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Abstract. Canonical solutions of domain equations are shown to be final coal­
gebras, not only in a category of non-standard sets (as already known), but also 
in categories of metric spaces and partial orders. Coalgebras are simple categori­
cal structures generalizing the notion of post-fixed point. They are also used here 
for giving a new comprehensive presentation of the (still) non-standard theory of 
non-well-! ounded sets (as non-standard sets are usually called). 

This paper is meant to provide a basis to a more general project aiming at a full ex­
ploitation of the finality of the domains in the semantics of programming languages 
- concurrent ones among them. Such a final semantics enjoys uniformity and gen­
erality. For instance, semantic observational equivalences like bisimulation can be 
derived as instances of a single 'coalgebraic' definition (introduced elsewhere), which 
is parametric of the functor appearing in the domain equation. Some properties of 
this general form of equivalence are also studied in this paper. 
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0 Introduction 

This work originates from an attempt to identify the common features of partial or­
ders, metric spaces, and non-standard sets, that make these three different mathemati­
cal settings all suitable for defining semantic domains for concurrent programming lan­
guages. (To be precise, the distinctive feature of the domains under consideration is 
non-determinism rather than concurrency, the starting point being languages like CCS 
[:\1il80) in which concurrency is reduced to sequentiality plus non-determinism.) It has 
resulted in a general semantic framework which could be called final semantics, as it is 
based on the observation that domains are final objects in a categorical sense. 

This paper is a first account on this work, namely on its foundational part. It is 
shown that, regardless of the fact one is working with partial orders, metric spaces, or 
non-standard sets, domains are final objects in a suitable category of coalgebras. Moreover, 
some properties of final coalgebras are investigated in the abstract. 

The categorical notion of coalgebra is quite elementary: given a category C (e.g., a 
category of complete metric spaces) and a functor F: C --+ C, a coalgebra of F is a pair 
(A, n), with A an object in C and n : A --+ F(A) an arrow in C. Clearly, a solution 
to a domain equation X ~ F(X) can be seen as a coalgebra (D, i), with i being an 
isomorphism between D and F(D). The coalgebras of a given functor F over a category 
C form a category CF. Arrows are mappings of C which preserve the coalgebra structure 
(see the next section for a formal definition). 
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Semantic domains are usually obtained as solutions of recursive domain equations of 
the kind given above. There might be more than one such solution, but, for large classes 
of functors, a canonical one is taken. One of the starting points for the present work is 
a result in [Acz88], showing that, within a category of (classes over) non-standard sets, 
the canonical solution of a domain equation is a final coalgebra. (Non-standard sets are 
actually called non-well-founded sets in [Acz88], which is one of the standard references 
on the subject - but see also [FH83, FH92]. The word 'non-standard' has here a different 
meaning than in model theory.) 

In this paper, it is shown that the canonical solutions of domain equations are final 
coalgebras, not only in that category of non-standard sets, but also in a category of 
complete metric spaces and in a category of complete partial orders. In other words, for 
these three different categories C and for large classes of functors F, the canonical solution 
to a domain equation X 9:! F(X) is a final object in the category CF. 

0.1 Final Semantics 

The finality of the domains is not only a unifying property. Final objects are the target 
of a unique arrow from any other object of the same category. This is a valuable property 
from a semantic point of view. 

Recall that semantics can be given to a programming language by first defining a 
semantic domain and then associating a meaning to the programs of the language by 
mapping them onto elements of the chosen domain. The (by finality!) unique arrow from 
another coalgebra (of the same functor) into that domain is then a natural candidate 
for such an interpretation mapping. The problem is to give the class of programs of the 
language a coalgebra structure of the same functor used for the domain. Loosely speaking, 
syntax and semantics should live in the same category of coalgebras of this functor, the 
latter expressing the structure to be preserved under semantic mapping. 

For instance, consider the language CCS. A semantic mapping should equate those 
programs which perform the same computations under a certain - informal - notion 
of observation (and keep the other distinct). As will become clear later, the choice of 
the functor for the domain amounts to making this notion of observation formal. Thus 
the functor defining the domain should be fixed according to the observation one has in 
mind. Further, computations are described by means of a transition system (induced 
by a set of structural rules) which is essentially a graph having programs as nodes and 
transitions as edges. Every program is the root of a tree obtained by unfolding the graph 
from that program. Such a tree gives the computations performable by the root program. 
Notice that there are many different ways of traversing a tree, each corresponding to a 
different notion of observation. The problem is thus, given a functor for a domain, to find 
a representation of the transition system as a coalgebra of that functor. 

In general, the semantics shall depend on the observation one wants to perform on the 
computations or, more abstractly, on the functor one fixes. (Observations as functors!) 
For simplicity, it will be convenient that the functor be on some category of sets, possibly 
with some additional structure (e.g., metric or order), and leave to further developments 
generalizations to less concrete categories. More essentially, the existence of a final coalge­
bra for the functor will be needed, possibly to be shown via some limit construction. Then 
if one is able to find a representation of all the observable computations as a coalgebra of 
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the same functor, the (final) semantics of the language will immediately follow. (Ideally, 
this scheme would include not only concurrent languages, but also applicative ones -
see, e.g., (Abr90]). Alternatively, the observable computations of the class of programs of 
the language under study might be directly defined as a coalgebra of the chosen functor. 

Of the general methodology sketched above at least one instance is to be found in 
the literature: it is the final semantics for CCS given in [Acz88]. There, the seman­
tics is based on a (straightforward) coalgebra representation of transition systems for a 
specific functor (see Example 1.4). The existence of other representations (for different 
functors and, thus, domains) of transition systems (and, possibly, of observable computa­
tions in general) will be treated in a forthcoming paper (Observations as Functors: final 
semantics for programming languages), together with other issues (like compositionality) 
involving the languages. Instead here, as already mentioned, the attention is rather fo­
cussed on foundational issues, independent from the languages, like the general properties 
of functors ensuring the construction of final coalgebras. Moreover, there is a 'coalgebraic' 
notion which can be studied in the abstract and which is of major interest for seman­
tics: the kind of equivalence induced by a functor and its coalgebras. Some properties of 
such an equivalence are useful in clarifying the relationship between final semantics and 
'equivalence-based' semantics. 

Consider again CCS. An alternative approach to its semantics is to formalize the 
notion of observation in terms of an (observational) equivalence. The semantic mapping 
associates to each program its equivalence class and the domain is then simply defined as 
the image of that mapping. A popular example of such an observational equivalence is 
(strong) bisimulation as defined in (Par81]. Now, the functor used for the final semantics 
in (Acz88] can be shown to induce bisimulation equivalence in the sense that two programs 
are mapped (via the final semantics) into the same process if and only if they are bisimilar. 

One of the advantage of working with final semantics is that there is a single 'coalge­
braic' notion of (possibly observational) equivalence which is parametric of the functor: 
it is the definition of F-bisimulation as given in (AM89]. For a particular choice of the 
functor F, namely the one used in (Acz88] (but see also (BZ82]), F-bisimulation coincides 
with bisimulation in the traditional sense, as was observed above. Also other equivalences, 
like for instance trace equivalence, can be obtained by instantiating F-bisimulation to a 
certain functor (as will be shown in the above mentioned Observations as Functors). And 
even for the existing observational equivalences which do not fall under this scheme, it 
might still be useful to understand why they fail to be described in this way. 

0.2 Contribution of this Paper 

It is now possible to be more precise about the technical results in this paper. First of all 
it is shown that final coalgebras are strongly extensional in the sense that two elements 
of a final F-coalgebra are equal if and only if they are F-bisimilar. Also other abstract 
properties concerning F-bisimulations are studied. Then a final coalgebra theorem is given 
for each of the three categories under study, stating that the canonical solution of a domain 
equation is a final coalgebra. 

As already mentioned, the (so-called special) final coalgebra theorem for non-standard 
sets is not a new result ((Acz88]). However, the proof given here is somewhat more trans­
parent than the original one because of a different formulation of the definition of uni/or-
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mity on maps, which occurs in the conditions of the theorem. An extensive description 
of non-standard set theory is included as well, both because this theory (still) is non­
standard indeed, and because the way it is presented here has some interest on its own. A 
uniform characterization of standard and non-standard set theory is introduced, showing 
that the latter theory is as natural as the former: the foundation and anti-foundation 
axioms are stated in terms of initial algebras and final coalgebras, respectively. The use 
of final coalgebras is particularly helpful to have a concise and uniform presentation of 
equivalent forms of the anti-foundation axiom, like, e.g., the Solution Lemma used in the 
proof of the final coalgebra theorem. 

For metric spaces the final coalgebra theorem is a new result. It is shown that locally 
contracting functors on the category of complete metric spaces (with non-expansive map­
pings as arrows) have a final coalgebra. The proof is based on a theorem stating that such 
functors have fixed points. The latter theorem extends earlier results of [AR89J along the 
lines of [SP82], and is proved in full detail. 

For partial orders an initial algebra theorem and the so-called limit-colimit coinci­
dence are well-known (see [SP82]), but, apparently, it was never proved in detail that (in 
GPO .L) initial algebras and final coalgebras coincide. (Actually, the proof given here of 
the 'order-theoretic' final coalgebra theorem does not make direct use of the limit-colimit 
coincidence.) It is shown that the fixed point of a locally continuous functor on the cate­
gory of complete partial orders (with strict and continuous mappings) is a final coalgebra 
in that category. 

The main result about the category of cpo's is the study of a new notion, called ordered 
F-bisimulation, which is a generalization of the definition of F-bisimulation. Both the 
notions of partial bisimulation from [Abr91] and that of simulation from [Pit92j (for the 
functorial case) can be seen to be examples of ordered F-bisimulations. Corresponding 
to the notion of ordered F-bisimulation is a generalized notion of strong extensionality. 
A proof is given of the fact that the final coalgebras of locally continuous functors are 
strongly extensional in such a generalized sense. It implies the internal full abstractness 
result from [Abr91j, and the extensionality results (for the functorial case) from [Pit92]. 

0.3 Overview of the Paper 

In Section 2 (algebras and) coalgebras of functors are introduced. Examples are given 
showing that the powerset functor can be used for coalgebra representations of graphs 
and (labelled) transition system. A third example consists of a metric variant of the final 
semantics given in [Acz88] (and mentioned above). 

Section 3 is dedicated to the notion of F-bisimulation. It is first shown that for the 
same kind of functor as in Examples 1.4 and 1.8 it corresponds to strong bisimulation. 
Then abstract properties are proved like strong extensionality and preservation of F­
bisimulation in the category of F-coalgebras. 

In the next three sections, final coalgebras in the categories of non-standard sets, 
complete metric spaces, and complete partial orders are treated. These sections can be 
read independently from each other (but presuppose Sections 2 and 3). 

In the last section, a comparative analysis is made between the three different final 
coalgebra constructions discussed in the paper. Related and future work, including the 
relationship between final coalgebras and coinduction (the dual of induction), are also 
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discussed. 
Although an extensive use of diagrams is made throughout the paper, no previous 

knowledge of category theory is required. Indeed, just a few (elementary) categorical 
notions are used. 

1 Algebras and Coalgebras of Functors 

Let C be a category and F : C ...... C be a functor from C to C. (Such a functor is called an 
endofu.nctor on C.) 

Definition 1.1 An F-coalgebra is a pair (A, a), consisting of an object A and an arrow 
a: : A--> F(A) in C. It is dual to the notion of F-algebra: an F-algebra is a pair (A, a:), 
consisting of an object A and an arrow a : F(A) --+ A in C. D 

For instance, consider a preorder ( C, ::::;) . It can be interpreted as a category: the 
objects are the elements of C, and between any two elements c, d E C there is an arrow 
if and only if c ::::; d. Any monotonic function F : C ...... C is then an endofunctor on C. 
Thus an F-coalgebra is a post-fixed point x E C with x::::; F(x), and an F-algebra is a 
pre-fixed point x EC with F(x) ::::; x. 

Definition 1.2 F-coalgebras form a category, denoted by CF, by taking as arrows between 
coalgebras (A, a:) and (A', a') those arrows f: A--+ A' in C such that a' of = F(J) o a:; 
that is, the following diagram commutes: 

f A---..... A' 

* a' 

F(A) -F(A') 
F(f) 

Reversing the arrows one can easily define the category of F-algebras. 0 

Notice that in category theory the name F-(co)algebra is usually reserved for the 
case when Fis the functor of a (co)monad (see, e.g, [Lan71]). F-(co)algebras have then 
some extra structure. They form a different category which, however, can be regarded 
as a subcategory of the above category of F-(co)algebras by simply forgetting the extra 
(co)monadic structure both in the objects and in the arrows. 

As the name suggests, there is a relationship between algebras of functors and the more 
traditional E-algebras (sets with operations). For instance, the natural numbers together 
with the constant 0 and the successor function form a E-algebra (for any E consisting of 
a constant and a unary function symbol). Consider the functor 1 + - on the category Set 
of sets, where 1 is a one element set, and + is the disjoint sum. An algebra of this functor 
is a pair (A, a), with a: 1 +A ...... A defined as the sum of the functions 

e: 1-+A 

t: A-+ A. 
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Now the natural numbers can be seen to be an algebra of the above functor by defining 
e and t as follows: e maps the only element of 1 to 0, and t is defined as the successor 
function. 

Given this relationship between algebras of functors and algebras in the traditional 
sense, it is natural to look for a notion of coalgebra dual to the one of algebra. In other 
words, what is the dual of operations? An operation on a set A can be regarded as an 
action which, given some objects of A, combines them into a new object of A. Its dual 
is then an action which, given an object, decomposes it into several new components. A 
simple example is the following. 

Example 1.3 Graphs 
A graph is a pair ( N, -+) consisting of a set N of nodes and a collection -+ of (directed) arcs 
between nodes: -+~ N x N. A graph can be regarded as a coalgebra of the (covariant) 
powerset functor P on the category Set of sets as follows. Let child : N -+ P(N) be 
defined by, for all n E N, 

child(n) = {m Jn-+ m}. 

