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Summary

Credit Portfolio Losses

Xinzheng Huang

Credit risk is most simply defined as the risk of loss resulting from an
obligor’s inability to meet its obligations. Generally speaking, credit risk is
the largest source of risk faced by banking institutions world-wide.

On an obligor level, the three basic components of credit risk are

• exposure at default (EAD), the amount to which the bank was exposed
to the obligor at the time of default,

• loss given default (LGD), the proportion of the exposure that will be
lost if a default occurs,

• probability of default (PD) within a fixed time horizon.

EAD is usually assumed to be deterministic. The LGD is random but nor-
mally replaced by its expectation for simplification. Then the uncertainty
in the loss due to an obligor comes solely from the outcome whether he
survives or defaults.

A major principle of sound management of credit risk is to quantify
credit risk on a portfolio level. Financial institutions need to determine
whether they hold adequate capital against possible extreme losses and
whether they are adequately compensated for risk incurred. These are often
measured by Value at Risk (VaR) and Value at Risk contributions (VaRC),
which are the quantile of the portfolio loss distribution at a given confidence
level and the sensitivity of the VaR to an infinitesimal fractional change in
EAD for each obligor, respectively. Aggregation of credit risk from indi-
vidual obligors to a portfolio level involves specification of the dependence
among obligors. Common practice is to utilize the factor models, in which
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the obligors are independent conditional on some common factors, e.g., state
of the economy, different industries and geographical regions.

Our starting point is the Vasicek model, which is the basis of the Basel
II (Basel Committee on Bank Supervision 2005) internal rating-based (IRB)
approach. It is a Gaussian one-factor model such that the default events
are driven by a single common factor that is assumed to follow the Gaus-
sian distribution. Under certain homogeneity conditions, the Vasicek one-
factor model leads to very simple analytic asymptotic approximations of the
loss distribution, VaR and VaRC. This asymptotic approximation works ex-
tremely well if the portfolio consists of a large number of small exposures.
The model may be extended to portfolios that are not homogeneous in
terms of default probability and pairwise correlation. However, the ana-
lytic approximation of the Vasicek model can significantly underestimate
risks in the presence of exposure concentrations, i.e., when the portfolio is
dominated by a few obligors.

We show that the saddlepoint approximation is an efficient tool to esti-
mate the portfolio credit loss distribution in the Vasicek model and it is able
to handle well exposure concentration. The saddlepoint approximation can
be traced back to Esscher (1932) when he considered the total claim amount
in a risk process and has been recognized as a valuable tool in asymptotic
analysis and statistical computing.

We further compare various numerical methods for the estimation of
the VaR and the marginal VaRC in the Vasicek one-factor portfolio credit
loss model. The methods we investigate are the normal approximation,
the saddlepoint approximation, a simplified saddlepoint approximation and
importance sampling. We investigate each method in terms of speed, accu-
racy and robustness and in particular explore their abilities of dealing with
exposure concentration.

Then we go beyond the Vasicek model to consider two extensions.
In the Vasicek model the loss given default (LGD) is assumed to be

constant. However, extensive empirical evidence shows that LGD is high
when the default rate is high. To account this, we propose a new framework
for modeling systematic risk in LGD. The class of models is very flexible
and accommodates well skewness and heteroscedastic errors. The quanti-
ties in the models have simple economic interpretation. Inference of models
in this framework can be unified. Moreover, it allows efficient numerical
procedures, such as the normal approximation and the saddlepoint approx-
imation, to calculate the portfolio loss distribution and VaR.

The single factor in the Vasicek model represents generally the state of
economy. More factors are necessary if one wishes to take the effects of
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different industries and geographical regions into account in credit portfolio
loss modeling. Therefore we move from the one-factor model to multi-factor
credit portfolio loss models. We propose algorithms of adaptive integration
for the calculation of the tail probability, with either a deterministic mul-
tiple integration rule or a Monte Carlo type random rule. Both algorithms
are asymptotically convergent and consistently outperform the plain Monte
Carlo method. The adaptive Monte Carlo integration algorithm is able to
provide reliable probabilistic error bounds.

To be able to take advantage of the adaptive integration algorithm, an
assumption of nonnegative coefficients in the multi-factor model is made.
To make sure that this assumption is satisfied, we propose a dedicated
algorithm for the nonnegative factorization of a correlation matrix.

Rapidly growing, at least before the current credit crisis, is the practice
of financial institutions transferring portfolio credit risk to third parties for
capital relief. Collateralized Debt Obligations (CDOs) are probably the
most popular credit instruments for this purpose. The valuation of CDOs
basically reduces to calculation of the expectation E[(X −K)+], where X is
the sum of n independent random variables and K is a known constant. We
finally derive two types of saddlepoint approximations to this expectation
and establish error convergence rates of the approximations in the i.i.d.
case. The approximations are further extended to cover the case of lattice
variables.
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Samenvatting

Verlies in Kredietportefeuilles

Xinzheng Huang

Kredietrisico kan het best gedefinieerd worden als het risico op verliezen als
gevolg van het onvermogen van een tegenpartij om aan zijn betalingsver-
plichtingen te voldoen. In het algemeen is kredietrisico de grootste bron van
risico die bancaire instellingen wereldwijd ondervinden.

Op het niveau van de individuele tegenpartij zijn er drie basiscompo-
nenten van kredietrisico te onderscheiden:

• Vordering in geval van wanbetaling (EAD), het bedrag dat de bank
had uitstaan bij de tegenpartij op het moment van wanbetaling,

• Verlies in geval van wanbetaling (LGD), de fractie van de vordering
in geval van wanbetaling dat verloren gaat wanneer een wanbetaling
optreedt,

• Kans op wanbetaling (PD) binnen een bepaalde tijdshorizon.

Het wordt in het algemeen aangenomen dat de EAD deterministisch is.
De LGD is stochastisch, maar het is gebruikelijk dat deze eenvoudigweg
wordt vervangen door zijn verwachting. De onzekerheid van het krediet-
verlies wordt dan volledig bepaald door het wel of niet betalen door de
tegenpartij.

Een belangrijk principe van degelijk kredietrisicomanagement is het kwan-
tificeren van kredietrisico op portefeuilleniveau. Financiële instellingen die-
nen te bepalen of zij voldoende kapitaal aanhouden voor mogelijke extreme
kredietverliezen en of zij voldoende gecompenseerd worden voor de geno-
men risico’s. Deze worden meestal bepaald aan de hand van Value at Risk
(VaR) en Value at Risk contributies (VaRC), welke respectievelijk zijn het
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kwantiel van de verliesverdeling in een portefeuille bij een gegeven betrouw-
baarheidsniveau en de gevoeligheid van de VaR voor een oneindig kleine
verandering in de EAD van elke individuele tegenpartij. Aggregatie van
kredietrisico van individuele tegenpartijen naar portefeuilleniveau betekent
dat de afhankelijkheid tussen de tegenpartijen gespecificeerd dient te wor-
den. In het algemeen worden hiervoor factor modellen gebruikt, waarbij
de tegenpartijen onafhankelijk zijn, gegeven een aantal gemeenschappelijke
factoren, bijvoorbeeld de toestand van de economie, verschillende bedrijfs-
takken en geografische regio’s.

Ons uitgangspunt is het Vasicek model, welke de basis vormt voor de
Interne Rating Benadering (IRB) van het Basel II Akkoord Basel Commit-
tee on Bank Supervision (2005). Dit is een model waarin de wanbetalingen
worden gemodelleerd door één normaal verdeelde gemeenschappelijke fac-
tor. Onder bepaalde homogeniteitsvoorwaarden geeft het één-factor model
van Vasicek een zeer eenvoudige analytische asymptotische benadering van
de verliesverdeling, VaR en VaRC. Deze asymptotische benadering werkt
bijzonder goed als de portefeuille bestaat uit een groot aantal kleine vor-
deringen. Het model kan worden uitgebreid naar portefeuilles welke niet
homogeen zijn in de kans op wanbetaling en paarsgewijze correlatie. Echter,
de analytische benadering van het Vasicek model kan het risico substanti-
eel onderschatten wanneer er concentraties zijn in de vorderingen. Dat wil
zeggen wanneer de portefeuille gedomineerd wordt door een klein aantal
tegenpartijen.

We tonen aan dat de zadelpuntmethode een efficiënte methode is om
de verdeling van de kredietverliezen op portefeuilleniveau te schatten in
het Vasicek model en dat het ook concentraties goed kan benaderen. De
zadelpuntmethode vindt zijn oorsprong bij Esscher (1932) die het totale
claimbedrag onderzocht voor een risicoproces. De zadelpuntmethode wordt
gezien als een waardevol instrument voor asymptotische analyse en statis-
tische berekeningen.

Vervolgens vergelijken we verschillende numerieke methoden voor het
schatten van de VaR en de marginale VaRC in het één-factor model van
Vasicek voor verliezen in kredietportefeuilles. De methoden die we onderzoe-
ken zijn de normale benadering, de zadelpuntmethode, een vereenvoudigde
zadelpuntmethode en importance sampling. We bestuderen elke methode
op snelheid, precisie en robuustheid en in het bijzonder bestuderen we elke
methode op het vermogen om tegenpartijconcentraties goed te benaderen.

Daarna onderzoeken we twee uitbreidingen op het Vasicek model.
In het Vasicek model wordt de LGD als constant verondersteld. Echter,

uitgebreid empirisch bewijs toont aan dat de LGD hoog is wanneer het wan-
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betalingspercentage hoog is. Om dit systematisch risico te meten stellen we
een nieuwe opzet voor om LGD te modelleren. Dit type modellen is erg flexi-
bel en omvat de scheefheid en heteroskedasticiteit van de verdeling van de
fouten. De grootheden in de modellen hebben een eenvoudige economische
interpretatie. Statistische afleiding en inferentie van verschillende model-
len kunnen in deze opzet worden verenigd. Daarnaast staat deze opzet het
gebruik van efficiënte numerieke procedures toe voor het berekenen van de
verliesverdeling in de portefeuilles en de VaR, zoals de normale benadering
en de zadelpuntmethode.

De factor in het Vasicek model stelt in het algemeen de stand van de eco-
nomie voor. Meerdere factoren zijn nodig wanneer rekening gehouden dient
te worden met de effecten van meerdere bedrijfstakken en geografische re-
gio’s voor het modelleren van de verliesverdeling van de kredietportefeuille.
Derhalve gaan we over van het één-factor model naar een meer-factoren-
model voor de verliezen in de kredietportefeuille. We bepalen adaptieve
integratie algoritmes voor het berekenen van de staartkans, namelijk een
deterministisch meervoudig integratie-algoritme en een Monte Carlo algo-
ritme. Beide algoritmes convergeren asymptotisch en presteren consistent
beter dan de standaard Monte Carlo methode. Het adaptieve Monte Carlo
integratie-algoritme heeft betrouwbare grenzen voor de kans op fouten.

Om het adaptieve integratie-algoritme te benutten, wordt voor het meer-
factoren-model aangenomen dat de coëfficiënten niet-negatief zijn. Om er
zeker van te zijn dat aan deze aanname is voldaan, introduceren we een
specifiek algoritme voor het niet-negatief ontbinden in factoren van een cor-
relatiematrix.

De laatste jaren, althans voor de huidige kredietcrisis, is het zeer ge-
bruikelijk geworden dat financiële instellingen het vereiste kapitaal verla-
gen door het transfereren van portefeuillekredietrisico’s naar derde partijen.
Collateral Debt Obligations (CDO’s) zijn waarschijnlijk de meest populaire
kredietinstrumenten hiervoor. De waardering van CDO’s kan in princi-
pe worden gereduceerd tot het bepalen van de verwachting E[(X − K)+],
waarbij X de som is van n onafhankelijke stochastische variabelen en K
een bekende constante. Tenslotte leiden we twee types van zadelpuntbena-
deringen af voor het bepalen van deze verwachting en bepalen de snelheid
van de convergentie van de benaderingsfouten in het geval van identiek en
onafhankelijk verdeelde stochastische variabelen. De benaderingen worden
uitgebreid tot het geval van roosterstructuur-variabelen.
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Chapter 1

Introduction

On September 15, 2008, Lehman Brothers Holdings Inc., the fourth-largest
US investment bank that dated back to 1850, announced it would file for
bankruptcy. The fall of Lehman marks the biggest bankruptcy filing ever.
The filing cited total debt of $613 billion, including $155 billion bond debt
and assets worth $639 billion as of May 31, 2008 and said “In the judgment
of the Board (of Directors), it is desirable and in the best interests of the
Company (Lehman), its creditors, employees, and other interested parties
that a petition be filed by the Company seeking relief under the provisions
of chapter 11 of the (bankruptcy) code”.

Bondholders face a loss at the bankruptcy of Lehman as Lehman is not
able to fully repay its debt. The magnitude of loss can be inferred from the
price of the credit default swap (CDS), an instrument used to insure against
losses due to the default on bonds. A CDS is a credit derivative contract
between two counterparties such that the buyer makes periodic payments
to the seller, and in return receives a payoff if an underlying financial in-
strument (typically a loan and bond) defaults. A bond holder who enters
a CDS transaction can thus transfer his credit risk to the protection seller.
The auction to settle Lehman’s CDS on October 10, 2008 put the value of
those bonds at merely 8.625 cents on the dollar. This roughly means that a
holder of bonds issued by Lehman had to take a horrific loss of 91.375 cents
on the dollar by expectation.

Leading to Lehman’s collapse are losses of billions of dollars through the
year 2008 in the US mortgage market, in particular in subprime and other
lower-rated mortgage-backed securities. Subprime mortgage is the type of
mortgage loan offered to borrowers who do not meet the usual criteria for
borrowing. Subprime borrowers are those who have a history of not paying
loans back, those with a recorded bankruptcy, or those with a limited in-
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2 Introduction

come, thus having a reasonable chance of defaulting on the debt repayment.
According to Mortgage Bankers Association’s National Delinquency Survey,
subprime mortgages represented 13.1% of the mortgages outstanding in the
US and 55% of the foreclosures started during the third quarter of 2007.

Data from Harvard’s “2008 State of the Nation’s Housing” study showed
a rapid expansion of subprime mortgage lending. Between 2004 - 2006 the
share of subprime mortgages relative to total originations ranged from 18%
- 21%, versus less than 10% in 2001-2003. A major factor that accounted
for this increase was the securitization of mortgage pools. These mortgage-
linked securities are known as the Collateralized Debt Obligations (CDOs).
With their values and payments derived from the underlying mortgage port-
folios, CDOs typically are divided into several tranches that are associated
with differing levels of risk and return. Interest and principal payments are
made in order of seniority. Super senior designates the highest tranche of a
CDO, bearing a low interest rate, and is considered the safest set of securi-
ties. Junior tranches offer higher interest rates or lower prices to compensate
for the additional default risk. For the investors, CDOs were regarded as
attractive fixed income instruments generating significantly higher returns
than bonds of the same quality according to credit rating agencies. In the
meantime, ideally the originators of these securities are able to transfer the
credit risk to investors completely while collecting substantial fees. In the
pursuit of profit the focus of the mortgage lending practice shifted from
loan quality to loan volume, accompanied by lax lending standards and
deterioration of the credit worthiness of the mortgage portfolios.

However, the major financial institutions became both the originators
and the investors of the mortgage-linked CDOs, against their will to “orig-
inate to distribute” the credit risk associated with the mortgage portfolios,
thus retaining a great portion of the credit risks. This was probably because
either they saw the CDOs as great investment opportunities, or they were
unable to sell all the securities. With the collapse of the US subprime mort-
gage market, the CDOs quickly lost their values and became toxic assets
with rare demand. On July 29, 2008, Merrill Lynch announced the sale of
$31 billion in CDOs to Lone Star Funds for merely $6.7 billion. According
to a Bloomberg report on August 12, 2008, the worldwide banks’ subprime
losses topped $500 billion.

Across the Atlantic Ocean, many European financial institutions were
also hit hard by the subprime crisis, among which UBS AG suffered the
highest write-downs, totaling above $40 billion as of August 2008. A share-
holder report issued by UBS on 18 August 2008 detailed where and how the
subprime losses accumulated within the bank. UBS’s subprime losses con-
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centrated in three distinct businesses: (1) Dillon Read Capital Management
(DRCM), (2) CDO desk within investment bank’s fixed income business, (3)
investment bank’s Foreign Exchange / Cash Collateral Trading (FX/CCT)
business. The primary contributor to UBS’s write-downs was the CDO
desk, which represented approximately two thirds of the banks’s subprime
losses as of December 31, 2007. DRCM and FX/CCT contributed 16% and
10% respectively.

For most deals of securitization, the CDO desk retained the super se-
nior tranches of the CDOs it structured on its own book as a long term
investment strategy. In addition to the retained super senior tranches, the
CDO desk further purchased a large volume of super senior tranches from
third parties. By September 2007 the CDO desk held approximately $50
billion super senior positions, among which $20.8 billion were purchased
from third parties. A large proportion of these super senior positions were
hedged. However even though certain positions were only offered a first-loss
protection of 2%, they were assumed to be fully hedged and so the hedged
positions were assumed to carry no risk at all. Under normal market con-
ditions, these hedge strategies worked fairly well and the CDO desk was
highly profitable from 2005 to 2006. As market conditions deteriorated,
the zero risk assumption proved to be incorrect. Write-downs mounted as
either losses exceeded the extent of the purchased protection or the counter-
party risk to the protection seller rose significantly. At December 31, 2007,
write-downs on hedged positions contributed approximately 73% of the to-
tal super senior losses, whereas three quarters of the CDO desk’s total losses
(or 50% of the bank’s total losses) came from these super senior tranches.
Failing to recognize the concentration risk to which the bank was exposed,
the super senior positions emerged as the greatest source of risks for UBS.

To restore confidence and trust in the financial services sector, gov-
ernments of European countries poured billions into major banks. In the
Netherlands, the ING Group received e10 billion capital injection from the
Netherlands authorities in October 2008. The cash injection allowed the
bank to boost its core Tier-1 capital ratio, a key measure of a bank’s finan-
cial strength, from 6.5% to around 8%.

The capital ratio is the percentage of a bank’s capital to its risk-weighted
assets. Weights are defined by risk-sensitivity ratios whose calculation is
coined in the relevant Basel Accord, issued by the Basel Committee on
Banking Supervision (BCBS).

The 1988 Basel accord, also known as the Basel I, classified assets of
banks in five categories which carry different risk weights, e.g., 0% for cash
and short term government bonds, 50% for residential mortgage loans and



4 Introduction

100% weighting on commercial loans. Internationally active banks are re-
quired to hold Tier-1 capital, consisting primarily of equity capital and cash
reserves, equal to 4% and total capital (Tier-1 capital plus supplementary
capital) ratio of 8% of the risk-weighted assets.

The Basel I Accord is greatly expanded in the Basel II Accord, initially
published in June 2004. Basel II creates a more sensitive measurement of
a bank’s risk-weighted assets. Moreover, banks are allowed to use inter-
nal ratings-based (IRB) approach to evaluate the riskiness of their credit
exposure. Rather than using the risk weights set out in the standardized
approach, banks may rely on their own internal estimates of risk compo-
nents, such as the probability of default (PD), loss given default (LGD),
the exposure at default (EAD), in determining the capital requirement for
a given exposure.

The aim of the Basel accords is to safeguard the banking institutions’
solvency against potentially extreme losses. Besides credit risk, the Basel
II Accord also addresses the measurement of operational risk and market
risk. Operational risk is defined as the risk of loss resulting from inadequate
or failed internal processes, people and systems or from external events.
Market risk is the risk of loss due to changes in market prices (such as
equity and commodity prices) or market rates (such as interest or exchange
rates). A survey conducted by International Financial Risk Institute in
2006 showed that, on average, the percentages of reserved capital at a bank
which can be attributed to market, operational and credit risks are 10%,
14% and 61% respectively. Credit risk is obviously the largest source of risk
face banking institutions.

A high level of credit risk management from the perspective of a bank
is more than solely meeting regulatory requirements. Rather the aim is to
enhance the risk / return performance of credit assets. This can be achieved
by active credit portfolio management with a number of strategies such as
capital allocation, concentration reduction, risk mitigation, risk transfer,
securitization, etc. This dissertation is concerned with quantifying portfo-
lio credit risk with an eye to active credit portfolio management. We shall
start with a selected introduction to credit portfolio loss including risk mea-
sures and credit portfolio risk models. We also briefly cover the saddlepoint
approximation, a computational technique that we find very useful in the
context of portfolio credit risk. The material given in this chapter is mostly
expository.

All the random variables in this dissertation are defined on the proba-
bility space (Ω,F , P), with P being the physical measure, unless specified
otherwise. Throughout this dissertation we denote by fX(·) and FX(·) the
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probability density function (p.d.f.) and cumulative density function (c.d.f.)
of random variable X, respectively. We write i.i.d. for independently and
identically distributed. φ and Φ represent the p.d.f. and c.d.f. of a standard
normal distribution. Expectation and variance are denoted by E and Var,
respectively.

1.1 Risk measures and risk contributions

Consider a credit portfolio consisting of n obligors. Any obligor i can be
characterized by three quantities: the probability of default PDi, the expo-
sure at default EADi and the loss given default LGDi. Obligor i is subject
to default in a fixed time horizon and the default can be modeled as a
Bernoulli random variable Di such that

P(Di = 1) = 1 − P(Di = 0) = PDi.

EAD measures the amount to which the bank was exposed to the obligor
at the time of default and LGD is the the proportion of the EAD that will
be lost if a default occurs. For simplification of notation, we write the EAD
and LGD of obligor i by ωi and Λi respectively. Then the loss incurred by
the obligor i is given by

Li = EADi × LGDi × Di = ωiΛiDi.

It follows that the portfolio loss is given by

L =
n∑

i=1

Li =
n∑

i=1

ωiΛiDi. (1.1)

For financial institutions, a major principle of sound management of
credit risk is essentially to measure the credit risk at a portfolio level so
as to determine the amount of capital that they need to hold as a cushion
against extreme losses.

The portfolio risk is often measured by Value at Risk (VaR) in practice.
From a mathematical perspective, the VaR for a given confidence level α is
simply the α-quantile of the loss distribution of L. Thus,

VaRα = inf{x : P(L ≤ x) ≥ α}.

Usually the α of interest is close to 1. While VaR is arguably the most
popular risk measure, it is known to be not coherent in the sense of Artzner
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et al. (1999). In particular VaR is not subadditive, i.e., the VaR of a portfolio
can be larger than the sum of the VaRs of its subportfolios. This implies that
VaR might discourage diversification. A coherent alternative to the VaR is
the Expected Shortfall (ES). It is defined as the conditional expectation of
the loss given that the loss exceeds the VaR,

ESα = E[L|L ≥ VaRα].

An equally important task as to quantify the portfolio level credit risk
is to measure how much each obligor in a portfolio contributes to the total
risk, i.e., the risk contributions of single exposures. Risk contribution plays
an integral role in the determination of limits on large credit exposures,
risk-sensitive loan pricing and eventually portfolio optimization.

A desirable property of the risk contributions is that they sum up to the
corresponding risk measure. For example, we want the VaR contributions
(VaRC) to add up to the total VaR, i.e.,

∑n
i=1 VaRCi = VaR. A common

measure of risk contribution that satisfies this property is the sensitivity
of the risk to an infinitesimal fractional change in exposure, as given in
Gourieroux et al. (2000). Under some continuity conditions, the VaR con-
tribution coincides with the conditional expectation of Li given that the
portfolio loss L takes value VaRα(L), i.e.,

VaRCi,α = ωi
∂VaRα

∂ωi
(L) = E[Li|L = VaRα(L)], (1.2)

The sum of the VaR contributions indeed equals the total VaR, i.e.,

n∑
i=1

E [Li|L = VaRα(L)] = E

[
n∑

i=1

Li|L = VaRα(L)

]
= E[L|L = VaRα(L)]
= VaRα(L).

Similarly, the ES contribution (ESC) is given by

ωi
∂ESα

∂ωi
(L) = E[Li|L ≥ VaRα(L)]. (1.3)

We also have
n∑

i=1

E[Li|L ≥ VaRα(L)] = ESα(L). (1.4)

For more discussions on risk measures and risk contributions we refer to
Bluhm et al. (2002), Denault (2001), Tasche (1999), Kalkbrener (2005).
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1.2 Factor models for credit portfolios

To evaluate the portfolio loss distribution, a key issue is to model the var-
ious dependence effects, including the dependence between defaults, the
dependence between LGDs and the dependence between PD and LGD.

Direct modeling of the pairwise correlations is impractical since a bank’s
credit portfolio can easily contain tens of thousands of obligors. Common
practice to reduce the computational complexity is therefore to utilize a
so-called factor model of asset correlations. In a factor model, Li and Lj

are independent conditional on some common factors Ψ. The factors Ψ can
represent the state of the economy, different industries and geographical
regions, etc. A broad class of models in the portfolio credit loss model-
ing, including all popular industrial models like KMV’s Portfolio Manager
(Kealhofer 2001), CreditRisk+ (Credit Suisse Financial Products 1997) and
CreditPortfolioView (Wilson 1997a,b), are factor models that take advan-
tage of conditional independence. For a summary of the models see Crouhy
et al. (2000).

1.2.1 The Vasicek one-factor model

We concentrate on the Vasicek one-factor Gaussian copula model in this
section. Although the Vasicek model is often criticized to be oversimplistic
by relying on the Gaussian distribution, the extension of this model to the
generic one-factor Lévy model, as outlined in Albrecher et al. (2007), is
straightforward. The Lévy models are able to produce more heavy-tailed
loss distributions and provide a better fit to the financial market data.

For now we make a simplifying assumption that the LGDs are constant.
Then the relevant dependence among obligors reduces to only default depen-
dence. Without loss of generality, we set LGD= 1 for all obligors. Equiva-
lently it is also possible to interpret ω to be the effective exposure, which is
the product of EAD and LGD.

The Vasicek model is a one period default-mode model, i.e., loss only
occurs when an obligor defaults in a fixed time horizon T. Based on the
firm value model of Merton (1974), the Vasicek model evaluates the default
of an obligor in terms of the evolution of its asset value. Suppose the asset
value follows a geometric Brownian motion with initial value A0, drift μ and
volatility σ, so that dAt = μAtdt + σStdWt. The asset value at horizon T
can be represented as

AT = A0 exp
(
(μ − σ2/2)T + σ

√
TX
)

,
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where X is a standard normal variable and can be interpreted as the stan-
dardized asset log-return. Default occurs when AT < B with B being the
debt level, or equivalently, X is less than c = (log B−log A0−μT+σ2

2 T)/σ
√
T.

The probability of default is thus given by PD = P(X < c). X is decom-
posed into a systematic part Y , representing the state of the economy, and
an idiosyncratic part ε, such that for obligor i we have

Xi =
√

ρY +
√

1 − ρεi, (1.5)

where Y and all εi are i.i.d standard normal random variables and ρ > 0
is the common pairwise correlation. It is now easily deduced that Xi and
Xj are conditionally independent given the realization of Y . This implies
that Li and Lj are also conditionally independent given Y . Further as-
sumptions of the original Vasicek model are that all obligors have the same
characteristics, such that PDi = p, EADi = 1.

Denote by p(y) = pi(y) = P[Di = 1|Y = y], i.e., the probability of
default conditional on the common factor Y = y. Then

p(y) = P[Di = 1|Y = y] = P[Xi < ci|Y = y] = Φ
(

Φ−1(p) −√
ρy√

1 − ρ

)
. (1.6)

As a consequence of the strong law of large numbers, one obtains for n → ∞,

P

[
lim

n→∞L/n = p(y)
∣∣Y = y

]
= 1.

Equivalently, if we denote by L(Y ) the portfolio loss L conditional on Y ,
we have

lim
n→∞L(Y )/n = p(Y ) = Φ

(
Φ−1(p) −√

ρY√
1 − ρ

)
a.s. (1.7)

For all pairs of x∗ and y∗ such that p(y∗) = x∗, we have

P

(
lim

n→∞L/n ≤ x∗
)

=
∫

1{limn→∞ L(y)/n≤x∗}φ(y)dy

=
∫

1{p(y)≤x∗}φ(y)dy =
∫

1{y≥y∗}φ(y)dy = 1 − Φ(y∗).

The second last equality holds since p(Y ) is strictly monotonically decreas-
ing in Y . Therefore the α quantile of L/n corresponds exactly to the 1− α
quantile of Y , i.e.,

VaRα = np(Φ−1(1 − α)) = nΦ
(

Φ−1(p) +
√

ρΦ−1(α)√
1 − ρ

)
. (1.8)
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As all obligors in the portfolio are equivalent, the VaR contribution of each
obligor is simply VaR/n = p(Φ−1(1 − α)).

We note that although the assumptions of uniform pairwise correlation ρ
and unconditional default probability PD are made in Vasicek (2002), they
are not necessary conditions and can be relaxed. Moreover, the convergence
in (1.7) also holds for a portfolio with unequal weights ωi if∑

ω2
i

(
∑

ωi)2
→ 0, (1.9)

in other words, the portfolio exposure is not concentrated on a few loans
much larger than the rest. The left hand side of formula (1.9) is known as
the Herfindahl-Hirschman Index (HHI), see e.g. Hirschmann (1964), Gordy
(2003). It provides a simple heuristic approach for quantifying exposure
concentration. Well-diversified portfolios with a very large number of very
small obligors have an HHI value close to 1/n, where n is the number of
obligors, whereas heavily concentrated portfolios can have a considerably
higher HHI value.

Throughout this dissertation, the Vasicek model should be considered
as a one-factor Gaussian copula model that allows heterogeneous portfo-
lios rather than the restrictive original model for homogeneous portfolios.
Summarizing, for a portfolio which is not homogeneous in terms of effec-
tive weight, default probability and pairwise correlation, the individual loss
variable Li conditional on Y is given by

Li(Y ) =

⎧⎨⎩ ωi with probability Φ
(

Φ−1(pi)−√
ρiY√

1−ρi

)
,

0 with probability 1 − Φ
(

Φ−1(pi)−√
ρiY√

1−ρi

)
.

If (1.9) is satisfied, the fraction of loss L̄(Y ) is given by

L̄(Y ) = lim
n→+∞

∑n
i=1 Li(Y )∑n

i=1 ωi
=

∑n
i=1 ωiΦ

(
Φ−1(pi)−√

ρiY√
1−ρi

)
∑n

i=1 ωi
a.s.

Then, the VaR and VaR contributions are given by

VaRα =
n∑

i=1

ωiΦ
(

Φ−1(pi) +
√

ρiΦ−1(α)√
1 − ρi

)
, (1.10)

VaRCi,α = ωiΦ
(

Φ−1(pi) +
√

ρiΦ−1(α)√
1 − ρi

)
. (1.11)
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Note that the VaR contribution (1.11) is a portfolio-invariant linear function
of ωi, which implies that the capital contributions of individual exposures
only depend on the characteristics of the particular exposure and not on
the rest of the portfolio.

The Vasicek asymptotic formula is straightforward but it strongly re-
lies on the assumptions of an infinitely large portfolio and of no exposure
concentration. When the two conditions, especially the latter, are violated,
which constantly occurs in practice, it tends to underestimate risk. There-
fore, the analytic formulas are less suitable when a portfolio is of small size
or dominated by a few loans much larger than the rest. These scenarios are
studied in great detail in this thesis.

1.2.2 Multi-factor models

The systematic factor in the Vasicek model represents generally the state
of economy. More factors are necessary if one wishes to take the effects
of different industries and geographical regions into account. The resulting
multi-factor model offers a better solution to identifying the correlations
among individual obligors.

