
Coalgebraic Modelling
Applications in Automata Theory and Modal Logic

Helle Hvid Hansen

Coalgebraic Modelling
Applications in Automata Theory and Modal Logic

Copyright c© 2009 by Helle Hvid Hansen
Cover design by Hartmut Fitz & Helle Hvid Hansen
Printed and bound by Ipskamp Drukkers B.V., Enschede
ISBN: 978-90-8659-308-8
IPA Dissertation Series 2009-07

The work reported in this thesis has been carried out at the Vrije Universiteit
Amsterdam and the Centrum Wiskunde & Informatica (CWI), under the aus-
pices of the research school IPA (Institute for Programming research and Algo-
rithmics). The research was funded by the Netherlands Organization for Scien-
tific Research (NWO) under the projects C-Quattro (612.000.316) and INFIN-
ITY (FOCUS/BRICKS grant 642.000.502).

VRIJE UNIVERSITEIT

Coalgebraic Modelling
Applications in Automata Theory and Modal Logic

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op donderdag 14 mei 2009 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Helle Hvid Hansen

geboren te Zuid-Korea

promotor: prof.dr. J.J.M.M. Rutten
copromotoren: dr. Y. Venema

dr. C.A. Kupke

Acknowledgments

When I first came to Amsterdam in 1994, I was only planning to stay for a
few months. I was still restless, had many plans for travelling the world, and I
certainly did not think that one day I would take on a PhD position here. The
reason I stayed is clear to me. My feeling of being at home in Amsterdam is
due to the many great people I met over the years. Here I will try to convey
my gratitude to the people who made the writing of this thesis possible, and
who made the past 4 years into an enjoyable period of academic and personal
growth.

First of all, I want to thank my promotor Jan Rutten for sharing his ideas
with me, while at the same time giving me the freedom to choose my subjects
of study. Chapters 3 and 4 of this thesis are both based on Jan’s ideas. My
interest in coalgebra started with reading Jan’s papers. I admire his dedication
to the subject and his ability to make it accessible through clear, uncomplicated
writing. I also want to thank Jan for his support and encouragement, especially
during the final writing stages. His careful supervision and continued support
were vital to the successful completion this thesis.

I am grateful to Yde Venema for his willingness to become my copromotor,
when I realised that I needed a modal logic anchor in my work. Since my time
as a student at the UvA, Yde’s research and teaching has always been a great
source of inspiration. Any understanding I have of modal logic is thanks to him.
The work presented in Chapter 5 of this thesis was initially suggested by Yde. I
also want to thank Yde for his exceptional generousity of spirit; his advice and
support over the years has been invaluable to me.

Clemens Kupke has been so much more than my second copromotor. I
want to thank Clemens for being a great colleague, perfect office mate, dear
friend and ideal day-to-day supervisor. I could always rely on him when I had
questions about category theory, coalgebra and logic, and I benefited greatly
from our discussions. Our cooperation was always enjoyable and enlightening—
Chapter 5 is a direct product of it. I was sad to see him leave for London, and
I hope that we can find the opportunity to collaborate again in the future.

v

I thank the members of my committee—Johan van Benthem, Marcello Bon-
sangue, Mai Gehrke, H. Peter Gumm, Bart Jacobs, Jan Willem Klop and Erik
de Vink—for taking time out of their busy schedules to read my dissertation, and
for providing numerous suggestions that helped me improve the final manuscript.

During my time as a PhD student, I had the pleasure of being part of two
research groups. Officially I was employed at the Theoretical Computer Science
section at the VU, but I was also part of the SEN3 group at the CWI.

I very much enjoyed my time at the VU, and I thank my VU colleagues—
Rena Bakhshi, Jörg Endrullis, Wan Fokkink, Clemens Grabmayer, Ariya Isihara,
Jeroen Ketema, Jan Willem Klop, Cynthia Kop, Femke van Raamsdonk, Roel de
Vrijer and Paulien de Wind—for creating a warm and stimulating atmosphere.
Even after living in Amsterdam for 10 years, my integration into Dutch society
was brought to the next level by the lively lunch discussions which spanned topics
from academic life and the news to bicycle maintenance and Jan Willem’s time
in the army. I especially want to thank Wan Fokkink. Although not directly
involved in my supervision, Wan took an active interest in my work and well-
being, and I could always turn to him for advice. Many thanks to Clemens,
Jan Willem, Roel and Wan for the dinners at their homes. I have especially
fond memories of our cycling trip to Roel’s house on the Vecht. Thanks also to
Clemens, Rena and Jörg for organising the sushi dinner. Moreover, I enjoyed
sharing office with Anna Tordai, and I am thankful to Elly Lammers and Shirley
Chedi for their assistance in the pre-PhD defence formalities.

The CWI is an excellent place to do research. Since I joined SEN3, the group
grew substantially with a lively mix of PhD students and postdocs of numerous
nationalities. Thanks to all my colleagues for making SEN3 a stimulating work
environment and a considerable addition to my social agenda. Special thanks to
Farhad Arbab, who was (co)projectleader of the C-Quattro project, for letting
me follow my own research direction; to Dave Clarke for introducing me to the
group’s research during the first months, when my promotor Jan Rutten was on
sabbatical; and to David Costa for helping me learn Haskell and our enjoyable
cooperation. For various reasons I also want to thank Frank de Boer, Stephanie
Kemper, Christian Köhler, Young-Joo Moon and Milad Niqui. Special thanks to
Yanjing Wang for the delicious Chinese dinner. Very special thanks to Alexandra
Silva and José Proença for the fantastic food-odyssey in Portugal. In Alexandra,
I found a fellow food-lover and gym-enthousiast. I want to thank her for the
many dinner parties, for teaching me about Portuguese food, and for being a
great friend and inspiring colleague.

Although I was not officially associated with the ILLC during my PhD stud-
ies, with Yde Venema as my copromotor I had the privilege of regular visits
there. I especially enjoyed discussions and socialising with the following peo-
ple: Johan van Benthem, Nick Bezhanishvili, Balder ten Cate, Gaëlle Fontaine,
Eric Pacuit, Alessandra Palmigiano, Raul Leal Rodriguez and Jacob Vosmaer.

vi

Special thanks to Gaëlle for joining me on holidays in Sicily and the Aeolian
islands, and to Nick for the visit in Leicester.

I am thankful to my coauthors—David Costa, Clemens Kupke, Eric Pacuit
and Jan Rutten—for the pleasant, fruitful collaboration. Thanks are also due
to Jean-Éric Pin for our discussions on subsequential transducers during his
visit to the CWI in January 2006. These laid a basis for the work presented in
Chapter 4.

I met many people in the coalgebra community who inspired me with their
enthusiasm and knowledge of the subject. I benefited from discussions with Jǐŕı
Adámek, Neil Ghani, H. Peter Gumm, Peter Hancock, Ichiro Hasuo, Alexander
Kurz, Prakash Panangaden, Dirk Pattinson, Cesar Sanchez, Lutz Schröder and
Ana Sokolova. I am especially grateful to H. Peter Gumm for inviting me and
Clemens Kupke to Marburg, and for his hospitality during our stay. My under-
standing of coalgebraic modal logic was much improved through our discussions
on the topic.

Furthermore, I want to thank my new employers, Jos Baeten and Bas Luttik,
for their flexibility during the preparation of this final manuscript. Thanks also
to Paul van Tilburg for introducing me to ContextFreeArt, which I used to
design the cover.

Many thanks to all my friends in and out of Amsterdam for providing wel-
come distractions. Friday nights at the Oorlam were made the perfect place to
wrap up the week by the Hermeneutic Heideggers—in particular, Anna, Breann-
dán, Caroline, David, Fabrice, Henk, Marie, Tikitu and Will. I discovered Ar-
gentinian tango thanks to Nikolay. Special thanks to Jacobien, Lillian and Sunny
for their friendship since my early days in Amsterdam, and to Freda, Mirjana
and Nicole for the many visits and being just an email away.

Finally, my warmest thanks to Hartmut for sharing the ups and downs of
thesis writing with me, and for being a loving partner. Last, but not least, I
am grateful to my family in Denmark, especially my mother and my sister, for
their love and support during all my years away from home.

Helle Hvid Hansen
Amsterdam, 15 March 2009.

vii

Contents

Acknowledgments v

1 Introduction 1
1.1 Coalgebraic modelling . 1
1.2 Modal logic and coalgebra . 2
1.3 Motivation . 4
1.4 Thesis overview and contributions 4

1.4.1 Automaton synthesis . 5
1.4.2 Automata as coalgebras 5
1.4.3 Coalgebra and modal logic 6

1.5 Origin of the material . 8

2 Coalgebra preliminaries 9
2.1 Sets, functors, categories . 9
2.2 Coalgebras over sets . 12
2.3 Equivalence notions . 16
2.4 Examples . 18

2.4.1 Streams . 19
2.4.2 Deterministic automata 19
2.4.3 Kripke frames . 20

3 Coalgebraic synthesis of Mealy machines 21
3.1 Introduction . 21
3.2 Mealy machines . 23

3.2.1 Mealy coalgebras . 23
3.2.2 Causal stream functions 24

3.3 Bitstream algebras . 27
3.3.1 Bitstreams and numbers 27
3.3.2 Bitstream algebra basics 29
3.3.3 The 2-adic operations . 29

ix

3.3.4 The mod-2 operations . 39
3.4 Implementation . 44

3.4.1 Mealy coalgebra of expressions 45
3.4.2 Equivalence of expressions 50
3.4.3 Algorithm . 53

3.5 Complexity . 55
3.6 Conclusion . 65

4 Coalgebraising subsequential transducers 69
4.1 Introduction . 69
4.2 Preliminaries . 71

4.2.1 Words, streams and functions. 71
4.2.2 Reflective subcategories 72

4.3 Subsequential structures and transducers 73
4.3.1 Basic definitions . 73
4.3.2 Coaccessible structures and trimmed transducers 79
4.3.3 Normalised subsequential structures 83
4.3.4 Minimal subsequential transducers 87

4.4 Coalgebraisation via normalisation 88
4.4.1 Coalgebraic modelling . 89
4.4.2 The final subsequential structure 90
4.4.3 Minimisation algorithm for normalised structures 93
4.4.4 Sequential transducers and Mealy machines 96

4.5 Coalgebraisation via differentials 101
4.5.1 Step-by-step structures 101
4.5.2 Differential representations 103
4.5.3 Coalgebras for differentials 108
4.5.4 Minimising differential representations 110

4.6 Conclusion . 117

5 Bisimilarity in neighbourhood structures 121
5.1 Introduction . 121
5.2 Preliminaries and notation . 123

5.2.1 Functions and relations 123
5.2.2 Classical modal logic and neighbourhood semantics 125
5.2.3 Basic constructions . 128

5.3 Equivalence notions . 129
5.3.1 Precocongruences . 130
5.3.2 Equivalences between neighbourhood frames 136
5.3.3 Monotonic and Kripke bisimulations 141

5.4 Hennessy-Milner classes . 146
5.4.1 Modally saturated models 147

x

5.4.2 Image-finite neighbourhood models 150
5.4.3 Ultrafilter extensions . 155

5.5 Model-theoretic results . 160
5.5.1 The classical modal fragment of first-order logic 160
5.5.2 Characterisation theorem 163
5.5.3 Interpolation . 167

5.6 Conclusion and related work . 169

Bibliography 173

Index 187

Abstract 191

Samenvatting 193

xi

Chapter 1

Introduction

1.1 Coalgebraic modelling

In theoretical computer science, state-based systems are widely used models of
concrete systems such as digital hardware components, software programs and
distributed systems. The purpose of modelling systems as formal structures is
to be able to study and reason about them using mathematical techniques.

Coalgebra provides a category theoretical framework for studying the be-
haviour and properties of state-based systems. The basic concept of a coalgebra
formalises the black-box view of a system, where knowledge of the system’s state
can only be obtained by observing the external behaviour of the system. The
type of observations and transitions which can be made in such a system is spec-
ified by a functor. Formally, given a functor T on a category C, a coalgebra for T
(T-coalgebra) is a pair 〈X, ξ〉 where X is an object in C, and ξ : X → T (X) is
an arrow in C called the coalgebra structure. Different types of systems arise by
varying the base category C and the type functor T . Due to the category the-
oretical setting, T -coalgebras come with a generic definition of morphism, and
they allow a general theory, called universal coalgebra [129], in which generic
notions of bisimulation and behaviour are fundamental concepts.

The definition of a coalgebra is sufficiently general to include numerous,
very different types of systems. Already in the simple setting where C is the
category Set of sets and functions, we find that many familiar structures can be
seen as coalgebras. These include streams, trees, classical automata, Mealy and
Moore type state machines, labelled transition systems, Kripke structures [129],
various types of probabilistic systems [16], and topological spaces [49]. We
mention that by instantiating the coalgebraic definition of a bisimulation for
the examples of deterministic automata, Kripke frames and labelled transition
systems we obtain the well known definitions of bisimulation from automata
theory [77], modal logic [25] and process theory [109, 97], respectively. Some of
these examples are presented in detail in the next chapter.

Coalgebras over base categories other than Set are useful when the desired

1

2 Chapter 1. Introduction

semantics does not fit with the generic bisimilarity notion obtained from Set-
based coalgebras. For example, trace semantics for non-deterministic automata
and context-free grammars can be obtained by modelling these systems as coal-
gebras over the category of sets and relations [60, 69], see also [61]. On the
other hand, we may want the semantics to capture some structure in addi-
tion to the coalgebraic one. For example, the descriptive frames of modal logic
are coalgebras over the category of Stone spaces [84], continuous probabilistic
systems are coalgebras over metric spaces [154], Harsanyi type spaces are coalge-
bras over measurable spaces [104], and linear systems are coalgebras over vector
spaces [133]. In this thesis, we will only consider coalgebras over Set.

An important aspect of coalgebraic modelling is the existence and identifi-
cation of final coalgebras. A T -coalgebra 〈Z, ζ〉 is final, if for any T -coalgebra
〈X, ξ〉 there exists a unique T -coalgebra morphism φ from 〈X, ξ〉 to 〈Z, ζ〉. In-
tuitively, the elements of a final T -coalgebra represent all possible behaviours of
T -coalgebras, hence a formal semantics of T -coalgebras is obtained via the final
map φ. For example, the set of formal languages over an alphabet A is a final
deterministic automaton where the final map sends a state s to the language
accepted from s. The existence and uniqueness of the final map give rise to a
definition principle and a proof principle. Their use is often referred to as def-
inition and proof by coinduction, respectively. The coinductive proof principle
states that if two elements in a final coalgebra are bisimilar, then they are iden-
tical. The coinductive definition principle refers to the use of finality to obtain
a T -coalgebra morphism from a set X to Z by defining a T -coalgebra structure
on X. For example, binary operations on the final T -coalgebra can be defined
by taking X = Z × Z.

Final coalgebras have been used to give formal semantics to processes [146],
objects and classes [67], functional programs [147], and reactive programs [135].
Other, more recent, coalgebra-driven contributions in computer science are
found in the areas of component-based software engineering [10, 13, 143], se-
curity [44, 63] and concurrency [62].

1.2 Modal logic and coalgebra

Modal logic has its origins in philosophy, but it has found applications in diverse
areas such as linguistics, artificial intelligence and computer science [24]. Modal
logics are typically interpreted over relational structures such as Kripke models
and labelled transition systems. A fundamental property of this semantics is that
modal formulas are invariant under bisimulations, meaning that modal formulas
cannot distinguish bisimilar states. The close relationship between bisimilarity
and the expressivity of modal logic is witnessed by Van Benthem’s character-
isation theorem [19] which tells us that every bisimulation invariant property

1.2. Modal logic and coalgebra 3

of Kripke models which can be defined in first order logic, is also definable in
basic modal logic. Similarly, it has been shown in [71] that any bisimulation in-
variant property of labelled transition systems which can be defined in monadic
second order logic, is also definable in the modal µ-calculus. In contrast with
first order logic and monadic second order logic, modal logics often have decid-
able satisfiability and validity problems. Due to these appealing computational
properties and their ability to express most interesting properties of processes,
modal logics, in particular with temporal operators, have proved useful in the
formal specification and verification of systems [12, 150, 151].

Taking the view that systems are coalgebras and system behaviour is bisim-
ulation invariant, suggests that modal logic is the right language for reasoning
about behaviours in a more general sense. Indeed, research has shown that
modal logic over (labelled) transition structures can be seen as an instance of
a general theory known as coalgebraic modal logic (cf. Pattinson [111, 112]). In
coalgebraic modal logic, the truth of modalities is defined via predicate liftings.
A predicate lifting λ for a functor T lifts a predicate [[φ]] over X to a predi-
cate λ([[φ]]) over T (X). Given a T -coalgebra 〈X, ξ〉, the truth of the associated
modality is defined by: x ∈ [[2φ]] iff ξ(x) ∈ λ([[φ]]), for all x ∈ X.

The modal logic of Kripke models (called normal modal logic) has naturally
served as an inspiration for many results in coalgebraic modal logic. In return,
coalgebra has provided a larger perspective on results in normal modal logic. For
example, coalgebraic modal logic comes with generic methods for proving sound-
ness and completeness [111], algebraic duality [26, 82, 83, 88], decidability [137],
expressivity [112, 136] and modular composition [39]. The view that coalgebraic
modal logic is the right generalisation of modal logic is further strengthened by
the results that the relationship between coalgebraic modal logic and coalgebras
is formally dual to the relationship between equational logic and algebras [87],
and that all modal logics axiomatised by formulas of modal depth 1 (rank 1)
have a coalgebraic semantics for which they are complete [138].

Finally, we mention that although coalgebraic modal logic generalises stan-
dard modal logic in a fairly direct sense, but it is not the only approach to logics
for coalgebras. Moss [102] was the first to observe that T -coalgebras give rise to
a modal language with a modality ∇ whose truth is defined by lifting the satis-
faction relation between states in X and formulas in Fm to a relation between
T (X) and T (Fm). Moss’ logic has the property of always being expressive, but
the language is slightly non-standard and has defied a completeness proof up
until very recently [85]. The finitary version of Moss’ logic was extended with
fixed point operators by Venema [153], and Venema & Kupke show in [86] that
much of the automata theory of the modal µ-calculus can be generalised to this
coalgebraic language. For the class of so-called Kripke polynomial functors, Ja-
cobs [68] describes a many-sorted modal logic in which formulas and their sorts
are inductively defined over the ingredients of the type functor T . Jacobs, build-

4 Chapter 1. Introduction

ing on work by Rößiger [124], proves completeness via a many-sorted canonical
model construction and many-sorted Boolean algebras with operators. For a
more detailed overview of these different approaches to logics for coalgebras, we
refer to [152, 80].

1.3 Motivation

Our motivation for modelling systems as coalgebras is driven by mathematical
curiosity as well as the desire for applications.

To start with, coalgebraic modelling can increase our understanding of a class
of systems by placing them in a wider context. As it happens in mathematics, we
often better understand the presence or absence of certain properties by moving
to a higher level of abstraction. For example, certain properties of the structural
theory of T -coalgebras can be identified in terms of preservation properties of
the type functor T . One such important property is the preservation of weak
pullbacks [129]. While bisimilarity always implies behavioural equivalence in T -
coalgebras, the converse only holds if T preserves weak pullbacks (cf. [1, 129]).
In other words, coinduction is always a sound proof principle for behavioural
equivalence, however, it is only complete if T preserves weak pullbacks. A de-
tailed study of the correspondence between (weaker) preservation properties of
T and structural properties of T -coalgebras is found in [51].

From the practical point of view, an immediate benefit of a coalgebraic
modelling, is that we can instantiate general results and techniques in coalgebra
to the class of systems that is being modelled. In particular, we have at our hands
a range of coalgebraic logical languages and derivation systems for specifying
and reasoning about these systems. These logics come with general results
on bisimulation invariance and expressivity, as well as uniform techniques for
proving soundness and completeness. If also a final coalgebra exists, then we
gain coinductive proof and definition principles.

On the other hand, coalgebra can also benefit from the study of specific
examples. Results that have a natural interpretation for a certain type of sys-
tems, can lead to interesting questions at the general coalgebraic level, and to
ideas that may be applied to other types of coalgebra. Furthermore, a good
understanding of a particular class of systems can help develop our intuition
about abstract coalgebraic notions by phrasing them in more familiar terms, for
example, from automata theory or logic.

1.4 Thesis overview and contributions

We now give an introductory overview of the main chapters of this thesis, their
research themes, and a brief statement of their contributions.

1.4. Thesis overview and contributions 5

1.4.1 Automaton synthesis

Since the early days of automata theory, automaton synthesis has been an im-
portant field of research. Briefly stated, automaton synthesis refers to the pro-
cess of constructing from a formal specification, an automaton which realises
the specification. In the synthesis of deterministic automata from regular ex-
pressions (see e.g. [9, 22, 30, 106]), this means that the automaton must accept
the language specified by the regular expression. More generally, in sequential
synthesis (see e.g. [11, 31, 38, 117]), a specification is a stream relation given by
an S1S-formula ϕ(X,Y) and a realisation is a Mealy (or Moore) machine with
input/output behaviour f such that for all streams σ, ϕ(σ, f(σ)) holds.

The techniques employed in the abovementioned work are highly diverse,
and sometimes highly complex. One construction, however, is particularly in-
teresting from the coalgebraic perspective. We are referring to Brzozowski’s
construction in [30] of a finite deterministic automaton from a regular expres-
sion. Brzozowski’s insight was that the set Reg of regular expressions itself
has the structure of a deterministic automaton under the operations known as
‘empty word property’ and Brzozowski derivative. In coalgebraic terms, Brzo-
zowski’s construction can be described as a computation of the subcoalgebra
generated by e in Reg while working modulo aci-equivalence (associativity-
commutativity-idempotence of +) to guarantee termination.

The coalgebraic view on Brzozowski’s algorithm suggests that it can be gen-
eralised to other coalgebra types and specification languages. Such a synthesis
method would require the set of specifications to carry a coalgebraic structure,
the existence of generated subcoalgebras and a suitable decidable congruence
on the set of specifications. We will refer to a synthesis method based on these
principles as coalgebraic synthesis. Indeed, Rutten describes in [132] the idea
of carrying out coalgebraic synthesis of Mealy machines from specifications in
2-adic arithmetic. In particular, Rutten shows that the set of 2-adic expressions
carries a Mealy machine structure, and that so-called rational 2-adic expressions
can be realised by a finite Mealy machine.

In Chapter 3, we complete the coalgebraic synthesis of Mealy machines from
specifications in 2-adic as well as mod-2 arithmetic by giving a method for de-
termining the equivalence of expressions. We give upper bounds on the size of
a Mealy machine constructed from a rational specification, examples demon-
strating that not all finite Mealy machines arise from rational 2-adic or mod-2
specifications, and a complexity analysis of the synthesis algorithm.

1.4.2 Automata as coalgebras

Some of the best known examples of systems which can be modelled as coalge-
bras come from the world of automata. As we have already seen, determinis-

6 Chapter 1. Introduction

tic automata admit a neat coalgebraic modelling which has given the existing
theory of automata, languages and regular expressions an alternative mathe-
matical perspective. Other examples are given by nondeterministic automata,
Mealy/Moore machines and weighted/probabilistic automata. This still leaves
several other types of automata open for coalgebraic modelling, such as various
kinds of transducers, pushdown automata, and automata operating on infinite
words or trees.

We will consider the following class of automata. A subsequential transducer
is a type of state machine which reacts deterministically to input letters, and
produces output words on transitions and terminal output words at accepting
states. As a class of automata, subsequential transducers generalise both deter-
ministic automata and Mealy machines. This combination of language recog-
nition and transduction makes subsequential transducers useful in the areas of
lexical analysis, coding theory, and more recently, in speech processing [98, 99].

The semantics of a subsequential transducer is the partial word function it
computes. It has been shown in [36, 37] that every partial word function can be
realised by a minimal (possibly infinite) subsequential transducer and that every
subsequential transducer can be minimised via an intermediate normalisation
step. These results suggest that subsequential transducers allow a coalgebraic
treatment. On the other hand, due to the combination of internal states with
output in the form of words (rather than letters), it is not difficult to see that
equivalence of subsequential transducers cannot be fully captured by bisimilarity.

In Chapter 4, we investigate to which degree subsequential transducers and
their underlying structures can be modelled as coalgebras (over Set). We show
that only normalised subsequential structures can properly be regarded as coal-
gebras, but also that they form a reflective subcategory of all subsequential
structures, and that a final (normalised) subsequential structure exists. Fur-
thermore, for a subclass called step-by-step subsequential structures, we present
an alternative coalgebraic modelling based on differentials, and we derive a new
method of determining equivalence which does not go via normalisation.

1.4.3 Coalgebra and modal logic

Most functors of interest preserve weak pullbacks, including the Kripke polyno-
mial functors that give rise to most types of automata and transition structures,
but there are also interesting functors which lack this property. Such an exam-
ple is given by 2 2 = 2 ◦ 2 , the contravariant powerset functor composed with
itself. 2 2 -coalgebras are of independent interest in modal logic where they are
better known as neighbourhood frames.

Neighbourhood structures generalise Kripke structures, and they have be-
come the standard semantic tool for reasoning about non-normal modal logics,
i.e., modal logics in which principles such as 2ϕ ∧2ψ ↔ 2(ϕ ∧ ψ) or 2> need

1.4. Thesis overview and contributions 7

not to hold (cf. [35, 141]). However, neighbourhood semantics has received far
less attention than Kripke semantics. In particular, a definition of bisimulation
for neighbourhood models has so far been lacking, except for the subclass of
monotonic neighbourhood models [114, 52].

Conversely, neighbourhood frames have a special role in coalgebraic modal
logic, since a predicate lifting for some functor T transforms T -coalgebras into
2 2 -coalgebras by currying: λ : 2 → 2T corresponds to λ̂ : T → 2 2 . Thus there
are at least two good reasons to study neighbourhood frames. First, because
they are a natural example of a class of coalgebras for a functor that does not
preserve weak pullbacks, and, second, because as a class of structures they unify
coalgebraic modal logic.

In Chapter 5, we apply the coalgebraic modelling of neighbourhood frames
as 2 2 -coalgebras in order to investigate the notion of state equivalence in neigh-
bourhood structures. Apart from behavioural equivalence and 2 2 -bisimilarity,
which differ since 2 2 does not preserve weak pullbacks, we study a third equiv-
alence notion, whose witnessing relations we call precocongruences since they
are closely related to the notion of a precongruence from [1]. We show that
precocongruences are a better approximation of behavioural equivalence than
2 2 -bisimilarity while still enjoying a back-and-forth style characterisation. In
the second part of Chapter 5, we prove model-theoretic results for classical
modal logic which generalise known results from the theory of normal modal
logic. These include a Hennessy-Milner theorem for image-finite neighbourhood
models, a Van Benthem style characterisation theorem, and Craig interpolation.

Contribution summary

Briefly summarised, the main contributions are:
(i) A synthesis method for constructing Mealy machines from specifications

in binary arithmetic, and results that relate Mealy machines and rational 2-adic
and mod-2 specifications in terms of complexity and expressivity.

(ii) A coalgebraic perspective on subsequential transducers which sheds light
on existing results, but also shows that subsequential transducers are on the edge
of the range of systems that are coalgebras over Set. A systematic classifica-
tion of reflective subcategories of subsequential structures, and an alternative
coalgebraic modelling for so-called step-by-step structures.

(iii) Model-theoretic results for classical modal logic. Firstly, a detailed
study of state equivalence, including the introduction of a new general one which
improves on bisimulations when the functor does not preserve weak pullbacks.
Secondly, the development of model-theoretic machinery which eventually leads
to a Van Benthem style characterisation theorem and Craig interpolation.

8 Chapter 1. Introduction

1.5 Origin of the material

Parts of the material presented in this thesis have been published previously, or
are currently awaiting publication. Chapter 3 extends joint work with David
Costa and Jan Rutten in [55]. Chapter 4 extends the work presented in [53].
Chapter 5 is based on joint work with Clemens Kupke and Eric Pacuit in [57],
of which an extended version will soon appear as the journal article [58]. The
table below summarises the relationship between chapters and publications.

Ch. 3: [55] H.H. Hansen, D. Costa and J.J.M.M. Rutten. Synthesis of
Mealy machines using derivatives. Proceedings CMCS 2006.
ENTCS 164, pp. 27–45.

Ch. 4: [53] H.H. Hansen. Coalgebraising subsequential transducers.
Proceedings CMCS 2008. ENTCS 203, pp. 109–129.

Ch. 5: [57] H.H. Hansen, C. Kupke and E. Pacuit. Bisimulation
for neighbourhood structures. Proceedings CALCO 2007.
LNCS 4624, pp. 279–293.

[58] H.H. Hansen, C. Kupke and E. Pacuit. Neighbourhood
structures: bisimilarity and basic model theory. To appear
in Logical Methods in Computer Science.

Chapter 2

Coalgebra preliminaries

In this chapter we provide most of the basic definitions and results needed for the
reading of this thesis. For a more thorough introduction to universal coalgebra,
we refer to [129]. At the end of the chapter, we summarise the coalgebraic
modelling of streams, deterministic automata and Kripke frames.

2.1 Sets, functors, categories

We assume the reader is familiar with basic category theoretical concepts such
as category, subcategory, functor, Hom-functor, natural transformation and iso-
morphism in a category. The reader may consult any standard textbook on
category theory, e.g. [3, 91], for these definitions and for more information on
the notions defined defined below.

For an object X in a category C, we denote the identity C-morphism on X
by idX . We write X ∼= Y , if X and Y are isomorphic in C. Let C and D be
categories. Recall that C is a full subcategory of D if C is a subcategory of D,
and for all objects X,Y in C, f : X → Y is a morphism in C iff f : X → Y is a
morphism in D. We write C v D if C is isomorphic to a full subcategory of D.

We denote by Set the category of sets and functions. A Set-functor, is a
functor on Set, i.e., a functor F : Set → Set. If F and G are Set-functors, we say
that F is a subfunctor of G , written F ↪→ G , if there is a natural transformation
η : F → G that is injective in all components. We will often use placeholder
notation for functors, for example, A× (−) denotes the functor T (X) = A×X.

Two functors are of particular importance. The covariant powerset functor
P : Set → Set maps a set X to its set of subsets P (X), and a function f : X → Y
to the direct image function f [] : P (X) → P (Y) defined by f [C] = {f(x) | x ∈
C} for all C ⊆ X. The contravariant powerset functor 2 : Setop → Set maps a
set X to P (X), and a function f : X → Y (which in Setop is an arrow Y → X)
to the inverse image function f−1[] : P (Y) → P (X) defined by f−1[D] = {x ∈
X | f(x) ∈ D} for all D ⊆ Y . The Hom-functors in Set will usually be written

9

10 Chapter 2. Coalgebra preliminaries

in the form of exponentiation. For sets X and Y , Y X = {f : X → Y } is the
set of functions from X to Y . For a fixed set A, the covariant Hom-functor
Hom(A,−) : Set → Set maps a set X to XA, and for a function f : X → Y ,
Hom(A, f) = fA maps g ∈ XA to fA(g) = f ◦ g. For a fixed set B, the
contravariant Hom-functor Hom(−, B) : Setop → Set maps a set X to BX , and
for a function f : X → Y , Hom(f,B) = Bf : BY → BX maps g ∈ BY to
Bf (g) = g ◦ f .

We will make frequent use of coequalisers, coproducts, and their defining
universal property. We therefore now give the general definition.

2.1.1. Definition. Let C be a category and let f1, f2 : X → Y be a pair of
parallel morphisms in C. A coequaliser of f1 and f2 in C is a morphism q : Y → Q
in C such that q ◦ f1 = q ◦ f2, and for any q′ : Y → Q′ such that q′ ◦ f1 = q′ ◦ f2

there exists a unique morphism u : Q → Q′ such that q′ = u ◦ q, as illustrated
in the following commuting diagram.

X
f1 //
f2
// Y

q //

q′ !!D
DD

DD
DD

Q

∃!u
��
Q′

�

In Set, a coequaliser of two functions f1, f2 : X → Y is obtained by letting E
be the least equivalence relation on Y that contains {〈f(x), g(x)〉 | x ∈ X}, and
taking q : Y → Y/E to be the natural quotient map, where Y/E denotes the set
of E-equivalence classes on Y . In particular, if R is a relation on X and Re is the
equivalence relation generated by R on X, then the quotient map q : X → X/Re

is a coequaliser of the projection maps π1, π2 : R → X. We will also refer to a
coequaliser of π1, π2 : R → X simply as a coequaliser of R. Like all universal
objects, coequalisers are unique up to isomorphism. We will therefore speak of
the coequaliser of R, and often denote it by εR : X → X/Re.

2.1.2. Definition. Let C be a category. The coproduct of two objects X1 and
X2 in C is an object X1 +X2 in C together with morphisms ιi : Xi → X1 +X2,
i ∈ {1, 2}, in C with the following universal property. If f1 : X1 → Y and
f2 : X2 → Y are morphisms in C, then there is a unique morphism [f1, f2] : X1 +
X2 → Y such that the following diagram commutes:

X1
ι1 //

f1 ++

X1 +X2

∃![f1,f2]

��

X2
ι2oo

f2ssY
�

2.1. Sets, functors, categories 11

Products are defined dually to coproducts. We remind the reader of the
definition of products and coproducts in Set. Let X and Y be sets. The
product of X and Y is the span

X X × Y
πY //πXoo Y

where X × Y is the cartesian product of X and Y and πX : X × Y → X,
πY : X × Y → Y are the projections. The coproduct of X and Y is the cospan

X
ιX // X + Y Y

ιYoo

where X + Y is the disjoint union of X and Y , and ιX : X → X + Y , ιY : Y →
X + Y are the canonical inclusions. Given two functions f1 : X1 → Y1 and
f2 : X2 → Y2, their product f1 × f2 : X1 × X2 → Y1 × Y2 and coproduct f1 +
f2 : X1 +X2 → Y1 + Y2 are defined as follows:

for all x ∈ X1 +X2 : (f1 + f2)(x) = fi(x) iff x ∈ Xi, i ∈ {1, 2},
for all 〈x1, x2〉 ∈ X1 ×X2 : (f1 × f2)(〈x1, x2〉) = 〈f1(x1), f2(x2)〉.

Coproducts and products can thus be lifted to Set-functors as follows. Let F
and G be Set-functors. Their product F × G and coproduct F + G is defined
as follows, for all sets X and all functions f : X → Y :

(F ×G)(X) = F (X)×G(X), (F ×G)(f) = F (f)×G(f),
(F + G)(X) = F (X) + G(X), (F + G)(f) = F (f) + G(f).

The class of polynomial functors is the least class of Set-functors which contains
the identity Set-functor, all constant Set-functors, and is closed under products,
coproducts and exponentiation with constant sets. For example, the functor 2×
(−)A, whose coalgebras are deterministic automata, is polynomial. We will use
a number of well known properties (to be defined below) of polynomial functors:
If T is polynomial, then T preserves weak pullbacks, a final T -coalgebra exists
and generated subcoalgebras exist (cf. [129, 69]).

A functor property which plays an important role in the theory of coalgebras
is the preservation of weak pullbacks.

2.1.3. Definition. Let C be a category and let f1 : X1 → Y and f2 : X2 → Y
be morphisms in C. A weak pullback of f1 and f2 in C is a triple 〈P, p1, p1〉
where P is an object and p1 : P → X1, p2 : P → X2 are morphisms in C such
that f1 ◦ p1 = f2 ◦ p2. Moreover, if P ′, p′1 : P ′ → X1 and p′2 : P ′ → X2 are such
that f1 ◦ p′1 = f2 ◦ p′2, then there exists a morphism u : P ′ → P in C such that
p′1 = p1 ◦ u and p′2 = p2 ◦ u, as illustrated below. If the morphism u is unique,

12 Chapter 2. Coalgebra preliminaries

then 〈P, p1, p2〉 is a pullback.

P ′
∃u
!!

p′1

""

p′2

��
P

p1

��

p2 // X2

f2

��
X1

f1 // Y

A functor T : C → C preserves weak pullbacks if 〈T (P),T (p1),T (p2)〉 is a weak
pullback of T (f1) and T (f2) whenever 〈P, p1, p2〉 is a weak pullback of f1 and
f2. �

In Set, pullbacks can be obtained as follows. Let f1 : X1 → Y and f2 : X2 →
Y be functions. The pullback of f1 and f2 in Set is the triple (pb(f1, f2), π1, π2),
where pb(f1, f2) := {〈s1, s2〉 ∈ X1×X2 | f1(s1) = f2(s2)}; and π1 : pb(f1, f2) →
X1 and π2 : pb(f1, f2) → X2 are the projections. Note that for a function
f : X → Y , the pullback pb(f, f) is the kernel of f , ker(f) = {〈x, x′〉 | f(x) =
f(x′)}. More information about pullbacks in Set and their relevance for coalge-
bra can be found in [49, 51]. We note that polynomial functors and the powerset
functor P all preserve weak pullbacks.

2.2 Coalgebras over sets

Throughout this section, we let T : Set → Set denote an arbitrary Set-functor.
Coalgebras are defined over an arbitrary base category, however, in this thesis
we will only consider coalgebras over Set which leads to the following definition
(the general definition can be obtained in the obvious way).

2.2.1. Definition. A T-coalgebra is a pair 〈X, ξ〉 where X is a set and ξ : X →
T (X) is a function. The set X is called the carrier or the state space, and ξ is
called the coalgebra structure map. If 〈X, ξ〉 and 〈Y, γ〉 are T -coalgebras, then
a T-coalgebra morphism from 〈X, ξ〉 to 〈Y, γ〉 is a function f : X → Y such that
γ ◦ f = T (f) ◦ ξ, i.e., the diagram below commutes. In this case we also write:
f : 〈X, ξ〉 → 〈Y, γ〉.

X
f //

ξ
��

Y

γ

��
T (X)

T (f) // T (Y)

T -coalgebras and T -coalgebra morphisms form a category which we denote by
Coalg(T). �

2.2. Coalgebras over sets 13

2.2.2. Remark. All notions pertaining to T -coalgebras are parametric in the
functor T , but if T is clear from the context or immaterial, then we may leave
it out, and simply speak of coalgebras, coalgebra morphisms etc. �

We sometimes want to consider a coalgebra together with a distinguished
point. For example, a deterministic automaton is a coalgebra with a distin-
guished state, called the initial state. More generally, a pointed T-coalgebra
〈X, ξ, x〉 consists of a T -coalgebra 〈X, ξ〉 and a state x ∈ X. A morphism
of pointed F-coalgebras from 〈X, ξ, x〉 to 〈Y, γ, y〉 is a T -coalgebra morphism
f : 〈X, ξ〉 → 〈Y, γ〉 for which f(x) = y. Pointed T -coalgebras and their mor-
phisms form a category PtCoalg(T).

We list a couple of useful facts. If F is a subfunctor of T , then Coalg(F) is
isomorphic to a full subcategory of Coalg(T), i.e., F ↪→ T implies Coalg(F) v
Coalg(T). Similarly, F ↪→ T implies PtCoalg(F) v PtCoalg(T). In Coalg(T), a
function f is an isomorphism iff f is a bijective T -coalgebra morphism. Although
we will not make much use of the following facts, we mention that surjective
T -coalgebra morphisms are exactly the epimorphisms of Coalg(T), and injec-
tive T -coalgebra morphisms are mono in Coalg(T), however, monomorphisms
in Coalg(T) are not necessarily injective, unless T preserves weak pullbacks
(cf. [129, Prop. 4.7]).

We will need some basic constructions in the category Coalg(T).

2.2.3. Definition. Let 〈X, ξ〉 and 〈Y, γ〉 be T -coalgebras. A subcoalgebra of a
T -coalgebra 〈Y, γ〉 is a T -coalgebra 〈X, ξ〉 such that X ⊆ Y and the inclusion
map ι : X → Y is a T -coalgebra morphism from 〈X, ξ〉 to 〈Y, γ〉. �

Subcoalgebras are determined by their carrier set (cf. [129, Prop. 6.1]), meaning
that if 〈X, ξ〉 and 〈X, ξ′〉 are subcoalgebras of 〈Y, γ〉, then ξ = ξ′, so we can
simply speak of subsets X ⊆ Y as subcoalgebras of 〈Y, γ〉. Given a state y in
〈Y, γ〉, if the intersection of all subcoalgebras containing y is again a subcoal-
gebra of 〈Y, γ〉, we denote this least subcoalgebra by 〈y〉Y and call it the sub-
coalgebra generated by y in 〈Y, γ〉. If T is a polynomial functor, then generated
subcoalgebras always exist in Coalg(T), and in this case 〈y〉Y can be obtained
essentially by taking the transition closure of {y} in 〈Y, γ〉. Furthermore, we
mention that, in general, if f : 〈X, ξ〉 → 〈Y, γ〉 is a T -coalgebra morpishm, then
the image f [X] of f is a subcoalgebra of 〈Y, γ〉. In other words, Coalg(F) has
image factorisation: every T -coalgebra morphism f : 〈X, ξ〉 → 〈Y, γ〉 factors as
a composition i ◦ e where e : 〈X, ξ〉 � 〈f [X], ξ �f [X]〉 is an epimorphism, and
i : 〈f [X], ξ�f [X]〉 → 〈Y, γ〉 is a monomorphism.

2.2.4. Definition. Given T -coalgebras 〈X, ξ〉 and 〈Y, γ〉, 〈Y, γ〉 is a quotient
of 〈X, ξ〉 if there exists a surjective T -coalgebra morphism f : 〈X, ξ〉 � 〈Y, γ〉.
An equivalence relation R ⊆ X × X is a congruence on 〈X, ξ〉, if there exists

14 Chapter 2. Coalgebra preliminaries

a T -coalgebra structure λ : X/R → T (X/R) such that εR : X → X/R is a T -
coalgebra morphism from 〈X, ξ〉 to 〈X/R, λ〉 as illustrated by the commuting
diagram:

R
π1 //
π2

// X

ξ

��

εR // X/R

λ
��

T (X)
T (εR) // T (X/R) �

Recall that if R is an equivalence relation, then the natural quotient map
εR : X → X/R is the coequaliser of R. Using the fact that Coalg(T) has image
factorisation, R is a congruence on 〈X, ξ〉 iff R is the kernel of some T -coalgebra
morphism f : 〈X, ξ〉 → 〈Y, γ〉, i.e., R = ker(f) = {〈x, x′〉 | f(x) = f(x)}. Con-
gruences are conveniently characterised by the following lemma.

2.2.5. Lemma. Let 〈X, ξ〉 be a T-coalgebra, R an equivalence relation on X,
and εR : X → X/R the natural quotient map. R is a congruence on 〈X, ξ〉 iff
for all 〈x, y〉 ∈ R: (T (εR) ◦ ξ)(x) = (T (εR) ◦ ξ)(y).

Proof. First, if R is a congruence, then there is a λ : X/R→ T (X/R) such that
εR is a T -coalgebra morphism. Hence for all 〈x, y〉 ∈ R: λ(εR(x)) = λ(εR(y)),
and since εR is a T -coalgebra morphism, (T (εR) ◦ ξ)(x) = (T (εR) ◦ ξ)(y).
Conversely, if (T (εR) ◦ ξ)(x) = (T (εR) ◦ ξ)(y) for all 〈x, y〉 ∈ R, then T (εR) ◦
ξ ◦ π1 = T (εR) ◦ ξ ◦ π2, and by the universal property of the coequaliser εR,
there is a unique λ : X/R→ T (X/R) such that T (εR) ◦ ξ = λ ◦ εR, i.e., εR is a
T -coalgebra morphism. qed

The above lemma shows that if R is a congruence, then the induced coalgebra
map λ : X/R → T (X/R) is unique. We refer to 〈X/R, λ〉 as the quotient of
〈X, ξ〉 with R, and denote it by 〈X, ξ〉/R. Congruences on a coalgebra 〈X, ξ〉
form a lattice (cf. [51]), and in particular, a largest congruence on 〈X, ξ〉 exists.
A T -coalgebra 〈X, ξ〉 is minimal if 〈X, ξ〉 has no proper quotients, which means
that if f : 〈X, ξ〉 � 〈Y, γ〉 is a surjective T -coalgebra morphism, then f must be
an isomorphism. Hence 〈X, ξ〉 minimal iff the largest congruence on 〈X, ξ〉 is
the identity relation.

Coproducts in Coalg(T) can be constructed essentially in the same way as
in Set.

2.2.6. Definition. The coproduct of 〈X1, ξ2〉 and 〈X2, ξ2〉 in Coalg(T) is the
T -coalgebra 〈X1 + X2, ξ〉 where X1 + X2 is the disjoint union of X1 and X2,
and ξ is the unique function ξ : X1 + X2 → T (X1 + X2) obtained by the uni-
versal property of the coproduct X1 +X2 in Set, as illustrated by the following

2.2. Coalgebras over sets 15

commuting diagram.

X1
ι1 //

ξ1
��

X1 +X2

ξ
��

X2
ι2oo

ξ2
��

T (X1)
T (ι1) // T (X1) + T (X2) T (X2)

T (ι2)oo

In other words, ξ is the unique T -coalgebra structure on X1 +X2 such that the
natural inclusions ι1 : X1 → X1 + X2 and ι2 : X2 → X1 + X2 are T -coalgebra
morphisms. �

The above construction of coproducts in Coalg(T) applies more generally to
all colimits in Coalg(T), since the forgetful functor U : Coalg(T) → Set creates
colimits. This means that any colimit in Coalg(T) can be obtained by first
constructing it in Set, and then supplying it in a unique way with coalgebraic
structure. We refer to [129, Sec. 4.4] for more details.

2.2.7. Definition. Let T : Set → Set be a functor. A final T-coalgebra is
a final object 〈Z, ζ〉 in the category Coalg(T), which means that for any T -
coalgebra 〈X, ξ〉 there exists a unique T -coalgebra morphism f : 〈X, ξ〉 → 〈Z, ζ〉
called the final map. �

We can think of the states in a final T -coalgebra as representatives of the
possible behaviours of T -coalgebras, and we are often interested in finding an
explicit representation. The final map can therefore be seen as a semantics
which assigns behaviour to T -coalgebra states. Hence two states are identified
by the final map if and only if they have the same behaviour.

A final T -coalgebra may not exist. This is due to cardinality issues in Set,
and the fact that the coalgebra structure map of a final coalgebra must be an
isomorphism (cf. Lambek [90]). One class of functors for which a final coalgebra
always exists is the class of polynomial functors. We refer to [1, 14, 160] for
results on the existence and construction of final coalgebras.

Final coalgebras are minimal and unique up to isomorphism. Consequently,
if 〈Z, ζ〉 is a final T -coalgebra, then any minimal T -coalgebra 〈X, ξ〉 is isomor-
phic to the subcoalgebra f [X] of 〈Z, ζ〉, where f [X] is the image of 〈X, ξ〉 under
the final map f : 〈X, ξ〉 → 〈Z, ζ〉.

The existence of a final T -coalgebra 〈Z, ζ〉 gives rise to a definition principle
and a proof principle (cf. [129]). The coinductive definition principle refers to
a the use of finality to obtain a map f : X → Z by equipping X with a T -
coalgebra structure ξ : X → T (X). The coinductive proof principle refers to the
use of finality to prove that two maps f1, f2 : X → Z are equal by equipping
X with a T -coalgebra structure ξ : X → T (X) such that f1 and f2 are T -
coalgebra morphisms. The coinductive proof principle is usually formulated in

16 Chapter 2. Coalgebra preliminaries

terms of bisimulations: if z and z′ are bisimilar states in 〈Z, ζ〉, then z = z′ (see
Theorem 2.3.6 below). After we define bisimulations in Section 2.3, it will be
easy to see that the two formulations are equivalent.

2.3 Equivalence notions

T -coalgebras come with two equivalence notions which we call behavioural
equivalence and bisimilarity. Both notions are essentially based on the fact
that coalgebra morphisms preserve and reflect behaviour. For example, suppose
that f1 : 〈X1, ξ1〉 → 〈Y, γ〉 and f2 : 〈X2, ξ2〉 → 〈Y, γ〉 are T -coalgebra morphisms
and f1(x1) = f2(x2). Then x1 and x2 must have the same behaviour. This is
the idea behind behavioural equivalence (cf. [87]).

2.3.1. Definition. Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be T -coalgebras. Two states x1 ∈
X1 and x2 ∈ X2 are behaviourally equivalent (notation: x1 ∼b x2), if there
exists a T -coalgebra 〈Y, γ〉 and T -coalgebra morphisms fi : 〈Xi, ξi〉 → 〈Y, γ〉 for
i = 1, 2 such that 〈x1, x2〉 ∈ R := pb(f1, f2), as illustrated here:

R
π1

yyttttttttttt
π2

%%JJJJJJJJJJJ

X1
∃f1 //

ξ1
��

Y

∃γ
��

X2
∃f2oo

ξ2
��

T (X1)
Tf1 // T (Y) T (X2)

Tf2oo

The cospan 〈〈Y, γ〉, f1, f2〉 in Coalg(T) is called a cocongruence between 〈X1, ξ1〉
and 〈X2, ξ2〉. If 〈〈Y, γ〉, f1, f2〉 is a cocongruence, then we will also refer to
R = pb(f1, f2) as a cocongruence between 〈X1, ξ1〉 and 〈X2, ξ2〉. The relation
∼b is called behavioural equivalence. We call a relation R a cocongruence on
〈X, ξ〉 if R is a cocongruence between 〈X, ξ〉 and itself. �

Note that R ⊆ X×X is a congruence on 〈X, ξ〉 iff R is a cocongruence on 〈X, ξ〉
and R is an equivalence relation.

2.3.2. Remark. In [87], Kurz refers to (the kernel of) an epimorphism as a
behavioural equivalence. We have chosen to use the word congruence for kernels,
and reserve behavioural equivalence to denote the equivalence notion associated
with congruences and cocongruences. �

Behavioural equivalence on a coalgebra is always the largest congruence, as
shown in the following lemma (which was proved in [51, Lemma 5.10]).

2.3. Equivalence notions 17

2.3.3. Lemma. Let 〈X, ξ〉 be a T-coalgebra. If R ⊆ X×X is a cocongruence on
〈X, ξ〉, then R is contained in a congruence on 〈X, ξ〉. Consequently, behavioural
equivalence is the largest congruence on 〈X, ξ〉.

Proof. Assume R = pb(f1, f2) is the pulback (in Set) of the T -coalgebra
morphisms f1, f2 : 〈X, ξ〉 → 〈Y, γ〉. Let e : 〈Y, γ〉 → 〈Y ′, γ′〉 be the coequaliser of
f1 and f2 in Coalg(T). Then e ◦ f1 = e ◦ f2 and e is a T -coalgebra morphism.
It follows that f := e ◦ f1 = e ◦ f2 is a T -coalgebra morphism such that R ⊆
pb(f, f) = ker(f). Thus R is contained in the congruence ker(f). The final
statement follows from the fact that a congruence is also a cocongruence. qed

The coalgebraic notion of a bisimulation is obtained by reversing the arrows
in the definition of a cocongruence. Formally, T -bisimulations are defined as
follows (cf. [1]).

2.3.4. Definition. Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be T -coalgebras. A relation R ⊆
X1 × X2 is a T-bisimulation between 〈X1, ξ1〉 and 〈X2, ξ2〉 if there exists a
function ρ : R → T (R) such that the projections πi : R → Xi are T -coalgebra
morphisms from 〈R, ρ〉 to 〈Xi, ξ〉, i ∈ {1, 2}.

X1

ξ1
��

R
π2 //π1oo

∃ρ
��

X2

ξ2
��

T (X1) T (R)
T (π2)//T (π1)oo T (X2)

Two states s1 and s2 are T-bisimilar (notation: s1 ∼ s2), if they are linked
by some T -bisimulation. The relation ∼ is called T-bisimilarity. If R is a T -
bisimulation between 〈X, ξ〉 and 〈X, ξ〉, then we say that R is a T -bisimulation
on 〈X, ξ〉. �

2.3.5. Remark. Note that in Definition 2.3.4, we do not lose any general-
ity by requiring that R is relation rather than an arbitrary set. For suppose
f1 : 〈Y, γ〉 → 〈X1, ξ1〉 and f2 : 〈Y, γ〉 → 〈X2, ξ2〉 are T -coalgebra morphisms.
Then the relation R = {〈f1(y), f2(y)〉 | y ∈ Y } is a T -bisimulation: as the T -
coalgebra structure map on R we can take T (〈f1, f2〉) ◦ γ ◦ g, where g : R→ Y
is a right inverse of 〈f1, f2〉 : Y � R. It is straightforward to check that the
projections π1 : R→ X1 and π2 : R→ X2 are T -coalgebra morphisms using the
fact that fi is a T -coalgebra morphism and fi = πi ◦ 〈f1, f2〉 for i ∈ {1, 2}. �

We summarise a number of well known facts on bismulations. A union
of T -bisimulations is again a T -bisimulation, and hence ∼ is the largest T -
bisimulation between two T -coalgebras (cf. [129]). For any functor T , T -bisi-
milarity implies behavioural equivalence (this fact will also follow from Proposi-
tion 5.3.8 in Chapter 5). However, the converse only holds if T preserves weak

18 Chapter 2. Coalgebra preliminaries

pullbacks. In particular, if T does not preserve weak pullbacks, then the largest
congruence on T -coalgebra is not necessarily a T -bisimulation. In this case,
behavioural equivalence is generally preferred over bisimilarity.

The main use of bismulations is their application as a coinductive proof
principle.

2.3.6. Theorem. If 〈Z, ζ〉 is a final T-coalgebra and z, y ∈ Z, then z ∼ y
implies z = y.

Proof. Suppose 〈z, y〉 ∈ R for some T -bisimulation R on 〈Z, ζ〉, i.e. there exists
a T -coalgebra structure ρ : R→ T (R) such that the projections π1, π2 : R→ Z
are T -coalgebra morphisms. By the uniqueness of the final map, π1 = π2, hence
z = y. qed

Coinduction is thus a way of proving that two states in a final coalgebra are
identical by displaying a bisimulation linking them. Coinduction can thus be
used to prove that two states are behaviourally equivalent by showing that they
are bisimilar, since x ∼ y implies x ∼b y. This proof principle is complete iff T
preserves weak pullbacks.

An important property of bisimulations is that they can be characterised
using relation lifting (see e.g. [128]). We explain this in some detail. Let
R ⊆ X1 × X2 be a relation with projections π1 : R → X1 and π2 : R → X2.
By applying the functor, we obtain a pair of maps 〈T (π1),T (π2)〉 : T (R) →
T (X1)× T (X2) whose image is a relation Rel(T)(R) ⊆ T (X1)× T (X2):

Rel(T)(R) = {〈T (π1)(u),T (π2)(u)〉 | u ∈ T (R)}. (2.1)

It easily follows that a relation R ⊆ X1 × X2 is a T -bisimulation between T -
coalgebras 〈X1, ξ1〉 and 〈X2, ξ2〉 if and only if

for all 〈x1, x2〉 ∈ R : 〈ξ1(x1), ξ2(x2)〉 ∈ Rel(T)(R). (2.2)

For example, when considering Kripke frames (P -coalgebras), (2.2) yields the
well known back-and-forth bisimulation conditions, cf. Subsection 2.4.3. When
T preserves weak pullbacks, Rel(T) is the unique extension of T to a functor
on the category Rel of sets and relations. We refer to [128] for more details.

2.4 Examples

As already mentioned in the introduction, many structures can be modelled as
coalgebras (see e.g. [129, 69]): streams, trees, (labelled) transition structures,
classical deterministic and nondeterministic automata, Mealy and Moore ma-
chines, Kripke frames and models, topological spaces [49] and various types of

2.4. Examples 19

probabilistic systems [16]. Further examples can be found in [136, 137]. The
examples of streams, deterministic automata and Kripke frames are particularly
relevant for the work in this thesis. We now summarise their coalgebraic mod-
elling in order to provide the reader with a compact overview, and to create a
point of reference for these facts.

2.4.1 Streams

Let A be a fixed set. A coalgebra for the functor A × (−) is a pair 〈X, 〈o, d〉〉
where 〈o, d〉 : X → A×X assigns to each state x ∈ X an output value o(x) ∈ A
and a next state d(x) ∈ X. An A×(−)-coalgebra can be visualised as a directed
graph where edges are labelled with elements from A, and each state has exactly
one outgoing edge.

The final A×(−)-coalgebra consists of the set Aω of streams over A together
with the familiar head (hd) and tail (tl) functions: 〈hd, tl〉 : Aω → A×Aω. The
final map φ assigns to a state x the stream of outputs that is generated on the
unique path starting from x (cf. [130]).

An A × (−)-bisimulation between 〈X1, 〈o1, d1〉〉 and 〈X2, 〈o2, d2〉〉 is a re-
lation R ⊆ X1 × X2 such that for all 〈x1, x2〉 ∈ R: o1(x1) = o2(x2) and
〈d1(x1), d2(x2)〉 ∈ R. An A × (−)-bisimulation on 〈Aω, 〈hd, tl〉〉 is also called
a stream bisimulation.

Suppose now that A = N, the set of natural numbers. We can define the
elementwise addition +ω of two streams α, β ∈ Nω by coinduction: We de-
fine an N × (−)-coalgebra structure ξ+ on Nω × Nω such that for 〈α, β〉 ∈
Nω × Nω we obtain φ(〈α, β〉) = α +ω β. This is done by taking ξ+(〈α, β〉) =
〈hd(α) + hd(β), 〈tl(α), tl(β)〉〉. It is now possible to prove by coinduction that
(α0, α1, . . .) +ω (β0, β1, . . .) = (α0 + β0, α1 + β1, . . .). Coinduction on streams
has been extensively explored in [130, 131].

2.4.2 Deterministic automata

Let A be a set and 2 = {0, 1}. A deterministic automaton with input alphabet
A can be seen as a map 〈o, d〉 : Q → 2 × QA, where Q is the set of states,
d : Q→ QA is the next state function, and the set of final states F ⊆ Q is given
by its characteristic function o : Q → 2, i.e., q ∈ F iff o(q) = 1. Deterministic
automata are thus coalgebras for the functor 2× (−)A, which maps f : Q1 → Q2

to the function 2× fA : 2×QA1 → 2×QA2 given by (2× fA)(〈b, s〉) = 〈b, f ◦ s〉.
A function f : Q1 → Q2 is a 2×(−)A-coalgebra morphism from 〈Q1, 〈o1, d1〉〉

to 〈Q2, 〈o2, d2〉〉 if for all q ∈ Q1 and for all a ∈ A: o1(q) = o2(f(q)) and
f(d1(q)(a)) = d2(f(q))(a). This condition amounts to the known definition of a
morphism (or state mapping) between deterministic automata, see e.g. [41]. A
bisimulation between two 2× (−)A-coalgebras 〈Q1, 〈o1, d1〉〉 and 〈Q2, 〈o2, d2〉〉 is

20 Chapter 2. Coalgebra preliminaries

a relation R ⊆ Q1×Q2 such that for all 〈q1, q2〉 ∈ R: o1(q1) = o2(q2) and for all
a ∈ A: 〈d1(q1)(a), d2(q2)(a)〉 ∈ R.

The final 2× (−)A-coalgebra (cf. [126]) consists of the set P (A∗) of all lan-
guages over A together with the maps E : P (A∗) → 2 and D : P (A∗) → P (A∗),
which are defined for all languages L ⊆ A∗ by E(L) = 1 iff ε ∈ L, and for
all a ∈ A, we put D(L)(a) = {w ∈ A∗ | aw ∈ L}. The set D(L)(a) is
also known as the language derivative of L with respect to a. The final map
sends a state q to the set of words accepted from q. More precisely, given
a 2 × (−)A-coalgebra 〈Q, 〈o, d〉〉, the final map L : Q → P (A∗) is defined by
L(q) = {w ∈ A∗ | d(q)(w) ∈ F}, where d(q)(−) has been extended from letters
to words in the canonical way.

2.4.3 Kripke frames

A Kripke frame is a pair 〈X,R〉 where X is a set and R is a binary relation
on X. For x ∈ X, the set of R-successors of x is denoted by R[x] = {y ∈ X |
〈x, y〉 ∈ R}. A Kripke frame 〈X,R〉 is a P -coalgebra ξ : X → P (X) by defining
ξ(x) = R[x]. A P -coalgebra morphism f : 〈X1, ξ1〉 → 〈X2, ξ2〉 is a function
f : X1 → X2 such that for all x ∈ X1: f [ξ1(x)] = ξ1(f(x)), which is easily seen
to be equivalent with the definition of a Kripke frame morphism, usually called
a bounded morphism.

Using the relation lifting characterisation in (2.2), we find that a relation Z ⊆
X1 ×X2 with projections πi : Z → Xi, i ∈ {1, 2}, is a P -bisimulation between
Kripke frames 〈X1, R1〉 and 〈X2, R2〉, iff for all 〈x1, x2〉 ∈ Z: 〈R1[x1], R2[x2]〉 =
〈π1[U], π2[U]〉 for some u ∈ P (Z). It can easily be verified that a P -bisimulation
satisfies the back-and-forth conditions for Kripke bisimulations. Assume now
that Z is a Kripke bisimulation, and 〈x1, x2〉 ∈ Z. Taking U := π−1

1 [R1[x1]] ∩
π−1

2 [R2[x2]], we have: y1 ∈ π1[U] iff y1 ∈ R1[x1] and there is a y2 ∈ R2[x2] such
that 〈y1, y2〉 ∈ Z. Hence π1[U] ⊆ R1[x1] and π2[U] ⊆ R2[x2] are immediate, and
the converse inclusions follow from the back-and-forth conditions on Z.

The final P -coalgebra does not exist. This is a consequence of Lambek’s
lemma [90], which says that in a final coalgebra 〈X, ξ〉 the map ξ must be an
isomorphism, together with the fact that there is no set X such that X ∼= P (X).
If we restrict P to its finitary part Pω, which maps a setX to all its finite subsets,
we obtain a final Pω-coalgebra consisting of the set of finitely branching, possibly
infinite, strongly extensional trees [160]. Pω-coalgebras are the same as image-
finite Kripke frames. The final P -coalgebra exists in the category of classes [1],
though. Here P is the functor which maps a class X to the collection of its
subsets.