D 

A similar example is given by non-deterministic computations which can be said to 
be split at every state into a set of possible computations. To describe non-deterministic 
computations labelled transition systems in the style of [Plo8lb] are often used: 

Example 1.4 Labelled Transition Systems 
A labelled transition system (LTS) is a triple £ 
states, a set A of labels, and a transition relation 

-+~SxAxS 

(S, A,-+), consisting of a set S of 

Often programs, given as closed terms over some signature, constitute the set S of states. 
Non-determinism is expressed by the fact that from a single state many different transi­
tions are possible. Every LTS can be seen as a labelled graph: the nodes are the elements 
of S; there is an arc with label a between two nodes s and s' if and only if ( s, a, s') E-> 
(also written as s~s'). LTS's can be represented as coalgebras as follows. Let the 
functor 

P(Ax-): Set-+ Set 

be defined, for any set X, by 

P(A x X) = {U I u ~Ax X}. 

A labelled transition system ( S, A, -+) can then be represented as a coalgebra ( S, a:) of 
the functor P(Ax-) by defining a:: S-+ P(AxS), for all s,s' ES, a EA, by 

<a, s' >E a:(s) ~ s~s'. 

D 
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The above is the coalgebra representation of transition systems from [Acz88] (but see 
also [Hes88]) mentioned in the introduction. The LTS associated to a language like CCS 
has programs as states and atomic actions as labels. Transitions are given by the inductive 
closure of a set of structural rules. In Example 1.8, still along the lines of [Acz88], a final 
semantics based on this representation is illustrated. But first the definition of final 
objects in a category is needed: 

Definition 1.5 An object A in C is called final if for any other object B in C there exists 
a unique arrow from B to A. It is the dual notion of initial object (unique arrow from 
the object). Final and initial objects are unique up to isomorphism. D 

Consider again a preorder (C, ~) (viewed as a category) and a monotonic function 
F: C ~C. A final F-coalgebra is simply the greatest post-fixed point of F, which by a 
standard result is also the greatest fixed point. (Dually, an initial F-algebra is the least 
(pre-)fixed point of F.) Below, the notion of fixed point is generalized to functors and 
then a standard result is shown: final coalgebra.s are fixed points. 

Definition 1.6 An F-coalgebra (A, a) is a fixed point for F (write A~ F(A)) if a is an 
isomorphism between A and F(A). That is, there exists an arrow a-1 : F(A) ~ A such 
~~ . 

D 

Proposition 1.7 A final F-coalgebra is a fixed point of F. 

Proof. Let (A,a) be a final F-coalgebra. Since (F(A),F(a)) is also an F-coalgebra, 
there exists a unique f : F(A) ~A such that the following diagram commutes: 

F(A) _J __ A 

F(o) l * 

F(F(A)) - F(A) 
F(f) 

By finality, the only arrow from (A, a) into itself is the identity. Since both squares of 
the following diagram commute, f a a is the identity on A: 

A-a---F(A) __ f_A 

• F(o) l * 

F(A) - F(F(A)) - F(A) 
F(a) F(f) 

But then it also follows that a a f is the identity on F(A): 
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o:of = F(f)oF(o:) = F(foo:) = F(idA) 

Therefore f is the inverse of o:. D 

Dually, an initial F-algebra is also a fixed point of F. Notice that a fixed point of a 
functor F can be regarded both as an F-coalgebra and as an F-algebra. 

Example 1.8 A Final Semantics 
Consider the category CMS of complete metric spaces (with non-expansive mappings as 
arrows). On this category, the usual constructions of disjoint sum and product are defined. 
Moreover, the powerset functor 'Pcomp(-), yielding all (metrically) compact subsets is well­
defined on CMS. (Details on these constructions are omitted here; they are given in 
Section 4.) Similarly to Example 1.4, a LTS (S,A,-+) can be represented as a coalgebra 
as follows. Let Pcomp(A x -) : CMS-+ CMS be defined, for any metric space X, by 

Pcomp(A x X) = {U £;;;Ax X I U is compact}. 

The above LTS can be seen to be a coalgebra of this functor by supplying S with the 
discrete metric (any two different states in Shave distance 1), and defining, for alls, s' E S 
and a EA, 

<a, s' >E o:(s) ~ s_.::._...s'. 

(For o:( s) to be well defined, the transition relation -+ should be finitely branching. For 
LTS's not having this property, other choices for the functor can be made.) As will 
be shown in Section 5, the functor Pcomp(A x -) has a final coalgebra (P, i), which by 
Proposition 1. 7 is a fixed point: 

P 9! Pcomp(A X P). 

Let j be the inverse of the isomorphism i. A semantic mapping n from S into P can now 
be defined as the unique mapping from the coalgebra (S, o:) into the final coalgebra (P, i): 

1-1 
S------~P 

* j 

P(AxS) ---P(AxP) 
P(Axn) 

Thus 1-J satisfies the following recursive equation: 

[s] =j({< a,[s'] >i s_.::._...s1}). 

This semantics mapping is precisely the same given in [BM88, Rut92] as the fixed point 
of a contracting function <Ii : (S-+ P}-+ (S -+ P), using Banach's fixed-point theorem. 
(There the domain is the same, but its finality is not recognized.) D 

A final remark. There is a notion which generalizes and combines both algebras and 
coalgebras of functors: An F, G-dialgebra [Hag87] of two functors F and G from a category 
D to a category C is still a pair (A, o:), but with o: an arrow in C from F(A) to G(A). It 
is a notion useful in type theory. 
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2 F-Bisimulation 

The final semantics example in the previous section has the property that it maps two 
states into the same process if and only if they are (strongly) bisimilar in the following 
sense: A relation R ~ S x Son the set of states Sofa LTS (S, A,-+) is called a (strong) 
bisimulation ([Par81]) if for all a E A and s, t E S with sR t, 

s ~ s' :::} 3t' E S, t ~ t' and s' R t' 

and 

t ~ t' :::} 3s' E S, s ~ s' and s' R t'. 

Next "' is defined as the union of all bisimulations and two states s and t are called 
bisimilar when s ,..., t. 

In [AM89] it was noticed that coalgebras can be used for a natural generalization of 
the above notion of bisimilarity: For every functor F on the category of classes, a relation 
on F-coalgebras is defined, called F-bisimulation. This definition is here (generalized 
to other categories and) repeated, and some of its properties are analyzed. It is shown 
that final coalgebras are strongly extensional, that is, any two elements of a final F­
coalgebra are equivalent if and only if they are F-bisimilar. Moreover, arrows between 
F-coalgebras preserve F-bisimulation. Together, these facts imply that (F-)bisimilar 
states are semantically mapped into the same process by the final semantics given in 1.8. 
Also the converse is proved here, under the condition that F weakly preserve kernel pairs. 

For sake of simplicity, the (F-bisimulation) relations considered here are of a set­
theoretic nature. That is, relations are defined as subsets of a cartesian product. A more 
general categorical formulation would, on one hand, allow defining F-bisimulations for all 
categories of coalgebras, but, on the other hand, it would bring unnecessary complica­
tions, since the categorical product of the three categories under study here amounts to 
a cartesian product. In categorical words, for each of the categories C considered here, 
there exists a faithful forgetful functor U from C into a category of (possibly large) sets 
and, moreover, for every object A in C, U(A x A) = U(A) x U(A). To be more specific, in 
the case of complete partial orders, the product Ax A of a cpo A = (JAJ, [;A) with itself 
is given by the cartesian (i.e., set-theoretic) product JAI x JAJ together with the following 
order: for all (x1,Y1), (x2,Y2) E JAJ x IAI, 

(x1, Y1) !;;; (x2, Y2) = X1 !;;;A X2 and Yi ~A Y2· 

Similarly, if A= (IAI, dA) is a complete metric space, the following metric is to be added 
to the cartesian product IAI x IAJ: for all (x1,y1), (x2,Y2) E JAI x !Al, 

d( (x1, Y1), (x2, Y2)) :: max{ dA(x1, X2), dA(Y1, Y2)}. 

(All this can be more synthetically and generally rephrased as: C is a category for which 
the forgetful functor into Set exists and creates products.) The notation IAJ will be used 
also in the sequel to denote the set in a cpo or metric space A (i.e., JAI = U(A)). If A is 
a (possibly large) set then IAI will simply be A itself (U is the identity functor). 
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Definition 2.1 Let C, throughout the rest of this section, be a category of (possibly 
large) sets possibly with an additional metric or order-theoretic structure. For any object 
A in C, a relation Ron A is an object R of C such that \R\ ~.\Al x \A\. If A is either a 
complete metric space or a cpo, then R inherits the metric or the order from A x A. By 
abuse of notation, R ~ A x A will be used in the sequel to denote that R is a relation on 
A. D 

Definition 2.2 Let F : C -+ C be a functor. Let (A, a) be an F-coalgebra. Let R be 
a relation on A. Then R is called an F-bisimulation on (A,a) if there exists an arrow 
{3 : R-+ F(R) such that the projections 7l"i, 71"2 : R-+ A are arrows in CF from (R, {3) to 
(A, a). That is, both squares of the following diagram should commute: 

R 
11"1 

A 
11"2 

R 

f3 * O! * lp 
F(R) -F(A)- F(R) 

F(1r1) F(1r2) 

Two elements a and a' in A are called F -bisimilar (notation a .!.. a') if there exists a 
bisimulation relation Ron (A, a) with aRa'; thus 

.!.. = LJ{R ~A x A I R is an F-bisimulation on (A, a) }. 

D 

Definition 2.2 indeed generalizes the standard notion of strong bisimulation: 

Example 2.3 Bisimulation 
Recall from Example 1.4 that the functor 

P(A x -) : Set-+ Set 

is used for representing LTS's. Consider a LTS (S, A,-+) and let (S, a) be the correspond­
ing P(A x -)-coalgebra. It is shown that there is a one-to-one correspondence between 
the strong bisimulations and the P(A x -)-bisimulations on S. 

Let R ~ S x S be a strong bisimulation on S. Define {3 : R-+ P(A x R) by, for all 
sR t, 

{3((s, t)) = { < a, (s', t') >\ s -.!..+ s' /\ t-.!..+ t' /\ s' Rt'} 

It is straightforward to check that (R,{3) satisfies the conditions of Definition 2.2. 
Conversely, let R be an 'P(A x -)-bisimulation, with corresponding coalgebra (R, {3). 

Consider s and t such that sR t. By symmetry, it suffices to prove that, for all s' E S, 
a EA, 

s-.!..+s' => 3t', s'R t' and t-.!..+t'. 

That is, for alls' E S, a EA, 
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<a, s' >E a(s) => 3t', s' Rt' and <a, t' >E a(t). 

Suppose< a, s' >E a(s). Since 

a(s) = a{rr1((s, t))) 
= P(A x 7r1) o Jj((s, t)) 

{ < a,u >I u ES and 3v ES,< a, (u,v) >E Jj((s, t))} 

there exists t' ES with< a,(s',t') >E Jj((s,t)), and hence s'Rt'. Because 

a(t) a(7r2((s, t))) 
= P(A x 71'2) o Jj((s, t)) 

it follows that <a, t' >E a(t). D 

The above definition of F-bisimulation paves the way for a uniform treatment of 
different kinds of observational equivalence. Other observational equivalences can be 
described by choosing a different functor. 

The rest of this section describes some semantically interesting properties of F-bisimu­
lation, starting from strong extensionality: 

Theorem 2.4 Any final F-coalgebra (A,a) is strongly extensional: for all a1,a2 EA, 

(Recall that t.. is the union of all F-bisimulations on (A, a).) 

Proof. Let =A be the identity relation on A. The inclusion from left to right follows 
from the fact that =A can be seen to be an F-bisimulation on (A, a) as follows. Define 
D..: A -+=A by, for all a EA, D..(a) =<a, a >, and J1: =A-+ F(=A) by J1=F(D.)oCl!o71'1. 
Then (=A,J1) is an F-bisimulation on (A, a): 

'7!'1 '7!'2 

=A A =A 
D. D.. 

J1 * a * J1 

F(7r1) F(7r2) 
F(=A)~ F(A)'~F(=A) 

F(D..) F(D..) 

Conversely, let R ~ Ax A be an F-bisimulation with (R, J1) as in Definition 2.2. Since 
both 71'1 and 7!'2 are arrows in CF from (R, J1) to the final F-coalgebra (A, O!), it follows 
that 71'1 = '7!'2. Thus R ~=A· D 

Theorem 2.5 Let (B,/3) be an F-coalgebra and (A,O!) a final F-coalgebra. Let 1-J : 
(B, /1) -+ (A, O!) be the unique arrow from (B, 11) to (A, a). For all b1, b2 in B, 

b1 t.., b2 => [b1] = [b2l 
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Proof. Let (R, 'Y) be an F-bisimulation on B. Since both u o 7!"1 and (-) o 7!"2 are arrows 
between the F-coalgebras (R, -y) and (A, a), and since (A, a) is final it follows that [·Jo?r1 = 
(-JO 7!"2. 0 

In general, in categories of (possibly large) sets one can prove that certain arrows 
between F-coalgebras preserve F-bisimulation. More precisely, this holds for arrows that 
have a right inverse (also called split epis). (In Set every surjective mapping has, by the 
axiom of choice, a right inverse.) The idea is that one would like to show that, given an 
arrow f between F-coalgebras (A,a) and {A',a'), and given an F-bisimulation (R,B) on 
(A, a), the following relation 

Rf = { (f(a), f(a')) E IA'! x IA'! I aRa'} 

is an F-bisimulation on (A', a'). If Fis an endofunctor on a category either of complete 
partial orders or of complete metric spaces, one needs first of all to show that Rf is a 
complete partial order or a complete metric space, respectively. This can be shown under 
the assumption that f has a right inverse as follows. Let C be, for instance, GPO .L (see 
Section 5 for the formal definition of GPO .L) and assume the existence of a right inverse 
h to f. Then one can show that Rf is a cpo: (l.A'• .LA') is the minimal element, since 
f is (an arrow in CPO.L and hence) strict, and (.LA,-..LA) E R. Further suppose that 
(!(an), f(a~))n is an w-chain in Rf. By monotonicity of h, (ho f(an), ho f(a~))n is a 
chain in R. Because R is a cpo this chain has a limit in R, say (a, a'). By continuity off 
it follows that 

(f oho J(an), f oho f(a~))n =(!(an), f(a~))n 

converges to (!(a), f(a')), which is in Rf. 
Now, the above right inverse can also be used to define the following arrow 

(3':: F(f x f) o (3 o (h x h). 

