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Chapter 1

Digital Media Warehouses

Yama said, “Surely knowledge should be free to everyone, since all knowl-
edge is the gift of the Preservers.”

“Ah, but if it was freed,” Kun Nurbo said, “who would look after it?
Knowledge is a delicate thing, easily destroyed or lost, and each part
of the knowledge we look after is potentially dependent upon every other
part. I could open the library to all tomorrow, if I was so minded, but I will
not. You could wander the stacks for a dozen years, Yama, and never find
what you are looking for. I can lay my hand on the place where the answer
may lie in a few hours, but only because I have spent much of my life
studying the way in which the books and files and records are catalogued.
The organization of knowledge is just as important as knowledge itself,
and we are responsible for the preservation of that organization.”

Paul J. McAuley– Ancients of Days

Encouraged by the low price of digitizing methods (e. g. digital cameras, scanners)
and storage capacity (e. g. DVDs) collections of media objects are quickly becoming
popular. Public services like libraries and museums digitize their collections and make
parts of it available to the public. Likewise, the public digitizes private information,
e. g.holiday pictures, and shares it on the World Wide Web (WWW). Vast collections
of digital media are thus constructed in a relatively easy manner.

The management of these media objects encompasses many more aspects than
just populating thedigital media warehouse(DMW). First, there is the retention issue
of the digital content; will the digital image be accessible in 25 years from now?
Dedicated database [Sub97] and file systems [Bos99] have been developed to handle
the input, storage and output of media streams. Second, security issues play a role:
who is allowed to retrieve the data and should the data be encrypted? Third, the mass
of information in a DMW stresses our capability to find relevant information: how to
retrieve all images related to, for example, jazz music? The next section will delve
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Figure 1.1: Multimedia information retrieval system

deeper into this last issue, because the contribution of this thesis lies within this grand
challenge.

1.1 Multimedia Information Retrieval

A known and limited subset of a warehouse can be accessed by browsing: the com-
mon practice of every day life on the WWW. However, if this subset is unknown,
identifying relevant media objects in the vast collection poses a major problem.

Identifying relevant media objects is studied in the area ofmultimedia informa-
tion retrieval. This research community is multidisciplinary and thus attracts scientist
from various disciplines,e. g.computer vision, artificial intelligence, natural language
processing and database technology. These disciplines play their specific role in the
subsystems of the generic multimedia information retrieval system sketched in Fig-
ure1.1 (based on [Del99]). A small walk through this generic system will clarify the
information flow between and the individual roles of the various subsystems.

The user,i. e. the person in the left part of the figure, starts a session with the
system to resolve a query intention, for example: find a portrait of the jazz trumpeter
Chet Baker. Query specification tools offer assistance in translating the query inten-
tions into query clues understood by the system. For example:query-by-sketch(QbS)
[DP97, JFS95] or query-by-text(QbT) [dJGHN00, KKK +91, OS95] are well-known
paradigms being used. In QbS a global impression of the image has to be drawn. Key-
words or phrases, like “Chet Baker”, “jazz” or “trumpet”, form the clues used by the
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QbT paradigm.

These query clues are subsequently translated by the search engine into database
queries. The type of the information stored in the database, and thus these translations,
is as diverse as the query specification paradigms. For example: the QbS paradigm
maps the clues on numerical feature vectors containing information about color, tex-
ture and shapes. The keywords and phrases from the QbT paradigm may map on
entries in an ontology [SDWW01], controlled vocabulary or textual annotations. This
mapping from query clues to the information stored forms the basis to find matching
media objects. When the mapping is also used for the ranking of matching objects the
search engine needs a notion of similarity: how similar are two objects in the space
induced by the mapping? Using this distance metric the objects can be ranked from
the best to the worst match [Fal96].

The database executes the query specification to match and rank the media objects.
A visualization tool presents these query results for further inspection to the user. Also
for this part of the generic system many paradigms are available: the results may be
shown as clusters in a multidimensional space [vLdLW00] or the user can browse
through them [CL96]. Other senses than the user’s eyes may also be used to present
the query results,e. g. when the media type is audio or a score the musical theme is
played [MB01].