Chapter 3

Coalgebraic synthesis of Mealy machines

3.1 Introduction

Mealy machines were introduced in [96] to model the behaviour of sequential
circuits. As a basic model of synchronous, ongoing behaviour, Mealy machines
are now used much more generally in the modelling and specification of reactive
systems [59, 135, 145, 158]. We are mainly motivated by their importance in
digital circuit design [72, 76], and the use of Boolean and binary arithmetic
in the specification of circuit behaviour. Digital hardware synthesis refers to
the process of transforming a behavioural specification in the form of a Mealy
machine into a sequential circuit with the specified behaviour. We use the term
Mealy synthesis to refer to the process of transforming a syntactic specification s
into a finite Mealy machine with the specified behaviour, also called a realisation
of s. Combining Mealy synthesis with hardware synthesis thus yields a complete
construction procedure from a formal algebraic specification to a digital circuit.
In hardware synthesis, the number of registers of the resulting circuit depends
on the number of states of the Mealy machine. Although various heuristics exist
for producing a small circuit, it is generally of interest to start with a minimal
Mealy machine.

With coalgebraic synthesis we refer to a construction method where the set
of specifications is equipped with coalgebraic structure such that given a spec-
ification s, a coalgebra with the behaviour specified by s can be computed as
a finite quotient of the subcoalgebra generated by s. The first steps towards
coalgebraic synthesis of Mealy machines from 2-adic and mod-2 specifications
were made by Rutten [132]. We now briefly summarise Rutten’s results.

It is well-known that Mealy machines with input alphabet A and output
alphabet B can be seen as coalgebras for the Set-functor M (X) = (B ×X)A.
Rutten [132] shows that the set of so-called causal stream functions f : Aω → Bω

is a final M -coalgebra when equipped with the operations of initial output
and stream function derivative. Bitstream operations in 2-adic or mod-2 arith-
metic can be defined in a natural way using coinduction for bitstreams. Rutten

21

22 Chapter 3. Coalgebraic synthesis of Mealy machines

also shows in [132] that these operations give rise to causal bitstream func-
tions f : 2ω → 2ω and to a Mealy coalgebra structure on the corresponding set
of arithmetic expressions such that the final map yields the intended bitstream
function semantics. Specifications in 2-adic and mod-2 arithmetic in general give
rise to infinite-state behaviours, but Rutten defines a class of so-called rational
specifications and shows that they can be realised by a finite Mealy machine.
The only part that is missing in [132] in order to make coalgebraic synthesis
work is a decidable congruence on the set of rational specifications which will
ensure termination.

Our contributions to the coalgebraic Mealy synthesis method presented here
are as follows. In [55] we showed that equivalence of rational specifications in
2-adic and mod-2 arithmetic can be effectively determined. The resulting coal-
gebraic synthesis algorithm therefore produces a minimal Mealy machine. We
implemented this synthesis procedure for specifications in both 2-adic and mod-
2 arithmetic. We gave an upper bound on the number of states in the minimal
Mealy machine realising a rational 2-adic specification. The current chapter is
an extension and improvement of the work in [55]. The main additions are:
(i) Rational mod-2 bitstream functions and expressions are treated in detail.
(ii) A slightly generalised definition of rational 2-adic and mod-2 function speci-
fications; a proof that these can be realised by finite Mealy machines; and upper
bounds on the size of their minimal realisations. (iii) Examples showing that ra-
tional 2-adic and mod-2 specifications are not expressively complete for Mealy
machines. (iv) A more detailed exposition of the specification languages and
their formal algebraic and coalgebraic semantics. (v) A more detailed account
of the method used to determine equivalence of expressions via reduction to
normal form. (vi) A detailed analysis of the time complexity of our construc-
tion of Mealy machines from rational function specifications. In fact, the time
complexity given in [55] is not correct.

The chapter is structured as follows. Section 3.2 contains a review of Mealy
machines, their coalgebraic modelling and causal stream function semantics.
Section 3.3 first provides some basic definitions related to bitstreams and num-
bers, and subsequently describes the algebraic structure on bitstreams obtained
from the 2-adic and mod-2 operations. This section also contains the abovemen-
tioned definitions and results on rational 2-adic and mod-2 functions. Section 3.4
describes our implementation of the Mealy synthesis algorithm. First, we in-
troduce data types and define the functions which give a Mealy structure to
expressions, and we explain how equivalence of expressions is determined. The
last subsections contains a high-level description of the our algorithm, and an
illustration of the construction with an example. Section 3.5 contains a detailed
analysis of the time complexity of our algorithm. Finally, we conclude and
discuss related work in Section 3.6.

3.2. Mealy machines 23

3.2 Mealy machines

Assume two sets A and B are given. A Mealy machine with input in A and
output in B is a deterministic state machine which in its current state, when
supplied with an input letter from A, produces an output letter in B and moves
to the next state. Formally, a Mealy machine is a 4-tuple (Q, o, d, q0) where Q is
a set of states, o : Q×A→ B is an output function, d : Q×A→ Q is a next-state
function, and q0 ∈ Q is the initial state. A Mealy machine is finite, if A, B and
Q are finite. Mealy machines are usually finite by definition, but we view finite
Mealy machines as a special subclass, since the coalgebraic modelling (given
in the next subsection) does not require such finiteness assumptions. A binary
Mealy machine is a Mealy machine in which A = B = 2 = {0, 1}. Sometimes o
and d are allowed to be partial functions (with the same domain), but we assume
that o and d are well-defined for all states and inputs. It will be convenient to
think about o and d in their curried forms o : Q→ BA and d : Q→ QA, and to
ease notation we will write oq and dq rather than o(q) and d(q). When oq(a) = b
and dq(a) = r, we sometimes use the notation:

q
a|b // r .

3.2.1 Mealy coalgebras

Using pairing and currying, we see that o and d correspond uniquely to a single
map 〈o, d〉 : Q×A→ B ×Q ∼= t : Q→ (B ×Q)A, i.e., t(q)(a) = 〈oq(a), dq(a)〉.
We call a map t : Q→ (B ×Q)A a Mealy transition structure. Clearly, a Mealy
transition structure is a coalgebra for the polynomial functor M : Set → Set
which maps a set X to M (X) = (B × X)A and a function g : X → Y to
M (g) = (idB × g)A. We refer to M -coalgebras as Mealy coalgebras. Given a
Mealy coalgebra M = (Q, t), we denote by |M| the cardinality |Q| of the state
set Q. Thus, a Mealy machine is simply a pointed Mealy coalgebra (Q, t, q0).

Instantiating the general definitions of coalgebra morphism and bisimulation
to Mealy coalgebras we obtain the following. Let M = (Q, t) and M′ = (Q′, t′) be
Mealy coalgebras. A function g : Q → Q′ is a Mealy morphism from M to M′,
if for all q ∈ Q: M (g)(t(q)) = t′(g(q)), which means that for all a ∈ A, if
t(q)(a) = 〈b, r〉 then t′(g(q))(a) = 〈b, g(r)〉, i.e.:

q
a|b // r =⇒ g(q)

a|b // g(r) .

In terms of output and next state functions, g is a Mealy morphism if oq(a) =
o′g(q)(a) and g(dq(a)) = d′g(q)(a), which is easily seen to coincide with the notion
of a state mapping from [41]. Similarly, we find that a relation R ⊆ Q × Q′ is
a Mealy bisimulation, if for all 〈q, q′〉 ∈ R and all a ∈ A: oq(a) = o′q′(a) and
〈dq(a), d′q′(a)〉 ∈ R.

24 Chapter 3. Coalgebraic synthesis of Mealy machines

3.2.2 Causal stream functions

We will need the following basic definitions on streams. Given a set S, the set of
streams over S is Sω = {α | α : N → S}, where N is the set of natural numbers.
A stream is often denoted as an infinite sequence α = (α(0), α(1), α(2), . . .),
and we will also use ω-word notation. For example, 11(01)ω denotes the stream
(1, 1, 0, 1, 0, 1, . . .). For α ∈ Sω, the initial value (head) of α is α(0), the (stream)
derivative (tail) of α is α′ = (α(1), α(2), α(3), . . .) and for s ∈ S, s : α is the
stream (s, α(0), α(1), . . .). For k ∈ N, α(k) is the k’th derivative of α defined
inductively by α(0) = α and α(k+1) = (α(k))′. We write #(α) = |{α(k) | k ∈ N}|
for the number of distinct derivatives of α.

In order to describe the behaviour of Mealy machines we extend the output
and next-state functions at a state q to maps oq : A∗ → B and dq : A∗ → Q in
the following inductive manner:

oq(ε) = ε, oq(wa) = odq(w)(a),
dq(ε) = q, dq(wa) = ddq(w)(a).

(3.1)

Suppose we are given a state q in a Mealy coalgebra M = (Q, t). We can then
consider the transformation of input streams to output streams computed by M
when starting in state q. For illustration, if the input stream is (a0, a1, a2, . . .) ∈
Aω, then the output stream (b0, b1, b2, . . .) ∈ Bω is obtained as:

q
a0|b0 // q1

a1|b1 // · · ·
ak|bk // qk+1 · · ·

This stream function is called the (Mealy) behaviour of q, denoted Beh(q) : Aω →
Bω, and it is inductively defined for α ∈ Aω and k ≥ 0 by:

Beh(q)(α)(k) = oq(α(0) . . . α(k)). (3.2)

This definition makes it clear that for fixed q, Beh(q)(α)(k) is determined by
α(0), . . . , α(k). Stream functions with this property are called causal. Formally,
f : Aω → Bω is causal if for all α, β ∈ Aω and for all n ∈ N,

if for all k ∈ {0, . . . , n} : α(k) = β(k) then f(α)(n) = f(β)(n).

A causal stream function f is called realisable if there exists a finite Mealy
machine M = (Q, t, q) such that Beh(q) = f , in which case we say that M is a
realisation of f .

We now demonstrate that the set of causal stream functions itself carries
the structure of a Mealy coalgebra via the notions of initial output and (stream
function) derivative.

3.2. Mealy machines 25

3.2.1. Definition. Let Γ = {f : Aω → Bω | f is causal}, f ∈ Γ and a ∈ A.
The initial output of f (on input a) is defined as

f [a] := f(a :α)(0) for any α ∈ Aω.

The derivative of f (on input a) is the function f ·a : Aω → Bω defined by taking

(f ·a)(α) := f(a :α)′ for all α ∈ Aω.

We define a Mealy transition structure γ : Γ → (B × Γ)A by

γ(f)(a) = 〈f [a], f ·a〉 i.e. f
a|f [a] // f ·a . �

Note that in Definition 3.2.1, f [a] is well-defined, since f is causal: f [a]
depends only on (a : α)(0) = a. Similarly, it is easy to show that the deriva-
tive of a causal stream function is again causal: (f ·a)(α)(k) = f(a : α)′(k) =
f(a :α)(k + 1), which depends only on a, α(0), . . . , α(k).

The initial output and derivative functions can be extended from letters to
words over A as described in (3.1). The elements of the set {f ·w | w ∈ A∗} are
called the derivatives of f , and we denote with #(f) the number of derivatives
of f . For reasons that will become clear from Theorem 3.2.2 below, we call f
finite-state, if #(f) < ω, and infinite-state if #(f) = ω. In other words, f is
finite-state iff f is realisable.

Rutten [132] showed that the operations of initial output and stream function
derivative are universal in the sense that they make the set of causal stream
functions into a final Mealy coalgebra.

3.2.2. Theorem ([132]). The Mealy coalgebra (Γ, γ) (from Definition 3.2.1)
is a final Mealy coalgebra. In particular, for every Mealy coalgebra (Q, t), the
behaviour map Beh : Q → Γ as defined in (3.2) is the unique Mealy morphism
from (Q, t) to (Γ, γ).

Proof. The proof is straightforward, but we include it for completeness’ sake.
Let (Γ, γ) be as stated, and let (Q, t) be an arbitrary Mealy coalgebra. We first
verify that Beh : Q → Γ is a Mealy homomorphism. So let q ∈ Q and α ∈ Aω

be arbitrary. We have:

Beh(q)[a] = Beh(q)(a :α)(0) = oq(a),

and by letting q0 = dq(a) and qi+1 = dq(α(i)) for all i ≥ 0, we have

(Beh(q)·a)(α) = (Beh(q)(a :α))′

= (oq(a), odq(a)(α(0)), oq1(α(1)), . . .)′

= (odq(a)(α(0)), oq1(α(1)), . . .)
= Beh(dq(a))(α).

26 Chapter 3. Coalgebraic synthesis of Mealy machines

Hence Beh(q)·a = Beh(dq(a)). To see that Beh : Q → Γ is unique, suppose
g : Q→ Γ is also a Mealy morphism. That is, for all q ∈ Q and all a ∈ A,

g(q)[a] = oq(a) = Beh(q)[a],
g(q)·a = g(dq(a)).

(3.3)

We will show that the relation R ⊆ Bω ×Bω defined by

R := {〈g(q)(α),Beh(q)(α)〉 | q ∈ Q,α ∈ Aω}.

is a stream bisimulation. It then follows by coinduction on streams in Bω that
for all q ∈ Q and all α ∈ Aω, g(q)(α) = Beh(q)(α), i.e., g(q) = Beh(q).

The initial values of g(q)(α) and Beh(q)(α) agree, since

g(q)(α)(0) = g(q)[α(0)]
(3.3)
= Beh(q)[α(0)] = Beh(q)(α)(0).

Also from the assumption that g and Beh are Mealy morphisms, we get,

g(q)(α)′ = (g(q)·α(0))(α′) = g(dq(α(0)))(α′), and
Beh(q)(α)′ = (Beh(q)·α(0))(α′) = Beh(dq(α(0)))(α′)

Hence the stream derivatives are again R-related, and we conclude that R is a
stream bisimulation. qed

3.2.3. Remark. We will see in Chapter 4 that the final Mealy coalgebra can
also be characterised by the set of length- and prefix-preserving functions of
type f : A∗ → B∗. In this chapter, we work with the stream function semantics,
since we will specify binary Mealy machines using the algebraic structures on
bitstreams described in section 3.3. Yet another, perhaps even better known,
representation of the final Mealy coalgebra is obtained by taking the set of
functions {f : A+ → B} as the carrier set. �

From the finality of (Γ, γ) it follows that for any causal f ∈ Γ, the subcoal-
gebra 〈f〉 generated by f in (Γ, γ) is a minimal Mealy coalgebra with behaviour
f , and the states of 〈f〉 are the derivatives of f .

3.2.4. Remark. Causal stream function semantics were studied by G.N. Raney
already in 1958: Raney introduces in [118] the notion of stream function deriva-
tive, and shows that derivatives of causal stream functions are again causal.
Raney refers to derivatives of f as the states of f , but he does not explicitly
show that the set of causal stream functions can be given a Mealy structure.
Raney’s [118] also contains results on compositions of causal stream functions,
and their number of derivatives. We state some of these results below, since
they are of interest to our work in sections 3.3.3 and 3.3.4 where we investigate
the size of minimal realisations of rational bitstream functions. Other work by
Raney [119, 120] on formal power series, generating functions and automata is
closely related to the stream calculus described in Rutten [130]. �

3.3. Bitstream algebras 27

3.2.5. Proposition. ([118]). Let f, g : Aω → Aω be finite-state, causal stream
functions.

1. The composition f ◦ g is causal, and #(f ◦ g) ≤ #(f) ·#(g).

2. If f and g are inverses, i.e., f ◦ g = g ◦ f = idAω , then: #(f) = #(g).

3.3 Bitstream algebras

In this section we describe the algebraic structures on the set of bitstreams
which will be used as input specifications to our synthesis procedure. The first
bitstream algebra to be presented is based on the arithmetic operations on 2-
adic numbers [75, 47]. The motivation for studying this structure is its relevance
for sequential binary arithmetic and digital circuits. Little literature seems to
be available on this subject, with the exception of the work by Vuillemin (cf.
[155, 156, 157]). The second bitstream algebra is based on addition modulo-
2, and it is also motivated by its connection to digital circuits, and switching
theory [76], in particular, to the theory and design of linear circuits.

3.3.1 Bitstreams and numbers

The integers are denoted by Z, and the rational numbers by Q. The absolute
value of a rational number x is written |x|. We use the notation 2 to denote
both the set {0, 1} and the integer 2. The context should make clear which
reading is intended. Elements of 2ω are called bitstreams. A bitstream α ∈ 2ω

is eventually periodic, if there exist k, n ∈ N such that k < n and α(k) = α(n).
A bitstream α ∈ 2ω is eventually constant if there exists a k ∈ N such that
α(k) = α(k+1), that is, α ends with a tail of 0’s or a tail of 1’s, and hence
#(α) = 1 + min{k ∈ N | α(k) = α(k+1)}.

We will define bitstreams and bitstream operations coinductively using the
fact that 2ω equipped with the operations initial value and stream derivative is
a final coalgebra for the Set-functor 2 × (−) (cf. Subsection 2.4.1). Following
Rutten [130], coinductive definitions of bitstreams will be presented in the form
of stream differential equations. In a system of stream differential equations
streams are defined by specifying their initial value stream derivative. Under
certain restrictions on the format, a system of stream differential equations is
guaranteed to have a unique solution. A simple example is given by the bitstream
(1, 0, 1, 0, . . .) which can be defined as the unique solution in x of the system
consisting of the stream differential equations:

x(0) = 1, x′ = y,
y(0) = 0, y′ = x.

28 Chapter 3. Coalgebraic synthesis of Mealy machines

The set of rational numbers with odd denominator

Q̂ = {n/(2m+ 1) | n,m ∈ Z}

will play a significant role in the specification of 2-adic arithmetic. An element
q ∈ Q̂ can be represented as a bitstream by taking its infinitary binary (2-
adic) expansion Bin(q) ∈ 2ω. If q is a natural number, then Bin(q) is just the
binary representation of q followed by a tail of 0’s. The bitstream Bin(−q) is
an infinitary version of the two’s complement of Bin(q). In general, it is known
that for q ∈ Q̂, Bin(q) is an eventually periodic bitstream (cf. [47]).

We define Bin(q) coinductively, that is, by defining an appropriate 2× (−)-
coalgebra structure ξ : Q̂ → 2× Q̂ we obtain Bin: Q̂ → 2ω as the final map. For
q ∈ Q̂, let

ξ(q) = 〈odd(q), (q − odd(q))/2〉, (3.4)

where odd(n/(2m + 1)) = n mod 2. This definition is equivalent to defining
Bin(q) as the solution to the set of stream diffential equations (one for each
q ∈ Q̂):

Bin(q)(0) = odd(q), Bin(q)′ = Bin((q − odd(q))/2). (3.5)

We illustrate this definition with a few examples.

3.3.1. Example. The bitstream of observations generated by the element 9 ∈
〈Q̂, ξ〉 can be illustrated as follows:

9 1−→ 9−1
2 = 4 0−→ 4

2 = 2 0−→ 2
2 = 1 1−→ 0 0−→ 0

This shows that Bin(9) = (1001)0ω and #(Bin(9)) = 5. Now look at the stream
behaviour of −4 ∈ 〈Q̂, ξ〉.

−4 0−→ −4
2 = −2 0−→ −2

2 = −1 1−→ −2
2 = −1

Hence Bin(−4) = (00)1ω and #(Bin(−4)) = 3. Similarly, we find for −1
5 ∈

〈Q̂, ξ〉:

−1
5

1−→ −6/5
2 = −3

5
1−→ −8/5

2 = −4
5

0−→ −4/5
2 = −2

5
0−→ −2/5

2 = −1
5

Hence Bin(−1
5) = (1100)ω and #(Bin(−1

5)) = 4. �

In the remainder of this section, we will switch freely between the numeric
semantics and the bitstream semantics of elements from Q̂. In particular, we will
simply write q instead of Bin(q), when convenient, and use the terms integer,
positive, negative and odd about bitstreams with the obvious meaning. The
numeric interpretation of bitstreams will be useful in the definition and analysis
of rational 2-adic functions.

3.3. Bitstream algebras 29

3.3.2 Bitstream algebra basics

We now describe the two algebraic structures which we use in specifying causal
bitstream functions. The (semantic) domain of both algebras is the set of bit-
streams 2ω, and each structure provides interpretations of the binary function
symbols +,× and /, the unary function symbol −, and the constants [0], [1] and
X. The constants are in both cases interpreted as the following bitstreams:

[0] = (0, 0, 0, 0, . . .), [1] = (1, 0, 0, 0, . . .), X = (0, 1, 0, 0, . . .).

As usual, we write Xn for the n-fold product X × . . . × X. The remaining
operations are specific to each algebraic structure, and they will be defined
using stream differential equations and the usual Boolean operations ∧,∨,¬
and ⊕ (exclusive-or) on 2. For a, b ∈ 2: a ∧ b = min{a, b}, a ∨ b = max{a, b},
¬a = 1− a, and a⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b).

It will turn out to be convenient to treat / as a primitive constructor, rather
than define α/β as shorthand for α × (1/β) (as in [132]). The multiplicative
inverse (if it exists) of a bitstream α can be defined as the fraction [1]/α. Each
bitstream algebra is an integral domain, that is, a commutative ring with unity
and no zero divisors, which means that α × β = [0] implies α = [0] or β = [0].
Hence +,×,−, /, [0] and [1] will obey the familiar laws of arithmetic.

We will use a number of standard arithmetic conventions in our meta-
notation. For example, we often write x− y instead of x+ (−y), and x

y instead
of x/y. Moreover, brackets are used to disambiguate expressions but they are
not part of the syntax, and in order to minimise the use of them we assume that
the binding strength of the operations in descending order is −,×, /,+. For
example, [1]−X + [1]×X2 = [1] + (−X) + ([1]×X2). Finally, from now on we
will use σ only to denote a bitstream variable, i.e., a syntactic object, whereas
α and β will be used as our meta-notation for bitstreams or expressions.

3.3.3 The 2-adic operations

The 2-adic bitstream algebra A2adic is the structure on 2ω obtained by viewing
bitstreams as 2-adic integers [47]. A 2-adic integer is a power series of the form
Σ∞
i=0 ai2

i, where ai ∈ {0, 1} for all i ∈ N, and we represent it with the bitstream
α = (a0, a1, a2, . . .). The 2-adic integers have interesting mathematical proper-
ties but for our purposes we only use the fact that they form an integral domain
with the following operations. The addition of 2-adic integers is an infinitary
version of binary addition, that is, carry bits may be propagated indefinitely.
Similarly, minus is an infinitary version of two’s complement. For example,
(1, 0, 0, . . .) + (1, 1, 1, . . .) = (0, 0, 0, . . .), which shows that −[1] = (1, 1, 1, . . .).
2-adic multiplication is the Cauchy product, i.e., for bitstreams α and β, and
n ∈ N, (α × β)(n) = Σn

i=0 α(i) ∧ β(n − i), where Σ denotes 2-adic summation.

30 Chapter 3. Coalgebraic synthesis of Mealy machines

Formally, we define the 2-adic operations on bitstreams by the stream differen-
tial equations in Figure 3.1. The fact that this system of equations has a unique
solution follows from results in [130].

derivative initial value condition

(α+ β)′ = α′ + β′ + [α(0) ∧ β(0)] (α+ β)(0) = α(0)⊕ β(0)

(−α)′ = −(α′ + [α(0)]) (−α)(0) = α(0)

(α× β)′ = α′ × β + [α(0)]× β′ (α× β)(0) = α(0) ∧ β(0)

(α/β)′ = (α′ − [α(0)]× β′)/β (α/β)(0) = α(0) β(0) = 1

Figure 3.1: 2-adic operations

The stream differential equations for + and × can easily be understood
from the above description of sum and product of 2-adic integers. The defining
equation for − is derived from that of + and the requirement that α+(−α) = [0]
by taking initial value and derivative on both sides. For the initial value we get
that α(0) ⊕ (−α)(0) = 0, hence (−α)(0) = α(0). By taking derivatives we
get α′ + (−α)′ + [α(0)] = [0], and hence (−α)′ = −([α(0)] + α′). The stream
differential equations for α/β can be derived similarly. From the shape of the
stream differential equations in Figure 3.1, it is easy to see that any function
defined using the 2-adic operations is causal. We mention some useful identities
in A2adic :

α+ α = X × α = (0, α(0), α(1), . . .) for all α ∈ 2ω,
Xn = (0, . . . , 0︸ ︷︷ ︸

n times

, 1, 0, 0, . . .) for all n ∈ N.

For example, to prove the identity α + α = X × α one can show that for any
α ∈ 2ω, the relation R = {〈α + α,X × α〉} ∪ {〈β′ + β′ + [β(0)], β〉 | β ∈ 2ω}
is a stream bisimulation, hence by stream coinduction α + α = X × α. These
identities, especially α + α = X × α, are easy to remember when thinking of
the stream X as the integer 2. In fact, the following lemma tells us that we
can treat the 2-adic operations on bitstreams of the form Bin(q), q ∈ Q̂, as the
well-known arithmetic operations on rational numbers.

3.3.2. Lemma. The map Bin: Q̂ → 2ω defined in (3.5) is a homomorphism of
integral domains Bin: Q̂ → A2adic.

Proof. One can easily show (using stream coinduction) that Bin(0) = [0],
Bin(1) = [1], Bin(2) = X and Bin commutes with sum, minus, product and
division. The details are left to the reader. qed

3.3. Bitstream algebras 31

In the remainder of this section, we rely on Lemma 3.3.2 to prove that the
rational 2-adic functions (defined below) are realisable, and to give an upper
bound on the size of their minimal realisations.

3.3.3. Definition. Call α ∈ 2ω a polynomial 2-adic bitstream if α = c0 + c1 ×
X+c2×X2 + . . .+ck×Xk, where ci ∈ {−[1], [0], [1]} for 0 ≤ i ≤ k. A bitstream
ρ ∈ 2ω is a rational 2-adic bitstream if ρ = α/β, where α and β are polynomial
2-adic bitstreams and β(0) = 1. A bitstream function f : 2ω → 2ω is a rational
2-adic function, if f is of the form f(σ) = ρ1 + ρ2 × σ where ρ1, ρ2 are rational
2-adic bitstreams and σ is a bitstream variable. �

3.3.4. Remark. In [132], Rutten defines rational 2-adic functions as functions
of the form f(σ) = ρ×σ, ρ rational, and shows that they have only finitely many
derivatives. Rutten mentions that this also holds for the rational 2-adic func-
tions of Definition 3.3.3 (and we prove this below). We use the word ‘rational’
since our rational 2-adic functions are not substantially more general than those
of Rutten’s, and they share the property of having only finitely many deriva-
tives. This is yet another reason for their name, since this property parallels
the well-known result that rational languages have only finitely many language
derivatives (also called left quotients).

When proving in [132, Theorem 5.1] that functions of the form f(σ) = ρ×σ,
ρ rational, have only finitely many derivatives, Rutten uses the notion of degree
of polynomial bitstreams which he defines as follows. The degree of a polynomial
2-adic bitstream α = c0 + c1 × X + c2 × X2 + . . . + ck × Xk is deg(α) = k if
ck 6= [0]. However, deg(α) depends on the chosen representation of α. For
example, the bistream (1, 1, 1, . . .) can be written as −[1], which has degree 0,
or as ([1]+X+. . . Xk)−Xk+1, which has degree k+1, for any k ∈ N. So Rutten’s
argument does not directly lead to an unambiguous upper bound on #(f) for a
rational 2-adic f . Instead of the degree of polynomials, our reasoning uses the
number of derivatives which is a semantic property and hence independent of
any algebraic representation. Moreover, we will use the numeric interpretation
of the 2-adic operations, and it turns out to be convenient to work with a
representation that only contains one occurrence of the division operation. �

3.3.5. Lemma. A bitstream function f : 2ω → 2ω is a rational 2-adic (bit-
stream) function iff f is of the form:

f(σ) =
d+m× σ

n
(3.6)

where d,m and n are integer bitstreams, n is odd, and σ is a bitstream variable.

Proof. Follows from Bin: Q̂ → A2adic being a homomorphism of integral
domains, the 1-1 correspondence between integers and polynomial 2-adic bit-
streams, and the identities of integral domains. qed

32 Chapter 3. Coalgebraic synthesis of Mealy machines

From now on we will think of rational 2-adic functions in the format of (3.6).
We continue by giving a numeric characterisation of the derivatives of rational
2-adic functions.

3.3.6. Lemma (Numeric 2-adic derivatives). Let f : 2ω → 2ω be a rational
2-adic stream function of the form:

f(σ) =
d+m× σ

n

for integers d,m and n with n odd. For a ∈ 2, the stream function derivative
f ·a is given by:

(f ·a)(σ) =
da +m× σ

n
(3.7)

where (in the numeric interpretation)

d0 =
{

1
2 d if d even
1
2(d− n) if d odd

d1 =
{

1
2(d+m) if d(0) = m(0)
1
2(d+m− n) if d(0) 6= m(0)

Proof. Assume f : 2ω → 2ω is of the above form, and let a ∈ 2. Applying the
definitions in Figure 3.1 on page 30 to determine f ·a we get

(f ·a)(σ)

=
(
d+m× (a :σ)

n

)′

=
(d+m× (a :σ))′ − [d(0)⊕ (m(0) ∧ a)]× n′

n

(†)
=

d′ + ([a]×m′ +m× σ) + [d(0) ∧m(0) ∧ a]− [d(0)⊕ (m(0) ∧ a)]× n′

n

=


d′ − [d(0)]× n′ +m× σ

n
if a = 0

d′ +m′ + [d(0) ∧m(0)]− [d(0)⊕m(0)]× n′ +m× σ

n
if a = 1

The rewrite step marked with (†) uses commutativity of ×. Hence we obtain
the following equations for the da-value in (3.7):

d0 = d′ − [d(0)]× n′ and
d1 = d′ +m′ + [d(0) ∧m(0)]− [d(0)⊕m(0)]× n′.

3.3. Bitstream algebras 33

The rest of the proof is now straightforward using (3.4) (p. 28). If d is even then
d0 = d′ = 1

2d, and if d is odd, we get:

d0 = d′ − n′ =
1
2
(d− 1)− 1

2
(n− 1) =

1
2
(d− n).

When d and m are both odd, i.e. d(0) = m(0) = 1, we have

d1 = d′ +m′ + 1 =
1
2
(d− 1) +

1
2
(m− 1) + 1 =

1
2
(d+m).

Finally, if d is odd, and m is even, then

d1 = d′ +m′ − n′ =
1
2
(d− 1) +

1
2
m− 1

2
(n− 1) =

1
2
(d+m− n).

qed

3.3.7. Example. We compute some of the derivatives of the rational 2-adic
function f(σ) = −2+7·σ

3 :

f ·0 = −2/2+7·σ
3 = −1+7·σ

3

f ·1 = ((−2+7)−3)/2+7·σ
3 = 1+7·σ

3

f ·00 = (−1−3)/2+7·σ
3 = −2+7·σ

3 = f

f ·01 = (−1+7)/2+7·σ
3 = 3+7·σ

3

f ·10 = (1−3)/2+7·σ
3 = −1+7·σ

3

f ·11 = (1+7)/2+7·σ
3 = 4+7·σ

3

Continuing in this way, we find that the set of derivatives of f is:{
d+7×σ

3 | d ∈ {−2,−1, 0, . . . , 6}
}
.

Further examples of derivatives of rational 2-adic functions are listed here:

f(σ) Derivatives

12+7×σ
3

{
d+7×σ

3 | d ∈ {−2,−1, 0, . . . , 6, 8, 12}
}

9+ (−1)×σ
5

{
d+−1×σ

5 | d ∈ {−5,−4,−3, . . . , 2, 4, 9}
}

4+8×σ
11

{
d+8×σ

11 | d ∈ {−10,−9,−8, . . . , 7}
}

−2+(−3)×σ
3

{
d+−3×σ

3 | d ∈ {−5,−4, . . . ,−1}
}

�

34 Chapter 3. Coalgebraic synthesis of Mealy machines

The above example and experimental results suggested that the derivatives
of f(σ) = d+m×σ

n can be described in terms of d, n,m. We will now show that
this is indeed the case.

3.3.8. Lemma. Let f(σ) = d+m×σ
n be a rational 2-adic function with m 6= 0

and n > 0 odd. For all w ∈ 2∗, the stream function derivative f ·w is of the form

(f ·w)(σ) =
dw +m× σ

n
(3.8)

where dw is an integer such that

min{d,−n+ 1,−n+m+ 1} ≤ dw ≤ max{d,m− 1, 0}.

Proof. It is a consequence of Lemma 3.3.6 that the derivatives of f have
the given format (3.8), since f is itself of the form required in Lemma 3.3.6,
and hence so are all derivatives of f . We prove by induction on the length
of w ∈ 2∗ that the numeric value dw is in the given range. The base case
(w = ε) is clear. To prove the inductive step we use the numeric interpretation of
derivatives of rational 2-adic functions given in Lemma 3.3.6. To ease notation,
let l = min{d,−n + 1,−n + m + 1} and u = max{d,m − 1, 0}. Note that
l ≤ 0 ≤ u. Assume as induction hypothesis (IH) that l ≤ dw ≤ u. Inequalities
obtained from the induction hypothesis will be denoted by ≤IH .

Induction step for dw0: We first consider the case where dw is even, and thus
dw0 = 1

2dw. We have the following cases:

if dw ≥ 0: l ≤ 0 ≤ 1
2dw ≤ dw ≤IH u.

if dw < 0: l ≤IH dw < 1
2dw < 0 ≤ u.

Now if dw is odd, then dw0 = 1
2(dw − n). To prove the lower bound, we have

l ≤ −n+ 1 ⇒ 2l ≤ l − n+ 1 ≤IH dw − n+ 1,

and since dw−n+1 is odd, it follows that 2l ≤ dw−n and hence l ≤ 1
2(dw−n).

The upper bound follows easily from dw − n < dw ≤IH u which implies
1
2(dw − n) ≤ u, since u ≥ 0.

Induction step for dw1: If dw(0) = m(0), then dw1 = 1
2(dw + m). We first

prove the lower bound. We have,

l ≤ −n+m+ 1 ≤ m ⇒ 2l ≤IH dw +m,

and hence l ≤ 1
2(dw +m). For the upper bound, we have

m− 1 ≤ u ⇒ dw +m− 1 ≤IH 2u,

3.3. Bitstream algebras 35

and since dw(0) = m(0), dw +m− 1 must be odd. It follows that dw +m ≤ 2u,
which in turn implies 1

2(dw +m) ≤ u.
If dw(0) 6= m(0), then dw1 = dw +m − n. We know that l ≤ −n +m + 1

and hence 2l ≤ l − n+m+ 1 ≤IH dw +m− n+ 1. Since dw +m− n+ 1 is
odd, it follows that 2l ≤ dw +m− n, and hence l ≤ 1

2(dw +m− n).
The upper bound is proven in a similar fashion. We have u ≥ m− 1 which

implies 2u ≥ u +m − 1 ≥ u +m − n ≥IH dw +m − n, and it follows that
u ≥ 1

2(dw +m− n). qed

The following theorem is now immediate.

3.3.9. Theorem. All rational 2-adic bitstream functions are realisable.

Proof. Let f(σ) = d+m×σ
n be a rational 2-adic function. If m = 0, then f

is constant equal to the rational bitstream Bin(dn), which is eventually periodic
and hence realisable. If m 6= 0 and n > 0, then the statement follows from
Lemma 3.3.8. If m 6= 0 and n < 0, then we use the fact that the function g(σ) =
−d+−m×σ

−n is realisable by the previous case, and observe that g is bisimilar with
f (cf. Lemma 3.3.2). Hence f is also realisable. qed

It can readily be checked that the values of dw observed for the functions
from Example 3.3.7 vary exactly between the lower and upper bounds given by
Lemma 3.3.8. Since the dw-values are limited in range, we can derive an upper
bound on the number of derivatives of a rational 2-adic function. In order to
obtain an optimal bound for f(σ) = d+m×σ

n , we may assume n > 0 and that d,m
and n are coprime, i.e., the greatest common divisor of d,m and n, gcd(d,m, n),
is 1. For suppose, d,m and n do not satisfy this requirement, then we can
always divide with gcd(d,m, n) and multiply by −1 and the resulting function
f̃ is bisimilar with f in the final Mealy coalgebra, hence by finality f = f̃ .

3.3.10. Theorem. Let f(σ) = d+m×σ
n be a rational 2-adic function where d,m

and n are integers such that m 6= 0, n > 0 is odd and gcd(d,m, n) = 1. The num-
ber #(f) of derivatives of f (which equals the number of states in the minimal
Mealy coalgebra 〈f〉 realising f) is bounded by the values listed in the following
table:

item case m case d #(f) ≤
1 m > 0 d < −n+ 1 |d|+ |m|
2 m > 0 −n+ 1 ≤ d ≤ m− 1 |m|+ |n| − 1
3 m > 0 d > m− 1 |d|+ |n|
4 m < 0 d < −n+m+ 1 |d|
5 m < 0 −n+m+ 1 ≤ d < 0 |m|+ |n| − 1
6 m < 0 d ≥ 0 |d|+ |m|+ |n|

36 Chapter 3. Coalgebraic synthesis of Mealy machines

Proof. From Lemma 3.3.8 we know that there is a 1-1 correspondence between
derivatives f ·w and the dw value occurring in the numerator of f ·w, and that
the value of dw is bounded, i.e., l ≤ dw ≤ u, for the values of l and u listed in
the table below. Hence #(f) = |{dw | w ∈ 2∗}| ≤ |{l, l + 1, . . . , u}| = u− l+ 1.
The u-value in items 4 and 5 does not follow directly from Lemma 3.3.8, but
using the numeric interpretation of Lemma 3.3.6 it is easy to see that, if d < 0
then also dw < 0, for all w ∈ 2∗.

item case m case d l u

1 m > 0 d < −n+ 1 d m− 1
2 m > 0 −n+ 1 ≤ d ≤ m− 1 −n+ 1 m− 1
3 m > 0 d > m− 1 −n+ 1 d

4 m < 0 d < −n+m+ 1 d −1
5 m < 0 −n+m+ 1 ≤ d < 0 −n+m+ 1 −1
6 m < 0 d ≥ 0 −n+m+ 1 d

qed

3.3.11. Remark. Experimental results suggest that the upper bound on #(f)
given in Theorem 3.3.10 is also a lower bound when gcd(m,n) = 1 and d is in
the following range: (i) −n ≤ d ≤ m if m > 0, and (ii) −n +m + 1 ≤ d ≤ 0 if
m < 0. This conjecture has been verified for −50 ≤ m ≤ 50 and 1 ≤ n ≤ 23.
However, at present we have no formal proof of this. Although, the production
of dw values can be described by a reasonably simple recurrence over the natural
numbers (cf. Lemma 3.3.6), analysing the behaviour of such a recurrence is far
from trivial1. �

3.3.12. Remark. Using case-by-case arguments similar to those used in the
proof of Lemma 3.3.8, it is possible to give an upper bound on the num-
ber of derivatives of f(σ) = d+m×σ

n in terms of the number of derivatives
of d,m, n. The upper bound obtained in this way is #(f) ≤ 2k+1 where
k = max{#(d),#(m),#(n)}. This bound exceeds the upper bound from Theo-
rem 3.3.10 by 2k−1. To see this, observe that for functions of the form required
for Theorem 3.3.10, it follows that k ≥ 2 since m 6= 0 and n > 0. For k ≥ 2, the
values of d,m and n which maximise the upper bound from Theorem 3.3.10 are
d = n = 2k−1 − 1 and m = −2k−1. For these values we find that the difference
between the two upper bounds is:

2k+1 − ((2k − 2) + 2k−1) = 2k+1 − (2k + 2k−1) + 2 = 2k−1 + 2. �

1A famous example of a simple recurrence with complicated behaviour is given by the
Collatz function f(n) = n/2 if n even, otherwise f(n) = 3n + 1. The Collatz conjecture says
that for all natural numbers n ≥ 1, the sequence f(n), f(f(n)), f3(n), . . . will eventually reach
1. The conjecture has yet to be formally proved, although it has been verified by computers
for start values up to 10 · 258.

3.3. Bitstream algebras 37

3.3.13. Remark. Theorem 3.3.10 is an improvement on Raney’s result in Prop-
osition 3.2.5(1). A rational 2-adic function f(σ) = d+m×σ

n can be seen as a
composition f(σ) = (Divn ◦Addd ◦Mulm)(σ), where for z ∈ Z:

Mulz(σ) = z × σ,

Addz(σ) = z + σ,

Divz(σ) = σ/z (if z is odd).

A bound on the number of derivatives of these three basic 2-adic functions is ob-
tained by instantiating Lemma 3.3.8 with the appropriate values for d,m and n.
That is, for Mulm, take d = 0, n = 1, and for Addd, take m = 1, n = 1. From
Prop. 3.2.5, we know that #(Divz) = #(Mulz) for all odd z. We find:

#(Mulz) ≤
{
z if z > 0
|z|+ 1 if z ≤ 0

#(Addz) ≤ |z|+ 1,

#(Divz) = #(Mulz) (if z is odd).

Experiments indicate that for Mulz and Divz this bound is tight, but also that
the bound for #(Addz) can be improved to 2 · (#(z) − 1) if (#(z) ≥ 2 and
z > 0) or #(z) ≥ 3; and otherwise #(z) + 1. Using the bound 2 · (#(z) − 1)
for Addz, it follows from Prop. 3.2.5 that if m,n > 0 and #(d) ≥ 3:

#(f) ≤ #(Mulm) ·#(Addd) ·#(Divn) ≤ 2 ·m · n · (#(d)− 1).

For increasing values of m,n and d, this upper bound will clearly grow much
faster than the upper bound from Theorem 3.3.10. �

Knowing that rational 2-adic functions are realisable (Theorem 3.3.9), the
question naturally arises whether the converse holds. More precisely, is the be-
haviour of any finite Mealy machine a rational 2-adic function? This is answered
in the negative by the following example.

3.3.14. Example. Consider the Mealy machine M depicted in the following
diagram:

q

0|0

�� 1|1 // q1

0|0

�� 1|1 // q11

0|1,1|0

��

We will show that the stream function realised by the state q is not a 2-adic
function of the form f(σ) = d+m×σ

n for integers d,m and n, with n odd. To
this end, first observe that the stream functions realised by the states q1 and q11

38 Chapter 3. Coalgebraic synthesis of Mealy machines

are the rational 2-adic functions g(σ) = −σ and h(σ) = −1 − σ, respectively.
We prove this by showing that the relation R = {〈q1, g〉, 〈q11, h〉} is a Mealy
bisimulation between M and the final Mealy coalgebra. We have for all a ∈ 2,
o(q1)(a) = a = (−(a :σ))(0) = g[a]. Using Lemma 3.3.6 or the definitions from
Figure 3.1, it is easy to verify that g·0 = g and g·1 = h, hence 〈d(q1)(a), g·a〉 ∈ R
for all a ∈ 2. The bisimulation condition for 〈q11, h〉 can be checked just as easily.

From Lemma 3.3.6, it follows that if Beh(q) is a rational 2-adic function,
then Beh(q) can be written in the form Beh(q)(σ) = d+(−1)×σ

1 , i.e., m = −1 and
n = 1, as is the case for g and h. In order to arrive at a contradiction, suppose
indeed that f(σ) = Beh(q)(σ) = d+(−1)×σ

1 . Since f ·0 = f and f ·1 = g, we see
that d0 = d and d1 = 0. The value d must be either even or odd. If d is even,
then we have from Lemma 3.3.6:

d = d0 = 1
2d ⇒ d = 0, and

0 = d1 = 1
2(d− 1− 1) ⇒ d = 2.

So d cannot be even. But similarly, for d odd, we find that:

d = d0 = 1
2(d− 1) ⇒ d = −1, and

0 = d1 = 1
2(d− 1) ⇒ d = 1.

Hence, there is no d such that Beh(q)(σ) = d+(−1)×σ
1 . �

We conclude this subsection by showing that although any bitstream func-
tion specified using the 2-adic operations is causal, it is not necessarily realisable.

3.3.15. Example. 1. It is well-known that the 2-adic function f(σ) = σ×σ
has infinite-state behaviour. To verify this, it is easy to show by induction
on n ∈ N that the derivative of f with respect to 0n is (f ·0n)(σ) = Xn ×
(σ × σ). For different n, these derivatives are clearly not equivalent, and
hence 〈f〉 has infinitely many states.

2. Another example known not to be finite-state is taking inverses (of rational
streams with initial value 1). One can see this by considering the 2-adic
function g(σ) = [1]/([1] + X × σ). Here one can show by induction that
for all n ≥ 1, (g·0n)(σ) = (−X × σ)/([1] +Xn+1 × σ), and again these
derivatives are different for different n. �

The above example suggest that allowing powers σn for n /∈ {0, 1} in the
specification will lead to infinite-state behaviour, and hence that rational 2-adic
functions provide the most general form of realisable specifications in 2-adic
arithmetic.

3.3. Bitstream algebras 39

3.3.4 The mod-2 operations

The mod-2 bitstream algebra Amod2 is the integral domain structure on 2ω

obtained by taking element-wise addition modulo-2 as the sum operation, which
we also denote by ⊕. Note that ⊕ : 2 × 2 → 2 is nilpotent, i.e., for any a ∈ 2,
a ⊕ a = 0 and hence also for any α ∈ 2ω, α ⊕ α = [0]. The minus operation
	 is again defined as an additive inverse. From the nilpotency of ⊕ it follows
that minus is identity: for all α ∈ 2ω : 	α = α. Multiplication ⊗ is the Cauchy
product with respect to ⊕-summation, and division � is defined such that [1]�α
is a multiplicative inverse of α under the condition α(0) = 1. Fractions will
usually be written in the form α

β . The context should make clear when this
notation should be read as a mod-2 fraction or a 2-adic fraction. The mod-2
operations on 2ω are defined by the stream differential equations in Figure 3.2.
As with the 2-adic operations, the syntactic shape of the equations gurantees
that a unique solution exists [130].

derivative initial value condition

(α⊕ β)′ = α′ ⊕ β′ (α⊕ β)(0) = α(0)⊕ β(0)

(α)′ = 	(α′) (α)(0) = α(0)

(α⊗ β)′ = (α′ ⊗ β)⊕ [α(0)]⊗ β′ (α⊗ β)(0) = α(0) ∧ β(0)
(α� β)′ = (α′ ⊕ [α(0)]⊗ β′)� β (α� β)(0) = α(0) β(0) = 1

Figure 3.2: mod-2 operations

The fact that Amod2 is an integral domain can be proved using stream coin-
duction. The straightforward proof is omitted here. Another way of seeing this
uses the theory of formal power series, as follows. The mod-2 bitstream oper-
ations correspond to the operations obtained by viewing bitstreams as formal
power series over the mod-2 ring A2 = (2,⊕,∧, id, 0, 1). In A2, sum is addition
modulo 2, minus is identity, and multiplication is the Boolean operation ∧. A
bitstream α = (a0, a1, a2 . . .) is thus interpreted as the coefficients of the formal
power series a0 + a1x + a2x

2 + From the theory of formal power series
(see e.g. [159]), it follows that Amod2 is an integral domain. See also [130] for
more information on the interesting connections between formal power series
and streams.

The formal powers series perspective makes it easy to see that certain iden-
tities hold in Amod2 . For example, the constant stream X = (0, 1, 0, 0, . . .) now
plays the role of the formal variable x, and it can be verified (using bitstream
coinduction) that, as in A2adic :

X ⊗ α = (0, α(0), α(1), . . .) for all α ∈ 2ω,
Xn = X ⊗ . . .⊗X︸ ︷︷ ︸

n times

= (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 0, 0, . . .) for all n ∈ ω.

40 Chapter 3. Coalgebraic synthesis of Mealy machines

A difference with the 2-adic operations occurs when looking at the bitstream
(1, 1, 1, . . .). In Amod2 , this bitstream can only be defined with the use of the
division operation. Using the ring properties of Amod2 and the nilpotency of ⊕,
it is not difficult to see that

([1]⊕X)⊗ ([1]⊕X ⊕X2 ⊕X3 . . .) = [1]

and hence

(1, 1, 1, . . .) = [1]⊕X ⊕X2 ⊕X3 . . . = [1]� ([1]⊕X) =
[1]

[1]⊕X
(3.9)

We define rational mod-2 functions analogously to rational 2-adic functions.

3.3.16. Definition. We call α ∈ 2ω a polynomial mod-2 bitstream if α = c0 ⊕
c1⊗ X ⊕ . . . ⊕ ck⊗ Xk for ci ∈ {−[1], [0], [1]}, and ρ ∈ 2ω a rational mod-2
bitstream if ρ = α� β, with α, β polynomial mod-2 bitstreams and β(0) = 1. A
function f : 2ω → 2ω is a rational mod-2 function, if f(σ) = ρ1 ⊕ ρ2⊗ σ where
ρ1, ρ2 are rational mod-2 bitstreams. �

3.3.17. Remark. In the 2-adic case, there is a bijection between the eventually
constant bitstreams and the polynomial 2-adic bitstreams since Bin: Q̂ → A2adic

is a homomorphism of integral domains, and integer bitstreams correspond 1-1 to
eventually constant bitstreams. In the mod-2 bitstream algebra, this is not the
case, since 	 is identity, and hence polynomial mod-2 bitstreams are exactly the
eventually constant bitstreams that end in a tail of 0’s. In Amod2 eventually con-
stant bitstreams can be defined as rational mod-2 bitstreams. From (3.9) it fol-
lows that an eventually constant bitstream α = (a0, a1, . . . , an−1, an, an, an, . . .),
n ≥ 0, can be defined as:

α = [a0] ⊕ ([a1]⊗X) ⊕ . . . ⊕ ([an−1]⊗Xn−1) ⊕
(

[an]⊗
Xn

[1]⊕X

)
(3.10)

where [ai] ∈ {[0], [1]} for 0 ≤ i ≤ n. �

Just as in the 2-adic case, calculations on rational mod-2 functions is often
easier when representing them in a one-fraction format.

3.3.18. Lemma. A function f : 2ω → 2ω is a rational mod-2 function iff f is of
the form:

f(σ) =
δ ⊕ ρ⊗ σ

π
(3.11)

where δ, ρ, π are eventually constant bitstreams, and π(0) = 1.

3.3. Bitstream algebras 41

Proof. A rational 2-adic function is of the form (3.11), since polynomial mod-2
bitstreams are eventually periodic. Conversely, using Remark 3.3.17, we observe
that any function of the form (3.11) can be written as

f(σ) =
ρ1
π1

⊕ ρ2
π2
⊗ σ

ρ3
π3

where ρ1, ρ2, ρ3 are polynomial mod-2 bitstreams, ρ3(0) = 1 and {π1, π2, π3} ⊆
{[1], [1]⊕X}. Using the identities of integral domains, we can multiply f with
[1] = [1]+X

[1]+X and rewrite the result into a format

f(σ) =
α1 ⊕ α2 ⊗ σ

α3

where α1, α2, α3 are polynomial mod-2 bitstreams, and α3(0) = 1. qed

We now characterise the derivatives of rational mod-2 functions in an ana-
logue of Lemma 3.3.8.

3.3.19. Lemma. Let f(σ) = δ⊕ ρ⊗σ
π be a rational mod-2 function. For all w ∈

2+, the stream function derivative f ·w is of the form

(f ·w)(σ) =
δw ⊕ ρ⊗ σ

π

for an eventually constant δw ∈ 2ω such that #(δw) = 1 if K = 1 and #(δw) ≤
K − 1 if K > 1, where K = max{#(δ),#(ρ),#(π)}.

Proof. Applying the stream differential equations of Figure 3.2, we find that

(f ·0)(σ) =
([δ(0)]⊗ π′ ⊕ δ′) ⊕ ρ⊗ σ

π
and

(f ·1)(σ) =
([δ(0) ⊕ ρ(0)]⊗ π′ ⊕ δ′ ⊕ ρ′) ⊕ ρ⊗ σ

π

(3.12)

By a straightforward induction on |w|, we obtain that for every w ∈ 2+, the
derivative f ·w is of the form (f ·w)(σ) = δw ⊕ ρ⊗σ

π , where δw is an eventually
constant bitstream. Moreover, it is easy to see that for any eventually constant
bitstreams α and β, we have

#(α⊕ β) ≤ max{#(α),#(β)}.

From this and (3.12) we get: If K = 1 (i.e., δ, ρ, π are constant), then #(δw) = 1
for all w ∈ 2+, and if K > 1, then one can show by an easy induction on the
length of w that for all w ∈ 2+: #(δw) ≤ K − 1. qed

42 Chapter 3. Coalgebraic synthesis of Mealy machines

The above lemma clearly implies that rational mod-2 functions are finite-
state.

3.3.20. Theorem. All rational mod-2 bitstream functions are realisable.

Proof. Immediate from Definition 3.3.16 and Lemma 3.3.19. qed

We now use Lemma 3.3.19 to give an upper bound on the number of deriva-
tives of rational mod-2 functions.

3.3.21. Theorem. Let f(σ) = δ⊕ ρ⊗σ
π be a rational mod-2 function. We have:

#(f) ≤ 1 + 2K−1, where K = max{#(δ),#(ρ),#(π)}.

Proof. First observe that there are 2N bitstreams α with #(α) = N , N ≥ 1.
We now use Lemma 3.3.19. If K = 1, then #(δw) = 1 for all w ∈ 2+ and also
#(δ) = 1, hence #(f) ≤ 2 = 1 + 2K−1. If K > 1, then:

#(f) ≤ 1 + |{δw | w ∈ 2+}| ≤ 1 + |{δw | #(δw) ≤ K − 1}| = 1 + 2K−1.

qed

3.3.22. Remark. As described in Remark 3.3.13, Raney’s results (Prop. 3.2.5)
also provide us with an upper bound. A rational mod-2 function f(σ) = δ ⊕ ρ⊗σ

π
is equal to the composition f(σ) = (Divπ ◦Addδ ◦Mulρ)(σ), where for an even-
tually constant bitstream α ∈ 2ω

Mulα(σ) = α⊗ σ,

Addα(σ) = α⊕ σ,

Divα(σ) = σ � α (if α(0) = 1).

Using an analysis similar to the one used in the proof of Lemma 3.3.19 it is
possible to show that if #(α) = n ≥ 2 then the derivatives of Mulα(σ) corre-
spond to subsets of {0, 1, . . . , n − 1} if α(n−1) = (1, 1, 1, . . .) and to subsets of
{0, 1, . . . , n − 2} if α(n−1) = (0, 0, 0, . . .). In the case that #(α) = (b, b, b, . . .),
for b ∈ 2, we have: #(Mulα) = 2b. Similarly, we find that #(Addα) ≤ #(α).
We summarise:

#(Mulα) ≤


2#(α)−2 if #(α) ≥ 2 and α(#(α)−1) = (0, 0, 0, . . .),

2#(α)−1 if #(α) ≥ 2 and α(#(α)) = (1, 1, 1, . . .),

1 if α = (0, 0, 0, . . .),

2 if α = (1, 1, 1, . . .).

#(Addα) ≤ #(α),

#(Divα) = #(Mulα) (if α(0) = 1).

3.3. Bitstream algebras 43

Experiments indicate that all three bounds are tight. Applying Prop. 3.2.5 to
the case where ρ(#(ρ))−1 = π(#(π))−1 = [0], we find that

#(f) ≤ #(Mulρ) ·#(Addδ) ·#(Divπ) ≤ 2#(ρ)+#(π)−4 ·#(δ)

For sufficiently large values of both #(ρ) and #(π) this upper bound exceeds
the upper bound from Theorem 3.3.21 by an exponential factor. �

Often the minimal realisation will have fewer states than the upper bound
given in Theorem 3.3.21, however, experimental results show that the upper
bound is regularly reached. We provide an example below, which also shows
that a representation of a rational mod-2 function f with polynomial δ, ρ and π
does not always give an optimal upper bound on #(f).

3.3.23. Example. Consider the rational mod-2 function:

f(σ) =
X2 ⊕ 1⊕X⊕X2

1⊕X ⊗ σ

1⊕X2⊕X3

1⊕X

That is, δ = X2 = (0, 0, 1, 0, 0, 0, . . .),

ρ =
1⊕X ⊕X2

1⊕X
= (1, 0, 1, 1, 1, . . .),

π =
1⊕X2 ⊕X3

1⊕X
= (1, 1, 0, 1, 1, 1, . . .).

We have,
max{#(δ),#(ρ),#(π)} = max{4, 3, 4} = 4,

and by computing derivatives, we find that #(f) = 9 = 1 + 23. The bound
derived using Raney’s results (see Remark 3.3.22) is 22 · 4 · 23 = 128.

A representation of f using polynomial mod-2 bitstreams is given by:

f̃(σ) =
(X2 ⊕X3)⊕ (1⊕X ⊕X2)⊗ σ

1⊕X2 ⊕X3

The upper bound derived from this representation is 1 + 2max{5,4,5}−1 = 17. �

Finally, we show that, like rational 2-adic functions, rational mod-2 functions
are not expressively complete for Mealy machines.

3.3.24. Example. Consider the Mealy machine M depicted in the following
diagram:

q

0|0

�� 1|1 // s

0|1,1|0

��

44 Chapter 3. Coalgebraic synthesis of Mealy machines

We will show that the stream function realised by the state q is not a rational
mod-2 function of the form f(σ) = δ ⊕ ρ⊗σ

π . We first note that the function
realised by the state s is g(σ) = [1]

[1]⊕X ⊕ σ = [1] ⊕ ([1]⊕X)⊗σ
[1]⊕X . This can easily

be verified by showing that the relation R = {〈s, g〉} is a Mealy bisimulation
between M and g in the final Mealy coalgebra.

From Lemma 3.3.19 it follows that if Beh(q) is rational, then it is of the form
Beh(q)(σ) = δ ⊕ ([1]⊕X)⊗σ

[1]⊕X . Using equations (3.12) and the transition structure

of M, it follows that f [0] = δ(0) = 0 and (f ·0)(σ) = δ′ ⊕ ([1]⊕X)⊗σ
[1]⊕X = f(σ), hence

δ′ = δ. It follows by stream coinduction that δ = δ′ = [0]. On the other hand,
we also find that

(f ·1)(σ) =
([1]⊕ δ′ ⊕ [1]) ⊕ ([1]⊕X)⊗ σ

1⊕X
=
δ′ ⊕ ([1]⊕X)⊗ σ

[1]⊕X
= g(σ),

which implies that δ′ = [1]. Hence such a δ cannot exist, and we conclude that
Beh(q) is not a rational mod-2 function.

In Example 3.3.24, we saw that Beh(q) can be defined as the rational 2-adic
function f(σ) = −σ. Hence the rational 2-adic functions are not a subset of the
rational mod-2 functions. �

3.3.25. Example. As in the 2-adic case, squaring and taking inverses in mod-
2 arithmetic are not realisable. (cf. Example 3.3.15). For f(σ) = σ ⊗ σ, and
n ∈ N, f ·0n = Xn ⊗ σ ⊗ σ, and for m 6= n, clearly f ·0m 6= f ·0n. Similarly, for
g(σ) = [1]/([1]⊕X ⊗ σ) and n ≥ 1, g·0n = (X ⊗ σ)/([1]⊕Xn+1⊗ σ), and these
derivatives are different for different n. �

The above example suggests that, just like in the 2-adic case, rational mod-
2 functions are the most general format of realisable specifications in mod-2
arithmetic.

3.4 Implementation

In this section, we describe the implementation of our synthesis procedure. First
we present our implementation of the two bitstream algebras of the previous sec-
tion, together with their algebraic and coalgebraic semantics. Next we describe
in some detail how we check equivalence of expressions by reducing them to
normal form. Finally, we give a high-level description of the algorithm. The
amount of detail is supposed to provide enough insight into the workings of the
algorithm to convince the reader of its correctness. Furthermore, a good un-
derstanding of the syntax and algorithm is useful for the complexity analysis in
Section 3.5.

3.4. Implementation 45

3.4.1 Mealy coalgebra of expressions

The two bitstream algebras described in the previous section provide (differ-
ent) semantics for a single arithmetic language. In our program we implement
the two bitstream algebras via the algebraic data types Bit, Const (constant
bitstream expressions), Expr2Adic (2-adic expressions), and ExprMod2 (mod-2
expressions). The expressions of these data types are generated by the following
grammars (over a single variable σ):

Bit : a ::= 0 | 1
Const : c ::= [a] | Xn,
Expr2Adic : e ::= c | σ | −e | e + e | e× e | e/e
ExprMod2 : e ::= c | σ | 	e | e⊕ e | e⊗ e | e� e

where a ∈ Bit, c ∈ Const, n ∈ N and σ is a bitstream variable.
A 2-adic expression e ∈ Expr2Adic is called constant, if the variable σ

does not occur in e, and polynomial, if the division operator / does not oc-
cur in e. We denote the set of polynomial 2-adic expressions by Poly2Adic and
the set of constant, polynomial 2-adic exprssions by CPolyExpr. Constant and
polynomial mod-2 expressions are defined analogously, and we denote the set
of polynomial mod-2 expressions by PolyMod2 and the set of constant, poly-
nomial mod-2 exprssions by CPolyMod2. For convenience of presentation, we
let Expr = Expr2Adic ∪ ExprMod2, PolyExpr = Poly2Adic ∪ PolyMod2 and
CPolyExpr = CPoly2Adic ∪ CPolyMod2, however, Expr, PolyExpr CPolyExpr
are not actual data types in our program.

Moreover, we use the same symbols to denote the syntactic representation of
the arithmetic operations and their semantically defined bitstream operations.
This should not lead to confusion, as the context will always make clear which
interpretation is intended. We have chosen to include not only the constant X,
but all powers of X as atomic expressions, to facilitate syntactic manipulations.
As is standard, we will usually write X instead of X1. We also remark that
the above grammars reflect the fact that our program implements the constant
bitstream expressions as a basic data type shared by Expr2Adic and ExprMod2.

We define the length, len(e), of an expression e ∈ Expr to be the number
of atomic expressions and operator symbols in e. That is, [0], [1], σ and Xn, for
n ∈ N, all have length 1, and the length of a non-atomic expression is 1 plus the
length of the immediate subexpressions, i.e., len(e1 + e2) = 1+len(e1)+len(e2),
etc.

Our aim is to define Mealy coalgebra structures on Expr2Adic and ExprMod2
such that the semantics obtained from the unique map into the final Mealy
coalgebra coincides with the semantics of the operations in A2adic and Amod2 ,
respectively. In order to do so, we need a systematic procedure to obtain an
output bit and a next-state expression from an expression e and a bit a. Recall

46 Chapter 3. Coalgebraic synthesis of Mealy machines

Definition 3.2.1 of the initial output and stream function derivative of a causal
function f(σ) with respect to a bit a ∈ 2:

f [a] = f(a :σ)(0) and (f ·a)(σ) = f(a :σ)′.