This (3' turns Rf into an F-bisimulation. Indeed, consider the cube below: 

f xf 
R -----------Rf 

(3 

~xh I ~· ~ 
A----------- A' 

Q 

F(f x f) 
F(R) -----F(Rf) a' 

F~ F~ 
F(A) ______ __.. F(A') 

F(f) 
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All sides commute but the back and the right one. One has to prove the commutativity 
of the latter. That is, et.' o 7r/ = F(7r/) o {3', for i = 1, 2. Chasing the diagrams, it follows 

et' 0 7r/ et' 0 7r/ 0 (! x J) 0 ( h x h) 

et'ofo7r;o(h x h) 

F(J) o cH 7r; o (h x h) 
= F(J) o F(7r;) o f3 o (h x h) 

F(7r/) o F(J x J) o (3 o (h x h) 
= F(7r/) o {3'. 

All this proves the following: 

Theorem 2.6 Let f : (A, et) -+ (A', et') be an arrow in CF with a right inverse. For all 
a,a' EA, 

a::, a'=? f(a)::, f(a'). 

For the converse of Theorem 2.5, it is sufficient fo prove that for any arrow f between 
any two F-coalgebras (A, et) and (A', et'), the following relation 

R1 ::={(a, a') E IAI x IAI I f(a) = f(a')} 

is an F-bisimulation on (A, et). Again, it is not difficult to prove that R1 is an object of 
the category: E.g., if C is GPO J. then the fact that R1 is closed (i.e., all w-chains have 
a least upper bound) follows from the continuity off and the observation that R1 is the 
inverse image of the diagonal in IA'I x IA'I, which is trivially closed: 

R1 = u-l x r 1){(x,x) E IA'I x IA'I}. 
Now for R1 to be an F-bisimulation, there should exist an arrow (3 : R1 -+ F(R1) making 
both the back and the left side squares of the following cube commute: 

R1 
7f2 

A 

~ f ·~ 
3(3 A A' 

et 

F(R1) 
F(7r2) 

F(A) et' 

F~ ~ 
F(A) F(A') 

F(f) 
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Note that the front and right squares are equal and commute, because f is an arrow 
between coalgebras. The top square also commutes; thus, by functoriality, the bottom 
one does as well. Further observe that 

F(f) o a. o 7r1 a.' o Jo 7r1 

a.' 0 f 0 7!"2 

= F(f) o a. o 7r2 

One needs the existence of an arrow (3 

a. 0 7r1 F(R1) F(A) l F(•,) 
F(7r1) F(f) 

F(A) F(A') 
F(J) 

such that a. o 71"1 = F(7r1) o f3 and a. o 7!"2 = F(7r2) o /3. It is sufficient for the existence of 
such an arrow that the inner square of the above diagram is a weak kernel pair for F(f): 

Definition 2.7 Consider an arrow f: b--> c in a category C. A kernel pair for f is an 
object a and arrows h : a --> b and k : a --> bin C such that j oh = f o k, and such that 
for any other such triple (a', h', k') there exists a unique arrow e from a' to a such that 

a' 

~ h' =hoe 

b and 
h' 

a 

h J k' = k o e. 

b c 
f 

The object a, with arrows h and k is called a weak kernel pair if in the preceding formu­
lation the requirement of uniqueness is dropped. D 

It is not difficult to prove that R1 and its two projections form a kernel pair for f. 
Thus for the existence of an appropriate arrow f3 it is sufficient if the functor F weakly 
preserves kernel pairs. We have proved: 
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Theorem 2.8 Let F be a functor weakly preserving kernel pairs. That is, the image 
under F of a kernel pair for an arrow f is a weak kernel pair for the arrow F(f). For 
every arrow f between any two F-coalgebras (A, a) and (A', a'), the kernel pair Rt off 
is an F-bisimulation on (A, a). 

The above proof is motivated by [AM89], were it is shown that for functors F that 
preserve weak pullbacks, the notions of F-bisimulation and congruence coincide. Many 
standard functors (built from sum, product etc.) weakly preserve kernel pairs. 

The following corollary generalizes the fact mentioned at the beginning of this section 
that two states are (P(A x -)-)bisimilar if and only if they are mapped into the same 
process: 

Corollary 2.9 Let F be a functor weakly preserving kernel pairs. Let (B, (3) be an F­
coalgebra and (A,a) a final F-coalgebra. Let M: (B,(3)--+ (A,a) be the unique arrow 
from (B,(3) to (A,a). For all b1,b2 in B, 

b1 ::,, b2 {::=} [bi] = [b2]. 

The Rest of this Paper 

In the rest of this paper, the categories Class•, CMS and GPO J. will be treated in great 
detail. For each of these, a family of functors having a final coalgebra will be identified. In 
other words, three final coalgebra theorems will be proved for functors satisfying certain 
conditions. The three next sections can be read independently from each other. 

3 Non-Standard Set Theory 

In this section, a first concrete category is presented in which a final coalgebra theorem 
holds. It is the category Class*: objects are classes, possibly containing non-standard (or 
non-well-founded, [Acz88]) sets, and arrows are functions between classes. This (so-called 
special) final coalgebra theorem goes as follow: Consider an endofunctor F over Class• 
which has a greatest fixed point Jp = F(Jp). Then, if this functor preserves inclusions 
and is uniform on maps, the fixed point Jp, together with its identity mapping, is a final 
F-coalgebra. 

The section is divided in four parts. The first recalls the basic set theory ZF(j of 
which both standard and non-standard set theory are extensions (obtained by adding 
respectively foundation and anti-foundation axioms). For this, no previous knowledge of 
set-theory is required. This part also describes fixed points of class functors (needed in 
the main theorem). 

The second part introduces a new formulation of foundation and anti-foundation ax­
ioms in terms of initial algebras and final coalgebras (of a powerset functor). A comparison 
with the standard formulations then follows. The anti-foundation axiom as formulated in 
[Acz88] is here called Decoration Lemma. 

The third part recalls the Solution Lemma from [Acz88]. It is yet another formulation 
of the anti-foundation axiom. It is used in the proof of the main theorem. The Solution 
Lemma is stated using coalgebras and this makes its proof trivial. 

In the last part, about the special final coalgebra theorem, a new definition of unifor­
mity on maps is given and then the special final coalgebra theorem is proved. 
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3.1 Basic Set Theory 

The intuitive idea of a set is that of a collection of objects which have a certain property 
<.p. Moreover, two sets should be equal if and only if they have the same elements. A 
first step towards a formalization of such an idea is to fix a language to express these 
properties. A natural candidate is a first order predicate calculus with equality. The only 
primitive relation needed seems to be that of membership, which is a binary predicate 
usually denoted by "E". For instance the usual notion of subset can be expressed as 
follows: 

x ~ y = \:/v (v Ex=> v E y). 

Constant symbols for denoting the elements of a set will turn out not to be necessary, as 
every object of interest can be represented as a set. 

Following this intuition, the only axioms would then be: 

Extensionality: 

x = y {::> x ~ y /\ y ~ x. 

Strong Comprehension: 

\:/property <.p, {x I ip(x)} is a set. 

However, Russet's paradoxical set {x I x fJ x} shows that such a strong comprehension 
axiom cannot be stated in its full generality. Strong comprehension is thus to be replaced 
by the following axiom: 

Comprehension: 

\:/property <.p, \:/set v, {x I 1.p(x) /\ x E v} is a set. 

As comprehension can be applied only to members of already defined sets, it is necessary 
to postulate the existence of some sets, either primitive or derived by applying some basic 
operators: 

Empty Set: 

There exists a set 0 with no elements. 

Paring, Union, Power Set: 

{x,y}, LJx, P(x) are all sets. 

(As usual, Ux and P(x) stand respectively for the collection of all members of members 
of x and the collection of all subsets of x.) By means of the union operator one can define 
an operator s acting as successor as follows: s(x) = x U {x}. Regarding the empty set 
as O, the existence of an infinite set can be stated by postulating the existence of a set 
containing the natural numbers. That is: 

Infinity: 
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There exists a set containing O and closed under the successor operator s. 

(The axioms above, as well as those given in the sequel, are written for convenience in 
natural language but note that they can also be expressed in the language of set theory 
- see, e.g., [Lev79].) 

Further useful notions can be derived from the above axioms, like, for instance, that 
of ordered pair: 

<x,y>= {x,{x,y}}. 

A formal definition of function can then be given as a collection f of ordered pairs such 
that for every x there exists a unique y with < x, y >E f. (This was also the first formal 
definition of function.) Two more axioms about functions are then usually added: 

Replacement: 

The image of a set under a function is a set. 

Choice: 

Every surjective function has a right inverse. 

A right inverse of a function f : a __. b is a function g : b ....... a such that f o g is the 
identity on b. The above axiom of choice is equivalent to postulate that for every set a 
there exists a choice function, that is, a function f such that, for every x E a, f (x) E x. 

Even though the collection {x I :p{x)} of all sets x having a given property ip might 
not be a set it can still be of interest for set theory. Such 'specifiable' collections are called 
classes. Clearly, a set is a class, but the converse is not true, in which case one speaks 
of a proper class. For this reason classes are also called large sets. Extensionality can be 
applied also to classes, but the restriction has to be imposed that an element of a class is 
a set. Thus the classes specified by two properties ip and 'I/; are equal if and only if y:; and 
7iJ hold for the same sets. In the sequel, lower case letters will denote sets while capital 
letters will be used to denote classes. 

An example of a proper class is the so-called universe of sets, namely the collection of 
all sets: 

V = {xlx=x}. 

(V is indeed the collection of all sets as the property x = x trivially holds for all sets!) 
:\otice that different properties may specify the same class. For instance, any property 
other than 'x = x' which holds for all sets can be used to specify the universe. 

The theory associated with (i.e., the collection of all sentences derivable from) the 
above axioms ( extensionality, comprehension, empty set, pairing, union, power set, in­
finity, replacement, choice) is usually denoted by ZFC- in the literature (e.g., [Lev79, 
Lan86]). In the sequel it will be also called basic set theory. 

From the axioms of basic set theory alone it is not possible to draw a canonical picture 
of how the universe looks like, a picture independent of the specific interpretation one 
might give to the theory. This was felt as a problem already in the early developments 
of set theory. The solution was found in the so-called foundation axiom, which was then 
added to basic set theory. This axiom restricts the universe to the 'smallest' of all possible 
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ones. Then the picture arises of a universe in which sets are hereditarily constructed from 
the empty set, by iterative applications of the powerset operator. Every set has a rank, 
namely the stage at which it appears in such a cumulative hierarchy. This intuitive 
structure, together with the fact that all existing mathematics discovered at that time 
could still be carried out inside this restricted universe, made the axiom easily accepted. 
However, recent applications in computer science have raised interest in the dual choice, 
namely in postulating that the universe be the 'largest' possible one (anti-foundation 
axiom). 

In the sequel, this duality between foundation and anti-foundation axiom will be ex­
pressed formally in terms of the categorical dualities between algebras and coalgebras and 
initiality and finality, the latter providing a formal definition of 'smallest' and 'greatest'. 
This makes the qualitative descriptive improvement in adding a foundational axiom to 
basic set theory quite transparent: the universe is described as a universal object in a 
suitable-that is, rich enough-category. Therefore, the above two extensions of basic 
set theory will be both called categorical set theories. The classical one (basic set theory 
with the foundation axiom) will be called standard set theory, while the other (basic set 
theory with the anti-foundation axiom) will be called non-standard set theory. Notice 
that here the use of the word 'non-standard' differs from the use of the same word in 
model theory: here non-standard is the postulated presence of non-well-founded sets in 
tlie universe, rather than a model of the universe. 

Before introducing categorical set theories, it is useful to discuss some fixed point 
theory of functions within basic set theory. Notice that it is customary in set theory to 
consider strict equalities rather than isomorphisms as fixed points of functors: 

Definition 3.1 A fixed point of an endofunctor F in a category of sets (or classes) is a 
set (or a class) X satisfying the equality X = F(X). That is, X is a fixed point of F 
w.r.t. set-inclusion. D 

The definitions and results in the rest of this subsection are from [Acz88]. 

Definition 3.2 Let F be a class function. Then: 

F is set-based if 

\:/class A \::Ix E F(A) => 3 a set a~ A such that x E F(a). 

F is monotone if 

\:/A,B: A~ B => F(A) ~ F(B). 

F is set-continuous if it is both monotone and set-based. 0 

Theorem 3.3 If a class function F is set-continuous then: 

1. There exists a class IF which is the least pre-fixed point of F. As usual, it can be 
shown that IF is also the least fixed point of F. 

2. There exists a class J F which is the greatest post-fixed point of F. It can be shown 
that JF is also the greatest fixed point of F. 
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There is a characterization of least and greatest fixed points in terms of iterations. For 
this purpose the class On of all ordinals is needed. An ordinal is a transitive set (a set 
x is transitive if every element y of x is also a subset of x) x which is well-ordered by E, 
that is, E totally orders x and every non-empty subset of x has a least element w.r.t. E. 
If a and f3 are two ordinals such that /3 E o, one usually writes /3 < a. The first ordinals 
are: 0, s(0), s2 (0), etc. The first limit ordinal is w = UneN sn(0), which, by the infinity 
axiom, is indeed a set. 

Corollary 3.4 If a class function F is set-continuous then the following definitions are 
sound: 

FT et - F( LJ FT /3) and F let =: F( n F l (3). 
(J<a 

:v!oreover, 

h = LJ FT a and 
aeOn 

Jp== n Flo. 
aeOn 

(j<a 

There is yet another characterization of Jp as union of sets (thus not arbitrary classes!) 
which are pre-fixed points of F: 

]p = LJ{x Ix c; F(x)}. 

3.2 Categorical Set Theory: Standard vs Non-Standard 

Classes form the objects of a category, having as arrows class functions, that is, mappings 
assigning to every class a class. Actually, to every set theory a different category of classes 
is associated. 