In most cases the user will have to refine the query to zoom in on the relevant
set of multimedia objects [MM99, VWS01]. This relies on a better understanding by
the user of the database content thus allowing a better formulation of the information
need. Query refinement is supported by a relevance feedback mechanism [CMOY96,
RHM98, RHOM98, RTG98, Roc71], which allows the user to indicate the positive and
negative relevance of the objects retrieved. These indications are used by the system to
adjust the query clues better to the user’s query intention. Such a mechanism connects
the visualization tool to the query specification tool and creates an interactive loop.
The hypothesis is that when the user terminates the loop he or she will have found the
media objects in the collection with a best match to the query intention.

In every system part the original media objects play a role. These media objects
can be either stored directly in the database, or reside on a different storage medium,
e. g. the file servers of the WWW. The information exchanged between the various
subsystems will seldom contain the raw media objects. Instead database keys, file-
names orUniform Resource Identifiers(URIs) [BLFIM98] are passed along.

The information about the collection of media objects is produced by the anno-
tation subsystem. Part of this system handles the interaction with the librarian,i. e.
the person in the right part of Figure1.1. This librarian uses his domain knowledge
and standard conventions,e. g. in the vain of the traditionalAnglo-American Cata-
loguing Rules(AACR2R) [GW98], to annotate the media objects. These annotations
range from content-independent [DCM01], e. g. this image was added to the collec-
tion at July 1, 1998, to content-descriptive data [ISO01], e. g. this image is a portrait
of Chet Baker [Gro94]. Apart from a manual part the annotation system also has an
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automatic part. In the automatic part the system uses algorithms and additional in-
formation sources, like an ontology or a thesaurus, to automatically extract additional
information. Interaction between the two parts may be used to complete and verify
the annotation,e. g.automatic extracted concepts may be approved by the librarian.

The database functions as a persistent buffer between the off line produced an-
notation information and the on line use of this information to answer queries. This
database is managed by aDatabase Management System(DBMS). A DBMS offers
not only persistent storage of the data, but also other functionality needed by a DMW.
For example, to assure a consistent representation and to control mixed access, but
also, one of the major research themes in database technology, query optimization.
The search engine will profit from the last one in its search for matching media ob-
jects.

As the main focus of this thesis lies within the idea of automatic annotation ex-
traction extraction the coming section will further describe the role of this subsystem.

1.2 Annotations

As discussed in the walk through and shown in Figure1.1 the annotation information
is produced manually and/or automatically extracted. However, with the increasing
size of media collections manual annotation of all media objects becomes unfeasi-
ble. Likewise, when the collection is unconstrained,i. e. contains media objects from
various domains, manual annotation of the objects can never meet all possible query
intentions. Even for domain and size restricted collections manual annotation remains
hard, due to the fact that annotations tend to be subjective,i. e. they describe the
personal perception of the librarian. These aspects increase the importance of the
automatic part of the annotation subsystem.

1.2.1 The Semantic Gap

The holy grail for automatic annotation is to take over the content-descriptive part of
the manual burden. To realize this, thesemantic gapbetween raw sensor data and
“real world” concepts has to be bridged. For visual data this gap is defined as follows
[SWS+00]:

The semantic gap is the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same
data have for a user in a given situation.

This definition may be generalized to raw sensor data in general without loss of valid-
ity.

The semantic gap is visualized in Figure1.2. The user with all his/her general
knowledge will have many associations with this photo. These associations range
from generic to specific ones,e. g. from “this is a portrait” to “this is a portrait of
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the jazz trumpeter Chet Baker”. Ideally, in the case where there is no semantic gap,
the computer system can extract the same information from a digital version of this
photo. Algorithms to classify this image as a photo and to detect the frontal face
are available. Combining this basic information the validity of the generic semantic
concept portrait can be induced. The validity of more specific concepts often depends
on the availability of more contextual knowledge about the media object.

However, the semantic gap is still not filled and may never be. One of the reasons
is the role of ambiguity. The more abstract a concept becomes the more subjective,
due toe. g. cultural context-sensitivity, interpretations are possible. In [Eak96] the
authors distinguish three image content levels:

level 1 primitive features: color, texture, shape;

level 2 derived (or logical) features: contains objects of a given type or contains indi-
vidual objects;

level 3 abstract attributes: named events or types of activities, or emotional or reli-
gious significance.

The higher the level the more subjective, and thus ambiguous, annotations become.
State of the art annotation extraction algorithms reach level 2. Level 3 algorithms are
only possible for clearly defined and distinguishable (narrow) domains. To provide
enough support for an attack on the third level the annotation subsystem will need
specialized constructs to handle this ambiguity,e. g.using probabilistic reasoning.