We observe that the initial output and derivative is obtained in two steps, which
can be described informally as:

1. Substitute σ with a :σ, and apply f to a :σ (instantiate f(σ) with a).

2. Take initial value and stream derivative of f(a :σ).

We wish to mimic this semantic definition in the syntax. The first observation
we make is that given a bitstream α ∈ 2ω and a bit a ∈ 2, we have

0:α = X × α = X ⊗ α
1:α = [1] +X × α = [1]⊕X ⊗ α

This means that instantiation can be carried out as a substitution operation,
and leads to the following definition.

3.4.1. Definition. The function inst : Expr → ExprBit is defined inductively
for e1, e2 ∈ Expr and a ∈ Bit as follows:

inst(c)(a) = c, if c ∈ Const,
inst(σ)(0) = X× σ, if σ ∈ Expr2Adic,
inst(σ)(1) = [1] + X× σ, if σ ∈ Expr2Adic,
inst(σ)(0) = X⊗ σ, if σ ∈ ExprMod2,
inst(σ)(1) = [1]⊕ X⊗ σ, if σ ∈ ExprMod2,
inst(neg e1)(a) = neg inst(e1)(a), if neg ∈ {−,	},
inst(e1 op e2)(a) = inst(e1)(a) op inst(e2)(a), if op ∈ {+,×, /,⊕,⊗,�}.

The set IExpr = {inst(e)(a) | e ∈ Expr, a ∈ Bit} will be called the set of
instantiated expressions, and we let IExpr2Adic = IExpr ∩ Expr2Adic and
IExprMod2 = IExpr ∩ ExprMod2. �

Clearly, for all e ∈ Expr2Adic and any a ∈ Bit, we have inst(e, a) ∈
Expr2Adic. Similarly, for e ∈ ExprMod2 and a ∈ Bit, we have inst(e, a) ∈
ExprMod2. Hence inst induces maps inst2adic : Expr2Adic → Expr2AdicBit and
instmod2 : ExprMod2→ ExprMod2Bit.

To carry out step 2 of obtaining a Mealy coalgebra of expressions, we will
define a bitstream automaton structure on IExpr, in other words, we will define
initial value and stream derivatives of instantiated expressions. For the constant
bitstream expressions, it is clear how to do this. To deal with variable expres-
sions, we note that in all instantiated expressions e ∈ IExpr, the variable σ

3.4. Implementation 47

occurs only within subexpressions of the form X× σ or X⊗ σ, so given the fact
that for all bitstreams α ∈ 2ω, X × α = X ⊗ α = 0:α, it is now also clear how
to define initial value and derivative of X× σ and X⊗ σ. For the arithmetic op-
erations we simply use their defining stream differential equations in Figure 3.1
(p. 30) and Figure 3.2 (p. 39). However, due to the condition that we can only
divide with bitstreams with initial value 1, some expressions will not have a
well-defined stream behaviour.

3.4.2. Definition. Let xor and & be operation symbols that denote the (se-
mantic) operations of exclusive-or (addition mod-2) and Boolean conjunction
on bits. Let 1 = {?} be the singleton set containing the undefined value ?. The
map 〈h, t〉 : IExpr→ 1 + Bit× Expr is defined in the following table:

e h(e) t(e) condition
[0] 0 [0]
[1] 1 [0]
X0 1 [0]
Xn 0 Xn−1 if n ≥ 1

X× σ 0 σ
X⊗ σ 0 σ

−e1 h(e1) −(t(e1) + [h(e1)])
e1 + e2 h(e1) xorh(e2) t(e1) + (t(e2) + [h(e1) &h(e2)])
e1 × e2 h(e1) &h(e2) t(e1)× e2 + [h(e1)]× t(e2)
e1/e2 h(e1) (t(e1) + (−[h(e1)]× t(e2)))/e2 if h(e1) = 1

	e1 h(e1) 	 t(e1)
e1 ⊕ e2 h(e1) xorh(e2) t(e1)⊕ t(e2)
e1 ⊗ e2 h(e1) &h(e2) t(e1)⊗ e2 ⊕ [h(e1)]⊗ t(e2)
e1 � e2 h(e1) (t(e1)⊕ [h(e1)]⊗ t(e2))� e2 if h(e1) = 1

If the condition for the division operations is not satisfied, or e contains a subex-
pression f for which 〈h(f), t(f)〉 = ?, then 〈h(e), t(e)〉 = ?. �

Again, we note that h and t restrict to maps h2adic : IExpr2Adic→ 1 + Bit
and t2adic : IExpr2Adic→ 1 + Expr2Adic; and similarly for ExprMod2.

A partial Mealy coalgebra structure on Expr is now obtained by composing
instantiation with stream behaviour,

Expr inst // IExprBit
〈h,t〉Bit // (1 + Bit× Expr)Bit

and partial Mealy coalgebra structures on Expr2Adic and ExprMod2 are obtained
by restriction.

48 Chapter 3. Coalgebraic synthesis of Mealy machines

3.4.3. Definition (Mealy coalgebra of expressions). Let the mapping
η2adic : Expr2Adic→ (1+Bit×Expr2Adic)Bit be defined for all e ∈ Expr2Adic
and a ∈ Bit by:

η2adic(e)(a) = 〈h2adic(inst2adic(e)(a)), t2adic(inst2adic(e)(a))〉.

The map ηmod2 : ExprMod2 → (1 + Bit × ExprMod2)Bit is defined for all e ∈
ExprMod2 and a ∈ Bit by:

ηmod2 (e)(a) = 〈hmod2 (instmod2 (e)(a)), tmod2 (instmod2 (e)(a))〉. �

3.4.4. Remark. The partiality of the structures defined above seems undesir-
able. It could be avoided if we restrict Expr2Adic to contain only fractions
e1/e2 where h(e2) = 1. This restriction on the syntax is, however, difficult to
implement. So for now, we accept that not all expressions have a well-defined
Mealy behaviour. �

An expression e ∈ Expr is called a Mealy expression, if the subcoalgebra
〈e〉 generated by e does not contain the undefined value ?. This condition is
equivalent with 〈e〉 being isomorphic to a (total) Mealy coalgebra, and hence
the final map Beh: 〈e〉 → Γ provides e with causal bitstream function seman-
tics. We say that a Mealy expression e is a specification of the causal bitstream
function Beh(e). An expression e ∈ Expr2Adic is called a rational 2-adic func-
tion specification, if e = (d + m × σ)/n where d, m, n ∈ Poly2Adic. Similarly,
e ∈ ExprMod2 is a rational mod-2 function specification, if e = (d⊕m⊗ σ)� n
where d, m, n ∈ PolyMod2. From the definitions of rational 2-adic and mod-2
functions (Definition 3.3.3 and 3.3.16) it should be clear that if e is a rational
2-adic (mod-2) function specification then Beh(e) is a rational 2-adic (mod-2)
function. Conversely, all rational 2-adic (mod-2) functions are the behaviour of
some rational 2-adic (mod-2) function specification.

The bitstream algebras A2adic and Amod2 provide semantics for expressions
from Expr2Adic and ExprMod2 in the obvious way. For a Mealy expression
e ∈ Expr2Adic, we denote by e(α)A2adic the bitstream obtained by evaluating e
in A2adic with α assigned to σ. For two Mealy expressions e1, e2 ∈ Expr2Adic,
we write A2adic |= e1 ≡ e2 if for all α ∈ 2ω: e1(α)A2adic = e2(α)A2adic , and say
that e1 and e2 are algebraically equivalent. Evaluation and equivalence is defined
analogously for Mealy expressions in ExprMod2. Intuitively, it is clear that two
Mealy expressions are algebraically equivalent if and only if they specify the
same bitstream function, i.e., they have the same Mealy behaviour. We denote
behavioural equivalence in Mealy coalgebras by ∼M .

3.4.5. Proposition. For all Mealy expressions e1, e2 ∈ Expr2Adic:

A2adic |= e1 ≡ e2 iff e1 ∼M e2.

3.4. Implementation 49

For all Mealy expressions e1, e2 ∈ ExprMod2:

Amod2 |= e1 ≡ e2 iff e1 ∼M e2.

Proof. We only show the case for Expr2Adic. We have defined the structure
η2adic such that for all Mealy expressions e ∈ Expr2Adic, and all α ∈ 2ω:

Beh(e)(α) = e(α)A2adic . (3.13)

This can be verified using stream coinduction. It now follows that:

A2adic |= e1 ≡ e2 iff for all α ∈ 2ω : e1(α)A2adic = e2(α)A2adic

iff for all α ∈ 2ω : Beh(e1)(α) = Beh(e2)(α)
iff Beh(e1) = Beh(e2)
iff e1 ∼M e2. qed

The above proposition may seem trivial, since we have simply defined the
Mealy coalgebra of expressions such that it holds. However, Proposition 3.4.5
is essential for our synthesis algorithm, since it explains and justifies our use of
equational logic and rewriting in deciding equivalence of expressions. This is
the subject of the next subsection.

3.4.6. Example. Consider the 2-adic expression e = X2×σ
[1]+X

. We compute the
transition of e on the bit 1. The instantiation of e with 1, is

inst(e)(1) =
X2 × ([1] +X × σ)

[1] +X
,

and we find that
h(inst(e)(1)) = h(X2) &h([1] + X× σ) = 0& 1 = 0 and

t(inst(e)(1)) = t

(
X2 × ([1] + X× σ)

[1] + X

)

=
t(X2 × ([1] + X× σ))− h(X2 × ([1] + X× σ))× t([1] + X)

[1] + X

=
t(X2)× ([1] + X× σ) + h(X2)× t([1] + X× σ)− [0]× t([1] + X)

[1] + X

=
(X× ([1] + X× σ) + [0]× ([0] + σ + [0]))− [0]× ([0] + [1] + [0])

[1] + X

This expression can be simplified using the identities of the 2-adic bitstream
algebra to yield the equivalent expression X+X2×σ

[1]+X
. The computation of such a

reduced form is explained in the next section. �

50 Chapter 3. Coalgebraic synthesis of Mealy machines

3.4.2 Equivalence of expressions

In order to guarantee termination of our synthesis procedure, and minimality of
the constructed automaton, it is crucial that we can effectively decide whether
two Mealy expressions specify the same function. Proposition 3.4.5 tells us that
this amounts to deciding algebraic equivalence in the relevant bitstream algebra.
In this subsection we describe what is essentially a terminating and confluent
rewrite system for polynomial expressions. Consequently, we obtain a procedure
for deciding equivalence of arbitrary expressions by reduction to rational normal
form. We do not describe the rewrite rules in full detail, since they correspond to
the well-known identities of integral domains together with the identities specific
to each bitstream algebra. We also remark that the reduction to normal form is
not implemented as a pure rewrite system. Some of the syntactic manipulations
are performed using specialised data structures.

Most of the definitions and results of this subsection apply to both Expr2Adic
and ExprMod2, so in order to avoid too many repetitions or analogous state-
ments, we often phrase definitions and results simply for “expressions”. Such
a formulation should be read as two statements, one about Expr2Adic and one
about ExprMod2, with the obvious adaptations. In such “generic” formulations
we use the symbols −,+,×, / in a generic way, but they should be read as the
2-adic operations, respectively the mod-2 operations, as appropriate. We stress
that we use the symbol = to denote syntactic equality on expressions only, hence,
for example, [0] + [1] ∼M [1], but [0] + [1] 6= [1].

Since the two bitstream algebras are integral domains, they satisfy the fol-
lowing properties, known from the rational numbers.

1. For any expression e there are polynomial expressions p and q such that
e ≡ p/q.

2. Let e1 = p1/q1 and e2 = p2/q2 be expressions. We have: e1 ≡ e2 if and
only if p1 × q2 ≡ p2 × q1.

We first show that in step 1, p and q can be effectively computed.

3.4.7. Lemma. There exists a function mkRat: Expr → Expr, which for any
e ∈ Expr returns a fraction of polynomial expressions mkRat(e) = p/q such
that mkRat(e) ≡ e.

Proof. Define mkRat as follows:

mkRat(e) = e
[1] if e ∈ Const ∪ {σ};

mkRat(−e) = −p
q

where p
q

= mkRat(e);

mkRat(e1 + e2) = p1 + p2
q1

where p1
q1

= mkRat(e1),
p2
q2

= mkRat(e2)
and q1 = q2;

3.4. Implementation 51

mkRat(e1 + e2) = p1×q2 + p2×q1
q1×q2 where p1

q1
= mkRat(e1),

p2
q2

= mkRat(e2)
and q1 6= q2;

mkRat(e1 × e2) = p1×p2
q1×q2 where p1

q1
= mkRat(e1),

p2
q2

= mkRat(e2);

mkRat(e1
e2

) = p1×q2
q1×p2 where p1

q1
= mkRat(e1),

p2
q2

= mkRat(e2).

qed

We now show that we can reduce polynomial expressions to a unique normal
form. This reduction proceeds in two steps. The first step is common to both
Expr2Adic and ExprMod2 as it uses only the ring identities common to both
bitstream algebras:

3.4.8. Definition (Ring normal form). Let p be a polynomial Expr2Adic-
expression. The ring normal form of p is the expression

c0 × σn0 + (c1 × σn1 + (. . .+ ck × σnk) . . .)

obtained from p by applying the ring identities (i.e., distribute × over +, group
together σ-factors to obtain the constant expressions ci, order on the σ expo-
nents n0, . . . , nk, and associate + to the right). We note here that σn is meant
to be read as the n-fold product of σ with itself. The ring normal form of
polynomial ExprMod2-expressions is defined analogously. �

3.4.9. Example. Let p = ([1] + σ)× (X +−σ). We obtain the ring normal
form of p as follows:

([1] + σ)× (X +−σ) = [1]× X + [1]×−σ + σ ×X + σ ×−σ
= ([1]× X) + ((−[1] + X)× σ + −[1]× (σ × σ))

�

The polynomial normal form is obtained from the ring normal form through
a further reduction of the constant, polynomial coefficients c0, . . . , ck. This
reduction is specific to each data type, and we only describe it informally. The
following definition will be useful when describing this reduction for the 2-adic
case, and also later on in the complexity analysis.

3.4.10. Definition. We define the map val : Poly2Adic→ Z by:

val([0]) = 0, val(−c) = − val(c),
val([1]) = 1, val(c1 + c2) = val(c1) + val(c2),
val(Xn) = 2n, val(c1 × c2) = val(c1) · val(c2). �

52 Chapter 3. Coalgebraic synthesis of Mealy machines

3.4.11. Definition (Constant polynomial normal form). Given a con-
stant polynomial expression c, we define cpnf(c) as follows, depending on the
type of c.

c ∈ CPoly2Adic: If val(c) ≥ 0, then cpnf(c) is the expression which corresponds
to the binary expansion of val(c) (with X playing the role of 2). If val(c) <
0, then cpnf(c) = − cpnf(−c). For example, val(X3 + X2 +−[1]) = 11
and hence cpnf(X3 + X2 +−[1]) = [1] + (X + X3). Similarly, we have that
cpnf(−X3 +−X2 + [1]) = −([1] + (X + X3)). We point out that cpnf(c) is
obtained through a purely symbolic manipulation of expressions which
makes only indirect use of Haskell’s integer arithmetic.

c ∈ CPolyMod2: Any constant, polynomial mod-2 expression c can be rewritten
to a sum of signed powers of X, for example, X2 ⊕ X1 ⊕ X0 ⊕	X3 ⊕ X2,
(by applying distributivity and the ring identity Xn × Xm = Xn+m). Such
an expression is further reduced by applying the identities α ⊕ α = [0]
and 	α = α, and finally ordering on exponents. The resulting normal
form consists of a sum of unique powers Xn ordered ascendingly on n. For
example, cpnf(X2 ⊕ X1 ⊕ X0 ⊕	X3 ⊕ X2) = [1]⊕ (X1 ⊕ X3).

If cpnf(c) = c, then we say c is in (constant, polynomial) normal form. �

3.4.12. Definition (Polynomial normal form). Let p be a polynomial ex-
pression, with ring normal form: c0 × σn0 + (c1 × σn1 + . . .+ ck × σnk). The
polynomial normal form pnf(p) of p is obtained from

cpnf(c0)× σn0 + (cpnf(c1)× σn1 + . . .+ cpnf(ck)× σnk)

by a further reduction using the the ring identities, such that terms of the form
[0]× σni are removed, and terms of the form [1]× σni are reduced to σni .

We say that p is in (polynomial) normal form, if pnf(p) = p. �

3.4.13. Lemma.

1. If c1 and c2 are constant, polynomial expressions (of the same type), then:
c1 ≡ c2 iff cpnf(c1) = cpnf(c2).

2. If p1 and p2 are polynomial expressions (of the same type), then:
p1 ≡ p2 iff pnf(p1) = pnf(p2).

Proof. Item 2 follows from item 1. Item 1 for c1, c2 ∈ CPoly2Adic fol-
lows essentially from the uniqueness of binary expansions. Item 1 for c1, c2 ∈
CPolyMod2 follows from the easy observation that for any c ∈ CPolyMod2,
cpnf(c) satisfies the following condition: len(cpnf(c)) = min{len(c′) | c ∼M c′}.
Such a “minimal” expression must be a sum of unique powers of X, and by or-
dering the sum on the exponents of X, and making ⊕ associate right, we obtain
a unique one, which is cpnf(c). qed

3.4. Implementation 53

3.4.14. Definition (Rational normal form). Let e be an expression. The
rational normal form of e, denoted rnf(e), is obtained as follows:

1. Rewrite e into a fraction of polynomial expressions: p/q = mkRat(e).

2. Reduce p and q to polynomial normal form.

We say that e is in rational normal form, if rnf(e) = e. �

We point out that if e = p/q is in rational normal form, the polynomial
expressions p and q are not necessarily coprime. For example, (X2 × σ)/X2 is in
rational normal form.

3.4.15. Example. Consider the 2-adic expression e1 = [1]
[1]+X

+ σ + [1]. After
computing mkRat(e1) = p/q (step 1), and reducing p and q to ring normal
form, we have the expression ([1]+[1]+X)+([1]+X)×σ

[1]+X
. After reducing the constant

coefficients, we obtain the rational normal form: rnf(e2) = X2+([1]+X)×σ
[1]+X

.

Now consider the mod-2 expression e2 = [1]
[1]⊕X ⊕ σ ⊕ [1]. First e2 is rewritten

to the fraction of polynomial expressions in ring normal form ([1]⊕[1]⊕X)⊕([1]⊕X)⊗σ
[1]⊕X .

The coefficients are now reduced to yield the rational normal form: rnf(e2) =
X⊕([1]⊕X)⊗σ

[1]⊕X . �

3.4.16. Proposition. Let e1 = p1/q1 and e2 = p2/q2 be expressions in ratio-
nal normal form with q1 6= [0] and q2 6= [0].

e1 ∼M e2 if and only if pnf(p1 × q2) = pnf(p2 × q1).

Proof. Follows from Proposition 3.4.5, Lemma 3.4.13, and the fact the two
bitstream algebras are integral domains. qed

3.4.3 Algorithm

Our synthesis algorithm is a standard, symbolic fixpoint computation. Starting
from the initial specification e, we compute for each bit a ∈ 2, the transitions
corresponding to input a (using Definition 3.4.3), and iterate this for the deriva-
tives of e until no new transitions are found, i.e., a fixpoint has been reached. In
order to detect the fixpoint, and ensure we only compute each transition once,
we keep track of the new states that are added in each iteration, and to accomo-
date the equivalence check, we reduce all state expressions to rational normal
form. More precisely, during the construction, we maintain sets of the states
and transitions found in previous iterations (Prev and Trans), and a set of the
states that were newly added in the previous iteration (New). Prev and Trans

54 Chapter 3. Coalgebraic synthesis of Mealy machines

are initialised as the empty set and New is initialised as the singleton {rnf(e)},
the rational normal form of the initial specification. At the end of iteration d,
Trans is a set of transitions representing 〈Beh(e)〉 up to depth d. The algorithm
is described in Table 3.1.

input: e.
Prev := ∅;Trans := ∅;New := {rnf(e)};
while New 6= ∅

1. NewTrans := ∅;
2. for each d in New ,

(a) compute transitions d
0|a0−→ d0 and d

1|a1−→ d1;

(b) compute rnf(d0) and rnf(d1);

(c) add d
0|a0−→ rnf(d0) and d

1|a1−→ rnf(d1) to
NewTrans;

3. Prev := Prev ∪New ; New := ∅; UpdNewTrans := ∅;

4. for each d
a|b−→ da ∈ NewTrans,

if da ∼M f for some f ∈ Prev

then: add d
a|b−→ f to UpdNewTrans;

else: add d
a|b−→ da to UpdNewTrans, and add da to

New ;

5. Trans := Trans ∪UpdNewTrans;

6. remove duplicates from New with respect to ∼M ;
end while;
return Trans;

Table 3.1: Algorithm for the construction of a Mealy machine 〈Beh(e)〉 from a
rational specification e.

We note that if the input e has no Mealy behaviour, then the construction
(and our program) will get stuck at some point, and abort, and if e has infinite-
state behaviour, then the process will not terminate. In order to deal with the
latter problem, our program provides the option of specifying the maximum
automaton depth. We illustrate the construction by means of an example.

3.4.17. Example. Let e = X3 × σ. Then e specifies the 2-adic rational function
f(σ) = 8 × σ, and rnf(e) = (X3 × σ)/[1]. For the sake of readability, we will
write expressions in their numeric interpretation. For example, the derivative

3.5. Complexity 55

expression (X2 + X3 × σ)/[1] will be denoted 4 + 8σ. The diagram in Figure 3.3
shows the construction of our algorithm from the start specification 8σ. The

1 + 8σ
0|1

��

1|1

��

2 + 8σ
1|0 //

0|0
66lllllllllllll
5 + 8σ

0|1

hh

1|1

||zz
zz

zz
zz

zz
zz

zz
zz

zz
zz

8σ

0|0

�� 1|0 // 4 + 8σ
0|0

99ssssssssss

1|0

%%KKKKKKKKKK

6 + 8σ
0|0 //

1|0 ((RRRRRRRRRRRRR 3 + 8σ

1|1

OO

0|1

]]

7 + 8σ

0|1

OO

1|1

XX

d = 0 d = 1 d = 2 d = 3

Figure 3.3: Mealy machine constructed from the 2-adic specification e = X3 × σ.

d-values below the diagram indicate the depth of the states in the constructed
Mealy machine. At the start of iteration number d, the states with depth d
will be contained in New . Hence in the example, after iteration 4 New will be
empty, and the algorithm terminates. �

We have implemented our Mealy synthesis algorithm (cf. [54]) in the func-
tional programming language Haskell [116]. Haskell is well suited for the kind of
symbolic manipulation involved in the algorithm. In particular, the implementa-
tion was facilitated by Haskell’s built-in pattern matching functionality and also
its lazy evaluation mechanism, which allows coinductively defined datatypes.

3.5 Complexity

We now analyse the time complexity of the construction of Mealy machines
given in Table 3.1 of Subsection 3.4.3. The main part of the analysis is com-
mon to specifications from both Expr2Adic and ExprMod2. We remark that all
logarithms used in the analysis are of base 2.

56 Chapter 3. Coalgebraic synthesis of Mealy machines

The time complexity of the algorithm can be expressed in the following
quantities:

M : the number of states in the constructed Mealy machine;

R: the time cost of computing and reducing derivatives to rational normal form;

E: the time cost of determining equivalence of two derivative expressions.

We also note that sets can be standardly implemented by lists. We will therefore
include the cost of implementing the set operations as list operations.

3.5.1. Proposition. The synthesis algorithm described in Table 3.1 runs in
time O(RM + EM3).

Proof. We have:

1. During the fixpoint computation, for every state q we compute and reduce
the two derivatives of q exactly once (step 2). This yields a factor M2R.

2. The number of iterations is bounded by M , since at least one new state
must be added in each iteration.

3. In each iteration we incur the following costs from the set operations:

step 4: The lists NewTrans and Prev both have length at most 2M . We
can therefore carry out step 4 in time O(EM2).

step 6: Remove duplicates (with respect to ∼M) from New. The length of
the list New after step 4 is at most M . Removing duplicates from a
list of length l takes at most l2 number of comparisons. Hence step
6 can be carried out in time O(EM2).

Summing up, we obtain an overall complexity of O(M2R + M(EM2 +
EM2)) ∈ O(RM + EM3). qed

3.5.2. Remark. We would like to relate M,R and E to the input expression e,
but we observe the following.

1. For a constant, polynomial expression c, len(c) and len(cpnf(c)) are in
general unrelated. For example, for n ∈ N, we have len(Xn +−[1]) = 4,
but len(cpnf(Xn +−[1])) = len([1] + X + X2 + . . .+ Xn−1) = 2n − 1. On
the other hand, len([0] + [0] + [0]) = 5, but len(cpnf([0] + [0] + [0])) = 1.
This implies that for arbitrary e ∈ Expr, also len(e) is unrelated with
len(rnf(e)).

3.5. Complexity 57

2. Given a specification e in rational normal form, the number of states in the
Mealy machine constructed from e cannot be bounded in terms of len(e).
This is due to expressions of the form Xn having length 1. For example,
for e = Xn/[1], len(e) = 3, but the Mealy machine constructed from e will
have n+ 2 states. �

Although Remark 3.5.2 tells us that we cannot in general relate M , R and
E to the length of the input specification e, we know from the results of sec-
tions 3.3.3 and 3.3.4 that we can bound M in terms of the numeric values and
bitstream degree of the constant, polynomial subexpressions of the rational nor-
mal form of e. These results can also be used to bound the length of the rational
normal form of derivative expressions. In order to reach a bound on R and E
it remains to show a bound on the length of derivative expressions before they
are normalised, and determine the complexity of computing normal forms.

3.5.3. Lemma (Length of derivatives). Let a ∈ Bit.

1. If c ∈ CPolyExpr and cpnf(c) = c, then: len(t(c)) ≤ 2 · len(c).

2. If e ∈ Expr is a rational function specification in rational normal form,
then: len(t(inst(e)(a))) ∈ O(len(e)).

3. If e ∈ Expr is any expression then: len(t(inst(e)(a))) ∈ O(len(e)2).

Proof. Item 1: For c ∈ CPoly2Adic, we first consider the case when val(c) ≥ 0.
Since c is assumed to be in normal form, i.e., cpnf(c) = c, we know that c
consists of k constant, atomic expressions and k − 1 ’+’-symbols, and len(c) =
2k−1. Applying the derivative map t to c will produce 2 extra symbols for each
’+’, hence len(t(c)) = 2(k−1)+2k−1 = 4k−3 ≤ 2·len(c). In the case val(c) < 0,
we have c = −d with d in normal form, and len(c) = 2k. Hence by the previous
case and the definition of t, we get that len(t(c)) = 3+len(t(d)) = 4k ≤ 2·len(c).
For c ∈ CPolyMod2, item 1 can be shown in a similar way.

Item 2: We only prove item 2 for the case e ∈ Expr2Adic and a = 1. The
case for a = 0 and e ∈ ExprMod2 can be shown using similar arguments. We
have:

len(t(ed+em×([1]+X×σ)
en

))

= len(t(ed + em × ([1] + X× σ))) + len(t(en)) + len(en) + 4

= len(t(ed)) + len(t(em × ([1] + X× σ))) + 2+

len(t(en)) + len(en) + 4

= len(t(ed)) + (len(t(em)) + len(([1] + X× σ))+

len(t(([1] + X× σ))) + 4) + len(t(en)) + len(en) + 6

58 Chapter 3. Coalgebraic synthesis of Mealy machines

= len(t(ed)) + len(t(em)) + len(t(en)) + len(en) + 20

(item 1) = 2len(ed) + 2len(em) + 2len(en) + len(en) + 20

≤ 3(len(ed) + len(em) + len(en)) + 20

≤ 3len(e) + 20

= O(len(e)).

Item 3: We merely provide a sketch. For arbitrary expressions e which
may contain several occurrences of × and /, we have for all a ∈ Bit, that
len(inst(e)(a)) ∈ O(len(e)2), since each occurrence of× and / will addO(len(e))
symbols. The number of occurences of × and / is bounded by O(len(e)), hence
the resulting derivative expression will have length O(len(e)2). qed

In order to determine the value R, we must determine the time complexity
of reducing derivative expressions to normal form.

3.5.4. Proposition (Complexity of normalising derivatives).

1. Let p ∈ PolyExpr be a polynomial expression. Computing pnf(p) can be
done in time 2O(len(p)).

2. Let e ∈ Expr be a rational function specification in rational normal form,
and a ∈ Bit. Computing rnf(t(inst(e)(a))) can be done in time 2O(len(e)).

3. Let e ∈ Expr be an arbitrary Mealy expression, and a ∈ Bit. Computing
rnf(t(inst(e)(a))) can be done in time 2O(len(e)2).

Proof. Item 1: The time complexity of computing the polynomial normal form
pnf(p) of a polynomial expression p is in the worst case exponential in len(p)
due to the duplication of subexpressions when applying the distributive law
(e.g. p× (q + r) = p× q + p× r). All other manipulations in the computation
of pnf(p) are polynomial in the length of the expression they are applied to.
Hence the overall complexity will be 2O(len(e)).

Item 2: When e is already in rational normal form, it follows from Defini-
tion 3.4.2 that t(inst(e)(a)) = p/q is a fraction with with p and q polynomial.
Hence the rational normal form of t(inst(e)(a)) can be obtained by simply re-
ducing p and q to polynomial normal form. From Lemma 3.5.3(2) we have that
len(t(inst(e)(a))) ∈ O(len(e)), Hence len(p) and len(q) are both of the order
O(len(e)). Consequently, due to item 1, computing the rational normal form of
t(inst(e)(a)) can be done in time 2O(len(e)).

Item 3: The case for arbitrary expressions is shown similarly to the previous
item for rational function specifications, but now we apply Lemma 3.5.3(3),
which yields a time complexity of 2O(len(e)2). qed

3.5. Complexity 59

Deciding equivalence of two arbitrary expressions in rational normal form,
p1/q1 and p2/q2 amounts to checking syntactic equality of pnf(p1 × q2) and
pnf(p2 × q1). In order to analyse the time complexity of this decision method,
we need to determine len(pnf(p× q)) given that p and q are already in normal
form.

3.5.5. Lemma (Length of polynomial products).

1. If c, d ∈ CPolyExpr are in normal form, then:
len(cpnf(c× d)) ≤ len(c) · len(d).

2. If p, q ∈ PolyExpr are in polynomial normal form, then:
len(pnf(p× q)) = O(len(p)3/2 · len(q)3/2).

Proof. Item 1: Immediate from the shape of normal forms for constant, poly-
nomial expressions. For example,

len(cpnf(([1] + X)× ([1] + X2 + X4))) = len([1] + X + X2 + X3 + X4 + X5)
= 11 ≤ 3 · 5
= len([1] + X) · len([1] + X2 + X4)

Item 2: Suppose p and q have the following forms:

p = c1 × σn1 + (c2 × σn2 + . . .+ ck × σnk)

q = d1 × σm1 + (d2 × σm2 + . . .+ dl × σml)

for 0 ≤ n1 < n2 . . . < nk and 0 ≤ m1 < m2 . . . < ml. We note that in the above,
an expression c× σ0 should be read as c.

We obtain pnf(p× q) by first applying distributivity. This yields a sum of
kl terms of the form cni × dmj × σni+mj . The polynomial normal form of p× q is
now obtained from this distributive form by grouping together terms which have
the same σ-exponent, and reducing the resulting sum of coefficients to normal
form. However, pnf(p× q) could also be computed by first normalising all coef-
ficients, (use notation: fi,j = cpnf(cni × dmj)) and repeating the following pro-
cess: for any two terms fi,j×σni+mj and fi′,j′×σni′+mj′ where ni + mj = ni′ + mj′ ,
replace them with the term cpnf(fi,j + fi′,j′)×σni+mj . There are finitely many
terms, so this process will surely terminate. Moreover, we observe that such a
replacement decreases the length of the total expression, since:

len(cpnf(fi,j + fi′,j′)×σni+mj)

≤ len(cpnf(fi,j + fi′,j′)) + (ni +mj) + 1

≤ len(fi,j) + len(fi′,j′) + (ni +mj) + 1

≤ len(fi,j) + len(fi′,j′) + 2 · (ni +mj) + 4

= len(fi,j×σni+mj + fi′,j′×σni′+mj′)

60 Chapter 3. Coalgebraic synthesis of Mealy machines

This implies that the length of pnf(p× q) is at most the length of the distributive
form with normalised coefficients, i.e.

len(pnf(p× q)) ≤ Σk
i=1Σ

l
j=1len(fi,j × σni+mj)

≤(item 1) Σk
i=1Σ

l
j=1len(ci) · len(dj) + ni +mj + 1.

Let lp = len(p) and lq = len(q). We then have len(ci), ni ≤ lp and len(dj),
mj ≤ lq. As p is in polynomial normal form, lp is greater than or equal to the
number of occurrences of σ plus the number of occurrences of +, that is,

lp ≥ Σk
i=1ni + (k − 1)

≥ Σk
i=1i + (k − 1)

= 1
2(k2 + k) + (k − 1) = 1

2k
2 + 3

2k − 1

≥ 1
2k

2 for all k ≥ 1.

Hence k ≤
√

2lp. Similarly, we find that l ≤
√

2lq. We now conclude that

len(pnf(p× q)) ≤ kl · (lp · lq + lp + lq + 1)

≤
√

2lp ·
√

2lq · (lp · lq + lp + lq + 1)

= O(lp3/2 · lq3/2). qed

3.5.6. Proposition (Complexity of deciding equivalence).

1. Let e1, e2 ∈ Expr be in rational normal form (and of the same type).
Deciding e1 ∼M e2 can be done in time 2O(len(e1)+len(e2)).

2. Let e, e1, e2 ∈ Expr be in rational normal form (and of the same type), and
assume that e is a rational function specification, and e1, e2 are derivative
expressions of e. Deciding e1 ∼M e2 can be done in time O(len(e1) +
len(e2)).

Proof. Item 1: Assume expressions e1 = p1/q1 and e2 = p2/q2 are in rational
normal form. Both p1 × q2 and p2 × q1 have length O(len(e1) + len(e2)), hence
by Proposition 3.5.4(1), computing pnf(p1 × q2) and pnf(p2 × q1) can be done in
time 2O(len(e1)+len(e2)). From Lemma 3.5.5(2) we have that len(pnf(p1 × q2)) ∈
O(len(p1)3/2 · len(q2)3/2) ∈ O(len(e1)3/2 · len(e2)3/2). Similarly, we find that
len(pnf(p2 × q1)) ∈ O(len(e1)3/2 · len(e2)3/2). Checking syntactic equality of
expressions is linear in the length of the expressions, hence checking equivalence
of e1 and e2 has time complexity: 2O(len(e1)+len(e2)) +O(len(e1)3/2 · len(e2)3/2) ∈
2O(len(e1)+len(e2)).

Item 2: If e is a rational function specification, then rnf(e) = p/q where
q is a constant, polynomial expression. Hence by the definition of the Mealy

3.5. Complexity 61

structure on Expr (cf. Definition 3.4.2 and Definition 3.4.3), the rational normal
form of any two derivative expressions e1 and e2 have the shape rnf(e1) = p1/q
and rnf(e2) = p2/q, i.e., they all have the same constant denominator q. To
determine equivalence of such rational normal form expressions, there is no need
to compute and compare pnf(p1 × q) and pnf(p2 × q), since p1/q ∼M p2/q if
and only if p1 = p2. This latter syntactic comparison can be done in time
O(len(p1) + len(p2)) ∈ O(len(e1) + len(e2)). qed

3.5.7. Remark. For arbitrary e1 = p1/q1 and e2 = p2/q2 in rational normal
form, checking equality of numerators is not sound. In our program, we have
therefore chosen to check both p1 = p2 and q1 = q2, which clearly still has linear
time complexity. When deciding equivalence of derivatives of rational function
specifications, this check is both sound and complete. Our program uses by de-
fault the exponential time check which is sound and complete for all expressions.
The optimised, linear equivalence check must be enabled by the user (see end
of subsection 3.4.3). �

We are now almost ready to state and prove the time complexity of our
synthesis algorithm for rational 2-adic and mod-2 specifications. The length of
expressions is useful for the analysis of the symbolic computations carried out
by our program, but the complexity of an algorithm is usually formulated in
terms of the amount of memory (e.g. bits) needed to represent the input e. We
denote this size measure by spc(e).

3.5.8. Definition. Let k ∈ N be such that we can encode the arithmetic op-
eration symbols and the expressions [0], [1], X, σ with k bits. Hence k ≥ 2. We
define spc: Expr→ N as follows.

spc(c) = k if c ∈ {[0], [1], σ},
spc(Xn) = k + log(n),
spc(neg e) = k + spc(e) if neg ∈ {−,	},
spc(e1 op e2) = k + spc(e1) + spc(e2) if op ∈ {+,×, /,⊕,⊗,�}. �

We will use the results on the size of minimal realisations from subsections
3.3.3 and 3.3.4. The upper bound on the automaton size for rational 2-adic
functions (Theorem 3.3.10) is formulated in terms of the numeric interpretation
of 2-adic functions, and the analogous result for rational mod-2 functions (The-
orem 3.3.21) is formulated in terms of bitstream degree. In the next lemma we
relate these quantities to len and spc of constant, polynomial expression.

First we introduce some notation. Given an integer z ∈ Z, we write ez
for the unique constant, polynomial 2-adic expression in normal form which
satisfies val(ez) = z and cpnf(ez) = ez. Moreover, for any constant, polynomial

62 Chapter 3. Coalgebraic synthesis of Mealy machines

expression c we write Beh(c) not only for the constant bitstream function fc
specified by c, but also for the bitstream behaviour of c.

We now show how len(c) and spc(c) for a constant, polynomial expression
c are related to the numeric value or bitstream degree of Beh(c).

3.5.9. Lemma.

1. For all c ∈ CPoly2Adic in normal form:

(a) len(c) ≤ 2 · log(| val(c)|) + 2, if val(c) 6= 0, and

(b) | val(c)| ≤ 22spc(c)
.

2. For all c ∈ CPolyMod2 in normal form:

(a) len(c) ≤ 2 ·#(Beh(c))− 1, and

(b) #(Beh(c)) ≤ 2spc(c), if #(Beh(c)) ≥ 2.

Proof. Item (1.a): An expression c ∈ CPoly2Adic in normal form which max-
imises len(c) with respect to | val(c)| has the form c = −([1] + X + X2 + . . .+ Xn)
for some n ∈ N. For such a c, we have: | val(c)| = 2n+1 − 1 and len(c) =
2(n+ 1) ≤ 2 · (log(| val(c)|) + 1).

Item (1.b): On the other hand, a constant, polynomial c ∈ Expr2Adic in
normal form for which | val(c)| is maximal with respect to spc(c) is of the form
Xn. In this case, log(n) ≤ spc(c) which implies log(| val(c)|) = n ≤ 2spc(c), and
hence | val(c)| ≤ 22spc(c)

.
Item (2.a): A constant, polynomial mod-2 expression c in normal form which

maximises len(c) with respect to #(Beh(c)) has the form c = [1]⊕ X⊕ . . .⊕ Xn

for n = #(Beh(c)) − 2, and we find that: len(c) = len([1] ⊕ X ⊕ . . . ⊕ Xn) =
2n+ 1 = 2(n+ 1)− 3 = 2 ·#(Beh(c))− 3.

Item (2.b): Similarly, #(Beh(c)) is maximal with respect to spc(c) if c ∈
Const. If c is [0] or [1], then #(Beh(c)) ≤ 2 ≤ 2k. If c = Xn for n ≥ 1, then

#(Beh(Xn)) = n+ 2 ≤ 2k · n = 2k+log(n) = 2spc(Xn). qed

We can now state and prove the time complexity of the Mealy machine
construction from rational 2-adic specifications.

3.5.10. Theorem. Let e = ed+em×σ
en

be a rational 2-adic function specification
in rational normal form. The synthesis algorithm from Table 3.1 constructs a
minimal realisation of Beh(e) in time O(Kc) for K = |d|+ |m|+ |n| and some
c ≥ 4, or in terms of input size, in time 2O(2spc(e)).

3.5. Complexity 63

Proof. From Theorem 3.3.10, we have that: M ≤ |d|+ |m|+ |n| = K. Using
Lemma 3.5.9(1a), we find that

len(e) = len(ed) + len(em) + len(en) + 4

≤ 2 · (log(|d|) + log(|m|) + log(|n|)) + 10

≤ 6 · log(K) + 10.

From Lemma 3.3.6 and Definition 3.4.3 it follows that any derivative of e has ra-
tional normal form ew = edw+em×σ

en
, where |dw| ≤ K. Hence by Lemma 3.5.9(1a),

len(ew) = len(edw) + len(em) + len(en) + 4

≤ 2 · (log(K) + log(|m|) + log(|n|)) + 10

≤ 6 · log(K) + 10.

From Proposition 3.5.4(2) it now follows that we can compute and reduce to ra-
tional normal form any derivative of e in time 2O(log(K)). That is, R ∈ 2O(log(K)),
which means there exists a cR ≥ 1 such that R ≤ 2cR log(K) for sufficiently
large K. Similarly, from Proposition 3.5.6(2), we find that comparing nor-
malised derivatives costs E ∈ O(log(K)), i.e., there exists a cE ≥ 1 such that
E ≤ cE · log(K) for sufficiently large K. Hence by Proposition 3.5.1, the overall
complexity of the construction for e is

O(MR+ EM3) = O(K · 2cR log(K) + cE · log(K) ·K3)

= O(K1+cR + cE · log(K) ·K3)

∈ O(Kc) for some c ≥ 4.

Finally, it follows from Lemma 3.5.9(1b) that

K = |d|+ |m|+ |n| ≤ 22spc(ed)
+ 22spc(em)

+ 22spc(en) ≤ 3 · 22spc(e)
,

and hence Kc ∈ 2O(2spc(e)) for any c ≥ 4. qed

Finally, we give the time complexity for our Mealy synthesis algorithm for
rational mod-2 specifications.

3.5.11. Theorem. Let e = d ⊕ q⊗σ
r

be a rational mod-2 function specification
in rational normal form. The synthesis algorithm from Table 3.1 constructs a
minimal realisation of Beh(e) in time 2O(K) where

K = max{#(Beh(d)),#(Beh(q)),#(Beh(r))},

or alternatively, in terms of input size, in time 2O(2spc(e)).

64 Chapter 3. Coalgebraic synthesis of Mealy machines

Proof. From Theorem 3.3.21, we have that: M ≤ 1 + 2K−1. We now have,
using Lemma 3.5.9(2a):

len(e) = len(d) + len(q) + len(r) + 4

≤ 2 · (#(Beh(d)) + #(Beh(q)) + #(Beh(r)))− 5

≤ 6K − 5

For K > 1, it follows from Lemma 3.3.19 that the rational normal form of any
derivative of e is of the form ew = dw+q×σ

r
, where #(Beh(dw)) ≤ K−1. Hence by

Lemma 3.5.9(2a), len(dw) ≤ 2(K− 1)− 3 = 2K− 5, and we have for all w ∈ 2+:

len(ew) = len(dw) + len(q) + len(r) + 4

≤ (2K − 5) + (2K − 3) + (2K − 3) + 4

= 6K − 7.

From Proposition 3.5.4(2) it now follows that we can compute and reduce to
rational normal form any derivative of e in time 2O(K). That is, R ∈ 2O(K),
which means there exists a cR ≥ 1 such that R ≤ 2cR·K for sufficiently large
K. Similarly, from Proposition 3.5.6(2), we find that comparing normalised
derivatives costs E ∈ O(K), i.e., there exists a cE ≥ 1 such that E ≤ cE ·K for
sufficiently large K. Hence by Proposition 3.5.1, the overall complexity of the
construction for e is

O(MR+ EM3) = O((1 + 2K) · 2cR·K + cE ·K · (1 + 2K)3)

∈ O(2(1+cR)·K + 23K)

∈ 2O(K).

To prove the doubly-exponential bound in spc(e), it suffices to show that K ≤
2spc(e). We have from Lemma 3.5.9(2b) that #(Beh(d)) ≤ 2spc(d) ≤ 2spc(e).
Similarly, for q and r. It follows that, K ≤ 2spc(e), qed

3.5.12. Remark. The upper bounds of Theorems 3.5.10 and 3.5.11 are doubly-
exponential in spc(e) due to our O(log(n))-size representation of Xn. If we had
chosen not to include powers of X as atomic expressions, we would have a length
function slen for which slen(Xn) = 2n− 1, and we have:

1. | val(c)| ≤ 2slen(c) for all c ∈ CPoly2Adic.

2. #(Beh(c)) ≤ slen(c) for all c ∈ CPolyMod2.

This would lead to a time complexity of 2O(slen(e)) for rational 2-adic and mod-2
specifications e in normal form, but only under the assumption that the length
of derivatives and computing polynomial normal forms would be of the same
complexity as with our O(log(n))-size representation of Xn. The amount of
memory space needed to represent an expression e would now be O(slen(e)). �

3.6. Conclusion 65

3.6 Conclusion

Building on [132, 55], we have shown how to construct a minimal Mealy realisa-
tion from a rational specification in 2-adic or mod-2 bitstream arithmetic. The
construction is an example of what we call coalgebraic synthesis, since it is based
on the idea of defining a coalgebraic structure on the set of specifications, and
constructing realisations by computing subcoalgebras. The correctness of our
Mealy machine construction is clear from the coalgebraic modelling of Mealy
machines and the coinductive definition of the bitstream operations. Based on
experiments using our implementation of the synthesis algorithm, we were able
to conjecture and prove upper bounds on the size of the constructed automaton
in terms of the parameters of the specification.

The relationship between 2-adic numbers and digital circuits has been inves-
tigated by Vuillemin [157, 156, 155]. In [155], Vuillemin shows how to construct
from a 2-adic function specification a synchronous decision diagram, a type of
structure which relates to causal bitstream functions and sequential circuits,
roughly as binary decision diagrams relate to Boolean functions and combi-
national circuits. This construction is also based on the notion of derivative,
but the resulting structure is closer to an actual circuit than a Mealy machine.
Vuillemin [155] does not report on the complexity of the construction.

Closely related to the work presented in this chapter, is the coalgebraic
synthesis of Mealy machines from logic specifications by Bonsangue, Rutten &
Silva [27]. Here, Mealy machines are specified in a modal language extended
with a single fixpoint operator. This language is expressive, meaning that every
finite Mealy machine can be specified by a formula, and conversely, every (con-
sistent) formula is realisable. However, the constructed Mealy machine is not
necessarily minimal. The results from [27] have been generalised to coalgebras
for Kripke polynomial functors in [28]. We point out that in [27, 28] the spec-
ification language is derived from the functor, and its expressions are therefore
in close correspondence with the semantic structure. The bitstream languages
of this chapter are more high-level, and most likely not useful for specifying
non-arithmetic circuit behaviours such as n-bit registers and queues, although
we do not exclude that it is possible to do so.

Synthesis of Mealy (or Moore) type automata from logic specifications has a
long history [38, 31, 117, 149, 64, 79]. The main idea here is that a logic formula ϕ
(in e.g. monadic second order logic or linear time temporal logic) specifies a re-
lation Rϕ between input and output streams, and from ϕ one can construct an
automaton Aϕ which accepts Mealy behaviours f which satisfy ϕ, meaning that
for all input streams σ, Rϕ(σ, f(σ)) holds. The actual construction is carried out
as a constructive nonemptiness test of Aϕ. This automata-theoretic approach to
synthesis differs from coalgebraic synthesis in the following ways: (i) A monadic
second order formula ϕ defines a relational requirement which may have several

66 Chapter 3. Coalgebraic synthesis of Mealy machines

Mealy behaviours as a solution, whereas a specification e in coalgebraic syn-
thesis corresponds to at most one Mealy behaviour, namely Beh(e). (ii) The
automaton Aϕ described above has the property that the finite-state require-
ment is built in: If Aϕ accepts some Mealy coalgebra, then it accepts one with
finitely many states, and such a solution is constructed during the nonempti-
ness test. In coalgebraic synthesis, in general, and for our arithmetic bitstream
expressions in particular, we need to know that a specification has a finite re-
alisation before we start our construction, since otherwise the construction will
not terminate. (iii) The automaton constructions and transformations carried
out during automata-theoretic synthesis are of a considerable (conceptual and
computational) complexity, whereas the coalgebraic construction of Mealy ma-
chines by computing derivatives is direct and conceptually simple. In coalgebraic
Mealy synthesis, the complexity arises from the need to decide equivalence of
expressions.

An interesting combination of synthesis using derivatives and automata-
based techniques is given by Redziejowski in [121] where deterministic ω-auto-
mata are constructed using derivatives of ω-regular expressions. This construc-
tion, however, is not a straightforward generalisation of Brzozowski’s algorithm,
and it involves techniques similar to those used in the determinisation of Büchi
automata [134]. It would be interesting to find out how Redziejowski’s con-
struction relates to coalgebraic synthesis. Coalgebraic synthesis of ω-automata
presupposes a coalgebraic modelling of ω-automata. Even for the class of de-
terministic Büchi automata such a coalgebraic modelling seems not to exist,
at least not over the category of sets and functions. We base this claim on
the observation that there exist equivalent deterministic Büchi automata with
a minimal number of states, but without any intuitive notion of bisimulation
linking them. Finally we mention that Mealy synthesis is also carried out in the
settings of learning [105] and neural networks [144].

In general, the most challenging part of coalgebraic synthesis seems to be the
need for efficient equational reasoning over the chosen specification language. In
fact, the ACI-equivalence check used in Brzozowski’s method is by some con-
sidered too inefficient to be practical. Various techniques have been developed
to avoid this problem in the construction of DFA’s from regular expressions.
We give a brief overview, since the ideas behind these techniques could per-
haps be generalised and help make coalgebraic synthesis more efficient. Berry
& Sethi [22] combine the elegance of Brzozowski’s method with the efficiency
of an earlier construction by McNaughton & Yamada [95]. Berry & Sethi prove
as their main theorem that if e is a regular expression in which all letters are
unique, then all derivatives of e are unique up to ACI-equivalence. Hence Brzo-
zowski’s algorithm can be carried out on e without the need for the expensive
ACI-equivalence check. In their improved algorithm, starting from a regular
expression e, all letter occurrences in e are subscripted to yield an e′ in which

3.6. Conclusion 67

all letters are unique. Then the fast version of Brzozowski’s construction is car-
ried out on e′. Removing the letter subscripts from the resulting automaton A′,
yields a nondeterministic automaton A which accepts the language denoted by
e. The final step is to determinise A using the subset construction. Antimirov [9]
improves on the efficiency of Brzozowski’s method by introducing partial deriva-
tives of regular expressions which give rise to a direct construction of nondeter-
ministic finite automata from regular expressions. Subsequently, Champarnaud
& Ziadi [33] have combined Antimirov’s construction with the method of Berry
& Sethi [22] by defining canonical derivatives of regular expressions, leading to
yet another improvement in complexity.

Another way of characterising minimal realisations of regular languages,
which seems closely related to coalgebraic synthesis, is found in the work by
Gehrke et al. [45]. The authors consider the Boolean algebra Reg(A) of regular
languages over A extended with the operations of left and right residuals of lan-
guages, \ and / , and show that it is dual to the topological space of profinite
words over A extended with product. Given a regular language L ∈ Reg(A),
the subalgebra generated by {L} in (Reg(A∗), \, /) has as its dual space the
syntactic ordered monoid of L, and hence it corresponds directly to a mini-
mal deterministic automaton accepting L. We would like to understand better
the connection between the work in [45] and the coalgebraic view on regular
languages (cf. Subsection 2.4.2).

We conclude by mentioning that bialgebras could play an important role in
coalgebraic synthesis. Informally stated, a bialgebra consists of an algebra and
a coalgebra on the same carrier set which satisfy certain compatibility require-
ments. The combination of algebraic and coalgebraic structure on the set of
specifications is central to coalgebraic synthesis. It would be good to under-
stand the exact role played by bialgebras in coalgebraic synthesis, and whether
results on bialgebras are useful for proving properties of coalgebraic synthesis.
For regular expressions and deterministic automata these questions have been
addressed by Jacobs [70].

Chapter 4

Coalgebraising subsequential transducers

4.1 Introduction

Subsequential transducers generalise classic deterministic automata as well as
Mealy [96] and Moore [101] type state machines. They can be described as input
deterministic automata which produce output words on transitions and termi-
nal output at accepting states. The input/output behaviour of a subsequential
transducer is the partial word function it computes, and whose domain consists
of the words accepted by the underlying automaton. This combination of lan-
guage recognition and transduction makes subsequential transducers useful in
areas such as lexical analysis, coding theory, and more recently, in speech and
language processing (cf. [98, 99]).

Schützenberger [139] introduced subsequential transducers as a generalisa-
tion of sequential transducers by adding the features of non-accepting states and
terminal output. At this time, the theory of sequential transducers and their
behaviours was already well developed as witnessed by Eilenberg [41]. Sub-
sequential transducers have been studied, in particular, by Choffrut [36, 37]
who showed that subsequential transducers can be minimised via a normali-
sation construction; that any partial word function is computed by a minimal
subsequential transducer (possibly with infinitely many states); and that the
Ginsburg-Rose characterisation theorem for sequential functions can be gener-
alised to the subsequential case. Other results on subsequential transducers may
be found in [17, 18, 29].

In the abovementioned work, subsequential transducers have been studied
from the algebraic perspective on automata. The aim of this chapter is to place
subsequential transducers in a coalgebraic framework, and to gain a deeper un-
derstanding of existing notions and constructions on subsequential transducers
by investigating whether they are instances of more general mathematical (or
coalgebraic) concepts. Deterministic automata and Mealy/Moore machines are
by now well-known examples of automata which can be modelled as coalgebras,
(see the Introduction and Chapter 3). The starting point of our investigation

69

70 Chapter 4. Coalgebraising subsequential transducers

is whether this coalgebraic modelling can be generalised to the class of subse-
quential transducers.

This chapter has three main parts. In the first part (Section 4.3), we give the
formal definition of subsequential transducers, subsequential structures, their
morphisms and behaviour. Next, we investigate the relationship between various
subcategories of subsequential transducers and structures. We will see that
the classes of coaccessible, normalised and minimal subsequential structures
form a sequence of nested, full, reflective subcategories of the category of all
subsequential structures. Each move to a reflective subcategory can be seen as
a step towards an optimal representation. These results give a clear break-down
of the essential steps of minimisation and parallel known results for deterministic
automata (cf. [3, 5]).

In the second part (Section 4.4), we turn to the coalgebraic modelling. We
will see that, although subsequential structures as objects have the type of
coalgebras for a functor S , they cannot properly be regarded as coalgebras, in
general, since the associated notion of S -coalgebra morphism is too strict with
respect to the intended word function semantics. However, we will show that
in the subcategory NSubseq of normalised subsequential structures, subsequen-
tial morphisms and S -coalgebra morphisms coincide, hence NSubseq is a full
subcategory of Coalg(S). This result is the basis for our slogan that normali-
sation is coalgebraisation. We also show that NSubseq has a final object, which
must then also be final among all subsequential structures, since NSubseq is
reflective. Choffrut’s [37] results on the existence and properties of minimal
subsequential transducers can be derived from the existence of this final ob-
ject. The coalgebraic modelling of normalised structures also entails that in
NSubseq, state behaviour coincides with S -bisimilarity, and we describe how
to adapt the minimisation algorithm for finite deterministic automata to finite
normalised structures. Finally, we show that the subclasses of sequential and
(partial) Mealy structures each are a category of coalgebras for some subfunctor
of S and show that their final objects are substructures of the final normalised
structure.

In the third part (section 4.5), we present an alternative coalgebraic mod-
elling for subsequential transducers in which all states are final. We call such
subsequential transducers (and their underlying structures) step-by-step. This
coalgebraic representation is obtained by a structural transformation which cor-
responds with taking the differential of the behaviour. These so-called differen-
tial representations can be seen as sequential transducers which produce output
in the free group B(∗) rather than the free monoid B∗, and they can be mod-
elled as coalgebras for a functor S0

(∗). We can thus say that taking differentials
is also a form of coalgebraisation. Moreover, like normalisation, taking diffe-
rentials is functorial and a reflector. The practical interest of this coalgebraic
characterisation is that it provides us with an alternative method for deciding

4.2. Preliminaries 71

equivalence of step-by-step transducers which does not require normalisation.
This method consists in computing state equivalence in the differential repre-
sentation, and we compare it with the normalise-minimise approach at the end
of the section. We also show that the minimal differential representation is the
differential representation of the minimal, normalised representation.

The main contributions of this chapter are: (1) The classification of vari-
ous subclasses of subsequential structures and transducers in terms of reflective
subcategories and their coalgebraic or non-coalgebraic nature. In particular,
the observation that normalisation and taking differentials are reflectors to cat-
egories of coalgebras. (2) A detailed description of the minimisation algorithms
for normalised structures and differential representations. (3) A new approach
for deciding equivalence of step-by-step transducers, which due to its local na-
ture may be an efficient alternative to the existing method which requires a
global normalisation procedure.

4.2 Preliminaries

4.2.1 Words, streams and functions.

Let X and Y be sets. A (partial) function from X to Y is denoted by f : X 99K
Y . We will write f : X → Y when f is a total function from X to Y . The
domain and range of f : X 99K Y are denoted dom(f) and rng(f), respectively.
As is standard, we can view a partial function f : X 99K Y as a total function
f : X → Y ∪ {?}, where ? is the undefined value, by letting f(x) = ? for all
x 6∈ dom(f). We will use the notation 1 = {?} and write 1 + Y instead of
{?}∪Y . For a function f : X 99K Y , and subsets C ⊆ X and D ⊆ Y , the direct
f -image of C is denoted f(C) = {f(x) ∈ Y | x ∈ C}, the inverse f -image of D
is f−1(D) = {x ∈ X | f(x) ∈ D}, and the restriction of f to C is f�C .

The free monoid over a set X is the monoid (X∗, ε, �) where X∗ is the set
of all (finite) words over X, ε is the empty word, and u �w, or simply uw,
denotes the concatenation of two words u,w ∈ X∗. For all u,w ∈ X∗, we write
u � w if u is a prefix of w, i.e., there exists a v ∈ X∗ such that w = uv. The
length of a word w is denoted by |w| and we define |?| = 1. If f, g : X → B∗,
then f � g : X → B∗ is the function defined by (f � g)(x) = f(x) � g(x). The
free group over X is denoted by X(∗), and the formal inverse of x ∈ X is
written x. For w ∈ X∗, the inverse of w = x1x2 . . . xk is w = xk . . . x2 x1,
and ε = ε. We will apply concatenation and inverse to obtain prefixes and
suffixes of words: If w = uv ∈ X∗, then u �w = v and w � v = u. In the case
u is not a prefix of w ∈ X∗, then u �w is read as an element of X(∗). For
example, aab � ab = b � a � a � ab = ab � b. A subset T ⊆ X∗ is called prefix-closed
if whenever u � w and w ∈ T then u ∈ T . A partial function f : X∗ 99K Y ∗ is
prefix-preserving if dom(f) is prefix-closed, and for all u,w ∈ dom(f), if u � w

72 Chapter 4. Coalgebraising subsequential transducers

then f(u) � f(w). For a set S ⊆ X∗ of words, we denote by lcp(S) the longest
common prefix of words in S with the convention that lcp(∅) is undefined.

4.2.2 Reflective subcategories

We now recall the definition and some facts of reflective subcategories (see e.g. [2,
3, 91]). Let C be a subcategory of D, and D an object in D. A C-reflection
arrow for D is a D-morphism rD : D → CD to some C-object CD which has the
following universal property. For any C ′ ∈ C and any D-morphism f : D → C ′

there is a unique C-morphism f ′ : CD → C ′ such that f = f ′ ◦ rD. That is, the
following diagram commutes.

D
rD //

f B
BB

BB
BB

B CD

∃!f ′
���
�
�

C ′

The subcategory C of D is reflective in D if every D-object has a C-reflection ar-
row. As an example, we mention that in the category of deterministic automata
(DA), the subcategory of minimal DA’s is reflective (see [5, Chapter VI.1] and
also [3, Example, 4.17]). More generally, for any Set-functor F , minimal F -
coalgebras are reflective in Coalg(F) (cf. [50]).

An equivalent formulation of reflective subcategory is the following. A sub-
category C of D is reflective in D if the embedding functor E : C → D has a left
adjoint R : D → C. This left adjoint R is called a reflector. Once a choice of
reflection arrow has been made, the functor R can be defined by R(D) = CD,
and for f : D1 → D2, R(f) is the C-arrow determined by the following diagram:

D1

f

��

rD1 // R(D1)

R(f)
��

D2

rD2 // R(D2)

Consequently, if C is reflective in D, then a final object C in C is also final in D,
due to the bijection of Hom-sets: D(D,C) ∼= C(R(D), C). Namely, the unique
morphism hR(D) : R(D) → C corresponds to a unique morphism hD : D → C.
Finally, we will use that reflectors compose, hence, if A is a reflective subcategory
of B, and B is a reflective subcategory of C, then A is a reflective subcategory
of C. These last two facts follow from more general results on adjoints. For
example, if the embedding functor E : C → D has a left adjoint, it is itself a
right adjoint. Now since right adjoints preserve limits, and final objects are
limits, it follows that a final object in C is also final in D.

4.3. Subsequential structures and transducers 73

4.3 Subsequential structures and transducers

In this section we first review the basic definitions of subsequential transducers
(cf. [36, 37]), and define subsequential structures and their morphisms. Next,
we describe the subclasses of coaccessible, normalised and minimal subsequen-
tial structures. In particular, we characterise their morphisms and show that
they form a sequence of nested, reflective subcategories in the category of all
subsequential structures.

4.3.1 Basic definitions

Throughout this chapter, we assume we are given two (possibly infinite) sets
A and B, which we refer to as the input and output alphabet, respectively. A
subsequential transducer can be seen as a deterministic automaton (DA) which
for every accepted input word from A∗ produces an output word in B∗. This
output is generated by outputting words on transitions as well as a terminal
output word associated with final states. Moreover, the subsequential transducer
may be equipped with an initial prefix which is a word that will be prefixed to
the output generated from processing the input. Note that if the input word
leads to a non-accepting state, then the output will be considered undefined.
One should imagine that the machine starts with writing the initial prefix to
some internal buffer, and as it reacts to the input, it concatenates the output
from the transitions it has taken to the buffer word. When the end marker of
the input word is encountered the machine checks whether it is in an accepting
state; if yes, then it concatenates the terminal output of the current state to the
buffer word, and outputs the result; otherwise it outputs the undefined value.