Definition 3.5 The category of classes of (sets defined in terms of) basic set theory is 
denoted by Class. o 

The powerset constructor can be turned into a (covariant) functor from Class to Class 
as follows: for every class A, 

'P(A) = {x Ix is a set /\ x c; A}; 

for every function f : A -+ B and every set x c; A, 

'P(J)(x) = {f(y)lyex}. 

:\otice that only subsets are taken into consideration. This makes possible that V be a 
fixed point of the powerset functor (which, by cardinality reasons, would not be the case 
if one would consider the collection of all subclasses of a given class): 

Proposition 3.6 V = 'P(V). 

Proof. V is the largest class. Thus, since P(V) is itself a class, P(V) c; V. For the 
converse it is sufficient to prove that every set x is a subset of V. That is, for every y E x, 
y is also in V. This is immediate from the fact that y is a set. o 

Since V is the largest class one also has: 
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Corollary 3. 7 The universe V is the greatest fixed point of the powerset functor. 

Notice that P is set-continuous, thus, by Corollary 3.4, V = Jp. 
Moreover, the identity mapping idv of V can be seen both as a mapping from P(V) 

to V and as mapping from V to P(V): 

Corollary 3.8 (V, idv) is both a P-algebra and a P-coalgebra. 

Notice that the categories of P-algebras and a P-coalgebras are very rich categories. For 
instance, every class function f : A __, f(A) can be seen as an arrow between the P­
coalgebras (A, sing A) and (J(A), singf(A)), where the function sing maps every set x into 
{x}. 

The notions of 'initial' and 'final' are the categorical abstraction of the notions of 
'smallest' and 'largest'. Therefore, one could categorically express that the universe is the 
smallest or the largest possible one, respectively, as: 

Foundation Axiom 
(V, idv) is an initial P-algebra. 

Anti-Foundation Axiom 
(V, idv) is a final P-coalgebra. 

A comparison of the above formulation of foundation and anti-foundation axioms with 
the standard one is made below, so that it will become clear that equivalent formulations 
of these axioms are expressible in the language of set theory. But first the answer is given 
to a question which might naturally arises here. Namely, whether initial P-algebras and 
final P-coalgebras exist at all in basic set theory. The following two theorems are from 
[AM89) and [Acz88), respectively: 

Theorem 3.9 Every set-based functor F: Class __, Class has a final coalgebra. 

Proof. See [AM89), where the theorem is called Final Coalgebra Theorem. (The proof is 
actually based upon a definition of set-based functor which is even more liberal than the 
one given above.) D 

From the above theorem one can (although not directly) prove that there exists a 
function a from V to P(V) such that (V, a) is a final P-coalgebra. What cannot be 
proved is that the identity function is one such cx which makes V final, which is in fact 
the content of the anti-foundation axiom as formulated above. 

Set theory deals with strict equalities rather than just isomorphisms. If one postulates 
the anti-foundation axiom then one can prove that, under some rather liberal hyrotheses, 
the greatest fixed point of an endofunctor F, together with the identity mapping, is a 
final F-coalgebra (i.e., the special final coalgebra theorem). The dual theorem, instead, 
can be proved without further assumptions, that is, within basic set theory: 

Theorem 3.10 The least fixed point IF = F(h) of a set-continuous functor F: Class -+ 

Class which preserves inclusion mappings (see definition below) is an initial F-algebra. 
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Proof. See (Acz88]. D 

An inclusion mapping is a function associated with two classes A and B such that A s;;; B. 
It has A as domain, B as codomain and maps every element a of A in the same a which, by 
inclusion, is also in B. It is denoted by LA,B and the subscript is dropped whenever clear 
from the context. An endofunctor F on Class preserves inclusion mappings when, for all 
classes A and B with As;;; B, if F(A) ~ F(B) then F(iA,B) = LF(A),F(B)· The powerset 
functor is easily provable to preserve inclusion mappings, as well as being set-continuous. 
Thus its least fixed point is an initial algebra. 

3.2.1 Well-Founded Sets 

The formulation of the two axioms above is not quite standard. Usually, by foundation 
axiom the following is intended: 

V is the least fixed point of P. (1) 

Since P is set-continuous, its least fixed point is, by Corollary 3.4, the so-called cumulative 
hierarchy 

LJ PTa. 
o.eOn 

Thus, assuming V is such a class, a rank can be associated with every set, namely the 
stage a at which the set first appears in the hierarchy. This ranking function allows one 
to prove that (1) is equivalent to the following statement: 

Every set is well-founded w.r.t. E 

which amounts to saying that every non empty set has an E-least element. This can be 
easily expressed in the language of set theory as follows: 

Vx (x # 0 => 3v (v Ex I\ -i3y (y Ex I\ y E v))). 

In other words, there is no infinitely descending chain of sets w.r.t. E. This explains why 
the universe of basic set theory together with the foundation axiom is called universe of 
well-founded sets. 

Theorem 3.11 (V, idv) is an initial P-algebra {::::} Vis the least fixed point of P. 

Proof. Since P is set-continuous and preserves inclusion mappings, the implication from 
right to left follows from Theorem 3.10. For the implication from left to right consider an 
arbitrary fixed point X = P(X). Since: 

1. x s;;; v, 

2. P preserves inclusion mappings, 

3. (X, idx) is a P-algebra, 

4. (V, idv) is initial, 



499 

the unique arrow f from (V,idv) to (X,idx) is such that 

lX,V Of = idv. 

From this, it easily follows that f itself is the identity on V and thus V ~ X. D 

Basic set theory together with the foundation axiom is the standard set theory. Vir­
tually all known mathematics can be carried out inside such a theory and therefore for 
many decades only well-founded sets were considered to be sets. It was computer science 
that provided non-well-founded sets with one of the first significant applications: seman­
tic processes are non-well-founded sets. (But see also [FH83] for a - previous - purely 
mathematical application.) 

3.2.2 Decoration Lemma 

In [Acz88] the anti-foundation axiom is formulated in terms of graphs and their "deco­
rations". Corollary 3.8 shows that, already in basic set theory, the universe of sets is a 
P-coalgebra. In Example 1.3 it is shown that graphs are P-coalgebras as well. On the 
other hand every P-coalgebra (A, a) can be seen as a (possibly large) graph, by interpret­
ing A as a set (or class) of nodes and a as the child function. Therefore, the universe of 
sets can be interpreted as the class of nodes of a (large) graph. The childhood relation in 
such a graph is given by the membership relation between sets. 

At a more local level one can observe that every set x can be "pictured" as a graph: 
nodes are the sets in the transitive closure w.r.t. E of x. The same membership relation 
gives also the childhood relation. For instance, the set 2 = {0, l}, with 1 = {0}, can be 
pictured as: 

2 

/~ 
The converse of the notion of picture of a set by a graph is the "decoration" of a graph 
by a set: 

Definition 3.12 Given a graph G, let Gp denote its P-coalgebra representation (see 
Example 1.3). A decoration of a graph G is an arrow from the P-coalgebra representation 
Gp of the graph into the P-coalgebra (V, idv ). D 

For instance the mapping 

a,...... 2 b ....... 0 c ....... 1 

is a decoration of the graph: 
a 

/~ 
b~-------- c 
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Moreover, it is the unique such decoration. In general, it can be proved within basic 
set theory that for every graph which contains no infinite path there exists a unique 
decoration. (Mostowski's Collapsing Lemma.) Notice that a graph has no infinite path if 
and only if its childhood relation is well-founded. Thus: 

Proposition 3.13 For every well-founded graph there exists a unique decoration. 

Clearly, every graph which is picture of a well-founded set is itself well-founded. And the 
(unique) decoration of a well-founded graph is a well-founded set. 

Many graphs of interest, especially in computer science, are not well-founded, like, for 
instance, the cyclic graph with one node and one arc: 

0 (2) 

One might therefore consider a set theory in which the following generalization of the 
above proposition holds: 

Decoration Lemma 
For every graph there exists a unique decoration. 

In fact, the above statement, expressible in the language of set theory is the formulation 
of the anti-foundation axiom as given in [Acz88]. It turns out to be equivalent to the 
anti-foundation axiom formulated in terms of finality: 

Theorem 3.14 (V,idv) is a final P-coalgebra if and only if for every graph there exists 
a unique decoration. 

Proof. The implication from left to right is immediate: if (V, idv) is final, from any 
P-coalgebra there exists a unique arrow into it; in particular this holds for coalgebras 
representing graphs. The implication from right to left follows by applying the Special 
Final Coalgebra Theorem (see below) to the powerset functor, as that theorem can be 
proved assuming the decoration lemma instead of the anti-foundation axiom in terms of 
finality (see [ Acz88]). D 

The unique decoration of the graph in (2) is thus then the unique arrow from the coalgebra 
({•},a), with n(•) ={•},into (V,idv): 

{•} v 

a * 

P({•}) ~'P(V) 

Chasing the diagram, the (only) node of the graph will be uniquely associated to a (non­
well-founded) set, say n, such that n = {!1}. (This example shows that non-well-founded 
sets can also be finite.) 

Notice that, since the relation Eis not any more well-founded, more than extensionality 
is needed in order to establish equality between sets. But a criterion for establishing 
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equality of sets arises from the postulated finality of the universe and from Theorem 2.4, 
stating that final coalgebras are strongly extensional: 

Theorem 3.15 Two sets are equal if and only if they are in a· 'P-bisimulation relation. 

By applying Definition 2.2 to the powerset functor, one obtains: 

Definition 3.16 A relation R on V is a 'P-bisimulation if, for every set x and y such 
that xRy, 

Vx' Ex, 3y' E y, x'R y' 

and 

Vy' E y, 3x' Ex, x'R y'. 

D 

Regarding sets as graphs, and thus edges going from sets into their members, this defini­
tion is just the standard definition of bisimulation as given in [Par81], abstracting from 
the fact that there graphs are labelled. 

In the rest of this section only non-standard set theory, that is, basic set theory together 
with the anti-foundation axiom, will be considered. In particular: 

Definition 3.17 The category denoted by Class• is the category with objects the classes 
of non standard set theory and with arrows the functions between these classes. D 

3.3 Solution Lemma 

The finality of the universe V can be exploited not only to regard sets as decorations 
of graphs but also as solutions of systems of set-equations. This is the content of the 
solution lemma, illustrated in this subsection, which is yet another formulation of the 
anti-foundation axiom. This lemma is used in the special final coalgebra theorem. 

Let x1 and x2 be two 'indeterminates'. Then the following is an example of a system 
of set-equations in {x1, x2}: 

X1 = {x2,{x1,0}}, 
X2 = {0, 2}. 

In general, a set-equation has an indeterminate in its left hand side and a collection 
in its right hand side. The collection in the rhs is a set, apart from the fact that it might 
contain not only sets but also indeterminates as elements, and as elements of its elements, 
and so on. (It is thus important to keep the symbols used for indeterminates distinct 
from those used for 'pure' sets.) The collection of all these sets which might contain 
indeterminates in their transitive closure forms an 'expanded' universe: 

Definition 3.18 Given a class X, the expanded universe w.r.t. X - denoted by Vx -
is defined as the greatest fixed point of the (set-continuous) functor 'P(X + -). Thus: 
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Vx = P(X + Vx). 

D 

Clearly, the universe V is isomorphic to V0 and can be embedded into any Vx. 
The formal definition of a system of set-equations can now be given: 

Definition 3.19 Given a class X, a system of set-equations in X is a function 

v:X-+Vx. 

That is, a collection of equations of the form 

x = v,,, 

with x E X and v,, E Vx. D 

Consider again the above example of a system of set-equations. A solution to that 
system would simply be a function f: {x1, x2 } -+ V such that 

f(xi) = {f(x2), {f(x1), O} }, f(x2) = {O, 2}. 

In general, a solution to a system {x = v,,},,ex is a function j: X -+ V such that, for all 
x EX, 

f(x) = ](v,,) (3) 

where, informally, ](v,,) is obtained by replacing every Xi in the transitive closure of v,, by 
the corresponding J(x;). That is, if x0 , Xi, .. . , are the variables appearing in the transitive 
closure of v,,, and denoting v,, by v,,[x0 , x1, ... ], then 

f (v,,) = v,,[xo/ f (xo), xif f(x1), ... ]. 

This intuitive idea has a formal definition: 

Definition 3.20 A solution to a system of set-equations v : X --> Vx is a composed 
arrow 7r o v, where 7r : Vx -+ V is any arrow making the square in the following diagram 
commute: 

/.) 7r 
X ----Vx ----V 

'P(Vx) - P(V) 
'P( 7r) 

where, for every v in Vx, that is, for every v ~ X + Vx (since Vx = P(X + Vx )), 

e,(v) = {v,, Ix E v n X} u {v' Iv' E v n Vx}. 

If one puts j = 7r o v and J = 7r = P(1r) o e,, then, for every v in Vx, 

D 
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j(v) = {f(x) Ix E vn X} U {j(v') Iv' E v n Vx} (4) 

and, in particular, (3) holds. 
Since solutions are defined in terms of 'P-coalgebra arrows 'between (Vx, 0.,) and the 

universe, the finality of the latter immediately gives the following 

Solution Lemma [Acz88] 
For every system of set-equations there exists a unique solution. 

This lemma provides thus sets with another representation, describing them as unique 
solutions of systems of equations; moreover, it is an important tool in proving properties 
of non-standard sets, as the next section will illustrate. Since its proof relies on the finality 
of the universe, the solution lemma holds only in non-standard set theory. In fact, it can 
be proved that the solution lemma is equivalent to the anti-foundation axiom. 

Notice that the use of coalgebras makes the presentation of the solution lemma much 
simpler than in [Acz88]. In particular, its proof becomes here trivial, while the following 
is needed there: 

Substitution Lemma [Acz88] 
For every function f : X --+ V there exists a unique function j : Vx --+ V such that, for 
every v E Vx, 

j(v) = {f(x) Ix E v n X} U {j(v') Iv' E v n Vx}. 

Although the above lemma is not needed here for proving the solution lemma, the existence 
of such a unique extension of any function on X to a function on Vx is needed in the 
sequel (in the definition of uniformity on maps). Notice that it simply generalizes ( 4) to 
any function on X. 