1.2.2 Annotation Extraction Algorithms

The predominant approach to try and bridge the semantic gap is the translation of
the raw data into low-level features, which are subsequently mapped into high-level,
i. e. semantic meaningful, concepts. This approach is reflected in frameworks like
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ADMIRE [Vel98] and COBRA [PJ00] and thecompositional semanticsmethod used
in [CDP99].

Low-level features (level 1) are directly extracted from the raw media data and
relate to one or more feature domains embedded in the specific media type [Del99].
For images color, texture and shape features are well known examples. The choice of
domains gets even bigger when several media types are combined into one multimedia
object,e. g.a video which may be seen as a, time related, sequence of images with an
audio track.

Rules, which may be implicit, map these low-level features into semantic concepts
(level 2 and 3). An expert may hard-code these rules,e. g. a combination of boolean
predicates, or they may be learned by a machine learning algorithm [Mit97]. Such
an algorithm may result in human readable rules, as is the case with decision rules
[Qui93], or the rules may be hidden inside a blackbox,e. g. in the case of a neural
network [Fau94].

In fact there is a wealth of research on extraction algorithms for both features and
concepts. When a subset of them are used to annotate a collection of media objects
they depend on each other to create a coherent annotation.

1.2.3 Annotation Extraction Dependencies

Annotations of the example image of Chet Baker may be extracted by using these
mappings (illustrated in Figure1.3):

1. the image is classified as a photo: feature values,e. g. the number of colors and
the saturation of these colors, are used in a boolean rule, which determines if
the image is a photo or not [ASF97];

2. the photo contains a human face: the group of skin colors in thec1c2c3color
space, are used to find skin areas and these areas form the input to a neural
network which determines the presence of a human face in the photo [GAS00].

This example shows that concepts do not only depend on features, they may also de-
pend on each other. In this example the face detection presupposes that the image is
classified as a photo. This is a different kind of dependency. The dependency between
feature and concept extraction is based on a direct output/input relation: the output of
the feature detector is input for the photo decision rule. This type of dependencies is
called anoutput/input dependency. However, the dependency between the two con-
cepts is based on context: the photo concept functions as a contextual filter for the
face concept.

Thiscontext dependencycan be hardcoded as an output/input dependency. Unfor-
tunately this will harm the generality of the face detector: it can not be reused in a
different context, where there is no photo pre-filter. Context dependency is a design
decision or domain restriction and is not enforced by the extraction algorithm. In this
specific case the decision to use the photo classifier as a pre-filter is made because
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Figure 1.3: Automatic information extraction steps

the face detector is expensive, while the photo classifier is cheap. By using the photo
classifier as a pre-filter only images with a high chance on the presence of a face will
be passed on to the expensive face detector. Due to the explicit handling of this con-
text dependency the face detector stays generic in nature and is able to be reused in a
different context,e. g.black and white images.

The subsystem which controls the automatic information extraction has to take
care of these dependencies and use them to call the algorithms, evaluate the rules and
run the machine learning algorithms to produce the features and concepts to be stored
in the database.

1.2.4 Annotation Maintenance

Complicating the task of the annotation subsystem further, supporting multimedia in-
formation retrieval in a non-static environment, like the WWW, involves the mainte-
nance of the annotations, features and concepts, stored in the database so they reflect
the current status in this evolving environment.

There are several possible sources of change leading to the need of annotation
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maintenance. Assuming that the media objects are not stored in the database, only the
annotations are, the first source is anexternalone. The media objects themselves may
be modified. Upon each modification the automatic (and manual) annotation has to
be redone to guarantee that the database contains the correct and up-to-date data. Two
other sources can be seen asinternal to the system: changes in the extraction algo-
rithms and in the dependencies between them. If an algorithm is improved (or a bug
is fixed), the specific features or concepts have to be updated. Due to the output/input
and context dependencies between features and concepts this change may trigger the
need for reruns of many other extraction algorithms. Finally, the output/input and
context dependencies may change. The addition or removal of a context dependency
may, again, trigger the need for reruns of extraction algorithms.