We mention that the initial prefix is needed in order to normalise subsequen-
tial transducers (see Subsection 4.3.3), but it does not add any expressivity, since
a nontrivial prefix can always be “pushed into” the transducer by prefixing it
to the output on all transitions leaving the initial state.

The input structure is assumed deterministic, but not total, that is, for
each state and each input letter there is at most one transition available. For
mathematical reasons, we allow the set of states to be empty, in which case the
initial state and initial prefix are considered undefined.

4.3.1. Definition. A subsequential structure is a 4-tuple S = (Q, o, d, r) where
Q is a set of states, o : Q→ (A 99K B∗) is an output function, d : Q→ (A 99K Q)
is a next-state function and r : Q 99K B∗ is a terminal output function. We
require that for all q ∈ Q, dom(o(q)) = dom(d(q)) =: supp(q), called the support
of q. The set of final (or accepting) states of S is F := dom(r). If q 6∈ F then
q called an internal state. The underlying deterministic automaton of S is the
structure (Q, d, F). If A,B and Q are finite sets, then S is finite.

74 Chapter 4. Coalgebraising subsequential transducers

A subsequential transducer is a 6-tuple T = (Q, o, d, r, i,m) where (Q, o, d, r)
is a subsequential structure, and if Q 6= ∅, i ∈ Q is the initial state, and m ∈ B∗

is the initial prefix. In case Q = ∅, i and m are considered undefined, and T is
called the empty transducer. �

The usual notion of path in subsequential structures applies. A path is called
final if it ends in a final state, and a state q is coaccessible if there exists a final
path starting in q. The set of coaccessible states of a subsequential structure S
(or transducer T) will be denoted by Coacc(S) (respectively, Coacc(T)). In a
subsequential transducer a final path is successful if it starts in the initial state,
and a state q is accessible (or reachable) if there is a path from the initial state
to q. The set of accessible states of a subsequential transducer T are denoted
by Acc(T). A subsequential transducer is called trimmed, if all its states are
accessible and coaccessible.

Let S = (Q, o, d, r) be a subsequential structure and q ∈ Q a state. We
extend the output and next-state functions at q to maps o(q) : A∗ 99K B∗ and
d(q) : A∗ 99K Q in the following standard manner. For q ∈ Q, a ∈ A and w ∈ A∗,
we define

d(q)(ε) = q, d(q)(wa) = d(d(q)(w))(a),
o(q)(ε) = ε, o(q)(wa) = o(q)(w) � o(d(q)(w))(a).

with the proviso that the left-side is defined only if the right-side is. The set of
words accepted from q in the underlying DA (Q, d, F) is denoted by L(q), i.e.,
L(q) = {w ∈ A∗ | d(q)(w) ∈ F}.

A subsequential transducer T computes a partial word function by its trans-
formation of input words to output words. Similarly, given a subsequential
structure S and a state q in S, we can consider the partial word function com-
puted by S when starting in q.

4.3.2. Definition. Given a subsequential structure S = (Q, o, d, r) and a state
q ∈ Q, the behaviour of q (in S) is the partial function [[q]]S : A∗ 99K B∗ defined
for all w ∈ L(q) by:

[[q]]S(w) = o(q)(w) � r(d(q)(w)). (4.1)

Given two subsequential structures S and S′, two states q in S and q′ in S′ are
equivalent if [[q]]S = [[q′]]S′ .

The behaviour of a subsequential transducer T = (S, i,m) is the partial
function [[T]] : A∗ 99K B∗ defined for all w ∈ L(i) by:

[[T]](w) = m � [[i]]S(w). (4.2)

We say that T computes [[T]], and two subsequential transducers T1 and T2 are
equivalent if [[T1]] = [[T2]]. A function f : A∗ 99K B∗ is called subsequential, if f
is the behaviour of a finite subsequential transducer. �

4.3. Subsequential structures and transducers 75

For notational simplicity we sometimes leave out the subscript from [[q]]S
when S is clear from the context, or we use some appropriate indexing, for
example, [[q]]1 instead of [[q]]S1

, etc.

4.3.3. Example. Consider the subsequential transducers T1 and T2 depicted
below. The initial state is marked by an incoming, sourceless arrow labelled with
the initial prefix; a transition from a state q to a state q′ on input letter a with
output w is illustrated as an arrow from q to q′ with label a|w; and final states
are marked with an outgoing double-arrow labelled with the terminal output.

T1 :
ε
��

q2

a|b
##
q1

a|a

cc
b|a // q3

ε

KS T2 :
a
��

s2

a|ε
##
s1

a|ba

cc
b|ε // s3

ε

KS

It is easy to see that T1 and T2 compute the same partial function f : {a, b}∗ 99K
{a, b}, where dom(f) = {(aa)kb | k ∈ ω}, and for all k ∈ ω, f((aa)kb) = (ab)ka.
Hence T1 and T2 are equivalent. �

The notion of morphism between trimmed subsequential transducers was in-
troduced by Choffrut [37]. However, it applies also to subsequential transducers
and structures in general, and in fact, under the assumption of coaccessibility,
it can be somewhat simplified as we will see in subsection 4.3.2. Our current
definition of subsequential morphisms is a slight variation on Choffrut’s. See
Remark 4.3.11 at the end of this subsection for more details on how the two
relate to each other. Furthermore, we remark that our current definition dif-
fers from the one given earlier in [53], which turns out to be the correct notion
for coaccessible structures, but not for subsequential structures in general, cf.
subsection 4.3.2.

The below definition of subsequential morphisms may seem complicated at
first sight, so we first try to give some intuitions. A morphism of subsequential
transducers is a state mapping α which preserves behaviour. In order to guar-
antee the behaviours of q and α(q) have the same domains, it suffices to require
that α respects the structure of the underlying DA’s, when restricting to coac-
cessible states. In Example 4.3.3 above, the underlying DA’s are isomorphic,
and intuitively we would like the underlying DA-isomorphism to be a morphism
from T1 to T2, since T2 is just like T1 except that, internally, T2 produces its
output a bit faster than T1. Choffrut’s observation in [36] was that, in gen-
eral, it is possible to systematically shift some of the output letters “upstream”
without changing the input-output behaviour. The definition of subsequential
morphism essentially requires the existence of an output shift that makes the
two subsequential transducers produce their output in a synchronised manner.
We now give the formal definition.

76 Chapter 4. Coalgebraising subsequential transducers

4.3.4. Definition. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be two
subsequential structures. A function α : Q1 99K Q2 is a subsequential morphism
from S1 to S2 (notation: α : S1 99K S2), if there exists a function β : Q1 → B∗

such that the following conditions are satisfied for all q ∈ Q1:

(next) ∀a ∈ A : α(d1(q)(a)) = d2(α(q))(a),

(out) ∀a ∈ A : if q, d1(q)(a) ∈ dom(α)
then β(q) � o2(α(q))(a) = o1(q)(a) �β(d1(q)(a)),

(acc) α−1(F2) = F1,

(term-out) ∀q ∈ F1 : β(q) � r2(α(q)) = r1(q).

We will use the notation (α, β) : S1 99K S2 to say that α is a subsequential
morphism from S1 to S2 with witnessing function β.

Given two subsequential transducers T1 = (S1, i1,m1) and T2 = (S2, i2,m2),
a subsequential morphism (α, β) : S1 99K S2 is a subsequential (transducer) mor-
phism from T1 to T2, if whenever T1 and T2 are not empty, α and β satisfy:

(init) α(i1) = i2,

(ε-in) m2 = m1 �β(i1). �

Note that in Definition 4.3.4, the condition (next) should be read with a bit
of care, due to the next-state function and α being partial maps. For example,
if a 6∈ supp(α(q)), then (next) implies that either a 6∈ supp(q) or d1(q)(a) 6∈
dom(α). On the other hand, if a ∈ supp(α(q)), then a ∈ supp(q).

4.3.5. Example. We can now easily verify that in Example 4.3.3 the map
α(qj) = sj , j ∈ {1, 2, 3}, is a subsequential morphism from T1 to T2 by tak-
ing β(q1) = a, β(q2) = ba and β(q3) = ε. For example, to see that the (out)
condition holds, we have

β(q1) � o2(s1)(a) = a � ba = a � ba = o1(q1)(a) �β(q2)
β(q2) � o2(s2)(a) = ba � ε = b � a = o1(q2)(a) �β(q1)
β(q1) � o2(s1)(b) = a � ε = a � ε = o1(q1)(b) �β(q3) �

We allow a subsequential morphism α to be partial in order to be able to
ignore parts of the automaton structure which do not contribute to the be-
haviour. This is the reason why the condition (out) is restricted to states in
dom(α). The following lemma states that only states without behaviour may be
ignored. Consequently, the empty map can only be a subsequential morphism
if no states are coaccessible.

4.3.6. Lemma. Let S1 and S2 be subsequential structures. If α : S1 99K S2 is a
subsequential morphism, then Coacc(S1) ⊆ dom(α).

4.3. Subsequential structures and transducers 77

Proof. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2), and assume α : S1 99K
S2. By definition, q ∈ Coacc(S1) iff there exists a w ∈ A∗ such that d1(q)(w) ∈
F1. We show by induction on the length of w that for all q ∈ Q1, d1(q)(w) ∈ F1

implies q ∈ dom(α). Base case: If d1(q)(ε) = q ∈ F1, then by (acc) we have
α(q) ∈ F2, hence q ∈ dom(α). Induction step: Let w = av for a ∈ A and v ∈ A∗,
and assume d1(q)(av) ∈ F1. Since d1(q)(av) = d1(d1(q)(a))(v) ∈ F1, by applying
the induction hypothesis to d1(q)(a) and v, we have d1(q)(a) ∈ dom(α). Now it
follows from (next) that d2(α(q))(a) is defined, hence, in particular, q ∈ dom(α).

qed

4.3.7. Example. Consider the following two variations on the subsequential
transducers of Example 4.3.3.

T′1 :
ε
��

q4 q2

a|b
""b|aoo q1

a|a

bb
b|a // q3

ε

KS T′2 :
a
��

s4 s2

a|ε
""b|boo s1

a|ba

bb
b|ε // s3

ε

KS

It can easily be confirmed that the map α given in Example 4.3.5 is also a
subsequential morphism from T′1 to T′2 by defining β in q4 to be any value.
The states q4 and s4 are not coaccessible, and hence do not contribute to the
behaviour of T′1 and T′2. In the next subsection (Lemma 4.3.13), we will see
that if (α, β) is a subsequential morphism, then β is uniquely defined on all
coaccessible states. In this example, this implies that q4 cannot be in the domain
of any subsequential morphism from T′1 to T′2, since there is no value for β(q4) ∈
B∗ which would satisfy the (out) condition. �

As we mentioned already, a subsequential morphism α respects the underly-
ing (partial) DA-structure. This implies that α preserves input language equiv-
alence, i.e., domains of behaviours. The proof is standard, but we include it for
completeness’ sake.

4.3.8. Lemma. If S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) are subsequen-
tial structures and α : S1 99K S2 a subsequential morphism, then for all q ∈
dom(α) : L(q) = L(α(q)). In particular, q ∈ Coacc(S1) iff α(q) ∈ Coacc(S2).

Proof. We prove by induction on the length of w ∈ A∗ that for all q ∈ dom(α):
d1(q)(w) ∈ F1 iff d2(α(q))(w) ∈ F2. The base case follows from (acc). Now
assume w = av for a ∈ A and v ∈ A∗. We have:

d1(q)(av) ∈ F1 ⇐⇒ d1(d1(q)(a))(v) ∈ F1
(IH)⇐⇒ d2(α(d1(q)(a)))(v) ∈ F2

(next)⇐⇒ d2(d2(α(q))(a))(v) ∈ F2

⇐⇒ d2(α(q))(av) ∈ F2.

78 Chapter 4. Coalgebraising subsequential transducers

The last part of the lemma follows from the fact that q ∈ Coacc(S1) iff L(q) 6= ∅,
similarly for α(q). qed

Subsequential morphisms preserve the behaviour of subsequential transduc-
ers, but not necessarily the behaviour of states, i.e., (α, β) : S1 99K S2 does not
imply that for all q in dom(α), [[q]]1 = [[α(q)]]2. This is, for example, the case
in Example 4.3.3. Instead, given a subsequential morphism (α, β), the state
behaviour of α(q) can be obtained from the state behaviour of q by explicit
mention of β(q).

4.3.9. Proposition. Let T = (S1, i1,m1) and T2 = (S2, i2,m2) be subsequen-
tial transducers. We have:

1. If (α, β) : S1 99K S2, then for all q ∈ dom(α) : [[q]]1 = β(q) � [[α(q)]]2.

2. If α : T1 99K T2, then [[T1]] = [[T2]].

Proof. Item (1): Let S1 = (Q1, o1, d1, r1), S2 = (Q2, o2, d2, r2) and assume
that (α, β) : S1 99K S2. From Lemma 4.3.8 it follows immediately that for all
q ∈ dom(α), dom([[q]]1) = dom([[α(q)]]2), hence, in particular, [[q]]1 is the empty
map if and only if [[α(q)]]2 is the empty map. We prove by induction on the
length of w ∈ dom([[q]]1) that [[q]]1(w) = β(q) � [[α(q)]]2(w). Base case:

[[q]]1(ε) = r1(q)
(term-out)

= β(q) � r2(α(q)) = β(q) � [[α(q)]]2.

Induction step: Let w = av ∈ dom([[q]]1) where a ∈ A and v ∈ A∗. Note that
this implies that q and d(q)(a) are in dom(α). We have:

[[q]]1(av) = o1(q)(a) � [[d1(q)(a)]]1(v)
(IH)
= o1(q)(a) �β(d1(q)(a)) � [[α(d1(q)(a))]]2(v)

(out)
= β(q) � o2(α(q))(a) � [[α(d1(q)(a))]]2(v)

(next)
= β(q) � o2(α(q))(a) � [[d2(α(q))(a)]]2(v)

= β(q) � [[α(q)]](av).

Item (2): Let T1 = (S1, i1,m2), T2 = (S2, i2,m2) and (α, β) : T1 99K T2 be
a subsequential transducer morphism. By definition, for w ∈ A∗: [[T1]](w) =
m1 � [[i1]]1(w). From item (1) and (init), we get [[T1]](w) = m1 �β(i1) � [[i2]]2(w),
and finally from (ε-in), [[T1]](w) = m2 � [[i2]]2(w) = [[T2]](w). qed

Subsequential morphisms can be composed as described in the following
lemma (the straightforward proof is omitted).

4.3.10. Lemma. If (α1, β1) : S1 99K S2, and (α2, β2) : S2 99K S3, are subsequen-
tial morphisms, then (α2 ◦ α1, β1 � (β2 ◦ α1)) : S1 99K S3.

4.3. Subsequential structures and transducers 79

For a subsequential structure S = (Q, o, d, r), we define the identity mor-
phism idS on S to be the identity map idQ on the state set Q. It is eas-
ily seen that idQ is a subsequential morphism from S to S by taking β = ε
(the constant function equal to ε everywhere). Hence subsequential structures
and subsequential morphisms form a category Subseq. Similarly, for a sub-
sequential transducer T with state set Q, the identity morphism on T is de-
fined as idT := idQ, and subsequential transducers and subsequential trans-
ducer morphisms form a category SubseqTra. Note that although subsequential
morphisms allow a non-trivial output shift β, an isomorphism in Subseq is a
subsequential morphism (α, β) : S1 99K S2 for which α is a bijection between
the state sets and β �Coacc(S1)= ε. To see this, suppose S1 = (Q1, o1, d1, r1),
S2 = (Q2, o2, d2, r2), (α1, β1) : S1 99K S2 and (α2, β2) : S2 99K S1 such that
α2 ◦ α1 = idS1 and α1 ◦ α2 = idS2 . Clearly, α1 : Q1 → Q2 is a bijection.
From condition (term-out) we get that for all q ∈ F1: β1(q) = r1(q) � r2(α1(q))
and β2(α1(q)) = r2(α1(q)) � r1(q). This means that β1(q) = β2(α(q)). Since
β1 and β2 take values in B∗, we must have that β1(q) = β2(α1(q)) = ε for
all q ∈ F1. We can extend this argument to show that for all q ∈ Coacc(S1),
β1(q) = β2(α1(q)) = ε by induction on the distance of a state q to F1 (as in the
proof of Lemma 4.3.8) and condition (out).

4.3.11. Remark. Definition 4.3.4 is adapted from Choffrut [37] who defines
morphisms of trimmed subsequential transducers. We remark the following:

(i) Choffrut allows β to take values in B∗ ∪B∗, where B∗ = {w | w ∈ B∗} ⊆
B(∗). This slightly more general definition allows morphisms to exist from T1

to T2, also if T2 sometimes produces its output slower than T1. We find this
an unnecessary generalisation, since it is not needed to prove the existence of a
minimal subsequential transducer (cf. Definition 4.3.28 and Corollary 4.4.8).

(ii) We note that Choffrut also defines a subsequential morphism as a partial
map α, however, since all states in a trimmed subsequential transducer are
coaccessible, it follows from conditions (acc) and (next) (cf. Lemma 4.3.6) that
α must in fact be a total function. �

More results on subsequential transducers and subsequential functions can
be found in [18, 23, 29, 36, 37, 122], including methods of determinisation (Béal
& Carton [18]), and a characterisation of subsequential functions (Choffrut [36])
which generalises the Ginsburg-Rose theorem for sequential functions.

4.3.2 Coaccessible structures and trimmed transducers

We call a subsequential structure (or transducer) coaccessible, if all its states
are coaccessible. We denote by CSubseq the full subcategory of Subseq con-
sisting of coaccessible subsequential structures; similarly, CSubseqTra is the full
subcategory of SubseqTra consisting of coaccessible subsequential transducers.

80 Chapter 4. Coalgebraising subsequential transducers

It is well-known that given a finite (partial) deterministic automaton, one
can obtain the coaccessible part by computing the states that are backwards
reachable from the final states, and the same, of course, holds for subsequen-
tial structures, since coaccessibility is a property defined with respect to the
underlying DA.

4.3.12. Definition (Coaccessible part). Let S = (Q, o, d, r) be a subse-
quential structure. We define the coaccessible part of S as C (S) := (Q′, o′, d′, r)
where Q′ = Coacc(S) and o′ and d′ are the restrictions of o and d to Q′, i.e., for
all q ∈ Q′ and a ∈ A, o′(q)(a) = o(q)(a) and d′(q)(a) = d(q)(a), if d(q)(a) ∈ Q′,
otherwise o′(q)(a) and d′(q)(a) are undefined. �

In the previous subsection, we observed in Lemma 4.3.6 that a subsequential
morphism must be defined on all coaccessible states, hence the morphisms in
CSubseq are total maps. We now show that Definition 4.3.4 ensures that the
witnessing output shift function β is uniquely defined on coaccessible states.

4.3.13. Lemma. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be subsequen-
tial structures and α : S1 99K S2 a subsequential morphism. If β : Q1 → B∗ and
β′ : Q1 → B∗ are both witnessing functions for α, then β�Coacc(S1)= β′�Coacc(S1).

Proof. Let q ∈ Coacc(S1). Then there exists some w ∈ A∗ such that
d1(q)(w) ∈ F1 and w is of minimal length. We show by induction on the length
of w that β(q) = β′(q). If w = ε, then β(q) = β′(q) follows from (term-out).
In the case w = av for v ∈ A∗ and a ∈ A, we have that d1(q)(a) is also coac-
cessible, and v is a word of minimal length labelling a final path starting in
qa = d1(q)(a), hence by induction hypothesis (IH) and (out) it now follows that

β(q)
(out)
= o1(q)(a) �β(qa) � o2(α(q))(a)

(IH)
= o1(q)(a) �β′(qa) � o2(α(q))(a)

(out)
= β′(q). qed

In the next proposition, we characterise the subsequential morphisms be-
tween coaccessible structures.

4.3.14. Proposition. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be
coaccessible subsequential structures. A function α : Q1 99K Q2 is a subsequential
morphism from S1 to S2, if and only if dom(α) = Q1 and there exists a function
β : Q1 → B∗ such that the following conditions are satisfied for all q ∈ Q1:

(supp) supp(q) = supp(α(q)),

(next)C ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)C ∀a ∈ supp(q) : β(q) � o2(α(q))(a) = o1(q)(a) �β(d1(q)(a)),

(acc) α−1(F2) = F1,

(term-out) ∀q ∈ F1 : β(q) � r2(α(q)) = r1(q).

4.3. Subsequential structures and transducers 81

Proof. If α satisfies the conditions, α is clearly a subsequential morphism.
Conversely, if α is a subsequential morphism, then it follows from Lemma 4.3.6
that α is total, and when α is total, condition (next) ensures that supp(q) =
supp(α(q)) for all q ∈ Q1, and the output and next-state conditions need to be
checked exactly for input letters in the support. qed

We will use the notation α : S1 → S2 rather than α : S1 99K S2, when S1 is
coaccessible, in order to emphasise that α is a total map.

4.3.15. Example. Consider the subsequential structures S1 and S′1 underlying
T1 from Example 4.3.3 and T′1 from Example 4.3.7, as illustrated below.

S′1 :

q4 q2
b|aoo

a|b
""
q1

a|a

bb
b|a // q3

ε

KS S1 :

q2

a|b
##
q1

a|a

cc
b|a // q3

ε

KS

Clearly, S1 = C (S′1), and it is easy to see that (idCoacc(S′1), ε) : S′1 99K S1 in
Subseq. �

The morphism in the example above is, in fact, a reflection arrow, and we now
show that coaccessible structures form a reflective subcategory of Subseq. This
result confirms that our definition of subsequential morphisms is the correct
one. It is also an argument for saying that the right way of thinking about
subsequential structures is in terms of their coaccessible part. We will see in the
next subsection that this statement can be sharpened by considering normalised
subsequential structures.

4.3.16. Theorem. Let S be a subsequential structure. We have:

(idCoacc(S), ε) : S 99K C (S) is a CSubseq-reflection arrow for S.

It follows that CSubseq is a reflective subcategory of Subseq, and the map C is
a functor C : Subseq → CSubseq by defining C (α) = α�Coacc(S) for α : S1 99K S2.

Proof. Let S be a subsequential structure. It is straightforward to check that
the map idCoacc(S) is a subsequential morphism from S to C (S). It remains to
show that idCoacc(S) has the desired universal property, that is, for any subse-
quential morphism (α, β) : S 99K S′ in Subseq where S′ is in CSubseq, there is a
unique morphism α′ : C (S) → S′ in CSubseq such that α = α′ ◦ idCoacc(S). We
claim that α′ = α with witnessing function β′ = β�Coacc(S) as illustrated in the
following diagram.

S

(α,β)
&&NNNNNNNNNNNNNN

(idCoacc(S),ε) // C (S)

(α,β�Coacc(S))

���
�
�

S′

82 Chapter 4. Coalgebraising subsequential transducers

To prove our claim, we just have to note that by Lemmas 4.3.6 and 4.3.8 and
the assumption that S′ is coaccessible, it follows that dom(α) = Coacc(S), hence
α = α�Coacc(S)= α ◦ idCoacc(S), and α is clearly unique. It is also easy to see that
β′ = β�Coacc(S) witnesses the fact that α : C (S) → S′ is a morphism. Moreover,
β′ is unique due to Lemma 4.3.13. qed

Subsequential transducers are often assumed to be trimmed (cf. [37]), and
we now look closer at the operations involved in trimming a transducer. First
we note that for subsequential transducers, taking the coaccessible part is not
always a well-defined operation. The reason is that given a subsequential trans-
ducer in which the initial state is not coaccessible and the set of final states is
not empty, restricting to the coacessible part of the underlying structure will
result in an object where the initial state is not an element of the non-empty
state set. Such objects are not subsequential transducers by our definition. Still,
the category CSubseqTra is well-defined, only C is not a functor from SubseqTra
to CSubseqTra. Before we can take the coaccessible part, we must first make T
accessible.

4.3.17. Definition (Accessible part). Let T = (Q, o, d, r, i,m) be a subse-
quential transducer. We define A(T) = (Acc(T), o′, d′, r′, i,m) where o′, d′ and
r′ are the restrictions of o, d and r to Acc(T). A(T) is called the accessible part
of T, and T is called accessible if T = A(T). If T = (S, i,m) is accessible, then
we define C (T) = (C (S), i,m) with i and m undefined if Coacc(S) = ∅. �

A(T) is clearly a subsequential transducer, and for a finite subsequential
transducer T, Acc(T) can be effectively computed as the states that are reach-
able from the initial state. It is now also clear that given an arbitrary subse-
quential transducer T, C (A(T)) is trimmed. Let ASubseqTra and TSubseqTra
denote the full subcategories of SubseqTra consisting of accessible and trimmed
subsequential transducers, respectively.

The notions of accessibility and coaccessibility are properties of the under-
lying deterministic automaton, and the following proposition is therefore easily
adapted to a statement about (partial) deterministic automata.

4.3.18. Proposition. We have:

1. For all T ∈ SubseqTra, idAcc(T) : A(T) 99K T is a subsequential morphism.

2. For all T ∈ ASubseqTra, idCoacc(T) : T 99K C (T) is a TSubseqTra-reflection
arrow.

Proof. We only provide a sketch. For item (1), let T = (Q, o, d, r, i,m)
and A(T) = (Acc(T), o′, d′, r′, i,m). To see that idAcc(T) satisfies (next), let

4.3. Subsequential structures and transducers 83

q ∈ Acc(T) and a ∈ A. We then have idAcc(T)(d′(q)(a)) = ? iff a /∈ supp(q)
iff d(idAcc(T)(q))(a) = ?, since q is accessible. Condition (acc) holds since
F ′ := dom(r′) = F ∩ Acc(T) = id−1

Acc(T)(F). The other conditions from Def-
inition 4.3.4 are checked as easily. Item (2) can be proved along the same lines
as Theorem 4.3.16. qed

Since behaviour is invariant under subsequential transducer morphisms, we
have an easy corollary.

4.3.19. Corollary. For any subsequential transducer T, C (A(T)) is equiva-
lent with T.

In fact, it is also possible to show that for any subsequential transducer T,
idAcc(T) : A(T) 99K T is an ASubseqTra-coreflection arrow for T. A coreflection
arrow is the dual notion of a reflection arrow. Hence trimming a transducer can
be seen as a composition of a coreflection with a reflection. We leave it to the
interested reader to verify this claim, since it will not play any role in the rest
of the chapter.

4.3.3 Normalised subsequential structures

As we have seen in the previous subsection, considering coaccessible subsequen-
tial structures allows us to work with morphisms as total maps and unique
witnessing functions. Still, in spite of this conceptual simplification, checking
whether a morphism exists between two coaccessible structures, or whether two
subsequential transducers are equivalent, is complicated by checking for the ex-
istence of a witnessing output shift function β. In this subsection, we will see
that this problem is eliminated by considering normalised subsequential struc-
tures and transducers. Informally stated, a normalised subsequential transducer
produces its output at maximal speed. Consequently, morphisms between nor-
malised subsequential transducers can only have β = ε as witnessing function.

The definition of normalised subsequential transducers goes back to Chof-
frut [36] who showed that any finite subsequential transducer can be trans-
formed into an equivalent normalised one. Here we formulate Choffrut’s results
for coaccessible subsequential structures, and we show that normalised subse-
quential structures and transducers form reflective subcategories of CSubseq and
CSubseqTra, respectively.

4.3.20. Definition. Let S = (Q, o, d, r) be a coaccessible subsequential struc-
ture, and q ∈ Q. We define a function β̂S : Q→ B∗ by

β̂S(q) = lcp({o(q)(w) � r(d(q)(w)) | w ∈ L(q)}). (4.3)

84 Chapter 4. Coalgebraising subsequential transducers

That is, β̂S(q) is the longest common prefix over all output words on final paths
starting in q. A state q ∈ Q is normalised if β̂S(q) = ε. A subsequential structure
S is normalised, if all states in S are normalised, and a subsequential transducer
T is normalised if its underlying subsequential structure is normalised. �

If T = (S, i,m), then will use the notation β̂T = β̂S, or we may leave out the
subscript altogether if no confusion can arise. Let NSubseq be the full subcate-
gory of CSubseq (and Subseq) consisting of normalised subsequential structures
and subsequential morphisms. Similarly, NSubseqTra is the full subcategory of
CSubseqTra consisting of normalised subsequential transducers.

The meaning of β̂ can be explained informally as follows. Suppose a subse-
quential transducer T is processing an input word w = vu, and after reading v,
the output produced so far is x ∈ A∗ and the current state is q. Now β̂(q)
gives us the longest word which will be output by T in the remainder of the
computation, no matter what u is (assuming w ∈ dom([[T]])). But this means
that the output of β̂(q) is unnecessarily delayed while waiting for T to read the
next input letter. Normalising a subsequential transducer consists in changing
the output functions such that there is no delayed output anywhere.

4.3.21. Definition. Let T = (Q, o, d, r, i,m) be a coaccessible subsequential
transducer. The normalisation of T is the subsequential transducer N (T) =
(Q, o′, d, r′, i,m′) where for all q ∈ Q, and all a ∈ A:

m′ = m � β̂(i), o′(q)(a) = β̂(q) � o(q)(a) � β̂(d(q)(a)), r′(q) = β̂(q) � r(q)
(4.4)

Similarly, if S = (Q, o, d, r) is a subsequential structure, then the normalisation
of S is N (S) = (Q, o′, d, r′), where o′ and r′ are defined as in (4.4). �

Note that in Definition 4.3.21, o′(q)(a) and r′(q) are in B∗ for all states q
and a ∈ A, since β̂(q) is a prefix of both o(q)(a) � β̂(d(q)(a)) and r(q).

Before we characterise subsequential morphisms between normalised struc-
tures, we note that from Proposition 4.3.9 it follows that for any subsequential
morphism (α, β) : S1 → S2 in CSubseq, and all states q in S1:

β̂1(q) = β(q) � β̂2(α(q)). (4.5)

From (4.5) it follows immediately that:

4.3.22. Lemma. Let (α, β) : S1 → S2 be a CSubseq-morphism.

1. If S2 is normalised, then β = β̂1.

2. If S1 and S2 are normalised, then β = ε.

4.3. Subsequential structures and transducers 85

We can now prove that subsequential morphisms between normalised struc-
tures are very much like morphisms between deterministic automata or Mealy
machines.

4.3.23. Proposition. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be nor-
malised subsequential structures. A function α : Q1 → Q2 is a subsequential
morphism if and only if (α, ε) : S1 → S2, i.e., for all q ∈ Q1:

(supp) supp(q) = supp(α(q)),

(next)C ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)N ∀a ∈ supp(q) : o1(q)(a) = o2(α(q))(a),

(acc) α−1(F2) = F1,

(term-out)N ∀q ∈ dom(r1) : r1(q) = r2(α(q)).

Let T1 = (S1, i1,m1) and T2 = (S2, i2,m2) be normalised subsequential trans-
ducers. A subsequential morphism α : S1 → S2 is a subsequential transducer
morphism α : T1 → T2 if and only if whenever T1 and T2 are not empty

(init) α(i1) = i2, and
(ε-in)N m2 = m1.

Proof. First consider the characterisation of subsequential morphisms between
normalised structures. If α : S1 → S2, then by Lemma 4.3.22(2) the (unique)
witnessing function is β = ε. The other direction is clear. The characterisation
of morphisms between normalised transducers follows easily from the result for
structures. qed

An easy consequence of Lemma 4.3.22 is that subsequential morphisms be-
tween normalised structures preserve state behaviour.

4.3.24. Proposition. If α : S1 → S2 is a subsequential morphism in NSubseq,
then for all states q in S1: [[q]]1 = [[α(q)]]2.

Proof. From Proposition 4.3.9, we have for all q in S1 that [[q]]1 = β(q) � [[α(q)]]2.
Since S2 is normalised, it follows from Lemma 4.3.22(2) that β(q) = ε, hence
[[q]]1 = [[α(q)]]2. qed

We now show that normalisation is a reflector. This result takes the argu-
ment from the previous subsection for coaccessible structures and transducers
a step further, so that we now can say that the right way of thinking about
subsequential structures and transducers is in terms of their normalisation.

86 Chapter 4. Coalgebraising subsequential transducers

4.3.25. Theorem. Let S be a coaccessible subsequential structure and T =
(S, i,m) a coaccessible subsequential transducer. We have:

1. (idS, β̂S) : S 99K N (S) is an NSubseq-reflection arrow for S.

2. (idT, β̂T) : T 99K N (T) is an NSubseqTra-reflection arrow for T.

It follows that NSubseq is a reflective subcategory of CSubseq, and NSubseqTra
is a reflective subcategory of CSubseqTra. Moreover, the map N is a func-
tor N : CSubseq → NSubseq and N : CSubseqTra → NSubseqTra by defining
N (α) = α for a subsequential morphism α in CSubseq or CSubseqTra .

Proof. Item (1): Let S be an object in CSubseq. It is straightforward to check
that (idS, β̂S) : S → N (S) is a subsequential morphism by using the character-
isation of morphisms in CSubseq (Proposition 4.3.14) and the definition of N (S)
(Definition 4.3.21). Now it is also easy to see that
for any normalised S′ ∈ NSubseq and any CSubseq-
morphism (α, β) : S → S′, the unique NSubseq-
morphism α′ : N (S) → S′ such that α′ ◦ idS = α
is just α′ = α. From Lemma 4.3.22(2) it follows that
the witnessing function β′ for α : N (S) → S′ is just
β′ = ε, and that the diagram on the right commutes.

S
(idS,β̂S) //

(α,β)
''NNNNNNNNNNNNNNN N (S)

(α,ε)
���
�
�

S′

Item (2): Let T = (S, i,m,) be in CSubseqTra. The map idT : T → N (T)
is a subsequential morphism more or less by definition of N (T). Now sup-
pose (α, β) : T → T′ is a subsequential morphism for some T′ = (S′, i′,m′) in
NSubseqTra. It follows that, in particular, (α, β) : S → S′, hence from item (1),
we have that (α, ε) : N (S) → S′ is the unique subsequential morphism such
that α = α ◦ idS. Again, α is a transducer morphism from N (T) to T′, since
from (init) we get m′ = m �β(i), and using Lemma 4.3.22(1), m′ = m � β̂S(i),
hence N (T) and T′ have the same prefix. The uniqueness of α follows from the
uniqueness of α on the underying structures. qed

4.3.26. Corollary. For all T in CSubseqTra, we have: [[T]] = [[N (T)]].

Proof. Follows from Theorem 4.3.25(2), and the fact that subsequential mor-
phisms preserve transducer behaviour. qed

Choffrut surveys in [37] a number of different algorithms for computing β̂.
One of these algorithms is by Béal & Carton [17] who report that for a normalised
S, β̂ can be computed in time O((‖β̂‖+1)M), where ‖β̂‖ is the maximal length
of β̂(q) for all states q in S, and M is the number of transitions in S.

4.3. Subsequential structures and transducers 87

4.3.4 Minimal subsequential transducers

A subsequential structure S is called minimal, if S is normalised and no two
states in S are equivalent. Similarly, a subsequential transducer is minimal if its
underlying structure is minimal. Choffrut showed in [37] that for any function
f : A∗ 99K B∗, there exists a minimal (but possibly infinite) subsequential trans-
ducer Tf with behaviour f such that for all trimmed subsequential transducers
T which also compute f , there is a unique subsequential morphism α : T → Tf .
This result strongly suggests the existence of a final normalised subsequential
structure, and in the next section we will prove that indeed the existence and
properties of Tf follow from finality, (Corollary 4.4.8). For now we just give the
definition of Tf which is based on the notion of maximal output and derivative
(also called the residual) of word functions.

4.3.27. Definition. Let f : A∗ 99K B∗ and w ∈ A∗. The maximal output of f
on input w is given by

f [w] := lcp(f(wA∗)) = lcp({f(wu) | wu ∈ dom(f)}).

The (word function) derivative of f with respect to w is the partial function
f ·w : A∗ 99K B∗ defined for all u ∈ A∗ by

(f ·w)(u) :=
{
f [w] � f(wu) if wu ∈ dom(f)
? otherwise �

4.3.28. Definition. For f : A∗ 99K B∗ define the subsequential transducer
Tf = (Q, o, d, r, i,m) by taking:

Q = {f ·w | w ∈ A∗}, o(f ·w)(a) = f [w] � f [wa],

i = f ·ε, d(f ·w)(a) = f ·wa,

m = f [ε], r(f ·w) = f [w] � f(w). �

4.3.29. Remark. In Chapter 3, we used the notation f [a] and f ·a to denote
the initial output and derivative of a causal stream function f : Aω → Bω with
respect to an input letter a ∈ A (cf. Definition 3.2.1). We hope this will not
cause any confusion with the usage here for maximal output and word function
derivative. In principle, there is no real ambiguity due to typing (stream func-
tions versus word functions), but more importantly, in subsection 4.4.4 (Theo-
rem 4.4.19, Remark 4.4.20) we will see that the two notations denote the same
objects up to isomorphism. �

In the next section, we show in Proposition 4.4.2 that NSubSeq is a full
subcategory of Coalg(S) for some functor S , and that state equivalence amounts

88 Chapter 4. Coalgebraising subsequential transducers

to S -bisimilarity. It follows that for any normalised structure S, we can obtain
a minimal normalised structure by quotienting S with S -bisimilarity. In [37,
p. 131 and 139], it was remarked1 that minimisation of normalised subsequential
transducers can be carried out by generalising existing techniques for minimising
deterministic automata [66, 77], however the details were not given. We describe
the minimisation of normalised structures and transducers in subsection 4.4.3.

As expected, minimal subsequential structures form a reflective subcategory
of normalised subsequential structures. This result can be proved directly by
showing that for any S in NSubseq, the quotient of S with state equivalence is a
minimal subsequential structure and the associated quotient map is a subsequen-
tial morphism. However, it also follows from the characterisation of NSubseq
as a full subcategory of Coalg(S) together with more general results from [50],
where it is proved that for any functor T , minimal T -coalgebras are reflective
in Coalg(T). To get a reflector for NSubseq, we just have to restrict the reflector
for Coalg(S) to the full subcategory NSubseq.

4.3.30. Proposition. The full subcategory of minimal subsequential structures
(transducers) is reflective in NSubseq (NSubseqTra).

Proof. The argument for minimal normalised structures was outlined in the
paragraph above. The argument for the transducer case is almost identical. qed

4.4 Coalgebraisation via normalisation

One of our aims is to find out whether subsequential structures can be seen
as coalgebras. A fundamental property of a category of coalgebras is that it
comes with abstract definitions of morphism and state behaviour, which cap-
ture the general idea that coalgebra morphisms are behaviour preserving maps.
In order to claim that a class of subsequential structures is coalgebraic, we want
the notions of subsequential morphism and state behaviour (defined in Subsec-
tion 4.3.1) to coincide with the coalgebraic ones. However, based on our observa-
tions in the previous section, we already suspect that, in general, subsequential
structures and morphisms are not coalgebraic, since subsequential morphisms
do not preserve state behaviour, unless we find ourselves in the subcategory of
normalised structures.

In this section we will first demonstrate that indeed the category NSubseq
can be properly regarded as a category of coalgebras, whereas this does not hold
for Subseq and CSubseq. This means that the normalisation operation N is in

1Choffrut states in [37, p. 139] that a normalised subsequential transducer can be minimised
by minimising the underlying automaton. This is however not true (and we assume it was just
a misformulation by Choffrut), since it is clearly possible that two states are equivalent with
respect to the underlying deterministic automaton while not having the same behaviour.

4.4. Coalgebraisation via normalisation 89

effect a coalgebraisation, and it explains why bisimilarity coincides with state
equivalence, and hence that minimisation of normalised structures can be carried
out by quotienting with bisimilarity. In Subsection 4.4.2 we prove that NSubseq
has a final object. Since normalisation is a reflector it follows that this object is
also final in Subseq. We also show that the existence and properties of minimal
subsequential transducers (cf. Subsection 4.3.4) follow from the existence of
this final object. In subsection 4.4.3 we describe how to minimise normalised
structures by adapting the standard minimisation algorithm for deterministic
finite automata. In Subsection 4.4.4 we show that the underlying structures
of sequential transducers, and partial and total Mealy machines are coalgebras
in a very precise sense, since each subclass is a category of coalgebras for some
subfunctor of S . Using this observation we will show that each of these subclasses
have a final object which is a substructure of the final (normalised) subsequential
structure. The final objects of these subclasses are relatively well-known, and
the main purpose of this subsection is to place the existing coalgebraic modelling
of sequential and (partial) Mealy machines in the current context.

4.4.1 Coalgebraic modelling

Let S = (Q, o, d, r) be a subsequential structure. We combine o and d into a
transition structure t : Q→ (A→ (1 + B∗ ×Q)) by defining for all q ∈ Q:

t(q)(a) =
{
〈o(q)(a), d(q)(a)〉 if a ∈ supp(q);
? otherwise

(4.6)

It is then easy to see that S can be fully described by a single map:

〈t, r〉 : Q → (1 +B∗ ×Q)A × (1 +B∗)
q 7→ 〈 t(q) , r(q) 〉 (4.7)

This map has the type of a coalgebra for the functor S : Set → Set defined by:

S (X) = (1 +B∗ ×X)A × (1 +B∗),

S (f : X → Y) = (1 + IdB∗ × f)IdA × (1 + IdB∗).

Clearly, every map 〈t, r〉 of the type given in (4.7) can also be seen as a subse-
quential structure, and from now on we will make no distinction between the
two. Instantiating the definition of S -coalgebra morphism yields the follow-
ing. Let X1 = (X1, 〈t1, r1〉) and X2 = (X2, 〈t2, r2〉) be S -coalgebras. A map
α : X1 → X2 is an S -coalgebra morphism from X1 to X2 if for all x ∈ X1:

90 Chapter 4. Coalgebraising subsequential transducers

S (α)(〈t1(x), r1(x)〉) = 〈t2(α(x)), r2(α(x))〉, which is equivalent with:

(T1) ∀a ∈ A : t1(x)(a) = ? ⇐⇒ t2(α(x))(a) = ?,

(T2) ∀a ∈ A : t1(x)(a) 6= ? =⇒
o1(x)(a) = o2(α(x))(a) and α(d1(x)(a)) = d2(α(x))(a),

(R1) r1(x) = ? ⇐⇒ r2(α(x)) = ?,

(R2) r1(x) 6= ? =⇒ r1(x) = r2(α(x)).

4.4.1. Lemma. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be two subse-
quential structures, and α : Q1 → Q2 a function. We have: α is an S-coalgebra
morphism if and only if (α, ε) is a subsequential morphism.

Proof. Straightforward, using the conditions given in Proposition 4.3.23. qed

Lemma 4.4.1 tells us that although Subseq and Coalg(S) have the same ob-
jects, subsequential morphisms are, in general, a strict superset of S -coalgebra
morphisms, and only between normalised subsequential structures do the two
coincide. In other words, only normalised subsequential structures can be prop-
erly regarded as coalgebras. Another observation which follows is that the coin-
duction principle for S -coalgebras is a sound proof principle for subsequential
structures, but it is only complete over normalised subsequential structures.

4.4.2. Proposition. Let S1 and S2 be subsequential structures. For all states
q1 in S1 and q2 in S2, we have:

1. If q1 ∼S q2 then [[q1]]1 = [[q2]]2.

2. NSubseq is a full subcategory of Coalg(S).

3. If S1 and S2 are normalised, then: q1 ∼S q2 iff [[q1]]1 = [[q2]]2.

Proof. Item (1) follows from the fact that any S -coalgebra morphism is a state
behaviour preserving subsequential morphism. Item (2) follows from Proposi-
tion 4.3.23 and Lemma 4.4.1. Item (3) follows from (2) and the fact that in
Coalg(S), behavioural equivalence coincides with S -bisimilarity. qed

Note, however, that NSubseqTra is not a subcategory of PtCoalg(S), since
pointed S -coalgebras do not accomodate an initial prefix.

4.4.2 The final subsequential structure

In a category of coalgebras, a final object can be thought of as the coalgebra of
behaviours. In the case of normalised subsequential structures, state behaviours

4.4. Coalgebraisation via normalisation 91

are functions f : A∗ 99K B∗ with the property that lcp(f(A∗)) = f [ε] = ε. We
call an f with this property normalised. We can define a normalised subsequen-
tial structure on the set of normalised functions using the notions of maximal
output and derivative, cf. Definition 4.3.27.

4.4.3. Definition. We define Φ := {f : A∗ 99K B∗ | f [ε] = ε}, and Φ =
(Φ, O,D,R) where

O(f) = f [a], D(f) = f ·a, R(f) = f(ε). �

In order to verify that Φ is well-defined, we check that derivatives are nor-
malised. Let f : A∗ 99K B∗, and a ∈ A. We have

(f ·a)[ε] = lcp({ f [a] � f(aw) | aw ∈ dom(f)}), and

f [a] = lcp({f(aw) | aw ∈ dom(f)}),

hence (f ·a)[ε] = ε. It follows that D is well-defined, and (Φ, O,D,R) is a
normalised subsequential structure.

4.4.4. Theorem. The normalised subsequential structure Φ = (Φ, O,D,R) is
a final object in the category NSubseq of normalised subsequential structures and
subsequential morphisms, and the behaviour map [[]] is the unique subsequential
morphism into Φ.

Proof. Let S = (Q, o, d, r) be an arbitrary normalised subsequential structure,
and let [[]] = [[]]S : Q → Φ be the state behaviour map. We will show that [[]]
is a subsequential morphism, i.e., an S -coalgebra morphism. First of all, since
all states in S are coaccessible, [[]] is a total function. We now check that [[]]
satisfies the conditions from Proposition 4.3.23. Let q ∈ Q, and a ∈ A. We
have: a ∈ supp(q) iff aw ∈ dom([[q]]) for some w ∈ A∗ iff dom([[q]]·a) 6= ∅ iff
a ∈ supp([[q]]).

To see that O([[q]])(a) = [[q]][a] = o(q)(a), we note that for all w ∈ A∗ such
that aw ∈ dom([[q]]), [[q]](aw) = o(q)(a) � [[d(q)(a)]](w), and hence

[[q]][a] = lcp([[q]](aA∗)) = o(q)(a) � lcp([[d(q)(a)]](A∗)) = o(q)(a) � ε = o(q)(a),

since d(q)(a) is normalised. In order to show that [[d(q)(a)]] = [[q]]·a for all
a ∈ supp(q), let w ∈ A∗. We then have

[[d(q)(a)]](w) = o(d(q)(a))(w) � r(d(d(q)(a))(w))

= o(q)(a) � o(q)(aw) � r(d(q)(aw))

= [[q]][a] � [[q]](aw)

= ([[q]]·a)(w).

92 Chapter 4. Coalgebraising subsequential transducers

Finally, we have q ∈ dom(r) iff ε ∈ dom([[q]]) iff [[q]] ∈ dom(R), and R([[q]]) =
[[q]](ε) = r(q). We leave it to the reader to verify that [[]] : (Q, o, d, r) →
(Φ, O,D,R) is unique. qed

4.4.5. Corollary. The normalised subsequential structure Φ = (Φ, O,D,R)
is a final object in CSubseq and in Subseq.

Proof. This is an immediate consequence of Theorem 4.4.4 and the fact that
NSubseq is reflective in CSubseq and Subseq, cf. Theorems 4.3.25 and 4.3.16. For
S ∈ Subseq, the final map hS : S → Φ is obtained by composing the reflection
arrows with the behaviour map in NSubseq:

(hS, β̂C (S)) = ([[]]N (C (S)), ε) ◦ (idC (S), β̂C (S)) ◦ (idCoacc(S), ε).

We recall (cf. Lemma 4.3.13) that for the reflection arrow idCoacc(S) : S → C (S)
the witnessing function β can be defined arbitrarily on non-coaccessible states
in S, so only if S is in CSubseq is the witnessing function unique and equal to
β̂S, hence there is also in general several witnessing functions for hS. Concretely,
one can show that hS : S → Φ is the partial map defined for all q ∈ Coacc(S) by
hS(q) = [[q]]S·ε = β̂S(q) � [[q]]S. qed

4.4.6. Remark. Note that Φ is not final in Coalg(S), since for an arbitrary S
in Coalg(S), the behaviour map [[]]S will not be an S -coalgebra morphism.
However, since S is polynomial, we know that the final S -coalgebra exists, and
it follows from Proposition 4.4.2(3) that the final Coalg(S)-morphism from Φ
into the final S -coalgebra is injective. Hence, as an object in Coalg(S), Φ is
isomorphic to a subcoalgebra of the final S -coalgebra. �

4.4.7. Remark. Let S = (Q, o, d, r) be a subsequential structure, q ∈ Q and
w ∈ A∗. Note that, in general, [[q]]S·w 6= [[d(q)(w)]]S. We only have iden-
tity if d(q)(w) is normalised. In particular, we have: [[q]]S·w = [[q]]N (S)·w =
[[d(q)(w)]]N (S), since for all u ∈ A∗,

([[q]]S·w)(u) = [[q]]S(w) � [[q]]S(wu)

= β̂S(q) � [[q]]N (S)(w) � β̂S(q) � [[q]]N (S)(wu)

= [[q]]N (S)(w) � [[q]]N (S)(wu)

= ([[q]]N (S)·w)(u). �

We now show that the existence and properties of the minimal transducer
Tf of a function f : A∗ 99K B∗ (cf. Definition 4.3.28) are a consequence of
Theorem 4.4.4. Recall the following notation, given a function f : A∗ 99K B∗ in
Φ, 〈f〉Φ denotes the subcoalgebra generated by f in (Φ, O,D,R).

4.4. Coalgebraisation via normalisation 93

4.4.8. Corollary. We have:

1. For any f : A∗ 99K B∗, Tf = (〈f ·ε〉Φ, f ·ε, f [ε]), Tf is minimal, and [[Tf]] =
f .

2. If T = (S, i,m) is an accessible subsequential transducer with f = [[T]], then
the final map hS : S → Φ is the unique subsequential transducer morphism
from T onto the minimal subsequential transducer Tf .

3. Two accessible subsequential transducers T1 and T2 are equivalent if and
only if there exists a subsequential transducer T and subsequential mor-
phisms αj : Tj → T, for j ∈ {1, 2}.

Proof. Item (1): The proof that Tf = (〈f ·ε〉Φ, f ·ε, f [ε]) is almost immediate
from Definitions 4.3.28 and 4.4.3. For example, to check that the output func-
tions in Definitions 4.3.28 and 4.4.3 are the same, let f ·w ∈ 〈f ·ε〉Φ. We have for
any a ∈ A:

O(f ·w)(a) = (f ·w)[a] = lcp({f [w] � f(wau) | u ∈ A∗}) = f [w] � f [wa].

Minimality of 〈f ·ε〉Φ follows from the finality of Φ. Finally, for all w ∈ A∗,
w ∈ dom(f) iff w ∈ dom(f ·ε) = dom(Tf), and for w ∈ dom(f) we have:

[[Tf]](w) = f [ε] � [[f ·ε]](w) = f [ε] � (f ·ε)(w) = f [ε] � f [ε] � f(w) = f(w).

Item (2): The proof for trimmed T can be found in [37]. The result for accessible
T follows from the finality of Φ. The final map hS is a unique subsequential
morphism from S to 〈f ·ε〉Φ with a witnessing function β such that β�Coacc(S)=
β̂C (S). In the case the initial state of T is not coaccessible, Tf is the empty
transducer, and the final map hS is the empty map. Otherwise, it follows that
(hS, β) also satisfy (ε-in) since f [ε] = m � β̂S(i), and (init) since:

hS(i) = β̂S(i) � [[i]]S = β̂S(i) �m � f = m � β̂S(i) � f = f [ε] � f = f ·ε.

Item (3): The direction from right to left follows from the fact that subsequential
transducer morphisms preserve behaviour (Proposition 4.3.9); the other direc-
tion follows from item (2). qed

4.4.3 Minimisation algorithm for normalised structures

As we remarked in subsection 4.3.4, normalised subsequential structures can
be minimised by quotienting with state equivalence, and the reason is that in
a normalised S, state equivalence coincides with the largest congruence on S,
which in turn coincides with S -bisimilarity (cf. Proposition 4.4.2). We now

94 Chapter 4. Coalgebraising subsequential transducers

describe how we can compute the state equivalence relation on an S -coalgebra
(and hence on a normalised subsequential structure) by adapting the existing
method for computing state equivalence on deterministic finite automata (DFA).

First of all, working out the details of the definition of S -bisimulation yields
the following. Given an S -coalgebra S = (Q, o, d, r), S -bisimilarity on S is the
largest relation R ⊆ Q × Q such that for any two states q1, q2 ∈ Q, we have:
〈q1, q2〉 ∈ R implies

(s0) supp(q1) = supp(q2);

(s1) for all a ∈ supp(q1) : o(q1)(a) = o(q2)(a);

(s2) r(q1) = r(q2); and

(s3) for all a ∈ supp(q1) : 〈d(q1)(a), d(q2)(a)〉 ∈ R.

In order to make the connection with the algorithm for DFA’s clear, we recall
the definition of bisimilarity for deterministic automata (DA-bisimilarity), i.e.,
bisimilarity for the functor 2×(−)A (cf. Subsection 2.4.2). Let A = (Q, d, F) be a
deterministic automaton. DA-bisimilarity on A is the largest relation R ⊆ Q×Q
such that for any two states q1, q2 ∈ Q, 〈q1, q2〉 ∈ R implies that:

(a1) o(q1) = o(q2) (i.e. q1 ∈ F iff q2 ∈ F); and

(a2) for all a ∈ A : 〈d(q1)(a), d(q2)(a)〉 ∈ R.

In [126] it was shown that in a DA, state equivalence is DA-bisimilarity.
Computing the state equivalence relation on a DFA has been presented in several
places and variations (see e.g. [66, 77] for textbook presentations). The main
idea is the following. The computation starts with the partition P0 = {F,Q\F}
of Q, where Q \F is the complement of F in Q. The subsets in P0 are the
equivalence classes of the largest equivalence relation such that condition (a1)
holds for all P0-related states. In the main loop, P0 is iteratively refined into
an equivalence relation which also satisfies condition (a2). This is done by
inspecting the current partition Pk = {Q1, . . . , Qn} of Q for the existence of
some Qi, Qj ∈ Pk and a ∈ A such that there are q, s ∈ Qi for which d(q)(a) ∈
Qj and d(s)(a) /∈ Qj . In that case, Qi is split (by (Qj , a)) into the two sets
Q′
i = {q ∈ Qi | d(q)(a) ∈ Qj} and Q′′

i = {q ∈ Qi | d(q)(a) /∈ Qj}, in other
words, Pk is refined into Pk+1 = (Pk \{Qi})∪{Q′

i, Q
′′
i }. This refinement process

continues until no more splits can be made. When this happens, the partition
stores the A-bisimilarity classes on A. By using extra datastructures it is possible
to choose the splitters (Qj , a) wisely, and reduce the number of actual splits that
must be carried out, resulting in an algorithm which runs in time O(|A|n log(n))
where n is the number of states, and |A| is the size of the input alphabet A (cf.
[74], see also [65, 48]).

4.4. Coalgebraisation via normalisation 95

The adaptation of the DFA-algorithm to S -coalgebras consists in changing
the initial partition. The refinement part of the algorithm stays the same. We
take as initial partition the (classes of) the largest equivalence relation P s0 on
Q such that all pairs related by P s0 satisfy (s0), (s1) and (s2). Running the
refinement algorithm starting from this initial partition will result in the largest
equivalence relation which also satisfies (s3), i.e., the S -bisimilarity relation on
S. This can be proved by essentially the same argument used for the correctness
of the algorithm for DFA’s, see e.g. [74, proof of Prop. 5]. Moreover, P s0 is clearly
a refinement of the P0-partition associated with the underlying DA, hence the
refinement of P s0 into S -bisimilarity will also terminate in time O(|A|n log(n)).
It remains to describe how to compute P s0 .

4.4.9. Lemma. Given a finite S-coalgebra S = (Q, o, d, r), we can compute the
largest equivalence relation P s0 on Q which satisfies (s0), (s1) and (s3) in time
O((|A|‖o‖ + ‖r‖)|Q| log(|Q|)), where ‖o‖ := max{|o(q)(a)| | q ∈ Q, a ∈ A} and
‖r‖ := max{|r(q)| | q ∈ Q}.

Proof. We want to group together states which have the same output function
and the same terminal output. This can be done efficiently by a variation on
a sorting algorithm which can be implemented using a balanced binary search
tree (cf. [73]). The nodes of a binary search tree T are pairs (c, lc) where c is a
key and lc is a value, and it is required that a linear order <T exists on the set
of all keys. The tree operations are implemented to maintain an ordering based
on key-values, such that for a node (c, lc), all key values in the left subtree are
less than c and all key values in the right subtree are greater than c. This means
that looking up a key value can be done in time proportional with the height of
the tree. In a balanced binary search tree with n nodes, the height is at most
log(n).

Since S is finite, we can assume A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bn}
by enumerating all input and output letters that occur in S. In our case, a key c
is a data record which stores the output and terminal output functions for some
state q. We define c(q) := 〈o(q)(a1), . . . , o(q)(ak), r(q)〉. The value lc associated
with a key c will be a list of states q such that c(q) = c. We will use a variation on
insertion which does the following. Inserting (c(q), q) into a tree which contains
a node (c′, lc′) with c′ = c(q) will result in adding q to lc, and if c(q) does not
occur in the tree, then a new node (c(q), {q}) is added. Once we can define a
linear ordering on all c(q)-values, P s0 can be computed by inserting (c(q), q) for
all states q into an initially empty tree. In the resulting tree T at each node
(c, lc) the list lc contains the elements of the P s0 -equivalence class corresponding
with the value c, and we can obtain P s0 by traversing T and retrieving the node
values lc.

It remains to define a linear ordering on the key values, which are elements of
(1+B∗)k+1. We define a linear order ≺ on A and B by a1 ≺ a2 ≺ . . . ≺ ak, and

96 Chapter 4. Coalgebraising subsequential transducers

b1 ≺ b2 ≺ . . . ≺ bn. We extend this ordering to the lexicographic ordering on
B∗, which we also denote ≺. In order to deal with the partiality of the transition
structure, we extend ≺ to 1 + B∗ by defining w ≺ ? for all w ∈ B∗. Finally,
we can lift ≺ to the corresponding lexicographic ordering on (1 + B∗)k+1. For
example, if a ≺ b ≺ ?, then 〈a, b, ?〉 ≺ 〈a, ?, b〉 ≺ 〈aa, ?, b〉.

We now analyse the complexity of computing P s0 . An insertion in a balanced
binary search tree with n nodes can be done in time O(C log(n)), where C is
an upper bound for the cost of comparing keys. In our case, a key has the form
c(q) = 〈o(q)(a1), . . . , o(q)(ak), r(q)〉 and hence its size is bounded by |A|‖o‖+‖r‖.
The highest comparison cost is incurred when c(q) is already present in the tree,
since then each component in c(q) will be successfully matched till the end. Each
comparison can thus be done in time O(|A|‖o‖+‖r‖)). We have |Q| elements to
insert, hence the tree T can be constructed in time O((|A|‖o‖+‖r‖)|Q| log(|Q|)).

qed

It is difficult to give a compact description of the overall time complexity of
carrying out minimisation via normalisation due to the many different factors
involved. So in the next proposition we just provide the upper bounds for the
two main components of the algorithm. In particular, we do not include the
cost of actually constructing the quotient structure.

4.4.10. Proposition. Let S = (Q, o, d, r) be a finite subsequential structure.
Normalising S and computing state equivalence on S can be done in time:

Compute N (S): O((‖β̂‖+ 1)M)

Compute state equivalence on N (S): O((|A| ‖o‖+ ‖r‖)|Q| log(|Q|))

where ‖β̂‖ = max{|β̂(q)| | q ∈ Q} and M is the number of transitions in S.

Proof. For the normalisation part, we refer to the time complexity of the algo-
rithm given by Béal & Carton [17], see also [37]. To compute the state equiva-
lence relation on N (S), we need O((|A| ‖o‖+‖r‖)|Q| log(|Q|)) time for comput-
ing P s0 (Lemma 4.4.9), and O(|A||Q| log(|Q|)) time for completing the refinement
stage. Since O(|A||Q| log(|Q|)) is dominated by O((|A| ‖o‖ + ‖r‖)|Q| log(|Q|))
this gives us the claimed upper bound for computing state equivalence. qed

4.4.4 Sequential transducers and Mealy machines

Sequential transducers can be identified with the subclass of subsequential trans-
ducers that have no initial and terminal output, nor internal states. Eilen-
berg [41] gives a detailed treatment of sequential transducers under the name
generalised sequential machines. In particular, in Chapter XII of [41] Eilenberg
proves the existence of a final sequential structure, although he never uses the

4.4. Coalgebraisation via normalisation 97

words finality or coalgebra. Yet another familiar subclass consists of (partial)
Mealy machines, which are sequential transducers that always output a single
letter (rather than a word) on each transition. The coalgebraic modelling of
Mealy machines with a total transition structure was presented in Chapter 3
(see also [132]). In this subsection we will see that sequential structures, partial
Mealy structures and total Mealy structures can be characterised as coalgebras
for subfunctors of S . Once we know this, it follows that each of these subclasses
contain a final object which is a substructure of the final normalised structure Φ.

4.4.11. Definition. A subsequential structure S = (Q, o, d, r) is

– sequential if dom(r) = Q and for all q ∈ Q : r(q) = ε.

– partial Mealy if S is sequential and for all q ∈ Q and a ∈ A: o(q)(a) ∈ B.

– Mealy if S is partial Mealy and for all q ∈ Q: supp(q) = A.