A Gaussian multi-factor model is given as follows. For obligor i, its
standardized log-asset return is written to be

Xi = γi1Ψ1 + · · · + γiMΨM + εi = γiΨ + εi. (1.12)

Here

• Ψ1, . . . ,ΨM represent sector (industry, geographic region) indices that
are correlated with a known correlation matrix C. Since C is a corre-
lation matrix, it has the properties of positive semi-definiteness and a
unit main diagonal. For credit portfolios we are generally interested
in the worst case scenarios and the reason for a clustering of defaults,
hence for large portfolio losses, is positive correlation. Matrix C is
therefore assumed to have only nonnegative entries. Positive correla-
tion is often justified by empirical evidence.

• γij ≥ 0 for all i, j. These coefficients are products of a company’s
participation percentage in a specific country/industry and the per-
centage of volatility of the company, which can be explained by the
volatility of the country/industry index. So, these coefficients are
always positive, as can be read in the CreditMetrics Technical docu-
ment (Gupton et al. 1997). The non-negativity of γij guarantees that
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larger values of the factors Ψi, ceteris paribus, lead to a smaller num-
ber of defaults. The nonnegativity of the coefficients is common also
in other risk applications, see, eg., Glasserman & Li (2005).

• εi denotes an idiosyncratic factor that only affects an obligor itself.

• Ψ and εi are assumed to be independent for all i.

Note that the non-negativity of correlation matrix C is a conservative
argument in the perspective of risk management as it precludes negative
linear relationship between the common factors. As all the factors tend to
move in the same direction, extremely adverse scenarios leading to huge
losses are more likely.

Under such a latent factor model (1.12), the tail probability of the port-
folio loss can be formulated as

P(L > x) =
∫

P (L > x |ψ) dFΨ(ψ), (1.13)

where FΨ(·) denotes the joint c.d.f. of Ψ.
The number of industrial and country indices in (1.12) can be quite large.

KMV’s correlation model, for example, according to Zeng & Zhang (2001),
identifies “more than 40 countries and 61 industries”, whereas CreditMet-
rics covers “152 country-industry indices, 28 country indices, 19 worldwide
industry indices, and 6 regional indices”. It is evident that the integral to
be solved in (1.13) can be truly a high dimensional problem. Monte Carlo
(MC) simulation and quasi-Monte Carlo (QMC) methods, which do not
suffer from the curse of dimensionality, are the prevailing methods used to
solve these multi-dimensional integration problems in finance. However, the
event {L > x} in (1.13) becomes a rare event for high loss levels x, that
are often the most interesting ones in practice. In this regard both MC and
QMC methods can be rather inefficient. Furthermore, the indices Ψi and
Ψj are correlated, which also leads to more complexity for the numerical
integration. A version of factor model with orthogonal indices is therefore
preferred, which means that we are led to a second level factor model as
follows,

Ψi = ai1Y1 + · · · + aimYm + δi = aiY + δi, (1.14)

where Yi and Yj are independent and m ≤ M (preferably m � M). Such
a decomposition is usually achieved by a principal components analysis
(PCA). The two-level factor model, combining (1.12) and (1.14), reads

X = ΓΨ + ε = ΓA(Y + δ) + ε = ΓAY + bε. (1.15)
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1.3 Saddlepoint approximations

Dating back to Esscher (1932), the saddlepoint approximation has been rec-
ognized as a valuable tool in asymptotic analysis and statistical computing.
It has found a wide range of applications in finance and insurance, reliability
theory, physics and biology.

Let Xi, i = 1 . . . n be n independent continuous random variables and
X =

∑n
i=1 Xi. Suppose that for all i, the moment generating function

(MGF) of Xi is analytic and given by MXi(t) = E(etXi). The MGF of the
sum X is then simply the product of the MGF of Xi, i.e.,

M(t) =
n∏

i=1

MXi(t),

for t in some open neighborhood of zero. Let K(t) = logM(t) be the Cumu-
lant Generating Function(CGF) of X. The density of X can be represented
by the Bromwich integral

fX(x) =
1

2πi

∫ τ+i∞

τ−i∞
exp(K(t) − tx)dt, (1.16)

with i =
√
−1.

The tail probability of X is given by P(X ≥ x) =
∫
{h≥x} fX(h)dh.

Replace fX(·) by (1.16) and change the order of integration, we are led to
the following inversion formula for the tail probability,

P(X ≥ x) =
1

2πi

∫ τ+i∞

τ−i∞

exp(K(t) − tx)
t

dt (τ > 0). (1.17)

Saddlepoint approximation arises in this setting to give an accurate ana-
lytic approximation to densities and tail probabilities. A detailed exposition
of saddlepoint approximations can be found in Jensen (1995). The saddle-
point approximation can be thought of as the Edgeworth expansion at the
center of an Esscher transformed density. Only using the approximation at
the center of the distribution, the saddlepoint approximation usually leads
to a small relative error.

The saddle point, i.e., the point at which KX(t) − tx is stationary, is a
t = T such that

K′
X(T ) = x. (1.18)

The density fX(x) and the tail probability P(X > x) can be approximated
by KX(t) and its derivative up to second order at T .



1.4 Setup of the thesis 13

The Taylor expansion of K(t) − tx (function of t) around T gives

K(t) − tx = K(T ) − Tx +
1
2
(t − T )2K′′(T ) + ... (1.19)

Substitute (1.19) into (1.16), and change the integration contour from the
imaginary axis along τ to that along T , we get

fX(x) ≈ exp(K(T ) − Tx)
2πi

∫ T+i∞

T−i∞
exp
(

1
2
(t − T )2K′′(T )

)
dt

=
exp(K(T ) − Tx)√

2πK′′(T )
. (1.20)

The tail probability is approximated as

P(X ≥ x) ≈

⎧⎪⎪⎨⎪⎪⎩
exp
(
−W 2

2 + Z2

2

)
[1 − Φ(Z)] x > E(X),

1
2 x = E(X),

1 − exp
(
−W 2

2 + Z2

2

)
[1 − Φ(Z)] x < E(X),

(1.21)

where Z := T
√

K′′(T ) and W := sgn(T )
√

2[xT −K(T )] with sgn(T ) being
the sign of T .

If all the Xi are identically distributed, the relative errors of both ap-
proximations in (1.20) and (1.21) are known to be O(n−1) and O(n−1/2)
respectively. Higher order approximations of the density and the tail prob-
ability are given by the Daniels (Daniels 1987) formula

fX(x) =
φ(Z)√
K′′(T )

{[
1 +
(
−5κ2

3

24
+

κ4

8

)]
+ O

(
n−2
)}

, (1.22)

with κr := K(r)(T )/K′′(T )r/2 the standardized cumulant of order r evalu-
ated at T and the Lugannani-Rice (Lugannani & Rice 1980) formula

P(X ≥ x) = 1 − Φ(W ) + φ(W )
[

1
Z

− 1
W

+ O
(
n−3/2

)]
. (1.23)

In the context of portfolio credit risk, the above saddlepoint approxima-
tions to the density and tail probability can be employed to calculate the
risk measures (VaR and ES) and risk contributions as well.

1.4 Setup of the thesis

The rest of the dissertation is organized as follows.
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Chapter 2 utilizes the saddlepoint approximation as an efficient tool to
estimate the portfolio credit loss distribution in the Vasicek model. Value at
Risk can then be found by inverting the loss distribution. VaR contribution,
Expected Shortfall (ES) and ES contribution (ESC) can all be calculated ac-
curately. Exposure concentration, for which the Vasicek asymptotic formula
fails, can also be handled well by the saddlepoint approximation. We further
propose an adaptive integration algorithm to accelerate the computation of
tail probability. Finally we point out that the saddlepoint approximation
technique can be readily applied in multi-factor models and models with
non-Gaussian factors.

In Chapter 3 we compare various numerical methods for the estimation
of the VaR and the marginal VaRC in the Vasicek one-factor portfolio credit
loss model. The methods we investigate are the normal approximation, the
saddlepoint approximation, a simplified saddlepoint approximation and im-
portance sampling. We investigate each method in terms of speed, accuracy
and robustness and in particular explore its abilities of dealing with expo-
sure concentration.

In the Vasicek model the loss given default (LGD) is assumed to be con-
stant. However, extensive empirical evidence shows that LGD is high when
the default rate is high. To account this, in Chapter 4 we propose a new
framework for modeling the systematic risk in LGD. The class of models pro-
posed is very flexible and accommodates well skewness and heteroscedastic
errors. The quantities in the models have simple economic interpretation.
Inference of models in this framework can be unified. Moreover, it allows
efficient numerical procedures, such as the normal approximation and the
saddlepoint approximation, to calculate the portfolio loss distribution, VaR
and ES.

The systematic factor in the Vasicek model represents generally the state
of economy. More factors are necessary if one wishes to take the effects of
different industries and geographical regions into account. In Chapter 5
we move from the one-factor model to the multi-factor credit portfolio loss
models. We propose algorithms of adaptive integration for the calculation
of the tail probability. We first modify the classical Genz-Malik rule, a
deterministic multiple integration rule suitable for portfolio credit models
with number of factors less than approximately 8. Later on we arrive at
the adaptive Monte Carlo integration, which essentially replaces the deter-
ministic integration rule by antithetic random numbers. The latter can not
only handle higher-dimensional models but is also able to provide reliable
probabilistic error bounds. Both algorithms are asymptotic convergent and
consistently outperform the plain Monte Carlo method.
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The assumption of nonnegative coefficients in the multi-factor model
is made in Chapter 5. To make sure that this assumption is satisfied, it
suffices to find a nonnegative factorization for a given correlation matrix. A
dedicated algorithm for this purpose is presented in chapter 6.

In the last chapter we derive two types of saddlepoint approximations
to expectations in the form of E[(X − K)+] and E[X|X ≥ K], where X
is the sum of n independent random variables and K is a known constant.
We establish error convergence rates for both types of approximations in
the i.i.d. case. The approximations are further extended to cover the case
of lattice variables. The approximations have direct applications in finance
and insurance, e.g., to the pricing of the Collateralized Debt Obligations
(CDO) and the calculation of the expected shortfall of a credit or insurance
portfolio.
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Chapter 2

Higher Order Saddlepoint
Approximations in the
Vasicek Portfolio Credit Loss
Model

2.1 Introduction

This chapter utilizes the saddlepoint approximation as an efficient tool to
estimate portfolio credit loss distribution in the Vasicek model. The saddle-
point approximation method is well known to provide good approximations
to very small tail probabilities, which makes it a very suitable technique in
the context of portfolio credit loss. The use of saddlepoint approximation
in portfolio credit loss is pioneered in a series of articles by Martin et al.
(2001a,b). Gordy (2002) showed that saddlepoint approximation is fast and
robust when applied to CreditRisk+. All of them apply the saddlepoint
approximation to the unconditional MGF of loss L, despite the fact that
Li are not independent. Annaert, Garcia, Lamoot & Lanine (2006) show
that the procedure described in Gordy (2002) may give inaccurate results
in case of portfolios with high skewness and kurtosis in exposure size. This
chapter differs substantially from them in that we apply the saddlepoint
approximation to the conditional MGF of L given the common factor Y ,
so that L(Y ) =

∑
Li(Y ) is a weighted sum of independent random vari-

ables, which is exactly the situation where the saddlepoint approximation
will work well. We show that this change in implementation of the sad-
dlepoint approximation leads to very accurate results on the portfolio loss
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distribution, the VaR and VaR contribution, even for small-sized portfolios
and portfolios with exposure concentration. In section 2.3 we will show by
a numerical example that the accuracy of our procedure is not impaired
by high skewness and kurtosis in exposure size. In addition to the VaR
and VaR contribution, we also give the saddlepoint approximations for the
Expected Shortfall (ES) and ES contribution.

2.2 Saddlepoint approximations in the Vasicek
model: a conditional approach

We should assume that the portfolio loss L, which is discrete in the Vasicek
model, can be well approximated by a continuous random variable with a
p.d.f. so that we can employ the saddlepoint approximation formulas for
density and tail probability that appeared in §1.3.

In the Vasicek model obligors are modeled as independent Bernoulli
random variables conditional on the common factor, with

pi(Y ) = P(Di = 1|Y ) = Φ
(

Φ−1(pi) −
√

ρiY√
1 − ρi

)
. (2.1)

The application of the saddlepoint approximation is therefore straightfor-
ward. The conditional MGF of L is given by

M(t, Y ) =
n∏

i=1

(
1 − pi(Y ) + pi(Y )eωit

)
. (2.2)

The conditional CGF and its derivatives up to fourth order are defined
as follows:

K(t, Y ) =
n∑

i=1

log
(
1 − pi(Y ) + pi(Y )eωit

)
, (2.3)

K′(t, Y ) =
n∑

i=1

ωipi(Y )eωit

1 − pi(Y ) + pi(Y )eωit
, (2.4)

K′′(t, Y ) =
n∑

i=1

(1 − pi(Y ))ω2
i pi(Y )eωit

[1 − pi(Y ) + pi(Y )eωit]2
(2.5)
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K′′′(t, Y ) =
n∑

i=1

{
(1 − pi(Y ))ω3

i pi(Y )eωit

[1 − pi(Y ) + pi(Y )eωit]2
− 2(1 − pi(Y ))ω3

i p
2
i (Y )e2ωit

[1 − pi(Y ) + pi(Y )eωit]3

}
,

(2.6)

K(4)(t, Y ) =
n∑

i=1

{
(1 − pi(Y ))ω4

i pi(Y )eωit

[1 − pi(Y ) + pi(Y )eωit]2
− 6(1 − pi(Y ))ω4

i p
2
i (Y )e2ωit

[1 − pi(Y ) + pi(Y )eωit]3

+
6(1 − pi(Y ))ω4

i p
3
i (Y )e3ωit

[1 − pi(Y ) + pi(Y )eωit]4

}
. (2.7)

With K(t, Y ) available, we are able to calculate the conditional loss density
fL(x|Y ) and the conditional tail probability P(L > x|Y ) for loss level x by
the saddlepoint approximation. Since K′(t, Y ) is a monotonically increas-
ing function of t and it is bounded in the interval [0,

∑
ωi], the equation

K′(t, Y ) = x admits a unique solution T for x ∈ [0,
∑

ωi]. Integrating over
Y gives the unconditional loss density and tail probability. For example,
the tail probability is given by

P(L > x) = EY [P(L > x|Y )]. (2.8)

The VaR can then be found by inverting the loss distribution. Moreover, to
obtain the VaR contribution, we differentiate P(L > x) with respect to the
exposure:

∂

∂ωi
P(L > x)

=EY

{
1

2πi

∫ τ+i∞

τ−i∞

[
1
t

∂K(t, Y )
∂ωi

− ∂x

∂ωi

]
exp(K(t, Y ) − tx)dt

}
. (2.9)

Here we replace x by VaRα. Since the tail probability P(L > VaRα) is fixed
at 1 − α, the left hand side should vanish and we obtain

ωi
∂VaRα

∂ωi
= ωi

EY

[∫ τ+i∞
τ−i∞

∂K(t, Y )
∂ωi

1
t

exp (K(t, Y ) − tVaRα) dt

]
EY

[∫ τ+i∞
τ−i∞ exp(K(t, Y ) − tVaRα)dt

]

= ωi

EY

[∫ τ+i∞
τ−i∞

pi(Y )eωit exp (K(t, Y ) − tVaRα)
1 − pi(Y ) + pi(Y )eωit

dt

]
EY [fL(VaRα|Y )]

. (2.10)

If we define

K̂i(t, Y ) = log
(
pi(Y )eωit

)
+
∑
j 	=i

log
(
1 − pj(Y ) + pj(Y )eωjt

)
,
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which can be thought of as the CGF of L given Y and Di = 1, (2.10) is
rewritten as

ωi
∂VaRα

∂ωi
= ωi

EY

[∫ τ+i∞
τ−i∞ exp

(
K̂i(t, Y ) − tVaRα

)
dt
]

EY [fL(VaRα|Y )]
. (2.11)

Both the numerator and the denominator can be approximated by the sad-
dlepoint method.

The VaR contribution can also be derived differently. Let us write L̂i =∑
j 	=i ωjDj. We have

ωiE(Di|L = VaRα) = ωi
f(L = VaRα;Di = 1)

fL(VaRα)

= ωi

EY

[
f
(
L̂i = VaRα − ωi

∣∣Y ) pi(Y )
]

EY [fL(VaRα|Y )]
. (2.12)

The conditional density in the numerator is the conditional loss density of a
portfolio excluding obligor i and can again be calculated by the saddlepoint
approximation. We note that (2.11) and (2.12) are essentially the same
because both formulas use the saddlepoint T that solves∑

j 	=i

ωjpj(Y )eωjt

1 − pj(Y ) + pj(Y )eωjt = VaRα − ωi. (2.13)

Similarly, the ES contributions are given by

ωiE(Di|L ≥ VaRα) = ωi

EY

[
P

(
L̂i ≥ VaRα − ωi

∣∣Y ) pi(Y )
]

EY [P(L ≥ VaRα|Y )]
. (2.14)

In this chapter ES will be estimated by simply summing up all the ES
contributions, i.e.,

ESα =
∑

ωiE(Di|L ≥ VaRα). (2.15)

Note that explicit saddlepoint approximations to ES can also be obtained
without first computing ES contributions. The approximate formulas will
be derived in Chapter 7.

Remark 2.1. Although the obligors in a portfolio are assumed to be com-
pletely heterogeneous, for the sake of computational efficiency, it is advisable
to group obligors as much as possible into homogeneous buckets with similar
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characteristics, esp. for large portfolios. The main advantages of doing this
are (i) the expedition of the calculation of conditional CGF and its partial
derivatives and (ii) a reduction of the amount of risk contributions that need
to be computed.

Remark 2.2. Martin et al. (2001b) proposed a simple estimate to the VaR
contribution, which reads

VaRCi,α ≈
EY

[
fL(VaRα|Y )

ωi

T

∂K(t, Y )
∂ωi

∣∣∣
t=T

]
EY [fL(VaRα|Y )]

(2.16)

in the Vasicek model. In our numerical examples we show, however, that
this approximation may be inaccurate.

2.3 Numerical results

We now illustrate the performance of the saddlepoint approximation in the
Vasicek one-factor model. For the implementation of the saddlepoint ap-
proximation, we always employ the Lugannani-Rice formula (1.23) for the
tail probability. We truncate the common factor Y in the interval [−5, 5]
so that the probability of Y falling out of this interval is merely 5.7× 10−7.
Discretization of Y is done by Gauss-Legendre quadrature, generating 1000
abscissas and weights. The four examples evaluated are:

• Example 1: A homogeneous portfolio with n = 1000 obligors, each
with EAD=1, PD=0.01 and ρ = 0.2.

• Example 2: A portfolio consisting of n = 100 obligors with ωi = i,
k = 1, 2, . . . 100, PD=0.1, ρ = 0.2.

• Example 3: A portfolio consisting of 1 obligor with EAD1 = 100 and
10,000 obligors with EAD2 = 1. All obligors have PD=0.005 and
ρ = 0.2.

• Example 4: This portfolio is taken from Glasserman (2006). All 100
obligors have PD=0.01 and ρ = 0.5. The exposures are

ωi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i = 1, . . . , 20
4, i = 21, . . . , 40
9, i = 41, . . . , 60
16, i = 61, . . . , 80
25, i = 81, . . . , 100
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The HHI values for the four portfolios are as follows,

Example 1 2 3 4

HHI 0.001 0.0133 0.0002 0.0162
1/n 0.001 0.01 0.0001 0.01

with 1/n being the HHI value in case of no exposure concentration. So,
only Example 1 deals with a homogeneous portfolio.

We compare the loss distribution from the saddlepoint approximation
to results from the analytic Vasicek formula and from Monte Carlo simu-
lation in the first two examples. Our benchmark is the sample mean and
the accompanying 95% confidence intervals obtained from 10 subsamples of
Monte Carlo simulation with 4 million replications. The loss distribution
corresponding to the Vasicek model is obtained by inverting the VaR given
by Vasicek’s formula (1.10) for a series of quantiles α.

Example 1 is an ideal case for the Vasicek formula (1.10) to be accurate.
The loss distributions from different methods are presented in Figure 2.1(a).
The x-axis represents the loss percentage, i.e., the loss amount in proportion
to the total exposure. The y-axis, the tail probability P(L > x), is in log-
scale. It can be seen that both the Vasicek formula and the saddlepoint
approximation follow our benchmark very well.

In Example 2, the Vasicek’s formula significantly underestimates the
risk, as is demonstrated in Figure 2.1(b). This implies the presence of expo-
sure concentration in the portfolio. We observe however that the saddlepoint
approximation gives results comparable to simulation in this example.

We show more details of the errors made by the saddlepoint approxima-
tion for Examples 1 and 2 in Figure 2.2. Concentrating on the loss percent-
ages from 15% to 25%, that roughly correspond to quantiles from 99.9% to
99.99% for both examples, we report relative errors compared to the sample
means of the ten subsample estimates. The normalized standard deviations
of Monte Carlo simulation with 4 million replications are also provided for
comparison. We find that in the tail of the distribution, the relative errors
of the saddlepoint approximation are typically smaller than the standard
deviations. Furthermore we see that as the loss level increases the standard
deviation of the Monte Carlo simulation increases significantly, whereas the
accuracy of the saddlepoint approximation does not seem affected. This is
highly desirable because the tail of the distribution is the center of interest.

Example 3 is a particular test case for which the VaR and VaR contri-
butions can be computed almost exactly by the binomial expansion method
(BEM) if we treat the portfolio loss as a discrete variable. It is therefore
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Figure 2.1: Comparison of the Saddlepoint approximation, Vasicek’s formula and
Monte Carlo simulation for the loss distribution in Examples 1 and 2. The Monte
Carlo 95% confidence interval (CI) is constructed using 10 subsamples of 4 million
replications each.

a suitable test portfolio for the calculation of VaR contributions. BEM
will serve as the benchmark for both the VaR and the VaR contributions.
More details on BEM can be found in the Appendix 2.A. The loss distribu-
tion of this portfolio given by the saddlepoint approximation and the BEM
are shown in Figure 2.3. The saddlepoint approximations again follow our
benchmark very well.

As for the VaR contribution, we first consider a fixed loss level L = 922,
which lies around the 99.9% quantile. We compute the VaR contributions of
both the large obligor (VaRC1) and any small obligor (VaRC2). We use both
the standard and higher order saddlepoint approximation given by (1.20)
and (1.22), respectively (denoted by SA2 and SA4). Results are shown
in Table 2.1 and in parenthesis are the relative errors of the saddlepoint
approximation to the benchmark. Besides, we compute the Vasicek VaR
contribution, the saddlepoint approximation for the VaR contribution as
given by (2.16) (denoted by SAM) for comparison.

The results given by the benchmark BEM show that the VaR contribu-
tion increases non-linearly with the size of the exposure. Both the standard
and higher order saddlepoint method successfully capture this feature and
give the VaR contributions with small relative errors. The higher order
approximation, with relative error less that 1%, outperforms the standard
approximation. The only (negligible) problem is that the VaR contribu-
tions do not add up to the total VaR exactly. It is also clear that the VaR
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Figure 2.2: Comparison of the normalized standard deviations of Monte Carlo
simulation with 4 million replications and relative errors of the saddlepoint approx-
imations.

contributions of the large obligor (VaRC1) obtained from Vasicek and SAM

are both relatively far from the true value. The Vasicek contribution is
proportional to the effective exposure and therefore it underestimates the
large obligor’s risk contribution. SAM penalizes large exposure too much.

Next we consider a fixed confidence level α = 99.99% in Example 3,
which is truly far in the tail. The Lugannani-Rice formula will be used to
compute the loss distribution and the ES contributions. The higher order
saddlepoint approximation is used for the VaR contributions. Results are
shown in Table 2.2. The accuracy of the saddlpoint approximation is highly
satisfactory for all estimates of VaR contributions, ES contributions and
ES. The table suggests that the approximation is slightly more accurate for
the VaR contribution than for the ES contribution. This can be understood
roughly because the relative error of Daniels formula is O(n−2) and that
of Lugannani-Rice formula is O(n−3/2), with n being the number of i.i.d.
random variables (although in our example Li are not really identically
distributed).

We remark that in Example 3 the skewness and kurtosis in exposure
size are 99.985 and 9998, respectively. They are much higher than in the
portfolios 4 and 5 given in Annaert et al. (2006), where it is shown that the
accuracy and reliability of the saddlepoint approximation obtained from
Gordy’s (2002) procedure may deteriorate. In our approach high skewness
and kurtosis do not pose any problem with respect to accuracy.
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Figure 2.3: Tail probability given by the saddlepoint approximation and the
BEM for portfolio in Example 3.

For the portfolio in Example 4 we report the expected shortfall con-
tributions at the loss level L = 100. In Glasserman (2006) both the VaR
contributions and ES contributions estimates from importance sampling are
provided. We opt for the ES contributions since they are supposedly more
accurate and robust: they are conditioned on a relatively less rare event,
{L ≥ 100} compared to {L = 100} for VaR contributions. The results are
illustrated in Table 2.3. Those estimates from importance sampling, us-
ing as many as 250,000 replications, are taken from Table 2 in Glasserman
(2006) and seen as our benchmark. We observe only marginal differences
between the ES contributions given by the saddlepoint approximation and
the benchmark.

It is also interesting to explore the efficiency of the two methods as both
appropriately accommodate exposure concentration. Note that both sad-
dlepoint approximation and importance sampling with exponential twisting
involve finding the saddlepoint as a solution to Eq. (1.18) for each realiza-
tion of the common factor. With the saddlepoint at hand, saddlepoint ap-
proximation can be obtained analytically, while importance sampling needs
to simulate idiosyncratic risks for all obligors in the portfolio. It is more
likely than not that the saddlepoint approximation is faster than importance
sampling, especially for portfolios with a large amount of obligors. Besides,
we find that in a one-factor model generally a draw of 100-1000 common
factors based on the Gauss-Legendre quadrature is sufficient in terms of
accuracy for the saddlepoint approximation, while for importance sampling
many more points are necessary to obtain an estimate with a small variance,
particularly for the estimation of the VaR contributions. The advantage of
importance sampling is that it can compute tail probabilities for a series of
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loss levels with one set of generated scenarios (see Glasserman & Li 2005).
For the saddlepoint approximation different saddlepoints need to be found
for different loss levels. A final remark is that in all the four examples the
saddlepoint approximation is able to find the portfolio VaR in less than 5
seconds on a Pentium 4 2.8 GHz desktop.

2.4 Further discussion

2.4.1 Adaptive integration in a one-factor model

The efficiency of saddlepoint approximations can be improved significantly
by using an adaptive integration technique.

A key observation is that for a fixed loss level x, the function f(y) =
P(L > x|Y = y) is a non-increasing function of y. A formal proof of the
monotonicity can be found in Chapter 5, in the more general setup of multi-
factor models.

Take as an example a homogeneous portfolio consisting of 1000 obligors
with ωi = 1, pi = 0.0033 and ρi = 0.2, i = 1, . . . , 1000. The integrand
P(L > x|Y ) with x = 100 is illustrated in Figure 2.4. It is indeed a non-
increasing function. Furthermore, it decreases rapidly from its upper bound
1 to its lower bound 0 for Y in a narrow band (between the two dashed
vertical lines in Figure 2.4) much smaller than the domain of Y . Note that
the band will move toward the left tail of Y as the loss level x increases.
Moreover the width of the band should further decrease as the number of
the obligors n increases. Asymptotically, as n → ∞, P(L/

∑
ωi > x|Y )

approaches a Heaviside step function. Due to the law of large numbers,
we have L(Y )/

∑
ωi →

∑
ωipi(Y )/

∑
ωi a.s. and P(L/

∑
ωi > x|Y ) →

1{∑ ωipi(Y )/
∑

ωi>x}.
Generally an N -point quadrature rule demands N integrand evaluations.

However since in our problem the integrand is monotone and bounded in
[0, 1], significantly fewer evaluations are required for the same accuracy with
an adaptive integration algorithm. We propose a simple procedure that uti-
lizes the nodes of an N -point Gauss-Legendre quadrature rule. It produces
identical results for the tail probability P(L > x) as the N -point quadrature
but the number of integrand evaluations is substantially reduced.

Denote the Gauss nodes and weights by Yk with Y1 > Y2 > ... > YN and
uk, k = 1, . . . , N , respectively. First identify the smallest node y1 giving
f(y1) = 0. Then discard all nodes larger than y1 and proceed sequentially
with decreasing Y until we find a y2 such that f(y2) = 1. For all Y < y2 we
set f(Y ) = 1. Finally sum over. The procedure is summarized in Algorithm
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VaRC1 VaRC2
∑

VaRC

BEM 12.61 0.0909 921.95
Vasicek 9.13 0.0913 922
SAM 21.82 0.0900 921.99
SA2 12.24(2.93%) 0.0904(0.55%) 916.64(0.58%)
SA4 12.65(0.32%) 0.0907(0.22%) 920.00(0.21%)

Table 2.1: VaR contributions at the loss level L = 922. In parenthesis are the
relative errors of the saddlepoint approximation to the benchmark. The portfolio
is given in Example 3.

VaR99.99% VaRC1 VaRC2 ESC1 ESC2 ES

BEM 1558 19.79 0.1538 23.14 0.1839 1862.51
SA 1558 19.71 0.1537 23.18 0.1848 1871

(0.4%) (0.06%) (0.17%) (0.49%) (0.46%)

Table 2.2: VaR contributions and ES contributions at the loss level VaR99.99%. In
parenthesis are the relative errors of the saddlepoint approximation to the bench-
mark. The portfolio is given in Example 3.

Obligor 1-20 21-40 41-60 61-80 81-100

IS 0.10 0.42 1.02 2.03 3.67
SA 0.1017 0.4254 1.0327 2.0453 3.6835

Table 2.3: Comparison of importance sampling (IS) and saddlepoint approxi-
mation (SA) for expected shortfall contributions in Example 4 at the loss level
x = 100.
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Figure 2.4: The integrand P(L > 100|Y ) as a function of the common factor
Y . The portfolio consists of 1000 obligors with ωi = 1, pi = 0.0033 and ρi = 0.2,
i = 1, . . . , 1000.

2.1 where P(L > x) is approximated by I.

Algorithm 2.1 Adaptive integration in a one-factor model
Generate the N -degree Gauss-Legendre nodes Y1, . . . , YN and weights
u1, . . . , uN

Find Yi = min{Yk|f(Yk) = 0, k = 1, . . . , N}
j = i + 1, I = 0
while j ≤ N, f(Yj) < 1 do

I = I + f(Yj) · φ(Yj) · uj

j = j + 1
end while
I = I +

∑N
k=j φ(Yk) · uk

For the above example with N = 100 this algorithm results in less
than 20 integrand evaluations. It is evident that an adaptive integration
algorithm is able to effectively reduce the amount of computations in a
one-factor model.

2.4.2 Multi-factor models

We further present an Example 5 under a Gaussian multi-factor model,
taken from Glasserman & Li (2005). It is a 21-factor model with n = 1000
heterogeneous obligors. The exposures ωi increase linearly from 1 to 100 as
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i increases from 1 to 1000. PDs have the following form:

pi = 0.01 ∗ (1 + sin(16πi/n)), i = 1, . . . , n.

The matrix of factor loadings, A = (aij , i = 1, . . . , 1000, j = 1, . . . , 21), has
the following block structure:

A =

⎛⎜⎝ F G

R
. . .