When the dependencies and algorithms are embedded in a, hand crafted, special
purpose program there is basically one option: rework the program and do a complete
rerun of the annotation process for the affected multimedia objects. However, when
(at least) the dependencies are described in a declarative manner, a supervisor program
can take care of the maintenance process. Such a supervisor analyzes the dependencies
and reruns only the extraction algorithms which are affected by the change. In this way
a complete rerun, including unnecessary reruns of expensive algorithms, is prevented
and the database is maintained incrementally.

1.3 The Acoi System

Although incremental maintenance of multimedia annotations has been identified as a
key research topic [SK98], there has been little actual research to solve this problem
and no satisfactory solution exists yet. This thesis describes theAcoi system archi-
tecture and its reference implementation, which provides a sound framework for the
automatic part of the annotation subsystem, including incremental maintenance.

1.3.1 A Grammar-based Approach

Formal language theory forms the foundation of this framework. Its choice was based
on the observation that proper management of annotations all involve context:

the semantic gap the more specific a concept, the more structural contextual know-
ledge is needed for validation (see Section1.2.1);

disambiguation the more abstract a concept, the more user specific contextual know-
ledge is needed to disambiguate it (see Section1.2.1);

contextual dependencyto promote reuse of detectors, context dependencies should
be explicitly handled (see Section1.2.3);
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incremental maintenance exact knowledge of the origins,i. e. the context, of an
annotation is needed to localize the impact of internal or external changes and
thus enableincrementalmaintenance (see Section1.2.4).

The Acoi system would thus benefit from a dependency description or process-
ing model which covers context knowledge for both annotations and extraction algo-
rithms. Traversing the dependency description a path from the start of the extraction
process to the actual extraction of a specific annotation can be maintained. A set
of annotation paths can easily be described by a tree. Sets of valid trees,i. e. valid
annotation paths, are naturally modeled by grammars. Grammars form a context pre-
serving basis for a dependency description. However, the context descriptions should
be underspecified enough to keep algorithms generic and enable, and even promote,
reuse. The theoretical and practical implications of this intuition is investigated in this
thesis.

1.3.2 System Architecture

Detailed descriptions of theAcoi system components, shown in Figure1.4, and their
relationships form the core of the thesis.

Chapter2 starts with a description of theAcoi system foundation: thefeature
grammar systems. This foundation is based on a careful embedding of extraction
algorithms into formal language theory and to formally describe both types of infor-
mation extraction dependencies.

The next chapter introduces a non-mathematical notation for feature grammar sys-
tems: thefeature grammar language. This language supports the core of a feature
grammar system. Based on earlier experience extensions are added to conveniently
support the various forms of feature and concept extraction.

In Chapter4, the Feature Detector Engine(FDE) uses the execution semantics
of feature grammar systems to produce the annotations. This involves traversing the
dependencies described and execution of its associated extraction algorithms. The
core is supplied by a practical algorithm taken from natural language research and
compiler technology and adapted to handle the specific needs of feature grammar
systems.

The impact of the system on the database is discussed in Chapter5. The engine
delivers its data,i. e. annotations and their complete context, in a format related to the
semantics of the feature grammar language. This format is generic and can be mapped
to the requirements of any DBMS. In this chapter a DBMS specific mapping for the
Monet back-end and related optimization issues are discussed.

TheFeature Detector Scheduler(FDS), described in Chapter6, analyzes the de-
pendencies,i. e. the possible contexts, in a specific feature grammar to localize the
effect of changes in source data, algorithms or dependencies. When the parts af-
fected are identified, the scheduler triggers incremental maintenance runs of the en-
gine, which result in the propagation of changes to the database.
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Figure 1.4:Acoi system architecture

1.3.3 Case Studies

Various real world applications have been used to identify and evaluate functional,
performance and capacity requirements for theAcoi system architecture. The case
studies will be entirely exposed in Chapter7. But throughout the thesis they will also,
just like the reference implementation, function as running examples to illustrate how
specific requirements are met by the system architecture. Therefor the succeeding
subsections will shortly introduce the case studies.

1.3.3.1 The WWW Multimedia Search Engine

The WWW is probably the largest unconstrained collection of multimedia objects
available. Search engines have extracted text-based entry points to function as road-
signs to browse this vast collection. With the growing popularity of the web the search
and retrieval of other media types is getting more attention,e. g.both AltaVista [Alt01]
and Google [Goo01] are offering some support for retrieval of multimedia objects.
However, this support is still based on text,e. g. keywords extracted from either the
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URL of the object or from the web page it appears on. Content- or concept-based
retrieval play only a significant role in research prototypes, like WebSeer [FSA96],
WebSEEk [SC96] and ImageScape [Lew00]. These prototypes allow the retrieval of
images on the basis of a limited set of, hardwired, concepts,e. g. faces or landscape
elements.