We denote the corresponding full subcategories of Subseq by Seq, PMealy and
Mealy, respectively. A sequential (partial Mealy, Mealy) transducer is a subse-
quential transducer T = (S, i,m) where S is sequential (partial Mealy, Mealy)
and m = ε. �

4.4.12. Remark. Usually, (partial) Mealy transducers are referred to as (par-
tial) Mealy machines, and we will also use this terminology when convenient. In
the present context, we do not require Mealy machines to be finite. The initial
prefix m and the terminal output function r are trivially defined for sequential
transducers, we will therefore sometimes leave them out of the description of a
sequential transducer, and simply write T = (Q, o, d, i). Similarly, a sequential
structure will be denoted S = (Q, o, d). �

From Definition 4.4.11 it is immediate that a sequential structure S is nor-
malised, since for all states q in S, β̂(q) = r(q) = ε. Hence Mealy v PMealy v Seq
form a sequence of nested full subcategories of NSubseq, and their morphisms
are characterised by Proposition 4.3.23. For simplicity, we will refer to these
morphisms as Mealy, partial Mealy and sequential morphisms, respectively.

The coalgebraic modelling of sequential, partial Mealy and Mealy structures
is straightforward. Consider the following subfunctors of S :

S0 (X) = (1 +B∗ ×X)A × {ε},
M0 (X) = (1 +B ×X)A × {ε},
M (X) = (B ×X)A × {ε}.

Using the embedding of B into B∗ and the canonical embedding of a set X into
1+X it is also clear that M ↪→ M0 ↪→ S0 , and hence Coalg(M) v Coalg(M0) v
Coalg(S0).

98 Chapter 4. Coalgebraising subsequential transducers

4.4.13. Proposition. We have:

1. Seq ∼= Coalg(S0),

2. PMealy ∼= Coalg(M0),

3. Mealy ∼= Coalg(M).

Proof. It is easily verified that given a sequential structure S = (Q, o, d, r) the
transition structure 〈t, r〉, as defined in (4.6), is a map of the type 〈t, r〉 : Q →
S0 (Q), that is, S is an object in Coalg(S0). Hence Seq and Coalg(S0) have the
same objects. It now follows from Seq v NSubseq v Coalg(S) and Coalg(S0) v
Coalg(S) that a sequential morphism is a Coalg(S0)-morphism and vice versa.
The items for PMealy and Mealy follow with a similar argument. qed

Hence, unlike normalised subsequential structures, Seq, PMealy and Mealy
are not just full subcategories of Coalg(S), but themselves a category of coalge-
bras for a (polynomial) functor. The subobject relationship extends to the final
objects of Seq, PMealy and Mealy.

4.4.14. Lemma. Let F ,G : Set → Set be polynomial functors. If F ↪→ G then
the final F -coalgebra is isomorphic to a subcoalgebra of the final G-coalgebra.

Proof. Let ΦF and ΦG denote the final F -coalgebra and the final G-coalgebra,
respectively. Recall that these exist since F and G are polynomial. It suffices
to show that the final G-coalgebra morphism from ΦF to ΦG is injective. In
[16, Theorem 9], it was shown that if F ↪→ G and F preserves weak pullbacks,
then for any F -coalgebra (X, ξ) and states x, y ∈ X, x ∼G y implies x ∼F y.
Since all polynomial functors preserve weak pullbacks, it follows that for all s, t
in ΦF , if s ∼G t then s ∼F t and by finality of ΦF , s = t. We have thus shown
that the final G-coalgebra morphism from ΦF to ΦG is injective, and the result
follows. qed

The above lemma does not tell us directly that the final objects of Seq,
PMealy and Mealy are subobjects of the final subsequential structure Φ, since
Φ is not the final S -coalgebra, however, a similar argument shows that this is
the case. If X and Y are objects in some subcategory C, we will write X ↪→ Y
if X is a subobject of Y in C.

4.4.15. Proposition. Let ΦSeq, ΦPMealy, ΦMealy and ΦS denote final objects
of Seq, PMealy, Mealy and Coalg(S), respectively. We have in Coalg(S):

ΦMealy ↪→ ΦPMealy ↪→ ΦSeq ↪→ Φ ↪→ ΦS .

4.4. Coalgebraisation via normalisation 99

Proof. From Lemma 4.4.14 we get: ΦMealy ↪→ ΦPMealy ↪→ ΦSeq ↪→ ΦS . In
Remark 4.4.6 it was shown that Φ ↪→ ΦS . Finally, ΦSeq ↪→ Φ holds since the
behaviour map from ΦSeq to Φ is an S -coalgebra morphism, and by Proposi-
tion 4.4.2(3) and ΦSeq ↪→ ΦS , it must be injective. qed

4.4.16. Remark. We note that since ΦSeq, ΦPMealy and ΦMealy are also ob-
jects in NSubseq, and NSubseq is full in Subseq, the first three substructure
relationships of Proposition 4.4.15 also hold in Subseq. �

We will now give concrete representations of the final objects of Seq, PMealy
and Mealy by characterising the behaviours of each subclass. First we show a
useful property of prefix-preserving functions.

4.4.17. Lemma. Let f : A∗ 99K B∗ be a prefix-preserving function. For all w ∈
dom(f), f [w] = f(w).

Proof. From the definition of f [w] it is clear that f [w] � f(w). Since f
is prefix-preserving, we have for all u ∈ A∗, such that wu ∈ dom(f), that
f(w) � f(wu). Hence also f(w) � f [w], and so f(w) = f [w]. qed

4.4.18. Proposition. Let f : A∗ 99K B∗ be a partial function. We have:

1. f is computed by a sequential transducer if and only if f is prefix-preserving
and f(ε) = ε.

2. f is computed by a partial Mealy machine if and only if f is length- and
prefix-preserving.

3. f is computed by a Mealy machine if and only if f is total, and length-
and prefix-preserving.

Proof. Item (1): Let T = (Q, o, d, i) be a sequential transducer and f = [[T]].
Since all states in T are final, the domain of f is clearly prefix-closed. Now
let uw ∈ dom(f) for u,w ∈ A∗. By Definition 4.3.2, f(uw) = o(i)(uw) =
o(i)(u) � o(d(i)(u))(w) = f(u) � o(d(i)(u))(w). Hence f is prefix-preserving, and
clearly f(ε) = ε. To show the converse, assume f is prefix-preserving and
f(ε) = ε. We will show that the minimal transducer Tf is sequential, which
amounts to showing that f [ε] = ε and for all w ∈ dom(f), f [w] � f(w) = ε.
Since f(ε) = ε, both follow from Lemma 4.4.17.

Item (2): The direction from left to right is easily verified using the defini-
tion of behaviour. For the converse, assume f is length- and prefix-preserving.
We now show that the minimal transducer Tf is partial Mealy. From item
(1) we know that Tf is sequential. It remains to show that for all wa ∈
dom(f), o(f ·w)(a) = f [w] � f [wa] ∈ B. From Lemma 4.4.17, we get that for

100 Chapter 4. Coalgebraising subsequential transducers

all w ∈ dom(f), f [w] � f [wa] = f(w) � f(wa). Now, since f is length- and prefix-
preserving it follows that f(w) � f(wa) ∈ B.

Item (3): Again, we leave the easy direction from left to right to the reader.
The converse direction follows from item (2) and the observation that in Tf ,
for all w ∈ A∗ and a ∈ A, a ∈ supp(f ·w) if and only if wa ∈ dom(f), which is
always the case when f is total. Hence Tf is a Mealy machine. qed

Recall (from the Preliminaries, subsection 2.2) that subcoalgebras are deter-
mined by their carrier set. For the polynomial functor S it is straightforward to
confirm that subcoalgebras are the transition closed subsets, and if (Ψ, ψ) is a
subcoalgebra of Φ, then (Ψ, ψ) = Φ�Ψ, the restriction of Φ to Ψ.

4.4.19. Theorem. We have:

1. Let ΦSeq = {f : A∗ 99K B∗ | f is prefix-preserving and f(ε) = ε}.
ΦSeq is a subcoalgebra of Φ and a final object in Seq.

2. Let ΦPMealy = {f : A∗ 99K B∗ | f is length- and prefix-preserving}.
ΦPMealy is a subcoalgebra of Φ and a final object in PMealy.

3. Let ΦMealy = {f : A∗ → B∗ | f is length- and prefix-preserving}.
ΦMealy is a subcoalgebra of Φ and a final object in Mealy.

Proof. Item (1): First, ΦSeq ⊆ Φ since f(ε) = ε implies that f [ε] = ε.
If ΦSeq is a subcoalgebra of Φ, then ΦSeq is a sequential structure, since for
all f ∈ ΦSeq, R(f) = f(ε) = ε. To see that ΦSeq is transition closed, let
f ∈ ΦSeq. From Proposition 4.4.18(1) it follows that f and any derivative of
f is computed by a sequential transducer, hence any derivative of f is in ΦSeq.
Also from Proposition 4.4.18(1) we know that for any sequential structure S, the
behaviour map [[]] : S → Φ factors via ΦSeq, i.e., [[]] : S → ΦSeq is a sequential
morphism, and it must be unique due to the finality of Φ. Items (2) and (3)
follow with similar arguments. qed

4.4.20. Remark. In Chapter 3, subsection 3.2.2, we saw that a final Mealy
coalgebra Γ = (Γ, γ) is obtained by equipping the set Γ = {f : Aω → Bω |
f causal } with the operations initial output and stream function derivative (cf.
Theorem 3.2.2, page 25). Since final objects are unique up to isomorphism, it
follows that in Mealy, Φ�ΦMealy

is isomorphic to Γ. This isomorphism can be made
explicit by writing out the details of the behaviour map [[]]Γ : Γ → Φ�ΦMealy

, and
showing that it is a bijection. We leave the details to the reader. �

4.4.21. Remark. The word function semantics of ΦMealy generalises neatly to
partial Mealy structures, as we have seen in Theorem 4.4.19, but it is not the case
that the set X = {f : Aω 99K Bω} is a final partial Mealy structure with initial

4.5. Coalgebraisation via differentials 101

output and derivative. In particular, the behaviour map from X to ΦPMealy is
not surjective. To see this, observe that for every f ∈ X , if α ∈ dom(f), then all
finite prefixes of α are in dom([[f]]) It follows that for g ∈ ΦPMealy with dom(g)
finite and non-empty, there is no f ∈ X such that [[f]] = g, and such g ∈ ΦPMealy

clearly exist. �

4.5 Coalgebraisation via differentials

The reason why subsequential structures, in general, cannot be seen as coalge-
bras is essentially due to the fact that their semantics allows for asynchrony at
internal computation steps, whereas the coalgebraic notion of equivalence re-
quires synchrony at all steps. We have seen that normalisation is one way of
eliminating internal asynchrony. In this section, we will see that there is an alter-
native coalgebraic representation of the class of subsequential structures which
have no internal states, and therefore also no proper internal computations.
We call this subclass step-by-step structures. The coalgebraic representation
is obtained by generalising the differential of sequential functions (cf. [41]) to
subsequential functions with prefix-closed domain. This generalisation of the
differential was introduced in [122] and has since been used to characterise sub-
sequential functions in [29]. We will show that the differential representation
can be used to determine equivalence of step-by-step transducers without having
to normalise (Theorem 4.5.22). The main advantage of using this alternative
method is that in contrast with normalisation, which requires a global fixed
point computation of β̂ (see subsection 4.3.3), the automaton transformation
which corresponds with taking differentials can be computed locally. Finally,
we will show that the minimal differential representation of a step-by-step S is
the differential representation of the minimisation of S.

4.5.1 Step-by-step structures

4.5.1. Definition. A subsequential structure S = (Q, o, d, r) is called step-by-
step if dom(r) = Q (i.e. all states are final). A subsequential transducer (S, i,m)
is step-by-step if S is step-by-step. �

4.5.2. Example. Consider the following two simple step-by-step subsequential
transducers.

T3 : ba // q3

b|a

XX

b
KS

a|ε // s3

ab
KS

T4 : b // q4

b|a

XX

ab
KS

a|aa // s4

b
KS

102 Chapter 4. Coalgebraising subsequential transducers

The behaviour of both T3 and T4 is the partial function f : {a, b}∗ 99K {a, b}∗
with dom(f) = {bk, bka | k ∈ ω} where f(bk) = bak+1b and f(bka) = bak+2b for
k ∈ ω. �

The above example shows that step-by-step subsequential transducers are
not necessarily normalised, hence two step-by-step subsequential transducers can
computee the same function without being in perfect synchrony. Nevertheless,
their morphisms can be characterised without the explicit reference to an output
shift function β.

4.5.3. Proposition. Let S1 = (Q1, o1, d1, r1) and S2 = (Q2, o2, d2, r2) be step-
by-step subsequential structures. A function α : Q1 → Q2 is a subsequential
morphism if and only if for all q ∈ Q1 the following hold:

(supp) supp(q) = supp(α(q)),

(next)C ∀a ∈ supp(q) : α(d1(q)(a)) = d2(α(q))(a),

(out)S ∀a ∈ supp(q) : r1(q) � o1(q)(a) � r1(d1(q)(a)) =

r2(α(q)) � o2(α(q))(a) � r2(d2(α(q))(a)),

(term-out)S r1(q) � r2(α(q)) ∈ B∗.

where equality in (out)S is in the free group B(∗). Let T1 = (S1, i1,m1) and T2 =
(S2, i2,m2) be step-by-step subsequential transducers. A function α : Q1 → Q2 is
a subsequential (transducer) morphism from T1 to T2 if and only if α : S1 → S2

is a subsequential morphism and whenever T1 and T2 are not empty:

(init) α(i1) = i2,

(ε-in)S m1 � r1(i1) = m2 � r2(i2).

Proof. First assume α : S1 → S2 is a subsequential morphism with witnessing
function β : Q1 → B∗. Note that since step-by-step structures are coaccessible,
α satisfies the conditions from Proposition 4.3.14, in particular, α must be a
total function. Condition (term-out) implies that for all q ∈ Q1:

β(q) = r1(q) � r2(α(q)). (4.8)

Hence, as β(q) ∈ B∗, (term-out)S must hold. Using (4.8), one can also easily
verify that (out)C reduces to (out)S.

Conversely, for any total function α : Q1 → Q2 which satisfies the above
requirements, we can define β : Q→ B∗ using (4.8), since condition (term-out)S
guarantees that β(q) ∈ B∗. It is now straightforward to verify that (α, β) : S1 →
S2 is a subsequential morphism.

Finally, a subsequential transducer morphism α : T1 → T2 between step-by-
step transducers satisfies (ε-in)S due to (4.8) and (ε-in). Conversely, if α : S1 →

4.5. Coalgebraisation via differentials 103

S2 is a subsequential morphism satisfying (ε-in)S, then (ε-in) must hold for the
unique witnessing function β given in (4.8). qed

Let Step denote the full subcategory of CSubseq which has step-by-step sub-
sequential structures as its objects, similarly, StepTra denotes the full subcat-
egory of CSubseqTra which has step-by-step subsequential transducers as its
objects.

The behaviours of step-by-step transducers do not preserve prefixes, as il-
lustrated in Example 4.5.2. However, since all states are final, the domain is
prefix-closed.

4.5.4. Proposition. A function f : A∗ 99K B∗ is computed by a step-by-step
subsequential transducer if and only if dom(f) is prefix-closed.

Proof. Clearly, if f is computed by a step-by-step subsequential transducer,
then dom(f) is prefix-closed. To prove the other direction, it suffices to show
that the minimal subsequential transducer Tf is step-by-step, that is, for all
w ∈ A∗, if w ∈ dom(f) then ε ∈ dom(f ·w). But this is immediate from the
definition of f ·w, cf. Definition 4.3.27 (page 87). qed

4.5.2 Differential representations

Although step-by-step behaviours do not preserve prefixes, they have a property
which generalises the following basic decomposition property of prefix-preserving
functions. If f : A∗ 99K B∗ is prefix-preserving then for all w = a1a2 . . . an ∈ A∗,
f(w) factors as:

f(w) = f(ε) � f(a1) � (f ·a1)(a2) � (f ·a1a2)(a3) � . . . � (f ·a1a2 . . . an−1)(an).
(4.9)

The differential of a prefix-preserving f describes the growth of f and is formally
defined as the map Df : A+ 99K B∗ which for all wa ∈ dom(f) is determined by
the equation f(wa) = f(w) �Df (wa) (cf. [41]), that is, Df (wa) = f(w) � f(wa).
Recall from Lemma 4.4.17 that for a prefix-preserving f , f [w] = f(w), and
hence Df (wa) = (f ·w)(a). We can now rewrite (4.9) as:

f(w) = f(ε) �Df (a1) �Df (a1a2) � . . . �Df (a1a2 . . . an). (4.10)

If f does not preserve prefixes, we may not be able to decompose f -values
as in (4.9). For example, if f(a1) is not a prefix of f(a1a2), then f(a1a2) 6=
f(a1) � (f ·a1)(a2). However, if f has a prefix-closed domain, f can still be de-
composed using the differential by allowing Df to take values in the free group
B(∗) rather than B∗.

104 Chapter 4. Coalgebraising subsequential transducers

4.5.5. Definition. Let f : A∗ 99K B∗ be a function with prefix-closed domain.
The differential of f is the partial function Df : A+ 99K B(∗) defined on dom(f)\
{ε} for all a ∈ A,w ∈ A∗ by

Df (wa) = f(w) � f(wa). �

4.5.6. Lemma. Let f : A∗ 99K B∗ be a function with prefix-closed domain. For
all w = a1a2 . . . an ∈ dom(f), n ≥ 1, we have:

f(w) = f(ε) �Df (a1) �Df (a1a2) � . . . �Df (a1a2 . . . an), (4.11)

Df (w) = Df ·a1...an−1(an), (4.12)

f(w) = f(ε) �Df ·ε(a1) �Df ·a1(a2) �Df ·a1a2(a3) � . . . �Df ·a1...an−1(an). (4.13)

Proof. Equation (4.11) holds more or less by definition of Df :

f(w) = f(ε) � f(ε) � f(a1) � f(a1) � f(a1a2) � . . . � f(a1 . . . an−1) � f(a1 . . . an)
= f(ε) �Df (a1) �Df (a1a2) � . . . �Df (a1a2 . . . an).

To see that equation (4.12) holds, let v = a1 . . . an−1. We have:

Df ·v(an) = (f ·v)(ε) � (f ·v)(an) = f [v] � f(v) � f [v]f(van)

= f(v) � f(van) = Df (van).

Equation (4.13) follows from (4.11) and (4.12). qed

4.5.7. Example. Let f be the behaviour of the step-by-step subsequential
transducers from Example 4.5.2. We compute the differential of f . Recall
that f : {a, b}∗ 99K {a, b}∗ with dom(f) = b∗ ∪ b∗a where f(bk) = bak+1b and
f(bka) = bak+2b for k ∈ ω. We have for k ≥ 1:

Df (bk) = f(bk−1) � f(bk) = bakb � bak+1b = bab for k ≥ 1,

Df (bka) = f(bk) � f(bka) = bak+1b � bak+2b = bab for k ≥ 0. �

The analogue of (4.12) for differentials of state behaviour is shown in the
following lemma. Note that this lemma is not an immediate consequence of
(4.12), since [[q]]·w 6= [[d(q)(w)]] if d(q)(w) is not normalised (cf. Remark 4.4.7),
which can be the case in a step-by-step structure.

4.5.8. Lemma. Let S = (Q, o, d, r) be a step-by-step subsequential structure,
q ∈ Q and wa ∈ dom([[q]]) where w ∈ A∗ and a ∈ A, We have: D[[q]](wa) =
D[[d(q)(w)]](a).

4.5. Coalgebraisation via differentials 105

Proof. We have:

D[[q]](wa) = [[q]](w) � [[q]](wa)

= o(q)(w) � r(d(q)(w)) � o(q)(w) � o(d(q)(w))(a) � r(d(q)(wa))

= r(d(q)(w)) � o(d(q)(w))(a) � r(d(q)(wa))
= D[[d(q)(w)]](a). qed

Representing behaviour in terms of the differential can be seen as transform-
ing a step-by-step transducer T into a sequential transducer T′ with prefix which
produces output in the free group B(∗). A computation in T corresponds with
a computation in T′ as illustrated here:

T :
m // q0

r0
KS

a1|u1 // q1

r1
KS

a2|u2 // q2 . . . qn−1

rn−1

KS

an|un // qn

rn
KS

T′ :
mr0 // q0

a1|r0u1r1 // q1
a2|r1u2r2 // q2 . . . qn−1

an|rn−1unrn // qn

Sequential structures with output in B(∗) are not essentially different from
sequential structures with output inB∗, and all previously introduced notions for
sequential structures apply with identity taken in B(∗) where appropriate. This
includes extending the transition output function from letters to words, and the
definitions of sequential morphisms and behaviour. Differential representations
of transducers are almost sequential transducers with output in B(∗). The only
difference is that differential representations may have a non-trivial initial prefix,
whereas in sequential transducers the initial prefix is ε by definition.

4.5.9. Definition. We denote by Seq(∗) the category of sequential structures
S = (Q, o, d, r) in which the transition output function may take values in B(∗),
i.e., Q, d and r are as in Definition 4.4.11 and o : Q → (A 99K B(∗)). The
morphisms of Seq(∗) are the functions which satisfy the conditions in Proposi-
tion 4.3.23 by taking equality in B(∗) in (out)N.

We denote by pSeqTra(∗) the category which has as its objects subsequen-
tial transducers T = (S, i,m), where S is an object in Seq(∗). A morphism in
pSeqTra(∗) is a Seq(∗)-morphism of the underlying structures which maps ini-
tial state to initial state and leaves the initial prefix unchanged, given that the
transducers are not empty. �

The next definition makes the transformation suggested after Lemma 4.5.8
precise.

106 Chapter 4. Coalgebraising subsequential transducers

4.5.10. Definition (Differential representation). Let S = (Q, o, d, r)
be a step-by-step subsequential structure. The differential representation of S is
the object in Seq(∗) denoted by D(S) = (Q, ∂S, d, ε), where the output function
∂S : Q→ (1 +B(∗))A is defined for q ∈ Q and a ∈ A by:

∂S(q)(a) = r(q) � o(q)(a) � r(d(q)(a)) (4.14)

if a ∈ supp(q), and ? otherwise, and ∂S(q)(a) is reduced in B(∗).
For a step-by-step subsequential transducer T = (S, i,m) with S = (Q, o, d, r),

we define the differential representation of T as the object in pSeqTra(∗) defined
by D(T) = (D(S), i,m � r(i)). �

As with other subscripts, we may leave out S from ∂S and simply write ∂ if
S is immaterial, or clear from the context. When we speak of the differential
representation of a structure S or a transducer T, we will always implicitly
assume that S and T are step-by-step.

4.5.11. Example. It is straightforward to check that the differential repre-
sentations of the two step-by-step subsequential transducers T3 and T4 from
Example 4.5.2 are both isomorphic to the object in pSeqTra(∗) depicted below.
For example, in T4, the differential output function at q4 in b is: ∂(q4)(b) =
ab � a � ab = bab.

T5 : bab // q5

b|bab

XX
a|bab // s5

�

Taking differential representations of structures is a map from the objects
of Step to the objects of Seq(∗), and as with normalisation, we would like to
give a formal argument in the form of a reflectivity result which says the right
way of looking at step-by-step structures is in terms of their the differential
representation. However, at first glance there is a problem, since Seq(∗) is not a
subcategory of Step. The solution to this problem is to also generalise step-by-
step structures to produce output in B(∗).

4.5.12. Definition. The category Step(∗) has as its objects step-by-step struc-
tures S = (Q, o, d, r) in which the transition output function may take values in
B(∗), i.e., Q, d and r are as in Definition 4.5.1 and o : Q → (A 99K B(∗)). The
morphisms of Step(∗) are the functions which satisfy the characterising condi-
tions for Step-morphism given in Proposition 4.5.3.

The category StepTra(∗) consists of subsequential transducer objects T =
(S, i,m) where S is in Step(∗) together with the functions which satisfy the
characterising conditions for StepTra-morphisms given in Proposition 4.5.3. �

4.5. Coalgebraisation via differentials 107

Again, previously defined notions and results, including behaviour and dif-
ferential representations, all apply unchanged to Step(∗) and StepTra(∗). From
the definition of Seq(∗) and Step(∗), and the natural embedding of B∗ in B(∗),
it should be clear that Seq(∗) and Step are full subcategories of Step(∗), and
pSeqTra(∗) and StepTra are full subcategories of StepTra(∗).

We now have a suitable set-up of subcategories, and D defines an object
map from Step(∗) to Seq(∗) and from StepTra(∗) to pSeqTra(∗).

4.5.13. Theorem. Let S ∈ Step(∗) and T ∈ StepTra(∗). We have:

1. idS : S → D(S) is a Seq(∗)-reflection arrow for S, and

2. idT : T → D(T) is a pSeqTra(∗)-reflection arrow for T.

Hence Seq(∗) is a reflective subcategory of Step(∗), and pSeqTra(∗) is a reflec-
tive subcategory of StepTra(∗). Moreover, by defining D(α) = α for all mor-
phisms α in Step(∗) and StepTra(∗), D() is a functor D : Step(∗) → Seq(∗), and
D : StepTra(∗) → pSeqTra(∗).

Proof. Let S = (Q, o, d, r) be an object in Step(∗). We first check that idS is
a Step(∗)-morphism from S to D(S), that is, idS = idQ satisfies the conditions
given in Proposition 4.5.3 when taking identity in B(∗) in (out)S. The conditions
(supp) and (next)C clearly hold for idQ. In D(S) the terminal output function
is constant equal to ε, hence (out)S reduces to the requirement that for all q ∈ Q
and a ∈ supp(q): r(q) � o(q)(a) � r(d(q)(a)) = ∂S(q)(a). This is just the definition
of ∂S, hence true. Similarly, condition (term-out)S reduces to r(q) ∈ B∗ for all
q ∈ Q, which also clearly holds.

We must now prove that for any S′ = (Q′, o′, d′, r′) ∈ Seq(∗) and α : S → S′ in
Step(∗), there is a unique Seq(∗)-morphism α′ : D(S) → S′ such that α = α′◦idQ.
As when showing that normalisation is a reflector (Theorem 4.3.25), we will
prove that α′ = α is the unique choice. To prove that α : D(S) → S′ we first note
that (supp) and (next)N are satisfied since the underlying DA’s of D(S) and S are
identical. By the assumption that α is a Step(∗)-morphism, α satisfies (out)S, i.e.,
for all q ∈ Q and a ∈ supp(q) we have: ∂S(q)(a) = r′(q) � o′(q)(a) � r′(d′(q)(a)) =
o′(q)(a), since S′ ∈ Seq(∗), hence (out)N holds and α : D(S) → S′ is a Seq(∗)-
morphism. Uniqueness of α is immediate.

We leave it to the reader to extend the proof for Step(∗) to pStepTra(∗). qed

4.5.14. Corollary. For any T in StepTra, we have: [[T]] = [[D(T)]].

Proof. This is an immediate consequence of Theorem 4.5.13 and the behaviour
preservation of subsequential morphisms (which also holds in StepTra(∗)). qed

Going to the differential representation only preserves state behaviour mod-
ulo an output shift, since differential structures are not normalised.

108 Chapter 4. Coalgebraising subsequential transducers

4.5.15. Lemma. If S = (Q, o, d, r) is a step-by-step structure, and q ∈ Q, then:
[[q]]S = r(q) � [[q]]D(S).

Proof. Follows from equation (4.11) and Lemma 4.5.8. Alternatively, one can
show that the implicitly defined output shift function for the reflection arrow
idS : S → D(S) is β = r. The result then follows from Proposition 4.3.9. qed

Although state behaviour is not preserved, equivalence in the differential
structure captures equivalence of differentials.

4.5.16. Proposition. If S = (Q, o, d, r) is a step-by-step structure, and q1, q2
are states in Q, then: D[[q1]]S

= D[[q2]]S
iff [[q1]]D(S) = [[q2]]D(S).

Proof. Since D(S) is a sequential structure, we always have [[q1]]D(S)(ε) =
[[q2]]D(S)(ε) = ε. For w = a1 . . . an ∈ A+, n ≥ 1, and any q0 ∈ Q we have

[[q0]]D(S)(w) = ∂S(q0)(a1) � ∂S(d(q0)(a1))(a2) � . . . � ∂S(d(q0)(a1 . . . an−1)(an)
= D[[q0]](a1) �D[[d(q0)(a1)]](a2) � . . . �D[[d(q0)(a1...an−1)]](an)

(Lemma 4.5.8) = D[[q0]](a1) �D[[q0]](a1a2) � . . . �D[[q0]](a1 . . . an).

It follows from the above that D[[q1]] = D[[q2]] iff [[q1]]D(S) = [[q2]]D(S). qed

4.5.3 Coalgebras for differentials

In section 4.4, we saw that normalisation yields a coalgebraic representation
for subsequential structures. We will now show that differential representations
provide an alternative coalgebraic modelling of step-by-step structures which
does not go via normalisation.

Objects from Seq(∗) can be modelled as coalgebras in the same way as sequen-
tial structures (cf. Proposition 4.4.13) by changing the type functor accordingly.
Let the functor S (∗)

0 : Set → Set be defined by:

S (∗)
0 (X) = (1 +B(∗) ×X)A × {ε}

S (∗)
0 (f : X → Y) = (1 + IdB(∗) × f)IdA × {ε}

(4.15)

4.5.17. Proposition. Seq(∗) is isomorphic to Coalg(S0
(∗)).

Proof. Any structure S = (Q, o, d, r) in Seq(∗) can be seen as an S (∗)
0 -coalgebra:

〈t, r〉 : Q→ (1 +B(∗) ×Q)A × {ε}.

where the transition structure t : Q→ (1 +B(∗) ×Q)A is obtained from ∂S and
d as in (4.6). Checking that the morphisms of Seq(∗) and Coalg(S0

(∗)) coincide
is more or less immediate from the definition of Seq(∗)-morphisms. qed

4.5. Coalgebraisation via differentials 109

The existence of a final object in Seq(∗) does not follow from the existence
of a final sequential structure (Theorem 4.4.19), but since S0

(∗) is a polynomial
functor, we know that such a final object exists, and we will see it is straight-
forward to prove this from first principles. As expected, the final object will
have the state behaviours of structures in Seq(∗) as its carrier. Hence we must
define output and next-state functions on functions of the type f : A∗ 99K B(∗).
However, we must do so without the use of the longest common prefix operation,
since in B(∗) the prefix relation is total. We explain this in detail. A prefix is
more generally called a left factor, and for any u, v in B(∗), u is a left factor of
v if there exists a w ∈ B(∗) such that v = uw. But such a w always exists in
B(∗), just take w = uv. The totality of the prefix relation also means that all
functions of the type f : A∗ 99K B(∗), are prefix-preserving. We now adjust the
definition of derivative to functions with codomain B(∗) and prefix-closed do-
mains (as e.g. differentials). Let f : A∗ 99K B(∗) be a function with prefix-closed
domain, and let a ∈ A. The derivative of f with respect to a is the partial
function f ·a : A∗ 99K B(∗) defined for all w ∈ A∗ by (f ·a)(w) = f(a) � f(aw) if
aw ∈ dom(f).

4.5.18. Theorem. Define

Ψ(∗) = {f : A∗ 99K B(∗) | dom(f) is prefix-closed, f(ε) = ε}.

For f ∈ Ψ(∗) and a ∈ A, define

O(∗)(f)(a) = f(a), D(∗)(f)(a) = f ·a, R(∗)(f) = f(ε).

The 4-triple Ψ(∗) = (Ψ(∗), O(∗), D(∗), R(∗)) is a final object in Seq(∗).

Proof. We first check that Ψ(∗) is well-defined. The output function O(∗) takes
values in B(∗) and the terminal output function R(∗) is constant equal to ε on
Ψ(∗), hence if Ψ(∗) is closed under taking derivatives, then we can conclude that
Ψ(∗) is a well-defined object in Seq(∗). Let f ∈ Ψ(∗) and a ∈ A. We have w ∈
dom(f ·a) iff aw ∈ dom(f), so by the assumption that dom(f) is prefix-closed, it
follows that dom(f ·a) is prefix-closed. Moreover, (f ·a)(ε) = f(a) � f(a � ε) = ε.

We now show that the behaviour map [[]] is the final map, i.e., for any S in
Seq(∗), [[]] : S → Ψ(∗) is the unique Seq(∗)-morphism. Let S = (Q, o, d, r) be a
sequential structure in Seq(∗). First of all, since all states in S are final, it is clear
that for any q ∈ Q, dom([[q]]) is prefix-closed, hence [[q]] ∈ Ψ(∗). The condition
(supp) is easily seen to hold, namely, for q ∈ Q and a ∈ A we have: a ∈ supp(q)
iff a ∈ dom([[q]]) iff a ∈ supp([[q]]). Also immediate is the condition (out)N, since
for all q ∈ Q and a ∈ supp(q), [[q]](a) = o(q)(a) by definition. Finally, to see
that (next)C holds, we have for all q ∈ Q, a ∈ supp(q) and w ∈ A∗:

[[d(q)(a)]](w) = o(q)(a) � [[q]](aw) = ([[q]]·a)(w).

110 Chapter 4. Coalgebraising subsequential transducers

We have thus shown that for any S in Seq(∗), the map [[]] : S → Ψ(∗) is a
Seq(∗)-morphism. We leave uniqueness as an exercise to the reader. qed

Since Seq(∗) is reflective in Step(∗) it follows that Ψ(∗) is also a final object in
Step(∗). Hence for any step-by-step S, considered as an object in Step(∗), there
is a unique Step(∗)-morphism from S to Ψ(∗). By combining the reflectivity of
Seq(∗) in Step(∗) with the coalgebraic modelling of Seq(∗) we can now argue that
the differential representation is an alternative to normalisation which provides
an equally correct way of viewing step-by-step structures as coalgebras.

From Theorem 4.5.18 it also follows that state equivalence is bisimilarity in
differential representations.

4.5.19. Corollary. For any step-by-step structure S, S0
(∗)-bisimilarity is the

largest congruence on D(S) and coincides with state equivalence in D(S).

4.5.4 Minimising differential representations

The definition of S0
(∗)-bisimulation amounts to the following. Let S = (Q, o, d)

be an S0
(∗)-coalgebra. A relation R ⊆ Q × Q is an S0

(∗)-bisimulation on S, if
for all 〈q, s〉 ∈ R:

(d0) supp(q) = supp(s);

(d1) for all a ∈ supp(q): o(q)(a) = o(s)(a) (in the free group B(∗)); and

(d2) for all a ∈ supp(q): 〈d(q)(a), d(s)(a)〉 ∈ R.

Given a finite S0
(∗)-coalgebra S = (Q, o, d), we can determine state equiv-

alence on S by using a small variation on the algorithm from subsection 4.4.3
for computing state equivalence in normalised structures. The idea is again to
perform the refinement algorithm for DFA’s, but this time we take as the initial
partition, the largest equivalence relation P d0 on Q which satisfies (d0) and (d1).

4.5.20. Lemma. Let S = (Q, o, d) be a finite S0
(∗)-coalgebra. We can compute

the largest equivalence relation P d0 on Q which satisfies (d0) and (d1) in time
O(‖o‖ |A||Q| log(|Q|)) where ‖o‖ := max{|o(q)(a)| | q ∈ Q, a ∈ A}.

Proof. P d0 can be computed in essentially the same way as P s0 , so we only pro-
vide a sketch and refer to Lemma 4.4.9 for details. We again use a binary seach
tree, but now a state q is inserted with key value c(q) := 〈o(q)(a1), . . . , o(q)(ak)〉
where |A| = k. In order to define a linear ordering on key values, it suffices to
define a linear ordering on B∪{b | b ∈ B}, since we can then extend this ordering
lexicographically to reduced elements of B(∗) and key values as in Lemma 4.4.9.
As before, we obtain a linear ordering b1 ≺ b2 ≺ . . . ≺ bn on B = {b1, b2, . . . , bn}

4.5. Coalgebraisation via differentials 111

by enumeration, and we extend ≺ to B ∪{b | b ∈ B} by defining b ≺ b′ iff b ≺ b′

and b ≺ b′ for all b, b′ ∈ B, i.e., b1 ≺ b2 ≺ . . . ≺ bn ≺ b1 ≺ b2 ≺ . . . ≺ bn.
The size of c(q)-values is now O(|A|‖o‖) which yields a time complexity of
O(‖o‖ |A| |Q| log(|Q|)) for inserting all (c(q), q) pairs into the tree. qed

Lemma 4.5.20 can be used to give a bound on the time complexity of com-
puting state equivalence on D(S) starting with a finite step-by-step structure
S.

4.5.21. Proposition. Let S = (Q, o, d, r) be a finite step-by-step structure.
Computing D(S) and state equivalence on D(S) can be done in time:

Compute ∂S: O(M‖r‖),
Compute state equivalence on D(S): O((2‖r‖+ ‖o‖) |A| |Q| log(|Q|))

where M is the number of transitions in S, ‖r‖ := max{|r(q)| | q ∈ Q} and
‖o‖ := max{|o(q)(a)| | q ∈ Q, a ∈ A}.

Proof. The time to compute a single value ∂S(q)(a) for q ∈ Q and a ∈ supp(q)
is proportional to the time it takes to reduce r(q) � o(q)(a) � r(d(q)(a)) using
applications of the B(∗)-identity xx = ε. The maximal number of these reduc-
tion steps is bounded by ‖r‖. Hence computing all ∂S-values can be done in
time O(M‖r‖). From Lemma 4.5.20 we know that we can compute the ini-
tial partition P d0 on D(S) in time O(‖∂S‖ |A| |Q| log(|Q|)). From the definition
of ∂S, we have that ‖∂S‖ ≤ 2‖r‖ + ‖o‖. Hence P d0 can be computed in time
O((2‖r‖ + ‖o‖) |A| |Q| log(|Q|)). The refinement part of the algorithm can be
done in time O(|A||Q| log(|Q|)) (cf. [74]). Adding up the time needed for com-
puting P d0 and the time needed for refinement (under the big-O), we find that
state equivalence can be computed in time O((2‖r‖+‖o‖) |A| |Q| log(|Q|)). qed

Proposition 4.5.21 gives us a method to decide equivalence of step-by-step
transducers via differentials without normalisation. We will use the fact that the
disjont union of two step-by-step structures is again a step-by-step structure.
The disjoint union of two step-by-step structures S1 = (Q1, o1, d1, r1)) and S2 =
(Q2, o2, d2, r2) is the step-by-step structure S1 + S2 = (Q, o, d, r) where Q =
Q1 + Q2 (i.e., the disjoint union of the sets Q1 and Q2), and for q ∈ Qj , j ∈
{1, 2}, and a ∈ A, o(q)(a) = oj(q)(a), d(q)(a) = dj(q)(a) and r(q) = rj(q).
Formally, S1 + S2 is the coproduct of S1 and S2 in Coalg(S), which implies
that the inclusion maps ιj : Qj → Q are S -coalgebra morphisms, and hence
[[q]]S1+S2

= [[q]]Sj
, if q ∈ Qj for j ∈ {1, 2}. This can also be proved directly by

using the definition of behaviour. Furthermore, since S -coalgebra morphisms are
in particular subsequential morphisms, the inclusion maps are also morphisms
in Step, and for any j ∈ {1, 2}: ιj : D(S1) → D(S1 +S2) is a morphism in Seq(∗).

112 Chapter 4. Coalgebraising subsequential transducers

Since Seq(∗)-morphisms preserve behaviour, we find that for any j ∈ {1, 2}, if
q ∈ Qj :

[[q]]D(Sj)
= [[q]]D(S1+S2). (4.16)

4.5.22. Theorem. Let T1 = (S1, i1,m1) and T2 = (S2, i2,m2) be two step-by-
step transducers, where S1 = (Q1, o1, d1, r1)) and S2 = (Q2, o2, d2, r2). We have:
T1 and T2 are equivalent if and only if

m1 � r1(i1) = m2 � r2(i2) and [[i1]]D(S1+S2) = [[i2]]D(S1+S2).

We can decide whether [[T1]] = [[T2]] in time: O((2‖r‖ + ‖o‖)|A|N log(N)),
where N = |Q1| + |Q2|, ‖r‖ = max{|rj(qj)| | qj ∈ Qj , j ∈ {1, 2}}, ‖o‖ =
max{|oj(qj)(a)| | qj ∈ Qj , j ∈ {1, 2}, a ∈ A}.

Proof. Let j ∈ {1, 2}. From the definition of D, the initial prefix of D(Tj) is
mj � rj(ij), and since D preserves transducer behaviour (Corollary 4.5.14), we
find that: [[Tj]] = [[D(Tj)]] = mj � rj(ij) � [[ij]]D(Sj)

. By equation (4.16), we have
for any q ∈ Qj that [[q]]D(Sj)

= [[q]]D(S1+S2). Hence it follows that [[T1]] = [[T2]]
if and only if m1 � r1(i1) = m2 � r2(i2) and [[i1]]D(S1+S2) = [[i2]]D(S1+S2). The de-
sired decision method is obtained by testing m1 � r1(i1) = m2 � r2(i2), computing
∂S1+S2 , and computing state equivalence on D(S1 + S2). We will ignore the
time needed to check m1 � r1(i1) = m2 � r2(i2), since we assume the other two
computations will dominate the time cost. The time complexity bound now
follows from Proposition 4.5.21. The costs of computing ∂S1+S2 is O(M‖r‖),
where M is the number of transitions in S1 + S2, but since M ≤ |A|N , we find
that the state equivalence computation dominates the time complexity of the
entire decision method. qed

We now have two ways of constructing a minimal representation of a step-
by-step transducer T. One is quotienting N (T) with S -bisimilarity, the other
is quotienting D(T) with S0

(∗)-bisimilarity. In Theorem 4.5.26 below we will
show that minimising the differential representation D(T) yields the differential
representation of the minimisation of T. In order to prove this, we first make
an easy, but useful observation, that links differentials and normalisation.

4.5.23. Lemma. If S1,S2 are in Step, and α : S1 → S2 is a subsequential mor-
phism, then for all states q in S1 and all a ∈ A: ∂S1(q)(a) = ∂S2(α(q))(a).
In particular, since idS : S → N (S) is a subsequential morphism, ∂S(q)(a) =
∂N (S)(q)(a) for all q ∈ Q and a ∈ A, which implies that D(S) = D(N (S)).

Proof. Follows from the fact that α : S1 → S2 in Step implies that α : D(S1) →
D(S2) in Seq(∗) (Theorem 4.5.13), and that Seq(∗)-morphisms satisfy the condi-
tion (out)N (cf. page 85). qed

4.5. Coalgebraisation via differentials 113

We can now show that for a step-by-step transducer T, the state equivalence
relations on D(T) and N (T) are identical (as relations on the state set).

4.5.24. Proposition. Let S be a step-by-step subsequential structure. For all
states q1 and q2 in S: [[q1]]D(S) = [[q2]]D(S) iff [[q1]]N (S) = [[q2]]N (S).

Proof. Let S = (Q, o, d, r), D(S) = (Q, ∂S, d) and N (S) = (Q, o′, d, r′).
Note that since all three structures have the same underlying DA, we have
for all q ∈ Q, dom([[q]]S) = dom([[q]]D(S)) = dom([[q]]N (S)). Using the fact that

(idQ, β̂) : S → N (S) is a subsequential morphism (Theorem 4.3.25), we get from
Proposition 4.3.9 and Lemma 4.5.15 for all q ∈ Q:

[[q]]N (S) = β̂(q) � [[q]]S = β̂(q) � r(q) � [[q]]D(S) = r′(q) � [[q]]D(S). (4.17)

First, if [[q1]]N (S) = [[q2]]N (S), then in particular, [[q1]]N (S)(ε) = [[q2]]N (S)(ε), i.e.,
r′(q1) = r′(q2), and hence from (4.17) we get that [[q1]]D(S) = [[q2]]D(S).

Now assume that [[q1]]D(S) = [[q2]]D(S). From (4.17) it follows that in order to
show that [[q1]]N (S) = [[q2]]N (S), it suffices to prove that r′(q1) = r′(q2). Suppose

first that supp(q1) = supp(q2) = ∅. In this case, β̂(q1) = r(q1) and hence r′(q1) =
β̂q1 � r(q1) = ε. Similarly, we get r′(q2) = ε, and so r′(q1) = r′(q2). Now suppose
supp(q1) = supp(q2) 6= ∅. Since N (S) is normalised, there must be a1, a2 ∈ A
such that lcp({r′(q1), o′(q1)(a1)}) = lcp({r′(q2), o′(q2)(a2)}) = ε. By assump-
tion, [[q1]]D(S) = [[q2]]D(S), hence in particular: [[q1]]D(S)(a1) = [[q2]]D(S)(a1), that
is, ∂S(q1)(a1) = ∂S(q2)(a1). From Lemma 4.5.23 we know that ∂S(qj)(a1) =
∂N (S)(qj)(a1), for j ∈ {1, 2}, and hence ∂N (S)(q1)(a1) = ∂N (S)(q2)(a1), that is:

r′(q1) � o′(q1)(a1) � r′(d(q1)(a1)) = r′(q2) � o′(q2)(a1) � r′(d(q2)(a1)). (4.18)

Letting v = lcp({r′(q2), o′(q2)(a1) � r′(d(q2)(a1))}) it follows from the assump-
tion on a1 and (4.18) that r′(q2) = v � r′(q1). Now we use that [[q1]]D(S)(a2) =
[[q2]]D(S)(a2) and with the same arguments we used to reach (4.18) we get:

r′(q1) � o′(q1)(a2) � r′(d(q1)(a2)) = r′(q2) � o′(q2)(a2) � r′(d(q2)(a2))
= r′(q1) � v � o′(q2)(a2) � r′(d(q2)(a2)).

(4.19)
Since v � r′(q2) we have by our choice of a2 that lcp({v, o′(q2)(a2)}) = ε. Hence
from (4.19) we can now conclude that v = ε and hence r′(q1) = r′(q2). qed

The next example illustrates the result of Proposition 4.5.24 and the differ-
ence between the two types of minimal structures.

114 Chapter 4. Coalgebraising subsequential transducers

4.5.25. Example. Consider the following transition diagram of a step-by-step
subsequential structure S = (Q, o, d, r), and its differential representation D(S):

S : ?>=<89:;0

b
KS

a|ab //

b|b

$$I
IIIIIIIIIIIII
?>=<89:;1

a|bab
��

ba
KS

b|bahh D(S) : ?>=<89:;0
a|babba //

b|b

$$I
IIIIIIIIIIIII
?>=<89:;1

a|bb
��

b|bahh

?>=<89:;3

a��

a|ab

OO

b|ab 66
?>=<89:;2

b��
a|abb

oo b|bhh
?>=<89:;3

a|bb

OO

b|ba 66
?>=<89:;2

a|babba
oo b|bhh

For i ∈ {0, 1, 2, 3}, let fi = [[i]]S. We find that: f0(ε) = r(0) = b, f1(ε) =
r(1) = ba, f2(ε) = r(2) = b, and f3(ε) = r(3) = a. It can easily be checked that
the relation R = {〈0, 2〉; 〈1, 3〉; 〈0, 0〉; 〈1, 1〉; 〈2, 2〉; 〈3, 3〉} is the maximal S0

(∗)-
bisimulation on D(S). Proposition 4.5.16 then tells us that Df0 = Df2 and
Df1 = Df3 . Furthermore, since f0(ε) = f2(ε), we can conclude (from equation
(4.11) in Lemma 4.5.6) that f0 = f2. We can obtain a minimal sequential
transducer with output in B(∗) which computes f1 by quotienting D(S) with R
and initialising this structure with the R-class containing 1, and adding initial
prefix f1(ε) = ba. (Similarly for the functions f0, f2 and f3): Let 0̄ = {0, 2} and
1̄ = {1, 3}.

(D(S)/R, 1̄, ba) :
ba
��?>=<89:;0̄b|b 66

a|babba
** ?>=<89:;1̄ b|bahh

a|bb
jj

Alternatively, we could compute and minimise N (S). It can easily be verified
that: β̂(0) = ε, β̂(1) = ba, β̂(2) = ε, β̂(3) = a. N (S) is illustrated below on the
left. Again, it is easy to confirm that the state equivalence relation on N (S) is
equal to R, and we now obtain a minimal normalised subsequential transducer
with behaviour f1 by quotienting N (S) with R, initialising with the R-class 1̄
and adding the initial prefix β̂(1) = ba.

N (S) : ?>=<89:;0

b
KS

a|abba //

b|b

$$I
IIIIIIIIIIIII
?>=<89:;1

a|b
��

ε
KS

b|bahh

?>=<89:;3

ε��

a|b

OO

b|ba 66
?>=<89:;2

b��
a|abba

oo b|bhh

(N (S)/R, 1̄, ba) :
ba
��?>=<89:;0̄

b��

b|b 66

a|abba
** ?>=<89:;1̄

ε��

b|bahh
a|b

jj

�

4.5. Coalgebraisation via differentials 115

From Proposition 4.5.24 we now know that given a step-by-step structure
S = (Q, o, d, r), S0

(∗)-bisimilarity on D(S) and S -bisimilarity on N (S) coincide
as relations on Q. We will denote this relation by ≡, and we let ()≡ : Q→ Q/≡
be the quotient map which sends a state q ∈ Q to its ≡-class q≡ ∈ Q/≡. Since
≡ is a congruence on D(S) and N (S) the quotient map is a Seq(∗)-morphism
()≡ : D(S) → D(S)/≡, and a subsequential morphism ()≡ : N (S) → N (S)/≡
in Step. We can now state and prove the exact relationship between the two
minimal representations.

4.5.26. Theorem. Let S be a step-by-step subsequential structure, and T a step-
by-step subsequential transducer. We have:

D(N (S)/≡) = D(S)/≡ and D(N (T)/≡) = D(T)/≡ .

Proof. We first show the result for structures. Let S be a step-by-step
structure, and assume D(S)/≡ is equal to (Q/≡, ∂≡, d≡). Since D and N
do not change the underlying DA, the result follows once we show that ∂≡
equals ∂N (S)/≡. But this is almost immediate: The quotient map is a Seq(∗)-
morphism ()≡ : D(S) → D(S)/ ≡ hence for all q ∈ Q and a ∈ supp(q):
∂≡(q≡)(a) = ∂S(q)(a), and from Lemma 4.5.23, we get that for all q ∈ Q
and q ∈ supp(q): ∂S(q)(a) = ∂N (S)(q)(a). Finally, since the quotient map is
a subsequential morphism ()≡ : N (S) → N (S)/≡ in Step, we have again from
Lemma 4.5.23 that ∂N (S)(q)(a) = ∂N (S)/≡(q≡)(a), for all q ∈ Q and a ∈ supp(q).
The proof for the transducer case follows from result for structures as soon
as we can show that D(T) and D(N (T)) have the same initial prefix. Let
T = (Q, o, d, r, i,m) ∈ StepTra. The initial prefix of D(T) is m � r(i) (Defini-
tion 4.5.10). Letting m′ and r′ denote the initial prefix and the terminal output
function in N (T), the initial prefix in D(N (T)) is m′ � r′(i) = m � β̂T(i) � r′(i) =
m � r(i) (cf. Definition 4.3.21). qed

We end this section with a discussion on the advantages and disadvantages
of using the differential representation for deciding equivalence of step-by-step
transducers. Let us refer to the method described in Theorem 4.5.22 and Propo-
sition 4.5.21 for deciding equivalence of step-by-step transducers as equivalence-
via-differentials. The classic method which determines equivalence by first nor-
malising and then computing state equivalence on the normalisations, we will
refer to as equivalence-via-normalisation. In the rest of this section, assume S
is a finite step-by-step structure.

Comparing the time complexities for the state equivalence computations in
both methods, O((|A| ‖o‖+‖r‖)|Q| log(|Q|)) (over N (S), cf. Proposition 4.4.10)
and O((|A| (‖o‖+2‖r‖))|Q| log(|Q|)) (over D(S), cf. Proposition 4.5.21), we see
that there is some reason to expect that deciding state equivalence on N (S) is
more efficient than deciding state equivalence on D(S). In particular, if terminal

116 Chapter 4. Coalgebraising subsequential transducers

output labels are much longer than the output labels generated on transitions,
then the size of the data records which must be compared when computing
the initial partition, will be much larger for D(S) than for N (S). However,
for structures in which the length of output labels is small with respect to the
number of states, the two state equivalence computations could display similar
running times.

More interestingly, from our point of view, is the comparison between the
computations of D(S) and N (S). Using Béal & Carton’s normalisation algo-
rithm from [17], S can be normalised in time O((‖β̂‖ + 1)M), where ‖β̂‖ is
the length of the longest β̂(q)-value, and M is the number of transitions in S.
In Proposition 4.5.21, we saw that ∂S can be computed in time O(M‖r‖). In
terms of big-O complexity, there seems to be no advantage in using equivalence-
via-differentials. However, Béal & Carton’s normalisation algorithm is a global
computation in which the entire structure is inspected and updated through
a depth-first search in each iteration. Moreover, the algorithm requires a pre-
processing step where the strongly connected components of S are determined,
and in order to achieve the reported complexity, a number of data structures
are needed which, in our opinion, makes it more difficult to understand the
correctness of the algorithm. In contrast, the computation of ∂S-values is local,
in the sense that for each state q and a ∈ supp(q), we only need to know the
values of r(q), o(q)(a) and r(d(q)(a)) in order to determine ∂S(q)(a), and this
computation can be done using simple, intuitive list operations and still achieves
a similar time complexity.

We also observe that it is not necessary to store an explicit representation of
D(S) in order to start computing state equivalence on D(S). From a representa-
tion of S, it is possible to compute the records c(q) = 〈∂S(q)(a1), . . . , ∂S(q)(ak)〉
one by one just before inserting them into the binary search tree which is used
in the computation of the initial partition P d0 (cf. proof of Lemma 4.5.20). If
we want to construct the actual minimal differential representation, then we
can retrieve the ∂S-values from the tree. In case many states turn out to be
equivalent with respect to P d0 , i.e., the number of P d0 -classes is much smaller
than the number of states |Q|, some space efficiency should be gained by only
storing ∂S-values for each P d0 -class, rather than for each state. For very large
state spaces, this local nature of the differential could be interesting, since the
computation of ∂S can be divided into smaller batches which can be processed
in sequence or parallel.

The obvious shortcoming of the equivalence-via-differentials method is that
it only works for step-by-step transducers, and not for subsequential transduc-
ers in general. Moreover, an actual implementation of a step-by-step behaviour
f : A∗ 99K B∗ should be based on the minimal, normalised representation Tf ,
since the output generated by the (minimal) differential representation of f
would have to be reduced in the free group in order to reconstruct the f -value.

4.6. Conclusion 117

But given the fact that equivalence-via-differentials can be implemented in a
straightforward manner which for large state spaces should display a perfor-
mance comparable with equivalence-via-normalisation, we believe that for step-
by-step transducers equivalence-via-differentials could be an interesting alterna-
tive.

4.6 Conclusion

Although subsequential structures as objects have the type of coalgebras for a
functor S : Set → Set they can, in general, not be seen as S -coalgebras, since
their word function semantics requires a notion of morphism which is more gen-
eral than the notion of S -coalgebra morphism. However, the results of this
chapter show that normalisation and taking differentials are a form of coal-
gebraisation. This is made precise by showing that normalised subsequential
structures form a full subcategory of the category Coalg(S) of all S -coalgebras
(Proposition 4.4.2), and taking differentials can be seen as a functor D from the
category of step-by-step subsequential structures to the category Coalg(S0

(∗))
for a functor S0

(∗) : Set → Set (Definition 4.5.10 and Proposition 4.5.17). The
coalgebraic nature of normalised structures explains why state equivalence in
normalised structures can be computed much in the same way as it is done
for deterministic finite automata. State equivalence in differential representa-
tions of step-by-step structures can also be determined in a similar way, and
the corresponding quotient construction gives rise to an alternative form of
minimal representation. We have provided a detailed description of how one
can adapt the known method for DFA-minimisation to normalised structures
(Proposition 4.4.10) and differential representations (Proposition 4.5.21). For
the purpose of deciding equivalence of step-by-step transducers, we believe that
the decision method obtained by computing state equivalence on the differential
structure is an interesting alternative to computing state equivalence on the nor-
malisation. This claim is based on the straightforward, local manner in which
the differential can be computed, as opposed to the more complicated and global
nature of known normalisation algorithms (cf. [37, 17]).

We also showed that normalisation and taking differentials are functorial,
in fact, these operations are reflectors N and D, respectively (Theorems 4.3.25
and 4.5.13). These results provide an argument for saying that the right way of
thinking about subsequential structures is in their coalgebraic, normalised form.
For step-by-step structures, the differential representation yields an alternative,
but equally correct, coalgebraic description. In the diagram below we provide
an overview of the relationships between the various classes of subsequential
structures and coalgebras that have been studied in this chapter. The inclusion
arrows indicate embeddings of categories; a double-headed arrow indicates that

118 Chapter 4. Coalgebraising subsequential transducers

the embedding is surjective on objects; and the labels ‘full’, ‘refl’ and ∼= indicate
whether the embedding is full, reflective or an isomorphism, respectively.

Subseq

C
��

Coalg(S)? _oooo Coalg(S0)
OO

∼=
��

? _fulloo � � full // Coalg(S0
(∗))

OO
∼=
��

CSubseq

?�

refl

OO

N // NSubseq_?refl
oo

� ?

full

OO

Seq? _fulloo
� _

full

��

� � full // Seq(∗)
� _

refl
��

Step=]

full

ee

� � full // Step(∗)

D

OO

As directions for future research, we mention that in automatic speech recog-
nition, subsequential transducers with weighted transitions play an important
role (cf. [99]). Since weighted or probabilistic systems can be modelled coal-
gebraically [16], one could try to extend the current coalgebraic modelling to
weighted subsequential transducers. On the side of formal languages and trans-
ductions, the natural next step would be to try to give a coalgebraic modelling
of sequential bimachines and rational functions [41]. We expect this to be a non-
trivial exercise, if at all possible, since a unique canonical minimal bimachine
seems not to exist [123].

The problems we encountered in the coalgebraic modelling of arbitrary sub-
sequential structures arise from the presence of internal states and the fact that
the word function semantics equates output in the free monoid. These issues
could perhaps be dealt with by extending the coalgebraic setting from being
purely set based, to one in which the monoid identities are formally included.
Another idea would be to look for alternative equivalence notions along the lines
of weak bisimilarity. However, weak bisimilarity in coalgebras is not very well
understood, but some results may be found in [125, 127, 142]. In this context,
we also mention that although subsequential structures seem to allow a kind of
internal steps, these steps are not entirely unobservable since an input letter is
always consumed. Moreover, if we can find the right setting for a coalgebraic
modelling of subsequential transducers, we may also gain insights into the pos-
sibility of capturing the semantics of Büchi automata coalgebraically. To be a
little more explicit, we can think of a deterministic Büchi automaton B as a ma-
chine which outputs a 1 on transitions leaving a final state, and the empty word
on all other transitions. The language accepted by B then consists of the infinite
input sequences which are mapped to the infinite sequence of 1’s. An adequate
formalisation should take into account that two deterministic Büchi automata
can be equivalent without generating the same input on all finite prefixes of the
input sequence.

4.6. Conclusion 119

Another direction for future research would be to find out whether existing
coalgebraic specification languages (cf. [28, 86, 111]) are useful for expressing
properties in the application domains of subsequential transducers. For ex-
ample, the regular expressions for polynomial coalgebras given in [28] provide
an expressive formal language for specifying normalised and step-by-step sub-
sequential transducers. The question is whether this language is suitable for
expressing properties of natural language processing (cf. [99, 98]). We would
also like to know if our results on step-by-step transducers and differential rep-
resentations are practically useful in this or other application domains.

Finally, we mention that step-by-step transducers are implicitly used in [29]
to give a proof of Choffrut’s characterisation theorem for subsequential functions.
It would be interesting to see if Choffrut’s result can be reinterpreted in the
coalgebraic setting presented here.

Chapter 5

Bisimilarity in neighbourhood structures

5.1 Introduction

Neighbourhood semantics [35] forms a generalisation of Kripke semantics, and
it has become the standard tool for reasoning about non-normal modal logics in
which (Kripke valid) principles such as 2p∧2q → 2(p∧q) and 2p → 2(p∨q)
are considered not to hold. In a neighbourhood model, with each state one
associates a collection of subsets of the universe (called its neighbourhoods), and
a modal formula 2ϕ is true at a state s if the truth set of ϕ is a neighbourhood
of s. The modal logic of all neighbourhood models is called classical modal logic.

Neighbourhood semantics was invented in 1970 by Scott and Montague (in-
dependently in [140] and [100]); and Segerberg [141] presents some basic results
about neighbourhood models and the classical modal logics that correspond to
them. These and other salient results were incorporated by Chellas in his text-
book [35]. During the past 15-20 years, non-normal modal logics have emerged in
the areas of computer science and social choice theory, where system (or agent)
properties are formalised in terms of various notions of ability in strategic games
(e.g. [6, 115]). These logics have in common that they are monotonic, meaning
they contain the above-mentioned formula 2p → 2(p ∨ q). The corresponding
property of neighbourhood models is that neighbourhood collections are closed
under supersets. Non-monotonic modal logics occur in deontic logic (see e.g.
[46]) where monotonicity can lead to paradoxical obligations, and in the mod-
elling of knowledge and related epistemic notions (cf. [148, 108]). Furthermore,
the topological semantics of modal logic can be seen as neighbourhood semantics
(see [32] and references).

Neighbourhood frames are easily seen to be coalgebras for the contravariant
powerset functor composed with itself, denoted 2 2 . From a coalgebra point of
view, neighbourhood structures are interesting since they constitute a general
framework for studying coalgebraic modal logics in the style of Pattinson [111],
where modalities are defined in terms of predicate liftings. It can easily be shown
that any (unary) modality defined in this way, can be viewed as a neighbour-

121

122 Chapter 5. Bisimilarity in neighbourhood structures

hood modality. Furthermore, in much work on coalgebra (cf. [129]) it is often
assumed that the functor preserves weak pullbacks, but it is not always clear
whether this requirement is really needed. In [51], weaker functor requirements
for congruences are studied, and 2 2 provides an example of a functor which does
not preserve weak pullbacks in general, but only the special ones consisting of
kernel pairs.