...
F G

⎞⎟⎠ , G =

⎛⎜⎝ g
. . .

g

⎞⎟⎠ ,

with R a column vector of 1000 entries, all equal to 0.8; F a column vector
of 100 entries, all equal to 0.4; G a 100 × 10 matrix; and g a column vector
of 10 entries, all equal to 0.8.

In a multi-factor model with more than three factors, instead of Gauss
quadrature, Monte Carlo simulation or low discrepancy sequences can be
employed for the integration. The saddlepoint approximation itself is how-
ever not affected, since all the information of the common factors is encap-
sulated in pi(Y ) before starting the approximation procedure. We note that
when x is large and Y is large and positive, P(L > x|Y ) will tend to zero
and thus the integration in (2.8) will not be efficient. It is a natural idea to
resort to importance sampling for a significant improvement in such cases.
By choosing a suitable P-equivalent probability measure Q under which the
mean of the common factor Y is shifted, the tail probability can be rewritten
as

P(L > x) = EY [P(L > x|Y )] = EQ

[
P(L > x|Y )

dP

dQ

]
.

Several procedures to find an optimal measure Q are suggested by Glasser-
man & Li (2005), Glasserman (2006).

A hybrid method of saddlepoint approximation and importance sam-
pling is more efficient than pure importance sampling, since in the simula-
tion only the common factors need to be generated and not the idiosyncratic
risks. This is more advantageous for large portfolios where the number of
obligors is considerably larger than the number of factors. Moreover for the
calculation of the VaR contributions importance sampling can only use the
few replications L = x, whereas the hybrid method need not condition on
this rare event.

We employ the hybrid method for Example 5. It is carried out as fol-
lows. Taking the same mean shift in the common factors as in Glasserman
& Li (2005), i.e., 2.46 for the first factor and 0.2 for the other compo-
nents, we generate 10 subsamples of simulation with 1000 replications each.
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The saddlepoint approximation is employed to compute the tail probabil-
ity conditional on each realization of the common factors. Afterwards the
conditional tail probabilities are aggregated with proper likelihood ratios.
Table 2.4 shows the resulting tail probabilities and their standard devia-
tions for five loss levels from 10000 to 30000, with reference to those point
estimates reported in Glasserman & Li (2005), which are based on pure
importance sampling. Differences between the two methods appear to be
immaterial. In addition we produce a column of standard deviations (std)
of pure importance sampling with 10×1000 replications alongside the point
estimates. It is immediate to see that the hybrid method yields smaller
standard deviations. The larger variance associated to the pure importance
sampling method can be attributed to variations in the idiosyncratic risks.

x IS std Hybrid std

10000 0.0114 8.17×10−4 0.01139 4.55×10−4

14000 0.0065 3.85×10−4 0.00641 3.41×10−4

18000 0.0037 2.57×10−4 0.00367 1.49×10−4

22000 0.0021 1.89×10−4 0.00210 8.12×10−5

30000 0.0006 6.53×10−5 0.00063 4.81×10−5

Table 2.4: Comparison of importance sampling (IS) and the hybrid method for
point estimates and standard deviations (std) of tail probability P(L > x) at various
loss levels. The portfolio is given in Example 5.

2.4.3 Non-Gaussian factor models

Although we confine our numerical experiments to the Gaussian factor mod-
els in previous sections, the saddlepoint approximation technique can be
readily applied to all conditionally independent models with common factors
that follow any distribution. Recall that in our approach the distribution
of portfolio loss L is obtained by integrating the conditional distribution of
L(Y ) and the saddlepoint approximation only deals with L(Y ). A different
choice of mixture model gives a difference in the form of the conditional de-
fault probability pi(Y ), eg., in the Vasicek one-factor model pi(Y ) is given
by (2.1) and in CreditRisk+

pi(Y ) = pi

(
wi0 +

∑
Ykwik

)
,

where Yk are assumed to be independently gamma distributed (see Gordy
2002). But then the conditional portfolio loss L(Y ) =

∑
ωiDi(Y ) reduces
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to a weighted sum of independent Bernoulli random variables, whose MGF
always exists. As the main requirement for calculating a saddlepoint ap-
proximation is the existence of a MGF, the saddlepoint approximation is
applicable in any factor model.

2.4.4 Random LGD

Although discussed in great detail in Chapter 4, here we will provide a first
flavor of the use of saddlepoint approximations in models with random loss
given default (LGD).

When the LGD, which was assumed to be constant in the Vasicek model,
becomes a random variable, the conditional CGF reads

K(t, Y ) =
∑

log
[
1 − pi(Y ) + pi(Y )E(eωiΛt|Y )

]
. (2.17)

Various forms of distribution of LGD can be found in the literature. For
example, in Frye’s (2000) model, the LGD is modeled as a normal random
variable with mean μ and standard deviation σ such that

Λi = μ + σ

(
−biY +

√
1 − b2

i εi

)
.

Here the εi, independent to Y , are assumed to be i.i.d. standard normal
variables and the bi are assumed to be positive to insure the correct quali-
tative effect of LGD, which is mostly determined by the value of collateral.
It should tend to be higher when the economy is weak and lower when the
economy is strong. It follows that

E(eωiΛt|Y ) = eωi(μ−σbiY )tE(eωiσ
√

1−b2i εit)
= exp

(
ωi(μ − σbiY )t + ω2

i σ
2(1 − b2

i )t
2/2
)
. (2.18)

After substitution of (2.18) into (2.17), we see that a random LGD will not
complicate the problem further.

Other examples are given in §4.5 in detail along with numerical experi-
ments.

2.5 Conclusions

We have described a new procedure to embed the saddlepoint approxima-
tion as a useful tool in portfolio credit loss modeling. The saddlepoint
approximation is applied to the conditional moment generating function of
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the portfolio loss given the common factor in the Vasicek one-factor model.
The saddlepoint approximations, esp. the higher order approximations, are
able to produce accurate results on both the VaR and the VaR contribution.
The ES and ES contribution can also be computed satisfactorily. We have
also illustrated that the saddlepoint approximation works well for small-
sized portfolios and portfolios with exposure concentration, where Vasicek’s
asymptotic formulas fail. We further point out that the saddlepoint approx-
imation is a flexible method which can be applied in quite general situations,
for example, multi-factor models, non-Gaussian factor models and models
with random LGD. The extensions will be the subject of forthcoming chap-
ters.

2.A Binomial expansion method

The binomial expansion method is similar to the recursive method proposed
by Andersen et al. (2003) in the sense that both methods treat the portfolio
loss as a discrete variable. The former method is tailor-made for the portfolio
in Example 3 we considered in §2.3, while the latter method can be applied
to more general portfolios. An evaluation of the recursive method can be
found in Glasserman & Ruiz-Mata (2006).

Consider a portfolio consisting of 1 obligor with EAD1 = k, PD= p1

and n obligors with EAD2 = 1, PD= p2. In a Bernoulli mixture model,
the losses of the obligors are conditionally independent given the common
factor Y . Let p1(·) and p2(·) be the conditional default probabilities, we
have

P(L = m) =
∫

P(L = m|y)dFY (y)

=
∫

p1(y)P(Ln = m − k|y) + (1 − p1(y))P(Ln = m|y) dFY (y),

where FY (·) denotes the c.d.f. of Y and

P(Ln = m|y) =
(

n

m

)
(p2(y))m(1 − p2(y))n−m.

The VaR and VaR contributions are then given, respectively, by

VaRα = inf

{
x
∣∣∣ x∑

m=0

P(L = m) ≥ α

}
,
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and

VaRC1 =
∫

p1(y)P(Ln = VaRα − k|y)dFY (y)
P(L = VaRα)

,

VaRC2 =
1

P(L = VaRα)

{∫
p2(y)p1(y)P(Ln−1 = VaRα − k − 1|y)dFY (y) +

+
∫

p2(y)(1 − p1(y))P(Ln−1 = VaRα − 1|y)dFY (y)
}

.

The ES contributions are computed according to (2.14) with

P(L ≥ x) = 1 −
x−1∑
m=0

P(L = m)

and ES is obtained by (2.15).
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Chapter 3

Computation of VaR and
VaR Contribution in the
Vasicek Portfolio Credit Loss
Model: A Comparative
Study

3.1 Introduction

This chapter provides a comparative study on different numerical methods
for the estimation of the VaR and the marginal VaR contribution (VaRC)
in the Vasicek one-factor portfolio credit loss model. We investigate each
method in terms of speed, accuracy and robustness and in particular explore
their abilities of dealing with exposure concentration.

A variety of methods to estimate the portfolio credit risk and the risk
contributions have been proposed in the literature. Glasserman & Ruiz-
Mata (2006) provide an interesting comparison of methods for computing
credit loss distributions. The methods considered there are plain Monte
Carlo simulation, a recursive method due to Andersen et al. (2003), the sad-
dlepoint approximation, and the numerical transform inversion as in Abate
et al. (2000). They conclude that the plain Monte Carlo method is the best
method in a multi-factor setting in terms of speed and accuracy, followed
by the saddlepoint approximation. They find that the recursive method
performs well when the number of obligors is small but becomes slow as the
number of obligors increases, particularly for high loss levels. This is be-

35
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cause the recursive method computes the entire loss distribution and when
the number of obligors increases, the maximum total loss increases in the
meantime. They also find that the numerical transform inversion method
gives acceptable estimates for small loss levels but the approximation wors-
ens for higher loss levels. This is not surprising. This method numerically
inverts the Bromwich integral, whose integrand becomes highly oscillatory
and extremely difficult to handle for high loss levels.

The perspective of our comparison in this chapter is quite different from
Glasserman & Ruiz-Mata (2006). First we concentrate on the one-factor
model. Secondly we are mainly interested in VaRα when α is close to 1,
i.e., high loss levels. Thirdly we are also interested in the estimation of the
marginal VaR contribution. Finally we would like to investigate how well
the problem of exposure concentration can be handled.

We point out that the conclusions of Glasserman & Ruiz-Mata (2006) are
based on portfolios with less than 1000 obligors. But in practice it will not
be surprising that a bank’s credit portfolio has more than tens of thousands
of obligors. The plain Monte Carlo simulation will certainly become more
demanding in computation time as the portfolio size increases. After all, a
true problem with plain simulation is the estimation of the marginal VaR
contribution, which is based on the scenarios that portfolio loss equals VaR.
These are extremely rare events. We should for this reason consider impor-
tance sampling as in Glasserman & Li (2005), Glasserman (2006) instead
of plain simulation. We will drop the recursive method and the numeri-
cal transform inversion method for obvious reasons given above. Note that
Debuysscher & Szegö (2003) suggest that the numerical inversion can be
expedited by fast Fourier transform. However a straightforward implemen-
tation of FFT also suffers from the same problem as the numerical transform
inversion. We should instead include the normal approximation method as
in Martin (2004), which is a direct application of the central limit theorem.
In addition we also consider a simplified saddlepoint approximation for the
estimation of VaRC.

The rest of the chapter is organized as follows. §3.2 reviews the various
numerical methods we want to investigate, i.e., the normal approximation,
the saddlepoint approximation, the simplified saddlepoint approximation
and importance sampling. A stylized portfolio is considered in §3.3. §3.4
discusses the robustness of each method. The last section concludes along
with some further discussions.
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3.2 Numerical methods

In this section we briefly describe the numerical methods that we want to
compare for the estimation of VaR and VaRC.

3.2.1 Normal approximation

The normal approximation (NA) is a direct application of the central limit
theorem (CLT) and can be found in Martin (2004). When the portfolio
is not sufficiently large for the law of large numbers to hold or not very
homogeneous, unsystematic risk arises. We then need to take into account
the variability of the portfolio loss L conditional on the common factor
Y . This can easily be approximated due to the CLT. Conditional on the
common factor Y , the portfolio loss L is normally distributed with mean
μ(Y ) and variance σ2(Y ) such that

μ(Y ) =
n∑

i=1

ωipi(Y ), σ2(Y ) =
n∑

i=1

ω2
i pi(Y )(1 − pi(Y )), (3.1)

where pi(Y ) = P(Di = 1|Y ) = Φ
(

Φ−1(pi)−√
ρiY√

1−ρi

)
and pi is the default

probability of obligor i. It follows that the conditional tail probability reads

P(L > x|Y ) = Φ
(

μ(Y ) − x

σ(Y )

)
.

The unconditional tail probability can then be obtained by integrating over
Y , i.e.,

P(L > x) = EY

[
Φ
(

μ(Y ) − x

σ(Y )

)]
=
∫

Φ
(

μ(y) − x

σ(y)

)
φ(y)dy. (3.2)

We will in this chapter approximate the integral by the Gauss quadrature,
but there are also attempts to find an analytic approximation to Eq. (3.2),
under the name of the granularity adjustment (cf. Gordy 2003, Wilde 2001).

To obtain the VaR contribution in the current setting, we first differen-
tiate P(L > x) with respect to the effective exposure:

∂

∂ωi
P(L > x) =EY

{
φ

(
μ(Y ) − x

σ(Y )

)
×
[

1
σ(Y )

(
∂μ(Y )
∂ωi

− ∂x

∂ωi

)
− μ(Y ) − x

σ2(Y )
∂σ(Y )
∂ωi

]}
, (3.3)
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with
∂μ(Y )
∂ωi

= pi(Y ),
∂σ(Y )
∂ωi

= ωipi(Y )(1 − pi(Y ))/σ(Y ). (3.4)

Then, we replace x by VaRα in formula (3.3). Since P(L > VaRα) ≡ 1− α,
the left-hand side of Eq. (3.3) becomes zero and by rearranging terms we
obtain the following VaR contribution

ωi
∂VaRα

∂ωi

=ωi

EY

[(
1

σ(Y )
∂μ(Y )
∂ωi

− μ(Y ) − VaRα

σ2(Y )
∂σ(Y )
∂ωi

)
φ

(
μ(Y ) − VaRα

σ(Y )

)]
EY

[
1

σ(Y )
φ

(
μ(Y ) − VaRα

σ(Y )

)] .

(3.5)

The normal approximation is also applied in Shelton (2004) for CDO
and CDO-squared pricing. Zheng (2006) employs higher order approxima-
tions as an improvement to the central limit theorem to compute CDS and
CDO-squared transactions. In this chapter we will restrict ourselves to the
standard normal approximation as in Martin (2004).

3.2.2 Saddlepoint approximation

The details of the saddlepoint approximations in the Vasicek model can be
found in §2.2. Here we only want to emphasize that

• The estimation of the tail probability and the VaR involves finding,
for each realization of the common factor Y , the saddlepoint T such
that

K′
L(T, Y ) = x, (3.6)

where KL(t) = log E
[
etL
]

is the cumulant generating function of L.

• The computation of VaRC requires finding for each obligor i and each
Y a saddlepoint T in addition to Eq. (3.6) which solves

∑
j 	=i

ωjpj(Y )eωjt

1 − pj(Y ) + pj(Y )eωjt = VaRα − ωi. (3.7)
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3.2.3 Simplified saddlepoint approximation

The approximation given below has been discussed briefly in §2.2 and its
performance was compared to the saddlepoint approximation in §2.3. Here
we shall provide more details.

For the calculation of VaRC, Martin et al. (2001b) propose the following
estimate, also under the name of a saddlepoint approximation,

VaRCi,α =
ωi

T

∂KL(t)
∂ωi

∣∣∣
t=T

=
ωipie

ωiT

1 − pi + pieωiT
(3.8)

in the case of independent obligors. Here T is again the solution of K′
L(t) =

VaRα. This estimate is also derived by Thompson & Ordovás (2003) based
on the idea of an ensemble and Glasserman (2006) as a result of an asymp-
totic approximation.

It is straightforward to extend the independent case to the conditionally
independent case as in the Vasicek model, which reads

VaRCi,α ≈
EY

[
fL(VaRα|Y )

ωipi(Y )eωiT

1 − pi(Y ) + pi(Y )eωiT

]
EY [fL(VaRα|Y )]

, (3.9)

where fL(VaRα|Y ) can be computed efficiently by the saddlepoint approx-
imations. This formula can also be found in Antonov et al. (2005).

We call the estimate given by (3.9) a simplified saddlepoint approxima-
tion (SSA), in the sense that it is a simplified version of the double saddle-
point approximation to (2.10). For a portfolio with n distinct obligors, the
double saddlepoint approximation requires solving (3.6) once and n times
(3.7) for each realization of the common factor Y , whereas the SSA only
needs the solution T to (3.6). It then assumes that T and Ti, the solutions
to (3.6) and (3.7), are more or less the same for each obligor i and simply
replace all Ti by the saddlepoint T . Consequently the SSA is generally faster
than the SA, but it may give less accurate results if the above assumption
is violated.

3.2.4 Importance sampling

Monte Carlo (MC) simulation is an all-around method which is very easy
to implement. However, Monte Carlo simulation can be extremely time-
consuming. The typical error convergence rate of plain Monte Carlo simu-
lation is O(1/

√
N), where N is the number of simulations, requiring a large

number of simulations to obtain precise results. See Boyle et al. (1997) for
a review in the finance context.



40 Computation of VaR and VaRC in the Vasicek model

Two main variance reduction techniques for Monte Carlo methods ap-
plied to portfolio credit loss can be found in the literature. Control variates
are employed by Tchistiakov et al. (2004) where the Vasicek distribution is
considered as a control variable. Importance sampling (IS) is adopted by
Kalkbrener et al. (2004), Merino & Nyfeler (2005) for the calculation of Ex-
pected Shortfall contribution and by Glasserman & Li (2005), Glasserman
(2006) for the calculation of VaR and VaRC. We note that the difficulty
with Monte Carlo simulation mainly concerns the determination of VaRC
since the estimate expressed in formula (1.2) is based on the very rare event
that portfolio loss L = VaR. In this respect control variates do not provide
any improvement. IS as suggested in Glasserman & Li (2005), Glasserman
(2006) seems a more appropriate choice and will be adopted here.

The importance sampling procedure consists of two steps:

• Mean shifting - shift of the mean of common factors,

• Exponential twisting - change of distribution to the (conditional) de-
fault probabilities.

With mean shifting the common factor Y is sampled under probability
measure S which is equivalent to the original measure P such that under
S, Y is normally distributed with mean μ = 0 and variance 1. The tail
probability is then given by

P(L > x) = ES

[
1{L>x}e−μY +μ2/2

]
. (3.10)

This step will increase the likelihood of {L > x}, making a rare event less
rare.

The idea of exponential twisting is to choose

qi,θ(Y )(Y ) =
pi(Y )eθ(Y )ωi

1 + pi(Y )(eθ(Y )ωi − 1)
, (3.11)

which increases the default probability if θ > 0. This step will cluster the
losses around x, which is particularly useful for the estimation of VaRC.
With these two techniques the tail probability can be formulated as

P(L > x) = E

{
EQ

[
1{L>x}

∏
i

(
pi(Y )
qi(Y )

)Di
(

1 − pi(Y )
1 − qi(Y )

)1−Di ∣∣∣Y ]}
= E

{
EQ

[
1{L>x}e−θ(Y )L+K(θ(Y ),Y )

∣∣∣Y ]}
= ES

{
e−μY +μ2/2EQ

[
1{L>x}e−θ(Y )L+K(θ(Y ),Y )

∣∣∣Y ]} . (3.12)
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To find suitable parameters for the procedures of exponential twisting
and mean shifting, Glasserman & Li (2005) and Glasserman (2006) propose
to choose θ̂(y) that solves

K′(θ(y), y) = x. (3.13)

and μ = argy maxK(θ̂(y), y) − θ̂(y)x − 1
2y2, where θ̂(y) is given by (3.13)

and the exponential of which to be maximized is the upper bound of P(L >
x|Y = y) exp(−y2). Note that Eq. (3.13) is identical to Eq. (3.6) in
the saddlepoint approximation since both methods employ the idea of an
Esscher transform.

The estimation of the VaR contribution is trivial. It is given by

VaRCi = ωi

∑
k Di�

k1{Lk=VaR}∑
k �k1{Lk=VaR}

,

where the superscript k denotes the k-th simulated scenario and � is the
likelihood ratio e−μY +μ2/2−θ(Y )L+K(θ(Y ),Y ).

3.3 A stylized portfolio

To examine the performance of the methods described above, we first con-
sider a stylized portfolio A consisting of 11,325 obligors which only differ
in exposure size. They are categorized in 6 buckets and the exposure per
obligor and the number of obligors in each bucket are the following,

bucket 1 2 3 4 5 6

Exposure 1 10 50 100 500 800
# of obligors 10000 1000 200 100 20 5

Asset correlation and PD are given by

ρ = 20%, p = 0.33%. (3.14)

The portfolio has a total exposure of 54000. It is a portfolio of so-called
lower granularity since the largest obligor has an exposure 800 times larger
than the smallest obligor. Exposure concentration is not really significant
as the weight of the largest obligor is less than 1.5% of the total exposure.

Both the normal approximation and saddlepoint approximation calcu-
late the tail probability instead of the VaR directly. The VaR can then
be obtained by inverting the loss distribution. A not very sophisticated
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iterative solver, the bisection method, is used here for this purpose. We
search the VaR in the interval with as a lower bound the portfolio expected
loss E(L) and as an upper bound the total portfolio exposure. The two
approaches also require the discretization of the common factor Y . In a
one-factor setting, numerical integration methods rather than simulation
should be used for efficient and accurate calculation of the unconditional
loss density and tail probability. As is done in §2.3 we truncate the domain
of Y to the interval [−5, 5] and employ the (non-adaptive) Gaussian quadra-
ture method. The speed of saddlepoint methods strongly depends on the
number of abscissas N in the discretization of Y . Most of the CPU time is
spent in finding the saddlepoints. The same holds for IS with exponential
twisting. We find generally that N = 100 abscissas are sufficient in terms
of accuracy for the saddlepoint methods, while for IS many more points
are necessary to obtain an estimate with small variance. For the normal
approximation we also adopt N = 100.

In the tables that follow “Vasicek” denotes the asymptotic approxima-
tion of the Vasicek model and “NA” denotes the normal approximation. The
results given by the saddlepoint approximations are labeled by “SA”. “IS-
10K” stands for importance sampling with ten thousand scenarios. Its VaR
estimate and the sample standard deviations are computed by subdividing
the ten thousand scenarios into 10 equally-sized subsamples.

Table 3.1 presents both the VaR99.9% and VaR99.99% of the portfolio
given by various methods. CPU times are in seconds. Monte Carlo simu-
lation based on 10 subsamples with 16 million scenarios each serves as our
benchmark. We also report on the standard deviation and the 95% confi-
dence intervals (CI) beside the point estimates. The standard deviations of
VaR99.9% and VaR99.99% are 7.7 (0.1% of the corresponding VaR) and 38.4
(0.5% of the corresponding VaR), respectively.

Even though the portfolio has no serious exposure concentration, the
VaR estimates at both confidence levels obtained from the asymptotic Va-
sicek approximation are far from the benchmark VaR (relative errors around
5%). The normal approximation provides a significant improvement in ac-
curacy with only little additional computational time. The relative errors
for both VaR estimates are less than 1%. The saddlepoint approximation
is even more accurate than the normal approximation while remaining fast.
Both VaR estimates, which can be obtained in several seconds, fall within
the 95% confidence interval and have relative errors less than 0.2%. The
variance reduction of IS compared to plain simulation is especially effective
in the far tail. With only one thousand scenarios in each subsample, the
standard deviations of the VaR estimate are not really small. Although
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the VaR estimates given by IS are comparable to those given by SA, IS is
significantly more computational intensive.

VaR99.9% VaR99.99% time

Benchmark 3960.3(7.7) 6851.6(38.4)
95% CI [3945.2, 3975.3] [6776.3, 6926.9]

Vasicek 3680.5 6477.0 8E-4
NA 3924 6804 2E-2
SA 3965 6841 6E+0

IS-10K 3975.3(56.4) 6836.8(84.9) 2E+3

Table 3.1: VaR99.99% of portfolio A. The Benchmark and IS-10K sample standard
deviations (in parentheses) are calculated using 10 simulated subsamples of 16
million and one thousand scenarios each, respectively.

Regarding the VaR contribution, we in fact compute the VaRC of an
obligor scaled by its effective weight ωi, i.e.,

∂VaRα

∂ωi
(L) = P(Di = 1|L = VaR).

This represents the VaRC of an obligor as a percentage of its own effective
exposure. Expressed as a probability, it always lies in the interval [0, 1].

VaRCs of the obligors in each bucket at loss level L = 4000 and L = 6800
are given in Table 3.2. The simulated portfolio loss L is so sparse in the
vicinity of the VaR, that we have to replace the event {L = VaR} by

|L − VaR|
VaR

< γ (3.15)

to make our VaRC estimates meaningful. (An alternative is to use the
Harrell-Davis estimate, which computes a quantile estimate as a weighted
average of multiple order statistics, as in Mausser & Rosen (2004).) We
face a dilemma here. A small γ reduces bias but at the expense of having
only very few useful scenarios. We here choose γ = 0.5% for L = 4000
and γ = 1% for L = 6800. The former event has a probability around
0.004% and the latter around 0.001%. Our benchmark VaRC estimates are
both based on 12000 such events, resulting from roughly 300 million and
1200 million scenarios, respectively. The benchmark standard deviations (in
parenthesis) and confidence intervals are computed by dividing the 12000
scenarios into ten equally-sized subsamples. For IS we simply use the same
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γ as MC for both loss levels. There are 316 and 772 out of ten thousand
IS scenarios, hence 3.16% and 7.72% respectively, for which L falls in the
desired ranges. The effect of clustering losses around the level of interest by
IS is truly significant compared to plain Monte Carlo simulation.

It appears that SA is the only method that is able to give all VaRC es-
timates within the 95% confidence interval. Its maximum absolute error of
0.33% is also the smallest among all methods. The estimates from SSA are
similar to those with SA, especially for small exposures. In terms of speed
SSA is about seven times faster than SA. At the same time it has 2 estimates
outside the 95% confidence interval. The normal approximation and impor-
tance sampling have 7 and 5 estimates outside the 95% confidence interval,
respectively. The differences to the benchmark for all the three methods
are quite small though, with maxima 1.14% (SSA), 1.27% (NA) and 1.24%
(IS). NA overestimates the VaRC of small exposures and underestimates
the VaRC of large exposures, whereas SSA overestimates the VaRC of large
exposures. A problem with IS is that the VaRCs are not monotonically
increasing with the effective weight w, which is counterintuitive. From this
perspective ten thousand scenarios do not seem enough.

It must be finally noted that the above observations on the performance
of the various methods are not restricted to portfolios with uniform PD as
we impose. As an example we vary the PDs of obligors in each bucket in
portfolio A more realistically as follows,

bucket 1 2 3 4 5 6
PD 2.5% 1% 0.5% 0.33% 0.05% 0.01%

In Table 3.3 we report the estimated portfolio VaR99.9%. It turns out that
the variation in the PDs among individual obligors has virtually no impact
on the performance of a method. All the three methods other than the
Vasicek formula again give satisfactory approximations. Further results on
CPU time, VaR99.99% and VaR contributions will not be shown as we did
not find anything significantly different from the results for the original
portfolio A.

3.4 Analysis of robustness

Both the normal approximation and the saddlepoint approximation are
asymptotic approximations that become more accurate when the portfo-
lio size increases. The normal approximation stems from the central limit
theorem and uses merely the first two moments of the conditional portfolio
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Benchmark Vasicek NA SA IS-10K

VaR99.9% 5888(12.5) 5819 5882 5886 5871(63.6)
95% CI [5863.5,5912.5]

Table 3.3: VaR99.9% of portfolio A with non-uniform PD ranging from 2.5% to
0.01%. The Benchmark and IS-10K sample standard deviations (in parentheses) are
calculated using 10 simulated subsamples of 16 million and one thousand scenarios
each, respectively.

loss L(Y ). Higher order approximations such as the Edgeworth expansion
provide an improvement as they take the higher cumulants of L(Y ) into
account. As for the saddlepoint approximations, the Daniels formula can
be considered as a generalization of the Edgeworth expansion that makes
use of the explicit knowledge of the moment generating function (see Jensen
1995). In this respect it is expected that the saddlepoint approximations
are generally more accurate than the normal approximation, which is con-
firmed by our example above. A drawback is that the tail probability given
by the Edgeworth expansion is not necessary in the range of [0, 1] and is
not always monotone. Similarly the quantile approximations are not always
monotone in the probability levels (cf. Wallace 1958). The Lugannani-Rice
formula may also suffer from the same problems. On the contrary, impor-
tance sampling/simulation always gives estimates to a probability in [0, 1].

An important concern is whether the conditions of the central limit
theorem hold if severe exposure concentration is present in a portfolio. Ap-
parently if the conditions do not hold the normal approximation will fail.
Let us now consider a portfolio B consisting of a bucket of 1000 obligors
with effective exposure w1 = 1 and one large obligor with effective exposure
w2 = S, S ∈ {20, 100}, i.e.,

bucket 1 2

Exposure 1 S, S ∈ {20, 100}
# of obligors 1000 1

For the other parameters ρ and PD we adopt (3.14). The weight of the large
obligor relative to the total exposure is almost 2% when S = 20 and 10%
when S = 100. The latter should be considered as serious exposure con-
centration. The Binomial Expansion Method (see §2.A), by which the VaR
and VaRC can be computed almost exactly, will be used as the benchmark.
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We consider the quantile α = 99.99%. Table 3.4 gives the VaR of port-
folio B obtained by various methods. The approximation error of VaR is
measured by the relative error (RE) defined as

RE=(Estimate-Benchmark)/Benchmark.

When S = 20, we see that all methods, except Vasicek, have relative errors
of less than 2%. When S is increased to 100, both Vasicek and NA become
erratic (relative errors > 10%), whereas the effect of a large S on the accu-
racy of SA is marginal. We remark that we have tested for even larger S
up to 1000 (50% of the total exposure of correponding portfolio), and SA
manages to consistenly give VaR99.99% estimates with |RE| < 2%. IS is also
insusceptible to the size of S. It is as accurate as SA, but demands much
more CPU time.

S = 20 S = 100
VaR error time VaR error time

Exact 125 170

Vasicek 122.3 -2.13% 6E-4 131.9 -22.39% 1E-3
NA 125 0.00% 1E-2 149 -12.35% 9E-3
SA 126 0.80% 3E+0 168 -1.18% 3E+0

IS-10K 124.1(1.7) -0.72% 2E+2 170.5(3.1) 0.29% 2E+2

Table 3.4: VaR99.99% of portfolio B. Errors reported are relative errors.

The reason why the normal approximation does not work for S = 100 is
not difficult to explain. Conditional on the common factor Y , NA tries to
approximate the loss density by a normal distribution (due to the central
limit theorem). This works quite well when S is as large as 20. However,
when we have S = 100, which is almost 10% of the total exposure, the loss
density will no longer be unimodal. A normal approximation is not able to
capture this pattern and therefore can be problematic. This is illustrated
in Figure 3.1.

It is also worthwhile explaining how the exposure concentration is han-
dled by the saddlepoint approximation. Therefore, instead of computing
only a quantile of the portfolio loss, we calculate the whole loss distribution
when S = 100 using our benchmark and the SA. This is demonstrated in
Figure 3.2(a). We notice that the true loss distribution is not smooth in the
vicinity of 100, which is precisely the size of the large exposure S.

