Lecture Notes in Computer 
Science, Vol. 394 (Springer, Berlin, 1987). 507-554. 

[33] S. Mauw and G.J. Veltink, A process specification formalism, Fund. Informa. 13 (1990) 85-139. 
[34] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92 

(Springer, Berlin, 1980). 
[35] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, NJ, 1989). 
[36] J.D. Monk, Mathematical Logic (Springer, Berlin, 1976). 
[37] E.-R. Olderog and C.A.R. Hoare, Specification-oriented semantics for communicating processes, Act a 

Inform. 23 (1986) 9-66. 
[38] I.C.C. Phillips, Refusal testing, Theoret. Comput. Sci. 50 (1987) 241-284. 
[39] V.R. Pratt, Modeling concurrency with partial orders, lnternat. J. Parallel Programming 15 (1986) 

33-71. 
[40] A. Robinson, On the mechanization of the theory of equations, Bull. Res. Council Israel 9F (1960) 

47-70. 
[41] D.T. Sannella and A. Tarlecki, Toward formal development of programs from algebraic specifica­

tions: implementations revisited, Acta Informa. 25 (1988) 233-281. 
[42] D.T. Sannella and M. Wirsing, A kernel language for algebraic specification and implementation 

(extended abstract) in: M. Karpinski, ed., Proc. Internat. Conf. on Foundations of Computation Theory, 
Borgholm, Lecture Notes in Computer Science, Vol. 158 (Springer, Berlin 1983) 413-427; long 
version: Report CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh, 1983. 

[ 43] A. Selman, Completeness of calculii for axiomatically defined classes of algebras, Algebra U niversalis 
2 (1972) 20-32. 

[44] F.W. Vaandrager, Verification of two communication protocols by means of process algebra, Report 
CS-R8608, CWI, Amsterdam, 1986. 

[45] F.W. Vaandrager, Process algebra semantics of POOL, in: J.C.M. Baeten, ed., Applications of Process 
Algebra (Cambridge Univ. Press, Cambridge, 1990) 173-236. 

[46] F.W. Vaandrager, Algebraic techniques for concurrency and their application, Ph.D. Thesis, Univ. of 
Amsterdam, 1990. 