The Acoi system architecture is used to build and maintain a multimedia search
engine’s index. With advances in computer vision and sensor informatics the number
of automatic extractable features and concepts will gradually increase. Due to the
system’s ability to maintain its index incrementally (prototypes of) new features or
concept extraction algorithms are easily added. This ability also makes it well suited
to adapt to the dynamic behavior of the Internet,i. e. the index is continually updated
instead of completely recreated.

The basis is a simple model of the web: web objects and their links. This model
is then evolutionary enhanced with content-based feature and concept extraction algo-
rithms.

1.3.3.2 The Australian Open Search Engine

This Australian Open case study also involves the maintenance of a search engine’s in-
dex. But in this case the domain is restricted to the Australian Open tennis tournament.
In the WWW case study the model contains multimedia objects and generic relations.
This limited model makes it possible to extract only very generic features and con-
cepts,e. g. this video contains 25 shots. However, in this case study the system also
contains conceptual information and, combined with domain knowledge, more spe-
cific feature and concept extraction can be realized,e. g. this video of a tennis match
between Monica Seles and Jennifer Capriati contains 25 shots of which 20 show the
tennis court.

The prime benefit of the Australian Open case study is to test the flexibility and
open character of the system architecture. TheAcoi system is embedded in a larger
application and has to interact with separate systems, which handle the conceptual
data or function as distributed extraction algorithms.

1.3.3.3 Rijksmuseum Presentation Generation

The Rijksmuseum in Amsterdam, like many other museums, makes part of its collec-
tion available in digital format1. This gives the public alternative and interactive ways
to browse the collection. The database underlying this interactive system contains
manual annotations of the museum pieces.

The underlying database is semistructured in nature,i. e. the annotation is not
always complete. TheAcoi system is used, in this case, as a style database. If the
annotator did not specify the style period of a painting the system tries to infer the

1www.rijksmuseum.nl

http://www.rijksmuseum.nl/
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correct style using the dependency description and associated extractors. The thus au-
tomatically augmented annotation may help in several ways. It may help the annotator
in completing the annotation by providing useful hints. Furthermore, it may allow the
museum visitor to retrieve possible matches.

The features and concepts extracted may also be used to influence and optimize
the layout of the hypermedia presentation generated to browse a query result.

1.4 Discussion

This introductory chapter surveyed the domain of digital media warehouses. A num-
ber of research challenges exist within this domain and are the focus of attention
for a multidisciplinary research community. The research described in this thesis is
dedicated to the problem of automatic extraction and (incremental) maintenance of
multimedia annotations. To retain enough contextual knowledge a grammar-based
approach is taken, which grounds the approach in a well-studied field of computer
science. The subsequent chapters start with laying the formal basis and work towards
a practical solution to the problem. Chapter7 will showcase the solution in the form
of the evaluation of several case studies in the problem domain, and may thus be of
main interest to practical oriented readers.



Chapter 2

Feature Grammar Systems

A wise man once said
that everything could be explained with mathematics
He has denied
His feminine side
Now where is the wisdom in that?

Marillion – This is the 21st century

The core of incremental maintenance of the annotation index lies in the understand-
ing and analysis of the dependency description. In this chapter the dependency de-
scriptions used by theAcoi system architecture, called feature grammar systems, are
introduced.

As the name suggests feature grammar systems are related to grammars known
from natural languages,e. g. English or Dutch. Sentences in these languages are
constructed from basic building blocks: words. Each language has a set of rules which
describe how words can be put in a valid order, and what the semantic meaning of
this order is. These rules form the grammar of the language,e. g. like the following
grammar rules for a subset of the English language.

Example 2.1.

S → NP V P

NP → John

NP → Mary

V P → Vi

V P → Vt NP
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NP VP
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Figure 2.1: A parse tree

V P → Vs S

Vi → laughs

Vt → loves

Vs → thinks

Sentences can now be tested for membership of the language induced by these specific
grammar rules. A valid sentenceS consists of two parts: a noun phraseNP and a
verb phraseV P . Each of these phrases may (again) consist of other parts,e. g. a
specific verb type. This can be repeated until the individual words of the sentence are
reached. The result of such a process, also known asparsing, is theparse treeof a
sentence. Figure2.1shows the parse tree for this sentence:John thinks Mary laughs.
Notice that the complete parsing context is captured by this tree.