One final remark. Here, the definition of the expanded universe is carried out within 
the language of set theory, but, alternatively, indeterminates could also be added as new 
symbols in the language. For instance, in [BE88] indeterminates are indeed treated as 
primitive elements ( Urelemente) of a set theory like the one in [Bar75]. But in order to 
carry out this extension of the language formally, an extension of the axioms of the theory 
is also required. 

3.4 Special Final Coalgebra Theorem 

The assumption that the universe (greatest fixed point of P) be a final coalgebra of the 
powerset functor is strong enough to make the greatest fixed points of a large class of 
other functors be final coalgebras of the respective functors too. This is the content of 
the special final coalgebra theorem illu~trated in this subsection. 

The finality of the greatest fixed point of (certain) functors is proved here by means of 
the solution lemma. Arrows into such candidate final coalgebras are associated to solutions 
of systems of set equations (having the class in the source coalgebra as indeterminates). 
This is best illustrated by means of the powerset functor: 

For any function j: A--> V and any {a0, a1, .. . } in 'P(A), 
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Regard now A as a class of indeterminates and { a0, a1, ... } as a set in VA, that is, associate 

to A the obvious embedding function '/JA: P(A)--+ VA. Then: 

{f(ao),f(a1), ... } =Jo 'PA({ao,a1,·· .}). 

Loosely speaking, this shows that the powerset functor behaves on maps as it behaves on 

objects (uniform on maps). 
The mapping 'PA is described above as an embedding and this is indeed the case for 

most of functors of interest for semantics. In general, other mappings can be considered 

as well, so that what above generalizes to the following: 

Definition 3.21 An endofunctor F : Class* --+ Class* is uniform on maps if for every 

class A there exists a VA-translation for F, that is, a mapping 'PA : F(A) --+ VA such that, 

for every function f: A--+ V, the square in the following diagram commutes: 

Briefly: 

A 

f 

v 

'PA 
F(A)--VA 

F(f) * r 
F(V)--V 

'v'A 31.pA: F(A)--+ VA such that 'v'f: A--+ V and 'v'r7 E F(A) 

F(J)(r7) = j o 1.ph'). 

Theorem 3.22 (Special Final Coalgebra Theorem) 

0 

Let F : Class• --+ Class* be a functor uniform on maps and inclusion preserving. If, w.r.t. 

set-inclusion, F has a greatest fixed (as well as postfixed) point Jp, then (h, id) is a final 
F-coalgebra. 

Proof. For every F-coalgebra (A, a:) one needs to find a function f: A--+ Jp such that, 
for all a in A, 

f(a) = F(f)(o:(a)) (5) 

and then show that it is unique. By uniformity on maps, there exists a VA-translation for 
F. Since o:(a) belongs to F(A), one can rewrite (5) as 

f(a) =Jo 'PA(o:(a)). 
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But then the unique solution of the system {a= 'PA(n(a))}aEA of set-equations in A is a 
function f : A-> V for which (5) holds. Now it remains to be proved that the image of 
this function J is contained in J F, that is, f is a function into J F as well. From equation 
(5) one can derive that: 

J(A) F(f)(n(A)) 
~ F(f)(F(A)) 

~ F(J(A)), 

that is, J(A) is a postfixed point of F. From all this follows that f is an arrow which 
makes the following diagram commute: 

A-1--J(A) 

a * 

F(A) -F(f(A)) 
F(J) 

Since his the greatest postfixed point of F w.r.t. set-inclusion, f(A) is included in JF 
and F(f(A)) is included in F(JF). Moreover, since Fis an inclusion preserving functor, 
the inclusion mapping from F(f(A)) into F(h) is equal to the F image of the inclusion 
mapping from f(A) into JF. Therefore, the following diagram commutes: 

f(A) ---JF 

II 
II 

II 
* 

. F(f(A)) -F(h) 
F(l) 

Combining the last two diagrams, f can be regarded as an arrow from A into J F which 
makes the following diagram commute: 

f 
A----h 

II 
II 

II 
* 

F(A) -F(h) 
F(f) 

This shows the existence of an arrow from (A,a) into CJF,id). Uniqueness follows from 
the fact that any such an arrow is also a solution of {a= 'PA(a(a))}aeA, which by the 
solution lemma is unique. D 

Corollary 3.23 The greatest fixed point of a set-continuous functor which is uniform on 
maps and inclusion preserving is, together with the identity mapping, a final coalgebra. 
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4 Complete Metric Spaces 

Let CMS be the category with. complete metric spaces (D,dv) as objects and non­
expansive (non-distance-increasing) functions as arrows. That is, functions f : D -+ E 
such that, for all x, y ED, 

dE(f(x), (f(y)) ~ dv(x, y). 

(For basic facts on metric spaces see, e.g., [Dug66].) For any two complete metric spaces 
D and E, the set of arrows between D and E, 

hom(D, E) = {/: D-+ EI f is non-expansive} 

is itself a complete metric space, with metric, for all f, g E hom(D, E), 

d(f,g) = sup{dE(f(x),g(x))}. 
:i;ED 

In analogy to the so-called order-enriched (or 0-) categories of (SP82], CMS is called a 
metric-enriched category. 

Definition 4.1 A category C is called metric-enriched if every horn-set is a complete 
metric space and composition of arrows is continuous with respect to this metric. D 

In the sequel, only metric-enriched categories like CMS will be considered, in which 
the objects themselves are metric spaces (from which the ham-sets inherit their metric 
structure). Nevertheless, it will turn out to be convenient to formulate some definitions 
and results about metric-enriched categories in general. 

The fact that horn sets are metric spaces allows the following characterization of 
families of functors in terms of how they act on arrows. 

Definition 4.2 Let F : C -+ C' be a functor on metric-enriched categories. It is called 
locally continuous {non-expansive) if, for any two objects D, EE C, the mapping 

Fv,E : hom(D, E)-+ hom(F(D), F(E)) f H F(f) 

is continuous (non-expansive). The functor F is called locally contracting (or horn-con­
tracting) if there exists E with 0 ~ e < 1 such that, for all D, E, the mapping Fv,E is a 
contraction with factor€: for all f, g E hom(D, E), 

dhom(F(D),F(E))(F(f), F(g)) ~ € • dhom(D,E)(f,g). 

D 

Example 4.3 Let 'Pcomp : CMS -+ CMS be the metric powerset functor defined on 
objects by, for all (D, dv) E CMS, 

'Pcomp(D) = {X IX is a compact (w.r.t. dD) subset of D}. 

The metric on Pcomp(D) is the so-called Hausdorff metric dH, given by, for X, Y E 
'Pcomp(D), 
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ds(X, Y) = max{sup{d(x, Y)}, sup{d(y, X)}}, 
:tEX yEY 

where d(x,Z) = inf,Ez{dD(x,z)} for every Z ~ M, x EM. (by convention, sup0 = 0 
and inf0 = 1.) One can show that if Dis complete then Pcomp(D) is complete as well. 
On arrows f: D -+ E, we have 

Pcomp(f): Pcomp(D)-+ Pcomp(E), X >--+ {J(x) IX EX}. 

It is not difficult to prove that Pcomp is locally non-expansive. D 

Example 4.4 For every E with 0 :::=; E < 1, the "shrinking" functor id. : CMS_, CMS is 
defined as the identity on arrows and, for any (D, dD), 

id.((D, dn)):::: (D, E • dD)· 

Clearly id, is locally contracting. 0 

4.1 A 'Metric' Final Coalgebra Theorem 

The final coalgebra theorem below will be based on the following. 

Theorem 4.5 Every fixed point of a locally contracting functor F : CMS -+ CMS is a 
final F-coalgebra. 

Proof. Suppose that M is a fixed point for F, that is, M ~ F(M). Let i : M -+ F(M) 
and j : F(M) -+ M be the two components of such an isomorphism. Thus j o i = idM 
and i o j = idF(M)· Let (X, a) be an F-coalgebra. Define <I>: hom(X, M)-+ hom(X, M) 
by, for all f, 

<I>(j) =. j o F(f) o a 

f 
X---~M 

j 

F(X) -F(fl.1) 
F(j) 

Let F be locally contracting with factor c. Then <I> is a contraction with factor E. That 
is, for all Ji, h E hom(X, M), 

d( <I> (f 1), <I>(h)) sup{ dM ( <I>(fi )(x ), <I>(h )( x))} 
xEX 

sup{dM(J o F(f1) o a:(x),j o F(f2 ) o a(x))} 
zEX 

< sup {dM(j o F(f1 )(y),j o F(J2)(y))} 
yEF(X) 

s sup {dF(M)(F(J1)(y), F(h)(y))} (j is non-expansive) 
yEF(X) 

d(F(f1), F(f2)) 
< E • d(f1 , h) (Fis locally contracting). 

By Banach's theorem F has a unique fixed point 7r: X ...... M. Moreover: 
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i o 7r = i o <1>(11"):::: i o j o F(f) o a= F(J) o a, 

which shows that 71" is the unique arrow from (X,a) into (M,i). D 

The dual of this theorem can be proved similarly: 

Theorem 4.6 Every fixed point of a locally contracting functor F : CMS-+ CMS is an 
initial F-algebra. 

In subsection 4.3, the following theorem will be proved. 

Theorem 4. 7 Every locally contracting functor F : CMS-+ CMS has a fixed point. 

From Theorem 4.5 and Theorem 4.7, the following final coalgebra theorem for CMS 
is immediate. 

Theorem 4.8 Every locally contracting functor F : CMS-+ CMS has a final F-coalge­
bra. 

Since final coalgebras are unique (up to isomorphism) the following is immediate. 

Corollary 4.9 Every locally contracting functor F : CMS -+ CMS has a unique fixed 
point (which is at the same time a final F-coalgebra and an initial F-algebra). 

4.2 F-Bisimulation in CMS 

According to the definition of bisimulation (Definition 2.2), F-bisimulations have to be 
objects in the category under consideration. For the category CMS this implies that they 
have to be complete metric spaces: that is, an F-bisimulation on an F-coalgebra (A, a) 
in CMS is a closed subset of A x A, satisfying the conditions of Definition 2.2. 

The following theorem is an instantiation of Theorem 2.4 to the category CMS. 

Theorem 4.10 The unique fixed point ( M, i) of a locally contracting functor F : CMS-+ 
CMS is strongly extensional; that is, for all x, y E M, 

x = y <=> x::,, y. 

(Recall t.hat l- = U{R ~ M x MI R is an F-bisimulation on (M, i) }.) 0 

Next the construction of a metric domain for strong bisimulation (as used in Example 
1.8 and [BM88, Rut90]) will be described in detail. 

Let A be an arbitrary set supplied with the discrete metric. The constant functor 
FA : CMS-+ CMS assigns to all objects the complete metric space A, and to all arrows 
the identity arrow idA. Let I be the identity functor on CMS. The product functor 
x : CMS x CMS -+ CMS gives for any two objects D and E in CMS the Cartesian 
product D x E, with metric, for all x1 , x2 ED and y1, y2 EE, 
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On arrows x is defined as usual. 
Let Fi and F2 be two functor from CMS to CMS. The functor < F1, F2 >: CMS-+ 

CMS x CMS (the tupling of F1 and F2 ) is defined on objects D by 

< F1,F2 > (D) =< F1 (D),F2(D) > 

and on arrows f : D -+ E by 

Let the functor F : CMS --+ CMS be defined as a composition of the above functors as 
follows: 

F =: Pcomp O XO< FA, J >. 

It has already been observed that Pcomp is locally continuous, and the same applies to the 
other constructs. Composition of functors preserves local continuity, hence F is locally 
continuous. Next define, for some E with 0 ~ E < 1, a functor F, by 

It. is immediate that F, is locally contracting since id, is locally contracting and F is 
locally continuous. Finally we are ready for the following. 

Definition 4.11 Let the metric domain for bisimulation PM be the unique fixed point 
of the locally contracting functor F,. That is, FM is the unique complete metric space 
satisfying 

PM~ Pcomp(A X PM)· 

D 

By Theorem 4.5 PM is a final coalgebra. Recall that it is used in Example 1.8 for 
representing finitely branching labelled transition systems. 

(For LTS's that are image finite (a weaker notion than nnitely branching), one could 
replace in the above definition the functor P comp by another powerset functor: Pclosed., 

which yields all metrically closed subsets. In [Bre92], domains are given suited for LTS's 
that satisfy even more general "branching" properties.) 

4.3 Fixed Points in CMS 

In this subsection, it will be shown that every locally contracting functor has a fixed point, 
thus proving Theorem 4.7. In [AR89], a similar theorem is proved: so-called contracting 
functors on a category of complete metric spaces (with double arrows) have a fixed point 
(see also below). Here the results of [AR89] are generalized; in summary, a reconstruction 
of that paper is given along the lines of [SP82] and [Plo81a]. 

A standard way of constructing fixed points of functors on a category of complete 
partial orders, as described in [SP82], can be seen as a category-theoretic generalization 
of the least fixed point construction of monotone functions on complete partial orders. 
In metric-enriched categories, the construction of fixed points of functors can be better 
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compared to Banach's fixed point theorem: any contracting function f from a complete 

metric space to itself has a unique fixed point, which can be obtained as the limit of 

all finite iterations of f starting in an arbitrary element. (See also the remark following 

Theorem 4.23.) 
As in [SP82], fixed points will be constructed in a category with so-called embedding­

projection pairs as arrows. One of the reasons for this is that certain constructions, like 

the function space construction, are not functorial. However, such constructions can be 

turned into functors on this category with double arrows, which is introduced next. 

Definition 4.12 Let C be a metric-enriched category. A subcategory CE (of embeddings) 

can be defined by taking as objects the same objects as C. Arrows a : D ---. E in cE are 

pairs a == (a•, aP) such that 

a• : D ...... E, aP: E ....... D 

are arrows in C with 

The first component a• is called an embedding and the second component aP a projection. 

Identity arrows in CE on objects D are (idn, idn), and composition of two arrows a and 
3 is defined by 

/3 o a = (3• o a•, aP o iJP). 