Recall that the SA relies on the inversion formula (1.17) representing
the tail probability. It is thus implicitly assumed that the portfolio loss L,
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Figure 3.1: Loss density and tail probability of Portfolio B given by the normal
approximation conditional on an arbitrarily chosen common factor Y .

which is discrete when LGD is constant, can be well approximated by a
continuous random variable which has an absolutely continuous cumulative
distribution function. The saddlepoint method thus produces a smoothed
version of the loss distribution. A more detailed discussion of the saddle-
point approximations as smoothers is in Davison & Wang (2002). We see
in Figure 3.2(a) that the saddlepoint approximation to the tail probabilities
is incorrect for almost all quantiles preceding the point of non-smoothness
(around the 99.6%-quantile) but is again accurate for higher quantiles. It
entails that, with one or a few exceptional exposures in the portfolio, a
uniform accuracy of the loss distribution may not be achieved by a straight-
forward saddlepoint approximation. This can be a problem if the quantile
we are interested in precedes the non-smoothness in the loss distribution,
which usually occurs at the size of large exposures.

A very easy algorithm can be used to retain the uniform accuracy. Sup-
pose a portfolio has m large exposures Si, i = 1, . . . ,m with S1 ≤ S2 ≤
· · · ≤ Sm. For any loss level x < Sk the tail probability conditional on Y
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can be written as

P(L > x|Y ) = 1 − P(L −
∑
i≥k

Li ≤ x|Y )
∏
i≥k

P(Dk = 0|Y ). (3.16)

The above reformulation takes into account the implicit information that
when L < x the obligors with exposure larger than x must not default.
An application of SA to the probability P(L −

∑
i≥k Li > x|Y ) rather than

directly to P(L > x|Y ) furthermore removes the exceptional exposure con-
centration Si, i ≥ k. It is apparently more accurate than a direct SA to
P(L > x|Y ). A similar idea is discussed in Beran & Ocker (2005). We call
this method the adaptive saddlepoint approximation (ASA) here. As an ex-
periment we apply the ASA to portfolio B with S = 100 and plot in Figure
3.2(b) the loss distribution for loss levels up to but excluding L = S (in the
estimation of the tail probabilities the ASA only differs from a direct SA
for loss levels L < S.). The loss distribution given by the ASA matches the
benchmark almost exactly for all L < S.
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Figure 3.2: The loss distribution of portfolio B given by the saddlepoint ap-
proximation (SA) and adaptive saddlepoint approximation (ASA) when the loss
distribution is not smooth at the vicinity of S. PD= 0.0033, ρ = 0.2, S = 100.

Now we consider the VaR contribution. Table 3.5 presents the VaRC of
both a small obligor (VaRC1) and the large obligor (VaRC2). For the cases
S = 20 and S = 100, we report four estimates to the VaRC given by each
method. The error we report here is absolute error. NA gives fair VaRC es-
timates for both VaRC1 and VaRC2 when S = 20 but deviates dramatically
from the benchmark when S = 100. This is in line with its performance
on the VaR estimation. SA is quite accurate for VaRC1 but becomes less
accurate for VaRC2 as S increases. SSA resembles SA in the estimates of
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VaRC1 but does not give satisfactory estimates to VaRC2 at all: both errors
are larger than 5%. This can be understood by the fact that, as mentioned
in §3.2.3, the solutions to (3.6) and (3.7) are indeed close for small expo-
sures but can differ substantially for large exposures. Further experiments
show that NA, SA and SSA may all give VaRC values that are not in the
interval [0, 1] in the presence of more exceptional exposure concentrations
(as is pointed out at the beginning of this section). IS appears to be the
best method in terms of accuracy and robustness in this case.

(a) S = 20

S = 20 VaRC1 error VaRC2 error time

Benchmark 12.06 21.78

Vasicek 12.25 0.19 12.25 -9.53 3E-3
NA 12.12 0.06 18.94 -2.84 1E-2
SA 12.05 -0.01 21.70 -0.08 8E-1
SSA 11.96 -0.10 27.06 5.28 3E-1

IS-10K 12.04 -0.02 22.89 1.11 1E+3

(b) S = 100

S = 100 VaRC1 error VaRC2 error time

Benchmark 8.29 87.07

Vasicek 15.45 7.16 15.45 -71.62 3E-3
NA 12.68 4.39 43.18 -43.89 2E-1
SA 8.89 0.60 90.79 3.72 8E-1
SSA 9.15 0.86 78.52 -8.55 3E-1

IS-10K 8.12 -0.17 88.85 1.78 1E+3

Table 3.5: VaRC99.99% of portfolio B. All the numbers except CPU time are in
percentage terms. Errors reported are absolute errors.

In both portfolios A and B importance sampling seems to perform fine
for determining VaRC. The reason for this is that the obligors in a bucket
are considered identical and we are able to take the average of all obligors in
the same bucket when estimating VaRC. This makes the simulated VaRC
estimates much less volatile. We must point out that even though IS is
able to cluster the simulated losses around the VaR of interest and thus
significantly increases the probability P(L = VaR), a rather large number
of replications are still necessary.



3.4 Analysis of robustness 51

Let us consider a portfolio C consisting of 100 obligors with exposures
all different from each other such that

ωi = i, i = 1, . . . , 100. (3.17)

The parameters ρ and PD are again the same as in (3.14).
Figure 3.3 gives scatterplots of the (scaled) VaRC (y-axis) at the loss

level L = 700, which is around VaR99.99%, against the EAD (x-axis). In the
left-side figure we show the results given by the saddlepoint approximation,
the simplified saddlepoint approximation and the normal approximation.
All methods clearly show that the VaRC increases as the EAD increases,
which is highly desirable for practical purposes. SSA again gives results
very close to the saddlepoint approximation. Compared to the SA, the NA
overestimates the VaRC of small exposures and underestimates the VaRC
of large exposures. This is consistent with the pattern shown in Portfolio A.
The estimates given by importance sampling with ten thousand scenarios
(IS-10K) and one hundred thousand scenarios (IS-100K) are presented in
the right-side of Figure 3.3 along with those given by SA. γ as in (3.15)
is set to be 1%. The relation between the VaRC and EAD is not clear at
all with only ten thousand simulated scenarios. The estimates, resulting
from 256 relevant scenarios, disperse all over the area. Improvement in the
performance of the VaRC estimation is discernable when we increase the
number of scenarios of IS by ten times. The VaRC estimates are then based
on 2484 relevant scenarios and the upward trend of VaRC with increasing
EAD is evident. However due to simulation noise the curve remains highly
oscillatory and an even higher number of scenarios seems necessary.
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Figure 3.3: VaR contribution of Portfolio C as a function to EAD at the loss
level L = 700.
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3.5 Conclusions and discussions

We have examined various numerical methods for the purpose of calcu-
lating the credit portfolio VaR and VaRC under the Vasicek one-factor
model. Each method provides a viable solution to VaR/VaRC estimation
for lower granular portfolios and portfolios with medium exposure concen-
tration. However there is no perfect method that prevails under all cir-
cumstances and the choice of preferred method turns out to be a trade-off
among speed, accuracy and robustness.

The normal approximation is the fastest method and is able to achieve
a fair accuracy. It is however rather vulnerable because it is incapable
of handling portfolios dominated by one or a few obligors (or, portfolios
with multi-modal loss density). The simplified saddlepoint approximation
is second to the normal approximation in speed and may suffer from the
same problem when estimating the VaRC.

Importance sampling does not guarantee to be the most accurate method
but it always works fine provided a sufficient number of scenarios are drawn.
It makes no assumption on the composition of a portfolio and thus is cer-
tainly the best choice from the perspective of robustness. Unlike the other
methods, it always gives estimates to the scaled VaRC in [0, 1]. The down-
side of IS is that it is rather time-consuming when compared to the other
methods. Moreover IS is not strong in the estimation of VaRC, which is
really demanding in the number of simulated scenarios.

The saddlepoint approximation is generally more accurate than the nor-
mal approximation and the simplified saddlepoint approximation. It is also
more reliable in the sense that it can handle more extreme exposure con-
centration. Consequently it may well serve as a fast alternative to IS with
a good balance between accuracy and speed. It must be emphasized that,
if the loss distribution is not smooth due to exceptional exposure concen-
trations and the target quantile precedes the non-smoothness in the loss
distribution, a straightforward implementation of SA is likely to be insuffi-
cient. The adaptive saddlepoint approximation should be employed in this
situation.

We would like to point out again that the normal approximation and the
saddlepoint approximation methods are all based on asymptotic approxima-
tions. They become more accurate when the portfolio size increases. On the
other hand, importance sampling becomes substantially more demanding in
computation time when the portfolio size increases.

Although we mainly concentrate on the VaR-based risk contribution, we
would like to point out that all the four methods evaluated can be readily
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extended to compute the risk contribution with respect to the Expected
Shortfall (ES). A thorough discussion on the ES and ES contribution can
be found in Acerbi & Tasche (2002), Tasche (2002). The estimation of ES
contributions by importance sampling is developed in Glasserman (2006).
It is shown that importance sampling is equally effective for the estimation
of the ES contributions as for the VaR contributions. The saddlepoint ap-
proximation to the ES and ES contributions has been discussed in Chapter
2. A numerical experiment therein shows that IS and SA give comparable
results for ES contributions. Formulas for the normal approximation to the
ES and ES contributions are derived in Martin (2004). The approximations
are likely to be satisfactory when the normal approximations to the tail
probability and VaR contributions work well, as all approximations hinge
on the central limit theorem.

A final remark is that it is straightforward to extend the use of the
four methods to multi-factor models. The only problem with multi-factor
models is that the efficiency of the normal/saddlepoint approximation can
no longer be maintained: due to the curse of dimensionality the Gaussian
quadrature rule becomes impractical as the number of factors increases. It
is therefore even desirable to combine importance sampling and the other
methods, as was a hybrid method of importance sampling and saddlepoint
approximation presented in §2.4.2. Another efficient high-dimensional inte-
gration method is proposed in Chapter 5.
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Chapter 4

Generalized Beta Regression
Models for Random Loss
Given Default

4.1 Introduction

In the context of credit portfolio losses, the quantity Loss-Given-Default
(LGD) is the proportion of the exposure that will be lost if a default occurs.
The uncertainty about the actual LGD constitutes an important source of
the credit portfolio risk in addition to the default risk. In practice, e.g.,
in both CreditMetrics (Gupton et al. 1997) and KMV Portfolio Manager
(Gupton & Stein 2002), the uncertainty in the LGD rates of defaulted oblig-
ors is assumed to be a beta random variable independent for each obligor.
The beta distribution is well-known to be very flexible, modeling quantities
constrained in the interval [0, 1]. Depending on the choice of parameters,
the probability density function can be unimodal, U-shaped, J-shaped or
uniform.

However, extensive empirical evidence, see e.g., Hu & Perraudin (2002),
Altman et al. (2005), has shown that this simple approach is insufficient. It
is now well understood that LGD is positively correlated to the default rate,
in other words, LGD is high when the default rate is high, which suggests
that there is also systematic risk in LGD, just like in the default rates. A
heuristic justification is that the LGD is determined by the collateral value
which is sensitive to the state of the economy.

Based on results of a non-parametric estimation procedure, Hu & Per-
raudin (2002) further showed that without taking into account the PD/LGD

55
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correlation the economic capital, or Value at Risk (VaR), of a loan portfolio
can be significantly underestimated. This has a critical consequence for risk
management practice. In the Basel II Accord this issue is addressd by the
notion of “downturn LGD”.

The insight of LGD being subject to systematic risk dates back to Frye
(2000), in which the LGD is modeled by a normal distribution. An ob-
vious problem with this model is that it allows the LGD to be negative
which cannot be the case. To ensure the nonnegativity of LGD, Pykhtin
(2003) employs a truncated log-normal distribution for the LGD. Andersen
& Sidenius (2004) propose the use of a probit transform of the LGD such
that the transformed LGD is normally distributed. The probit transforma-
tion guarantees that the LGD stays in the interval [0, 1]. In a similar manner
Düllmann & Trapp (2004), Rösch & Scheule (2005) employ a logit trans-
form of the LGD. Rather different from the above approaches, Giese (2006)
and Bruche & González-Aguado (2008) extend the static beta distribution
assumption in CreditMetrics and KMV Portfolio Manager by modeling the
LGD as a mixture of beta distributions that depend on the systematic risk.

In this chapter we propose a Generalized Beta Regression (GBR) frame-
work to model the Loss-Given-Default. This framework generalizes the
Beta Regression model proposed by Ferrari & Cribari-Neto (2004) and is
very similar to a class of models derived from Generalized Linear Models
(GLM). Our models are called Generalized Beta Regression Models since the
LGD is always assumed to be (conditionally) beta distributed. The mod-
els by Giese (2006), Bruche & González-Aguado (2008) can be regarded as
special examples in our GBR framework. The quantities in our models have
simple economic interpretation as the quantity and quality of the LGD. In
contrast with the transformed LGD models, GBR models do not require
normality and homoscedasticity. Inference in this framework can be unified
for models with a variety of link functions and different degrees of complex-
ity with least squares method and maximum likelihood estimation, making
model selection a straightforward task. Moreover, the GBR framework al-
lows both the normal approximation and the saddlepoint approximation to
efficiently calculate the portfolio loss distribution. This is the first time
that the numerical approximation methods have been used successfully to
calculate portfolio loss distribution in the presence of random LGD.

The rest of the chapter is organized as follows. In section 2 we introduce
the Vasicek’s Gaussian one-factor model as the default model and give a
brief summary of existing random LGD models. Section 3 elaborates on
the GBR framework including the basic Beta regression model and two
extensions. In Section 4 we discuss methods for parameter estimation and
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provide a calibration example. Section 5 explains techniques for efficient
loss distribution approximation in the GBR framework.

4.2 Existing LGD models

A variety of models in which LGD is subject to systematic risk can be found
in the literature. Within a one-factor framework, Frye (2000) proposed a
model in which the LGD is normally distributed and influenced by the same
systematic factor Y that drives the PD, so that

Λ = μ + σξ,

ξ = −
√

ρ̃Y +
√

1 − ρ̃ε,

where ξ and ε are both standard normally distributed. The minus sign in
front of

√
ρ̃ reflects the empirical findings that LGD tends to be higher when

the economy is weak and lower when the economy is strong. This way the
dependence between LGDs and the dependence between PD and LGD are
modeled simultaneously. The parameters μ and σ can be understood to
be the expected LGD and the LGD volatility, respectively. Unfortunately,
the LGD is unbounded in R and can thus be negative. To ensure the
nonnegativity of LGD, Pykhtin (2003) employs a log-normal distribution
for the LGD,

Λ =
(
1 − eμ+σξ

)+
.

Other extensions include Andersen & Sidenius (2004), choosing a probit
transformation

Λ = Φ(μ + σξ),

where Φ is again the cdf of the standard normal distribution and Düllmann
& Trapp (2004), Rösch & Scheule (2005) that employ a logit transformation

Λ =
1

1 + exp(μ + σξ)
.

All three transformations for the LGD above guarantee that the LGD lies in
the interval [0, 1]. However the parameters μ and σ do not have a convenient
economic interpretation as in Frye’s model.

The above models basically are all linear models of the transformed LGD
in the form of

g(Λ(Y )) = μ − σ
√

ρ̃Y + σ
√

1 − ρ̃ε (4.1)
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so that g(Λ(Y )) is normally distributed with mean μ + σ
√

ρ̃Y and variance
σ2(1− ρ̃). Hence the transformed LGD g(Λ(Y )) is required to be symmetric
and homoscedastic, i.e., its variance must not vary with the mean. This is in
contradiction with an empirical study in Düllmann & Trapp (2004), at least
for the Pykhtin (2003) model, where the Shapiro-Wilk test for normality to
log(1 − Λ) gives a p-value of 0.05.

A more flexible approach extends the static beta distribution assumption
as it is present in CreditMetrics and KMV Portfolio Manager. Giese (2006),
Bruche & González-Aguado (2008) model the LGD by a mixture of beta
distributions

Λ ∼ Beta(α, β)

where both α and β are functions of common factor Y . However, α and β
are both shape parameters and an economic interpretation of such models
is very difficult.

We here propose the Generalized Beta Regression (GBR) framework for
random LGD. The GBR framework includes Giese (2006) and Bruche &
González-Aguado (2008) as special examples but calls for a different pa-
rameterization of the beta distribution. The class of models is very flexible
and the quantities in our models have an easy economic interpretation as
the quantity and quality of the LGD. Inference of models in this framework
can be unified. Compared to the transformed LGD models given by (4.1),
the GBR models accommodate better skewness and heteroscedastic errors.

4.3 Generalized Beta Regression Models

4.3.1 Parameterization of a beta distribution

Recall that the probability density function of a beta distribution with pa-
rameters α > 0, β > 0 reads

f(x) =
xα−1(1 − x)β−1

B(α, β)
=

Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1,

where B(·, ·) denotes the beta function and Γ(·) the gamma function.
The beta distribution is well-known to be very flexible, modeling quan-

tities constrained in the interval [0, 1]. Depending on the choice of parame-
ters, the probability density function can be unimodal, U-shaped, J-shaped
or uniform. The expectation and variance of a beta distributed variable X
are given by

μ = E[X] =
α

α + β
, (4.2)
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σ2 = Var[X] =
αβ

(α + β)2(α + β + 1)
=

μ(1 − μ)
α + β + 1

. (4.3)

Note here that the variance is permitted to vary with its mean. Let ϕ =
α + β, then ϕ can be regarded as a dispersion parameter in the sense that,
for a given μ, the variance is determined by the size of ϕ.

The parameters α and β can be formulated in terms of the mean and
dispersion in the following way

α = μϕ, β = (1 − μ)ϕ. (4.4)

Therefore, a beta distribution can also be uniquely determined by its mean
and dispersion.

4.3.2 Beta Regression Model

The Generalized Beta Regression framework proposed here is characterized
by the following elements,

1. the LGD is assumed to be beta distributed, conditional on some co-
variates,

2. the beta distribution is parameterized by its mean and dispersion,
rather than its natural parameters (α, β). The parameters mean and
dispersion carry the economic interpretation as the quantity and qual-
ity of the LGD, respectively.

This framework generalizes the Beta Regression model proposed by Ferrari
& Cribari-Neto (2004) for modeling rates and proportions. The models
from the GBR framework are similar to a class of models derived from
Generalized Linear Models (GLM).

The Generalized Linear Models have been developed since the seminal
paper Nelder & Wedderburn (1972) as an extension to the classical linear
regression models. In a GLM, the response variable X is in the exponential
family. Its density can be represented in the form

f(x; θ, ϕ) = ea(ϕ)[xθ−b(θ)]+c(ϕ,x), (4.5)

For a comprehensive exposition of GLM we refer to McCullagh & Nelder
(1989).

We start the explanation of our GBR framework with the basic Beta
Regression model proposed in Ferrari & Cribari-Neto (2004). This basic
approach only models the mean μ and treats the dispersion parameter ϕ as
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a nuisance parameter. With some abuse of language we also call the model
for the mean, μ, a GLM (although the probability density function of the
beta distribution cannot be written in the form (4.5) and therefore it does
not fit in the framework of GLM). The model for the mean in the GBR
framework has the following two components:

• a linear predictor η
η = aζ (4.6)

where ζ is a vector of explanatory variables and a is a vector of the
corresponding regression coefficients. As convention the first element
of ζ is set to be 1, so that the first element of a is an intercept term.

• a monotonic, differentiable link function g

g(μ) = η, (4.7)

where μ = E[Λ].

Potential covariates in the linear predictor can be seniority, collateral, type
of industry and timing of business cycle. According to Schuermann (2004),
these factors drive significant differences on LGD. Meanwhile, the inverse of
the link function, g−1(·), should form a mapping from R to [0, 1], which is
exactly the range of μ. This can be achieved by a variety of link functions,
such as the logit link

μ =
eη

1 + eη
, η = log

(
μ

1 − μ

)
, (4.8)

or the probit link
μ = Φ(η), η = Φ−1(μ). (4.9)

Both the logit and probit link functions have a symmetric form about
μ = 1/2. If however it is believed that symmetric links are not justified,
asymmetric link functions like the scaled probit link and the complementary
log-log link can be used instead.

A remark is that our model can be very different from the transformed
models characterized by (4.1) as we take g(E[Λ]) to be linear to the covari-
ates, rather than E[g(Λ)].

The most parsimonious model for LGD subject to systematic risk is a
one-factor model with ζ = [1, Y ]T , where Y is the common factor that also
drives the default process. An example of such a model is given in Giese
(2005), where the mean is modeled by

μ = 1 − a0 (1 − pi(Y )a1)a2 , (4.10)
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and ϕ is considered a nuisance parameter.
Another special case is the static beta distribution model adopted by

CreditMetrics and KMV, which is a degenerated version of the Beta Re-
gression model, in which the coefficient in front of Y equals 0.

4.3.3 Extensions

The basic beta regression model above can be readily extended in various
ways. One extension is to model the mean and dispersion jointly, rather
than treating the dispersion parameter ϕ as a nuisance parameter which is
either fixed or known. This is in the same spirit as the Joint Generalized
Linear Model (JGLM) from the GLM framework, see e.g., Nelder & Lee
(1991), Lee & Nelder (1998).

The dispersion ϕ can be modeled by a separate GLM,

h(ϕ) = bζ,

where h is also a link function. A simple way to ensure ϕ > 0 is to use a
log link so that

ϕ = ebζ . (4.11)

A model of this type, but using a different version of the dispersion parame-
ter, has been suggested in Bruche & González-Aguado (2008). They employ
the following log-linear model for the two parameters α and β,

α = ecζ , β = edζ , (4.12)

where, as usual, ζ is a vector of covariates and c and d are vector coefficients.
This specification is chosen, however, only to ensure positivity of both α
and β. Besides, α and β are both shape parameters, and an economic
interpretation of such a model is very difficult. In this regard, we note that
by substituting (4.12) into (4.2) we obtain

μ =
α

α + β
=

e(c−d)ζ

1 + e(c−d)ζ
,

which is simply a logit model with vector coefficient c − d. The variance is
then given by

σ2 =
μ(1 − μ)
α + β + 1

=
μ2(1 − μ)

α + μ
,

so that the following dispersion parameter is adopted,

ϕ = α = ecζ .
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A second extension is that the mean parameter μ can be modeled by a
Generalized Linear Mixed Model (GLMM). GLMM extends GLM by adding
normally distributed random effects in the linear predictor η. The simplest
mixed model is the random intercept model

g(μ) = η = aζ + ν, (4.13)

where, in addition to the fixed effect aζ, η also has a single component of
random effect ν that follows a univariate normal distribution N(0, σ2

ν). In
our setting ν can be thought of as a latent common factor for the LGD
independent of the fixed effects and default as well.

Such a GLMM, along with the probit link (4.9), is employed to model the
mean LGD in Hillebrand (2006). Other applications of GLMM for portfolio
credit default and migration risk can be found in McNeil & Wendin (2006,
2007).

Note that the two extensions above can be readily combined to form
a new model that jointly models the mean and dispersion by means of
GLMMs, i.e., fixed and random effects can be included in the modeling of
both mean and dispersion. Further extensions are possible, e.g., replacing
the linear predictor by a Generalized Additive Model (GAM), see Hastie &
Tibshirani (1990), or adding multi-level random effects in the GLMM.

4.4 Estimation

In this section, we discuss the parameter estimation in the GBR framework
by

1. least squares,

2. maximum likelihood estimation (MLE).

The former requires only the knowledge of annual mean LGD and LGD
volatility and can be used as a first approximation to the MLE.

Suppose we have a time series of LGD data for T ∈ N years. Let Kt be
the number of defaulted obligors in year t and λt,k be the observed LGD for
defaulted obligor k, t = 1, . . . , T, k = 1, . . . , Kt. Each year, a realization of
the common factor Yt can be inferred from the default model and historical
default data. The value of Yt, t = 1, . . . , T should be considered a known
fixed effect in the LGD model.

From now on we call the three models discussed above in the GBR
framework GBR-GLM, GBR-JGLM and GBR-GLMM, respectively. The
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parameters to be estimated are: {a, ϕ} in GBR-GLM, {a, b} in GBR-JGLM
or {a, ϕ, σν} in GBR-GLMM, where a represents the vector coefficients in
the linear predictor (4.6), b the vector coefficients in the linear predictor
(4.11), ϕ is the dispersion parameter and σ2

ν is the variance of the random
effect ν in (4.13).

4.4.1 Least squares

The method of least squares we propose here only requires the knowledge
of the yearly mean LGD and LGD volatility for parameter estimation. The
estimates of the yearly mean LGD and LGD volatility for t = 1, . . . , T can be
obtained by matching the first and second moments of the LGD realizations
λt,k such that

mt =
1
Kt

Kt∑
k=1

λt,k, σ2
t =

1
Kt

Kt∑
k=1

λ2
t,k − m2

t.

Estimation of a and μ

The estimate for parameter a can be obtained by employing a linear regres-
sion of the transformed mean LGD g(mt) on Yt and the other covariates,

g(mt) = âζt + νt, (4.14)

where νt is the residual term. In the GBR-GLM and GBR-JGLM

μ̂t = g−1(âζt). (4.15)

And in the GBR-GLMM νt is taken to be the realized random effect in year
t so that

μ̂t = g−1(âζt + νt) = mt. (4.16)

Estimation of b or ϕ

The estimation of the parameters b or ϕ takes the prediction of μ̂t, produced
by (4.15) or (4.16), as an input. From (4.3), we obtain

ϕt =
μ̂t(1 − μ̂t)

σ2
t

− 1.

In both the GBR-GLM and GBR-GLMM the dispersion parameter ϕ is
treated as a nuisance parameter. Its method-of-moments estimator is simply

ϕ̂ =
1
T

T∑
t=1

ϕt.
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In the GBR-JGLM, the coefficient b can be calculated by a linear regression
of the transformed dispersion h(ϕt) on covariate vector ζ such that

h(ϕt) = b̂ζt + εt.

Estimation of σν in GBR-GLMM

The moment based estimate for σ2
ν is given by

σ̂2
ν =

1
T

T∑
t=1

ν2
t ,

where νt is the residual term in (4.14).

4.4.2 Maximum likelihood estimation

Parameter estimation by the method of maximum likelihood is also straight-
forward in the GBR framework. In the models without random effects, i.e.,
GBR-GLM and GBR-JGLM, the log-likelihood function to be maximized
reads

�(μ,ϕ) =
T∑

t=1

Kt∑
k=1

{(μtϕt − 1) log(λt,k) + [(1 − μt)ϕt − 1] log(1 − λt,k)+

+ log Γ(ϕt) − log Γ(μtϕt) − log Γ[(1 − μt)ϕt]} (4.17)

The score function, the gradient of the log-likelihood function and the Fisher
information matrix, i.e., the variance of the score, can be formulated explic-
itly in terms of polygamma functions. They are given in Appendix 4.A.
Asymptotic standard errors of the maximum likelihood estimates of the
parameters can be computed from the Fisher information matrix.

Since the corresponding estimating equations do not admit a closed form
solution, numerical maximization of the log-likelihood is necessary. Esti-
mates by the method of least squares may be used as the initial approxima-
tions to the solutions of the likelihood equations.

We remark that the maximum likelihood estimation in Ferrari & Cribari-
Neto’s Beta Regression Model is already implemented in the statistical com-
puting software R (www.r-project.org) in package ‘betareg’ so that it can
be used immediately.
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Marginal likelihood in GBR-GLMM

With the presence of random effects, the samples are no longer indepen-
dent. In the random intercept model (4.13), the LGDs in year t are only
independent conditional on the random effect νt. Since we are only inter-
ested in inference of the variance of the random component ν, but not in
its realizations, the random effect needs to be integrated out. Therefore we
maximize the marginal log-likelihood,

�m(a, ϕ, σν) =
T∑

t=1

log

(∫ Kt∏
k=1

L(a, ϕ, ζt, νt;λt,k)pσν(νt)dνt

)

where pσν(·) is the p.d.f. of a normal distribution with mean 0 and vari-
ance σ2

ν , and L( ;λt,k) is the likelihood of {LGD = λt,k} given νt. The
integral can be efficiently evaluated by Gaussian quadrature. Alternatively,
the marginal likelihood can be approximated analytically by the use of the
Laplace approximation to the integral, such as the penalized quasi-likelihood
(PQL) estimation (Breslow & Clayton 1993) and the h-likelihood (Lee &
Nelder 2001), thus avoiding numerical integration.

Finally we note that the likelihood ratio test based on large sample
inference can be employed for model selection. Information criteria such as
Akaike’s information criterion (AIC) or the Bayesian information criterion
(BIC) can also be used.

4.4.3 A simulation study

We show in this section how the models in the GBR framework can be
calibrated and how model selection can be dealt with. Our focus is not to
identify possible covariates that influence the LGD, however. Our estima-
tion is based on data from Bruche & González-Aguado (2008), which are
extracted from the Altman-NYU Salomon Center Corporate Bond Default
Master Database and give the annual default frequency, number of defaults,
mean LGD and LGD volatility for a period of 24 years (1982 - 2005). For
completeness the data are reproduced in Appendix 4.B.

Estimation results

First, we fit the Vasicek default model. We assume that, across the years,
the number of obligors is sufficiently large and all obligors in the portfolio
have the same probability of default p and asset correlation ρ. Denote by
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pt the annual default frequency. We take the MLE’s for ρ and p according
to Düllmann & Trapp (2004),

ρ =
Var

[
Φ−1(pt)

]
1 + Var [Φ−1(pt)]

, p = Φ

( ∑T
t=1 Φ−1(pt)

T
√

1 + Var [Φ−1(pt)]

)
,

where Var[δ] = 1
T

∑T
t=1 δ2

t −
(

1
T

∑T
t=1 δt

)2
. This yields

ρ = 0.0569, p = 0.0153. (4.18)

The common factor Yt for year t, assumed to be independence from year to
year, can be estimated as follows,

Yt =
Φ−1(p) −

√
1 − ρΦ−1(pt)√
ρ

. (4.19)

Before we move on to the LGD model, we run a brief preliminary graph-
ical check. In Figure 4.1(a) we show the yearly average default rate and
yearly mean LGD for the years 1982-2005, from which the correlation be-
tween PD and LGD is evident. Figure 4.1(b) presents a scatterplot of the
common factor Y estimated by eq. (4.19) versus yearly mean LGD. This
figure suggests that the common factor Y , which drives the default, may as
well be an important risk factor for LGD.

Next we make inferences about the LGD in our GBR framework with
both the least squares and MLE. The LGD models we consider include only
one covariate, which is the common factor Y in the default model. In light
of the observation from Figure 4.1(b), this may be a reasonable choice. The
mean LGD is fitted using a logit link

μ =
ea1+a2Y

1 + ea1+a2Y
(4.20)

in the GBR-GLM and GBR-JGLM and

μ =
ea1+a2Y +ν

1 + ea1+a2Y +ν

in the GBR-GLMM. In the GBR-JGLM model, the dispersion parameter is
modeled to be

ϕ = eb1+b2Y .

The estimates given by the method of least squares are presented in
Table 4.1. These estimates are used as the first approximation to the MLE.
We are already able to get a first impression of the characteristics of the
LGD:
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Figure 4.1: (a) Yearly average default rate and yearly mean LGD (1982-2005);
(b) The common factor Y estimated by eq. (4.19) versus yearly mean LGD (1982-
2005).

1. the coefficient a2 is negative, indicating a negative relation between Y
and mean LGD, just as expected,

2. the coefficient b2 is very close to zero, suggesting that Y may not be
relevant for the estimation of dispersion ϕ.

It is important to keep in mind that these least squares estimates are only
based on the annual mean LGD and LGD volatility. Consequently the above
observations are not restricted to any particular sample of simulated LGD
realizations, as opposed to estimates to be obtained from the MLE.