From the modal logic point of view, coalgebra is interesting since it offers an
abstract theory which can be instantiated to neighbourhood models, and help
us generalise the well-known Kripke notions such as bisimilarity and image-
finiteness to neighbourhood models. For monotonic neighbourhood structures,
these questions have already been addressed (cf. [113, 52, 56]), but as mentioned
in [113], if one starts from elementary intuitions, it is not immediately clear
how to generalise monotonic bisimulation to arbitrary neighbourhood structures.
The theory of coalgebra provides us not with one, but with several notions of
state equivalence in F -coalgebras for an arbitrary functor F . F -bisimilarity and
behavioural equivalence are well-known concepts, and it is generally known that
the two notions coincide if and only if the functor F preserves weak pullbacks
[129]. This is, for example, the case over Kripke frames which are coalgebras
for the covariant powerset functor P , and it explains some of the fundamental
properties of Kripke bisimulation: (i) Kripke bisimulations are characterised by
back-and-forth conditions, which makes it possible to efficiently compute Kripke
bisimilarity over finite models as a greatest fixed point. (ii) The Hennessy-
Milner theorem for normal modal logic states that over the class of finite Kripke
models, two states are Kripke bisimilar if and only if they satisfy the same modal
formulas. (iii) Van Benthem’s characterisation theorem [19, 20] tells us that
Kripke bisimilarity characterises the modal fragment of first-order logic. These
properties of Kripke bisimulations form the starting points of our investigation
into equivalence notions in neighbourhood structures and classical modal logic.

As neighbourhood structures are coalgebras for a functor that does not pre-
serve weak pullbacks, it is to be expected that only behavioural equivalence will
give rise to a Hennessy-Milner theorem for classical modal logic. However, it
turns out to be very difficult to give a back-and-forth style characterisation of
behavioural equivalence. This motivates our introduction of a third equivalence
notion whose witnessing relations we call precocongruences. Precocongruences
can be seen as a generalisation of the notion of a precongruence from [1].

The main contributions of this chapter are: (1) the introduction of precocon-
gruences and basic results which relate them to bisimulations and behavioural
equivalence. In particular, we show that on a single coalgebra, the largest pre-
cocongruence is behavioural equivalence (Theorem 5.3.11), and that over neigh-
bourhood models, precocongruences are a better approximation of behavioural
equivalence than 2 2 -bisimilarity; (2) the definition of a notion of modal sat-
uration for neighbourhood models, which leads to a behavioural-equivalence-

5.2. Preliminaries and notation 123

somewhere-else result (Theorem 5.4.26) by showing that ultrafilter extensions
are a Hennessy-Milner class; (3) a Van Benthem style characterisation of the
classical modal fragment of first-order logic (Theorem 5.5.5); and (4) a model-
theoretic proof of Craig interpolation for classical modal logic (Theorem 5.5.11).

In section 5.2 we define basic notions and notation. In section 5.3, we de-
fine precocongruences and investigate their relationship with bisimulations and
behavioural equivalence. We also instantiate all three notions to the concrete
case of neighbourhood frames, provide back-and-forth style characterisations for
2 2 -bisimulations and precocongruences, and prove the results mentioned in (1).
In section 5.4, we introduce our notion of modal saturation for neighbourhood
models, and use it to prove a Hennessy-Milner theorem for the class of finite
neighbourhood models. We then use general coalgebraic constructions to define
image-finite neighbourhood models and ultrafilter extensions of neighbourhood
models, and show that these are also Hennessy-Milner classes. Finally, in sec-
tion 5.5 we prove our main results as described in (3) and (4) above. In partic-
ular, we demonstrate that 2 2 -bisimulations are a useful tool for proving Craig
interpolation of classical modal logic.

Since neighbourhood structures are of general interest outside the world of
coalgebra, we have tried to keep the material of this chapter accessible to readers
who are not familiar with coalgebraic modal logic. This means that some of our
results could be obtained by instantiating more general results in coalgebra.
When this is the case, we give a brief explanation in the form of a remark of
how the general coalgebraic framework instantiates to neighbourhood structures.
However, these remarks are not necessary for understanding the main results of
the chapter. On the other hand, we also hope that these remarks will inspire
readers to study the more general results.

5.2 Preliminaries and notation

In this section, we settle on notation, define the necessary set-theoretic notions,
and introduce neighbourhood semantics for modal logic.

We assume the reader is familiar with the Kripke semantics and the basic
model theory of normal modal logic. Some knowledge of more advanced topics
such as modal saturation and ultrafilter extensions will be useful. All the nec-
essary background information can be found in [25]. Extensive discussions on
neighbourhood semantics can be found in [35, 40, 52, 141].

5.2.1 Functions and relations

Let X and Y be sets. If Y ⊆ X, then we write ιY for the inclusion map
ιY : Y ↪→ X; Y c for the complement X \ Y of Y in X; and Y ⊆ω X if Y is a

124 Chapter 5. Bisimilarity in neighbourhood structures

finite subset of X. For a subset Y ⊆ X, we write ↑Y = {Y ′ ⊆ X | Y ⊆ Y ′} for
the upwards closure of {Y } in P (X).

For a function f : X → Y and subsets U ⊆ X and V ⊆ Y we define the
direct f-image of U and the f-preimage of V by putting f [U] := {f(x) | x ∈
U} and f−1[V] := {x ∈ X | f(x) ∈ V }, respectively. Furthermore we call
dom(f) := X the domain of f and we call rng(f) := f [X] the range of f .
More generally, we also define the notions image, preimage, domain and range
for a relation R ⊆ X × Y . For U ⊆ X and V ⊆ Y , we denote the R-image
of U by R[U] = {y ∈ Y | ∃x ∈ U : xRy}, and the R-preimage of V by
R−1[V] = {x ∈ X | ∃y ∈ V : xRy}. The domain of R is dom(R) = R−1[Y],
and the range of R is rng(R) = R[X]. We will often work with a relation
in terms of its projection maps. Let R ⊆ X1 × X2 be a relation. The maps
π1 : R→ X1 and π2 : R→ X2 denote the projections defined for all 〈x1, x2〉 ∈ R
by πi(〈x1, x2〉) = xi, for i = 1, 2. R is called a full relation if π1 and π2 are
surjective. Note that for Ui ⊆ Xi, i = 1, 2, we have R[U1] = π2[π−1

1 [U1]] and
R−1[U2] = π1[π−1

2 [U2]].
Recall from Chapter 2 that if R ⊆ X×X, then we denote by Re the smallest

equivalence relation on X which contains R, and if R is an equivalence relation
on X then X/R is the set of R-equivalence classes. A relation R ⊆ X1 × X2,
can be viewed as a relation RX1+X2 on X1 +X2 by composing the projections
with the canonical inclusion maps ι1 : X1 → X1 +X2 and ι2 : X2 → X1 +X2.
More precisely, RX1+X2 = {〈ι1(x1), ι2(x2)〉 | 〈x1, x2〉 ∈ R}.

Throughout this chapter the notion of coherence will be used extensively.

5.2.1. Definition. Let X1 and X2 be sets, R ⊆ X1 ×X2 a relation, U1 ⊆ X1

and U2 ⊆ X2. The pair 〈U1, U2〉 is R-coherent if: R[U1] ⊆ U2 and R−1[U2] ⊆ U1.
For a set X, a relation R ⊆ X ×X and U ⊆ X, we say that U is R-coherent, if
〈U,U〉 is R-coherent. �

If R ⊆ X1 × X2, then trivially 〈∅, ∅〉 and 〈X1, X2〉 are R-coherent. Note
that if R is an equivalence relation, then an R-coherent subset U is often called
R-closed. We list a number of useful properties of R-coherence in the following
two lemmas. Their easy, but instructive, proofs are left to the reader.

5.2.2. Lemma. Let R ⊆ X1 × X2 be a relation with projections πi : R → Xi,
i = 1, 2. For all U1 ⊆ X1 and U2 ⊆ X2, the following are equivalent:

1. 〈U1, U2〉 is R-coherent.

2. for all 〈x1, x2〉 ∈ R: x1 ∈ U1 ⇔ x2 ∈ U2.

3. π−1
1 [U1] = π−1

2 [U2].

4. U1 + U2 is RX1+X2-coherent.

5.2. Preliminaries and notation 125

5.2.3. Lemma. Let R ⊆ X × X be a relation and U ⊆ X. The following are
equivalent:

1. U is R-coherent.

2. U is Re-coherent, i.e. Re-closed.

3. U is a union of Re-equivalence classes.

4. U c is Re-coherent.

5.2.2 Classical modal logic and neighbourhood semantics

Let At = {pj | j ∈ ω} be a countable set of atomic sentences. The basic modal
language over At, denoted L(At), is defined by the grammar:

ϕ ::= ⊥ | pj | ¬ϕ | ϕ ∧ ϕ | 2ϕ,

where j ∈ ω. We define >, → and ↔ in the usual way. We will assume At to
be fixed, and to ease notation, we write L instead of L(At).

5.2.4. Definition. A neighbourhood frame is a pair 〈S, ν〉 where S is a set of
states and ν : S → P (P (S)) is a neighbourhood function which assigns to each
state s ∈ S its collection of neighbourhoods ν(s). A neighbourhood model based
on a neighbourhood frame 〈S, ν〉 is a triple 〈S, ν, V 〉 where V : At → P (S) is a
valuation function. �

Given a neighbourhood model M, a state s in M and an L-formula ϕ, we
write M, s |= ϕ to denote that ϕ is true at s in M, and M, s 6|= ϕ, if ϕ is not
true at s in M. Truth of L in neighbourhood models is inductively defined as
follows. Let M = 〈S, ν, V 〉 be a neighbourhood model, s ∈ S and ϕ,ψ ∈ L.

M, s 6|= ⊥
M, s |= pj iff s ∈ V (pj) for pj ∈ At,
M, s |= ¬ϕ iff M, s 6|= ϕ,
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ,
M, s |= 2ϕ iff [[ϕ]]M ∈ ν(s), (5.1)

where [[ϕ]]M = {t ∈ S | M, t |= ϕ} denotes the truth set of ϕ in M. Let also
N be a neighbourhood model. Two states, s in M and t in N , are modally
equivalent (notation: M, s ≡ N , t or simply s ≡ t), if they satisfy the same
modal L-formulas, i.e., s ≡ t if and only if for all ϕ ∈ L: M, s |= ϕ iff
N , t |= ϕ. A subset X ⊆ S is modally coherent, if for all s, t ∈ S such that s ≡ t:
s ∈ X iff t ∈ X i.e., X is ≡-coherent. A subset X ⊆ S is modally definable, if
there is a formula ϕ ∈ L such that X = [[ϕ]]M.

126 Chapter 5. Bisimilarity in neighbourhood structures

Let Φ ∪ {ϕ} ⊆ L. We write Φ |= ϕ if ϕ is a local semantic consequence of Φ
over the class of all neighbourhood models, i.e., for any neighbourhood model
M and state s in M, if M, s |= Φ then M, s |= ϕ. In particular, if Φ 6|= ⊥ then
Φ is called consistent, which means that Φ is satisfiable in some neighbourhood
model, and |= ϕ means that ϕ is valid in all neighbourhood models. We define
classical modal logic E to be the theory of neighbourhood models, that is, for
all L-formulas ϕ: ϕ ∈ E iff |= ϕ. We will not be concerned with proof theory or
axiomatics. For these matters, the reader is referred to [35].

The structure preserving maps between neighbourhood structures will be
referred to as bounded morphisms. These have previously been studied in the
context of algebraic duality [40], and monotonic neighbourhood structures [52]
(we define monotonic neighbourhood structures below).

5.2.5. Definition. If M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 are neighbour-
hood models, and f : S1 → S2 is a function, then f is a (frame) bounded mor-
phism from 〈S1, ν1〉 to 〈S2, ν2〉 (notation: f : 〈S1, ν1〉 → 〈S2, ν2〉) if for all s ∈ S1

and all X ⊆ S2:
f−1[X] ∈ ν1(s) iff X ∈ ν2(f(s)). (5.2)

If also s ∈ V1(pj) iff f(s) ∈ V2(pj), for all pj ∈ At, and all s ∈ S1, then f is a
bounded morphism from M1 to M2 (notation: f : M1 →M2). �

Bounded morphisms preserve truth of modal formulas.

5.2.6. Lemma. Let M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 be two neighbour-
hood models and f : M1 →M2 a bounded morphism. For each modal formula
ϕ ∈ L and state s ∈ S1, M1, s |= ϕ iff M2, f(s) |= ϕ.

Proof. By a straightforward induction on the formula structure. Details left
to the reader. qed

Neighbourhood frames and bounded (frame) morphisms form a category
which we denote by NbhdFr. Similarly, neighbourhood models and bounded
morphisms form a category Nbhd. This can easily be verified directly, but it
also follows from the straightforward coalgebraic modelling of neighbourhood
strcutures which we describe now.

Recall that 2 2 denotes the Set-functor obtained by composing the contravari-
ant powerset functor 2 with itself, i.e., 2 2 = 2 ◦ 2 . More specifically, for any
set X and any function f : X → Y ,

2 2 (X) = P (P (X)),
2 2 (f)(U) = {D ⊆ Y | f−1[D] ∈ U} for all U ∈ 2 2 (X).

5.2.7. Proposition. NbhdFr = Coalg(2 2) and Nbhd = Coalg(2 2 (−)× P (At)).

5.2. Preliminaries and notation 127

Proof. A neighbourhood frame 〈S, ν〉 is clearly an object in Coalg(2 2). Given
a neighbourhood model 〈S, ν, V 〉, we can view the valuation V : At → P (S) in its
transposed form V̂ : S → P (At) where pj ∈ V̂ (s) iff s ∈ V (pj). It is now easy to
see that 〈S, ν, V 〉 uniquely corresponds to a coalgebra 〈ν, V̂ 〉 : S → 2 2 (S)×P (At)
for the functor 2 2 (−)× P (At).

Now suppose 〈S1, ν1〉 and 〈S2, ν2〉 are 2 2 -coalgebras. A function f : S1 → S2

is a 2 2 -coalgebra morphism iff for all s ∈ S1: ν2(f(s)) = 2 2 (f)(ν1(s)), i.e.,
for all U ∈ 2 2 (S2): U ∈ ν2(f(s)) iff U ∈ 2 2 (f)(ν1(s)) which by defini-
tion of 2 2 (f) is equivalent with, U ∈ ν2(f(s)) iff f−1[U] ∈ ν1(s). Hence
2 2 -coalgebra morphisms are exactly the bounded frame morphisms, and we
have NbhdFr = Coalg(2 2). It is just as easily shown that the morphisms in
Coalg(2 2 (−)× P (At)) are exactly the bounded morphisms between neighbour-
hood models. Hence Nbhd = Coalg(2 2 (−)× P (At)). qed

From now on, we will switch freely between the coalgebraic setting and the
neighbourhood setting.

In the course of this chapter, we will relate some of our results to existing
results for monotonic modal logic and normal modal logic. We briefly remind the
reader of their definitions and their relationship with neighbourhood structures
and coalgebras.

5.2.8. Remark. A neighbourhood frame/model is monotonic, if for all s ∈ S,
the collection of neighbourhoods ν(s) is upwards closed, i.e., if U ⊆ V and
U ∈ ν(s) then V ∈ ν(s). Monotonic modal logic is the theory of monotonic
neighbourhood models (cf. [35, 52]). It was shown in [56] that monotonic neigh-
boourhood frames are coalgebras for the subfunctor Mon of 2 2 which is defined
by Mon(X) = {U ∈ P (P (X)) | U is upwards closed} on a set X. �

5.2.9. Remark. Kripke frames/models are in 1-1 correspondence with so-called
augmented neighbourhood frames/models (cf. [35]). A neighbourhood frame
〈S, ν〉 is augmented, if it is monotonic and for all s ∈ S,

⋂
ν(s) ∈ ν(s). In other

words, in an augmented neighbourhood frame, each neighbourhood collection is
the upwards closure of a unique, smallest neighbourhood. Given a Kripke model
K = 〈S,R, V 〉, we obtain an augmented neighbourhood model Kaug = 〈S, ν, V 〉,
by taking ν(s) = ↑R[s] for all s ∈ S. Conversely, given an augmented neigh-
bourhood model M = 〈S, ν, V 〉, we define the Kripke model Mkrp = 〈S,R, V 〉
by taking R[s] =

⋂
ν(s) for all s ∈ S. Clearly, these transformations are inverses

of each other. It is also straightforward to show that for any two Kripke models
K1 and K2, a function is a Kripke bounded morphism from K1 to K2 iff f is
a (neighbourhood) bounded morphism from Kaug

1 to Kaug
2 . Hence the category

of Kripke frames is isomorphic to the category of augmented neighbourhood
frames. Moreover, a Kripke model K and its corresponding augmented model

128 Chapter 5. Bisimilarity in neighbourhood structures

Kaug are pointwise equivalent, i.e., for all states s in K and any L-formula ϕ:
K, s |= ϕ iff Kaug, s |= ϕ. This can be proved by an easy induction on ϕ (cf. [35]).
Normal modal logic is the logic of all Kripke models, or equivalently, of all aug-
mented neighbourhood models.

We saw in Subsection 2.4.3 that Kripke frames and their bounded morphisms
can be seen as the category of coalgebras and coalgebra morphisms for the
covariant powerset functor P : Set → Set which maps a set X to the powerset
P (X), and a function f : X → Y to the direct image function f [] : P (X) →
P (Y). �

5.2.3 Basic constructions

Finally, we will need a number of technical constructions. Disjoint unions of
neighbourhood frames and models are just the coproducts in the relevant cate-
gory. For neighbourhood models, this amounts to the following definition. The
definition for neighbourhood frames is obtained by leaving out the part about
the valuations.

5.2.10. Definition. Let M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 be two
neighbourhood models, and let ιi : Si → S1 + S2, i = 1, 2, be the canonical
inclusions. The disjoint union of M1 and M2 is the neighbourhood model
M1 +M2 = 〈S1 + S2, ν, V 〉 where for all p ∈ At, V (p) = ι1[V1(p)] ∪ ι2[V2(p)];
and for i = 1, 2, for all X ⊆ S1 + S2, and s ∈ Si, X ∈ ν(s) iff X ∩ Si ∈ νi(s). �

Apart from coproducts and coequalisers, we will also make use of pushouts.
We remind the reader of their definition. For more details, we refer to [3].

5.2.11. Definition. Let C be a category and let f1 : X → Y1 and f2 : X → Y2

be morphisms in C. A pushout of f1 and f2 in C is a triple 〈P, p1, p1〉 where
P is an object and p1 : Y1 → P , p2 : Y2 → P are morphisms in C such that
p1 ◦ f1 = p2 ◦ f2. Moreover, if P ′, p′1 : Y1 → P ′ and p′2 : Y2 → P ′ are such that
p′1 ◦ f1 = p′2 ◦ f2, then there exists a unique morphism u : P → P ′ in C such that
p′1 = u ◦ p1 and p′2 = u ◦ p2, as illustrated in Figure 5.1(a). �

It is well-known that if the category C has coproducts and coequalisers,
then a pushout of f1 : X → Y1 and f2 : X → Y2 in C can be constructed as a
coequaliser of ι1 ◦ f1, ι2 ◦ f2 : X → Y1 + Y2, where ιi : Yi → Y1 + Y2, i ∈ {1, 2},
are the canonical inclusions into the coproduct. We are mainly interested in the
case where f1 and f2 are the projection maps of some relation. In this case,
the coproduct-coequaliser construction yields the following explicit construction
in Set. Let R ⊆ X1 × X2 be a relation with projections π1 : R → X1 and
π2 : R → X2. Composing the projections with the canonical inclusions, we get
the relation R12 = RX1+X2 = {〈ι1(x1), ι2(x2)〉 | 〈x1, x2〉 ∈ R} on X1 +X2. Let

5.3. Equivalence notions 129

X

f1

��

f2 // Y2

p2

��
p′2

��

Y1
p1 //

p′1 22

P ∃!u

P ′

R
π1

wwppppppppppppp
π2

''NNNNNNNNNNNNN

X1
ι1 //

p1 &&MMMMMMMMMMM X1 +X2

ε

��

X2
ι2oo

p2xxqqqqqqqqqqq

(X1 +X2)/Re12

(a) (b)

Figure 5.1: Pushout.

ε : X1 +X2 → (X1 +X2)/Re12 be the associated quotient map. The pushout of
R in Set is the triple 〈P, p1, p2〉, where P :=

(
X1 + X2

)
/Re12, and pi = ε ◦ ιi,

i ∈ {1, 2}. The construction is shown in Figure 5.1(b).

5.3 Equivalence notions

In this section we investigate three different equivalence notions over the class of
neighbourhood frames, i.e., 2 2 -coalgebras. Two of these are behavioural equiv-
alence and bisimilarity for the functor 2 2 . As 2 2 is known not to preserve weak
pullbacks, 2 2 -bisimilarity is strictly stronger than 2 2 -behavioural equivalence.
This shortcoming of bisimilarity for non-weak pullback preserving functors mo-
tivates our introduction of a third equivalence notion whose witnessing relations
we call precocongruences. Precocongruences generalise the idea behind precon-
gruences (defined in [1]), which are relations on a single coalgebra, to relations
between coalgebras.

In the first subsection, we work with an arbitrary functor F . First, we
review the definition of precongruences and some results from [1]. Next, we
define precocongruences and relate them to bisimulations, cocongruences and
congruences. In the next subsection, we instantiate the three equivalence notions
to neighbourhood frames, we give back-and-forth style characterisations of 2 2 -
bisimulations and 2 2 -precocongruences, and we show by means of examples,
that, even on finite neighbourhood frames, the three notions differ, but we also
show that on a single neighbourhood frame, all three notions coincide. In the
final subsection, we compare our equivalence notions with the existing notions
of bisimulation for monotonic and Kripke frames.

130 Chapter 5. Bisimilarity in neighbourhood structures

5.3.1 Precocongruences

Throughout this subsection, we let F : Set → Set be an arbitrary functor. Pre-
congruences were introduced by Aczel & Mendler in [1] as alternatives to bisim-
ulations in the case the functor under consideration does not preserve weak
pullbacks. We formulate the definition of precongruences in a slightly different
way, and prove the equivalence with the definition from [1] in Lemma 5.3.2(1)
below.

5.3.1. Definition (Precongruence). Let 〈X, ξ〉 be an F -coalgebra, R ⊆
X × X a relation, and εR : X → X/Re the coequaliser of R. R is a precon-
gruence on 〈X, ξ〉 if there exists a (necessarily unique) F -coalgebra structure λ
on X/Re such that εR is an F -coalgebra morphism from 〈X, ξ〉 to 〈X/Re, λ〉 as
illustrated by the following commuting diagram.

R
π1 //
π2

// X
εR //

ξ

��

X/Re

∃!λ
��

F (X)
F (εR) // F (X/Re)

In other words, R is a precongruence on 〈X, ξ〉 iff Re is a congruence on 〈X, ξ〉.
�

The following lemma lists some useful facts on precongruences.

5.3.2. Lemma. Let 〈X, ξ〉 be an F-coalgebra and R ⊆ X ×X a relation.

1. R is a precongruence on 〈X, ξ〉 iff F (εR) ◦ ξ ◦ π1 = F (εR) ◦ ξ ◦ π2, i.e.,
R ⊆ ker(F (εR) ◦ ξ).

2. The largest precongruence on 〈X, ξ〉 is the largest congruence on 〈X, ξ〉.

3. If R is a bisimulation then R is a precongruence.

Proof. The proof can be found in [1], but we include it here for the sake of
completeness.

For item 1, first note that the coequaliser of R is also the coequaliser of Re.
We now have: R is a precongruence iff Re is a congruence iff (by Lemma 2.2.5,
p. 14) Re ⊆ ker(F (εR) ◦ ξ). Since R ⊆ Re and kernels are equivalence relations,
this last statement is equivalent with R ⊆ ker(F (εR) ◦ ξ).

To see that item 2 holds, let S denote the union of all precongruences on
〈X, ξ〉. Note that if R ⊆ S, then Re ⊆ Se, and there exists a map ε : X/Re →
X/Se such that εS = ε ◦ εR. It follows that F (εS) = F (ε) ◦ F (εR), and hence

F (εS) ◦ ξ = F (ε) ◦ F (εR) ◦ ξ. (5.3)

5.3. Equivalence notions 131

Now if 〈x1, x2〉 ∈ S, then by item 1, there is a relation R ⊆ S such that
F (εR)(ξ(x1)) = F (εR)(ξ(x2)). By (5.3), F (εS)(ξ(x1)) = F (εS)(ξ(x2)), which
shows that S is a precongruence. S is necessarily also the largest congruence,
since any congruence is a precongruence and therefore contained in S.

For item 3, suppose R is a bisimulation, i.e., the projection maps π1, π2 : R→
X are F -coalgebra morphisms. In this case, the coequaliser εR of π1 and π2

is also the coequaliser of π1 and π2 in Coalg(F), hence εR is an F -coalgebra
morphism. It follows that R is a precongruence. qed

We wish to consider relations between coalgebras rather than just a relation
on a single coalgebra. The definition of a precocongruence is essentially obtained
by replacing coequalisers by pushouts.

5.3.3. Definition (Precocongruence). Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be F -co-
algebras, and let R ⊆ X1×X2 be a relation with pushout 〈P, p1, p2〉. The relation
R is called a precocongruence between 〈X1, ξ1〉 and 〈X2, ξ2〉, if there exists a
coalgebra map λ : P → F (P) such that the pushout maps p1 : X1 → P and
p2 : X2 → P are F -coalgebra morphisms, i.e., the following diagram commutes:

R
π1

vvmmmmmmmmm π2

((QQQQQQQQQ

X1

ξ1

��

p1 // P

∃λ
��

X2

ξ2

��

p2oo

F (X1)
F (p1) // F (P) F (X2)

F (p2)oo

In other words, R is a precocongruence iff its pushout 〈P, p1, p2〉 is a cocongru-
ence. If two states x1 and x2 are related by some precocongruence, we write
x1 ∼p x2. �

The following lemma gives us a two alternative characterisations of preco-
congruences.

5.3.4. Lemma. Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be F-coalgebras, and let R ⊆ X1×X2

be a relation with pushout 〈P, p1, p2〉. The following are equivalent:

1. R is a precocongruence between 〈X1, ξ1〉 and 〈X2, ξ2〉.

2. F (p1) ◦ ξ1 ◦ π1 = F (p2) ◦ ξ2 ◦ π2, i.e., R ⊆ pb(F (p1) ◦ ξ1,F (p2) ◦ ξ2).

3. RX1+X2 is a precongruence on 〈X1, ξ1〉+ 〈X2, ξ2〉.

132 Chapter 5. Bisimilarity in neighbourhood structures

Proof. (1 ⇔ 2): Item 2 holds iff the outer part of the diagram in Defini-
tion 5.3.3 commutes, so the implication (1 ⇒ 2) is immediate. Conversely, if
item 2 holds, then by the universal property of the pushout 〈P, p1, p2〉 there is
a (unique) function λ : P → F (P) such that λ ◦ p1 = F (p1) ◦ ξ1 and λ ◦ p2 =
F (p2) ◦ ξ2. Hence R is a precocongruence,

(1 ⇒ 3): If the pushout maps are morphisms, there exists by the universal
property of the coproduct 〈X1, ξ1〉+ 〈X2, ξ2〉 in Coalg(F), a unique F -coalgebra
morphism u : X1 +X2 → P such that pi = u ◦ ιi, i ∈ {1, 2}. By the definition
and construction of the pushout (cf. Figure 5.1(b)), it must be the case that u
is equal to the natural quotient map ε : X1 +X2 → P , and hence RX1+X2 is a
precongruence.

(3 ⇒ 1): If R12 = RX1+X2 is a precongruence on the coproduct, then the
quotient map ε : X1 +X2 → (X1 +X2)/Re12 is an F -coalgebra morphism. Since
pi = ε ◦ ιi, i ∈ {1, 2}, and the canonical inclusions ιi : Xi → X1 + X2, i ∈
{1, 2}, are also F -coalgebra morphisms, it follows that the pushout maps are
F -coalgebra morphisms. qed

An interesting property of precocongruences, is that, like bisimulations, they
can be characterised by a form of relation lifting.

5.3.5. Definition. Let R ⊆ X1 × X2 be a relation and let 〈P, p1, p2〉 be the
pushout of 〈R, π1, π2〉. We define the F -lifting Lif (F)(R) ⊆ F (X1)× F (X2) of
R by

Lif (F)(R) := pb(F (p1),F (p2)). �

Note that Lif (F) is independent of the concrete representation of the pushout.
This follows easily from the fact that pushouts are unique up-to isomorphism.
The definition of Lif (F) goes back to an idea by Kurz (personal comunication)
for defining a relation lifting of functors that do not preserve weak pullbacks.

5.3.6. Lemma. Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be F-coalgebras, and let R ⊆ X1×X2

be a relation. R is precocongruence iff

for all 〈x1, x2〉 ∈ R: 〈ξ1(x1), ξ2(x2)〉 ∈ Lif (F)(R).

Proof. Immediate from Lemma 5.3.4 and the definition of Lif (F). qed

The characterisation of precocongruences in Lemma 5.3.6 makes it easy to
show that between any two coalgebras, there exists a largest, and necessarily
unique, precocongruence. First, note that for any relations R′ ⊆ R ⊆ X1 ×
X2 with pushouts 〈P ′, p′1, p

′
2〉 and 〈P, p1, p2〉, respectively, there exists by the

universal property of P ′ a unique map u : P ′ → P such that pi = u ◦ p′i, i ∈
{1, 2}. Consequently, F (pi) = F (u) ◦ F (p′i), i ∈ {1, 2}, and for all t1 ∈ F (X1),
t2 ∈ F (X2): F (p′1)(t1) = F (p′2)(t2) implies that F (p1)(t1) = F (p2)(t2). Hence,

R′ ⊆ R ⇒ Lif (F)(R′) ⊆ Lif (F)(R). (5.4)

5.3. Equivalence notions 133

5.3.7. Lemma. Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be F-coalgebras. The union of all pre-
cocongruences between 〈X1, ξ1〉 and 〈X2, ξ2〉 is again a precocongruence.

Proof. Let R be the union of all precocongruences between 〈X1, ξ1〉 and
〈X2, ξ2〉, let 〈P, p1, p2〉 be the pushout of R, and assume 〈x1, x2〉 ∈ R. Then
there is a precocongruence R′ ⊆ R such that 〈x1, x2〉 ∈ R′. Letting 〈P ′, p′1, p

′
2〉

be the pushout of R′, it follows that 〈ξ1(x1), ξ2(x2)〉 ∈ Lif (F)(R′), and hence
by (5.4) that 〈ξ1(x1), ξ2(x2)〉 ∈ Lif (F)(R). We conclude by Lemma 5.3.6 that
R is a precocongruence. qed

In the following proposition we give a first comparison between precocon-
gruences, bisimulations and cocongruences.

5.3.8. Proposition. Let 〈X1, ξ1〉 and 〈X2, ξ2〉 be F-coalgebras, and let R be a
relation between X1 and X2.

1. If R is a bisimulation, then R is a precocongruence.

2. If R is a precocongruence, then R is contained in a cocongruence.

Consequently, for all x1 ∈ X1 and x2 ∈ X2:

x1 ∼ x2 implies x1 ∼p x2 implies x1 ∼b x2.

Proof. Let R ⊆ X1 × X2 be a relation with projections π1 : R → X1 and
π2 : R → X2, and pushout 〈P, p1, p2〉. Item 1: Assume R is a bisimulation.
By composing the projections with the canonical inclusion morphisms into the
coproduct, we have a pair of parallel F -coalgebra morphisms ι1◦π1, ι2◦π2 : R→
X1 + X2. The quotient map ε : X1 + X2 → (X1 + X2)/ReX1+X2

is now the
coequaliser of ι1◦π1 and ι2◦π2 also in Coalg(F), hence an F -coalgebra morphism.
It follows that p1 and p1 are also F -coalgebra morphisms, since pi = ε ◦ ιi,
i ∈ {1, 2}. Item 2: If R is a precocongruence, then the pushout maps p1 and
p2 are F -coalgebra morphisms. The claim now follows from the fact that R ⊆
pb(p1, p2). qed

Proposition 5.3.8 alone does not yet tell us whether precocongruences are a
better approximation of behavioural equivalence than F -bisimulations, but in
the next subsection, we will see that, in general, the implications of Proposi-
tion 5.3.8 are strict. The following lemma provides us with a criterion which
ensures that a cocongruence is a precocongruence.

5.3.9. Lemma. If 〈X1, ξ1〉 and 〈X2, ξ2〉 are F-coalgebras and R ⊆ X1×X2 is a
full cocongruence between 〈X1, ξ1〉 and 〈X2, ξ2〉, then R is a precocongruence.

134 Chapter 5. Bisimilarity in neighbourhood structures

Proof. Let R be a cocongruence with projection maps π1 : R → X1 and
π2 : R → X2 and pushout 〈P, p1, p2〉. Then there exist an F -coalgebra 〈Y, γ〉
and F -coalgebra morphisms fi : Xi → Y for i ∈ {1, 2} such that R = pb(f1, f2).
We are going to define a function λ : P → F (P) such that pi is an F -coalgebra
morphism from 〈Xi, ξi〉 to 〈P, λ〉 for i ∈ {1, 2}. By the universal property of the
pushout there has to be a function j : P → Y such that j ◦ pi = fi for i ∈ {1, 2},
(see diagram). We claim that the map j is injective.
First, it follows from the definition of the pushout
that both p1 and p2 are surjective, because R is full.
Let now z1, z2 ∈ P and suppose that j(z1) = j(z2).
The surjectivity of the pi’s implies that there are s1 ∈
X1 and s2 ∈ X2 such that p1(s1) = z1 and p2(s2) =
z2. Hence j(p1(s1)) = j(p2(s2)), i.e., f1(s1) = f2(s2),
which implies that 〈s1, s2〉 ∈ R and consequently we

R

π1

��

π2 // X2

p2

��
f2

��

X1
p1 //

f1 22

P � p
∃!j
!!
Y

get p1(s1) = p2(s2), i.e., z1 = z2. This demonstrates that j is injective and
thus there is some surjective map e : Y → P with e ◦ j = idP . Now define
λ := F (e) ◦ λ ◦ j. It remains to check that for i ∈ {1, 2}, pi : 〈Xi, ξi〉 → 〈P, λ〉 is
an F -coalgebra morphism. Let i ∈ {1, 2}, we have:

λ ◦ pi = F (e) ◦ λ ◦ j ◦ pi
= F (e) ◦ λ ◦ fi (j ◦ pi = fi)
= F (e) ◦ F (fi) ◦ ξi (fi coalg. morph.)
= F (e) ◦ F (j) ◦ F (pi) ◦ ξi (F (fi) = F (j) ◦ F (pi))
= F (pi) ◦ ξi (F (e) ◦ F (j) = idF (P)) qed

We introduced precocongruences as a generalisation of precongruences to
relations between different coalgebras. We point out that this generalisation is
conceptual rather than set-theoretic, since on a single coalgebra, a precongruence
is not necessarily a precocongruence (as we will see in Example 5.3.16 below).
In fact, in the one-coalgebra case precocongruences specialise precongruences.
This is the content of the first item of the next proposition. The second item
tells us that over equivalence relations, (pre)congruences and precocongruences
are the same.

5.3.10. Proposition. Let 〈X, ξ〉 be an F-coalgebra.

1. If R ⊆ X ×X is a precocongruence on 〈X, ξ〉, then R is also a precongru-
ence on 〈X, ξ〉.

2. If R ⊆ X ×X is an equivalence relation then: R is a precocongruence on
〈X, ξ〉 iff R is a congruence on 〈X, ξ〉.

Proof. To prove item 1, let 〈P, p1, p2〉 be the pushout of R, and let εR : X →
X/Re be the natural quotient map (i.e., the coequaliser of R). By the universal

5.3. Equivalence notions 135

property of the pushout in Set, there is a unique map u : P → X/Re such that u◦
p1 = εR = u◦p2. It follows that F (u)◦F (p1) = F (εR) = F (u)◦F (p2), and hence
for all x, y ∈ X: if F (p1)(ξ(x)) = F (p2)(ξ(y)) then F (εR)(ξ(x)) = F (εR)(ξ(y)).
Now assume that R is a precocongruence on 〈X, ξ〉, i.e., between 〈X, ξ〉 and itself.
By Lemma 5.3.4, for all 〈x, y〉 ∈ R we have that F (p1)(ξ(x)) = F (p2)(ξ(y)), and
hence that F (εR)(ξ(x)) = F (εR)(ξ(y)). This shows that R ⊆ ker(F (εR) ◦ ξ),
and it now follows from Lemma 5.3.2(1) that R is a precongruence.

To prove item 2, we first note that if R is an equivalence relation and a
precocongruence on 〈X, ξ〉, then by item 1, R is also a precongruence and hence
a congruence. Conversely, if R is a congruence, then R is clearly a full cocon-
gruence on 〈X, ξ〉 and so by Lemma 5.3.9, a precocongruence. qed

From Proposition 5.3.10 it follows more or less immediately that behavioural
equivalence is a precocongruence.

5.3.11. Theorem. If 〈X, ξ〉 is an F-coalgebra and x1, x2 ∈ X, then

x1 ∼b x2 iff x1 ∼p x2.

Proof. Follows from Proposition 5.3.10(2) and the fact that behavioural equiv-
alence is the largest congruence on 〈X, ξ〉 (cf. Lemma 2.3.3, p. 17). qed

Table 5.1 provides an informal overview of the congruence-like relations we
have studied so far. The empty space in the cocongruence box reflects the
observation that it seems impossible to check the existential requirement of a
pair of coalgebra morphisms for which the relation is a pullback, in terms of
some maps constructed from the relation itself, as in the case of congruences,
precongruences and precocongruences.

R is a precongruence R is a congruence
(R is contained in congruence) (R is a kernel of a morphism)

(coequaliser is a morphism) (coequaliser is a morphism)

R is a precocongruence R is a cocongruence
(R is contained in cocongruence) (R is a pullback of two morphisms)
(pushout maps are morphisms)

Table 5.1: Informal overview of congruence-like relations.

Finally, Table 5.2 summarises the defining properties of the different types
of relations that approximate behavioural equivalence in coalgebras.

136 Chapter 5. Bisimilarity in neighbourhood structures

relation coalgebra morphisms coalgebra structure
R is a bisimulation projections π1 and π2 R

R is a precongruence coequaliser εR : X → X/Re X/Re

R is a congruence coequaliser εR : X → X/R X/R

R is a precocongruence pushout maps p1, p2 pushout P
R is a cocongruence some fi : Xi → Y , i ∈ {1, 2} some Y

Table 5.2: Defining properties of relations.

5.3.2 Equivalences between neighbourhood frames

In this subsection, we will investigate behavioural equivalence, bisimilarity and
the equivalence notion arising from precocongruences over 2 2 -coalgebras, i.e.,
neighbourhood frames. First, we use the relation lifting characterisations of 2 2 -
bisimulations and 2 2 -precocongruences to obtain set-theoretic, back-and-forth
style predicates for these two equivalence notions. Next we provide examples
which show that the implications from Proposition 5.3.8 are strict. However,
we also show that on a single neighbourhood frame all three equivalence notions
coincide. Finally, we compare the three equivalence notions with bisimulations
over monotonic neighbourhood frames and Kripke frames.

5.3.12. Remark. For simplicity of presentation, we have chosen to only treat
equivalence notions on neighbourhood frames, but the results of this section can
easily be extended to neighbourhood models, i.e., 2 2 (−)×P (At)-coalgebras. For
example, working out the details of the definition of 2 2 (−)×P (At)-bisimulation
results in the expected characterisation: A relation R is 2 2 (−)×P (At)-bisimu-
lation and if and only if R is a 2 2 -bisimulation and for all 〈s, t〉 ∈ R, s and t
satisfy the same atomic propositions. Similar statements hold for cocongruences
and precocongruences. �

Let us start out by considering 2 2 -bisimulations. Let 〈S1, ν1〉 and 〈S2, ν2〉
be two 2 2 -coalgebras and R ⊆ S1 × S2 a relation with projections πi : R → Si,
i ∈ {1, 2}. Instantiating the relation lifting characterisation in terms of Rel(F)
from (2.1) and (2.2) (p. 18) for F = 2 2 , we find that:

R is a 2 2 -bisimulation

iff ∀〈s1, s2〉 ∈ R : 〈ν1(s1), ν2(s2)〉 ∈ Rel(2 2)(R)

iff ∀〈s1, s2〉 ∈ R : 〈ν1(s1), ν2(s2)〉 ∈ 〈2 2 (π1), 2 2 (π2)〉[2 2 (R)]

iff ∀〈s1, s2〉 ∈ R .∃Y ∈ 2 2 (R) : ν1(s1) = 2 2 (π1)(Y) and ν2(s2) = 2 2 (π2)(Y)

iff ∀〈s1, s2〉 ∈ R .∃Y ∈ 2 2 (R) .∀i ∈ {1, 2} .∀U ⊆ Si :

U ∈ νi(si) ⇔ π−1
i [U] ∈ Y (5.5)

5.3. Equivalence notions 137

Using the notion of R-coherence (cf. Lemma 5.2.2) we can reformulate the
above requirement into a condition which does not involve any explicit mention
of Y .

5.3.13. Proposition. Let S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 be neighbourhood
frames. A relation R ⊆ S1 × S2 is a 2 2 -bisimulation between S1 and S2 iff for
all 〈s1, s2〉 ∈ R, for all U1, U

′
1 ⊆ S1 and for all U2, U

′
2 ⊆ S2 the following two

conditions are satisfied:

1.(a) If dom(R) ∩ U1 = dom(R) ∩ U ′
1 then: U1 ∈ ν1(s1) iff U ′

1 ∈ ν1(s1), and

(b) If rng(R) ∩ U2 = rng(R) ∩ U ′
2 then: U2 ∈ ν2(s2) iff U ′

2 ∈ ν2(s2).

2. If the pair 〈U1, U2〉 is R-coherent then: U1 ∈ ν1(s1) iff U2 ∈ ν2(s2).

Proof. First observe that for U1, U
′
1 ⊆ S1, π−1

1 [U1] = π−1
1 [U ′

1] iff dom(R)∩U1 =
dom(R) ∩ U ′

1. Similarly, for U2, U
′
2 ⊆ S2, π−1

2 [U2] = π−1
2 [U ′

2] iff rng(R) ∩ U2 =
rng(R) ∩ U ′

2. Also, recall (from Lemma 5.2.2) that given U1 ⊆ S1 and U2 ⊆ S2,
the pair 〈U1, U2〉 is R-coherent iff π−1

1 [U1] = π−1
2 [U2]. It should now be clear

that if R is a 2 2 -bisimulation, i.e., (5.5) holds, then R fulfills conditions 1 and
2.

To prove the converse, assume R fulfills the conditions 1 and 2. To see that
(5.5) holds, we can take for each pair 〈s1, s2〉 ∈ R as witnessing Y ∈ 2 2 (R),
the set Y := {π−1

1 [U1] | U1 ∈ ν1(s1)} ∪ {π−1
2 [U2] | U2 ∈ ν2(s2)}. To verify the

condition on ν1 in (5.5), we have that U1 ∈ ν1(s1) implies π−1
1 [U1] ∈ Y simply

by definition of Y . Now suppose π−1
1 [U1] ∈ Y . This means that there is a

U ′
1 ∈ ν1(s1) such that π−1

1 [U1] = π−1
1 [U ′

1] or there is a U2 ∈ ν2(s2) such that
π−1

1 [U1] = π−1
2 [U2]. In the first case, U1 ∈ ν1(s1) follows from condition 1a, in

the second case, U1 ∈ ν1(s1) follows from condition 2. Similarly, the condition
on ν2 in (5.5) can be shown to hold using conditions 1b and 2. qed

Another way of formulating condition 1.(a) in Proposition 5.3.13, is to say
that if U1 ∈ ν1(s1) and U ′

1 /∈ ν1(s1), then there is a u ∈ (U1 \ U ′
1) ∪ (U ′

1 \ U1)
such that u ∈ dom(R). Similarly for condition 1b. Informally, one can say that
condition 1 requires that the relation R must witness the difference between
subsets when one is a neighbourhood and the other is not. We will now show
that precocongruences are characterised by condition 2 only, hence condition 1
is unnecessary (unwanted even) for the purpose of approximating behavioural
equivalence.

Let 〈S1, ν1〉 and 〈S2, ν2〉 be two 2 2 -coalgebras and R ⊆ S1 × S2 a relation
with pushout 〈P, p1, p2〉. We have:

R is a precocongruence

iff ∀〈s1, s2〉 ∈ R : 2 2 (p1)(ν1(s1)) = 2 2 (p2)(ν2(s2))

iff ∀〈s1, s2〉 ∈ R .∀V ⊆ P : p−1
1 [V] ∈ ν1(s1) ⇔ p−1

2 [V] ∈ ν2(s2) (5.6)

138 Chapter 5. Bisimilarity in neighbourhood structures

We now show that, in fact, (5.6) is equivalent with condition 2 of Proposi-
tion 5.3.13.

5.3.14. Proposition. Let S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 be neighbourhood
frames, and R ⊆ S1 × S2 a relation. R is a precocongruence between S1 and S2

if and only if for all 〈s1, s2〉 ∈ R and for all U1 ⊆ S1 and U2 ⊆ S2 such that
〈U1, U2〉 is R-coherent: U1 ∈ ν1(s1) iff U2 ∈ ν2(s2).

Proof. Let S1,S2 and R be as stated. Furthermore, let πi : R→ Si, i ∈ {1, 2},
be the projections of R, R12 = RS1+S2 , and 〈P, p1, p2〉 the pushout of R. We
will prove that for all U1 ⊆ S1 and U2 ⊆ S2:

〈U1, U2〉 is R-coherent iff

U1 = p−1
1 [Y] and U2 = p−1

2 [Y] for some Y ⊆ P. (5.7)

The proposition then follows from (5.6) and (5.7). To prove the direction from
left to right in (5.7), assume U1 ⊆ S2, U2 ⊆ S2 and 〈U1, U2〉 is R-coherent. From
Lemmas 5.2.2 and 5.2.3, we get that U1+U2 is Re12-coherent. Let ε : S1+S2 → P
be the quotient map associated with Re12. We claim that we can take Y =
ε[U1 + U2], the set of Re12-equivalence classes intersecting U1 + U2. To see that
p−1
1 [ε[U1 + U2]] = U1 and p−1

2 [ε[U1 + U2]] = U2, we have for all i ∈ {1, 2} and
si ∈ Si:

si ∈ p−1
i [ε[U1 + U2]] ⇐⇒ pi(si) ∈ ε[U1 + U2]

⇐⇒ ∃s′ ∈ U1 + U2 : 〈si, s′〉 ∈ Re12
(U1 + U2 Re

12-coh.) ⇐⇒ si ∈ U1 + U2

⇐⇒ si ∈ Ui.

To prove the direction from right to left in (5.7), let Y ⊆ P be arbitrary. We
have for all 〈s1, s2〉 ∈ R:

〈s1, s2〉 ∈ π−1
1 [p−1

1 [Y]] iff p1(s1) ∈ Y iff p2(s2) ∈ Y iff 〈s1, s2〉 ∈ π−1
2 [p−1

2 [Y]].

where the middle equivalence follows from the fact that 〈s1, s2〉 ∈ R implies
p1(s1) = p2(s2). We have now shown that π−1

1 [p−1
1 [Y]] = π−1

2 [p−1
2 [Y]], hence by

Lemma 5.2.2, the pair 〈p−1
1 [Y], p−1

2 [Y]〉 is R-coherent. qed

From Proposition 5.3.10(2) we know that on a single coalgebra, congruences
are precocongruences. We therefore get the following characterisation.

5.3.15. Corollary. Let 〈S, ν〉 be a neighbourhood frame and R ⊆ S × S an
equivalence relation. R is a congruence on 〈S, ν〉 iff

for all 〈s1, s2〉 ∈ R and all R-coherent U ⊆ S: U ∈ ν(s1) iff U ∈ ν(s2). (5.8)

5.3. Equivalence notions 139

Proof. Let R ⊆ S × S be an equivalence relation. We first prove a small
claim: Claim: A pair 〈U1, U2〉 is R-coherent iff U1 = U2 = U for some R-
coherent subset U ⊆ S. Proof of Claim: Recall that a pair 〈U1, U2〉 is R-
coherent iff R[U1] ⊆ U2 and R−1[U2] ⊆ U1. Since R is an equivalence relation, R
is reflexive, and it follows that if 〈U1, U2〉 is R-coherent, then U1 ⊆ R[U1] ⊆ U2

and U2 ⊆ R−1[U2] ⊆ U1, hence U1 = U2. Conversely, if U is some R-coherent
subset of S, then by definition, 〈U,U〉 is R-coherent.

We now have: R is a congruence iff (Thm. 5.3.11) R is a precocongruence iff
(Prop. 5.3.14) for all 〈s1, s2〉 ∈ R and for all U1, U2 ⊆ S such that 〈U1, U2〉 is R-
coherent: U1 ∈ ν(s1) iff U2 ∈ ν(s2). Using the above claim, this last statement
is equivalent with (5.8). qed

We will now demonstrate with two examples that 2 2 -bisimilarity, preco-
congruences and behavioural equivalence differ on neighbourhood frames. It is
tempting to think of the elements of neighbourhoods as successor states, but
these examples show that this leads to wrong intuitions. For example, contrary
to the intuition we have from Kripke bisimulations, behavioural equivalence
in neighbourhood frames does not require that nonempty neighbourhoods are
somehow matched by nonempty neighbourhoods. Moreover, states that are not
contained in any neighbourhood of some state s, can influence the existence of
a bisimulation or cocongruence at s.

5.3.16. Example. Consider the two neighbourhood frames, T = 〈T, νT 〉 and
S = 〈S, νS〉 where T = {t1, t2, t3}, νT (t1) = νT (t2) = {{t2}}, νT (t3) := {∅}, and
S = {s}, νS(s) = ∅. The two states t1 and s are behaviourally equivalent. To see
this, let U = 〈U, νU 〉 be the neighbourhood frame where U = {u1, u2}, νU (u1) =
∅ and νU (u2) = {∅}. Let f1 : T → U and f2 : S → U be the functions with
graphs Gr(f1) = {〈t1, u1〉, 〈t2, u1〉, 〈t3, u2〉} and Gr(f2) = {〈s, u1〉}, respectively,
as illustrated here:

t2

∅

t3

u2

∅

T U S

s

u1

t1
f1

f2

It can easily be verified that f1 and f2 are bounded morphisms. For exam-
ple, the bounded morphism condition (5.2) holds for f1 at t1 and t2, since their
only neighbourhood {t2} is not the inverse f1-image of any subset of U . Since
f1(t1) = f2(s), t1 and s are behaviourally equivalent. In fact, R := pb(f1, f2) =

140 Chapter 5. Bisimilarity in neighbourhood structures

{〈t1, s〉, 〈t2, s〉} is a precocongruence. This can be verified using the character-
isation given in Proposition 5.3.14. Note that there is no subset U ⊆ S such
that 〈{t2}, U〉 is R-coherent.

However, t1 and s are not 2 2 -bisimilar. For suppose R is a 2 2 -bisimulation
between T and S, then 〈t3, s〉 /∈ R, since 〈∅, ∅〉 is R-coherent, ∅ ∈ νT (t3) and
∅ /∈ νS(s). Hence t3 /∈ dom(R), and it follows that dom(R) ∩ {t2} = dom(R) ∩
{t2, t3}. Now, since {t2} ∈ νT (t1) and {t2, t3} 6∈ νT (t1), we can conclude from
condition 1a of Proposition 5.3.13 that t1 cannot be R-related to any state in S,
in particular not to s. Since R was an arbitrary 2 2 -bisimulation, t1 and s are
not 2 2 -bisimilar.

Consider now the relation R′ = {〈t1, t2〉} on the neighbourhood frame T .
The reader can check that R′ is a precongruence, but not a precocongruence,
on T . �

The above example shows that between neighbourhood frames, precocongru-
ences are a better approximation of behavioural equivalence than 2 2 -bisimilar-
ity. However, the next example shows that also precocongruences cannot capture
behavioural equivalence, in general.

5.3.17. Example. We consider now a small variation on the picture given in
Example 5.3.16. The neighbourhood frames S, U and the function f2 are the
same as before, but on T we now take as neighbourhood function ν ′T (t1) =
{{t2}}, ν ′T (t2) = ν ′T (t3) = {∅}, and let T ′ = 〈T, ν ′T 〉. Instead of the function f1,
we take the function f ′1 : T → U with graph Gr(f ′1) = {〈t1, u1〉, 〈t2, u2〉, 〈t3, u2〉}.
Again, it is straightforward to check that f ′1 is a bounded morphism, and hence
t1 and s are behaviourally equivalent.

∅

U S

t2

t3 t1

∅
u2

u1

s

f ′1

f2

T ′

However, there is no precocongruence containing the pair 〈t1, s〉. Suppose
R′ ⊆ T × S is an arbitrary precocongruence between T ′ and S. Since 〈∅, ∅〉 is
R′-coherent, ∅ ∈ ν ′T (t2) and ∅ 6∈ νS(s), it follows from Proposition 5.3.14 that
〈t2, s〉 6∈ R′. This implies that 〈{t2}, ∅〉 is R′-coherent, but {t2} ∈ ν ′T (t1) and
∅ /∈ νS(s), so 〈t1, s〉 6∈ R′. �

To sum it up: Example 5.3.16 showed that precocongruences are a clear
improvement when compared to 2 2 -bisimulations. Example 5.3.17, however,

5.3. Equivalence notions 141

demonstrates that precocongruences are still incomplete as a proof principle for
behavioural equivalence over neighbourhood frames.

From Theorem 5.3.11 of the previous subsection, we know that on a single
neighbourhood frame, precocongruences do capture behavioural equivalence.
Using the results of this subsection it follows easily that, in fact, also 2 2 -
bisimilarity captures behavioural equivalence on a single structure.

5.3.18. Proposition. If S = 〈S, ν〉 is a neighbourhood frame, and R ⊆ S × S
is an equivalence relation, then:

R is a 2 2 -bisimulation iff R is a precocongruence iff R is a congruence.

Consequently, for all s1, s2 ∈ S: s1 ∼ s2 iff s1 ∼p s2 iff s1 ∼b s2.

Proof. If R ⊆ S × S is an equivalence relation, then in particular dom(R) =
rng(R) = S, and hence condition 1 of Proposition 5.3.13 is trivially satisfied.
It follows from the characterisations in Propositions 5.3.13 and 5.3.14 that R
is a 2 2 -bisimulation iff R is a precocongruence. The second equivalence is an
instance of the more general result in Proposition 5.3.10(2). The final claim
is an immediate consequence of the main claim and Lemma 2.3.3 (Chapter 2,
p. 17). qed

5.3.19. Remark. Alternatively, Proposition 5.3.18 follows from the result in
[51] that congruences are F -bisimulations in case the functor F weakly preserves
kernel pairs - a property that the functor 2 2 has as the following argument shows:
Let f : S → T be a function and consider its kernel ker(f) := {〈s, s′〉 ∈ S × S |
f(s) = f(s′)} with projections πi : ker(f) → S for i = 1, 2. We have to show
that for every pair of sets N1, N2 ∈ ker(2 2 (f)) there exists a set N ∈ 2 2 (ker(f))
such that 2 2 (πi)(N) = Ni for i = 1, 2. Let N1, N2 be elements of 2 2 (S) such
that 2 2 (f)(N1) = 2 2 (f)(N2). We put N := {π−1

1 (U1) | U1 ∈ N1} ∪ {π−1
2 (U2) |

U2 ∈ N2}. It is now easy to check that 2 2 (πi)(N) = Ni for i = 1, 2 as required.
�

5.3.3 Monotonic and Kripke bisimulations

Kripke frames and monotonic neighbourhood frames form subclasses of neigh-
bourhood frames, as we have seen in Remarks 5.2.9 and 5.2.8, respectively. We
now compare the different types of equivalence notions for neighbourhood frames
to the existing bisimulation notions over these subclasses. Some of these results
are well-known, but we repeat them here to give the reader an easy overview of
how the different notions relate to each other.

The instantiation of cocongruences and precocongruences over monotonic
neighbourhood frames and Kripke frames is made easy by the following lemma.

142 Chapter 5. Bisimilarity in neighbourhood structures

Given a natural transformation η : F ·→G between Set-functors F and G , it is
well-known (cf. [129]) that we obtain a functor Trη : Coalg(F) → Coalg(G) by
composing with η: if 〈X, ξ〉 ∈ Coalg(F) then 〈X, ηF (X) ◦ ν〉 ∈ Coalg(G). This
transformation preserves both bisimulations, cocongruences and precocongru-
ences by naturality of η. We now show that if η is injective in all components,
then it also reflects cocongruences and precocongruences. This result is an easy
consequence of Lemma 3.8 in [15].

5.3.20. Lemma. If η : F ↪→ G is a natural transformation that is injective in
all components, i.e., F is a subfunctor of G, then for all F -coalgebras 〈X1, ξ1〉
and 〈X2, ξ2〉, and all relations R ⊆ X1 ×X2:

1. R is an F-cocongruence between 〈X1, ξ1〉 and 〈X2, ξ2〉 iff
R is a G-cocongruence between Trη(〈X1, ξ1〉) and Trη(〈X2, ξ2〉).

2. R is an F-precocongruence between 〈X1, ξ1〉 and 〈X2, ξ2〉 iff
R is a G-precocongruence between Trη(〈X1, ξ1〉) and Trη(〈X2, ξ2〉).

Proof. Item 1 follows from [15, Lemma 3.8] and the fact that Coalg(G) has
image factorisation for any Set-functor G . Item 2 follows directly from [15,
Lemma 3.8], since the pushout arrows are always jointly surjective, i.e., [p1, p2] :
X1 +X2 � P , where 〈P, p1, p2〉 is the pushout of R. qed

Monotonic bisimulations

As mentioned in Remark 5.2.8, monotonic neighbourhood frames are coalgebras
for the Set-functor Mon. The inclusion maps ιX : Mon(X) → 2 2 (X) yield a nat-
ural transformation ι : Mon ↪→ 2 2 that is clearly injective in all components. It
follows from Lemma 5.3.20 that a relation R is a Mon-cocongruence iff R is a 2 2 -
cocongruence, and R is a Mon-precocongruence iff R is a 2 2 -precocongruence.
Combining this last observation with Proposition 5.3.10(2), it follows that an
equivalence relation R is a Mon-congruence iff R is a 2 2 -congruence.

Monotonic bisimulations were introduced by Pauly in [113].

5.3.21. Definition. (cf. [113]) Let M1 = 〈S1, ν1〉 and M2 = 〈S2, ν2〉 be
monotonic neighbourhood frames, and Z ⊆ S1×S2 a relation. Z is a monotonic
bisimulation between M1 and M2 if for all 〈s1, s2〉 ∈ Z:

(mon-fwd) for all U1 ⊆ S1: if U1 ∈ ν1(s1) then Z[U1] ∈ ν2(s2).
(mon-bwd) for all U2 ⊆ S2: if U2 ∈ ν2(s2) then Z−1[U2] ∈ ν1(s1).

Two states are monotonic bisimilar, if they are linked by a monotonic bisimu-
lation. �

5.3. Equivalence notions 143

The following lemma relates Mon-precocongruences to these notions. We
need to define the following property of relations. A relation R ⊆ S1 × S2 is
called z-closed (cf. [81]), if the following holds for all s1, t1 ∈ S1 and s2, t2 ∈ S2:

(z1) 〈s1, s2〉, 〈s1, t2〉, 〈t1, t2〉 ∈ R ⇒ 〈t1, s2〉 ∈ R, and
(z2) 〈s1, s2〉, 〈t1, s2〉, 〈t1, t2〉 ∈ R ⇒ 〈s1, t2〉 ∈ R,

as illustrated here:

(z1) : s1
R

OOOOOOO s2

t1 t2

(z2) : s1
R s2

t1

ooooooo
t2

5.3.22. Lemma. Let S1 = 〈S1, ν1〉 and S2 = 〈S2, ν2〉 be monotonic neighbour-
hood frames, and R ⊆ S1 × S2 a relation.

1. If R is a Mon-bisimulation, then R is a monotonic bisimulation.
2. If R is a monotonic bisimulation, then R is a Mon-precocongruence.
3. If R is a z-closed Mon-precocongruence, then R is a monotonic bisimula-

tion.

Proof. Item 1 was shown in [56]. To see that item 2 holds, assume R is
a monotonic bisimulation. Let 〈s1, s2〉 ∈ R, U1 ⊆ S1, U2 ⊆ S2 be such that
〈U1, U2〉 is R-coherent, that is, R[U1] ⊆ U2 and R−1[U2] ⊆ U1. It follows easily
from monotonicity, (mon-fwd) and (mon-bwd) that U1 ∈ ν1(s1) iff U2 ∈ ν2(s2).

To prove item 3, assume R is a z-closed Mon-precocongruence, 〈s1, s2〉 ∈ R,
and let U1 ⊆ S1, U2 ⊆ S2 be arbitrary. Using the assumption that R is z-closed,
it is easy to show that the pair 〈U1 ∪ R−1[R[U1]], R[U1]〉 is R-coherent. Hence
if U1 ∈ ν1(s1) then by monotonicity, U1 ∪ R−1[R[U1]] ∈ ν1(s1) and since R is a
Mon-precocongruence we get from the characterisation in Proposition 5.3.14 and
R-coherence that R[U1] ∈ ν2(s2). Similarly, it can be shown that 〈R−1[U2], U2∪
R[R−1[U2]]〉 is R-coherent, so if U2 ∈ ν2(s2), then by monotonicity and R-
coherence, it follows that R−1[U2] ∈ ν1(s1). qed

Mon does not preserve weak pullbacks (cf. [56]), so Mon-behavioural equiva-
lence is strictly weaker than Mon-bisimilarity, but the other equivalence notions
all coincide over monotonic neighbourhood frames.

5.3.23. Proposition. Let S1 and S2 be monotonic neighbourhood frames con-
taining states s1 and s2, respectively. The following are equivalent:

1. s1 and s2 are Mon-behaviourally equivalent,
2. s1 and s2 are monotonic bisimilar,
3. s1 and s2 are linked by a Mon-precocongruence.

144 Chapter 5. Bisimilarity in neighbourhood structures

Proof. (1 ⇔ 2) was shown in [56], (2 ⇒ 3) holds by Lemma 5.3.22(2), and
(3 ⇒ 1) follows from the general result in Proposition 5.3.8(2). qed

The next example shows that the z-closure requirement in Lemma 5.3.22(2)
is really necessary.