0 

:\ote that for arrows c. : D --+ E in C'MSE the facts that c.• and c;,P are non-expansive and 

aP o a• == idn imply that c.• is a distance-preserving embedding. 
It is illustrative to compare the above definition to the standard example of an order­

enriched category, namely the category CPO l. of complete partial orders with strict con­
tinuous mappings. If D and E are cpo's and i : D -+ E and j : E ...... D are arrows in 

CPO 1. then (i, j) is called a projection pair from D to E provided that 

j o i == idn and i o j [;;homrE,E) idE. 

:\ote that the one half of such projection pairs determines the other. For the metric 
case this does not hold. For instance, in CMS the trivial one point metric space can be 

embedded in different ways into any other metric space containing more than one element. 

Though the latter condition of projection pairs (i o j [;;hom(E,EJ idE) does not seem to 

have a direct corresponding metric counterpart, it is possible, due to the fact that hom­

sets are complete metric spaces, to define a function on projection pairs that technically 
will play a similar role. 

Definition 4.13 Let a: D-+ Ebe an arrow in CE. Then 

6(a) = dhom(E,EJ(a• o c.P,idE)· 

}Jore generally, let 
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be an arrow in (cEr. Then 

D 

The above c5( a:) is called the approximation degree of a:: it can be understood as a measure 
of the quality with which Eis approximated by D. (Note that c5( a:) = 0 implies that D and 
E are isomorphic.) The approximation degree can be conveniently used in characterizing 
colimits in the category CMsE. But let us first explain what a colimit is. 

Definition 4.14 An w-chain Ii in a category C is a sequence of objects and arrows like 

Given an object D in C, a cone µ Ii -+ D from 6 to D is a sequence of arrows 
µn : Dn -+ D such that for all n 2: 0, 

A colimit of 6 is an initial cone from A, that is, a cone µ : A -> D such that for every 
other cone / : A -> E there exists a unique arrow l : D -+ E satisfying, for all n 2: 0, 

D 

Theorem 4.15 Let C be a metric-enriched category and let A be an w-chain in C. Let 
µ : A -> D be a cone from A. Then 

µ : t..-+ D is initial (a colimit) for A {:} lim fi(µn) = 0. 
n~oo 

Proof. The theorem generalizes the metric version of the 'initiality lemma' given in 
[AR89]. There the theorem is formulated for the category CMS and assumes, more im­
portantly, A to be a so-called converging w-chain. An inspection of the proof given there 
shows that this condition is superfluous. D 

Observing that 

lim fi(µn) = 0 {:} lim µn e o µnP = idv 
n-oo n-oo 

shows the correspondence with the order-theoretic version of the initiality lemma, 

µ: 6-+ Dis initial (a colimit) for A{::} LJµn• o µnP = idv, 
n 

interpreting A and µover the category CPOE. 
In the sequel, also products of metric-enriched categories will be considered. 
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Definition 4.16 Let C and C' be two metric-enriched categories. The product category 
C x C' has as objects pairs < D, E > of objects D in C and E in C'. Arrows are pairs of 
arrows as usual: For any two pairs< D, E > and< D', E' >, 

horn(< D,E >,< D',E' >) = 

{< f,g >\ J: D ..... D' in C and g: E-+ E' in C'}. 

Clearly, C x C' is again a metric-enriched category, by putting for arrows < Ji, 91 > and 
< f2, 92 > in the above horn-set, 

D 

Let C be a metric-enriched category. It is next shown how in general every functor 
F : cm+n -+ C, which is contravariant in its first m and covariant in its last n arguments 
(with m + n ~ 1) induces a functor 

pE: (cEr+" ...... cE. 

(.\"ate that the general case includes, e.g., covariant functors of one argument.) A typical 
example of such a functor Fis the function space constructor: 

Example 4.17 The function space constructor -+: CMS x CMS -+ CMS gives for any 
two objects D and E the set D -+ E of non-expansive mappings from D to E: D -+ 

E = hom(D, E). (The metric on D -+ Eis as on hom(D, E).) Consider the category 
CMS x CMS with arrows 

< f,g >:< D,E >-+< D',E' >, 

where f: D' -+ D and g: E ..... E' are arrows in CMS. ~ote the different directions: -+ 

is called contravariant in its first argument and covariant in its second. (Formally, ..... is 
a functor (covariant in both arguments) from CMS'P x CMS to CMS.) The image under 
-+ of such an arrow is given by 

f-+ g: (D-+ E)-+ (D' ..... E'), h 1-+ go ho f. 

D 

Definition 4.18 Let C be a metric-enriched category and let F : cm+n ..... C be con­
travariant in its first m arguments and covariant in its last n arguments. For convenience 
take m = 1 and n = 1. The functor 

pE : (CE)l+l __. CE 

is defined on objects by, for any < D, E >E (CEJ1+1, 

FE(< D,E >):::: F(< D,E >). 

On arrows< o:,/3 >:< D, E >-->< D', E' >in (CE)1+1 (with o:: D-+ D' and f3: E-+ E' 
arrows in CE), pE is defined by 
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FE(< a,/3 >) = (F(< o.P,fj• >),F(< a•,(JP >)). 

Note that FE is covariant in both arguments. If F and G are functors and Go F is defined 
then(GoF)E=GEoFE. 0 

It is easy to show that FE is a functor. In particular, 

F(< o.°,f3P >) o F(< o.P,(J• >) = (Fis contravariant in its first argument) 

F( < o.P o a•, fJP o (3• >) 

= F( < idn, idE >) 
F(id<D,E>) 

idF(<D,E>)· 

Example 4.17 (continued) According to the above definition, the functor --->: CMS x 
CMS---> CMS induces a functor _.E defined on objects < D, E > by 

D _.EE=: D---> E 

and on arrows <a, /3 >:< D, E >--+< D', E' > by 

0. _,E /J =: (o.P---> 13•, a•---> (3P). 

Starting with a locally continuous functor F will yield an w-continuous functor pE: 
D 

Definition 4.19 Let c be a metric-enriched category. A (covariant) functor F: cE---> cE 
is w-continuous if for every w-chain ll and every colimit (initial cone) µ : ll ---> D of 6 
the cone F(µ) : F(ll) --+ F(D) is again initial. (This definition can be straightforwardly 
generalized to functors from (CEr to CE.) 0 

In other words, F preserves colimits of w-chains. 

Theorem 4.20 Let C be a metric-enriched category and let F : (cr+n ---> C be con­
travariant in its first m arguments and covariant in its last n arguments. If F is locally 
continuous then FE is w-continuous. 

Proof. The proof mimics that of [Plo81a]. For simplicity let m = 1 = n. Consider 
F : (C)l+1 --+ C and let µ : ll --+ D and v : r --+ E be two initial cones. It has to be 
proved that FE(µ, v): FE(6, f)--+ FE(D, E) is again initial. Theorem 4.15 will be used: 

Jim (FE(<µ, LI> )n)• o (FE(<µ, v > )n)P 
n-oo 

Jim (FE(< µn, Vn > ))• o (FE(< J.Ln, Lin> ))P 
n-oo 

Jim F( < µ~, v~ >) o FE(<µ~, v~ >) 
n-oo 

Jim F(< µ• o µP, v• o vP >) n-.,oo n n n n 

= (Fis locally continuous) 

F( < Jim µ~ o µ~, Jim v~ o v~ >) 
n-oo n-oo 

(Theorem 4.15) 

F( < idn, idE >) 
FE(< idn, idE >) 

idpE(<D,E>)· 
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Thus, again by Theorem 4.15, FE(µ, v) is initial. 0 

There is also a property of functors on CE that corresponds with the notion of local 
contractivity. 

Definition 4.21 Let c be a metric-enriched category. A (covariant) functor F : cE -+ cE 
is contracting if there exists 0 $ € < 1 such that, for every arrow a: : D -+ E in cE, 

6(F(a:)) $ e · 6(0:). 

(Again the definition can be easily generalized to functors from (CE)n to CE.) D 

The value of 5( a:) can be seen as a measure of the quality with which E is approximated, 
and hence contractivity of a functor amounts to the property that it strictly improves 
such approximations. Using the initiality lemma (Theorem 4.15), one can easily show that 
contractivity implies w-continuity. There is also a relation between local contractivity and 
contractivity, as pointed out by Gordon Plotkin (personal communication): 

Theorem 4.22 Let C be a metric-enriched category and let F : (cr+n -+ C be con­
travariant in its first m arguments and covariant in its last n arguments. If F is locally 
contracting then FE is contracting. 

Proof. Again restrict to the convenient case that m = n = 1. Let F be locally contracting 
with factor €. Consider an arrow < a, {3 > from < D, E > to < D', E' > in CE x CE. 
Then 

5(FE(<a-.,{3>)) = (definitionFE) 

6((F(< a-.P,(3° >),F(< o.0 ,(3P >)) 

= (definition 6) 

d(F(< aP,f3• >) o F(< a.•,(3P >),idF(<D',E'>)) 

d(F(< a0 oo.P,(3•of3P >),F(id<D',E'>)) 
$ (F is locally contracting) 

€ • d( < a• O o:P 1 {3° 0 f3P >, id<D' ,E'>) 
E • d( < 0:0 O O:P, {3° O f3P >, < id D', id E' >) 

= E • max{d(a" o o:P, idv' ), d({3° o (3P, idE')} 
= E • max{5(a:), 5((3)} 

= e·6(<a,{3>). 

Contracting functors on CMfiE are particularly interesting. 

D 

Theorem 4.23 Every contracting functor F : CMsE -> CMSE has a fixed point. 

Proof. The proof is given in [AR89]. It consists of a metric variant of the standard 
construction for cpo's. An important difference however is the use of the metric version 
of the 'initiality lemma', as formulated in Theorem 4.15. We give a sketch of the proof. 

Let Do be the trivial one point metric space and let a 0 : Do -+ F(D0 ) be an arbitrary 
arrow embedding Do into F(Do). Define an w-chain /1 = (Dn, cxn)n by putting Dn+l = 
F(D,..) and O:n+i = F(a,..), for n ~ 0. The so-called direct (or projective) limit of 11, 
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D = {(x,.)n I Vn :2:: O[x,. ED,./\ a~(x,..+1) = Xn]} 

can be seen to be a complete metric space with metric dv on D given by, for all (xn)n, (Yn)n 
in D, 

(It is assumed that the metrics dDn have a common upper bound.) Next D can be turned 
into a coneµ : A -+ D with arrowsµ" : Dn-+ D, for all n :2:: 0, by defining for all x E D,., 
and (xm)m E D, 

µ~(x) - (a~_1 o · · · o al)(x), a~_ 1 o · · · o a{'(x), ... , 
a~_1 (x), x, a~(x), a~+l o a~(x), ... ), 

µ~((xm)m) - Xn· 

So far the fact that F is a contracting functor has not been used. An easy argument 
shows that the contractivity of F implies lim,._00 8(µ,.) = 0, whence D is a colimit for 
A. Contractivity of F also implies that F preserves w-chains and their colimits: F(µ) : 
F(t:..) -+ F(D) is again a colimit. Since A and F(A) are equal but for the first element 
and colimits are unique (up to isomorphism), it follows that D ~ F(D). D 

Remark: Contractivity of F implies limn-oo c(µn) = 0. Another way of describing this 
fact is to observe that the w-chain !::.. is Cauchy (in [AR89J, it is called converging): 

Ve > 0 ~N > 0 Vm > n :2:: N, c(am-i o · · · o a,,) < e 

Implicit in the above construction is the following fact: every w-chain that is Cauchy has 
a colimit. (Thus the category CMsE could be called Cauchy-w-complete.) The parallel 
with Banach's fixed point theorem is now clear: iterating F from the one point metric 
space yields (by F's contractivity) an w-chain that is Cauchy. By Cauchy-completeness 
of CMSE, this chain has a colimit, which is a fixed point of F. 

Combining the results of this subsection now yields a proof of Theorem 4. 7. 

Theorem 4.7 Every locally contracting functor F: CMS-+ CMS has a fixed point. 

Proof. Let F : CMS -+ CMS be locally contracting. By Definition 4.18, it can be 
extended to a functor FE : CMSE -+ CMsE, which is by Theorem 4.22 contracting. 
Thus pE has a fixed point, by Theorem 4.23, which is also a fixed point of F, since both 
functors act identically on objects. D 

Example 4.24 Let + : ( CMS';2 -+ CMS be defined, for D and E, by 

D + E := {O} x D + {1} x E, 

the disjoint union of D and E (with the disjoint sum of their metrics); on arrows + is 
defined as usual. Let I = {O} be the one-point metric space. Let the functor !1 : CMS-+ 
CMS be defined by, for objects D, 

!l(D)=.I+D 
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Next define fl., for some € with 0 5 € < 1, by fl, ::: id, o fl. It is easy to see that + 
is locally continuous and thus n. is locally contracting. Hence, by Theorem 4.22, flf 
is a contracting functor. Starting in I and embedding I into flf(J) by ao, the above 
construction yields a chain 

I -+"'0 I+ I-+"'' I+ (I+ I) -+"'2 ••• 

The n-th element (Of)"(J) in this chain contains from left to right n-1 copies of O, which 
will be called O, 1, 2, ... , n - 1, respectively. Note that for i, j E (n;:r(J) their distance 
is given by d(i,j) = cr'in{iJ}, whenever i -j. j. Let oo denote the colimit as constructed 
above; it looks like 

oo = {O, 1, 2, ... ,w} 

where, for all n ~ 0, 

n:: (0, 1, 2, ... , n - 1, n, n, n, .. . ) 

and 

w == (0, 1, 2,3, ... ) 

From Corollary 4.9 it follows that oo is the unique fixed point of fl,. 

5 Complete Partial Orders 

D 

Let GPO J... be the category with complete partial orders (D, ~D) as objects and strict and 
continuous functions as arrows. For any two cpo's D and E, the set hom(D, E) of arrows 
between D and Eis itself a cpo, with the usual order: for all f, g E hom(D, E), 

f ~ g := Vx ED, f(x) ~E g(x). 

Moreover composition of arrows is continuous with respect to this ordering. Therefore 
the category GPO J.. is called an order-enriched (or 0-) category ([SP82]). 

As in the previous section, the structure on horn sets can be used to characterize a 
class of functors. 