GBR-GLM GBR-JGLM GBR-GLMM
a1 0.3718 0.3718 0.3718
a2 -0.3054 -0.3054 -0.3054
ϕ 4.1914 - 4.0907
b1 - 1.3505 -
b2 - -0.0033 -
σν - - 0.2686

Table 4.1: Estimates given by the method of least squares for different models.
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To carry out the MLE we need a sample of LGD realizations. For each
year, a realization of the LGD is simulated for each defaulted obligor from a
beta distribution matching the empirical mean and variance. This gives in
total 1, 123 LGD observations in T = 24 years. The Maximum Likelihood
Estimates for the various parameters are given in Table 4.2. For the GBR-
GLM model, we also report in parenthesis the asymptotic standard errors of
the estimates. We find that the estimates given by MLE are very similar to
those given by least squares. The Wald test confirms that both a1 and a2 are
statistically significant (both p-values < 0.0001), which justifies our use of Y
as a risk factor for the mean LGD. The log-likelihood ratio statistics of GBR-
JGLM and GBR-GLMM to GBR-GLM are −402.74− (−403.34) = 0.6 and
−402.74−(−468.78) = 66.04, respectively. They correspond to p-values 0.44
and < 0.0001 for the chi-square distribution with one degree of freedom. It
is clear that GBR-GLMM provides a significant improvement over the basic
GBR-GLM, whereas GBR-JGLM fails to do so. AIC and BIC lead to the
same conclusion (see Table 4.2). Additional simulation tests show that the
above estimation results are very robust. We remark that this however does
not suggest that GBR-JGLM should be abandoned in general since the idea
of jointly modeling mean and dispersion may be meaningful if we include
other covariates, e.g., seniority and presence and quality of collateral.

GBR-GLM GBR-JGLM GBR-GLMM

a1 0.3459 (0.0359) 0.3471 0.3319
a2 -0.3213 (0.0298) -0.3246 -0.3307
ϕ 3.0276 (0.1149) - 3.3240
b1 - 1.0879 -
b2 - -0.0306 -
σν - - 0.2943

-2� -402.74 -403.34 -468.78
AIC -398.74 -395.34 -460.78
BIC -381.67 -375.25 -440.69

Table 4.2: Maximum Likelihood Estimates of various models.

Additionally we also fit our GBR models to a second sample of LGD
realizations, simulated from the probit model where the LGD is given by
λt,k = Φ(ct + dtεt,k). The parameters ct and dt for all t can be conveniently
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estimated by the method of moments since

E(Λt) = Φ

(
ct√

1 + d2
t

)
, E(Λ2

t ) = Φ2

(
ct√

1 + d2
t

,
ct√

1 + d2
t

,
d2

t

1 + d2
t

)
,

where Φ2(·, ·, ρ) denotes the bivariate cumulative Gaussian distribution func-
tion with correlation ρ. For a proof see Andersen & Sidenius (2004). The
MLE procedure gives the estimates a1 = 0.3562, a2 = −0.3247, ϕ = 3.0589
for the GBR-GLM model, a1 = 0.3571, a2 = −0.3275, b1 = 1.1011, b2 =
−0.0260 for GBR-JGLM and a1 = 0.3393, a2 = −0.3144, ϕ = 3.4096,
σν = 0.3261 for GBR-GLMM. These estimates are broadly in agreement
with those in Tables 4.1 and 4.2, which suggests that the parameters in the
GBR models are robust to misspecification of the LGD distribution.

Moreover, for the second sample we also look at the quasi-likelihood (see
Wedderburn 1974) of a model which assumes that the mean and variance
of the LGD are given by (4.20) and μ(1 − μ)/(1 + ϕ) respectively, but the
distribution of the LGD is unknown. The quasi-likelihood is then given by

QL =
T∑

t=1

Kt∑
k=1

[λt,k log(μt) + (1 − λt,k) log(1 − μt)] .

Maximization of QL gives a1 = 0.3799, a2 = −0.3336, ϕ = 3.0979, indicat-
ing that the assumption on the distribution of the LGD probably matters
little.

Implication for portfolio risk

It is also interesting to see how much the choice of an LGD model can
influence the VaR at the portfolio level. We consider a portfolio of 100
obligors with uniform PD p and correlation ρ as in (4.18) and exposures as
follows

wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, k = 1, . . . , 20
4, k = 21, . . . , 40
9, k = 41, . . . , 60
16, k = 61, . . . , 80
25, k = 81, . . . , 100.

We compare three models for the LGD, (i) the GBR-GLM, (ii) the GBR-
GLMM and (iii) the constant LGD model. For the GBR-GLM and GBR-
GLMM, the LGD parameters are taken from Table 4.2. In the constant
LGD model, we take for all obligors Λ = 0.58, matching the expected LGD
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EY [μ(Y )] in the GBR-GLM model, where EY (·) denotes the expectation
obtained by integrating over Y .

The portfolio loss distributions plotted in Figure 4.2(a) are based on
Monte Carlo simulation with two hundred thousand scenarios. On the one
hand the curves of GBR-GLMM and GBR-GLM are almost identical, with
GBR-GLMM producing a slightly heavier tail. This is again an indication of
the robustness of our GBR models. On the other hand the loss distribution
under the constant LGD model deviates substantially from the other two
models with random LGD.

We then look at the portfolio VaR at three particular confidence levels
99%, 99.9%, 99.99%, illustrated in Figure 4.2(b). Compared to the constant
LGD model, the GBR-GLM (GBR-GLMM) increases the VaR at the three
levels by a factor of 1.26 (1.26), 1.32 (1.36) and 1.36 (1.41), respectively.
It is apparent that ignoring the systematic risk in the LGD significantly
underestimates risk. Moreover, the further in the tail, the higher the degree
of underestimation. These results are in line with those reported in Altman
et al. (2005), Giese (2006).
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Figure 4.2: (a) The portfolio loss distributions and (b) the portfolio VaR at three
confidence levels under the three LGD models. The results are based on Monte
Carlo (MC) simulation of two hundred thousand scenarios. For GBR-GLM and
GBR-GLMM, the LGD parameters are taken from Table 4.2. In the constant LGD
model Λ = 0.58 for all obligors.
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4.5 Loss distribution approximations

The calculation of portfolio loss distribution with random LGD is mostly
based on Monte Carlo simulation in the literature. To our knowledge the
only exception is Giese (2006), where the saddlepoint approximation was
employed. An important advantage of adopting the Generalized Beta Re-
gression framework for random LGD is that it allows both the normal ap-
proximation and the saddlepoint approximation to efficiently calculate the
portfolio loss distribution, thus avoiding the need for time-consuming simu-
lation. Both approximations apply to completely heterogeneous portfolios.
For simplicity, we derive the formulas only for the basic GBR-GLM with
a single covariate Y , or equivalently, a single-factor model, where the tail
probability reads P(L ≥ x) = EY [P(L ≥ x|Y )]. Generalization to more
complex models is rather straightforward.

4.5.1 Normal approximation

First of all, in the case of a large homogeneous portfolio, the expected loss
from obligor i conditional on Y reads

E[Li(Y )] = ωiE[Di(Y )]E[Λi(Y )] = ωipi(Y )μi(Y ). (4.21)

A version of the large homogeneous approximation (LHA) similar to that
in the Vasicek model can also be obtained for random LGD:

L(Y )∑n
i=1 ωi

→
∑n

i=1 ωipi(Y )μi(Y )∑n
i=1 ωi

a.s.

When the portfolio is however not sufficiently large or not very homo-
geneous, unsystematic risk arises. The normal approximation improves on
the large homogeneous portfolio approximation by taking into account the
variability of portfolio loss L conditional on the common factor Y . The con-
ditional portfolio loss L(Y ) can be approximated by a normally distributed
random variable with mean M(Y ) and variance V 2(Y ) such that

M(Y ) =
n∑

i=1

ωipi(Y )μi(Y ),

V 2(Y ) =
n∑

i=1

E[L2
i (Y )] −

n∑
i=1

E[Li(Y )]2,
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where

E[L2
i (Y )] = ω2

i E[Di(Y )]E[Λ2
i (Y )] = ω2

i pi(Y )E[Λ2
i (Y )]

= ω2
i pi(Y )[μ2

i (Y ) + Var(Λ|Y )]

= ω2
i pi(Y )[μ2

i (Y ) + μi(Y )(1 − μi(Y ))/(1 + ϕi)].

The conditional tail probability is P(L ≥ x|Y ) = Φ
(

M(Y )−x
V (Y )

)
and it

follows that the unconditional tail probability reads

P(L ≥ x) = EY

[
Φ
(

M(Y ) − x

V (Y )

)]
. (4.22)

4.5.2 Saddlepoint approximation

The only paper that applies the saddlepoint approximations to the calcula-
tion of portfolio credit risk in the presence of random LGD is Giese (2006).
However, in his results the portfolio loss distributions obtained from the
saddlepoint approximation deviate significantly from those given by Monte
Carlo simulation for the majority of loss ranges (see Figures 4 and 5 therein).
Following Martin et al. (2001a,b), Giese (2006) applied the saddlepoint ap-
proximation to the unconditional MGF of portfolio loss L.

In Chapter 2 we have shown that the saddlepoint approximation method,
applied to the conditional MGF of L given the common factor Y , is an
efficient tool to estimate the portfolio credit loss distribution in the Vasicek
model. Here we extend Chapter 2 to models with random LGD and show by
numerical examples that the saddlepoint approximation is able to produce
accurate tail probability approximations to all loss levels and handles well
heterogeneous portfolios with exposure concentration.

The use of the saddlepoint approximation only requires the existence of
the moment generating function (MGF), which makes the beta distribution
assumption for LGD in our framework very attractive. Recall that the MGF
of a beta distributed random variable with parameters (α, β) is a confluent
hypergeometric function as follows,

M(t) =1F1(α,α + β; t).

By basic differentiation, we obtain the following first and second derivatives
of the MGF

M′(t) =1F1(α + 1, α + β + 1; t)
α

α + β
,

M′′(t) =1F1(α + 2, α + β + 2; t)
α(α + 1)

(α + β)(α + β + 1)
.
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In our setting, the obligors are independent conditional on the common
factor Y . For obligor i, (αi, βi) conditional on Y can be determined by
(4.4). The conditional MGF and the cumulant generating function (CGF),
denoted by K, of the portfolio loss are then given by

M(t, Y ) =
n∏

i=1

[1 − pi + pi 1F1(αi, αi + βi;ωit)] ,

K(t, Y ) = log(M(t, Y )) =
n∑

i=1

log [1 − pi + pi 1F1(αi, αi + βi;ωit)] .

For simplicity of notation, we have suppressed the explicit dependence of pi

and (αi, βi) on the common factor Y .
The derivatives of the conditional CGF up to second order are

K′(t, Y ) =
n∑

i=1

ωipi 1F1(αi + 1, αi + βi + 1;ωit)
1 − pi + pi 1F1(αi, αi + βi;ωit)

αi

αi + βi
,

K′′(t, Y ) =
n∑

i=1

{
ω2

i piαi(αi + 1) 1F1(αi + 2, αi + βi + 2;ωit)
(αi + βi)(αi + βi + 1)[1 − pi + pi 1F1(αi, αi + βi;ωit)]

− ω2
i p

2
i α

2
i 1F1(αi + 1, αi + βi + 1;ωit)2

(αi + βi)2[1 − pi + pi 1F1(αi, αi + βi;ωit)]2

}
.

After finding the saddlepoint T that solves K′(T, Y ) = x for the loss level x,
the tail probability conditional on Y can be approximated by the Lugannani-
Rice formula (1.23).

Integrating over Y gives the unconditional tail probability P(L ≥ x),
from which the portfolio Value at Risk (VaR) can be derived. Formulas
for the calculation of other risk measures like VaR contribution, Expected
Shortfall (ES) and ES contribution can be found in Chapter 2.

4.5.3 Numerical results

We now illustrate the performance of the normal and saddlepoint approxi-
mations in loss distribution calculation. We first take a homogeneous port-
folio with n = 100 obligors, each with

w = 1, p = 0.005, ρ = 0.18,

The parameters in the LGD are

a = [0.37,−0.32], ϕ = 3.16,
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with a logit link for mean LGD. This leads to the following specification of
the (conditional) mean LGD

μ =
1

1 + e−0.37+0.32Y
.

We compare the loss distributions obtained from various approximation
methods to the results from a Monte Carlo (MC) simulation. Our bench-
mark is the sample mean and the accompanying 95% confidence intervals
obtained by 10 subsamples of Monte Carlo simulation with 20 thousand
replications each. The performance of the approximations is demonstrated
in Figure 4.3(a)-(b).

The large homogeneous approximation (LHA) results deviate consider-
ably from our benchmark. This is not surprising as the size of the portfolio
is rather small. The normal approximation (NA) provides a significant im-
provement over the LHA and underestimates risk only slightly. Some of
its tail probability estimates however fall out of the 95% confidence inter-
val. By comparison, the saddlepoint approximation (SA) is able to give all
tail probability estimates within the 95% confidence interval. The loss dis-
tribution given by the saddlepoint approximation is indistinguishable from
the benchmark. A remark is that the calculation of the loss distribution
in MATLAB costs roughly 4 seconds for the normal approximation and 4
minutes for the saddlepoint approximation on a Pentium 4 2.8 GHz desktop.

Finally we calculate the VaR for the portfolio considered in §4.4.3 with
LGD modeled by the GBR-GLM. The results are given in Table 4.3. The
MC results are based on two hundred thousand simulated scenarios and can
be regarded as our benchmark. In this example the saddlepoint approxima-
tion is again very accurate. The normal approximation is however rather
unsatisfactory: at all three levels relative errors are around 8%. This is cer-
tainly due to the existence of exposure concentration as the variation in the
exposures is not negligible. More details on how robust the normal approx-
imation and saddlepoint approximation are in terms of handling exposure
concentration have been discussed in Chapter 3.

4.6 Conclusions

In this chapter we have proposed the Generalized Beta Regression frame-
work for modeling systematic risk in loss given default (LGD) in the context
of credit portfolio losses. The GBR framework provides great flexibility in
random LGD modeling and accommodates well skewness and heteroscedas-
tic errors. The quantities in the GBR models have simple economic inter-
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Figure 4.3: The loss distribution obtained from (a) the large homogeneous ap-
proximation (LHA), the normal approximation (NA) and (b) the saddlepoint ap-
proximation (SA) compared to results based on Monte Carlo (MC) simulation of
two hundred thousand scenarios. The MC 95% confidence interval (CI) are based
on the standard deviation calculated using 10 simulated sub-samples of 20 thousand
scenarios each.

pretation. We have shown that parameter estimation and model selection
are straightforward in this framework. Moreover, it has been demonstrated
that the portfolio loss distribution can be efficiently evaluated by both the
normal approximation and the saddlepoint approximation.

4.A Score function and Fisher information matrix

In this appendix we give details about the score function and the Fisher
information matrix for the parameters appearing in the GBR-GLM and
GBR-JGLM models. The score function may help to accelerate the con-
vergence in the MLE procedure and the Fisher information matrix leads to
the asymptotic standard errors of the maximum likelihood estimates of the
parameters in the models. In the GBR-GLMM the corresponding formulas
get more complicated and lengthy and therefore they are omitted here. We
refer the interested reader to Pan & Thompson (2007) for an example.

The score function, i.e., the partial derivative of the log-likelihood func-
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VaR99% VaR99.9% VaR99.99%

MC 63 98 133
NA 58 90 123
SA 63 97 133

Table 4.3: Approximations to the portfolio VaR at three confidence levels. The
LGD model adopted here is GBR-GLM. The MC results are based on two hundred
thousand simulated scenarios and can be regarded as our benchmark.

tion with respect to parameters (μ,ϕ), reads

∂�

∂μ
= ϕ

{
log
(

λ

1 − λ

)
− Ψ(μϕ) + Ψ [(1 − μ)ϕ]

}
, (4.23)

∂�

∂ϕ
= μ log λ + (1 − μ) log(1 − λ) + Ψ(ϕ) − μΨ(μϕ) − (1 − μ)Ψ [(1 − μ)ϕ],

(4.24)

where λ is a realization of the LGD and Ψ(·) is the digamma function.
The second order partial derivatives of the log-likelihood function with

respect to parameters (μ,ϕ) are

∂2�

∂μ2
= −ϕ2{Ψ ′(μϕ) + Ψ ′[(1 − μ)ϕ]}, (4.25)

∂2�

∂ϕ2
= Ψ ′(ϕ) − μ2Ψ ′(μϕ) − (1 − μ)2Ψ ′[(1 − μ)ϕ], (4.26)

∂2�

∂μ∂ϕ
=

1
ϕ

∂�

∂μ
− ϕ{μΨ ′(μϕ) − (1 − μ)Ψ ′[(1 − μ)ϕ]}. (4.27)

where Ψ ′(·) is the trigamma function.
In the GBR-GLM, the parameters to be estimated are a and ϕ. The

score function for ϕ is given by (4.24); the score function with respect to ai,
the i-th element of a, is given by

∂�

∂ai
=

∂�

∂μ

∂μ

∂ai
= ϕ

{
log
(

λ

1 − λ

)
− Ψ(μϕ) + Ψ [(1 − μ)ϕ]

}
ζi

g′(μ)
. (4.28)

The Fisher information matrix is the negative of the expectation of the
second derivative of the log-likelihood with respect to the parameters. The
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entries in the Fisher information matrix are

−E

(
∂2�

∂ϕ2

)
= − ∂2�

∂ϕ2
, (4.29)

−E

(
∂2�

∂ai∂aj

)
= − ∂2�

∂μ2

ζiζj

(g′(μ))2
, (4.30)

−E

(
∂2�

∂ai∂ϕ

)
= ϕ{μΨ ′(μϕ) − (1 − μ)Ψ ′[(1 − μ)ϕ]} ζi

g′(μ)
. (4.31)

In the GBR-JGLM, the parameters to be estimated are a and b. The score
function for the coefficient a is given by (4.28) and that for bi, the i-th
element of b, is as follows

∂�

∂bi
=

∂�

∂ϕ

∂ϕ

∂bi
= {μ log λ + (1 − μ) log(1 − λ)+

+Ψ(ϕ) − μΨ(μϕ) − (1 − μ)Ψ [(1 − μ)ϕ]} ζi

h′(ϕ)
. (4.32)

The Fisher information matrix contains −E
(

∂2�
∂ai∂aj

)
given by (4.30) and

−E

(
∂2�

∂bi∂bj

)
= − ∂2�

∂ϕ2

ζiζj

(h′(ϕ))2
, (4.33)

−E

(
∂2�

∂ai∂bj

)
= ϕ{μΨ ′(μϕ) − (1 − μ)Ψ ′[(1 − μ)ϕ]} ζiζj

g′(μ)h′(ϕ)
. (4.34)

4.B LGD Statistics by Year

In this section we present a table of the LGD statistics by year, from 1982
until 2005. This table is taken from Bruche & González-Aguado (2008),
where mean recovery rate (RR) is reported instead of LGD. The column of
mean LGD here is calculated to be 1 minus RR, i.e., LGD=1-RR.
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Year PD # of defaults mean LGD LGD volatility

1982 1.18% 12 60.49% 14.9%
1983 0.75% 5 51.07% 23.53%
1984 0.9% 11 51.19% 17.38%
1985 1.1% 16 54.59% 21.87%
1986 1.71% 24 63.91% 18.82%
1987 0.94% 20 46.64% 26.94%
1988 1.42% 30 63.43% 17.97%
1989 1.67% 41 56.54% 28.78%
1990 2.71% 76 74.76% 22.28%
1991 3.26% 95 59.95% 26.09%
1992 1.37% 35 45.55% 23.38%
1993 0.55% 21 62.46% 20.11%
1994 0.61% 14 54.46% 20.46%
1995 1.01% 25 57.1% 25.25%
1996 0.49% 19 58.1% 24.68%
1997 0.62% 25 46.54% 25.53%
1998 1.31% 34 58.9% 24.56%
1999 2.15% 102 71.01% 20.4%
2000 2.36% 120 72.49% 23.36%
2001 3.78% 157 76.66% 17.87%
2002 3.6% 112 69.97% 17.18%
2003 1.92% 57 62.67% 23.98%
2004 0.73% 39 52.19% 24.1%
2005 0.55% 33 41.37% 23.46%



Chapter 5

Adaptive Integration for
Multi-factor Portfolio Credit
Loss Models

5.1 Introduction

In this chapter we switch from the one-factor portfolio loss model to multi-
factor models. Consider the computation of the tail probability of credit
portfolio loss L in the two-level factor model in the form of (1.15). In
such latent factor models the obligors are independent conditional on some
d factors, denoted by Y. We are interested in the estimation of the tail
probability

P(L > x) =
∫

P (L > x |Y = y) dFY(y), (5.1)

especially for extreme losses x. We shall focus on the Gaussian factor model
where Y follows a d-dimensional joint normal distribution, although more
general distributions can be handled as well in the present context.

The integrand P (L > x |Y) can be approximated by a variety of meth-
ods (see Chapter 3) since conditional on Y, the portfolio loss L reduces to
a sum of independent random variables. In a one-factor model (d = 1), the
calculation of the integral can be handled efficiently by adaptive or non-
adaptive Gaussian quadratures. The computation of the tail probability
P(L > x) in a multi-factor model is much more involved. The product
quadrature rule becomes impractical because the number of function evalu-
ations grows exponentially with d and the so-called curse of dimensionality
arises.

79
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In this chapter we deal with the high-dimensionality and show that glob-
ally adaptive algorithms are very well suited for the calculation of the tail
probability. A high-dimensional globally adaptive integration algorithm suc-
cessively divides the integration region into subregions, detects the subre-
gions where the integrand is most irregular, and places more points in those
subregions. We first recall the Genz-Malik (Genz & Malik 1980) rule, a
deterministic multiple integration rule, and adapt it so that it takes advan-
tage of the specific properties of the integral of interest and is suitable for
portfolio credit models with a number of factors less than, approximately,
8. Later on we arrive at the adaptive Monte Carlo integration, which es-
sentially replaces the deterministic integration rule by antithetic random
numbers. Being a globally adaptive algorithm, our approach is distinct
from the well-known recursive Monte Carlo algorithm MISER (see Press &
Farrar 1990), although both methods use stratified sampling.

The rest of the chapter is organized as follows. We give in §5.2 an
introduction into a multi-factor portfolio credit loss model and point out
the important monotonicity property of the conditional tail probability as
a function of the common factors. In §5.3 we briefly review the globally
adaptive integration algorithm and present a tailor-made Genz-Malik rule
for the computation of tail probability in the context of portfolio credit
loss, followed by some numerical results. We then discuss the adaptive
Monte Carlo integration, and, in particular, the adaptivity criterion and
the probabilistic error bounds in this context, in §5.4. §5.5 concludes.

5.2 Multi-factor portfolio credit loss model

We are interested in the estimation of tail probability (5.1), especially for
extreme losses. Our starting point is the widely used Gaussian factor model
in the form of (1.15). A decomposition of the standardized log asset value
Xi is carried out as follows,

Xi = ai1Y1 + · · · + aidYd + biεi, (5.2)

where Y = (Y1 . . . Yd) can be seen as systematic factors that affect more
than one obligor and εi is an idiosyncratic part that only affects an obligor
itself. Y1, . . . , Yd and εi are all independent univariate standard Gaussian
random variables and a2

i1+ · · ·+a2
id+b2

i = 1 so that the Xi are also standard
normally distributed.

We further make the following assumption.
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Assumption 5.1. The coefficients aik and bi in (5.2) are nonnegative for
all i, k.

A dedicated algorithm to ensure that this assumption is satisfied is pro-
posed in the next chapter.

Write ai = (ai1, . . . , aid). For an obligor i with default probability pi

and default threshold ci = Φ−1(pi), its probability of default conditional on
the common factor Y is given by

pi (Y) = P (Di = 1|Y) = P (Xi < ci|Y) = Φ
(

Φ−1(pi) − ai · Y
bi

)
. (5.3)

Eq. (5.3) shows that the individual conditional default probability is non-
increasing in Y. An important consequence is that the conditional tail prob-
ability of portfolio loss P (L > x |Y) is also non-decreasing in Y. Without
loss of generality, we prove the following proposition in the case of constant
LGD.

Proposition 5.2. The function

f(y1, y2, ..., ym) = P(L > x|Y1 = y1, Y2 = y2, ...., Ym = ym),

is non-increasing in all its variables yk.

Proof. Let us write

L =
n∑

i=1

ωi1{Xi<ci} =
n∑

i=1

ωi1{ai1y1+···+aidyd+biεi<ci}.

The conditional tail probability can be reformulated to be

P(L > x|Y1 = y1, . . . , Yd = yd) = P

(
n∑

i=1

ωi1{ai1y1+···+aidyd+biεi<ci} > x

)
.

The indicator function

1{ai1y1+···+aidyd+biεi<ci} = 1{εi<
1
bi

(ci−ai1y1−···−aidyd)}

is non-increasing in yk for all k when aik and bi are nonnegative for all i. It
follows that

n∑
i=1

ωi1{ai1y1+···+aidyd+biεi<ci}

is also non-increasing in yk for all k. This immediately leads to the assertion.
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In addition it is not difficult to derive that P(L > x| −∞, . . . ,−∞) = 1
and P(L > x| + ∞, . . . ,+∞) = 0.

The rest of this chapter hinges strongly on the validity of Prop. 5.2.
Note that Prop. 5.2 is quite a general result. Its proof is not contingent
on the assumption that Y1, . . . Yd are independent. The distributions of Y
and εi, i = 1, . . . , n are not relevant either. The monotonicity holds more
generally for models in which

1. Y and εi, i = 1 . . . n are independent, and

2. the factor loadings, aik, i = 1, · · · , n, k = 1, · · · , d are all nonnegative.

Therefore there is absolutely no problem to apply our adaptive integration
methods if the Gaussian model is replaced by Lévy models that are able to
produce more heavy-tailed loss distributions and provide a better fit to the
present day financial market data.

Proposition 5.3. P(L ≥ x|Y1, Y2, . . . , Yd) is continuous and differentiable
with respect to Yk, k = 1, · · · , d.

Proof. Denote by θ = (θ1, . . . , θn) = {0, 1}n a realization of (D1, . . . ,Dn)
and write ω = (ω1, . . . , ωn). The conditional tail probability is given by

P(L > x|Y) =
∑

θ:ω·θ>x

P (Di = θi, i = 1, . . . , n|Y) .

As Di and Dj are independent conditional on Y, we get

P (Di = θi, i = 1, . . . , n|Y) =
n∏

i=1

[pi (Y)]θi [1 − pi (Y)]1−θi .

Since pi (Y1, Y2, . . . , Yd) is continuous and differentiable in Yk for all k, so is
the tail probability P(L > x|Y1, Y2, . . . , Yd).

Remark 5.4. More generally, Prop 5.2 also holds if LGD is stochastically de-
creasing in all Yk, k = 1, · · · , d and Prop 5.3 also holds if LGD is continuous
and differentiable with respect to Yk, k = 1, · · · , d.

5.3 Globally adaptive algorithms for numerical in-
tegration

5.3.1 Globally adaptive algorithms

Consider now a general integral over a d-dimensional rectangular region Cd

I(f) =
∫

· · ·
∫
Cd

f(x)g(x)dx1dx2 · · · dxd, (5.4)
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where x = (x1, x2, . . . , xd) and g(·) is a weight function.
Monte Carlo (MC) simulation and quasi-Monte Carlo (QMC) methods

are the prevailing methods to solve the multi-dimensional problems appear-
ing in finance. Both methods do not suffer from the dimensionality issue.
Recall that integration with both MC and QMC methods requires a trans-
formation of integration region into the unit hypercube [0, 1]d. Pseudo-
random numbers or quasi-random sequences are then generated uniformly
in the [0, 1]d hypercube. QMC methods use deterministic sequences that
have better uniform properties measured by discrepancy. Both methods
become inefficient if most of the points fall outside the regions which are
significant for the evaluation of the integral. In this case the better uniform
properties of QMC sequences over MC can be meaningless.

We remark that importance sampling (IS) provides effective variance
reduction to plain MC methods in the case of rare event simulation. How-
ever, as shown in Glasserman et al. (2008), IS in multi-factor credit models
requires the use of a mixture of IS distributions and its implementation is
highly non-trivial. Therefore we do not include this method in our compar-
ison.

An adaptive integration algorithm differs fundamentally from Monte
Carlo and quasi-Monte Carlo methods in that it successively divides the in-
tegration region into subregions, detects the subregions where the integrand
is most irregular, and places more points in those subregions.

We will restrict ourselves to the globally adaptive algorithms for
multi-dimensional integration, which typically have a structure that con-
sists of the following steps:

1. Choose the subregion with largest estimated error from a collection of
subregions.

2. Subdivide the chosen subregion.

3. Apply an integration rule to the resulting new subregions; update the
collection of subregions.

4. Update the global integral and error estimate; check whether a pre-
defined termination criterion is met; if not, go back to step 1 .

The important ingredients of an adaptive algorithm are

1. an integration rule for estimating the integral in each subregion.

2. an error estimator for each subregion.
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3. a subdivision rule for dividing the chosen region(s) into subregions.

4. a stop rule to check whether the termination criteria are met.

5.3.2 The Genz-Malik rule

The Genz-Malik (Genz & Malik 1980) rule represents an integration rule in
the square [−1, 1]d that can be readily generalized to any rectangular region
by an affine transformation. It is a fully symmetric degree 7 rule that is
given as follows

I7(f) =u1f(0, 0, . . . , 0) + u2

∑
FS

f(λ2, 0, 0, . . . , 0) + u3

∑
FS

f(λ3, 0, 0, . . . , 0)+

+ u4

∑
FS

f(λ4, λ4, 0, 0, . . . , 0) + u5

∑
FS

f(λ5, λ5, . . . , λ5), (5.5)

where
∑

FS denotes a fully symmetric summation over all permutations of
coordinates including sign changes and

λ2 =
3√
70

, λ3 = λ4 =
3√
10

, λ5 =
3√
19

,

u1 = 2d(12824 − 9120d + 400d2)/19683, u2 = 2d(980/6561),

u3 = 2d(1820 − 400d)/19683, u4 = 2d(200/19683), u5 = 6859/19683.

All integration nodes are inside the integration domain. The degree 7 inte-
gration rule requires 2d + 2d2 + 2d + 1 integrand evaluations for a function
of d variables and is thus known to be most advantageous for problems with
d ≤ 8 (see Genz 1984). We remark that, by contrast, a Gauss-Legendre
quadrature rule of degree 7 would require 4d integration evaluations, which
is significantly larger for d ≥ 3.