5.3.24. Example. Consider the two monotonic neighbourhood frames M1 =
〈{s1, t1, u1}, ν1〉 and M2 = 〈{s2, t2, u2}, ν2〉 where ν1(s1) = ↑{t1}, ν2(s2) =
↑{t2, u2}, and ν1(t1) = ν1(u1) = ν2(t2) = ν2(u2) = ↑∅. The relation Z =
{〈s1, s2〉, 〈t1, t2〉, 〈u1, u2〉, 〈u1, t2〉} is a Mon-precocongruence. To see this, we
use the characterisation from Proposition 5.3.14. First observe that the only
non-trivial Z-coherent pair is 〈{t1, u1}, {t2, u2}〉. Since 〈s1, s2〉 ∈ Z, we confirm
(using monotonicity of ν1) that {t1, u1} ∈ ν1(s1) iff {t2, u2} ∈ ν2(s2). The
condition for the other states and Z-coherent pairs can be just easily checked.
Using the characterisation in Proposition 5.3.13 we find that Z is also a 2 2 -
bisimulation. However, Z is not a monotonic bisimulation, since Z[{t1}] =
{t2} /∈ ν2(s2). �

Kripke bisimulations

Kripke frames are P -coalgebras, and in Subsection 2.4.3 we saw that P -bisimula-
tions are the same as Kripke bisimulations. The transformation (−)aug from
Kripke frames to augmented neighbourhood frames (cf. Remark 5.2.9), in
fact, arises from the natural transformation υ : P ·→Mon defined for all sets
X and U ⊆ X by υX(U) = ↑U = {V ⊆ X | U ⊆ V }. This υ is injective
in all components. Hence, by Lemma 5.3.20, a relation R on a P -coalgebra
is a P -cocongruence iff R is a Mon-cocongruence iff R is a 2 2 -cocongruence.
Similarly, the notions of P -precocongruences, Mon-precocongruences and 2 2 -
precocongruences all coincide over P -coalgebras, and from Proposition 5.3.10(2),
we also obtain that on a P -coalgebra, a relation R is P -congruence iff R is a
Mon-congruence iff R is a 2 2 -congruence.

5.3.25. Proposition. Let K1 = 〈S1, R1〉 and K2 = 〈S2, R2〉 be Kripke frames,
and R ⊆ S1 × S2 a relation.

1. R is a Kripke bisimulation between K1 and K2 iff
R is a monotonic bisimulation between Kaug

1 and Kaug
2 ,

2. if R is a P -cocongruence, then R is a Kripke bisimulation.
3. if R is a Kripke bisimulation, then R is a P -precocongruence.
4. if R is a z-closed P -precocongruence, then R is a Kripke bisimulation.

Proof. Item 1 was shown by Pauly in [113]. Item 2 follows from the fact
that P preserves weak pullbacks (cf. [129, Theorem 4.3]). Item 3 is an instance

5.3. Equivalence notions 145

of Proposition 5.3.8(1). In order to prove item 4, suppose R is a z-closed P -
precocongruence. By Lemma 5.3.20(2), R is a z-closed Mon-precocongruence,
hence by Lemma 5.3.22(3), a monotonic bisimulation. It now follows from item
1 that R is a Kripke bisimulation. qed

We note that the two frames in Example 5.3.24 are augmented, and this
example therefore shows that even if a functor F preserves weak pullbacks,
an F -precocongruence must be z-closed in order to yield an F -bisimulation, in
general. Since the relation Z in Example 5.3.24 is also a 2 2 -bisimulation, it
shows that a 2 2 -bisimulation must also be z-closed in order to be a guaranteed
to be a Kripke bisimulation.

Due to Proposition 5.3.8. we conclude that all three equivalence notions for
the functor P coincide.

5.3.26. Proposition. Let K1 and K2 be Kripke frames containing states s1
and s2, respectively. The following are equivalent:

1. s1 and s2 are P -behaviourally equivalent,
2. s1 and s2 are P -bisimilar (i.e. Kripke bisimilar),
3. s1 and s2 are linked by a P -precocongruence.

Proof. (1 ⇒ 2) is well-known, and it follows from Lemma 5.3.25(2). The
implications (2 ⇒ 3) and (3 ⇒ 1) follow from Proposition 5.3.8. qed

Apart from the correspondence between augmented neighbourhood frames
and Kripke frames, any neighbourhood frame can be translated into a Kripke
frame for a 3-modal language (cf. [78]). This language L](At) has three unary
modalities 2, [3] and [63], and a neighbourhood frame M = 〈S, ν〉 can be viewed
as a Kripke L]-frame M] = 〈W,N,R3, R 63〉 by taking:

W = S ∪ ν[S],
N = {〈s, U〉 ∈ S × ν[S] | U ∈ ν(s)},
R3 = {〈U, s〉 ∈ ν[S]× S | s ∈ U},
R 63 = {〈U, s〉 ∈ ν[S]× S | s 6∈ U}.

The usual definition of 3-Kripke bisimulation applies to L]-frames, that is, a
relation Z is a 3-Kripke bisimulation if for each of the three relations N,R3, R 63
the usual back-and-forth Kripke bisimulation conditions hold. Example 5.3.16
shows that 2 2 -bisimilarity does not imply 3-Kripke bisimilarity, since Gr(f1) is a
2 2 -bisimulation and hence t1 and u1 are 2 2 -bisimilar, but the forward condition
forN clearly fails for any relation containing 〈t1, u1〉 on the corresponding Kripke
L]-frames. The other implication, however, does hold. One can show that

146 Chapter 5. Bisimilarity in neighbourhood structures

given neighbourhood frames M1 = 〈S1, ν1〉 and M2 = 〈S2, ν2〉, and a 3-Kripke
bisimulation R ⊆ (S1 ∪ ν1[S1]) × (S2 ∪ ν2[S2]) between M]

1 and M]
2, then the

state-part of R, R ∩ (S1 × S2), is a 2 2 -bisimulation between M1 and M2. The
proof is fairly straightforward, but also quite long and technical, and we have
therefore chosen to leave it out.

5.4 Hennessy-Milner classes

The Hennessy-Milner theorem for normal modal logic states that over the class
of finite Kripke models, two states are Kripke bisimilar if and only if they satisfy
the same modal formulas. It is well-known (see e.g. [25]), that this Hennessy-
Milner theorem can be generalised to hold over any class of modally saturated
Kripke models, in particular, over the class of image-finite Kripke models.

In this section, we define modal saturation and image-finiteness for neigh-
bourhood models and show that each of these properties leads to a Hennessy-
Milner style theorem. However, in contrast with the case for Kripke models,
we will see that image-finite neighbourhood models are not necessarily modally
saturated. In the last subsection we describe ultrafilter extensions of neighbour-
hood models, and show that they are modally saturated.

First, we make precise what we mean by a Hennessy-Milner class of neigh-
bourhood models. Since we have three equivalence notions for neighbourhood
models, we have, in principle, three types of Hennessy-Milner classes. However,
Examples 5.3.16 and 5.3.17 of section 5.3 showed that even over the class of finite
neighbourhood models, two states can be behaviourally equivalent, and hence
modally equivalent, without being linked by a precocongruence or a bisimula-
tion. This means that precocongruences and bisimulations do not fit well with
the expressivity of the modal language. We therefore define Hennessy-Milner
classes with respect to behavioural equivalence.

5.4.1. Definition. A class K of neighbourhood models is a Hennessy-Milner
class, if for any M1 and M2 in K containing states s1 and s2, respectively, we
have: M1, s1 ≡M2, s2 iff M1, s1 ∼b M2, s2. �

The following lemma provides an easy, but useful, criterion for proving that
a class of models is a Hennessy-Milner class.

5.4.2. Lemma. Let K be a class of neighbourhood models. If for any M1,M2 ∈
K, the modal equivalence relation ≡ is a congruence on M1 +M2, then K is a
Hennessy-Milner class.

Proof. Let M1 and M2 be neighbourhood models in K, and let ιi : Mi →
M1 + M2 denote the canonical inclusion morphisms. Assume that we have

5.4. Hennessy-Milner classes 147

states s1 and s2 such that M1, s1 ≡ M2, s2. Since truth is invariant under
bounded morphisms, we have ι1(s1) ≡ ι2(s2) in M1 +M2. By assumption, ≡ is
a congruence on M1 +M2, hence ε : M1 +M2 → (M1 +M2)/≡ is a bounded
morphism, and 〈s1, s2〉 ∈ pb(ε ◦ ι1, ε ◦ ι2), hence s1 ∼b s2.

M1
ι1 //M1 +M2

ε

��

M2
ι2oo

(M1 +M2)/≡ qed

5.4.1 Modally saturated models

In Lemma 5.4.2 we saw that in order to prove a Hennessy-Milner theorem, we are
interested in neighbourhood models on which modal equivalence is a congruence.
LetM = 〈S, ν, V 〉 be a neighbourhood model. By applying the characterisations
of congruences on neighbourhood frames in Corollary 5.3.15 and adding the
condition for the atomic propositions, we find that ≡ is a congruence on M iff
for all s, t ∈ S such that s ≡ t:

(c1) for all p ∈ At : s ∈ V (p) ⇐⇒ t ∈ V (p), and
(c2) for all modally coherent X ⊆ S : X ∈ ν(s) ⇐⇒ X ∈ ν(t).

(5.9)
Clearly, condition (c1) holds in all neighbourhood models, since modally

equivalent states must make the same atomic propositions true. One way of
making condition (c2) hold, is to ensure that all modally coherent neighbour-
hoods are definable.

5.4.3. Lemma. Let M = 〈S, ν, V 〉 be a neighbourhood model. If for all s ∈ S
and all modally coherent X ∈ ν(s), there exists a modal L-formula ϕ such that
X = [[ϕ]]M, then modal equivalence is a congruence on M.

Proof. Let X be a modally coherent neighbourhood of some state, and assume
X = [[ϕ]]M. We have for any s, t ∈ S such that s ≡ t: X ∈ ν(s) iff M, s |= 2ϕ
iff M, t |= 2ϕ iff X ∈ ν(t). qed

For finite models, a standard argument shows that any modally coherent
neighbourhood X is definable by a formula of the form δ =

∨
i≤n

∧
j≤k δi,j where

n, k < ω. For infinite models, the same argument would yield a formula with
an infinite disjunction and conjunction, which is not a well-formed formula of
our finitary language. Modal saturation is a compactness property which allows
us to replace infinite conjunctions and disjunctions with finite ones. Thus we
can essentially use the same argument as for finite models to show that modally
coherent neighbourhoods are definable (and we do so in Lemma 5.4.5 below).

148 Chapter 5. Bisimilarity in neighbourhood structures

We will use the following notation. Let Ψ be a set of modal L-formulas and
M = 〈S, ν, V 〉 a neighbourhood model. We define ¬Ψ = {¬ψ | ψ ∈ Ψ},
[[
∧

Ψ]]M =
⋂
ψ∈Ψ[[ψ]]M, and [[

∨
Ψ]]M =

⋃
ψ∈Ψ[[ψ]]M. A set Ψ of L-formulas is

satisfiable in a subset X ⊆ S of M, if [[
∧

Ψ]]M ∩X 6= ∅. A set Ψ of L-formulas
is finitely satisfiable in X ⊆ S, if any finite subset Ψ0 ⊆ω Ψ is satisfiable in X.

5.4.4. Definition. Let M = 〈S, ν, V 〉 be a neighbourhood model. A subset
X ⊆ S is called modally compact if for all sets Ψ of modal L-formulas, Ψ is sat-
isfiable in X whenever Ψ is finitely satisfiable in X. The neighbourhood model
M is modally saturated, if for all s ∈ S and all modally coherent neighbourhoods
X ∈ ν(s), both X and the complement Xc are modally compact. �

To see why modal compactness is really a compactness property, note that
for a subset X in a neighbourhood model M, X ⊆ [[

∨
Ψ]]M iff {¬ψ | ψ ∈ Ψ} is

not satisfiable in X. Hence X is modally compact, if and only if, for all Ψ ⊆ L
such that X ⊆ [[

∨
Ψ]]M there is a Ψ0 ⊆ω Ψ such that X ⊆ [[

∨
Ψ0]]M. Clearly,

any finite set is modally compact. Note also that, in Definition 5.4.4, due to
the fact that [[

∧
Ψ]]M ⊆ X if and only if Xc ⊆ [[

∨
¬Ψ]]M, we have that Xc is

modally compact, if and only if, for all Ψ ⊆ L such that [[
∧

Ψ]]M ⊆ X, there is
a Ψ0 ⊆ω Ψ such that [[

∧
Ψ0]]M ⊆ X.

5.4.5. Lemma. Let M = 〈S, ν, V 〉 be a modally saturated neighbourhood model.
For all X ⊆ S: X is modally coherent iff X is definable by a modal L-formula.

Proof. If X = [[ϕ]]M for some ϕ ∈ L, then clearly X is modally coherent.
For the converse implication, assume X is modally coherent, i.e., X is a union
of modal equivalence classes X =

⋃
c∈C [xc]≡. For c ∈ C and y 6≡ xc there

is a modal L-formula δc,y such that xc |= δc,y and y |= ¬δc,y, so by taking
∆c = {δc,y | y 6≡ xc}, we have [xc]≡ = [[

∧
∆c]]M ⊆ X for each c ∈ C. By

modal compactness of Xc, for each c ∈ C there is a finite subset ∆0
c ⊆ω ∆c such

that [xc]≡ ⊆ [[
∧

∆0
c]]
M ⊆ X. Defining δc =

∧
∆0
c for each c ∈ C, we therefore

have X =
⋃
c∈C [[δc]]M. Now by modal compactness of X, we get a finite subset

∆0 ⊆ω {δc | c ∈ C} such that X = [[
∨

∆0]]M. That is, X is definable by the
formula δ =

∨
∆0. qed

5.4.6. Proposition. If M is a modally saturated neighbourhood model, then
modal equivalence is a congruence on M. It follows that modally equivalent
states in M are behaviourally equivalent.

Proof. Immediate consequence of Lemmas 5.4.3 and 5.4.5. qed

5.4.7. Corollary. The class of finite neighbourhood models is a Hennessy-
Milner class.

5.4. Hennessy-Milner classes 149

Proof. Since the disjoint union of two finite neighbourhood models is again
finite, it suffices by Lemma 5.4.2 and Proposition 5.4.6 to show that finite neigh-
bourhood models are modally saturated. But this is immediate, since any set
of states in a finite neighbourhood model M, is necessarily finite, and hence
modally compact, so M is modally saturated. qed

The question remains whether the class of all modally saturated neighbour-
hood models is a Hennessy-Milner class. We conjecture that if M and N are
modally saturated then modal equivalence is a congruence on M + N . If this
is the case, then the Hennessy-Milner theorem follows from Lemma 5.4.2.

5.4.8. Remark. In [113] the following definition of modal saturation for mono-
tonic neighbourhood models was introduced, and it was shown that over the
class of modally saturated monotonic neighbourhood models, modal equivalence
implies monotonic bisimilarity. A monotonic neighbourhood model 〈S, ν, V 〉 is
monotonic modally saturated, if for all s ∈ S and all sets Ψ of modal L-formulas
the following hold:

(m1-mon) For all X ∈ ν(s), if Ψ is finitely satisfiable in X, then Ψ is
satisfiable in X.

(m2-mon) If for all Ψ0 ⊆ω Ψ, there is an X ∈ ν(s) such that X ⊆ (
∧

Ψ0),
then there is an X ∈ ν(s) such that X ⊆ (

∧
Ψ).

In a monotonic neighbourhood model M, (m1-mon) clearly implies that
all modally coherent neighbourhoods are modally compact. The converse also
holds, since for any neighbourhood X of some state s, the closure X ′ of X with
respect to modal equivalence, i.e., X ′ =

⋃
x∈X [x]≡, is also a neighbourhood of

s by monotonicity, and for any Ψ ⊆ L, Ψ is satisfiable in X if and only if Ψ
is satisfiable in X ′. However, it is not clear whether monotonic modal satura-
tion and (neighbourhood) modal saturation coincide in all monotonic models.
We suspect that neither implies the other due to the following. The condition
(m2-mon) says that all neighbourhood collections are closed under arbitrary
intersections of definable neighbourhoods, a property which we expect can be
shown to fail in some modally saturated neighbourhood model. On the other
hand, it is not clear why the complements of modally coherent neighbourhoods
should be modally compact in a monotonic modally saturated model. Unfor-
tunately, at the moment we have no examples that confirm these intuitions.

�

5.4.9. Remark. A Kripke model 〈S,R, V 〉 is Kripke modally saturated, if for
all s ∈ S and all sets Ψ of modal L-formulas:

(m1-krip) If Ψ is finitely satisfiable in R[s], then Ψ is satisfiable in R[s],

150 Chapter 5. Bisimilarity in neighbourhood structures

and over the class of modally saturated Kripke models, modal equivalence im-
plies Kripke bisimilarity (see e.g. [25]). From the above definitions, it is clear
that for any augmented neighbourhood model M, if M is monotonic modally
saturated or (neighbourhood) modally saturated, then Mkrp is Kripke modally
saturated. However, ifMkrp is Kripke modally saturated, then modally coherent
neighbourhoods may fail to be modally compact in M. This is shown by Ex-
ample 5.4.17 (page 155) in the next subsection. Hence Kripke modal saturation
does not imply monotonic modal saturation nor (neighbourhood) modal satu-
ration. Note that (m2-mon) holds over any augmented neighbourhood model.

�

As we have seen in Remarks 5.4.8 and 5.4.9, the notions of neighbourhood,
monotonic and Kripke modal saturation do not restrict in a natural way. More-
over, in the next subsection (Example 5.4.17), we will see that image-finite
neighbourhood models are not necessarily modally saturated. These observa-
tions could be interpreted as arguments for saying that our definition of modal
saturation for neighbourhood models is not the right one. On the other hand,
Definition 5.4.4 arises in a natural manner, it implies Kripke modal saturation
over Kripke models, in subsection 5.4.3 we show that ultrafilter extensions of
neighbourhood models are modally saturated, and in subsection 5.5.2 we will
see that when viewing neighbourhood models as first-order models, then ω-
saturation implies modal saturation (Lemma 5.5.6). We believe these are good
arguments for Definition 5.4.4 being the right notion after all. However, fur-
ther investigations are needed to support this claim. It would be useful to have
a better understanding of what an abstract notion of modal saturation for F -
coalgebras should be.

5.4.2 Image-finite neighbourhood models

In this section, we define image-finite neighbourhood models and prove that
they form a Hennessy-Milner class. This result is, in fact, an instance of a
more general result in coalgebraic modal logic (by Schröder [136]), as we briefly
explain in Remark 5.4.15. Since neighbourhood structures are of general interest
outside the world of coalgebra, we have chosen to present a self-contained proof,
which can be understood and verified without the knowledge of coalgebraic
modal logic. However, we hope that this section also illustrates the benefits of
universal coalgebra, and that it may inspire readers to study the more general
results in [136].

In contrast with the Kripke case, image-finite neighbourhood models are not
necessarily modally saturated as we will see later in Example 5.4.17. Instead,
we will show that they satisfy the condition of the following lemma.

5.4. Hennessy-Milner classes 151

5.4.10. Lemma. Let M = 〈S, ν, V 〉 be a neighbourhood model. If for any states
s1, s2 ∈ S and any modally coherent subset X ⊆ S there is a formula ϕ ∈ L
such that for any i ∈ {1, 2}, X ∈ ν(s1) if and only if [[ϕ]]M ∈ ν(s2), then modal
equivalence is a congruence on M.

Proof. Immediate by the characterisation given by conditions (c1) and (c2)
on page 147. qed

A Kripke model is image-finite if every state has only finitely many succes-
sors. For neighbourhood models, the notion of image-finiteness is less obvious,
but as with bisimilarity, universal coalgebra provides us with an abstract notion
of image-finiteness for coalgebras which we instantiate for the 2 2 -functor. The
general construction behind this definition is that of taking the finitary part of
a functor. Recall that we denote the inclusion map of Y ⊆ X by ιY : Y ↪→ X.
Given any functor F : Set → Set, define the functor Fω by letting

Fω(X) =
⋃
{F (ιY)[FY] | ιY : Y ↪→ X,Y ⊆ω X}

for a set X, and for a function f : X → Y , Fω(f) is the restriction of F (f) to
Fω(X). It is known that Fω is the unique finitary (or ω-accessible) subfunctor
of F which agrees with F on all finite sets (see e.g. [4, 110]), and Fω is called
the finitary part of F . We now give a characterisation of the finitary part of 2 2 .
For a subset inclusion map ιB : B ↪→ X and D ⊆ X, note that ι−1

B [D] = D ∩B.
If U ∈ 2 2

ω(X) and B ⊆ X is such that for all D ⊆ X: D ∈ U ⇐⇒ D ∩B ∈ U ,
then we call B a base set for U .

5.4.11. Lemma. Let X be a set. We have:

2 2
ω(X) = {U ∈ 2 2 (X) | ∃B ⊆ω X. ∀D ⊆ X : (D ∈ U ⇐⇒ D ∩B ∈ U)}.

Proof. Let X be a set and U ∈ 2 2 (X). We have:

U ∈ 2 2
ω(X) ⇐⇒ ∃B ⊆ω X : U ∈ 2 2 (ιB)[2 2 (B)]

⇐⇒ ∃B ⊆ω X ∃V ∈ 2 2 (B) : U = 2 2 (ιB)(V)
⇐⇒ ∃B ⊆ω X ∃V ∈ 2 2 (B) : U = {D ⊆ X | D ∩B ∈ V }
⇐⇒ ∃B ⊆ω X ∀D ⊆ X : (D ∈ U ⇐⇒ D ∩B ∈ U).

qed

5.4.12. Definition. We define the class of image-finite neighbourhood frames
as the class Coalg(2 2

ω) of 2 2
ω-coalgebras. The class of image-finite neighbour-

hood models is the class of neighbourhood models based on an image-finite neigh-
bourhood frame. �

152 Chapter 5. Bisimilarity in neighbourhood structures

So, image-finite neighbourhood frames are the neighbourhood frames in
which all neighbourhood collections are determined by a finite base set. It
should be clear that a finite neighbourhood frame 〈S, ν〉 is image-finite, since
for all s ∈ S, S is a finite base set for ν(s). In proving that image-finite neigh-
bourhood models form a Hennessy-Milner class, we use the following lemma.

5.4.13. Lemma. Let S be a set and θ an equivalence relation on S. Moreover,
let B ⊆ S and denote by Bθ ⊆ B a set of representatives of the θ-classes
intersecting B. For all X,X ′ ⊆ S, if X and X ′ are both θ-coherent, then
X ∩B = X ′ ∩B iff X ∩Bθ = X ′ ∩Bθ.

Proof. Let S,B and Bθ ⊆ B be as stated, and assume that X and X ′ are θ-
coherent subsets of S. It is clear that X∩B = X ′∩B implies X∩Bθ = X ′∩Bθ.
For the other implication, assume X∩Bθ = X ′∩Bθ. We have: s ∈ X∩B implies
there is an s′ ∈ Bθ such that sθs′. Since X is θ-coherent, s′ ∈ X ∩Bθ = X ′∩Bθ.
Now since X ′ is θ-coherent, s ∈ X ′, and thus s ∈ X ′ ∩B. Hence we have shown
X ∩B ⊆ X ′ ∩B. The other inclusion is shown similarly. qed

5.4.14. Proposition. The class of image-finite neighbourhood models is a Hen-
nessy-Milner class.

Proof. For any functor F , the category Coalg(F) has coproducts (cf. Defini-
tion 2.2.6, p. 14). It follows that image-finite neighbourhood models are closed
under disjoint unions. By Lemma 5.4.2 it suffices to show that in an image-finite
neighbourhood model, modal equivalence is a congruence. So let M = 〈S, ν, V 〉
be image-finite, and let s, t ∈ S. We then have finite base sets Bs, Bt ⊆ω S for
ν(s) and ν(t), respectively. Let Bst = Bs ∪ Bt. By Lemma 5.4.10 it suffices to
find for any modally coherent X ⊆ S, a formula ϕ ∈ L such that

X ∩Bst = [[ϕ]]M ∩Bst, (5.10)

since then X ∩Bs = [[ϕ]]M ∩Bs and X ∩Bt = [[ϕ]]M ∩Bt, and hence X ∈ ν(s)
iff [[ϕ]]M ∈ ν(s), similarly for t, and consequently, if s ≡ t, then X ∈ ν(s) if and
only if X ∈ ν(t).

We now show how to obtain such a ϕ. Let X ⊆ be modally coherent and
let B′

st ⊆ Bst be a set of representatives of the ≡-classes intersecting Bst. Since
Bst is finite, so is B′

st. Assume B′
st = {s1, . . . , sn}. Now there are modal

formulas ϕ1, . . . , ϕn ∈ L which characterise s1, . . . , sn, respectively, within B′
st,

that is, M, si |= ϕj iff i = j, for 1 ≤ i, j ≤ n. Namely, for each si ∈ B′
st, we

have for all sj ∈ B′
st \ {si}, si 6≡ sj . Hence there is a formula ϕi,j such that

M, si |= ϕi,j and M, sj 6|= ϕi,j . Take ϕi =
∧n
j=1,j 6=i ϕi,j , i = 1, . . . , n. We now

define ϕ =
∨
{ϕi | si ∈ X ∩ B′

st}. To see that ϕ satisfies (5.10) it suffices by
Lemma 5.4.13 to show that X ∩ B′

st = [[ϕ]]M ∩ B′
st. Clearly, by definition of

5.4. Hennessy-Milner classes 153

ϕ, if si ∈ X ∩ B′
st then si ∈ [[ϕ]]M ∩ B′

st. Conversely, if sj ∈ [[ϕ]]M ∩ B′
st then

M, sj |= ϕi for some i such that si ∈ X ∩ B′
st. Since ϕi characterises si in B′

st,
it follows that sj = si ∈ X ∩B′

st. qed

5.4.15. Remark. As we already mentioned, Proposition 5.4.14 is a consequence
of a more general result in coalgebraic modal logic, which we briefly explain here.
In coalgebraic modal logic, the semantics of modalities is given by predicate lift-
ings. A predicate lifting for a functor F : Set → Set is a natural transformation
λ : 2 → 2 ◦ F . Given a set Λ of predicate liftings for F , the finitary coalgebraic
modal language L(Λ) is the multi-modal language which contains a modality [λ]
for each λ ∈ Λ. Given an F -coalgebra X = 〈X, ξ〉, the truth of formulas is de-
fined in the standard inductive manner for the basic Boolean connectives. The
truth of a modal formula [λ]φ is defined by: X, x |= [λ]φ iff ξ(x) ∈ λX([[φ]]X).
Atomic propositions can also be interpreted using constant predicate liftings.
We refer to [111] for details.

Using currying, every predicate lifting λ : 2 → 2 ◦F corresponds to a natural
transformation λ̂ : F → 2 2 , called the transposite of λ. A set Λ of predicate
liftings for F is called separating if the source of transposites {λ̂ | λ ∈ Λ} is
jointly injective. Schröder shows in [136, Theorem 41, Corollary 45]) that if
F : Set → Set is finitary and Λ is separating, then the finitary coalgebraic modal
language L(Λ) is expressive for F -coalgebras, meaning that over the class of
F -coalgebras, L(Λ)-equivalence implies behavioural equivalence.

We can instantiate this result for the finitary functor 2 2
ω×P (At) and classical

modal logic. The basic modal language and its interpretation over neighbour-
hood models is the finitary coalgebraic modal logic given by Λ = {λ}∪ {ρi | i <
ω}, where λ : 2 → 2 ◦ 2 2

ω is defined by λX(A) = {U ∈ 2 2
ω(X) | A ∈ U}, and

the ρi, i < ω, are constant predicate liftings that interpret the atomic propo-
sitions. It is known that {λ} ∪ {ρi | i < ω} is separating iff {λ} is separating.
The transposite λ̂ : 2 2

ω → 2 2 is simply the inclusion map, i.e., λ̂X = ι22
ω(X) for

all sets X, so trivially {λ̂} is jointly injective, hence {λ} is separating. It now
follows from Schröder’s results that over the class of image-finite neighbourhood
models, modal equivalence implies behavioural equivalence. �

We now show that the notion of image-finiteness for neighbourhood frames
restricts to the subclasses of neighbourhood frames that correspond with Kripke
frames and monotonic neighbourhood frames, respectively.

Monotonic neighbourhood frames are coalgebras for the subfunctor Mon of
2 2 (cf. Remark 5.2.8) which sends a setX to the collection of all subsets of P (X)
which are closed under supersets. Due to motonicity, given a function f : X →
Y , we can describe Mon(f) in terms of the direct image of f , namely, for all
V ∈ Mon(X), Mon(f)(V) =

⋃
{↑f [D] | D ∈ V }. Recall that for a subset B ⊆

X, ↑B = {B′ ⊆ X | B ⊆ B′}. Image-finite monotonic neighbourhood frames,

154 Chapter 5. Bisimilarity in neighbourhood structures

are then nothing but Monω-coalgebras. Let X be a set and U ∈ Mon(X). We
have:

U ∈ Monω(X) ⇐⇒ ∃Y ⊆ω X ∃V ∈ Mon(Y) : U = Mon(ιY)(V)
⇐⇒ ∃Y ⊆ω X ∃V ∈ Mon(Y) : U =

⋃
{↑ ιY [B] | B ∈ V }

⇐⇒ ∃C1, . . . , Cn ⊆ω X : U = ↑C1 ∪ . . . ∪ ↑Cn.

The neighbourhood collections in an image-finite monotonic neighbourhood
model are thus generated by finite sets of finite neighbourhoods which are min-
imal with respect to ⊆ in P (X). Such minimal neighbourhoods will be referred
to as core neighbourhoods. More precisely, if M = 〈S, ν, V 〉 is a neighbour-
hood model, s ∈ S and C ∈ ν(s) is such that for all D (C, D /∈ ν(s), C is
called a core neighbourhood of s. The collection of core neighbourhoods of s is
denoted νc(s). This terminology follows [114, 52] where image-finite monotonic
neighbourhood models were called locally core finite.

Finally, recall that a Kripke model 〈S,R, V 〉 is image-finite (cf. [25]), if for
all s ∈ S, the set of R-successors R[s] is finite.

5.4.16. Proposition. Let M = 〈S, ν, V 〉 be a neighbourhood model.

1. If M is a monotonic neighbourhood model, then M is image-finite as a
monotonic neighbourhood model iff M is image-finite as a neighbourhood
model.

2. If M is augmented, then Mkrp is image-finite as a Kripke model iff M is
image-finite as a neighbourhood model.

Proof. To prove item 1, let M be monotonic. Since Mon is a subfunctor of
2 2 , also Monω is a subfunctor of 2 2

ω. It follows that any image-finite monotonic
model is also image-finite as a neighbourhood model. Concretely, one can show
that for all s ∈ S, the union of core neighbourhoods B =

⋃
νc(s) is a finite

base set for ν(s). For the other direction, assume M is image-finite as a neigh-
bourhood model. Let s ∈ S, and assume B ⊆ω S is a finite base set for ν(s).
We first show that every neighbourhood is in the upwards closure of some finite
core neighbourhood: U ∈ ν(s) implies B ∩ U ∈ ν(s), and since B ∩ U is finite,
there must be a finite C ∈ νc(s) such that C ⊆ B ∩ U ⊆ U . Suppose now that
C ∈ νc(s) is an arbitrary core neighbourhood of s. As B is a base set for ν(s),
C ∩B ∈ ν(s), and hence by ⊆-minimality of C, C ⊆ B. It now follows from the
finiteness of B, that s has only finitely many core neighbourhoods C1, . . . , Cn of
finite cardinality, and ν(s) = ↑C1 ∪ . . . ∪ ↑Cn.

For item 2, let Mkrp = 〈S,R, V 〉, i.e., for all s ∈ S, ν(s) = ↑R[s], and
νc(s) = {R[s]}. This immediately shows that if Mkrp is image-finite then M is
image-finite as a monotonic model, and hence by item 1, also as a neighbourhood
model. Conversely, if M is image-finite, then by item 1, M is image-finite as a
monotonic model, hence for all s ∈ S,

⋃
νc(s) = R[s] is finite. qed

5.4. Hennessy-Milner classes 155

The following example demonstrates that image-finite neighbourhood mod-
els are not necessarily modally saturated, and it also shows that a Kripke
modally saturated model, is not necessarily modally saturated as a (monotonic)
neighbourhood model.

5.4.17. Example. Consider the Kripke model K = 〈S,R, V 〉 where S = N, the
set of natural numbers, and R is the usual relation > on N, that is, for m,n ∈ N,
〈m,n〉 ∈ R iff m > n, and R[m] = {n ∈ N | n < m}. Finally, the valuation V
is defined as V (pi) = ∅, for all atomic propositions pi ∈ At. K is an image-finite
Kripke model, hence by Proposition 5.4.16 the augmented neighbourhood model
Kaug corresponding to K is also image-finite as a (monotonic) neighbourhood
model. Since K is image-finite, K is Kripke modally saturated. However, Kaug is
not modally saturated as a neighbourhood model nor as a monotonic model. To
see this, first note that the set N is trivially modally coherent and by monotonic-
ity N is also a neighbourhood of every n ∈ N. Now, consider the set of modal
L-formulas, Ψ = {3n2⊥ | n ∈ N}. Note that by transitivity, K,m |= 3n2⊥
iff m ≥ n. Since K and Kaug are pointwise equivalent, and every finite subset
Ψ0 ⊆ω Ψ is satisfiable in K at the maximal n ∈ N such that 3n2⊥ ∈ Ψ0, it
follows that Ψ is finitely satisfiable in the neighbourhood N in Kaug. However,
Ψ is clearly not satisfiable in N. We have thus shown that N is not modally
compact, hence Kaug is not (monotonic) modally saturated. �

5.4.3 Ultrafilter extensions

In this section, we prove a behavioural-equivalence-somewhere-else result by
showing that any two modally equivalent states of neighbourhood models have
behaviourally equivalent representatives in the ultrafilter extensions of these
neighbourhood models. To this end, we define ultrafiler extensions of neigh-
bourhood models, and we prove analogues of results known for ultrafilter ex-
tensions of Kripke models. In particular, we show that ultrafilter extensions are
modally saturated. This result will be used in our proof of Craig interpolation
in subsection 5.5.3.

Just as ultrafilter extensions of Kripke models are obtained from algebraic
duality (see e.g. [25]), ultrafilter extensions of neighbourhood models are a by-
product of a more general duality between coalgebras and certain algebras on
the category of Boolean algebras, as described in e.g. [83, 89]. Our definition of
ultrafilter extensions of neighbourhood frames is obtained by instantiating the
more general definition of ultrafilter extensions of F -coalgebras presented in [89]
to F = 2 2 . The basic properties follow from the category theoretical framework.
With quite some effort, the behavioural-equivalence-somewhere-else result can
be obtained as a special case of a more general theorem in [83]. However,
instead of requiring knowledge of the (rather abstract) theory in [83, 89], we

156 Chapter 5. Bisimilarity in neighbourhood structures

have chosen to give a direct, concrete description of ultrafilter extensions of
neighbourhood models, and to use standard model-theoretic techniques to prove
basic properties. We believe that such a presentation will make the results of
this section and the proof of the Craig interpolation theorem better accessible to
readers whose background is mainly in modal logic. For the interested reader,
we give a brief summary of the construction from [89] in Remark 5.4.20.

Let us begin by introducing some terminology and notation, and recalling
some facts concerning ultrafilters.

5.4.18. Definition. Let A = 〈A,∧,∨,−, 0, 1〉 be a Boolean algebra with the
usual ordering: for all a, b ∈ A: a ≤ b iff a ∧ b = a. A subset u ⊆ A is an
ultrafilter of A if 1 ∈ u, and for all a, b ∈ A: a, b ∈ u implies a ∧ b ∈ u, a ∈ u
and a ≤ b implies b ∈ u, and a ∈ u iff −a 6∈ u.

Let S be a set. The collection of ultrafilters over S, denoted by Uf(S), is
the set of ultrafilters of the Boolean powerset algebra 〈P (S),∩,∪, \, ∅, S〉. For
U ⊆ S and s ∈ S, we define

Û := {u ∈ Uf(S) | U ∈ u},
us := {V ⊆ S | s ∈ V }.

It is easily confirmed that us is an ultrafilter over S; us is called the principal
ultrafilter generated by s. The induced map u : S → Uf(S) is called the principal
ultrafilter map. �

The duality betwen Stone spaces and Boolean algebras gives rise to the fol-
lowing two contravariant functors. P : Setop → BA maps a set X to its Boolean
algebra of subsets. The functor U : BA → Setop maps a Boolean algebra to
the set of its ultrafilters. Both functors can be regarded as subfunctors of the
contravariant powerset functor 2 , as they both map a morphism f in their
respective categories to the inverse image function f−1. Composing these func-
tors, we find that for a set X, UP(X) = Uf(X), and for a function f : X → Y ,
UP(f) = (f−1)−1. Hence Uf can be regarded as a subfunctor of 2 2 .

The following definition of ultrafilter extensions of neighbourhood models is
obtained by instantiating the corresponding coalgebraic notion for F -coalgebras
in [89] to the case that F = 2 2 . We sketch the main ideas of the construction in
Remark 5.4.20 below. In fact, the definition of the neighbourhood relation of the
ultrafilter extension goes back to the definition of the canonical neighbourhood
model in [141].

5.4.19. Definition. Let M = 〈S, ν, V 〉 be a neighbourhood model. The ultra-
filter extension of M is defined as the triple Mu := 〈Uf(S), µ, V u〉, where

• Uf(S) is the set of ultrafilters over the set S,

5.4. Hennessy-Milner classes 157

• µ : Uf(S) → 2 2 (Uf(S)) is defined by

µ(u) := {Û ⊆ Uf(S) | U ⊆ S, �U ∈ u},

where for any U ⊆ S we put �U := {s ∈ S | U ∈ ν(s)},

• V u(p) := {u ∈ Uf(S) | V (p) ∈ u}. �

5.4.20. Remark. In [89], a general construction of ultrafilter extensions of F -
coalgebras is given. We now sketch how this framework instantiates to 2 2 -
coalgebras, i.e., neighbourhood frames.

Classical modal logic can be described as a functor L : BA → BA. For a
Boolean algebra A = 〈A,∧,∨,−0, 1〉, L(A) is the free Boolean algebra gen-
erated by {2a | a ∈ A}. Let Alg(L) be the category of L-algebras over BA.
The functors P : Setop → BA and U : BA → Setop are extended to functors
P̄ : Coalg(2 2)op → Alg(L) and Ū : Alg(L) → Coalg(2 2)op. The ultrafilter exten-
sion of a 2 2 -coalgebra 〈S, ν〉 is then obtained as ŪP̄(〈S, ν〉). The lifting of P
and U relies on the existence of two natural transformations: δ : LP → P2 2 and
h : UL → 2 2U. For a set X, δX and hX are given by (cf. Definition 2.6.5 and
Example 3.6 of [89]):

δX : LP(X) → P2 2 (X)
2U 7→ {N ∈ 2 2 (X) | U ∈ N}

hX : UL(X) → 2 2U(X)
u 7→ {Û ⊆ UP(X) | 2U ∈ U}

The liftings P̄ and Ū are now given as follows on objects: P̄ maps a 2 2 -coalgebra
〈X, ν〉 to P̄(〈X, ν〉) = 〈LP(X),P(ν) ◦ δX〉 as illustrated here:

LP(X)
δX // P2 2 (X)

P(ν) // P(X)

Ū maps a 〈A, α〉 in Alg(L) to Ū(〈A, α〉) = 〈U(A), hA ◦ U(α)〉:

U(A)
U(α) // UL(A)

hA // 2 2 (U(A))

By working out the details, the reader can now confirm that the composition
ŪP̄ yields the ultrafilter extension of neighbourhood frames provided in Defini-
tion 5.4.19. �

The construction of the ultrafilter extension in Definition 5.4.19 can be seen
as an extension of the Set-functor Uf : Set → Set to a functor ()u : Nbhd →
Nbhd such that for any neighbourhood model M, the principal ultrafilter map
u is truth-preserving injective map from M into Mu. In order to see that the
construction ()u of the ultrafilter extension is functorial we show that bounded
morphisms between neighbourhood models induce bounded morphisms between
the corresponding ultrafilter extensions.

158 Chapter 5. Bisimilarity in neighbourhood structures

5.4.21. Lemma. Let M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 be neighbourhood
models an let f : S1 → S2 be a bounded morphism from M1 to M2. The
function fu := Uf(f) is a bounded morphism from Mu

1 = 〈Uf(S1), µ1, V
u
1 〉 to

Mu
2 = 〈Uf(S2), µ2, V

u
2 〉.

Proof. First observe that for any subset U ⊆ S2:

(fu)−1[Û] = f̂−1[U], (5.11)

since for any u ∈ Uf(S1): u ∈ (fu)−1[Û] iff fu(u) ∈ Û iff U ∈ fu(u) =
2 2 (f)(u) iff f−1[U] ∈ u iff u ∈ f̂−1[U]. Moreover,

f−1[�U] = �(f−1[U]) (5.12)

since for any s ∈ S1 and U ⊆ S2: s ∈ f−1[�U] iff f(s) ∈ �U iff U ∈ ν2(f(s))
iff f−1[U] ∈ ν1(s) iff s ∈ �(f−1[U]).

To prove that fu is a bounded morphism, let u ∈ Uf(S1) and U ⊆ S2. We
now have:

Û ∈ µ2(fu(u)) iff �U ∈ fu(u) = 2 2 (f)(u)

iff f−1[�U]
(5.12)
= �(f−1[U]) ∈ u

iff f̂−1[U]
(5.11)
= (fu)−1[Û] ∈ µ1(u).

It is easily verified that fu respects valuations: V1(p) ∈ u iff f−1[V2(p)] ∈ u iff
V2(p) ∈ fu(u). qed

The next proposition connects truth of a modal formula in the ultrafilter exten-
sion to the truth set of the formula in the original model.

5.4.22. Proposition. Let M = 〈S, ν, V 〉 be a neighbourhood model with ultra-
filter extension Mu. For all u ∈ Uf(S) and for all formulas ϕ ∈ L we have

Mu,u |= ϕ iff [[ϕ]]M ∈ u.

Proof. The standard proof is obtained by induction on the formula ϕ. We
only treat the case of the modal operator in detail: Suppose ϕ is of the form
2ψ and let u ∈ Uf(S) be an ultrafilter. Then

Mu,u |= 2ψ iff [[ψ]]M
u (I.H.)

= {v ∈ Uf(S) | [[ψ]]M ∈ v} ∈ µ(u)

iff [̂[ψ]]M ∈ µ(u)

iff �([[ψ]]M) = [[2ψ]]M ∈ u. qed

5.4. Hennessy-Milner classes 159

Using Proposition 5.4.22, we now easily show that the principal ultrafilter
map u preserves the truth of modal formulas. However, it is important to note
that, in general, u is not a bounded morphism from a model M = 〈S, ν, V 〉 to
its ultrafilter extension Mu.

5.4.23. Lemma. Let M = 〈S, ν, V 〉 be a neighbourhood model with ultrafilter
extension Mu = 〈Uf(S), µ, V u〉 and let u : S → Uf(S) be the injective map from
S to Uf(S). For every modal formula ϕ we have M, s |= ϕ iff Mu, us |= ϕ.

Proof. Let s ∈ S and let ϕ be modal formula. Then M, s |= ϕ iff s ∈ [[ϕ]]M

iff [[ϕ]]M ∈ us iff Mu, us |= ϕ where the last equivalence is a consequence of
Proposition 5.4.22. qed

Another consequence of Proposition 5.4.22 is the fact that ultrafilter extensions
are modally saturated.

5.4.24. Proposition. For any neighbourhood model M, the ultrafilter exten-
sion Mu is modally saturated.

Proof. Let M = 〈S, ν, V 〉 and Mu = 〈Uf(S), µ, V u〉. We show that any
Û ⊆ Uf(S) is compact. This suffices since all neighbourhoods in Mu are of
the form Û ⊆ Uf(S) and for any Û , Uf(S) \ Û = Û c. Let Ψ be a set of
formulas with the property that Ψ is finitely satisfiable in Û . For any finite set
of formulas {ψ1, . . . , ψn} ⊆ Ψ there exists therefore an ultrafilter u ∈ Û such
that Mu,u |= ψ1 ∧ . . . ∧ ψn. This implies by Proposition 5.4.22 that

{[[ψ1]]M, . . . , [[ψn]]M} ∪ {U} ⊆ u

Since u is closed under finite intersections this implies [[ψ1]]M ∩ . . . ∩ [[ψn]]M ∩
U ∈ u and hence [[ψ1]]M ∩ . . . ∩ [[ψn]]M ∩ U 6= ∅. As the set {ψ1, . . . , ψn}
was arbitrary we conclude that the set X := {U} ∪ {[[ψ]]M | ψ ∈ Ψ} has the
finite intersection property. Hence by the ultrafilter theorem, there exists some
ultrafilter u′ ∈ Uf(S) such that X ⊆ u′. By construction we get u′ ∈ Û and
again by Proposition 5.4.22, that Ψ is satisfiable at u′ ∈ Û . qed

We are now able to prove that the class of ultrafilter extensions of neighbourhood
models is a Hennessy-Milner class.

5.4.25. Proposition. The class U := {Mu | M ∈ Nbhd} of ultrafilter exten-
sions of neighbourhood models is a Hennessy-Milner class.

Proof. Let M1 and M2 be arbitrary neighbourhood models. By Lemma 5.4.2
it suffices to show that modal equivalence is a congruence on the disjoint union
Mu

1 +Mu
2 of their ultrafilter extensions. By Proposition 5.4.24, (M1 +M2)u is

160 Chapter 5. Bisimilarity in neighbourhood structures

modally saturated, hence the quotient map ε : (M1 +M2)u → (M1 +M2)u/≡
is a bounded morphism. Furthermore, denote by ιi : Mi →M1+M2, i ∈ {1, 2},
the canonical inclusion morphisms. By Lemma 5.4.21, ιui : Mu

i → (M1 +M2)u,
i ∈ {1, 2}, are bounded morphisms, hence there exists, by the universal property
of the disjoint union Mu

1 +Mu
2 , a bounded morphism g such that the following

diagram commutes:

M1
//___ Mu

1
� � //

ιu1 ''OOOOOOOOOOO
Mu

1 +Mu
2

g

��

Mu
2

ιu2wwooooooooooo
? _oo M2

oo_ _ _

(M1 +M2)u

ε

��
(M1 +M2)u/≡

Hence ε ◦ g : Mu
1 + Mu

2 → (M1 + M2)u/≡ is a bounded morphism, and two
ultrafilters in Mu

1 +Mu
2 are modally equivalent if and only if they are identified

by ε ◦ g. It follows that on Mu
1 + Mu

2 , the modal equivalence relation is the
kernel of ε ◦ g, and hence a congruence. qed

As a corollary we obtain the behavioural-equivalence-somewhere-else result.

5.4.26. Theorem. Let M1 = 〈S1, ν1, V1〉 and M2 = 〈S2, ν2, V2〉 be neighbour-
hood models with the respective ultrafilter extensions Mu

1 and Mu
2 . For all states

s1 ∈ S1 and s2 ∈ S2 we have

M1, s1 ≡M2, s2 ⇒ Mu
1 , us1 ∼b Mu

2 , us2 .

Proof. Let s1 and s2 be modally equivalent states inM1 andM2, respectively.
By Lemma 5.4.23 the states us1 and us2 of the ultrafilter extensions Mu

1 and
Mu

2 are modally equivalent as well. The claim is now a direct consequence of
Prop 5.4.25. qed

5.5 Model-theoretic results

5.5.1 The classical modal fragment of first-order logic

We will now prove that the three equivalence notions described in section 5.3 all
characterise the modal fragment of first-order logic over the class of neighbour-
hood models (Theorem 5.5.5). This result is an analogue of Van Benthem’s char-
acterisation theorem for normal modal logic (cf. [20]): On the class of Kripke
models, modal logic is the Kripke bisimulation-invariant fragment of first-order

5.5. Model-theoretic results 161

logic. It is well-known that, when interpreted over Kripke models, the basic
modal language L can be seen as a fragment of a first-order language which has
a binary predicate R2, and a unary predicate P for each atomic proposition p
in the modal language. Formulas of this first-order language can be interpreted
in Kripke models in the obvious way. Van Benthem’s theorem tells us that a
first-order formula α(x) is invariant under Kripke bisimulation if and only if
α(x) is equivalent to a modal formula.

The first step towards a Van Benthem-style characterisation theorem for
classical modal logic is to show how L can be viewed as a fragment of first-order
logic. We will translate modal formulas into a two-sorted first-order language
L1, which has previously been employed in proving a Van Benthem style charac-
terisation theorems for topological modal logic [32] and monotonic modal logic
[113], and for reasoning about topological models more generally [42]. In Re-
mark 5.5.8) we will give a more detailed comparison between our characterisation
theorem and the characterisation theorem for monotonic modal logic given in
[113]. The two sorts of the language L1 are denoted s and n. Terms of sort s are
intended to represent states, whereas terms of sort n are intended to represent
neighbourhoods. We assume there are countable sets of variables of each sort.
To simplify notation, we will not state the type of variables explicitly. Instead
we use the following conventions: x, y, x′, y′, x1, y2, . . . denote variables of sort s
(state variables) and u, v, u′, v′, u1, v1, . . . denote variables of sort n (neighbour-
hood variables). Furthermore, the language L1 contains a unary predicate Pi (of
sort s) for each i ∈ ω, a binary relation symbol N relating elements of sort s to
elements of sort n, and a binary relation symbol E relating elements of sort n to
elements of sort s. The intended interpretation of xNu is “u is a neighbourhood
of x”, and the intended interpretation of uEx is “x is an element of u”. The
language L1 is generated by the following grammar:

ϕ,ψ ::= x = y | u = v | Pix | xNu | uEx | ¬ϕ | ϕ ∧ ψ | ∃xϕ | ∃uϕ

where i ∈ ω; x and y are state variables of sort s; and u and v are neighbourhood
variables of sort n. The usual abbreviations (eg. ∀ for ¬∃¬) apply.

Formulas of L1 are interpreted in two-sorted first-order structures of the type
M = 〈Ds, Dn, {Pi | i ∈ ω}, N,E〉 where Ds and Dn are the carrier sets of sort s
and sort n, respectively, and each Pi ⊆ Ds, N ⊆ Ds×Dn and E ⊆ Dn×Ds. The
usual definitions of free and bound variables apply. Truth of sentences (formulas
with no free variables) ϕ ∈ L1 in a structure M (denoted M |= ϕ) is defined
as expected. If x is a free state variable in ϕ (denoted ϕ(x)), then we write
M |= ϕ[s] to mean that ϕ is true in M when s ∈ Ds is assigned to x. Note that
M |= ∃xϕ iff there is an element s ∈ Ds such that M |= ϕ[s]. If Ψ is a set of
L1-formulas, and M is an L1-model, then M |= Ψ means that for all ψ ∈ Ψ,
M |= ψ. Given a class K of L1-models, we denote the semantic consequence
relation over K by |=K. In particular, for Ψ(x)∪{ϕ(x)} ⊆ L1, Ψ(x) |=K ϕ(x) if

162 Chapter 5. Bisimilarity in neighbourhood structures

for all M ∈ K and all s of sort s in M, M |= Φ[s] implies M |= ϕ[s]. Moreover,
a set of formulas Φ(x) is K-consistent (Φ(x) 6|=K ⊥) if there exists an M ∈ K
and an s of sort s in M such that M |= Φ[s].

We can now translate modal L-formulas and neighbourhood models to the
first-order setting in a natural way:

5.5.1. Definition. Let M = 〈S, ν, V 〉 be a neighbourhood model. The first-
order translation of M is the structure M◦ = 〈Ds, Dn, {Pi | i ∈ ω}, Rν , R3〉
where

Ds = S,

Dn = ν[S] =
⋃
s∈S ν(s)

Pi = V (pi) for each i ∈ ω,
Rν = {〈s, U〉 |s ∈ Ds, U ∈ ν(s)},
R3 = {〈U, s〉 |s ∈ Ds, s ∈ U}. �

5.5.2. Definition. The standard translation of the basic modal language is
a family of functions stx : L → L1 defined as follows: stx(⊥) = ¬(x = x),
stx(pi) = Pix, stx(¬ϕ) = ¬stx(ϕ), stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ), and

stx(2ϕ) = ∃u(xNu ∧ (∀y(uEy ↔ sty(ϕ))). �

This translation preserves truth; the easy proof is left to the reader.

5.5.3. Lemma. Let M be a neighbourhood model and ϕ ∈ L. For each s ∈ S,
M, s |= ϕ iff M◦ |= stx(ϕ)[s].

In the Kripke case, every first-order model for the language with R2 can be
seen as Kripke model. However, it is not the case that every L1-structure is the
translation of a neighbourhood model. Luckily, we can axiomatize the subclass
of neighbourhood models up to isomorphism. Let NAX be the following axioms

(A1) ∀u∃x(xNu)

(A2) ∀u, v((∀x(uEx↔ vEx)) → u = v)

It is not hard to see that if M is a neighbourhood model, then M◦ |= NAX.
The next result states that, in fact, NAX completely characterises the class
N := {M | M ∼= M◦ for some neighbourhood model M}, where ∼= denotes
isomorphism of L1-models.

5.5.4. Proposition. Suppose M is an L1-model and M |= NAX. Then there
is a neighbourhood model M◦ such that M ∼= (M◦)◦.

5.5. Model-theoretic results 163

Proof. Let M = 〈Ds, Dn, {Pi | i ∈ ω}, N,E〉 be an L1-model such that M |=
NAX. We will construct from M a neighbourhood model M◦ = 〈S, ν, V 〉 such
that M ∼= (M◦)◦. In case Ds = ∅ we also have Dn = ∅ by axiom A1 and hence
we define M◦ to be the empty neighbourhood model. In the case Ds 6= ∅ we
first define a map η : Dn → P (Ds) by η(u) = {s ∈ Ds | uEs}. We take S = Ds.
Now define for each s ∈ S and each X ⊆ S: X ∈ ν(s) iff there is a u ∈ Dn such
that sNu and X = η(u), and define for all i ∈ ω, V (pi) = {s ∈ S | M |= Pi[s]}.
Then M◦ is clearly a well-defined neighbourhood model, and it is not hard to
see that the maps id : Ds → Ds and η : Dn →

⋃
s∈Ds ν(s) yield an isomorphism

from M to (M◦)◦ = 〈S, ν[S], {P ′
i | i ∈ ω}, Rν , R3〉 (cf. Definition 5.5.1). The

details are left to the reader. qed

Thus, in a precise way, we can think of models in N as neighbourhood
models. In particular, if M and N are in N we will write M + N by which
we (strictly speaking) mean the L1-model (M◦ + N◦)◦ (which is also in N).
Furthermore, Proposition 5.5.4 implies that we can work relative to N while
still preserving nice first-order properties such as compactness and the existence
of countably saturated models. These properties are essential in the proof of
Theorem 5.5.5.

5.5.2 Characterisation theorem

We are now able to formulate our characterisation theorem. Let ∼ be a relation
on model-state pairs. Over the class N, an L1-formula α(x) is invariant under
∼, if for all models M1 and M2 in N and all sort s-domain elements s1 and
s2 of M1 and M2, respectively, we have M1, s1 ∼ M2, s2 implies M1 |= α[s1]
iff M2 |= α[s2]. Over the class N, an L1-formula α(x) is equivalent to the
translation of a modal formula if there is a modal formula ϕ ∈ L such that for all
models M in N, and all s-domain elements s in M, M |= α[s] iff M |= stx(ϕ)[s].

5.5.5. Theorem (Characterisation). Let α(x) be an L1-formula. Over the
class N the following are equivalent:

1. α(x) is equivalent to the translation of a modal formula,

2. α(x) is invariant under behavioural equivalence,

3. α(x) is invariant under precocongruences,

4. α(x) is invariant under 2 2 -bisimilarity.

Our proof of Theorem 5.5.5 uses essentially the same ingredients as the proof
of Van Benthem’s theorem (see e.g. [25]) where the main steps are:

164 Chapter 5. Bisimilarity in neighbourhood structures

1. Given a Kripke model M we can obtain a modally saturated, elementary
extension M∗ of M.

2. Between modally saturated Kripke models, modal equivalence is a Kripke
bisimulation.

Together, 1 and 2 imply that modally equivalent statesM, s and N , t are Kripke
bisimilar in their modally saturated, elementary extensions M∗, s∗ and N ∗, t∗.
Our analogue of 2 is that in a modally saturated neighbourhood model, modal
equivalence is a congruence, which we have shown in Proposition 5.4.6. If we can
show an analogue of 1, it follows that if M, s and N , t are modally equivalent,
then they have behaviourally equivalent representatives in a modally saturated,
elementary extension of M+N .

As in the Kripke case, we can obtain an ω-saturated, elementary extension
of any L1-model in the form of an ultrapower using standard first-order logic
techniques (see e.g. [34]). It then only remains to show that an ω-saturated
neighbourhood model (viewed as a L1-model) is modally saturated. Before we
state and prove this lemma, we recall (cf. [34]) the definition of ω-saturation.
Let M be a first-order L1-model with domain M . For a subset C ⊆ M , the
C-expansion L1[C] of L1 is the two-sorted first-order language obtained from
L1 by adding a constant c for each c ∈ C. Now L1[C]-formulas are interpreted
in M by requiring that a new constant c is interpreted as the element c. The
L1-model M is ω-saturated, if for every finite C ⊆ω M , and every collection Γ(x)
of L1[C]-formulas with one free variable x the following holds: If Γ(x) is finitely
satisfiable in M (equivalently, if Γ(x) is consistent with the L1[C] theory of M),
then Γ(x) is satisfiable in M. It is a classic result of model theory that every
model has an ω-saturated elementary extension (cf. [34]).

5.5.6. Lemma. Let M be a model in N, and let M◦ be its corresponding neigh-
bourhood model. If M is ω-saturated, then M◦ is modally saturated.

Proof. Let M be an L1-model in N, M◦ = 〈S, ν, V 〉 its corresponding neigh-
bourhood model (cf. Proposition 5.5.4), and assume that M is ω-saturated. Let
Ψ be a set of modal L-formulas, and let U ⊆ S be a neighbourhood of some
state s. Then U corresponds to a domain element u ∈ Dn of M via the iso-
morphism M ∼= (M◦)◦. If Ψ is finitely satisfiable in U in M◦, then the set of
L1[{u}]-formulas {uNx}∪{stx(ψ) | ψ ∈ Ψ} is finitely satisfiable in M, and hence
satisfiable, which implies that Ψ is satisfiable in U . Similarly, if Ψ is finitely sat-
isfiable in U c, then the set of L1[{u}]-formulas {¬uNx} ∪ {stx(ψ) | ψ ∈ Ψ} is
finitely satisfiable in M, and hence satisfiable, which implies that Ψ is satisfiable
in U c. qed

We are now ready to prove Theorem 5.5.5.

5.5. Model-theoretic results 165

Proof of Theorem 5.5.5. It is clear that 2 ⇒ 3 ⇒ 4 (cf. Proposition 5.3.8).
To see that 4 ⇒ 2, we only need to recall (cf. [129]) that graphs of bounded
morphisms are 2 2 -bisimulations. Furthermore, as truth of modal formulas is
preserved by behavioural equivalence, 1 ⇒ 2 is clear. We complete the proof by
showing that 2 ⇒ 1.

Let MOCN(α) = {stx(ϕ) | ϕ ∈ L, α(x) |=N stx(ϕ)} be the set of modal
consequences of α(x) over the class N. It suffices to show that MOCN(α) |=N

α(x), since then by compactness there is a finite subset Γ(x) ⊆ MOCN(α) such
that Γ(x) |=N α(x) and α(x) |=N

∧
Γ(x). It follows that over N, α(x) is

equivalent to
∧

Γ(x), which is the translation of a modal formula. So suppose
M is a model in N and MOCN(α) is satisfied at some element s in M. We must
show that M |= α[s]. Consider the set T (x) = {stx(ϕ) | M◦, s |= ϕ} ∪ {α(x)}.
T (x) is N-consistent, since suppose to the contrary that T (x) is N-inconsistent,
then by compactness, there is a finite collection of modal formulas ϕ1, . . . , ϕn
such that M◦, s |= ϕi for all i = 1, . . . , n and α(x) |=N ¬

∧n
i=1 stx(ϕi), which

implies that ¬
∧n
i=1 stx(ϕi) ∈ MOCN(α). But this contradicts the assumption

that M |= MOCN(α)[s] and M |= stx(ϕi)[s] for all i = 1, . . . , n. Hence T (x) is
satisfied at an element t in some N ∈ N, and by construction, s and t are modally
equivalent: For all modal formulas ϕ ∈ L, M |= stx(ϕ)[s] implies stx(ϕ) ∈ T (x),
and hence N |= stx(ϕ)[t]. Conversely, M 6|= stx(ϕ)[s] iff M |= ¬stx(ϕ)[s] which
implies stx(¬ϕ) = ¬stx(ϕ) ∈ T (x), and hence N 6|= stx(ϕ)[t].

Take now an ω-saturated, elementary extension U of M + N. Note that
U ∈ N, since validity of NAX is preserved under elementary extensions. More-
over, the images sU and tU in U of s and t, respectively, are also modally
equivalent, since modal truth is transferred by elementary maps. Now since U is
ω-saturated and thus by Lemma 5.5.6, U◦ is modally saturated, it follows from
Proposition 5.4.6 that sU and tU are behaviourally equivalent. The construction
is illustrated in the following diagram; � indicates that the map is elementary,
and ι and κ are the canonical inclusions.

MOCN(α)[s] =| M ι //M + N

�
��

N |= α[t]κoo

U

Finally, we can transfer the truth of α(x) from N, t to M, s by using the invari-
ance of modal formulas under bounded morphisms and standard translations
(bm+st); elementary maps (elem); and the assumption that α(x) is invariant
under behavioural equivalence (α(x)-beh-inv).