Definition 5.1 A functor F : GPO J... -+ GPO J... is called locally continuous if, for any two 
objects D, E E GPO J..., the mapping 

FD,E: hom(D, E)-+ hom(F(D), F(E)) f ~ F(f) 

is continuous. D 

Next the subcategory CPOE of GPO J... is introduced. If D and E are cpo's andµ• : D -+ E 
and µP : E -+ D are arrows in GPO J... then (µ•, µP) is called an embedding-projection pair 
from D to E provided that 

p • 'd d • pc 'd µ 0 µ = i D an µ 0 µ -hom(E,E) i E· 
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Note that the one half of such projection pairs determines the other. Let CPOE denote 
the subcategory of GPO ..L that has cpo's as objects and embedding-projection pairs as 
arrows. Note that also CPOE is an order-enriched category .. The following theorem is 
standard. 

Theorem 5.2 Every F : GPO ..L -+ GPO ..L that is locally continuous can be extended to 
a functor pE : GPOE -+ GPOE that is w-continuous. A fixed point of F is obtained by 
constructing an initial FE-algebra D in GPOE. 

The proof can be found in [SP82] and is similar to that for the metric case (since the 
latter mimics the original proof). Some parts of the proof are repeated next since they 
are needed later. 

Let D0 = {..l} be the trivial one point cpo and let a0 : D0 -+ F(D0 ) be the unique 
arrow embedding Do into F(D0 ). Define an w-chain A = (Dn, an)n by putting Dn+l = 
F(Dn) and O:n+l = F(an), for n 2 0. The direct (or projective) limit of A, 

can be seen to be a cpo with order Go on D given by, for all (xn)n, (Yn)n E D, 

(xn)n Gn (Ym)m = Vn 2 0, Xn Gon Yn· 

Now D can be turned into a coneµ: A-+ D with arrows µn: Dn-+ D, for all n 2 0, as 
usual. The fact that F is locally continuous implies Unµ~ o µ~ = id0 . By the initiality 
lemma for cpo's (which is similar to the one for metric spaces-see the previous section), D 
is a colimit for A. It follows that D ~ F(D), say with i: D -+ F(D) as the isomorphism. 
It satisfies the following fact (which will be used below): for all n 2 0, 

F(µ~) o i = µ~+i · 

It is not difficult to prove that (D, i-1) is an initial FE-algebra in GPOE. 

5.1 An 'Order-Theoretic' Final Coalgebra Theorem 

The fixed point D constructed above is an initial F-algebra (D, i-1) in the category GPOs. 
Moreover, it can also be seen to be initial in GPO .i: the fact that D is a colimit (of its 
defining chain) in GPOE implies, by a small exercise, that it is a colimit in GPO .l as well; 
then the 'Basic Lemma', from [SP82], immediately yields the result. For completeness, a 
direct proof is given below. 

By the so-called "limit-colimit coincidence" for 0-categories, which is extensively dis­
cussed in [SP82], the dual of these facts also holds. Thus (D, i) is a final F-coalgebra in 
CPOP' which is defined as the opposite category of GPOE: GPOP = ( GPOE)op. (Thus 
arrows in GPOP are projections µP for which there exists a (unique) µ• such that (µ•, µP) 
is an embedding-projection pair.) Again, (D, i) is a final coalgebra in GPO .i as well, which 
can be shown by dualizing the little argument above. For completeness, and because we 
have never seen this fact stated explicitly in the literature, a direct proof is given next. A 
minor variation will also prove that (D, i-1 ) is an initial F-algebra in the category GPO .l· 
(A direct proof of the latter can be found in [Plo81a].) 
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Theorem 5.3 Let F: CPOl.-+ CPOl. be a locally continuous functor and let (D,i-1) 

be the (in CPOE) initial F-algebra as described above. Then (D, i) is a final F-coalgebra 
in CPOl. and (D,i-1) is an initial F-algebra in CPOJ.. 

Proof. First it is shown that (D, i) is a final F-coalgebra in CPOl.. Let (A, a) be any F­
coalgebra. The existence of an arrow in (GPO J.)F from (A, a) to (D, i) can be established 
similarly to the metric case (Theorem 4.5): Define a function <P : hom(A, D) -+ hom(A, D) 
by, for all f E hom(A, D), 

<P(f) := i-1 o F(f) o a. 

Since F is locally continuous, it follows that <I> is a continuous function. The existence of 
a least fixed point for <I> provides an arrow from (A, Q) to ( D, i). 

The uniqueness of such an arrow has still to be demonstrated. (Recall that in the 
metric case-for locally contracting functors-existence and uniqueness are established 
simultaneously.) Consider two arrows j 1 and h from (A, a) to (D, i): 

A---.... D 

Q * 
F(J1) 

F(A) ===:: F(D) 
F(h) 

The equality of f1 and f2 is proved next. Let (µn : Dn-+ D)n be the cone used in the 
construction of D. It will be sufficient to prove, for all n :;:;:: 0, 

µ~ 0 f 1 = µ~ 0 !2 

because each of the following formulas implies the next one: 

µ~ 0 !1 = µ~ 0 h 

lJ µ~ 0 µ! 0 f 1 = lJ µ~ 0 µ~ 0 h 
n n 

(The latter implication follows from the initiality lemma and the continuity of o.) Use 
induction on n. The case n = 0 is trivial because µ!; is the constant function >.d . ..L. 
Suppose next that µ~ o Ji = µ~ o f2 • Then 

µ~+1 o Ii = (by the fact stated at the end of Theorem 5.2) 
F(µ!) o i o Ji 

= F(µ!) o F(f1 ) o a: 

F(µ! o J1) o a: 
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= (by the induction hypothesis) 
F(µ~ oh) o a 

= F(µ~) o F(f2 ) o a 

F(µ~) oi oh 

= µ~+1 0 /2 
By a similar proof, (D, i-1) can be shown to be an initial F-algebra in GPO J...· Existence 
of an arrow from ( D, i-1 ) to an arbitrary (A, a) is established by taking the least fixed 
point of a function W : horn( D, A) -+ horn( D, A) defined by, for all f E horn( D, A), 

iI!(f):: a o F(f) o i. 

Uniqueness of such an arrow is proved as above, now using the fact that for all n, µ~+1 = 
i-1 o F(µ~). 

5.2 Ordered F-Bisimulation 

The order on horn sets makes the following generalization of the definition of F-bisimu­
lation (Definition 2.2) possible. 

Definition 5.4 Consider a functor F: GPO J...-+ GPO J... and let (A, a) be an F-coalgebra. 
A relation R ~ A x A is called an ordered F-bisimulation on (A, a) if there exist arrows 
!31 : R-+ F(R) and !32 : R-+ F(R) such that {31 ~ {32 , and the projections 7T'1, 7T'2 : R-+ A 
make both squares of the following diagram commute: 

R 
7!'1 

A 
7!'2 

R 

!31 * lo * !32 !31 ~ !32 

F(R) - F(A) ---- F(R) 
F(7!'1) F(11'2) 

Note that the relation R should be an object in GPO J...· Thus it should be an w-complete 
subset of A x A (that is, R should be closed under taking the least upper bound of 
w-chains). The ordered F-bisimilarity relation is defined by 

~F= LJ{R ~ Ax A I R is an ordered F-bisimulation on (A, a) }. 

0 

Example 5.5 Divergence and partial bisimulation 
In [Abr91] transition systems with divergence are considered (see also [Mil80]). A labelled 
transition system with divergence is a. four tuple < S, A,-+, i> consisting of a set S of 
states, a set A of actions (or action labels), a transition relation -+~ S x Ax S, and a 
divergence set j~ S. The interpretation of s Ej (notation: s i) is that in the state s 
there is the possibility of divergence. Similarly s ! is used to indicate that s converges, 
that is, s ~j. 

Also labelled transition systems with divergence can be represented in terms of coal­
gebras: let P0(A x -) : CPOJ...-+ CPOJ... be defined by, for all< D, ~D>E GPOJ..., 
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'P0(A x D) = {0} U {X ~ (Ax D)J. I X is both Lawson and convex closed } 

(where the ordering on Ax D is determined by taking the discrete ordering on A, and the 
ordering on D.) Though formulated slightly differently-using the lifted version of the 
Cartesian product rather than sum-this is Abramsky's version of the standard Plotkin 
powerdomain, to which the empty set has been added. The ordering is such that the empty 
set is greater than the bottom element {.l}, and incomparable to all other elements; non­
empty sets are ordered as usual by, for all sets X, Y E P0(A x D), 

x i; y = x = { j_} v x bEM Y, 

where bEM is the Egli-Milner order. Now any labelled transition system with divergence 
< S, A,->, i> can be represented as a coalgebra of the above functor by supplying S with 
the discrete order (define S .l. = S U {.ls}) and defining 

a : S.l. -> 'P0(A x S.l.) 

by a{ls) = {.l} and, for alls E S, 

a(s) = {< a,s' >Is~ s'} U {.ll s i}. 

Following [Abr91], a relation R ~ S x Sis called a partial bisimulation if, for all states 
s, t E S with sRt, and actions a E A, 

s ~ s' => 3t', t ~ t' /\ s'Rt' 

and 

s l => t l /\(t ~ t' => 3s', s ~ s' /\ s'Rt'). 

Similar to Example 2.3, it is shown next that these partial bisimulations correspond 
precisely to the ordered bisimulations of Definition 5.4 for the functor P0 (A x -). 

Let R ~ S x S be a partial bisimulation. It can be seen to be an ordered P 0 (A x -)­
bisimulation as follows. Define T ~ S.l. x Sl. by 

T:: RU ({.ls} x SJ.}. 

Next define, for i = 1,2, (3,: T--+ 'P0(A x T) as follows. Forte S, define 

f31((1-s, t)) = {.l}, 

.82((1-s,t)) = {< a,(..Ls,t') >I< a,t' >Ea(t)} U {1-1..LE a(t)}. 

For (s,t) ER, put 

.81((s,t)) - {<a,(s',t')>l<a,s'>Ea(s)/\ <a,t'>Ea(t) /\ s'Rt'} 
U {J_l..LE a(s)}, 

.82((s,t)) - {<a,(s',t')>l<a,s'>Ea(s)/\ <a,t'>ea(t) /\ s'Rt'} 
u {<a, (.ls, t') >I.le a(s) /\ <a, t' >E a(t)} 

U {.ll..LE a(t)} 
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It is readily checked that {31 and {32 are (monotonic and thus) continuous and satisfy the 
conditions of Definition 5.4. In particular, o o 11"2 = P 0 (A x 11"2) o {32 because for all pairs 
(s, t) E R with J_e a(s), the set {32((s, t)) contains elements < a, (J_ 5 , t') >, for every 
<a, t' >E a(t). This will ensure the presence of< a, t' > in P0(A x 71'2) o f32((s, t)), even 
if there exist no s' ES with< a,s' >E a(s). (Similarly for (j_ 5 ,t) ET.) 

Conversely, every ordered P0 (A x-)-bisimulation can be seen to correspond to a partial 
bisimulation: Let R ~ SJ.. x SJ.. be an ordered P0(A x -)-bisimulation. Define 

T =:Rn (S x S) 

and let (s, t) E T. Supposes ~ s'. Then there exists t' E S such that < a, (s', t') >E 
.B1((s, t)). Since .81 ~ {32, also <a, (s', t') >E /32((s, t)). Thus t ~ t' and s'Tt'. 

Next suppose s !. It follows from (31 ~ {32 that t !. Suppose moreover that t ~ t'. 
Then there exists s' E S such that < a, (s', t') >E {32((s, t)). It follows from s ! and 
.81 [;; ,82 that <a, (s', t') >E {31((s, t)). Thuss~ s' and s'Tt'. D 

Example 5.6 Simulation 
The above definition of ordered F-bisimulation was motivated by [Pit92]. Ordered F­
bisimulations tan be equivalently defined as follows: .Let F : GPO J.. -+ GPO J.. be a 
functor and let (A, a) be an F-coalgebra. Consider a relation R ~ Ax A with projections 
71'1 and 71'2 as usual. A relation RF ~ F(A) x F(A) is defined by 

RF = { < F('11'1)(x1), F('ll'2)(x2) >I x1, X2 E F(R) /\ X1 ~F(R) x2}. 

Then R is an ordered F-bisimulation on (A, a) if and only if, for all (a, a') E A x A, 

aRa' :::::} a(a)RF a(a'). 

Now, in this shape, ordered F-bisimulations can be easily seen to generalize the simula­
tions (for the functorial case) of [Pit92]. D 

5.3 Strong Extensionality in GPO l. 

Because the definition of F-bisimulation has been generalized to that of ordered F­
bisimulation, the fact that final F-coalgebras are strongly extensional is not immediate 
from Theorem 2.4. In fact, a somewhat stronger property can be proved (again referred 
to as strong extensionality): 

Theorem 5. 7 The initial fixed point (D, i) of a locally continuous functor F : GPO .L -+ 

GPO J.. is strongly extensional; that is, for all d, e E D, 

d [;;v e # d ~F e 

(where ~F= U{R ~ D x DI R is an ordered F-bisimulation on (D,i) }). 

Proof. The inclusion from left to right follows from the observation that ~D is an ordered 
F-bisimulation on D: First observe that \;;;v, with the inherited order from D x D, is a 
cpo. Next define A : D -+~v by , for all d E D, 

D.(d) =< d,d > 



and !31, !32 :[;v-> F(i;;;v) by 

(31 ::: F(6.) o i o ?r1 

(32 ::: F(6.) o i o ?r2. 
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Then [;v is an ordered F-bisimulation on D with f31 and f32: 

* * 
F(tl.) F(tl.) 