The Genz-Malik rule distinguishes itself from other multiple integration
rules in that it has an embedded degree 5 rule for error estimation. The
degree 5 rule uses a subset of points of the degree 7 rule, which means that
no additional integrand evaluations are necessary. This is highly desirable
for multi-dimensional problems. The embedded degree 5 rule is given by

I5(f) =u′
1f(0, 0, . . . , 0) + u′

2

∑
FS

f(λ2, 0, 0, . . . , 0) + u′
3

∑
FS

f(λ3, 0, 0, . . . , 0)+

+ u′
4

∑
FS

f(λ4, λ4, 0, 0, . . . , 0),



5.3 Globally adaptive algorithms for numerical integration 85

with u′
1 = 2d(729 − 950d + 50d2)/729, u′

2 = 2d(245/486), u′
3 = 2d(265 −

100d)/1458, u′
4 = 2d(25/729). The error approximation for each subregion

is simply the difference of these two rules, i.e.,

ε = I7 − I5. (5.6)

Starting from the whole integration region, in every step the (sub)region
with the largest error estimate in absolute value will be chosen for sub-
division. To avoid an exponential explosion in the number of subregions,
the chosen region is not divided into 2d subregions but only into two. The
subdivision rule used to determine along which direction to divide is due
to van Dooren & de Ridder (1976). In particular, the direction that has
the largest fourth divided difference is halved. Five points are used in the
direction i = 1, . . . , d,

xi = −λ3,−λ2, 0, λ2, λ3, and xj = 0 for j = i

and the fourth divided differences are given by

Difi = [f(−λ3) − 2f(0) + f(λ3)] −
λ2

2

λ2
3

[f(−λ2) − 2f(0) + f(λ2)]. (5.7)

Note that no additional integrand evaluations are required here.
It follows that after K − 1 subdivisions, the integration region Cd is di-

vided into K non-overlapping rectangular subregions. For any subregion k,
the Genz-Malik rule gives a local integral estimate I

(k)
7 , a local error esti-

mate ε(k) and a direction s(k) that has the largest fourth divided difference
given by (5.7), which is then chosen for the next subdivision. Aggregating
the local information over Cd we obtain a global integral estimate to I(f)
as follows,

I7(f) =
K∑

k=1

I
(k)
7 (f), (5.8)

where I
(k)
7 (f) is calculated by (5.5) with a suitable affine transformation.

Meanwhile the K local error estimates sum to a global error estimate i.e.,
ε =

∑K
k=1 ε(k). Typically the error estimate is used to check whether the

termination criteria are met.
A remark is that when a region is subdivided, integrand values previously

evaluated in this region are discarded and the integration rule is applied in
both new subregions. Roughly this means that in the long run only half
of the integrand evaluations is used for the calculation of the integral, the
other half is abandoned in the process of subdivision.
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5.3.3 A tailor-made adaptive Genz-Malik rule

We restate our problem as calculating

I(f) =
∫

· · ·
∫
Cd

f(Y)φ(Y)dY1 · · · dYd, (5.9)

where f(Y) = P(L > x|Y) is monotonic along all dimensions and bounded
in [0, 1] and φ(Y) is the probability density function of d-dimensional normal
distribution with zero mean and identity covariance matrix.

A significant problem with the Genz-Malik rule is that the weights ui can
be negative. Consequently even though our integrand is always positive in
some subregions a straightforward Genz-Malik rule may give negative results
for the integral. This however can be rather easily dealt with in our context.
Recall from Prop. 5.2 that f(Y) should be bounded in any rectangular
(sub)region [a1, b1] × [a2, b2] . . . × [ad, bd], more specifically, f(b) ≤ f(Y) ≤
f(a), where a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd). As a result we
have for I(k)(f) both an upper bound and a lower bound, i.e.,

f(b(k))
d∏

i=1

(
Φ(b(k)

i ) − Φ(a(k)
i )
)
≤ I(k)(f) ≤ f(a(k))

d∏
i=1

(
Φ(b(k)

i ) − Φ(a(k)
i )
)

.

(5.10)
Denote by U (k), L(k) the upper bound and lower bound respectively for sub-
region k. Positivity of the integrand can then be preserved by the following
correction,

I
(k)
7 (f) = I

(k)
7 (f)1{L(k)≤I

(k)
7 (f)≤U(k)} +L(k)1{I(k)

7 (f)<L(k)} +U (k)1{I(k)
7 (f)>U(k)}.

(5.11)
The last term in Eq. (5.11) corrects in addition, to some extent, possible
overshooting of the integration rule. More importantly, the local bounds
over all subregions can be aggregated to a global upper bound and a global
lower bound for the whole integration region Cd. It follows that the estimate
to the integral should asymptotically converge to I(f) if we continue the
subdivision until the global upper and lower bounds coincide.

It is also important to recognize that the integral can be calculated
exactly for subregions where the integrand is constantly 0 or 1. These
subregions can be identified by simply evaluating the integrand at the end
points a(k) and b(k). By bounded monotonicity we have

I(k)(f) =

{
0 if f(a(k)) = 0,∏d

i=1

(
Φ(b(k)

i ) − Φ(a(k)
i )
)

if f(b(k)) = 1.
(5.12)
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In these subregions we should set ε(k) = 0 .
We are now in a position to present our adaptive integration algorithm

based on a tailor-made Genz-Malik rule. It is presented as Algorithm 5.1.
For clarity in notation we use superscript l for local estimates in any sub-
region. s denotes the subdivision direction of a subregion.

Algorithm 5.1 adaptive integration based on the Genz-Malik rule
Apply the GM rule over the integration region,
return I l

7, εl and subdivision direction s, impose (5.11)
while termination criteria not met do

Choose the (sub)region with largest εl and divide along direction s.
Compute f(a) and f(b) for the resulting two subregions.
if f(a) = 0 or f(b) = 1 then

Apply (5.12), let εl = 0.
else

Apply the GM rule to both subregions, return I l
7, εl and s, impose

(5.11).
end if
Update I7, ε and the subregion collection.

end while

Remark 5.5. The above algorithm 5.1 can be easily generalized to accom-
modate non-Gaussian factor models. In the case of orthogonal common
factors, it is only necessary to replace φ and Φ by the joint p.d.f. and c.d.f.
of the common factors.

The error estimate ε deserves further investigation. According to Lyness
& Kaganove (1976), Berntsen (1989), error estimates based on differences
of two rules can be unreliable. Various ways of improving the reliability
of error estimates can be found in Berntsen (1989), Berntsen et al. (1991),
among which a simple approach is to use more than two integration rules for
error estimation. Following this we take a parsimonious change by including
the degree 1 midpoint rule for the square [−1, 1]d,

I1 = f(0, 0, . . . , 0),

which is also embedded in the degree 7 rule, as a second check on error.
Thus the error estimate is defined to be

ε = (I7 − I5)1{|I7−I5|≥|I7−I1|} + (I7 − I1)1{|I7−I5|<|I7−I1|}. (5.13)
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The new error estimate is more reliable but also conservative. A stop rule
based on such absolute or relative errors can consequently be ineffective. It
may well happen that while the integration rule is giving accurate results,
the error estimate remains above a given precision level and the subdivision
carries on more than necessary, see e.g. Genz & Kass (1997). Therefore we
adopt a simple termination criterion that does not rely on ε: we prescribe a
maximum number of integrand evaluations or similarly, a maximum number
of subdivisions.

5.3.4 Numerical results

Here we first illustrate by a two-factor model example how the adaptive
integration algorithm works. For some arbitrary portfolio and suitable loss
level x, Figure 5.1(a) gives the conditional tail probability P(L > x|Y1, Y2)
for (Y1, Y2) truncated to the square [−5, 5]2. The integrand turns out to
contribute nothing to the integral value in almost 7/8 of the area, which
suggests that an adaptive algorithm should be favored. Figure 5.1(b) shows
a scatterplot of the subregion centers generated by the adaptive algorithm.
It is clearly seen that the adaptive algorithm does focus its integrand eval-
uation in those subregions in which the integrand values vary rapidly.
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Figure 5.1: Adaptive integration for a two-factor model. (a) integrand P(L >
x|Y1, Y2); (b) centers of the subregions generated by adaptive integration.

Let us consider a credit portfolio of 1000 obligors with ωi = 1, pi =
0.0033, i = 1, . . . , 1000. We move to a five-factor model such that the
obligors are grouped into 5 buckets of 200 obligors. Within each bucket, the
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obligors have identical factor loadings

ai =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1√
6
, 1√

6
, 1√

6
, 1√

6
, 1√

6

)
, i = 1, . . . , 200,(

1√
5
, 1√

5
, 1√

5
, 1√

5
, 0
)

, i = 201, . . . , 400,(
1√
4
, 1√

4
, 1√

4
, 0, 0

)
, i = 401, . . . , 600,(

1√
3
, 1√

3
, 0, 0, 0

)
, i = 601, . . . , 800,(

1√
2
, 0, 0, 0, 0

)
, i = 800, . . . , 1000.

We compute the tail probabilities over a wide range of 20 loss levels from
75 to 550, with an increment of 25. These losses correspond to quantiles
of the portfolio loss distribution roughly from 99% to 99.99%. As a bench-
mark we use simulation with a tremendous amount of scenarios. Integrand
evaluation is accomplished by the normal approximation (see §3.2.1) and
is considered to be exact. We compare the results obtained by the adap-
tive Genz-Malik rule (ADGM), the MC and QMC methods with a similar
number of integrand evaluations, denoted by N . For the QMC method we
choose the SOBOL sequence. The sequence is generated by the GSL library,
which is based on Antonov & Saleev (1979).

We control the number of integrand evaluations rather than computation
time in the course of subdivision because the latter can vary substantially for
different portfolios, different methods for integrand evaluation and different
data structures of the subregion collection. The approximation error is
measured by the absolute relative error (RE) defined as |Î(f)− I(f)|/I(f),
where I(f) is the result given by the benchmark and Î(f) denotes any
estimate to I(f). The absolute relative errors reported for the Monte Carlo
method are averaged over 100 different runs. Alongside the mean absolute
relative error we also report 1.96 times the normalized standard deviation
of MC, which gives roughly the absolute value of both end points of the
95% confidence interval.

We first show in Figure 5.2(a) the average performance of each method
over all 20 loss levels with different numbers of integrand evaluations N
ranging from 50, 000 to 220. Note that for the adaptive integration, these
correspond roughly to K, the number of subregions, from 250 to 5, 000 be-
cause the Genz-Malik rule samples in five dimensions around 100 points in
each subregion. Apparently the adaptive integration consistently outper-
forms both Monte Carlo and the quasi-Monte Carlo methods for all levels
of N .

With around N = 106 evaluations, it seems that all three methods pro-
duce satisfactory results. Relative errors are, respectively, 0.9% (ADGM),
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Figure 5.2: (a) Estimation of relative errors with the adaptive Genz-Malik rule
(ADGM), Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods over 20
loss levels. The number of total integrand evaluations N ranges from 50, 000 to
220. (b) Estimation of relative errors with the adaptive Genz-Malik rule (ADGM),
Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods with around N = 106

evaluations for various loss levels.

3.0% (QMC) and 3.1% (MC). Figure 5.2(b) further compares the perfor-
mance of the different methods with around 106 evaluations for various loss
levels. Monte Carlo and quasi-Monte Carlo methods are quite accurate for
low loss levels but deteriorate notably as the loss level increases. An upward
trend in the relative error is conspicuous for both methods. In particular,
for the loss level x = 550, Monte Carlo has an error of 8.8% and quasi-
Monte Carlo gives 12.8%. By contrast, the relative error of the adaptive
integration for the same loss level is merely 0.5%. Even though at some low
loss levels adaptive integration is not superior to the other two methods, it
dominates its two opponents for loss levels larger than 300.

A close-up look at the three methods for different loss levels is presented
in Figure 5.3. We show results for four loss levels, x = 75, 300, 400, 550,
which correspond roughly to quantiles 99%, 99.9%, 99.95% and 99.99%,
respectively. The adaptive integration is remarkably distinct from Monte
Carlo and quasi-Monte Carlo methods in that it is not sensitive to the
portfolio loss level of interest. As a consequence, the adaptive integration
becomes more and more advantageous compared to Monte Carlo and quasi-
Monte Carlo methods for increasing loss levels. This is especially attractive
for the purpose of determining the portfolio VaR, which always involves
large loss levels.
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(c) x = 400
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Figure 5.3: Relative estimation error of P(L > x) by all methods for four different
loss levels x. PD= 0.0033, ρ = 0.2, d = 5.

5.4 Adaptive Monte Carlo integration

Adaptive integration based on the Genz-Malik rule thus provides an effi-
cient tool for calculating credit portfolio loss distribution in a multi-factor
framework. It is particularly advantageous in the tail of the loss distri-
bution. However the adaptive Genz-Malik rule suffers from two problems.
First, the integration rule is only able to handle models with relatively low
dimension, say d ≤ 8. This is due to the fact that the number of integrand
evaluations is fully determined by d and grows exponentially. Second, no
practical error bounds are available for the estimates.

A natural alternative that does not suffer from the above two problems is
Monte Carlo integration. A Monte Carlo integration embedded in a globally
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adaptive algorithm is able to provide an unbiased estimate of the integral
and also probabilistic error bounds for the estimate. In the mean-time it
has higher accuracy and faster convergence than the plain Monte Carlo in-
tegration. The idea of adaptive Monte Carlo integration is not new. Two
well-known algorithms can be found in Press & Farrar (1990) and Lepage
(1978, 1980). Our approach resembles that of Press & Farrar (1990) in the
sense that both methods use stratified sampling. However the two algo-
rithms are distinct in terms of error estimation, subdivision rule, stop rule,
etc. From a more general perspective, the method in Press & Farrar (1990)
is not a globally adaptive algorithm.

Our adaptive Monte Carlo integration replaces the degree 7 Genz-Malik
rule with uniform random numbers as the integration rule. Let us go back
to Eq. (5.9) and write ξ = f · φ. The tail probability as in Eq. (5.8) can
then be approximated by

Î(ξ) =
K∑

k=1

Î(k)(ξ) =
K∑

k=1

v(k)
M∑

j=1

ξ
(k)
j

M
, (5.14)

where K is the number of subregions, M is a fixed constant that gives the
number of points in each subregion and v(k) denotes the volume of subregion
k. This estimate Î(ξ) is unbiased since it is a sum of unbiased Monte Carlo
estimates. The variance of Î(ξ) is given by

Var
(
Î(ξ)

)
=

K∑
k=1

Var

⎛⎝v(k)
M∑

j=1

ξ
(k)
j

M

⎞⎠ =
K∑

k=1

(
v(k)
)2

M
Var

(
ξ(k)
)

, (5.15)

where Var
(
ξ(k)
)

can be estimated from the simulated sample. If we use the
unbiased version of sample variance for each subregion, Eq. (5.15) gives an
unbiased estimate as well.

Additionally, an upper bound for the variance can be derived. Recall
that for any subregion both an upper bound and a lower bound for the inte-
gral are available. We denote them by U (k), L(k) respectively for subregion
k and let δ(k) = U (k) − L(k). It is immediate to see that

Var
(
ξ(k)
)

= E

(
ξ(k) − E

(
ξ(k)
))2

≤ E

(
U (k) − L(k)

)2
=
(
δ(k)
)2

.

It follows that the upper bound for the variance is

Var
(
Î(ξ)

)
≤

K∑
k=1

(
v(k)δ(k)

)2
M

, (5.16)
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which, as K → ∞, approaches zero, the weighted quadratic variation of the
continuously differentiable function f .

To reduce the variance we minimize its upper bound. This is achieved
by choosing in each step the subregion with the largest v(k)δ(k) for subdivi-
sion. We find empirically it is more robust to rely on v(k)δ(k) than on the
estimated variance, since a large v(k)δ(k) generally implies a large variance,
but the converse does not hold due to simulation noise in the sample vari-
ance, esp. for small M . In particular, given any collection of subregions, the
choice of subregion for the next subdivision is deterministic and requires no
simulation at all. Moreover, the upper bound of variance given by (5.16) is
strictly decreasing in the process of subdivision but this is not necessarily
the case for the estimated variance.

We furthermore require a subdivision rule replacing the fourth divided
differences as in (5.7), since simulated samples cannot be fully symmetric.
Suppose subregion k is divided into two subregions k1 and k2 in direction i.
Its new variance becomes

Var
(
Î(k)(ξ)

)
=

(
v(k1)

)2
M

Var
(
ξ(k1)

)
+

(
v(k2)

)2
M

Var
(
ξ(k2)

)
=

(
v(k)
)2

4M

[
Var

(
ξ(k1)

)
+ Var

(
ξ(k2)

)]
=

(
v(k)
)2

2M

[
Var

(
ξ(k)
)
− 1

4

(
Eξ(k1) − Eξ(k2)

)2
]

. (5.17)

To minimize the variance is equivalent to finding the direction i that maxi-
mizes

(
Eξ(k1) − Eξ(k2)

)2
. For any simulated sample, we have

(
Eξ(k1) − Eξ(k2)

)2
≈ 4

M2

⎛⎝∑
y∈k1

ξ(y) −
∑
y∈k2

ξ(y)

⎞⎠2

(5.18)

if exactly M/2 points fall in each subregion. To this end we generate random
numbers antithetically. Since antithetic variates are no longer independent,
the variance estimated needs a slight modification. Suppose that ξ and ξ̄
are obtained from antithetic pairs, then the variance should be estimated
by M/2 pairs of averaged antithetic pairs (ξ + ξ̄)/2, i.e.,

Var
(
Î(ξ)

)
=

K∑
k=1

(
v(k)
)2

M/2
Var

(
ξ(k) + ξ̄(k)

2

)
. (5.19)

We are now able to summarize the algorithm of adaptive Monte Carlo
integration for the calculation of tail probability in a multi-factor credit
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portfolio loss model. This is presented as Algorithm 5.2. Note that con-
straint (5.10) used in Algorithm 5.1 is dropped to ensure that (5.14) gives
an unbiased estimate.

Algorithm 5.2 adaptive Monte Carlo integration
Generate M antithetic uniform random variables over the integration
region,
return I l, Var(I l), vl, δl and subdivision direction is
while termination criteria not met do

Choose the (sub)region with largest vlδl and divide along direction is.
Compute f(a) and f(b) for the resulting two subregions.
if f(a) = 0 or f(b) = 1 then

Apply (5.12), let Var(I l) = δl = 0.
else

Generate M antithetic uniform random variables in both subregions,
return I l, vl, δl and is.

end if
Update I, Var(I) and the subregion collection.

end while

We should finally remark that the adaptive Monte Carlo integration al-
lows flexibility in the choice of M , the number of sample points in each
subregion. In terms of accuracy, it is not necessarily inferior to the adaptive
algorithm based on fully symmetric interpolation rules like the Genz-Malik
rule, although the latter is supposed to provide more accurate approxima-
tion for smooth integrands. With a fixed number of samples N = MK,
the adaptive Monte Carlo integration may choose an M much less than the
samples required for the Genz-Malik rule and may therefore obtain many
more subregions K.

Numerical results

We continue our numerical experiments with the five-factor model for the
portfolio from section 5.3.4 and compare adaptive Monte Carlo integration
to plain Monte Carlo integration. Rather than the relative error, we report

the standard deviation normalized by benchmark, i.e.,
√

Var(Î(ξ))/I.
Figure 5.4(a) shows the estimated tail probability for the loss level x =

400 by adaptive Monte Carlo integration along with the corresponding 95%
confidence interval. It is evident that the adaptive Monte Carlo integration
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indeed gives a convergent estimate with reliable error bounds. By contrast,
the error estimate given by the adaptive Genz-Malik rule (based on Eq.
(5.6)) can be less reliable. It is shown by Figure 5.4(b) that for the same
loss level, although the relative error of the tail probability estimate given
by the adaptive Genz-Malik rule is only around 2%, the estimated error by
Eq. (5.6) is more than 20%.
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Figure 5.4: (a) Tail probability P(L > 400) computed by adaptive Monte Carlo
integration and their corresponding 95% confidence intervals (dotted lines). The
dashed line is our Benchmark. (b) Relative errors of the adaptive Genz-Malik rule
for P(L > 400) compared to its associated error estimates (dotted lines) based on
Eq. (5.6). The number of integrand evaluations ranges from 50, 000 to 106.

We further demonstrate in Figure 5.5 the performance of the adaptive
Monte Carlo integration with M = 10 for four different loss levels as in
section 5.3.4. It comes with no surprise that, just like the adaptive Genz-
Malik rule, the adaptive Monte Carlo integration is not sensitive to the
portfolio loss level. At the loss level x = 300, the accuracy of the adaptive
Monte Carlo integration with around 50 thousand integrand evaluations is
already comparable to that of the plain Monte Carlo integration with 1
million integrand evaluations, which is a reduction of a factor of 20.

Finally, we would like to point out that the grid generated by the adap-
tive Monte Carlo integration may also provide a good basis for the calcu-
lation of the marginal VaR contributions (VaRC), i.e., E(Li|L = x). As an
example we present in Table 5.1 the VaRC of the obligors in different buck-
ets for the loss level x = 300. The estimates obtained from the adaptive
Monte Carlo integration are based on 50 thousand integrand evaluations.
The standard deviations (std) are calculated with 20 independent trials and
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in parentheses are the standard deviations as a percentage of their corre-
sponding benchmark. Both the VaRC estimates and standard deviations
are similar to those given by plain Monte Carlo integration with 1 million
integrand evaluations. This is in line with the performance regarding the
tail probability.

bucket BM MC std ADMC std

1 0.4331 0.4258 0.0239 (5.5%) 0.4293 0.0163 (3.8%)
2 0.4498 0.4504 0.0141 (3.1%) 0.4489 0.0127 (2.8%)
3 0.3467 0.3526 0.0167 (4.8%) 0.3475 0.0120 (3.5%)
4 0.2022 0.2037 0.0129 (6.4%) 0.2076 0.0157 (7.8%)
5 0.0683 0.0676 0.0089 (13.0%) 0.0667 0.0069 (10.1%)

Table 5.1: The VaR contributions of the obligors in different buckets for the
loss level x = 300. The adaptive Monte Carlo (ADMC) integration uses 50 thou-
sand integrand evaluations and plain Monte Carlo (MC) integration uses 1 million
integrand evaluations. The standard deviations (std) are calculated with 20 in-
dependent trials and in parentheses are the standard deviations normalized by
benchmark.

5.5 Conclusions

In this chapter we propose algorithms of adaptive integration for the cal-
culation of the tail probability in multi-factor credit portfolio loss models.
We showed that under mild conditions, the conditional tail probability, as
a function of the common factors, is monotone and differentiable. The al-
gorithms devised heavily rely on this. We modify the adaptive Genz-Malik
rule so that it becomes suitable for portfolio credit models with a num-
ber of factors 2 ≤ d ≤ 8. The algorithm based on the Genz-Malik rule is
asymptotically convergent and particularly attractive for large loss levels.
It consistently outperforms the plain Monte Carlo and quasi-Monte Carlo
methods in terms of approximation error. Finally we arrive at the adaptive
Monte Carlo integration, which essentially replaces the Genz-Malik rule by
antithetic random numbers. The algorithm is advantageous in that it can
handle higher-dimensional models and is able to provide reliable probabilis-
tic error bounds. In summary, especially for higher-dimensional problems
the adaptive Monte Carlo method seems the clear favorite, whereas for
lower-dimensional problems both adaptive methods, the deterministic and
the Monte Carlo version, work very well.
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(c) x = 400
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Figure 5.5: Standard deviations of the tail probability estimates given by plain
Monte Carlo (MC) and Adaptive Monte Carlo (ADMC) for four loss levels. Stan-
dard deviations are reported as a percentage of the respective tail probabilities.
For plain MC standard deviations are computed based on 100 independent runs of
simulation and for ADMC, standard deviations are estimated by Eq. (5.15.)
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Chapter 6

Nonnegative Matrix
Factorization of a
Correlation Matrix

6.1 Introduction

An assumption on nonnegative coefficients in the multi-factor model is made
in Chapter 5. The non-negativity requirement is beneficial since it greatly
facilitates the computation of the tail probability of portfolio loss (5.1) in
the multi-factor portfolio loss models. In this chapter we present a dedicated
algorithm that takes care of this assumption.

Suppose we are given the correlation matrix C of Ψ1, . . ., ΨM in the first
level factor model given by (1.12). The Assumption 5.1 can be achieved if
the coefficients aij in (1.14) are all nonnegative. Usual dimension reduction
techniques such as principle component analysis (PCA) do not guarantee to
lead to nonnegative coefficients. Moreover, since the correlation of Ψi and
Ψj is given by �(Ψi,Ψj) = ai(aj)T and �(Ψi,Ψi) must be 1, we have the
hard constraint that

ai(ai)T = 1. (6.1)

This cannot be expected either by employing a straightforward PCA. As a
result a different matrix decomposition, which takes care of both (6.1) and
nonnegativity of coefficients ai for all i, needs to be developed. This is the
contents of the present chapter.

Let us restate the problem of interest in the present chapter in matrix
form. For a given correlation matrix CM×M with Cij ≥ 0 and given m ≤ M ,

99
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find a matrix AM×m that minimizes the Frobenius norm of the matrix

C−AAT ,

subject to Aij ≥ 0 and (AAT )ii = 1. The Frobenius norm is the norm
usually used for similar problems, see eg. Lee & Seung (1999), Zhang & Wu
(2003). Two alternatives are the weighted Frobenius norm or the Kullback-
Leibler divergence. More choices can be found in Berry et al. (2007).

Our problem falls in the class of nonnegative matrix factorization V ≈
WH and further requires that W T = H. Nonnegative Matrix Factoriza-
tion (NMF) algorithms aim to find for a matrix V two matrix factors such
that V ≈ WH , where W and H are both nonnegative matrices, i.e., all
elements of W andH are equal to or greater than zero. The non-negativity
constraint arises often naturally in applications in physics and engineering.

The notion of Nonnegative Matrix Factorization originates from Lee &
Seung (1999), where simple multiplicative update rules were introduced to
solve the approximation problem. Since then, different aspects of NMF, such
as its analysis or the extension of the algorithms to various applications have
been extensively investigated. For a recent review see Berry et al. (2007).

NMF with the additional constraint W T = H , called symmetric non-
negative factorization, has already been treated in Vandendorpe et al. (2008).
They discussed another application to portfolio credit risk and in particular,
in the framework of CreditRisk+. The problem considered in their article
is very similar to ours but the diagonal elements of V are not constrained
to be 1.

Viewed from a different perspective our problem of interest is essentially
finding the nearest low-rank correlation matrix, but with an additional non-
negativity constraint. The nearest low-rank correlation matrix question has
drawn broad attention in the financial community. A variety of methods
have been proposed. To name a few, the geometric programming approach
(Groenen & Pietersz 2007), the Lagrange multiplier method (Zhang & Wu
2003, Wu 2003), and majorization (Pietersz & Groenen 2004) have been in-
troduced for this purpose. However, none of these approaches accommodate
an additional non-negativity constraint.

6.2 An algorithm for nonnegative factorization

Now we return to the problem of finding the best nonnegative factor with
respect to the Frobenius norm. So, with E = C−AAT , we need to minimize

‖E‖2
frob =

∑
k,l

E2
k,l with diag(E) = O.
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We aim to produce an approximated nonnegative factorization of C.
Attempts with standard constrained optimization programs, such as Rosen’s
gradient projection method (Rosen 1960) did not converge at all, most likely
because of the non-convexity of the problem. An interesting algorithm for
the problem without the unit norm condition can be found in Pauca et al.
(2006); interesting theory is then available in Catral et al. (2004). However,
the unit norm condition is essential in our case, and we have to develop an
algorithm to deal with it. Therefore, we approach the problem here by a
relaxation technique.

Suppose we have an approximation for A, satisfying the constraints,
then we aim at improving the rows of A, one by one. Let cj denote the j-th
column of C, we solve:

Minimize ‖Ax− cj‖2, with x ≥ 0, ‖x‖ = 1. (6.2)

Vector x is meant to be an improved version of aj . Replacement of the row
aj by x, should result in an improved approximation.

Also for this subproblem, the application of standard constrained opti-
mization methods did not show any success (although we did not experiment
too extensively). We expect a fundamental reason behind the failure of these
techniques.

The requirement x ≥ 0 typically gives rise to a linear programming
problem, whereas the constraint ‖x‖ = 1 asks for an analytic approach, such
as a procedure with Lagrange multipliers. These two techniques appear to
be not on speaking terms, so we split the treatment of the two constraints,
by setting up a new approach, based on relatively basic numerical tools.

6.2.1 The non-negativity conditions

Let the object function, Θ, and its gradient, g, be defined by:

Θ(x) = ‖Ax− cj‖2, g =
∂Θ
∂x

= 2AT (Ax− cj). (6.3)

The non-negativity condition usually leads to an approximate solution for
which the elements xk can be divided in a so-called feasible set, H, and its
complement, the non-feasible set. The solution satisfies

xk > 0, gk = 0, k ∈ H,

xk = 0, gk ≥ 0, k /∈ H.

If x and g satisfy these complementary relations, we obviously have reached
a local minimum. By a convexity argument, it is easily proved that this
minimum is in fact an absolute minimum.
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A well-established algorithm for the nonegative least squares problem
(i.e. (6.2) without the unit norm constraint) is given by Lawson & Hanson
(1974). The algorithm is implemented in Matlab by the name of lsqnon-
neg. This routine failed rather often, uttering protesting remarks about
tolerances that were too severe, or not severe enough.

In the Matlab routine lsqnonneg the feasible set is determined in
a trial-and-error procedure similar to the classical Simplex method. This
requires the least squares solution of (restricted variants of) the system
Ax = c. For reasons of numerical stability, these systems are solved
using the pseudo-inverse of the restricted matrix. Because our problems
have moderate size (M ≈ 50), this rather expensive way of operating does
not seem necessary. Therefore we replaced the pseudo-inverse approach
in lsqnonneg by a basic direct solution, using Matlab’s formal solution
method x=A\c.

Also we searched for a shorter path to the solution, by choosing a signifi-
cantly more efficient strategy for updating the feasible set. Suppose we have
a temporary feasible set T . The most successful variant of the nonnegative
least squares algorithm proceed as follows:

Algorithm 6.1 fast nonnegative least squares
repeat

Solve the system restricted to T ,
Set xk = 0 outside this set,
Remove the indices k ∈ T for which xk is negative,
Add indices l /∈ T to set T if gl < 0,

until No further updates can be made.

When this process terminates, we should have found the nonnegative
least squares solution of Ax = c. The algorithm is usually substantially
faster than lsqnonneg. Ocassionally the algorithm stalls. In such cases we
replace it by lsqnonneg.

6.2.2 Unit norm condition

Let e1,e2, . . . ,ep be the Cartesian unit vectors in IRp, and let A be a real
nonnegative M ×p matrix. Suppose we have found a solution x to the non-
negative least squares problem of minimizing ‖Ax−b‖2 under the condition
x ≥ 0. To this solution corresponds a feasible subset H and a corresponding
‘feasible subspace’ E = span(∪k∈H{ek}).

Let Ã be the matrix consisting of the columns of A with indices in H,
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and let x̃ be the feasible, i.e. the nonzero, part of x, then x̃ is the ordinary
least squares solution to Ãx̃ = b.

The intersection of the unit sphere in IRp with the subspace E is the
unit sphere in E . If we succeed in finding a solution x̂ ∈ E , subject to the
condition ‖x̂‖ = 1, the extension of x̂ to IRp (by choosing xk = 0 for the
non-feasible components) will approximate a solution of problem (6.2) well.
Only a few issues may hamper the convergence of this algorithm:

1. A feasible variation could exist in which Θ decreases.

2. The solution x̃ in E may have one or more negative components. This
may happen if the hyper-ellipsoids Θ(x̃) = const = C have very dif-
ferent axes, and very skew orientations.

A robust remedy for these issues requires some more attention in a future
variant. For now we neglect these.

Analysis of the unit-norm problem.

We now concentrate on the problem of minimizing ‖Ax − b‖ under the
condition ‖x‖ = 1. In this analysis the nonnegativity does not play a role,
since everything happens in a feasible subspace E that is already obtained.
For convenience, we drop the tilde signs etc.

In a more familiar setting, in which the second constraint reads ‖x‖ ≤ 1,
the domain is clearly convex. In our case, however, we have to satisfy
‖x‖ = 1 and this domain is not convex. Many local minima and even
saddlepoint solutions could be found.