166 Chapter 5. Bisimilarity in neighbourhood structures

N |= α[t] ⇐⇒ (M◦ + N◦)◦ |= α[κ(t)] (bm+st)

⇐⇒ U |= α[tU] (elem)

⇐⇒ U |= α[sU] (sU ∼b tU and α(x)-beh-inv)

⇐⇒ (M◦ + N◦)◦ |= α[ι(s)] (elem)

⇐⇒ M |= α[s] (bm+st) qed

5.5.7. Remark. Note that in the proof of Theorem 5.5.5, we could have as-
sumed α(x) to be invariant for any of the three equivalence notions, since Propo-
sition 5.3.18 tells us that also sU ∼ tU and sU ∼p tU . �

5.5.8. Remark. An analogue of Van Benthem’s theorem for monotonic modal
logic was proved by Pauly (see [113, 52]). Although the translation of monotonic
modal logic and monotonic neighbourhood models is very similar to ours, Pauly’s
approach is slightly different to the present one, since his result is not formulated
relative to the class of first-order models which are the translation monotonic
models. Rather, he defines a notion of monotonic bisimulation which applies
to all first-order L1-models, and shows that translations of monotonic modal
formulas are invariant under this bisimulation notion, even if the first-order
models involved are not necessarily translations of monotonic models. This
means his result concerns a stronger notion of invariance. The converse is shown
using ω-saturation and monotonic modal saturation, and is similar to the proof
of the Van Benthem theorem. We do not get a characterisation theorem for
monotonic modal logic (relative to translations of monotonic models) as a direct
corollary of Theorem 5.5.5, but we believe it is possible to prove one using the
same line of argumentation and constructions. �

5.5.9. Remark. It seems straightforward to generalise Theorem 5.5.5 to multi-
modal classical modal logic with polyadic modalities of finite arity. Multi-modal
neighbourhood models are of interest in coalgebraic modal logic due to the
following:

It is not always possible to find a collection of separating unary, predicate
liftings for a functor F : Set → Set. However, Schröder showed in [136] that any
finitary functor F has a separating set of finitary, polyadic predicate liftings, i.e.,
there exists a finitary coalgebraic modal logic with polyadic modalities which is
expressive for F -coalgebras. A k-ary predicate lifting λ : (2(−))

k → 2F (−) has
transposite λ̂X : F (X) → N k(X), where we denote by N k the functor defined
by N k = 2(−) ◦ (2(−))k. Note that a map X → N k(X) is a k-ary neighbourhood
function.

If Λ is a separating set of k-ary predicate liftings for F , then for all sets
X, the source of transposites {λ̂X : F (X) → N k(X) | λ ∈ Λ} yields a natural
embedding.

〈λ̂〉λ∈Λ : F → ΠΛN k, (5.13)

5.5. Model-theoretic results 167

where ΠΛN k is the |Λ|-fold product of N k. Hence for every finitary functor
F , an F -coalgebra can be transformed into a pointwise equivalent multi-modal,
polyadic neighbourhood frame. �

5.5.3 Interpolation

In this section we show that the results on ultrafilter extensions from the previous
section can be used to prove Craig interpolation for classical modal logic. For
several normal and monotonic modal logics, Craig interpolation can be proved
using superamalgamation in the corresponding variety of modal algebras, see
e.g. [43, 56, 92, 93, 94]. We believe similar proofs can be carried out for classical
modal logic. Our proof, however, is based on the ideas used in the proof of Craig
interpolation for normal modal logic presented in [8]. The proof in [8] uses
first-order model-theoretic arguments similar to those employed in the proof
of the Van Benthem characterisation theorem, but Theorem 5.4.26 allows us
to prove Craig interpolation in a purely modal setting, without the use of ω-
saturated models or the explicit use of algebraic duality. All that is needed is
that modal truth is invariant under ultrafilter extensions (Lemma 5.4.23), and
that ultrafilter extensions are modally saturated (Proposition 5.4.24).

So far we have worked with a fixed a set At of atomic propositions, giving
rise to the language L = L(At). In the current section we need to generalise our
notions of bounded morphism and modal saturation to sublanguages L(At′) of
L(At) generated by a specific subset At′ of atomic propositions. We point out
that all models are always models for the full language L(At). This generalisation
is straightforward, but in the interest of clarity we provide the details and the
exact results we need. Let At′ ⊆ At, and let M1 = 〈S1, ν1, V1〉 and M2 =
〈S2, ν2, V2〉 be neighbourhood L(At)-models. A function f : S1 → S2 is a bounded
L(At′)-morphism from M1 to M2 (notation: f : M1 →L(At′) M2) if f is a
bounded (frame) morphism from 〈S1, ν1〉 to 〈S2, ν2〉, and for all p ∈ At′, and
all s ∈ S1: s ∈ V1(p) iff f(s) ∈ V2(p). An L(At′)-congruence is the kernel of a
bounded L(At′)-morphism. Two states s1 ∈ S1 and s2 ∈ S2 are modally L(At′)-
equivalent (notation: s1 ≡L(At′) s2), if they satisfy the same L(At′)-formulas.
Given a neighbourhood L(At)-model M = 〈S, ν, V 〉, a subset X ⊆ S is modally
L(At′)-compact if for all sets Ψ of modal L(At′)-formulas, Ψ is satisfiable in
X, whenever Ψ is finitely satisfiable in X, and M is modally L(At′)-saturated
if for every ≡L(At′)-coherent neighbourhood X, both X and Xc are modally
L(At′)-compact.

5.5.10. Lemma. Let At′ ⊆ At.

1. If M1 and M2 are L(At)-neighbourhood models, and f : M1 →L(At′) M2,
then for all s in M1, and all ϕ ∈ L(At′): M1, s |= ϕ iff M2, f(s) |= ϕ.

168 Chapter 5. Bisimilarity in neighbourhood structures

2. If M = 〈S, ν, V 〉 is a neighbourhood L(At)-model, and R ⊆ S × S is
an equivalence relation, then R is an L(At′)-congruence on M iff R is a
congruence on the underlying frame 〈S, ν〉, and for all 〈s, t〉 ∈ R, and all
p ∈ At′: s ∈ V (p) iff t ∈ V (p).

3. If a neighbourhood L(At)-model M is modally L(At′)-saturated, then all
≡L(At′)-coherent subsets are definable by an L(At′)-formula.

4. If a neighbourhood L(At)-model M is modally L(At′)-saturated, then the
relation ≡L(At′) is an L(At′)-congruence.

5. If M is neighbourhood L(At)-model, then its ultrafilter extension Mu is
modally L(At′)-saturated.

Proof. As usual, 1 can be proved by straightforward formula induction. Item
2 is immediate. Item 3 can be proved by retracing the argument used in
Lemma 5.4.5. Item 4 follows from item 3 and essentially the same argument used
in Lemma 5.4.3. Item 5 can be proved in the same way as Proposition 5.4.24.
qed

For a formula ϕ ∈ L, we denote by At(ϕ) the set of atomic propositions
occurring in ϕ. Recall that for Φ ∪ {ϕ} ⊆ L, we write Φ |= ϕ if ϕ is a local
semantic consequence of Φ over the class of all neighbourhood models. Note
that compactness of |= follows from the compactness of |=N, the first-order
consequence relation over the class of neighbourhood models.

5.5.11. Theorem (Interpolation). Let ϕ1, ϕ2 ∈ L. If |= ϕ1 → ϕ2, then
there exists a formula χ ∈ L with At(χ) ⊆ At(ϕ1) ∩ At(ϕ2) such that |= ϕ1 → χ
and |= χ→ ϕ2.

Proof. Assume that |= ϕ1 → ϕ2. Let Ati = At(ϕi), i = 1, 2, and At0 =
At1 ∩ At2. Denote by ConsL(At0)(ϕ1) = {χ ∈ L(At0) | ϕ1 |= χ} the set of
modal L(At0)-consequences of ϕ1. It suffices to show that ConsL(At0)(ϕ1) |= ϕ2,
since then by compactness, there are χ1, . . . , χn ∈ ConsL(At0)(ϕ1) such that
χ1 ∧ . . . ∧ χn |= ϕ2, and ϕ1 |= χ1 ∧ . . . ∧ χn, i.e, χ = χ1 ∧ . . . ∧ χn is a Craig
interpolant for ϕ1 → ϕ2.

So, assume M is an L(At)-model and s is a state in M such that M, s |=
ConsL(At0)(ϕ1), and let Ψ = {ψ ∈ L(At0) | M, s |= ψ}. Now Ψ ∪ {ϕ1} is
consistent, since otherwise there would exist {ψ1, . . . , ψn} ⊆ Ψ such that |=
ψ1 ∧ . . . ∧ ψn → ¬ϕ1, hence |= ϕ1 → ¬ψ1 ∨ . . . ∨ ¬ψn, which would imply that
¬ψ1 ∨ . . . ∨ ¬ψn ∈ ConsL(At0)(ϕ1) contradicting the assumption that M, s |=
ConsL(At0)(ϕ1).

By definition of |=, Ψ∪{ϕ1} is satisfiable in some neighbourhood L(At)-model
N at a state t in N , i.e., N , t |= Ψ∪{ϕ1}. Then by construction s ≡L(At0) t, and

5.6. Conclusion and related work 169

as truth is preserved by the injections ι : M → N +M and κ : N → N +M,
and when passing to ultrafilter extensions, the principal ultrafilters generated by
ι(s) and κ(t) are also modally L(At0)-equivalent in U = 〈U, µ, V 〉 = (N +M)u,
i.e., uι(s) ≡L(At0) uκ(t). Now since ultrafilter extensions are modally L(At0)-
saturated (Lemma 5.5.10(5)) it follows from Lemma 5.5.10(4) that ≡L(At0) is an
L(At0)-congruence on U . For ease of notation, we denote the relation ≡L(At0)

on U by Z in the rest of this proof. We have, in particular, Z is a congruence
on the underlying frame 〈U, µ〉 of U , and by Proposition 5.3.18 Z is also a
2 2 -bisimulation on 〈U, µ〉. This means there exists a coalgebra map ζ : Z →
2 2 (Z) such that the projections πi : 〈Z, ζ〉 → 〈U, µ〉, i = 1, 2, are bounded frame
morphisms. We now define a valuation V ′ on 〈Z, ζ〉 to obtain a neighbourhood
L(At)-model Z = 〈Z, ζ, V ′〉 such that π1 : Z → U is a bounded L(At1)-morphism
and π2 : Z → U is a bounded L(At2)-morphism. Let p ∈ At and 〈u1, u2〉 ∈ Z,
then we define

〈u1, u2〉 ∈ V ′(p) ⇐⇒


u1 ∈ V (p) if p ∈ At1,
u2 ∈ V (p) if p ∈ At2,
never if p ∈ At \ (At1 ∪ At2).

Note that V ′ is well-defined due to Lemma 5.5.10(2). The construction is il-
lustrated below. The dashed arrow going to U indicates that the principal
ultrafilter map u is not a bounded morphism, still u does preserve modal truth
(Lemma 5.4.23).

ϕ1 =| N , t κ // N +M

≡u

���
�
�

M, s |= ConsL(At0)(ϕ1)ιoo

U

Z

π1

HH
π2

VV

Now we have: N , t |= ϕ1 implies U , uκ(t) |= ϕ1. Since 〈uκ(t), uι(s)〉 ∈ Z and π1 is
a bounded L(At1)-morphism from Z to U , we have Z, 〈uκ(t), uι(s)〉 |= ϕ1. By the
main assumption that |= ϕ1 → ϕ2, we get that Z, 〈uκ(t), uι(s)〉 |= ϕ2, and now
since π2 is a bounded L(At2)-morphism from Z to U , we get U , uι(s) |= ϕ2 and
hence M, s |= ϕ2. qed

5.6 Conclusion and related work

In the first part of this chapter we discussed and compared different notions of
equivalence between neighbourhood structures. We gave back-and-forth style
characterisations of 2 2 -bisimulations and precocongruences, and showed that,

170 Chapter 5. Bisimilarity in neighbourhood structures

as expected, behavioural equivalence is the only one of the three notions that al-
lows us to prove a Hennessy-Milner theorem for image-finite neighborhood mod-
els (cf. Section 5.4). Furthermore, we showed that for an arbitrary Set-functor
F , precocongruences capture behavioural equivalence on a single F -coalgebra
(Theorem 5.3.11). For functors F that weakly preserve kernel pairs, such as 2 2 ,
this is already achieved with F -bisimulations [51], but we believe that preco-
congruences could be an interesting alternative to F -bisimulations for functors
which lack this property. A first indication of this is [81] where precocongruences
are used to obtain a game-theoretic characterisation of behavioural equivalence.

After having reached a good understanding of state equivalence over neigh-
bourhood structures, we focused on generalising two well-known model-theoretic
results in normal modal logic to classical modal logic: the Van Benthem charac-
terisation theorem (Theorem 5.5.5) and the Craig interpolation theorem (Theo-
rem 5.5.11). Our proof of Theorem 5.5.5 builds on ideas from the original proof
of the Van Benthem characterisation theorem ([20]). Closely related to our work
are also the invariance results by Pauly ([113]) on monotonic modal logic, and
Ten Cate et al. ([32]) on topological modal logic.

A number of other model-theoretic results are worth exploring. Perhaps the
most interesting one is a generalisation of the Goldblatt-Thomason Theorem
(see e.g. [25]). The classic result for Kripke models can be proved using model-
theoretic constructs or by using algebraic duality. The algebraic duality proof
has already been generalised to the coalgebraic setting by Kurz & Rosický’s [89].
Indeed, a special case of their main result is the result we are after: a Goldblatt-
Thomason Theorem for neighbourhood models (cf. [89], Corollary 3.17(2) and
Remark 3.18). Given the formal machinery we have developed in this paper (e.g.,
the ultrafilter extensions from Section 5.4.3), one may hope for a model-theoretic
proof of this result (see e.g., Section 3.8 in [25]). Such a model-theoretic proof
has been given for topological models (which are special cases of neighbourhood
models) by Ten Cate et al. ([32]). However, an important ingredient in the
model-theoretic proof for the Kripke case is the fact that any Kripke model is
bisimilar to the disjoint union of its generated submodels. This is not true for
an arbitrary neighbourhood model (cf. [49]), and at the moment, it is not clear
which alternative construction could be used in its place.

A second model-theoretic issue raised by the results in this paper concerns
our translation of the modal language into a two-sorted first-order language
(cf. Definition 5.5.2). As is well-known, with respect to Kripke structures, the
basic modal language can be translated into the guarded fragment of first-order
logic (cf. [8]). This fact has been used to explain a number of the important
properties of modal logic (see, for example, [7] for an extensive discussion).
The question is whether classical modal logic is also contained in some kind of
guarded fragment. Our translation of 2ϕ does not fall into the guarded fragment
of two-sorted first-order logic. However, it is not difficult to see that over the

5.6. Conclusion and related work 171

class N of neighbourhood models viewed as first-order structures, stx(2ϕ) is
equivalent to the following single-sorted first-order formula:

∃u(Nbhd(u) ∧ xNu ∧ ∀y(uEy → sty(ϕ)) ∧ ∀y(State(y) → (¬(sty(ϕ)) ∨ uEy)))

where Nbhd and State are designated predicates intended to mean “...is a neigh-
bourhood” and “...is a state”, respectively. This formula is in the (loosely)
guarded fragment.

Our characterisation theorem for classical modal logic leads to a number of
interesting research questions. For example, we would like to explore the possi-
bility of proving our result using game-theoretic techniques similar to the ones
exploited by Otto ([107]). Furthermore, neighbourhood structures can also be
seen as a type of Chu spaces. We would like to relate our characterisation theo-
rem to Van Benthem’s characterisation of the Chu transform invariant fragment
of a two-sorted first-order logic in [21].

Finally, it would be interesting to find out if our characterisation theorem
can be generalised to coalgebraic modal logic for an arbitrary finitary func-
tor F : Set → Set, using the embedding of F -coalgebras into multi-modal, k-
ary neighbourhood frames as described in Remark 5.5.9. It might be possible
to prove that, under certain assumptions, the coalgebraic modal logic over F -
coalgebras can be viewed as the bisimulation invariant fragment of some many-
sorted first-order logic. Initial investigations suggest that this is possible for
functors of the form A(2k)(−)

where A is a finite set and k is a natural number.
An A(2k)(−)

-coalgebra can be seen as a multi-modal, polyadic neighbourhood
frame 〈X, {νa | a ∈ A}〉 given by an A-indexed collection of k-ary neighbour-
hood functions νa : X → 2(2X)k

such that for each k-tuple of subsets 〈U1, . . . , Uk〉
and each state x ∈ X, 〈U1, . . . , Uk〉 ∈ νa(x) for exactly one a ∈ A. We must
leave the details of this result as future work.

Bibliography

[1] P. Aczel and N.P. Mendler. A final coalgebra theorem. In D.H. Pitt,
D.E. Rydeheard, P. Dybjer, A.M. Pitts, and A. Poigné, editors, Category
Theory and Computer Science, volume 389 of Lecture Notes in Computer
Science, pages 357–365, 1989.

[2] J. Adámek. Theory of Mathematical Structures. D. Reidel Publishing
Company, 1983.

[3] J. Adámek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Cat-
egories: The Joy of Cats. J. Wiley and Sons, 1990. Online version:
http://katmat.math.uni-bremen.de/acc.

[4] J. Adámek and H.-E. Porst. On tree coalgebras and coalgebra presenta-
tions. Theoretical Computer Science, 311:257–283, 2004.

[5] J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer
Academic Publishers, 1990.

[6] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713, 2002.

[7] H. Andréka, J. van Benthem, and I. Németi. Back and forth between
modal logic and classical logic. Logic Journal of the IGPL, 3:685–720,
1995.

[8] H. Andréka, J. van Benthem, and I. Németi. Modal languages and
bounded fragments of predicate logic. Journal of Philosophical Logic,
27(3):217–274, 1998.

[9] V. Antimirov. Partial derivatives of regular expressions, and finite au-
tomaton constructions. Theoretical Computer Science, 155(2):291–319,
1996.

173

http://katmat.math.uni-bremen.de/acc

174 Bibliography

[10] F. Arbab and J.J.M.M. Rutten. A coinductive calculus of component
connectors. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent
Trends in Algebraic Development Techniques. Proceedings of WADT 2002,
volume 2755 of Lecture Notes in Computer Science, pages 35–56. Springer,
2003.

[11] A. Aziz, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. Sequen-
tial synthesis using S1S. IEEE Transactions on Computer-Aided Design
of Integrated Citcuits and Systems, 19(10):1149–1162, 2000.

[12] C. Baier and J.-P. Katoen. Principles of Model-Checking. The MIT Press,
2008.

[13] L.S. Barbosa. Components as Coalgebras. PhD thesis, Universidade do
Minho, 2001.

[14] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical
Computer Science, 114:299–315, 1993.

[15] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic
system types. In H.P. Gumm, editor, Proceedings of the 6th Workshop on
Coalgebraic Methods in Computer Science (CMCS 2003), volume 82(1) of
Electronic Notes in Theoretical Computer Science, pages 57–75. Elsevier
Science Publishers, 2003.

[16] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic
system types. Theoretical Computer Science, 327:3–22, 2004.

[17] M.-P. Béal and O. Carton. Computing the prefix of an automaton. The-
oretical Informatics and Applications (RAIRO), 34(6):503–514, 2000.

[18] M.-P. Béal and O. Carton. Determinization of transducers over finite and
infinite words. Theoretical Computer Science, 289:225–251, 2002.

[19] J. van Benthem. Modal Correspondence Theory. PhD thesis, Universiteit
van Amsterdam, 1976.

[20] J. van Benthem. Correspondence theory. In D. Gabbay and F. Guen-
thner, editors, Extensions of Classical Logic, volume II of Handbook of
Philosophical Logic, pages 167–247. Reidel, 1984.

[21] J. van Benthem. Information transfer across Chu spaces. Logic Journal
of the IGPL, 8(6):719–731, 2000.

[22] G. Berry and R. Sethi. From regular expressions to deterministic au-
tomata. Theoretical Computer Science, 48:117–126, 1986.

Bibliography 175

[23] J. Berstel. Transductions and Context-Free Languages, volume 38 of
Leitfäden der angewandten Mathematik und Mechanik. B. G. Teubner,
Stuttgart, 1979.

[24] P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal
Logic, volume 3 of Studies in Logic and Practical Reasoning. Elsevier,
2007.

[25] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[26] M.M. Bonsangue and A. Kurz. Presenting functors by operations and
equations. In L. Aceto and A. Ingolfsdottir, editors, Proceedings of
Foundations of Software Science and Computations Structures (FoSSaCS
2006), volume 3921 of Lecture Notes in Computer Science, pages 172–186,
2006.

[27] M.M. Bonsangue, J.J.M.M. Rutten, and A.M. Silva. Coalgebraic logic and
synthesis of Mealy machines. In Proceedings of Foundations of Software
Science and Computations Structures (FoSSaCS 2008), volume 4962 of
Lecture Notes in Computer Science, pages 231–245. Springer, 2008.

[28] M.M. Bonsangue, J.J.M.M. Rutten, and A.M. Silva. Algebras for Kripke
polynomial coalgebras. In Proceedings of the 24th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 2009), 2009. To appear.

[29] V. Bruyère and C. Reutenauer. A proof of Choffrut’s theorem on subse-
quential functions. Theoretical Computer Science, 215:329–335, 1999.

[30] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[31] J.R. Büchi and L.H.G. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society,
138:295–311, 1969.

[32] B. ten Cate, D. Gabelaia, and D. Sustretov. Modal languages for topol-
ogy: Expressivity and definability. Annals of Pure and Applied Logic. To
appear.

[33] J.-M. Champarnaud and D. Ziadi. Canonical derivatives, partial deriva-
tives and finite automaton constructions. Theoretical Computer Science,
289:137–163, 2001.

[34] C. Chang and H. Keisler. Model Theory. North-Holland, 1973.

176 Bibliography

[35] B.F. Chellas. Modal Logic—An Introduction. Cambridge University Press,
1980.

[36] C. Choffrut. A generalization of Ginsburg and Rose’s characterization of
g-s-m mappings. In H.A. Maurer, editor, Prooceedings of the 6th Inter-
national Colloquium on Automata, Languages and Programming (ICALP
1979), volume 71 of Lecture Notes in Computer Science, pages 88–103,
1979.

[37] C. Choffrut. Minimizing subsequential transducers: A survey. Theoretical
Computer Science, 292:131–143, 2003.

[38] A. Church. Logic, arithmetics and automata. In Proceedings of the Inter-
national Congress of Mathematicians, pages 23–35. Institut Mittag-Leffler,
1963.

[39] C. Ĉırstea and D. Pattinson. Modular construction of complete coalgebraic
logics. Theoretical Computer Science, 388:83–108, 2007.

[40] K. Došen. Duality between modal algebras and neighbourhood frames.
Studia Logica, 48:219–234, 1989.

[41] S. Eilenberg. Automata, Languages and Machines (Vol. A). Academic
Press, 1974.

[42] J. Flum and M. Ziegler. Topological Model Theory, volume 769 of Lecture
Notes in Mathematics. Springer, 1980.

[43] D.M. Gabbay and L. Maksimova. Interpolation and Definability: Modal
and Intuitionistic Logic. Number 46 in Oxford Logic Guides. Oxford Uni-
versity Press, 2005.

[44] F.D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable
anonymity. In R. Küsters and J. Mitchell, editors, Proceedings of the
3rd ACM Workshop on Formal Methods in Security Engineering (FMSE
2005), pages 63–72. ACM Press, 2005.

[45] M. Gehrke, S. Grigorieff, and J.-É Pin. Duality and equational theory of
regular languages. In L. Aceto et al., editors, Proceedings of the 35th Inter-
national Colloquium on Automata, Languages and Programming (ICALP
2008), volume 5126 of Lecture Notes in Computer Science, pages 246–257.
Springer, 2008.

[46] L. Goble. Murder most gentle: The paradox deepens. Philosophical Stud-
ies, 64(2):217–227, 1991.

Bibliography 177

[47] F.Q. Gouvêa. p-adic Numbers: An Introduction. Springer, 1993.

[48] D. Gries. Describing an algorithm by Hopcroft. Acta Informatica, 2:97–
109, 1973.

[49] H.P. Gumm. Functors for coalgebras. Algebra Universalis, 45:135–147,
2001.

[50] H.P. Gumm. On minimal coalgebras. Applied Categorical Structures, 2008.
To appear.

[51] H.P. Gumm and T. Schröder. Types and coalgebraic structure. Algebra
Universalis, 53:229–252, 2005.

[52] H.H. Hansen. Monotonic modal logic (Master’s thesis). Research Report
PP-2003-24, Institute for Logic, Language and Computation. Universiteit
van Amsterdam, 2003.

[53] H.H. Hansen. Coalgebraising subsequential transducers. In Proceedings of
the 9th Workshop on Coalgebraic Methods in Computer Science (CMCS
2008), volume 203(5) of Electronic Notes in Theoretical Computer Science,
pages 109–129. Elsevier Science Publishers, 2008.

[54] H.H. Hansen and D. Costa. Diffcal. Tool webpage (source code, doc-
umentation, executable) currently available at: http://homepages.cwi.
nl/∼costa/projects/diffcal, 2005. Implementation of Mealy synthesis
algorithm described in [55].

[55] H.H. Hansen, D. Costa, and J.J.M.M. Rutten. Synthesis of Mealy ma-
chines using derivatives. In Proceedings of the 8th Workshop on Coal-
gebraic Methods in Computer Science (CMCS 2006), volume 164(1) of
Electronic Notes in Theoretical Computer Science, pages 27–45. Elsevier
Science Publishers, 2006.

[56] H.H. Hansen and C. Kupke. A coalgebraic perspective on monotone modal
logic. In Proceedings of the 7th Workshop on Coalgebraic Methods in Com-
puter Science (CMCS 2004), volume 106 of Electronic Notes in Theoretical
Computer Science, pages 121–143. Elsevier Science Publishers, 2004.

[57] H.H. Hansen., C. Kupke, and E. Pacuit. Bisimulation for neighbourhood
structures. In T. Mossakowski, U. Montanari, and M. Haveraaen, editors,
Proceedings of the 2nd Conference on Algebra and Coalgebra in Computer
Science (CALCO 2007), volume 4624 of Lecture Notes in Computer Sci-
ence, pages 279–293. Springer, 2007.

http://homepages.cwi.nl/~costa/projects/diffcal
http://homepages.cwi.nl/~costa/projects/diffcal

178 Bibliography

[58] H.H. Hansen., C. Kupke, and E. Pacuit. Neighbourhood structures: bisim-
ilarity and basic model theory. Logical Methods in Computer Science, 2009.
To appear.

[59] D. Harel and A. Pnueli. On the development of reactive systems. In
K. Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of
NATO-ASI Series, pages 477–498. Springer, New York, 1985.

[60] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace
semantics. In J.L. Fiadero, N. Harman, M. Roggenbach, and J.J.M.M.
Rutten, editors, Proceedings of the 1st Conference on Algebraic and Coal-
gebraic Methods in Computer Science (CALCO 2005), volume 3629 of
Lecture Notes in Computer Science, pages 175–193. Springer, 2005.

[61] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coin-
duction. Logical Methods in Computer Science, 3(4:11), 2007.

[62] I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concur-
rency in coalgebra. In Proceedings of Foundations of Software Science and
Computation Structures (FoSSaCS 2008), volume 4962 of Lecture Notes
in Computer Science, pages 246–260. Springer, 2008.

[63] I. Hasuo and Y. Kawabe. Probabilistic anonymity via coalgebraic simula-
tions. In Proceedings of the European Symposium on Programming (ESOP
2007), volume 4421 of Lecture Notes in Computer Science, pages 379–394.
Springer, 2007.

[64] T.A. Henzinger, S.C. Krishnan, O. Kupferman, and F.Y.C. Mang. Syn-
thesis of uninitialized systems. In Proceedings of the 29th International
Colloqium on Automata, Languages and Programming (ICALP 2002), vol-
ume 2380 of Lecture Notes in Computer Science, pages 644–656. Springer,
2002.

[65] J.E. Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. In Z. Kohavi and Z. Paz, editors, Theory of Machines and
Computation, pages 189–196. Academic Press, 1971.

[66] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 2nd edition, 2001.

[67] B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism
and Persistence, pages 83–103. Kluwer Academic Publishers, 1996.

[68] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study.
Theoretical Informatics and Applications (RAIRO), 35:31–59, 2001.

Bibliography 179

[69] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of States and
Observations. Book draft, 2005.

[70] B. Jacobs. A bialgebraic review of deterministic automata, regular expres-
sions and languages. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer,
editors, Algebra, Meaning and Computation: Essays dedicated to Joseph
A. Goguen on the Occasion of his 65th Birthday, volume 4060 of Lecture
Notes in Computer Science, pages 375–404. Springer, 2006.

[71] D. Janin and I. Walukiewicz. On the expressive completeness of the modal
mu-calculus with respect to monadic second order logic. In U. Montanari
and V. Sassone, editors, Proceedings of 7th International Conference on
Concurrency Theory (CONCUR 1996), volume 1119 of Lecture Notes in
Computer Science, pages 263–277. Springer, 1996.

[72] R.H. Katz. Contemporary Logic Design. Prentice-Hall, 2nd edition, 2004.

[73] D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley, 3rd edition, 1997.

[74] T. Knuutila. Re-describing an algorithm by Hopcroft. Theoretical Com-
puter Science, 250:333–363, 2001.

[75] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-functions, vol-
ume 58 of Graduate Texts in Mathematics. Springer, 1977.

[76] Z. Kohavi. Switching and Finite Automata Theory. Computer Science
Series. McGraw-Hill Higher Education, 2nd edition, 1990.

[77] D. Kozen. Automata and Computability. Undergraduate Texts in Com-
puter Science. Springer, 1997.

[78] M. Kracht and F. Wolter. Normal monomodal logics can simulate all
others. Journal of Symbolic Logic, 64(1):99–138, 1999.

[79] O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional
synthesis. In Proceedings of Computer Aided Verification (CAV 2006),
volume 4144 of Lecture Notes in Computer Science, pages 31–44. Springer,
2006.

[80] C. Kupke. Finitary Coalgebraic Logics. PhD thesis, Universiteit van Am-
sterdam, 2006.

[81] C. Kupke. Terminal sequence induction via games. In Proceedings of the
7th International Tbilisi Symposium on Language, Logic and Computa-
tion, 2008.

180 Bibliography

[82] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalge-
braic logics. In Proceedings of the 7th Workshop on Coalgebraic Methods
in Computer Science (CMCS 2004), volume 106 of Electronic Notes in
Theoretical Computer Science, pages 219–241. Elsevier Science Publish-
ers, 2004.

[83] C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter extensions for coalge-
bras. In J.L. Fiadero, N. Harman, M. Roggenbach, and J.J.M.M. Rutten,
editors, Proceedings of the 1st Conference on Algebraic and Coalgebraic
Methods in Computer Science (CALCO 2005), volume 3629 of Lecture
Notes in Computer Science, pages 263–277. Springer, 2005.

[84] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoretical Com-
puter Science, 327((1-2)):109–134, 2004.

[85] C. Kupke, A. Kurz, and Y. Venema. A complete coalgebraic logic. In
C. Areces and R. Goldblatt, editors, Advances in Modal Logic, Volume 7
(AiML 2008), pages 193–217. College Publications, 2008.

[86] C. Kupke and Y. Venema. Coalgebraic automata theory: basic results.
Logical Methods in Computer Science, 4(4:10), 2008.

[87] A. Kurz. Logics for Coalgebras and Applications to Computer Science.
PhD thesis, Ludwig-Maximilians-Universität, 2000.

[88] A. Kurz. Coalgebras and their logics. ACM SIGACT News, Logic Column,
37(2):57–77, 2006.

[89] A. Kurz and J. Rosický. The Goldblatt-Thomason-theorem for coalgebras.
In T. Mossakowski, U. Montanari, and M. Haveraaen, editors, Proceedings
of the 2nd Conference on Algebra and Coalgebra in Computer Science
(CALCO 2007), volume 4624 of Lecture Notes in Computer Science, pages
342–355. Springer, 2007.

[90] J. Lambek. A fixpoint theorem for complete categories. Mathematische
Zeitschrift, 103(2):151–161, 1968.

[91] S. Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer, 1998.

[92] J. Madarász. Interpolation and amalgamation; pushing the limits. Part I.
Studia Logica, 61:311–345, 1998.

[93] J. Madarász. Interpolation and amalgamation; pushing the limits. Part
II. Studia Logica, 62:1–19, 1999.

Bibliography 181

[94] M. Marx. Algebraic Relativization and Arrow Logic. PhD thesis, Univer-
siteit van Amsterdam, 1995.

[95] R.F. McNaughton and H. Yamada. Regular expressions and state graphs
for automata. IRE Transactions on Electronic Computers, 9(1):39–47,
1960.

[96] G.H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34:1045–1079, September 1955.

[97] R. Milner. A Calculus of Communicating Processes, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[98] M. Mohri. Finite-state-transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997.

[99] M. Mohri, F.C.N. Pereira, and M. Riley. Speech recognition with weighted
finite-state transducers. In L. Rabiner and F. Juang, editors, Handbook of
Speech Processing and Speech Communication, Part E: Speech Recognition.
Springer, 2008.

[100] R. Montague. Universal grammar. Theoria, 36:373–398, 1970.

[101] E.F. Moore. Gedanken-experiments on sequential machines. In Automata
Studies, volume 34 of Annals of Mathematical Studies, pages 129–153.
Princeton University Press, 1956.

[102] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–
317, 1999. Erratum in [103].

[103] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 99:241–
259, 1999.

[104] L.S. Moss and I.D. Viglizzio. Harsanyi types spaces and final coalgebras
constructed from satisfied theories. In Proceedings of the 7th Workshop on
Coalgebraic Methods in Computer Science (CMCS 2004), volume 106 of
Electronic Notes in Theoretical Computer Science, pages 279–295. Elsevier
Science Publishers, 2004.

[105] A.L. Oliveira and J.P.M. Silva. Efficient algorithms for the inference of
minimum size DFAs. Machine Learning, 44:93–119, 2001.

[106] G. Ott and N.H. Feinstein. Design of sequential machines from their
regular expressions. Journal of the ACM, 8(4):585–600, 1961.

182 Bibliography

[107] M. Otto. Bisimulation invariance and finite models. In W. Pohlers
Z. Chatzidakis, P. Koepke, editor, Logic Colloquium ’02, volume 27 of
Lecture Notes in Logic, pages 276–298. Association for Symbolic Logic,
2006.

[108] V. Padmanabhan, G. Governatori, and K. Su. Knowledge assesment: A
modal logic approach. In Proceedings of the 3rd International Workshop on
Knowledge and Reasoning for Answering Questions (KRAQ 2007), 2007.

[109] D. Park. Concurrency and automata on infinite sequences. In G. Goos and
J. Hartmanis, editors, Theoretical Computer Science, 5th GI-Conference,
volume 104 of Lecture Notes in Computer Science, pages 167–183, 1981.

[110] D. Pattinson. An introduction to the theory of coalgebras. Lecture notes
accompanying the course at NASSLLI 2003. Available at http://www.
pst.ifi.lmu.de/∼pattinso/Publications/nasslli.all.ps.gz.

[111] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and de-
cidability of local consequence. Theoretical Computer Science, 309:177–
193, 2003.

[112] D. Pattinson. Expressive logics for coalgebras via terminal sequence in-
duction. Notre Dame Journal of Formal Logic, 45:19–33, 2004.

[113] M. Pauly. Bisimulation for general non-normal modal logic. Manuscript
(unpublished), 1999.

[114] M. Pauly. Logic for Social Software. PhD thesis, Universiteit van Ams-
terdam, 2001.

[115] M. Pauly. A modal logic for coalitional power in games. Journal of Logic
and Computation, 12(1):149–166, 2002.

[116] S. Peyton-Jones, editor. Haskell 98 Language and Libraries: the Revised
Report. Cambridge University Press, 2003.

[117] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages (POPL 1989), pages 179–190. ACM Press, 1989.

[118] G.N. Raney. Sequential functions. Journal of the ACM, 5(2):177–180,
April 1958.

[119] G.N. Raney. Functional composition patterns and power series reversion.
Transactions of the American Mathematical Society, 94:441–451, 1960.

http://www.pst.ifi.lmu.de/~pattinso/Publications/nasslli.all.ps.gz
http://www.pst.ifi.lmu.de/~pattinso/Publications/nasslli.all.ps.gz

Bibliography 183

[120] G.N. Raney. On continued fractions and finite automata. Mathematische
Annalen, 206:265–283, 1973.

[121] R. Redziejowski. Construction of a deterministic ω-automaton us-
ing derivatives. Theoretical Informatics and Applications (RAIRO),
33(2):133–158, 1999.

[122] C. Reutenauer. Subsequential functions: Characterizations, minimization,
examples. In Aspects and Prospects of Theoretical Computer Science. Pro-
ceedings of the 6th International Meeting of Young Computer Scientists
(IMYCS 1990), volume 464 of LNCS, pages 62–79, 1990.

[123] C. Reutenauer and M.-P. Schützenberger. Minimization of rational word
functions. SIAM Journal of Computing, 20(4):669–685, 1991.

[124] M. Rößiger. Coalgebra and modal logic. In H. Reichel, editor, Proceedings
of the 3rd Workshop on Coalgebraic Methods in Computer Science (CMCS
2000), volume 33 of Electronic Notes in Theoretical Computer Science,
pages 299–320. Elsevier Science Publishers, 2000.

[125] J. Rothe and D. Mašulović. Towards weak bisimulation for coalgebras. In
A. Kurz, editor, Categorical Methods for Concurrency, Interaction, and
Mobility, volume 68(1) of Electronic Notes in Theoretical Computer Sci-
ence, pages 32–46. Elsevier Science Publishers, 2002.

[126] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In
D. Sangiorgi and R. de Simone, editors, Proceedings of 9th International
Conference on Concurrency Theory (CONCUR 1998), volume 1466 of
Lecture Notes in Computer Science, pages 194–218. Springer, 1998.

[127] J.J.M.M. Rutten. A note on coinduction and weak bisimilarity for While
programs. Technical Report SEN-R9826, Centrum voor Wiskunde en In-
formatica (CWI), 1998.

[128] J.J.M.M. Rutten. Relators and metric bisimulations. In B. Jacobs,
L. Moss, H. Reichel, and J.J.M.M. Rutten, editors, Proceedings of the 1st
Workshop on Coalgebraic Methods in Computer Science (CMCS 1998),
volume 11 of Electronic Notes in Theoretical Computer Science, pages
257–263. Elsevier Science Publishers, 1998.

[129] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[130] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calcu-
lus of streams, automata and power series. Theoretical Computer Science,
308(1):1–53, 2003.

184 Bibliography

[131] J.J.M.M. Rutten. A coinductive calculus of streams. Mathematical struc-
tures in Computer Science, 15:93–147, 2005.

[132] J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of
Mealy machines. In Proceedings of the 2nd International Workshop on
Formal Aspects of Component Software (FACS 2005), volume 160 of Elec-
tronic Notes in Theoretical Computer Science, pages 305–319. Elsevier
Science Publishers, 2006.

[133] J.J.M.M. Rutten. Coalgebraic foundations of linear systems (an exercise
in stream calculus). In T. Mossakowski, U. Montanari, and M. Haveraaen,
editors, Proceedings of the 2nd Conference on Algebraic and Coalgebraic
Methods in Computer Science (CALCO 2007), volume 4624 of Lecture
Notes in Computer Science, pages 425–446. Springer, 2007.

[134] S. Safra. On the complexity of ω-automata. Proceedings of the 29th An-
nual Symposium on Foundations of Computer Science (FOCS 1988), pages
319–327, 1988.

[135] C. Sanchez, M. Slanina, H.B. Sipma, and Z. Manna. The Reaction Al-
gebra: A formal language for event correlation. In Pillars of Computer
Science: Essays Dedicated to Boris Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages
586–609. Springer, 2008.

[136] L. Schröder. Expressivity of coalgebraic modal logic: The limits and be-
yond. Theoretical Computer Science, 390:230–247, 2008.

[137] L. Schröder and D. Pattinson. PSPACE bounds for rank-1 modal logics.
In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science (LICS 2006), pages 231–242, 2006. Extended version to appear
in ACM Transactions on Computational Logics.

[138] L. Schröder and D. Pattinson. Rank-1 modal logics are coalgebraic. In
W. Thomas and P. Weil, editors, Proceedings of the 24th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2007), volume
4393 of Lecture Notes in Computer Science, pages 573–585, 2007. Ex-
tended version to appear in Journal of Logic and Computation.

[139] M.P. Schützenberger. Sur un variante des fonctions sequentielles. Theo-
retical Computer Science, 4(1):47–57, February 1977.

[140] D. Scott. Advice on modal logic. In K. Lambert, editor, Philosophical
Problems in Logic, pages 143–173. Reidel, 1970.

Bibliography 185

[141] K. Segerberg. An Esssay in Classical Modal Logic. Number 13 in
Filosofiska Studier. Uppsala Universitet, 1971.

[142] A. Sokolova, E. de Vink, and H. Woracek. Weak bisimulation for action-
type coalgebras. In L. Birkedal, editor, Proceedings of Category Theory
and Computer Science (CTCS 2004), volume 122 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2005.

[143] M. Sun and L.S. Barbosa. Components as coalgebras: The refinement
dimension. Theoretical Computer Science, 351:276–294, 2005.

[144] P. Tiňo and J. Šajda. Learning and extracting initial Mealy automata
with a modular neural network model. Neural Computation, 7(4):822–
844, 1995.

[145] M.T. Tu, E. Wolff, and W. Lamersdorf. Genetic algorithms for automated
negotiations: A FSM-based application approach. In Proceedings of the
11th International Workshop on Database and Expert Systems (DEXA
2000), page 1029, 2000.

[146] D. Turi and J.J.M.M. Rutten. On the foundation of final semantics: non-
standard sets, metric spaces and partial orders. Mathematical Structures
in Computer Science, 8:481–540, 1998.

[147] T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value
(co)iteration. Informatica (Lithuanian Academy of Science), 10(1):5–26,
1999.

[148] M.Y. Vardi. On epistemic logic and logical omniscience. In J. Halpern, ed-
itor, Proceedings of the 1986 Conference on Theoretical Aspects of Reason-
ing about Knowledge (TARK 1986), pages 293–305. Morgan Kaufmann,
1986.

[149] M.Y. Vardi. An automata-theoretic approach to fair realizability and syn-
thesis. In P. Wolper, editor, Proceedings of the 7th International Confer-
ence on Computer Aided Verification (CAV 1995), volume 939 of Lecture
Notes in Computer Science, pages 267–278. Springer, 1995.

[150] M.Y. Vardi. Why is modal logic so robustly decidable? In N. Immer-
man and P. Kolaitis, editors, Descriptive Complexity and Finite Models,
volume 31 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 149–184. American Mathematical Society, 1997.

[151] M.Y. Vardi. Automata-theoretic techniques for temporal reasoning. In
P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook of Modal

186 Bibliography

Logic, volume 3 of Studies in Logic and Practical Reasoning, pages 971–
989. Elsevier, 2006.

[152] Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem,
and F. Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in
Logic and Practical Reasoning, pages 331–426. Elsevier, 2006.

[153] Y. Venema. Automata and fixed point logic: a coalgebraic perspective.
Information and Computation, 204:637–678, 2006.

[154] E. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition
systems: a coalgebraic approach. Theoretical Computer Science, 221:271–
293, 1999.

[155] J. Vuillemin. On circuits and numbers. IEEE Transactions on Computers,
43(8):868–879, 1994.

[156] J. Vuillemin. Finite digital synchronous circuits are characterised by 2-
algebraic truth tables. In Advances in Computing Science—Proceedings
of 6th Asian Computing Science Conference (ASIAN 2000), volume 1961
of Lecture Notes in Computer Science, pages 1–12. Springer, 2000.

[157] J. Vuillemin. Digital algebra and circuits. In Verification: Theory and
Practice. Essays Dedicated to Zohar Manna on the Occasion of His 64th
Birthday, volume 2772 of Lecture Notes in Computer Science, pages 100–
120. Springer, 2003.

[158] R.J. Wieringa. Design Methods for Reactive Systems. Morgan Kaufmann,
2002.

[159] H.S. Wilf. Generatingfunctionology. Academic Press, 1994. Online version
available at: http://www.math.upenn.edu/∼wilf/DownldGF.html.

[160] J. Worrell. On the final sequence of a finitary set functor. Theoretical
Computer Science, 338:184–199, 2005.

http://www.math.upenn.edu/~wilf/DownldGF.html

Index

2 , 9
2 2 , 126

-bisimulation, 137
-coalgebra, 127
-precocongruence, 138

2 2
ω, 151

A (accessible part), 82
Acc(), 74
accessible state, 74

behavioural equivalence, 16
β̂, 83
Bin-function, 28
bisimilarity, 17
bisimulation, 17
bitstream, 27

2-adic, 29–38
operations, 30
polynomial, 31
rational, 31

eventually constant, 27
eventually periodic, 27
mod-2, 39–44

operations, 39
polynomial, 40
rational, 40

bitstream expression, 45
constant, 45
instantiated, 46
length of, 45

normal form
constant polynomial, 52
polynomial, 52
rational, 53
ring, 51

polynomial, 45
bitstream function

rational 2-adic, 31
derivative, 32
infinite-state, 38
not expressive, 37
number of derivatives, 35
realisability, 35
specification, 48

rational mod-2, 40
derivative, 41
infinite-state, 44
not expressive, 43
number of derivatives, 42
realisability, 42
specification, 48

characterisation theorem
classical modal logic, 163
monotonic modal logic, 166

C (coaccessible part), 80
Coacc(), 74
coaccessible state, 74
Coalg(T), 12
coalgebra, 1, 12

187

188 Index

final, 15, 98
generated subcoalgebra, 13
minimal, 14
pointed, 13
subcoalgebra, 13

coalgebra morphism, 12
cocongruence, 16

transfer, 142
coequaliser, 10

in Set, 10
coherence, 124
coinduction, 2, 15, 18
coinductive definition principle, 15
coinductive proof principle, 15
concatenation (�), 71
congruence, 13, 14

largest, 14, 17
coproduct, 10

in Set, 11
of coalgebras, 14
of functors, 11

CSubseq, 79
CSubseqTra, 79

D (differential), 106
DA, see deterministic automaton
deterministic automaton, 72

bisimulation, 94
coalgebraic modelling, 19
minimisation algorithm, 94
synthesis, see synthesis
underlying, 73

DFA, see deterministic automaton

free group, 71
free monoid, 71
functor

finitary part, 151
on Set, 9
polynomial, 11
subfunctor, 9

Hennessy-Milner class, 146

coalgebraic modal logic, 153
finite neighb. models, 148
image-finite neighb. models, 152

Hom-functor
contravariant, 10
covariant, 10

image factorisation, 13
integral domain, 29
interpolation theorem, 168
invariant under ∼, 163

Kripke frame, 127
bisimulation, 20, 144
bounded morphism, 20
coalgebraic modelling, 20
image-finite, 154

L1, 161
lcp(), longest common prefix, 72

Mealy, 97
Mealy

behaviour, 24
bisimulation, 23
coalgebra, 23
expression, 48
final coalgebra, 25, 100
machine, 23, 97

binary, 23
morphism, 23

modal
coherence, 125
compactness, 148
definability, 125
equivalence, 125

modal logic, 2
3-modal language, 145
basic modal language, 125
classical, 126
coalgebraic, 3, 153, 166
consistent (set of formulas), 126
local semantic consequence, 126

Index 189

monotonic, 127
normal, 3, 128
standard tanslation, 162

modal saturation
Kripke, 149, 155
monotonic, 149
neighbourhood, 148, 155, 164

Mon, 127
-congruence, 142
-precocongruence, 142

Monω, 154
monotonic

bisimulation, 142
neighbourhood frame, 127
neighbourhood frame/model

image-finite, 154

Nbhd, 126
NbhdFr, 126
neighbourhood frame/model, 125

augmented, 127
base set, 151
bounded morphism, 126
congruence, 138
disjoint union, 128
first-order axiomatisation, 162
first-order translation, 162
image-finite, 151
monotonic, see monotonic
precocongruence, 138
ultrafilter extension, 156

neighbourhood semantics, 6
N (normalisation), 84
NSubseq, 84
NSubseqTra, 84

ω-saturation, 164

P , 9
-bisimulation, 20
-coalgebra, 20
-cocongruence, 144
-precocongruence, 144

path
final, 74
successful, 74

PMealy, 97
powerset functor

contravariant, 9
covariant, 9

precocongruence, 131
characterisation, 131, 132
transfer, 142

precongruence, 130
predicate lifting, 3

separating, 153
prefix closed, 71
product

in Set, 11
of functors, 11

pSeqTra(∗), 105
PtCoalg(T), 13
pullback (weak), 4, 11

in Set, 12
preservation, 12, 18

pushout, 128

rational numbers, 28
realisation, 24
reflection arrow, 72
reflector, 72

C is a, 81
D is a, 107
N is a, 86

relation
full, 124
z-closed, 143

relation lifting, 18

S , 89
-bisimulation, 94
-coalgebra

final, 92
minimisation, 95

S (∗)
0 , 108

190 Index

S0
(∗)

-bisimulation, 110
-coalgebra

minimisation, 110
Seq, 97
Seq(∗), 105

final object, 109
Set, 9
Set-functor, 9
Step, 103
Step(∗), 106
StepTra, 103
StepTra(∗), 106
stream, 24

coalgebraic modelling, 19
coinduction, 26, 49
derivative, 24
differential equations, 27
initial value, 24

stream function
causal, 24–27

derivative, 25
finite-state, 25
initial output, 25
realisable, 24

subcategory
full, 9
reflective, 72

subcoalgebra, 98
subfunctor, 98
Subseq, 79
SubseqTra, 79
subsequential

behaviour, 74
function, 74

subsequential morphism, 76
Choffrut’s definition, 79
composition of, 78
of coaccessible structures, 80
of normalised structures, 85
of step-by-step structures, 102

subsequential structure, 73

coaccessible, 79
final, 92
Mealy (subclass), 97

final object, 98, 100
minimal, 87
minimisation, 96
normalisation, 84, 96
normalised, 84

coalgebraic modelling, 90
final, 91

partial Mealy (subclass), 97
final object, 98, 100

sequential (subclass), 97
final object, 98, 100

step-by-step, 101
behaviour, 103
coalgebraic modelling, 108
differential repr., 106

subsequential transducer, 74
accessible, 82
canonical minimal, 87, 93
step-by-step

equiv.-via-differentials, 112
trimmed, 74, 82
trimming a, 83

synthesis
coalgebraic, 5, 21
deterministic automaton, 5
Mealy, 21
sequential, 5

ultrafilter, 156
upwards closure, 124

val-function, 51

word function (partial)
derivative, 87
differential, 104
maximal output, 87
prefix-preserving, 71, 99

Abstract

Coalgebraic Modelling

Applications in Automata Theory and Modal Logic

In this thesis we apply coalgebraic modelling to gain new insights into automata
theory and modal logic. Briefly summarised, the main contributions consist of
(i) a coalgebraic technique for synthesising Mealy machines from arithmetic bit-
stream specifications, and results that relate Mealy machines to rational specifi-
cations in terms of expressivity and complexity; (ii) a coalgebraic perspective on
subsequential transducers, and a systematic classification of reflective subcate-
gories of subsequential structures; (iii) bisimulation notions for neighbourhood
structures and model theoretic results for classical modal logic, including in-
terpolation and a characterisation of classical modal logic as the bisimulation
invariant fragment of first order logic. These contributions are found in Chapters
3, 4 and 5.

In Chapter 3 we study the relationship between bitstream functions and
Mealy machines with binary input and output. Mealy machines and binary
arithmetic play an important role in the modelling and specification of sequen-
tial circuits. It is well-known that Mealy machines can be modelled as coalgebras
and that a final Mealy coalgebra exists. We present a method which given a
so-called rational specification of an arithmetic bitstream function constructs a
Mealy machine which realises the specification. The idea behind the construc-
tion is to define a Mealy structure on the set of specifications, and construct a
realisation as the submachine generated by the given specification. Termination
and minimality are ensured by working modulo bisimilarity. This method is es-
sentially coalgebraic since the idea, in principle, applies to other coalgebra types
and specification languages. In our case, we obtain a Mealy structure on the
set of specifications by defining the arithmetic operations coinductively, and we
determine bisimilarity of specifications by reduction to normal form. We have
implemented this construction method and we give a complexity analysis of
the algorithm. Furthermore, we present upper bounds on the number of states

191

192 Abstract

in the constructed Mealy machine, and we show that there exist finite Mealy
machines that are not the realisation of a rational specification.

In Chapter 4 we focus on the coalgebraic modelling of subsequential trans-
ducers. Subsequential transducers are a type of automata which combines trans-
duction with acceptance, and they are used in the areas of coding theory and
language processing. As a class of automata they generalise Mealy machines and
classical deterministic automata, both of which have a neat coalgebraic mod-
elling. The underlying structure of a subsequential transducer also looks like
a coalgebra, however, it is quite easy to see that the corresponding notion of
coalgebra morphism does not fit well with the intended word function semantics.
We show that a proper coalgebraic modelling can be obtained for the subclass of
normalised subsequential structures. This result provides a new perspective on
known results such as the existence of canonical minimal subsequential trans-
ducers, and the fact that subsequential transducers can be minimised by first
normalising and then identifying bisimilar states. We also show that normalisa-
tion, minimisation and taking differentials are reflectors in the category theoretic
sense.

In Chapter 5, our starting point is the coalgebraic modelling of neighbour-
hood structures. Neighbourhood structures are the standard semantic tool used
for reasoning about non-normal modal logics. The modal logic of all neighbour-
hood models is called ‘classical modal logic’. Neighbourhood models generalise
Kripke models, but they have received far less attention. In particular, so far a
notion of bisimulation was lacking. We apply the coalgebraic modelling to de-
fine three notions of state equivalence in neighbourhood structures. One of these
is a new coalgebraic notion which lies in between bisimilarity and behavioural
equivalence. In the modal logic of Kripke models, the close relationship between
bisimilarity and the expressivity of the modal language is known from results
such as the Hennessy-Milner theorem and Van Benthem’s characterisation theo-
rem. We prove analogues of these results for classical modal logic, and we give a
model theoretic proof of Craig interpolation in which coalgebraic bisimulations
play a central role.

Samenvatting

Coalgebräısch Modelleren

Toepassingen in de Automatentheorie en de Modale Logica

Het algemene doel van deze dissertatie is om nieuwe inzichten te verwerven in
de automatentheorie en de modale logica door de relevante structuren als coal-
gebras te modelleren. Kort samengevat bestaan de specifieke bijdragen uit een
coalgebräısche techniek voor synthese van Mealy machines uit specificaties van
rekenkundige bitstroom functies, het coalgebräısch modelleren en classificeren
van subsequentiële transducers, noties van bisimulatie voor omgevingsstructuren
en model-theoretische stellingen voor klassieke modale logica. Deze contributies
zijn te vinden in Hoodstuk 3, 4 en 5.

In Hoofdstuk 3 bekijken wij de relatie tussen bitstroom functies en Mealy ma-
chines met binaire input en output. Mealy machines en binarie rekenkunde spe-
len een belangrijke rol in het modelleren en specificeren van sequentiële circuits.
Mealy machines zijn bekende voorbeelden van een type automaten die als coalge-
bras kunnen worden beschouwd, en waarvoor een finale coalgebra bestaat. Wij
presenteren een methode die gegeven een zogenoemde rationale specificatie in
de binaire rekenkunde, een eindige Mealy machine construeert die de specificatie
realiseert. Het idee achter de constructie is om een Mealy-structuur te leggen
op de verzameling van specificaties, en een realisatie te construeren als de sub-
machine gegenereerd door de gegeven specificatie. Terminatie en minimaliteit
worden gegarandeerd door modulo bisimilariteit te werken. Deze methode is in
essentie coalgebräısch omdat het idee in principe voor andere coalgebra types en
specificatietalen ook toepasbaar is. In ons geval wordt de Mealy structuur op de
verzameling van specificaties bereikt door de rekenkundige operatoren cöınduc-
tief te definiëren, en bisimilariteit wordt beslist door specificaties te reduceren
naar normaalvorm. Wij hebben deze constructiemethode gëımplementeerd, en
wij geven een complexiteitsanalyse van het bijbehorende algoritme. Het verband
tussen Mealy machines en rationale specificaties wordt ook verder onderzocht.
Wij geven een bovengrens op het aantal toestanden van de geconstrueerde Mealy

193

194 Samenvatting

machine in termen van de parameters van de specificatie. Ook laten wij zien dat
niet alle eindige Mealy machines de realisatie is van een rationale specificatie.

In Hoofdstuk 4 richten wij ons op het coalgebräısch modelleren van subse-
quentiële transducers. Subsequentiële transducers hebben toepassingen binnen
de coderingstheorie en de taalverwerking. Ook vormen zij een generalisatie van
Mealy machines en klassieke automaten, die allebei een nette coalgebräısche
modellering toestaan. De structuur van een subsequentiële transducer ziet er
ook uit als een coalgebra, maar het blijkt vrij eenvoudig in te zien dat de bijbe-
horende definitie van coalgebra morfisme niet goed past bij de semantiek van
subsequentiële transducers. Wij laten zien dat een juiste coalgebräısche mo-
dellering van genormaliseerde subsequentiële transducers wel mogelijk is, en dat
een finale genormaliseerde subsequentiële transducer bestaat. Dit resultaat biedt
een alternatief perspectief op bepaalde resultaten uit de bestaande theorie. Het
verklaart onder andere het feit dat subsequentiële transducers geminimaliseerd
kunnen worden door eerst te normaliseren en daarna alle bisimilaire toestanden
te identificeren. Wij laten in dit hoofdstuk ook zien dat normalisatie, minimali-
satie en het nemen van differentialen reflectoren zijn in de categorie-theoretische
zin.

In Hoofdstuk 5 nemen wij als uitgangspunt de coalgebräısche modellering van
omgevingsstructuren (Engels: ‘neighbourhood structures’). Omgevingsstruc-
turen vormen een generalisatie van Kripke-structuren, en de bijbehorende niet-
normale modale logica wordt ‘klassieke modale logica’ genoemd. Wij gebruiken
eerst de coalgebräısche modellering om drie noties van semantische equivalen-
tie te definiëreen. Een daarvan is een nieuwe coalgebräısche notie die in ligt
tussen bisimulatie en gedragsequivalentie. In de modale logica van Kripke-
modellen is het verband tussen bisimilariteit en de uitdrukkingskract van de
modale taal bekend uit resultaten zoals de Hennessy-Milner stelling en Van
Benthem’s karakterizeringsstelling. Wij bewijzen hier analoga van deze resul-
taten voor klassieke modale logica, en geven ook een model-theoretisch bewijs
van Craig-interpolatie, waarin coalgebräısche bisimulaties een belangrijke rol
spelen.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional
Proof System for Multithreaded Java
-Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.
Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-
proach to Developing Future-Proof
System Architectures. Faculty of
Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Envi-
ronments. Faculty of Biomedical En-
gineering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty of
Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Sim-
ulation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Processes

with Replication. Faculty of Math-
ematics and Natural Sciences, UL.
2005-17

P. Zoeteweij. Composing Con-
straint Solvers. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU.
2005-21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Sys-
tems. Faculty of Science, UU. 2006-
03

K.L. Man and R.R.H. Schiffel-
ers. Formal Specification and Anal-
ysis of Hybrid Systems. Faculty of
Mathematics and Computer Science
and Faculty of Mechanical Engineer-
ing, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of JML
programs. Faculty of Science, Math-
ematics and Computer Science, RU.
2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nonde-
terministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for Exogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composi-
tion. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time
reconfigurable Network-on-Chip for
streaming DSP applications. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detection of
Abnormalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Algebra.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA.
2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical

Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A
Series of Empirical Studies about the
UML. Faculty of Mathematics and
Computer Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in
Embedded Systems. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Ver-

ification of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2008-07

I.S.M. de Jong. Integration and
Test Strategies for Complex Manufac-
turing Machines. Faculty of Mechan-
ical Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Dürr. Resource-based Ver-
ification for Robust Composition of

Aspects. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of
Mechanical Engineering, TU/e. 2008-
16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Eval-
uation. Faculty of Mathematics and
Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for
Hybrid Systems: Comparison and De-
velopment. Faculty of Mathematics
and Computer Science, TU/e. 2008-
25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Mathe-
matics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless
Sensor Networks in Motion: Cluster-
ing Algorithms for Service Discovery
and Provisioning. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and

Validating Distributed Embedded
Real-Time Control Systems. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata
Theory and Modal Logic. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-07

	Acknowledgments
	Introduction
	Coalgebraic modelling
	Modal logic and coalgebra
	Motivation
	Thesis overview and contributions
	Automaton synthesis
	Automata as coalgebras
	Coalgebra and modal logic

	Origin of the material

	Coalgebra preliminaries
	Sets, functors, categories
	Coalgebras over sets
	Equivalence notions
	Examples
	Streams
	Deterministic automata
	Kripke frames

	Coalgebraic synthesis of Mealy machines
	Introduction
	Mealy machines
	Mealy coalgebras
	Causal stream functions

	Bitstream algebras
	Bitstreams and numbers
	Bitstream algebra basics
	The 2-adic operations
	The mod-2 operations

	Implementation
	Mealy coalgebra of expressions
	Equivalence of expressions
	Algorithm

	Complexity
	Conclusion

	Coalgebraising subsequential transducers
	Introduction
	Preliminaries
	Words, streams and functions.
	Reflective subcategories

	Subsequential structures and transducers
	Basic definitions
	Coaccessible structures and trimmed transducers
	Normalised subsequential structures
	Minimal subsequential transducers

	Coalgebraisation via normalisation
	Coalgebraic modelling
	The final subsequential structure
	Minimisation algorithm for normalised structures
	Sequential transducers and Mealy machines

	Coalgebraisation via differentials
	Step-by-step structures
	Differential representations
	Coalgebras for differentials
	Minimising differential representations

	Conclusion

	Bisimilarity in neighbourhood structures
	Introduction
	Preliminaries and notation
	Functions and relations
	Classical modal logic and neighbourhood semantics
	Basic constructions

	Equivalence notions
	Precocongruences
	Equivalences between neighbourhood frames
	Monotonic and Kripke bisimulations

	Hennessy-Milner classes
	Modally saturated models
	Image-finite neighbourhood models
	Ultrafilter extensions

	Model-theoretic results
	The classical modal fragment of first-order logic
	Characterisation theorem
	Interpolation

	Conclusion and related work

	Bibliography
	Index
	Abstract
	Samenvatting