F(!;;;;n) :::::=::;.. F(D) ::::==:::- F(i;;;v) 
F(?r1) F(?r2) 

Conversely, let R ~ D x D be an ordered F-bisimulation with f31 ~ f32. As usual, let ir1 
and ?r2 be the projections from Ron D. We want to show ?r1 ~ ?r2 (from which R ~i;;;;D 
follows). The proof is very similar to that of Theorem 5.3. Let (µn : Dn --> D)n be the 
cone used in the construction of D. It will be sufficient to prove, for all n ~ 0, 

because (as in Theorem 5.3) each of the following formulas implies the next one: 

LJ µ~ 0 µ~ 0 ?l"j !;;; LJ µ~ 0 µ~ 0 ?r2 
n n 

(The latter implication follows from the initiality lemma and the continuity of o.) 
Use induction on n. The case n = 0 is trivial because µ[; is the constant function 

>.d . ..L. Suppose next that µ~ o ir1 !;;; µ~ o ?r2. Then µ~+l o ?r1 ~ µ~+I o ?r2 is proved as 

follows: 

implies 

F(µ~) o F(?r1) !:;;; F(µ~) o F(?r2 ) 

because Fis a locally (continuous and thus) monotonic functor. Since (31 ~ (32 this implies 

F(µ~) o F( ?r1) o (31 i;;; F(µ~) o F( ?r2) o (32 

Using the commutativity properties of (31 and (32, it follows that 

F(µ~) o i o ?r1 i;;; F(µ~) o i o ir2. 
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Finally the fact stated at the end of Theorem 5.2 yields 

/ 
7r1 7!"2 

R ---~ D -+----- R 

/31 * * 
F(µ~) 

F(R) - F(D) ~ F(R) 
F( iri) F( 7r2) 

D 

Corollary 5.8 Let us call an ordered F-bisimulation Ron (D,i) symmetric if (31 = (32 . 

Define ~ = U{R ~ D x D I Risa symmetric F-bisimulation on (D,i) }. For all 
d,e ED, 

d ~ e {::} d =e. 

Example 5.5 (continued) The fact that the initial fixed point of the functor P 0(A x -) : 
GPO J. ---+ GPO J. is "internally fully abstract"-Proposition 3.10 of [Abr91]-follows from 
Theorem 5. 7 and the observation that this functor is locally continuous. 

Example 5.6 (continued) The extensionality results of [Pit92] (for the functorial case) 
can all be obtained as instantiations of Theorem 5.7. 

6 Conclusion 

The final coalgebra theorems discussed in this paper show that standard domain con­
structions are in fact final coalgebra constructions. A more categorical approach could be 
taken in the sense that only categorical properties, like the existence of colimits, would 
be taken into account in the construction of final coalgebras. 

Recall that algebras and coalgebras can be regarded as abstractions of the notions of 
pre- and post-fixed points, respectively. It would then be natural to look for a general­
ization of the following standard fixed point theorems from lattice theory: 

Let L = ( L, ::::;) be a complete lattice, with ..l and T as bottom and top elements, and 
U and TI as join and meet operators. Let f : .C --+ .C be a monotone function and consider 
the following chains: 

..l S f(..l) = fil S f 2(..l) = JT2 S · · · S LJ fjn = fTw S fTw + 1 S · · · (6) 
n<w 
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T ~ f(T) = f!l ~ f 2(T) = fi2;?: · · ·;?: II fln = f J.w;?: f J.w + 1;?: · · · (7) 
n<w 

Then the least and the greatest fixed point (w.r.t. ~) off are 

Li fjo: and II fio:. 
aeOn aeOn 

The generalization of the above theorem from least fixed points to initial algebras has 
already been worked out in [AK79]. Lattices (as pre-orders) generalize to categories, bot­
tom elements to initial objects, monotone functions to endofunctors, least upper bounds 
to colimits. One has then the following diagram: 

O --1... F(O) ~ F2(0) ~ · · · __:...;. Colimn<wF"(O) = pw --.!..+ F(Fw)) -+ · · · (8) 

Here the fact is used that a unique arrow (denoted by'!') exists from the initial object to 
any other object of the category, and from a colimit of a diagram to any other cone over 
that diagram. In [AK79] conditions are given for the existence of an ordinal at which this 
construction stops and then shown that it yields an initial F-algebra. 

A dual result would then be phrased in terms of final objects and limits, generalizing 
top elements and greatest lower bounds: 

I F( ) F(!) F2( ) F2(!) . L' ""'(1) pw ! F(Fw) 1 ~ 1 - 1 +-- · · · - Imn<wI' = <--- <--- '· · (9) 

This has not been fully investigated so far, although a 'schematological' approach to 
domain equations as in (9) is sketched in [Abr88]. 

A more abstract approach is taken in [Bar91] when dealing with the existence of final 
coalgebras in the category Set of sets (it is not immediately clear whether standard set 
theory or just basic set theory is assumed there). The existence of final coalgebras in such 
category is proved for a certain class of functors F (so-called accessible) by showing that 
the evident forgetful functor from the category of F-coalgebras SetF to the category Set 
has a right a.djoint. Moreover, if the functor F preserves limits of countable chains (i.e., 
it is w-continuous) then this final coalgebra is the limit of the chain 

1 ~ F(l) [!!l F2(1) ~ ... O'.) F"(l) F~!) pn+l(l) .--- ... (10) 

where 1 is an arbitrary one element set (indeed final object in Set). In the same paper it 
is shown that, under the further assumption that F(0) :j:. 0, the final F-coalgebra is the 
Cauchy completion of the initial F-algebra. 

As already mentioned in the section about non-standard set theory, the existence of 
final coalgebras in the category Class of classes over basic set theory has been proved 
in [AM89]. Also there the construction is of a categorical nature, but of a different 
character. It amounts to a "quotient construction": given a notion of F-congruence (of 
which F-bisimulation is a special case) the final F-coalgebra is obtained by taking the 
quotient under the (existing) maxima.I F-congruence of the (disjoint) union of all small 
F-coalgebras. A quotient construction is also carried out in [Bar91]. 
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6.1 A Comparative Analysis 

To come back to the constructions discussed in this paper, they can be regarded as 
instances of (9) and (10) (and even (8)). The construction in GPO J_ is the one which 
better fits into those schemata. By instantiating (10) in CFO j_, where the final object is 
{ ..l }, and taking F to be a locally continuous endofunctor, one obtains a diagram which 
is both in GPO J_ and in CPOP, the subcategory having projections as arrows. The latter 
category can be considered as a cpo itself and this structure can be used in order to 
find that the limit of that diagram is a final F-coalgebra in CPOP. As indicated at the 
beginning of Section 4.1 a 'lifting lemma' can be proved which ensures that limits of w­

chains in CPOP are limits in CFO J_ as well. By applying the dual of the Basic Lemma 
from [SP82] it follows that this limit is a final F-coalgebra in CPOJ_. 

Notice that the final object in GPO J_ is a final object in CPOP as well. Moreover it is 
an initial object in both GPO J_ and GPOE, the category of embeddings which is dual to 
CPOP. This duality arises from an adjunction between the embedding and the projection 
in an embedding-projection pair. It implies that the dual of the diagram in CPOP is a 
diagram in CPOE with reversed arrows, which has as colimit the limit of the original 
diagram in CPOP. A lifting lemma can be applied also to cpoE so that initial and final 
coalgebras of a locally continuous endofunctor coincide. (See Theorem 5.3.) 

For CMS there is a similar passage from the original category to a subcategory of 
embedding-projection pairs. However, the adjunction property between embeddings and 
projections which holds in GPO J_ is not available here. Therefore, the limit-colimit coin­
cidence does not hold in this setting. The category CMSP of projections can be defined as 
the subcategory of CMS with as arrows those non-expansive mappings which have a right 
inverse. This right inverse is an embedding (not unique!) making f part of an embedding­
projection pair. Notice that singleton sets are final objects both in CMS and in CMSP. 
Instantiating diagram (10) to CMS yields, for every locally contracting endofunctor F, 
a diagram in CMSP whose limit is a limit in CMS as well. Although initial and final 
objects in CMS do not coincide and, more in general, the limit-colimit coincidence does 
not apply, in CMS final coalgebras are initial algebras as well. 

For Class* the situation is rather different. The limit is still taken in a subcategory, 
but this is not a category of embedding-projection pairs. It is rather the subcategory, 
say Class1 , having inclusion mappings as arrows (and therefore with the extra structure 
of a lattice). The final object (top element) is the universe V, which is clearly not 
final in Class*, while the initial object is the empty set, which is also initial in Class'. 
Set-continuous functors have both a final coalgebra (greatest fixed point) and an initial 
algebra (least fixed point) in Class1. These will in general be distinct (in contrast to what 
happens in GPO J_ and CMS). Set-continuous functors are not w-continuous, hence these 
constructions cannot be seen as instances of (10) and its dual, but rather of (9) and (8) 
(as well as of (7) and (6)). Now, for functors which preserve inclusions, the initial algebra 
in Class1 is also an initial algebra in Class•. For final coalgebras an extra requirement is 
needed, namely that the functor be uniform on maps as well. This a.symmetry has to be 
better understood. 
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6.2 Final Semantics (continued) 

As suggested by the title and mentioned in the introduction, this paper is meant to provide 
a basis to a final coalgebra semantics. Two distinctive features of such semantics are the 
definition of semantic mappings as final arrows (which implies that the domain itself is 
final) and the use of coalgebras in order to express the structure to be preserved under 
(not necessarily semantic) transformations. 

Semantic mappings as arrows into a final object are not an exclusive feature of final 
coalgebra semantics, apart from the fact that, as already mentioned, several semantics 
in the style of (BZ82] can be seen as final coalgebra semantics. For instance, in (Abr91] 
there is a 'Final algebra theorem' which says that the given semantic mapping associated 
to a specific domain for bisimulation is the unique morphism (in which category?) from a 
transition system into the domain, the latter regarded as a transition system itself. Here, 
'algebra' presumably stands for the Lindenbaum algebra which is associated with a certain 
domain logic introduced in that paper. The definition of that semantic mapping makes 
use of the fact that that domain is the Stone dual of the finitary fragment of such logic. 
(By the way, the fact that the same (final) semantic construction in [Abr91] for CCS-like 
languages has been carried out in [Abr90] for the lazy lambda-calculus makes it plausible 
that final coalgebra semantics might be given to applicative languages as well.) 

However, in the above as well as in other examples the recognized finality of the do­
main is not systematically exploited, except for the final coalgebra semantics for CCS 
given in [Acz88]. As mentioned in the introduction, in the forthcoming paper Observa­
tions as Functors other instances of final coalgebra semantics will be given, starting from 
the idea that observations can be formalized as functors. Other equivalences than bisimu­
lation will be treated, like, for instance, trace equivalence. The coalgebraic approach will 
give a particular insight into the problem of full abstraction and other issues related to 
compositionality (see also below). 

Notice that the specific domain defined in [Abr91] as an initial algebra not only is 
recognized there to be a final transition system, but also indicated to be a final coalgebra 
as a consequence of the limit-colimit duality. The latter has been used also in [Smy92] 
to prove that, for so-called information categories (general order-theoretic frameworks for 
solving domain equations) and suitable endofunctors over them, initial algebras and final 
coalgebras coincide. Finally, it should be mentioned that an early reference to finality as 
a definition method for semantic mappings can be found in [Ole82]. 

Consider now the other distinctive characteristic of final coalgebra semantics men­
tioned above. An extra coalgebraic structure is added to programs (as a function from 
programs to their observable computations) and arrows from the coalgebra associated 
with a program are transformations which preserve this extra structure - together with 
the information contained in it. Part of this information is, for instance, F-bisimilarity, 
which is indeed preserved by (certain) arrows between F-coalgebras. This addition of a 
categorical structure, together with its preservation under transformation, again is not 
exclusive of final coalgebra semantics. Another example of such an approach is the clas­
sical initial L:-algebra semantics. The extra algebraic structure is used there in order to 
preserve the operators (of the signature L: of the language) under transformation. The 
semantic mapping is again a unique arrow, only it is initial, instead of final: it is the 
unique arrow from the programs regarded as the (free and thus) initial E-algebra into the 
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chosen domain. Since operators are preserved by transformations, the semantic will be 
by definition compositional. The problem there is to define suitable semantic operators, 
that is, to turn the domain into a suitable E-algebra. 

The issue of defining semantic operators within the context of final coalgebra seman­
tics has already been treated in [Acz88]. There, the finality of the domain is exploited 
for defining semantic operators for CCS, but by means of a rather ad hoe construc­
tion. Instead, in the forthcoming paper Observations as functors, a systematic method 
for deriving semantic operators from transition system specifications given in [Rut92] is 
rephrased in terms of final coalgebra semantics. This amounts to deriving a E-algebra for 
the domain by means of finality properties. It can be then proved that the original final 
semantics is compositional if and only if it coincides with the initial E-algebra semantics 
associated to that construction, which is also unique, but now w.r.t. a different category. 

As already mentioned, the categories of F-coalgebras considered in this paper are 
not the standard ones in category theory. Usually, the endofunctor F is to be part of a 
comonad and the arrows between F-coalgebras have to preserve also this extra comonadic 
structure. Semantics by means of comonads has been investigated in [BG91]. (But see 
also [Mog89] for semantics in terms of the dual notion - monads.) It would be interesting 
to understand whether some connections can be established with that work. 

6.3 Coinduction 

For F-algebras the following induction principle can be easily proved: let (A, Q) be an 
initial F-algebra and let ( B, (3) be any F-algebra. If 'II' : (A, a) --+ ( B, fJ) is a mapping 
between F-algebras and 'II' is monic (the category-theoretical generalization of injective), 
then 7r is an isomorphism. An immediate consequence is, for instance, the induction 
principle for natural numbers (viewed as initial algebra of a suitably chosen functor). 
(E.g., see [Plo81a] and [LS81].) The dualization of the induction principle yields what 
could be called a coinduction principle for final F-coalgebras: let (A, Q) be a final F­
coalgebra and let (B, {3) be any F-coalgebra. If 7r : (B, (3) --+ (A, a:) is a mapping between 
F-algebras and 7r is epic (the generalization of surjective), then 7r is an isomorphism. (See 
also [Smy92].) In [MT91], this principle is used in the basic case where the category under 
consideration is a lattice and the functor F a monotonic operation. 

At the same time, the fact that an F-coalgebra (A, Q) is final implies the principle 
of strong extensionality (stating that on (A, a) equality and F-bisimulation coincide-­
Theorem 2.4). (See also the remark about [Pit92] in Example 5.6.) And for many functors 
it is possible to deduce from the principle of strong extensionality the coinduction principle 
mentioned above. In a forthcoming paper, these different formulations of coinduction will 
be compared. 
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