Let x̂ be the solution of the unconstrained least squares problem. Define
for convenience B = ATA. The object function, Θ, can then be defined by:

Θ(x) = ‖Ax− b‖2 = xTBx− 2xTATb+ ‖b‖2

= (x− x̂)TB(x− x̂) + Θ(x̂). (6.4)

The usual least squares solution is determined by the normal equations
Bx = ATb, which is equivalent to setting the gradient of Θ to zero:

g =
∂Θ
∂x

= 2(Bx−ATb) = 0

The hyper-surface Θ(x) = C is an ellipsoid in a p-dimensional space, cen-
tered around x̂. If C is very small, this surface is either completely in the
interior of the unit sphere, or completely outside. If we let C grow, then
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eventually the surface will have contact to the sphere ‖x‖ = 1, and this con-
tact will typically be a one point contact. Since both surfaces are smooth,
the normal directions have to be the same in the inside situation, or oppo-
site in the outside case. Therefore the gradient of Θ should be proportional
to x: So, we need to have

g = 2(Bx−ATb) = 2αx, (6.5)

for some scalar α. Solution of (6.5) for a given α formally yields

x(α) = (B− αI)−1c,

with c = ATb. Then the requirement ‖x‖ = 1 reads

xTx = cT (B− αI)−2c = 1, (6.6)

which is a nonlinear equation in α. This equation can be solved by several
techniques, provided a good initial estimate is available.

Probably several solutions can be found, some of which will obviously
not make sense, but certainly a choice should be made. First we obtain
insight in the proper choice of solution from a geometric point of view.

Geometric consideration

Let’s assume that x is the point of first contact between Θ(x) = C and
‖x‖ = 1, then we must have Θ(x̃) ≥ Θ(x), for all x̃ with ‖x̃‖ = 1. Now, let
x̃ = τx+ σt be a vector with ‖x̃‖ = 1, with

τ = cos(ϕ), σ = sin(ϕ), tTx = 0, ‖t‖ = 1. (6.7)

Then, we should have

Θ(x+ (τ − 1)x+ σt) − Θ(x)
= gT ((τ − 1)x+ σt) +

(
(τ − 1)2xTBx+ 2(τ − 1)σtTBx+ σ2tTBt

)
≥ 0,

for all t ⊥ x, with |τ | and |σ| sufficiently small.
Now for small σ, we have τ − 1 = −1

2σ2 + O(σ4) from (6.7), and using
gT t = 2αxT t = 0, we get

−1
2
σ2gTx+ σ2tTBt+ O(σ3) ≥ 0.

Dividing by σ2, letting σ → 0, and using gTx = 2α‖x‖2 = 2α, we finally
obtain

−α + tTBt ≥ 0



6.2 An algorithm for nonnegative factorization 105

for all t ⊥ x, with ‖t‖ = 1. This is equivalent to α ≤ R(B,y), for each
y ⊥ x, where R denotes the Rayleigh quotient function corresponding to
B.

Let λ1, λ2, . . . , λp be the eigenvalues of B , then according to a theorem
by Rayleigh, a θ ∈ (0, 1) exists such that:

min
t⊥x

tTBt

tT t
= λ1 + θ(λ2 − λ1).

Hence we have that α < λ1 + θ(λ2 − λ1) for some θ ∈ (0, 1). It follows that
for our first contact, α < λ2 in any case. Next, it will be shown that the
optimal value for α is the smallest solution of equation (6.6), and satisfies
α < λ1.

Algebraic consideration

Let x(α) be the solution of (6.5), for a given α. We should find α such that
‖x(α)‖2 = 1. From all values of α for which ‖x(α)‖2 = 1, we should select
the value for which Θ(x(α)) is minimal. Define x(α), F (α) and N(α) by

Bx(α) = αx(α) + c, (6.8)
N(α) = x(α)Tx(α), (6.9)
F (α) = x(α)TBx(α) − 2x(α)T c+ bTb. (6.10)

then we must determine
min

N(α)=1
F (α).

The following theorem provides us with a simple choice for the α-value for
which F is minimal.

Theorem 6.1. Let B be a symmetric positive definite matrix. Let x(α),
F (α) and N(α) be defined by (6.8), (6.9), (6.10), respectively. Then, for
each pair α and β with α = β and N(α) = N(β), the following inequality
holds:

F (α) − F (β)
α − β

> 0. (6.11)

Proof. The expression for xTBx can be simplified by left multiplication of
(6.8) by x(α)T :

x(α)TBx(α) = αx(α)Tx(α) + x(α)T c = αN(α) + x(α)T c,
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and therefore F (α) can be written as F (α) = αN(α)−x(α)T c+bTb. Then,
we may write

F (α) − F (β) = αN(α) − βN(β) − [x(α) − x(β)]T c.

If N(α) = N(β) this is equivalent to

F (α) − F (β) = (α − β)
[
1
2
N(α) +

1
2
N(β)

]
− [x(α) − x(β)]T c.

An expression for [x(α)−x(β)]T c can be obtained by left multiplication of
(6.8) by x(β), yielding

x(β)TBx(α) = αx(β)Tx(α) + x(β)T c. (6.12)

Interchanging α and β in this equation leaves the inner product x(α)Tx(β)
unchanged. Also the left-hand side does not change, since B is symmet-
ric. By subtracting the interchanged variant of (6.12) from (6.12) itself, we
therefore get:

0 = (α − β)x(β)Tx(α) + [x(β) − x(α)]T c,

from which it follows that

[x(α) − x(β)]T c = (α − β)x(α)Tx(β).

So, the F -difference can be written as

F (α) − F (β) = (α − β)
[
1
2
N(α) +

1
2
N(β) − x(α)Tx(β)T

]
.

Substituting ‖x(α)‖2 for N(α), etc, we finally arrive at

F (α) − F (β) =
1
2
(α − β)[‖x(α)‖2 + ‖x(β)‖2 − 2x(α)Tx(β)]

=
1
2
(α − β)‖x(α) − x(β)‖2,

which implies (6.11).

According to this theorem, we should search for the smallest solution of
the equation N(α) = 1.

Now consider the explicit formula (6.6) for ‖x(α)‖2,

N(α) = ‖x(α)‖2 = cT (B− αI)−2c.
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Differentiating N(α) with respect to α gives N ′(α) = 2cT (B− αI)−3c. If
α < λ1, B−αI is a positive definite matrix, and so is (B−αI)−3. Therefore
N is monotonically increasing for α < λ1. Now,

N(α) → 0 as α → −∞,
N(α) → +∞ as α ↑ λ1.

Hence, there is precisely one value α < λ1 for which N(α) = 1, and this
value is the smallest solution of equation (6.6).

This makes it relatively easy to determine an initial guess for the iterative
solution procedure.

6.2.3 Algorithm

Here is a global description of the resulting algorithm for the nonnegative
matrix factorization of C into A and AT subject to ai(ai)T = 1:

• If A is an approximate nonnegative factor, with diag(AAT ) = I, then
the main step in the algorithm is the replacement of all rows of A by
improved versions.

• The replacement of a row, aj , by x requires the solution of the follow-
ing expression:

Minimize ‖Ax− cj‖2, subject to: x ≥ 0, ‖x‖ = 1.

The solution of this norm-restricted, nonnegative least squares prob-
lem for row replacement is done in two steps:

1. Find a nonnegative least squares solution, xc, with algorithm 6.1.
If this process is not finite (and thus periodic), choose the Matlab
procedure lsqnonneg instead.
The indices of the nonzero entries of xc build the feasible set H.
Suppose that this set has p elements.

2. Let B̂ the p × p sub-matrix of B = ATA, obtained by removing
the rows and columns with indices that are not in H. Let ĉ
be the H-restriction of ATcj . Determine by means of Newton’s
procedure the minimal solution of the expression ‖(B̂−αI)−1ĉ‖2,
similar to the one described in Golub & van Loan (1996) (Chapter
12.1). If the restricted solution is not feasible, as it gives rise to
negative entries, remove the incorrect indices from H, and repeat
the procedure. If the solution is not minimal if observed in the
complete space, accept this sub-optimal solution. Continue by
returning to step 1 with the next row.
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As the initial guess for the factorization, we recommend to start with a
nonnegative random matrix A, with its elements between 0 and 1 and
with |ai| = 1, as this is easily generated. A more sophisticated initial
guess, i.e., a Choleski factorisation, where the negative entries were
replaced by zeros, did not lead to improved convergence in general.

The iteration process is stopped by an Aitken error estimate: Let
rn = ‖En‖frob, and assume rn → r, then the Aitken estimate of rn −r
reads

rn − r ≈ (rn − rn−1)2

rn − 2rn−1 + rn−2
, (6.13)

which is based on the hypothesis of linear convergence of the sequence
{rn}:

rn ≈ r + const ρn. (6.14)

This criterion appears to be useful, also in cases where the hypothesis
(6.14) is not valid.

It is not easily possible to give definitive statements about the computa-
tional effort of the method presented, as its performance varies in practice.
The solution to the nonnegative least squares problem requires 4Mm2 flops
per iteration step, and the number, ki, of iteration steps varies from ap-
proximately 10 to 50, in our tests. The number of problems to be solved
for a complete matrix update is M . The equality constraint is not relevant
for the computational cost. If we assume that a number, ko, of matrix up-
dates (outer iterations) is required, then total work is W ≈ 4kokiM

2m2,
where ki and ko are average values. Practically, ko may differ from O(10)
to even O(100), for 8 digits accuracy, at different problems of similar size.
A lower accuracy requirement will lead to a faster convergence. We present
some experiments with 8 digits accuracy, resulting in highly satisfactory
convergence, in the next section.

6.3 Numerical results

In this section we present some factorization results obtained with the algo-
rithm presented in the previous section. All experiments are performed in
Matlab, version 7.4, on an Intel(R) Core (TM) 2 6700 2.66 GHz processor.

The first example is taken from Zhang & Wu (2003). The correlation
matrix C is presented in Appendix 6.A and illustrated graphically on a
two-dimensional grid in Figure 6.1(a), where the colored surface is formed
by the cij in matrix C. Figure 6.1(b)-(d) correspond to the nonnegative
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low-rank approximations AAT , with rank m =2, 3 and 6, respectively. The
results obtained are comparable to those in Zhang & Wu (2003), where the
non-negativity constraint was not imposed.

The convergence in the Frobenius norm with increasing rank is presented
in Figure 6.2(a). With regard to the computation time, an approximation
can be found within one second for all m ≤ 11. Figure 6.2(b) illustrates the
6 largest eigenvalues of C and its nonnegative low-rank approximation with
rank m = 6.

In our second example C is a 50× 50 correlation matrix with its entries
defined to be

cij = LongCorr + (1 − LongCorr)eκ|i−j|,

κ = d1 − d2 max(i, j),

where LongCorr = 0.3, d1 = −0.12, d2 = 0.005.
Figure 6.3(a) shows the convergence in the Frobenius norm with increas-

ing rank. Figure 6.3(b) compares the 5 largest eigenvalues of C to their
nonnegative low-rank approximations with rank m = 5, 10. As the size of
the matrix is significantly bigger than the one in the previous example, this
computation is more costly. The CPU time for finding the nonnegative
low-rank approximations for m = 1, · · · , 30 is on average around 10 sec-
onds. Moreover, Figure 6.3 indicates that as the rank of A increases, the
CPU time for finding the nonnegative low-rank approximations also tends
to increase.

Finally we consider the use of the NMF in the credit portfolio loss con-
text. We work with a portfolio of 5000 obligors each with default probability
p = 0.01 and exposure w = 1. The full model in the form of (1.12) is a 50
factor model with correlation matrix of Ψ given in our second example. The
coefficients γij are set randomly to be either 0 or 0.5 with

∑M
j=1 γij = 1.5

for all i. In Figure 6.5 we show the loss distribution of the portfolio from
the full model and from the simplified models based on NMF with rank
m = 6, 10, with excellent agreement.

6.4 Conclusions

We have presented a dedicated algorithm for the nonnegative factorization
of a correlation matrix. The algorithm is based on a two-step procedure.
First the non-negativity constraint is dealt with, by means of basic nonneg-
ative least-squares routines, available in Matlab. Secondly, the unit norm
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Figure 6.1: (a) The correlation structure of C displayed on a 2D grid, (b)-(d)
The correlation structure of the nonnegative low-rank approximations to C. The
ranks of matrices shown in (b)-(d) are m =2, 3 and 6 respectively.
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Figure 6.5: Portfolio loss distributions from the full model and from the simplified
models based on NMF with rank m = 6, 10.

condition is taken into account. The algorithm comes with a detailed ex-
planation of all its steps. The methods works well, as is confirmed by some
numerical experiments.
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Chapter 7

Saddlepoint Approximations
for Expectations

7.1 Introduction

We consider the saddlepoint approximations of E[(X −K)+] and E[X|X ≥
K], where X is the sum of n independent random variables Xi, i = 1, . . . , n,
and K is a known constant. These two expectations can be frequently
encountered in finance and insurance. In option pricing, E[(X −K)+] is the
payoff of a call option (Rogers & Zane 1999). It also plays an integral role in
the pricing of the Collateralized Debt Obligations (CDO) (Yang et al. 2006,
Antonov et al. 2005). In insurance, E[(X − K)+] is known as the stop-loss
premium. The term E[X|X ≥ K] corresponds to the expected shortfall, also
known as the tail conditional expectation, of a credit or insurance portfolio,
which plays an increasingly important role in risk management in financial
and insurance institutions.

We derive two types of saddlepoint expansions for the two quantities.
The first type of approximation formulas for E[(X−K)+] is based on Esscher
tilting and the Edgeworth expansion. The second type of approximations
is obtained by two distinct approaches. The resulting formulas distinguish
themselves from all existing approximation formulas by their remarkable
simplicity. We also establish error convergence rates for both types of ap-
proximations in the i.i.d. case. The approximations are further extended to
cover the case of lattice variables. The lattice case is largely ignored, even
in applications where lattice variables are more relevant, for example, the
pricing of CDOs.
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The two quantities are related as follows,

E[X|X ≥ K] =
E[(X − K)+]
P(X ≥ K)

+ K, (7.1)

E[(X − K)+] = E
[
X1{X≥K}

]
− KP(X ≥ K), (7.2)

E[X|X ≥ K] =
E
[
X1{X≥K}

]
P(X ≥ K)

. (7.3)

It is also straightforward to extend our results to the functions E[(K−X)+]
and E[X|X < K]. The connections are well known and we put them here
only for completeness.

E[(K − X)+] = E[(X − K)+] − E[X] + K,

E[X1{X<K}] = E[X] − E[X1{X≥K}],

E[X|X < K] =
(
E[X] − E[X1{X≥K}]

)
/P(X < K).

For simplicity of notation, we define⎧⎨⎩
C := E[(X − K)+],
S := E[X|X ≥ K],
J := E

[
X1{X≥K}

]
.

(7.4)

7.2 Densities and tail probabilities

Dating back to Esscher (1932), the saddlepoint approximation has been rec-
ognized as a valuable tool in asymptotic analysis and statistical computing.
It has found a wide range of applications in finance and insurance, reliabil-
ity theory, physics and biology. The saddlepoint approximation literature so
far mainly focuses on the approximation of densities (Daniels 1954) and tail
probabilities (Lugannani & Rice 1980, Daniels 1987). For a comprehensive
exposition of saddlepoint approximations, see Jensen (1995).

We start with some probability space (Ω,F , P). Let Xi, i = 1 . . . n be n
independently and identically distributed continuous random variables all
defined on the given probability space and X =

∑n
i=1 Xi. Suppose the

moment generating function (MGF) of X1 is analytic and given by M1(t)
for t in some open neighborhood of zero, the MGF of the sum X is then
simply the product of the MGF of Xi, i.e.,

M(t) = (M1(t))n.
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Let κ(t) = log M(t) be the Cumulant Generating Function(CGF) of X.
The density and tail probability of X can be represented by the following
inversion formulas

fX(K) =
1

2πi

∫ τ+i∞

τ−i∞
exp(K(t) − tK)dt, (7.5)

P(X ≥ K) =
1

2πi

∫ τ+i∞

τ−i∞

exp(K(t) − tK)
t

dt (τ > 0). (7.6)

Throughout this chapter we adopt the following notation:

• φ(·) and Φ(·) denote, respectively, the p.d.f. and c.d.f. of a standard
normal random variable,

• K1(t) = log M1(t) be the CGF of X1.

• μ := E[X] and μ1 = E[X1] are the expectation of X and X1 under P,

• T represents the saddlepoint that gives K′(T ) = K,

• λr := K(r)(T )/K′′(T )r/2 is the standardized cumulant of order r eval-
uated at T , and λ1,r := K(r)

1 (T )/K′′
1(T )r/2,

• Z := T
√

K′′(T ) and Z1 := T
√
K′′

1(T ),

• W := sgn(T )
√

2[KT −K(T )] and W1 := sgn(T )
√

2[KT/n −K1(T )]
with sgn(T ) being the sign of T .

It is obvious that μ = nμ1, Z =
√

nZ1, W =
√

nW1, λ3 = λ1,3/
√

n and
λ4 = λ1,4/n.

In the sequel we should write formulas in terms of X1 (i.e., formulas with
subscript 1 such as Z1, W1, etc) when we wish to study the order of the
approximation errors. Otherwise, we write the formulas in terms of X (i.e.,
Z, W , etc) for notational simplicity. The latter is more general in the sense
that it is also applicable when the random variables Xi are not identically
distributed.

The saddlepoint approximation for densities is given by the Daniels
(1954) formula

fX(K) = φ(
√

nW1)
T√
nZ1

[
1 +

1
n

(
λ1,4

8
−

5λ2
1,3

24

)
+ O

(
n−2
)]

(7.7)

≈ φ(W )
T

Z

(
1 +

λ4

8
− 5λ2

3

24

)
=: fD. (7.8)
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For tail probabilities, two types of distinct saddlepoint expansions exist.
The first type of expansion is given by

P(X ≥ K) = e
n
2
(Z2

1−W 2
1 )[1 − Φ(

√
nZ1)]

[
1 + O

(
n− 1

2

)]
(7.9)

≈ e−
W2

2
+ Z2

2 [1 − Φ(Z)] =: P1, (7.10)

P(X ≥ K) =
[
P1

(
1 − nλ1,3

6
Z3

1

)
+ φ(

√
nW1)

λ1,3

6
√

n

(
nZ2

1 − 1
)][

1 + O
(
n−1
)]

(7.11)

≈ P1

(
1 − λ3

6
Z3

)
+ φ(W )

λ3

6
(
Z2 − 1

)
=: P2, (7.12)

in the case T ≥ 0. For T < 0 similar formulas are available, see Daniels
(1987). The second type of expansion is obtained by Lugannani & Rice
(1980), with

P(X ≥ K) = [1 − Φ(
√

nW1)] + φ(
√

nW1)
[

1√
n

(
1
Z1

− 1
W1

)
+ O

(
n− 3

2

)]
(7.13)

≈ 1 − Φ(W ) + φ(W )
[

1
Z

− 1
W

]
=: P3, (7.14)

P(X ≥ K) = P3 + φ(
√

nW1)

{
n− 3

2

[
1
Z1

(
λ1,4

8
−

5λ2
1,3

24

)

−λ1,3

2Z2
1

− 1
Z3

1

+
1

W 3
1

]
+ O

(
n− 5

2

)}
(7.15)

≈ P3 + φ(W )
[

1
Z

(
λ4

8
− 5λ2

3

24

)
− λ3

2Z2
− 1

Z3
+

1
W 3

]
=: P4.

(7.16)

Widely known as the Lugannani-Rice formula, P3 is most popular among
the four tail probability approximations for both simplicity and accuracy. A
good review of saddlepoint approximations for the tail probability is given
in Daniels (1987).

7.3 Measure change approaches

Before we derive the formulas for E[(X −K)+] and E[X|X ≥ K], we would
like to briefly review a different approach to approximating the two quanti-
ties. This usually involves a change of measure and borrows the saddlepoint
expansions for densities or tail probabilities.
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An inversion formula similar to those for densities and tail probabilities
also exists for E[(X − K)+], which is given by

E
[
(X − K)+

]
=

1
2πi

∫ τ+i∞

τ−i∞

exp(K(t) − tK)
t2

dt (τ > 0). (7.17)

Yang et al. (2006) rewrite the inversion formula to be

E
[
(X − K)+

]
=

1
2πi

∫ τ+i∞

τ−i∞
exp(K(t) − log t2 − tK)dt. (7.18)

Take KQ(t) = K(t) − log t2, where subscript Q denotes a probability mea-
sure different from the original measure P, the right-hand side of (7.18) is
then in the form of (7.5) and the Daniels formula (7.8) can be used for
approximation. It should be pointed out, however, that in this case always
two saddlepoints exist. Moreover, the MGF of X under the new measure
Q is problematic as MQ(0) → ∞,which suggests that Q is not a probability
measure.

Bounded random variables

Studer (2001) considers the approximation of the expected shortfall, in two
models of the associated random variable.

The first case deals with bounded random variables. Without loss of
generality, we only consider the case that X has a nonnegative lower bound.
Define the probability measure Q on (Ω,F) by Q(A) =

∫
A X/μdP for A ∈ F ,

then

E[X|X ≥ K] =
1

P(X ≥ K)

∫
{X≥K}

XdP =
μ

P(X ≥ K)

∫
{X≥K}

X

μ
dP

=
μ

P(X ≥ K)
Q(X ≥ K). (7.19)

Hence the expected shortfall is transformed to be a multiple of the ratio of
two tail probabilities. The MGF of X under probability Q reads

MQ(t) =
∫

etX X

μ
dP =

M ′(t)
μ

=
M(t)K′(t)

μ

as K′(t) = [log M(t)]′ = M ′(t)/M(t). It follows that

KQ(t) = log MQ(t) = K(t) + log
(
K′(t)

)
− log(μ). (7.20)
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For bounded variables in general it is only necessary to apply a linear
transform on the random variable X beforehand so that the new variable
has a nonnegative lower bound and thus Q(·) is a valid probability measure.

The saddlepoint approximation for tail probability can be applied for
both probabilities P and Q in (7.19). A disadvantage of this approach is
that two saddlepoints need to be found as the saddlepoints under the two
probability measures are generally different.

Log-return model

The second case in Studer (2001) deals with E[eX |X ≥ K] rather than
E[X|X ≥ K]. The expected shortfall E[eX |X ≥ K] can also be written to
be a multiple of the ratio of two tail probabilities. Define the probability
measure Q on (Ω,F) by Q(A) =

∫
A eX/M(1)dP for A ∈ F , then

E[eX |X ≥ K] =
1

P(X ≥ K)

∫
{X≥K}

eXdP =
M(1)

P(X ≥ K)

∫
{X≥K}

eX

M(1)
dP

=
M(1)

P(X ≥ K)
Q(X ≥ K). (7.21)

The MGF and CGF of X under probability Q are given by

MQ(t) =
∫

etX eX

M(1)
dP =

M(t + 1)
M(1)

,

KQ(t) = K(t + 1) −K(1).

This also forms the basis for the approach used in Rogers & Zane (1999)
for option pricing where the log-price process follows a Lévy process.

7.4 Classical saddlepoint approximations

In this and in the sections to follow we give, in the spirit of Daniels (1987),
two types of explicit saddlepoint approximations for E[(X − K)+]. For
each type of approximation, we give a lower order version and a higher
order version. The approximations to E[X|X ≥ K] then simply follow from
(7.1). No measure change is required and only one saddlepoint needs to be
computed.

Following Jensen (1995), we call this first type of approximations the
classical saddlepoint approximations. Approximation formulas for E[(X −
K)+] of this type already appeared in Antonov et al. (2005), however with
no discussion on the error terms. They are obtained by means of routine
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application of the saddlepoint approximation to (7.17), i.e., on the basis of
the Taylor expansion of K(t)− tK around t = T . Here we provide a simpler
and more statistically-oriented derivation that employs Esscher tilting and
the Edgeworth expansion. Rates of convergence for the approximations are
readily available with our approach in the i.i.d. case. Another advantage of
our approach is that it leads to explicit saddlepoint approximations in the
log-return model in Studer (2001), which is not possible with the approach
in Antonov et al. (2005).

For now we assume that the saddlepoint t = T that solves K′(t) = K is
positive. The expectation E[(X − K)+] is reformulated under an exponen-
tially tilted probability measure,

E
[
(X − K)+

]
=
∫ ∞

K
(x − K)f(x)dx

= e−
nW2

1
2

∫ ∞

K
(x − K)e−T (x−K)f̃(x)dx, (7.22)

where K′(T ) = K and f̃(x) = f(x) exp(Tx − K(T )). The MGF associated
with f̃(x) is given by M̃(t) = M(T + t)/M(T ). It immediately follows that
the mean and variance of a random variable X̃ with density f̃(·) are given by
EX̃ = K and V ar(X̃) = K′′(T ) = nK′′

1(T ). Writing ξ = (x−K)/
√

nK′′
1(T )

and f̃(x)dx = g(ξ)dξ, (7.22) reads

E
[
(X − K)+

]
= e−

nW2
1

2

√
nK′′

1(T )
∫ ∞

0
ξe−

√
nZ1ξg(ξ)dξ. (7.23)

Suppose that g(ξ) is approximated by a normal distribution such that g(ξ) =
φ(ξ)[1 + O(n− 1

2 )]. The integral in (7.23) then becomes∫ ∞

0
ξe−

√
nZ1ξg(ξ)dξ =

∫ ∞

0
ξe−

√
nZ1ξφ(ξ)

[
1 + O

(
n− 1

2

)]
dξ

=
exp(nZ2

1
2 )√

2π

∫ ∞

0
ξe−

(ξ+
√

nZ1)2

2 dξ
[
1 + O

(
n− 1

2

)]
=
{

1√
2π

−
√

nZ1e
nZ2

1
2
[
1 − Φ(

√
nZ1)

]} [
1 + O

(
n− 1

2

)]
. (7.24)

Inserting (7.24) in (7.23) leads to the following approximation

E
[
(X − K)+

]
= e−

nW2
1

2

{√
nK′′

1(T )
2π

− TnK′′
1(T )e

nZ2
1

2
[
1 − Φ(

√
nZ1)

]}[
1 + O

(
n− 1

2

)]
.

(7.25)
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By deleting the error term in (7.25) and representing the remaining terms
in quantities related to X, we obtain,

E
[
(X − K)+

]
≈ e−

W2

2

{√
K′′(T )

2π
− TK′′(T )e

Z2

2 [1 − Φ(Z)]

}
=: C1.

(7.26)

Higher order terms enter if g(ξ) is approximated by its Edgeworth ex-
pansion, e.g.,

g(ξ) = φ(ξ)[1 +
λ1,3

6
√

n
(ξ3 − 3ξ) + O(n−1)].

This gives

E
[
(X − K)+

]
= C1

[
1 + O(n−1)

]
+ e−

nW2
1

2

√
K′′

1(T )
λ1,3

6

∫ ∞

0
ξe−Zξφ(ξ)(ξ3 − 3ξ)dξ

= C1

[
1 + O(n−1)

]
+ e−

nW2
1

2

√
K′′

1(T )
λ1,3

6
e

Z2

2

√
2π

∫ ∞

0
e−

(ξ+Z)2

2
(
−ξ4 + 3ξ2

)
dξ

= C1

[
1 + O(n−1)

]
+ e

n
2
(Z2

1−W 2
1 )
√

K′′
1(T )

λ1,3

6
×
{

[1 − Φ(
√

nZ1)](n2Z4 + 3nZ2) − φ(
√

nZ1)(n
3
2 Z3

1 + 2
√

nZ1)
}

(7.27)

≈ C1 + e
Z2

2
−W2

2

√
K′′(T )

λ3

6
{
[1 − Φ(Z)](Z4 + 3Z2) − φ(Z)(Z3 + 2Z)

}
=: C2. (7.28)

The approximations C1 and C2 are in agreement with the formulas given
by Antonov et al. (2005). But our derivation has the advantage helping us
better understand the order of the approximations.

Negative saddlepoint

We have assumed that the saddlepoint is positive, when deriving C1 and C2

in (7.26) and (7.28), or, in other words, μ < K. If the saddlepoint T equals
0, or equivalently, μ = K, it is straightforward to see that C1 and C2 both
reduce to the following formula,

E[(X − μ)+] =

√
K′′(0)

2π
=: C0. (7.29)
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In case that μ > K, we should work with Y = −X and E[Y 1{Y ≥−K}]
instead since

E[X1{X≥K}] = μ + E[−X1{−X≥−K}] = μ + E[Y 1{Y ≥−K}].

The CGF of Y is given by KY (t) = KX(−t). The saddlepoint that solves
KY (t) = −K is −T > 0 so that C1 and C2 can again be used. Note that

K(r)
Y (t) = (−1)rK(r)

X (−t),

where the superscript (r) denotes the r-th derivative. Therefore, in the case
of a negative saddlepoint, E[(X − K)+] can be approximated by

C−
1 = μ − K + e−

W2

2

{√
K′′(T )/(2π) + TK′′(T )e

Z2

2 Φ(Z)
}

, (7.30)

C−
2 = C−

1 − e
Z2

2
−W2

2

√
K′′(T )

λ3

6
{
Φ(Z)(Z4 + 3Z2) + φ(Z)(Z3 + 2Z)

}
.

(7.31)

Log-return model revisited

We now show how to deal with the log-return model in Studer (2001) with-
out working with two probability measures simultaneously. We work with
E
[
eX1{X≥K}

]
which equals E

[
eX |X ≥ K

]
P(X ≥ K). Replace x in (7.22)

by ex and make the same change of variables,

E
[
eX1{X≥K}

]
= e−

W2

2

∫ ∞

0
eK+ξ

√
nK′′(T )e−Zξg(ξ)dξ.

Approximating g(ξ) by the standard normal density, we obtain

E
[
eX1{X≥K}

]
≈ e−

W2

2
+K+ Ż2

2
1√
2π

∫ ∞

0
e−

(ξ+Ż)2

2 dξ

= e−
W2

2
+K+ Ż2

2 [1 − Φ(Ż)], (7.32)

where Ż = (T−1)
√

K′′(T ). Eq (7.32) is basically eKP1, where P1 is given by
(7.10), with Z replaced by Ż. It is easy to verify that this approximation is
exact when X is normally distributed. A higher order approximation would
be

E
[
eX1{X≥K}

]
≈e−

W2

2
+K+ Ż2

2

{
[1 − Φ(Ż)]

(
1 − λ3

6
√

n
Ż3

)
+

λ3

6
√

n
φ(Ż)(Ż2 − 1)

}
.



124 SA for Expectations

7.5 The Lugannani-Rice type formulas

The second type of saddlepoint approximations to E[(X − K)+] can be
derived in a very similar way as was done in section 4 of Daniels (1987)
where the Lugannani-Rice formula to tail probability was derived. As a
result we shall call the obtained formulas “Lugannani-Rice type formulas”.

To start, we derive the following inversion formula for E
[
X1{X≥K}

]
.

Theorem 7.1. Let K(t) = log M(t) be the cumulant generating function of
a continuous random variable X. Then

E
[
X1{X≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
K′(t)

exp(K(t) − tK)
t

dt (τ > 0). (7.33)

Proof. We start with the case that X has a positive lower bound. Employing
the same change of measure as in (7.19), we have E

[
X1{X≥K}

]
= μQ(X ≥

K), where

Q(X ≥ K) =
1

2πi

∫ τ+i∞

τ−i∞

exp(KQ(t) − tK)
t

dt (τ > 0).

Plug in KQ(t), which is given by (7.20), we find

E
[
X1{X≥K}

]
= μ

1
2πi

∫ τ+i∞

τ−i∞

exp [K(t) + logK′(t) − log μ − tK]
t

dt

=
1

2πi

∫ τ+i∞

τ−i∞
K′(t)

exp(K(t) − tK)
t

dt.

In the case that X has a negative lower bound, −a, with a > 0, we define
Y = X + a so that Y has a positive lower bound. Then, the CGF of Y and
its first derivative are given by KY (t) = K(t) + ta and K′

Y (t) = K′(t) + a,
respectively. Since

E
[
X1{X≥K}

]
= E

[
(Y − a)1{Y −a≥K}

]
= E

[
Y 1{Y −a≥K}

]
−aP(Y −a ≥ K),

and

E
[
Y 1{Y −a≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
K′(t)

exp(K(t) − tK)
t

dt + aP(Y − a ≥ K),

we are again led to (7.33). Extension to variables bounded from above is
straightforward.



7.5 The Lugannani-Rice type formulas 125

For unbounded X, we take XL = max(X,L), where L < −1/τ is a
constant. Since XL is bounded from below, we have

E
[
XL1{XL≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
K′

XL
(t)

exp(KXL
(t) − tK)
t

dt,

=
1

2πi

∫ τ+i∞

τ−i∞
M ′

XL
(t)

exp(−tK)
t

dt, (7.34)

where M ′
XL

(τ) = M ′(τ) +
∫ L
−∞(LeτL −xeτx)dP(x). For L < −1/τ , M ′

XL
(τ)

increases monotonically as L decreases and approaches M ′(τ) as L → −∞.
Note also that E

[
X1{X≥K}

]
= E

[
XL1{XL≥K}

]
for all L < K. Now take the

limit of both sides of (7.34) as L → −∞. Due to the monotone convergence
theorem, we again obtain

E
[
X1{X≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
M ′(t)

exp(−tK)
t

dt

=
1

2πi

∫ τ+i∞

τ−i∞
K′(t)

exp(K(t) − tK)
t

dt.

We look at K = nx for fixed x and let K′
1(T ) = x so that K′(T ) =

nK′
1(T ) = nx = K.
We follow Daniels (1987) to approximate K1(t) − tx over an interval

containing both t = 0 and t = T by a quadratic function. Here, T need not
to be positive any more. Since nx = K we have −1

2W 2
1 = K1(T )− Tx with

W1 taking the same sign as T . Let w be defined between 0 and W1 such
that

1
2
(w − W1)2 = K1(t) − tx −K1(T ) + Tx. (7.35)

Then we have
1
2
w2 − W1w = K1(t) − tK′

1(T ), (7.36)

and t = 0 ⇔ w = 0, t = T ⇔ w = W1. Differentiate both sides of (7.36)
once and twice to obtain

w
dw

dt
− W1

dw

dt
= K′

1(t) −K′
1(T ),

(
dw

dt

)2

+ (w − W1)
d2w

dt2
= K′′

1(t).

So, in the neighborhood of t = T (or, equivalently, w = W1) we have
dw
dt =

√
K′′

1(T ). Note that μ1 = E[X1] = K′
1(0). In the neighborhood of
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t = 0 (or, equivalently, w = 0), we have

dw

dt
=
√

K′′
1(0) if T = 0, (7.37)

dw

dt
=

K′
1(T ) −K′

1(0)
W1

=
x − μ1

W1
if T = 0.

Hence, in the neighborhood of t = 0 we have w ∝ t. Moreover,

1
t

dt

dw
∼ 1

w
,

K′
1(t)
t

dt

dw
∼ μ1

w
. (7.38)

Based on Theorem 7.1, the inversion formula for E
[
X1{X≥nx}

]
can be for-

mulated to be

E
[
X1{X≥nx}

]
=

1
2πi

∫ τ+i∞

τ−i∞
nK′

1(t)e
n( 1

2
w2−W1w) 1

t

dt

dw
dw

=
n

2πi

∫ τ+i∞

τ−i∞
en( 1

2
w2−W1w)

[
μ1

w
+

K′
1(t)
t

dt

dw
− μ1

w

]
dw

= nμ1

∫ τ+i∞

τ−i∞

1
2πi

en( 1
2
w2−W1w) dw

w

+
ne−

nW2
1

2

2πi

∫ W1+i∞

W1−i∞
e

1
2
n(w−W1)2

[
K′

1(t)
t

dt

dw
− μ1

w

]
dw. (7.39)

The first integral takes the value 1 − Φ(
√

nW1) = 1 − Φ(W ). The second
integral has no singularity because of (7.38). Hence there is no problem to
change the integration contour from the imaginary axis along τ > 0 to that
along W1, as done in (7.39), not even if W1 and T are negative. The major
contribution to the second integral comes from the saddlepoint. The terms
in the brackets are expanded around T and integrated to give an expansion
of the form

nφ(
√

nW1)(b1n
− 1

2 + b3n
− 3

2 + b5n
− 5

2 + . . .). (7.40)

By Watson’s lemma this is an asymptotic expansion in a neighborhood of
W1. For more details see Lemma 4.5.2 in Kolassa (2006). The coefficient b1

in (7.40) can be obtained by only taking into account the leading terms of
the Taylor expansion of

K′
1(t)
t

dt

dw
− μ1

w
=

K′
1(t)
t

dt

dw

∣∣∣
T
− μ1

w

∣∣∣
W1

+ . . . =
x

Z1
− μ1

W1
+ . . . . (7.41)
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Therefore we are led to

E
[
X1{X≥nx}

]
= nμ1

[
1 − Φ(

√
nW1)

]
+ nφ(

√
nW1)

[
1√
n

(
x

Z1
− μ1

W1

)
+ O

(
n− 3

2

)]
(7.42)

Subtracting KP(X ≥ K) from (7.42) with the tail probability approximated
by the Lugannani-Rice formula P3, we see immediately that

E
[
(X − nx)+

]
= n(μ1 − x)

[
1 − Φ(

√
nW1) −

φ(
√

nW1)√
nW1

+ O
(
n− 3

2

)]
.

(7.43)
Rewrite (7.42) and (7.43) in quantities related to X and deleting the error
terms we obtain the following approximation,

E
[
X1{X≥K}

]
≈ μ [1 − Φ(W )] + φ(W )

[
K

Z
− μ

W

]
=: J3. (7.44)

E
[
(X − K)+

]
≈ (μ − K)

[
1 − Φ(W ) − φ(W )

W

]
=: C3. (7.45)

C3 is a surprisingly neat formula requiring only knowledge of W . A more
statistical approach to derive the approximation J3 in (7.44) can be found
in Appendix A.

Next we consider the coefficient b3 in (7.40). Write U := K′′
1(T )T −

K′
1(T ). The Taylor expansion of K′

1(t)/t around T gives

K′
1(t)
t

=
K′

1(T )
T

+ (t − T )
U

T 2
+

(t − T )2

2

[
K′′′

1 (T )
T

− 2U
T 3

]
+ . . . . (7.46)

Furthermore, expand exp(n[K1(t)− tx]) in the same way as Daniels (1954),

exp(n[K1(t) − tx])

= exp
(

n[K1(T ) − Tx] +
1
2
nK′′

1(T )(t − T )2

+
n

6
K′′′(T )(t − T )3 +

n

24
K(4)(t − T )4 + . . .

)
= exp

(
n[K1(T ) − Tx] +

1
2
nK′′

1(T )(t − T )2
)

×
[
1 +

n

6
K′′′

1 (T )(t − T )3 +
n

24
K(4)

1 (T )(t − T )4 +
n2

72
K′′′

1 (T )2(t − T )6 + . . .

]
.

(7.47)
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Put (7.46) and (7.47) together, we have, on the line t = T + iy,

n

2πi

∫ T+i∞

T−i∞
en[K1(t)−tx]K′

1(t)
t

dt

=
ne−

nW2
1

2

2πi

∫ T+i∞

T−i∞
e

1
2
nK′′

1 (T )(t−T )2

×
[
1 +

n

6
K′′′

1 (T )(t − T )3 +
n

24
K(4)

1 (T )(t − T )4+
n2

72
K′′′

1 (T )2(t − T )6+ . . .

]
×
{
K′

1(T )
T

+ (t − T )
U

T 2
+

(t − T )2

2

[
K′′′

1 (T )
T

− 2U
T 3

]
+ . . .

}
dt

=
ne−

nW2
1

2

2π

∫ +∞

−∞
e−

1
2
nK′′

1 (T )y2
[
1 − n

6
K′′′

1 (T )iy3 +
n

24
K(4)

1 (T )y4+

−n2

72
K′′′

1 (T )2y6 + . . .

]{
K′

1(T )
T

+ iy
U

T 2
− y2

2

[
K′′′

1 (T )
T

− 2U
T 3

]
+ . . .

}
dy

=nφ(
√

nW1)
{
K′

1(T )√
nZ1

+ n− 3
2

[
K′

1(T )
Z1

(
λ1,4

8
− 5

24
λ2

1,3

)
+

Uλ1,3

2Z2
1

− λ1,3

2T
+

U

Z3
1

]
+ O

(
n− 5

2

)}
=nφ(W )

[
x√
nZ1

+ n− 3
2

(
xλ1,4

8Z1
−

5xλ2
1,3

24Z1
+

1
TZ1

−xλ1,3

2Z2
1

− x

Z3
1

)
+O
(
n− 5

2

)]
.

(7.48)

Notice that (7.48) is itself a saddlepoint approximation to E[X1{X≥K}] for
K > μ. However, it becomes inaccurate when T approaches zero due to the
presence of a pole at zero in the integrand. Meanwhile expanding 1/w in
the second integral in (7.39) around W1 gives

ne−
nW2

1
2

2πi

∫ W1+i∞

W1−i∞
e

1
2
n(w−W1)2 μ1

w
dw

=
nμ1e

−nW2
1

2

2πi

∫ W1+i∞

W1−i∞
e

1
2
n(w−W1)2

[
1

W1
− (w − W1)

W 2
1

+
(w − W1)2

W 3
1

+ . . .

]
dw

=nμ1φ(W )
[

1√
nW1

− 1
(
√

nW1)3
+ O

(
n− 5

2

)]
. (7.49)

Adding (7.48) and (7.49) to 1 − Φ(
√

nW1) and then subtracting nx times
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(7.15) we obtain

E[(X − nx)+] = n(μ1 − x)
{

[1 − Φ(
√

nW1)] +
φ(
√

nW1)√
nW1

}
+ nφ(

√
nW1)

{
n− 3

2

[
1

TZ1
+

μ1 − x

W 3
1

]
+ O

(
n− 5

2

)}
, (7.50)

which can be rewritten to be

E[(X − K)+] ≈ C3 + φ(W )
[

1
TZ

+ (μ − K)
1

W 3

]
=: C4. (7.51)

Remark 7.2. Interestingly, Martin (2006) gives an approximation formula
for
E[(X − K)+], decomposing the expectation to one term involving the tail
probability and another term involving the probability density,

E
[
(X − K)+

]
≈ (μ − K)P(X ≥ K) +

K − μ

T
fX(K).

Martin (2006) suggests to approximate P(X ≥ K) by the Lugannani-Rice
formula P3 in (7.13) and fX(K) by the Daniels formula fD in (7.8). In
the i.i.d. case, this leads to an approximation CM := n(μ1 − x)P3 + n(x −
μ1)fD/T with a rate of convergence n−1/2 as the first term has an error of
order n−1/2 and the second term has an error of order n−3/2. We propose to
replace P3 by its higher order version, P4 in (7.15). This gives the following
formula,

E
[
(X − K)+

]
≈ C3 + (μ − K)φ(W )

(
1

W 3
− λ3

2Z2
− 1

Z3

)
. (7.52)

Not only eq. (7.52) is simpler than CM as λ4 is not involved, but also it has
a higher rate of convergence of order n−3/2. However compared to C4 eq.
(7.52) contains a term of λ3 and is certainly more complicated to evaluate.
Note further that if we neglect in CM the terms of the higher order standard
cumulants λ3 and λ4 in fD we get precisely C3 as given in (7.45). For these
reasons, C4 is to be preferred.

Zero saddlepoint

It is mentioned in Daniels (1987) that in case that the saddlepoint T = 0,
or in other words, μ = K, the approximations to tail probability P1 to P4

all reduce to
P(X ≥ K) =

1
2
− λ3(0)

6
√

2π
.
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We would like to show that, under the same circumstances, C3 and C4 also
reduce to the formula C0 in (7.29). To show that C3 = C0 when T = 0, we
point out that

lim
T→0

C3 = lim
T→0

K′(0) −K′(T )
T

[
T (1 − Φ(W )) − φ(W )

T

W

]
.

Note that when T → 0, K′(0)−K′(T )
T → −K′′(0), T (1 − Φ(W )) → 0 and

T
W → [K′′(0)]−

1
2 (see (7.37)). This implies that limT→0 C3 = C0. Similarly

we also have limT→0 C4 = C0.

7.6 Lattice variables

So far we have only considered approximations to continuous variables. Let
us now turn to the lattice case. This is largely ignored in the literature, even
in applications where lattice variables are much more relevant. For example,
in the pricing of CDOs, the random variable concerned is essentially the
number of defaults in the pool of companies and is thus discrete.

Suppose that X̂ only takes integer values k with nonzero probabilities
p(k). The inversion formula of E[(X̂ − K)+] can then be formulated as

E[(X̂ − K)+] =
∞∑

k=K+1

(k − K)p(k)

=
∞∑

k=K+1

(k − K)
1

2πi

∫ τ+iπ

τ−iπ
exp(K(t) − tk)dt

=
1

2πi

∫ τ+iπ

τ−iπ
exp(K(t) − tK)

∞∑
m=1

me−tmdt

=
1

2πi

∫ τ+iπ

τ−iπ

exp(K(t) − tK)
t2

t2e−t

(1 − e−t)2
dt (τ > 0).

For K > μ, we proceed by expanding the two terms in the integrand sep-
arately. According to a truncated version of the Watson’s Lemma (see
Lemma 4.5.1 and 4.5.2 in Kolassa 2006), for an integrand in the form of
exp(nα

2 (t−T )2)
∑∞

j=0(t−T )j , the change in the contour of integration for t
from τ ±i∞ to τ ±iπ leads to a negligible difference which is exponentially
small in n. Blackwell & Hodges (1959) declare further that the integral
over the range τ + iy where |y| > log n/

√
n is negligible. This means we

are able to incorporate the formulas for continuous variables C1 and C2 in
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the approximations for lattice variables. We find, for lattice variables, the
following approximations corresponding to C1 and C2 in (7.26) and (7.28),
respectively,

Ĉ1 = C1
T 2e−T

(1 − e−T )2
, (7.53)

Ĉ2 = C2
T 2e−T

(1 − e−T )2

+ e−
W2

2
+ Z2

2 {φ(Z) − Z[(1 − Φ(Z)]}
Te−T

(
2 − T − 2e−T − Te−T

)√
K′′(T )(1 − e−T )3

.

(7.54)

For the approximations to E[X̂|X̂ ≥ K], we also need the lattice version for
the tail probability

P(X̂ ≥ K) ≈ e−
W2

2
+ Z2

2 [1 − Φ(Z)]
T

1 − e−T
=: P̂1 (7.55)

or its higher order version

P(X̂ ≥ K) ≈ e−
W2

2
+ Z2

2
T

1 − e−T
×
{

[1 − Φ(Z)]
(

2 − λ3

6
Z3 − T

eT − 1

)
+ φ(Z)

[
λ3

6
(Z2 − 1) +

1
Z

− T

Z(eT − 1)

]}
=: P̂2. (7.56)

Recall that the Lugannani-Rice formula for lattice variables reads

P(X̂ ≥ K) ≈ 1 − Φ(W ) + φ(W )
[

1
Ẑ

− 1
W

]
=: P̂3, (7.57)

where Ẑ = (1−e−T )
√

K′′(T ). A similar lattice formula can also be obtained
for J3, which we will denote by Ĵ3. We first write down the inversion formula
of the tail probability of a lattice variable,

Q(X̂ ≥ K) =
∞∑

k=K

Q(X̂ = k) =
1

2πi

∫ τ+iπ

τ−iπ

exp(KQ(t) − tK)
1 − e−t

dt. (7.58)

Combining (7.58) with Theorem 7.1, we obtain

E

[
X̂1{X̂≥K}

]
=

1
2πi

∫ τ+iπ

τ−iπ
K′(t)

exp(K(t) − tK)
1 − e−t

dt.
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By the same change of variables as in section 7.5, we have

E

[
X̂1{X̂≥K}

]
=

1
2πi

∫ τ+iπ

τ−iπ
K′(t)e

1
2
w2−Ww 1

1 − e−t

dt

dw
dw

=
1

2πi

∫ τ+iπ

τ−iπ
e

1
2
w2−Ww

[
μ

w
+

K′(t)
1 − e−t

dt

dw
− μ

w

]
dw.

Now we can proceed exactly as in section 7.5 as limt→0 1 − e−t = t. This
leads to

Ĵ3 = μ [1 − Φ(W )] + φ(W )
[
K

Ẑ
− μ

W

]
, (7.59)

Ĉ3 = (μ − K)
[
1 − Φ(W ) − φ(W )

W

]
≡ C3. (7.60)

Including higher order terms we obtain

Ĉ4 = Ĉ3 + φ(W )

[
e−T

Ẑ(1 − e−T )
+ (μ − K)

1
W 3

]
. (7.61)

A higher order version of P̂3 can be derived similarly,

P(X̂ ≥ K) ≈ 1 − Φ(W ) + φ(W )
[

1
Ẑ

(
1 +

λ4

8
− 5λ2

3

24

)
−e−T λ3

2Ẑ2
− e−T (1 + e−T )

2Ẑ3
− 1

W
+

1
W 3

]
=: P̂4. (7.62)

This can be used to estimate E[X̂|X̂ ≥ K].
The rates of convergence of Ĉ1 to Ĉ4 in the i.i.d. case are identical to

their non-lattice counterparts and we shall not elaborate further.

7.7 Numerical results

By two numerical experiments we evaluate the quality of the various ap-
proximations that are derived in the earlier sections.

In our first example X =
∑

Xi where Xi are i.i.d. exponentially dis-
tributed with density p(x) = e−x. The CGF of X reads K(t) = −n log(1−t).
The saddlepoint to K′(t) = K is given by T = 1−n/K. Moreover, we have

K′′(T ) =
K2

n
, λ3 =

2√
n

, λ4 =
6
n

.
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Their exact values are available as X ∼ Gamma(n, 1). The tail probability
is then given by

P(X ≥ K) = 1 − γ(n,K)
Γ(n)

,

and

E[X1{X≥K}] = n

[
1 − γ(n + 1,K)

Γ(n + 1)

]
,

where Γ and γ are the gamma function and the incomplete gamma function,
respectively.

In the second example we set X =
∑

Xi where Xi are i.i.d. Bernoulli
variables with P(Xi = 1) = 1 − P(Xi = 0) = p = 0.15. Its CGF is given
by K(t) = n log

(
1 − p + pet

)
. Here the saddlepoint to K′(t) = K equals

T = log
[

K(1−p)
(n−K)p

]
and

K′′(T ) =
K(n − K)

n
, λ3 =

n − 2K√
nK(n − K)

, λ4 =
n2 − 6nK + 6K2

nK(n − K)
.

In this specific case, X is binomially distributed with

P(X = k) =
(

n

k

)
pk(1 − p)n−k,

which means that C and S as defined in (7.4) can also be calculated exactly.
We report in Tables 7.1 and 7.2 on the approximations obtained in the

exponential case and in Tables 7.3 and 7.4 approximations in the Bernoulli
case. For the approximations to S we take Sr = Cr/Pr +K for r = 1, 2, 3, 4.
The saddlepoint approximations in the Bernoulli case are based on the for-
mulas for lattice variables derived in section 7.6.

In general we see that all approximations work remarkably well in our
experiments. The higher order Lugannani-Rice type formula, S4, C4 and
their lattice versions, produce almost exact approximations. Particularly
worth mentioning is the quality of approximations C4 and Ĉ4, that use
the same information as C1 and Ĉ1, but show errors that are significantly
smaller than C2 and Ĉ2.

7.8 Conclusions

We have derived two types of saddlepoint approximations to E[(X − K)+]
and E[X|X ≥ K], where X is the sum of n independent random variables
and K is a known constant. For each type of approximation, we have
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n K Exact C1 C2 C3 C4

10 10.5 1.0375 1.0791 1.0465 1.0478 1.0374
10 12.5 0.4529 0.5048 0.4528 0.4608 0.4528
10 14.5 0.1761 0.2007 0.1747 0.1808 0.1761
100 105 2.0331 2.0852 2.0341 2.0360 2.0331
100 125 3.7283e-2 3.8873e-2 3.7240e-2 3.7508e-2 3.7283e-2
100 145 9.5270e-5 9.8546e-5 9.5210e-5 9.6553e-5 9.5269e-5

Table 7.1: Exact values of E[(X − K)+] and their saddlepoint approximations.
X =

∑n
i=1 Xi where Xi is exponentially distributed with density f(x) = e−x(x ≥

0).

n K Exact S1 S2 S3 S4

10 10.5 13.1124 12.9673 13.1382 13.1383 13.1124
10 12.5 14.7482 14.7512 14.7582 14.7874 14.7481
10 14.5 16.5066 16.5654 16.4998 16.5599 16.5065
100 105 111.7826 111.7313 111.7883 111.7924 111.7826
100 125 128.9751 129.0343 128.9715 128.9990 128.9571
100 145 147.9199 147.9626 147.9175 147.9592 147.9199

Table 7.2: Exact values of E[X |X ≥ K] and their saddlepoint approximations.
X =

∑n
i=1 Xi where Xi is exponentially distributed with density f(x) = e−x(x ≥

0).

n K Exact Ĉ1 Ĉ2 Ĉ3 Ĉ4

15 3 2.6017e-1 2.8790e-1 2.6656e-1 2.7583e-1 2.5980e-1
15 4 8.2821e-2 9.2946e-2 8.4153e-2 9.0764e-2 8.2651e-2
15 5 2.1115e-2 2.3480e-2 2.1364e-2 2.4050e-2 2.1057e-2
100 18 4.2046e-1 4.3660e-1 4.2330e-1 4.2579e-1 4.2045e-1
100 23 2.3355e-2 2.4313e-2 2.3529e-2 2.4075e-2 2.3353e-2
100 28 4.2976e-4 4.4395e-4 4.3281e-4 4.5375e-4 4.2969e-4

Table 7.3: Exact values of E[(X − K)+] and their saddlepoint approximations.
X =

∑n
i=1 Xi where Xi is Bernoulli distributed with p(Xi = 1) = 0.15.
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given a lower order version and a higher order version. We have also es-
tablished the error convergence rates for the approximations in the i.i.d.
case. The approximations have been further extended to cover the case of
lattice variables. Numerical examples show that all these approximations
work remarkably well. The Lugannani-Rice type formulas to E[(X − K)+]
are particularly attractive because of their simplicity.

7.A Alternative derivation of the Lugannani-Rice

type formulas

The approximation J3 in (7.44) can also be derived by a more statistical
approach. Let us replace the density of X by its saddlepoint approximation
(7.8), we then obtain

E
[
X1{X≥K}

]
≈ 1√

2π

∫ ∞

K
x

eK(t)−xt√
K′′(t)

[
1 +

λ4(t)
8

− 5λ3(t)2

24

]
dx (7.63)

where x = K′(t). Let again K = K′(T ). A change of variables from x to t
gives

E
[
X1{X≥K}

]
≈ 1√

2π

∫ ∞

T
K′(t)

√
K′′(t)eK(t)−K′(t)t

[
1 +

λ4(t)
8

− 5λ3(t)2

24

]
dt

Let w2/2 = K′(t)t − K(t) and W 2/2 = K′(T )T − K(T ) so that wdw =
tK′′(t)dt, t = 0 ⇔ w = 0, t = T ⇔ w = W . A second change of variables
from t to w gives

E
[
X1{X≥K}

]
≈ 1√

2π

∫ ∞

W
e−

w2

2
wK′(t)

t
√

K′′(t)

[
1 +

λ4(t)
8

− 5λ3(t)2

24

]
dw,

which is precisely in the form of eq. (3.2.1) in Jensen (1995). According to
Theorem 3.2.1 therein, one finds

E
[
X1{X≥K}

]
≈ [1 − Φ(W )]

{
q(0)

[
1 +

λ4(0)
8

− 5λ3(0)2

24

]
+

q′′(0)
2

}
+ φ(W )

q(W ) − q(0)
W

, (7.64)

where q(w) = wK′(t)
t
√

K′′(t)
. Let q̃(w) = w

t
√

K′′(t)
, then q(w) = K′(t)q̃(w).
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Lemma 7.3.

q̃(w) = 1 − 1
6
λ3(0) +

[
5
24

λ3(0)2 −
1
8
λ4(0)

]
w2 + O(|w|3),

q̃(0) = 1, q̃′′(0) = −2
[
λ4(0)

8
− 5λ2

3(0)
24

]
,

t =
1√

K′′(0)

[
w − 1

3
λ3(0)w2 + O(|w|3)

]
.

Proof. See Jensen(1995) Lemma 3.3.1.

According to Lemma 7.3, we have

q(0) = μ, q(W ) =
WK′(T )

T
√

K′′(T )
, (7.65)

q′′(w) = q̃′′(w)K′(t)+2q̃′(w)K′′(t)
dt

dw
+ q̃(w)

[
K′′′(t)

(
dt

dw

)2

+ K′′(t)
d2t

dw2

]
,

where dt
dw = 1√

K′′(0)

[
1 − 2

3λ3(0)w
]
, d2t

dw2 = −2λ3(0)

3
√

K′′(0)
. When w = 0 we find

q′′(0) = − 2
[
λ4(0)

8
− 5λ2

3(0)
24

]
μ + 2

[
−λ3(0)

6

]
K′′(0)√
K′′(0)

+
K′′′(0)
K′′(0)

+ K′′(0)
−2λ3(0)
3
√

K′′(0)

= − 2
[
λ4(0)

8
− 5λ2

3(0)
24

]
μ. (7.66)

Plugging (7.65) and (7.66) in (7.64) we again get

E
[
X1{X≥K}

]
≈ μ [1 − Φ(W )] + φ(W )

[
K′(T )

T
√

K′′(T )
− μ

W

]
≡ J3. (7.67)
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n K Exact Ŝ1 Ŝ2 Ŝ3 Ŝ4

15 3 3.6574 3.8166 3.6702 3.6952 3.6563
15 4 4.4670 4.5614 4.4711 4.5099 4.4660
15 5 5.3422 5.3991 5.3425 5.3879 5.3412
100 18 19.7762 19.9213 19.7874 19.7984 19.7761
100 23 24.0548 24.1191 24.0619 24.0870 24.0547
100 28 28.7012 28.7330 28.7053 28.7400 28.7011

Table 7.4: Exact values of E[X |X ≥ K] and their saddlepoint approximations.
X =

∑n
i=1 Xi where Xi is Bernoulli distributed with p(Xi = 1) = 0.15.
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Chapter 8

Conclusions and Outlook

8.1 Conclusions

In this dissertation we have investigated the measurement and allocation of
portfolio credit risk with a factor model.

We have described a new procedure to embed the saddlepoint approx-
imation as a useful tool in portfolio credit loss modeling. The saddlepoint
approximation is applied to the conditional moment generating function of
the portfolio loss given the common factor in the Vasicek one-factor model.
The saddlepoint approximations, esp. the higher order approximations, are
able to produce accurate results on both the VaR and the VaR contribution.
The ES and ES contribution can also be computed satisfactorily. We have
also illustrated that the saddlepoint approximation works well for small-
sized portfolios and portfolios with exposure concentration, where Vasicek’s
asymptotic formulas fail. We further point out that the saddlepoint approx-
imation is a flexible method which can be applied in quite general situations,
for example, multi-factor models, non-Gaussian factor models and models
with random LGD.

Moreover we have examined various numerical methods, including the
normal approximation, saddlepoint approximation, importance sampling,
for the purpose of calculating the credit portfolio VaR and VaRC under the
Vasicek one-factor model. We find that each method provides a viable so-
lution to VaR/VaRC estimation for lower granular portfolios and portfolios
with medium exposure concentration. However there is no perfect method
that prevails under all circumstances and the choice of preferred method
turns out to be a trade-off among speed, accuracy and robustness.

The Generalized Beta Regression framework for modeling systematic
risk in loss given default (LGD) is proposed in the context of credit port-
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folio losses. The GBR framework provides great flexibility in random LGD
modeling and accommodates well skewness and heteroscedastic errors. The
quantities in the GBR models have simple economic interpretation. We have
shown that parameter estimation and model selection are straightforward in
this framework. Moreover, it has been demonstrated that the portfolio loss
distribution can be efficiently evaluated by both the normal approximation
and the saddlepoint approximation.

For the calculation of the tail probability in multi-factor credit portfolio
loss models, we have proposed algorithms based on adaptive integration,
with either a deterministic multiple integration rule or a Monte Carlo type
random rule. Both algorithms are asymptotically convergent and consis-
tently outperform the plain Monte Carlo method. The adaptive Monte
Carlo integration algorithm is able to provide reliable probabilistic error
bounds. To be able to take advantage of the adaptive integration algo-
rithm, an assumption of nonnegative coefficients in the multi-factor model
is made. A dedicated algorithm for the nonnegative factorization of a cor-
relation matrix has been presented to make sure that this assumption is
satisfied.

Finally, two types of saddlepoint approximations to E[(X − K)+] and
E[X|X ≥ K], where X is the sum of n independent random variables and
K is a known constant, are derived. For each type of approximation, we
have given a lower order version and a higher order version. We have also
established the error convergence rates for the approximations in the i.i.d.
case. The approximations have been further extended to cover the case of
lattice variables. Numerical examples show that all these approximations
work remarkably well. The Lugannani-Rice type formulas to E[(X − K)+]
are particularly attractive because of their simplicity.

8.2 Outlook

We have only considered default-mode models in which loss only occurs
when an obligor defaults in a fixed time horizon. However, credit losses can
also come from the deterioration in an obligor’s creditworthiness, particu-
larly for exposures with longer maturity. It would be a useful extension to
quantify portfolio credit risk on a marked-to-market basis that explicitly
measures the potential impact of both defaults and credit migrations.

Another straightforward extension would be replacing the Gaussian dis-
tribution of the common factor(s) by Lévy models, as outlined in Albrecher
et al. (2007). The Gaussian model has long been criticized for producing
too light tails and having no tail dependence. Especially since the emer-
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gence of the credit crisis, the spreads of the senior tranches of market indices
(e.g., CDX) have widened dramatically to a level that the industry standard
Gaussian copula model can not produce even with 100% correlation. As the
Lévy models are capable of generating heavier tail than the Gaussian copula
model, they can be utilized to provide a better fit to the market price.

A different approach to improve the performance of the Gaussian cop-
ula model is taking into account the randomness in the LGD. Along this
direction, the GBR models for LGD proposed in Chapter 4 can be readily
incorporated in the valuation of CDOs.

The Lévy models and the random LGD model can in fact be combined
conveniently. The saddlepoint approximations for E[(X − K)+] derived in
Chapter 7 can be immediately employed for CDO pricing with such a Lévy
model with random LGD.

Empirically, the GBR models for LGD should be tested against real
world LGD data, when the dataset is available.

It would also be interesting to explore portfolio credit losses models
beyond the factor models in which the obligors are independent conditional
on a realization of the common factors. An attractive alternative would be
the contagion models, in which the default of a firm has a negative impact
on the other firms. These models are said to be able to explain better the
clustering of default.
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