The fundamental idea behind feature grammar systems is that the same process
of deriving a parse tree, and thus the underlying formal theories and practices, can
be used as a driving force to produce the annotation of a multimedia object. To start
once more with the basis: annotation items are seen as the words. Sentences formed
by combinations of these words should be valid in a feature grammar system,i. e. a
specialized dependency description.
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As stated in the previous chapter two kinds of dependencies should be captured in
these descriptions: output/input and contextual dependencies. Looking at the structure
of the grammar rules it is easy to see that the right-hand sides of the rules capture
contextual dependencies: in the context of a specific verb phraseV P a verbVt should
always be followed by a noun phraseNP . Output/input dependencies are directly
related to annotation extraction algorithms. But those are not found in the grammar
rules. The addition of feature grammar systems is that these algorithms are bound to
specific symbols in the grammar. Upon encountering such a special symbol during
the derivation process the output/input dependencies can be resolved by using the
contexts stored in the gradually build parse tree. In fact the output/input dependencies
are associated with the context of the left-hand side of a rule.

The first part of this chapter is devoted to embedding the additions of feature gram-
mar systems into results of formal language theory. To support the understanding of
this embedding the next section shortly recalls some relevant grammar theory. Readers
which are familiar with grammar theory,i. e. the Chomsky hierarchy, the (regulated)
rewriting process and grammar systems, may skip to Section2.2.

A feature grammar itself is a valid sentence in a meta language: thefeature gram-
mar language. The next chapter describes how the expressive power of feature gram-
mar systems is captured by the feature grammar language. Using this theoretical basis
Chapters4 and6 will describe appropriate adaptations of formal language technolo-
gies used by the annotation subsystem to maintain the database. This database, as will
be described in Chapter5, stores a collection of the annotation sentences,i. e. a subset
of all possible sentences in the language induced by the feature grammar, along with
their parse trees.

2.1 A Grammar Primer

Grammars are a key concept in computer science and many theoretical and practical
issues related to them have been studied extensively. The theoretical implications of
grammars are studied in the field of formal language theory (see [Lin97, HMU01] for
an introduction) and form the basis of this chapter. Parsing algorithms (see [GJ98]
for an overview),i. e. how to efficiently determine if a sentence is a valid member
of a language, is one of the more practical issues and will play an important role in
Chapter4.

2.1.1 A Formal Specification of Languages and Grammars

The formal specification starts with a languageL. L consists of sentences constructed
by concatenation of symbols from the alphabetΣ, i. e. L ⊆ Σ∗. A grammarG
describes the languageL(G) and is defined as follows.

Definition 2.1. A grammarG is defined as a quadrupleG = (N,T, P, S), where
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1. N is a, non-empty, finite set of symbols callednon-terminalsor variables,

2. T is a, possibly empty, finite set of symbols calledterminals, i. e. T ⊆ Σ,

3. N ∩ T = ∅,

4. V = N ∪ T ,

5. P is a finite set of rules of the form(L → R), calledproductions, such that

(a) L ∈ V + is the left-hand side (LHS) of a production and

(b) R ∈ V ∗ is the right-hand side (RHS) of a production, and

6. S ∈ N is a special symbol called thestartvariable oraxiom.

A production rule inP where the RHS is an empty string is written as:(L → λ),
i. e. λ represents the empty string. Such a production rule is also called an erasing
production.

2.1.1.1 The Chomsky Hierarchy

Grammars which apply to Definition2.1 are calledrecursively enumerable(RE) or
Type 0 grammars. These grammars permit the description of a large set of languages1,
however, they are also unmanageable,e. g. there is no general efficient parsing algo-
rithm. This problem led to a key work in formal language theory: the Chomsky hier-
archy of grammars [Cho59]. In this hierarchy grammars are organized on the basis of
their expressive power. The hierarchy starts with phrase structure grammars, and on
each subsequent level restrictions are added. The restrictions result in gradually eas-
ier to “understand” or to parse grammars, but these grammars become also gradually
less expressive. The following other grammar types belong to the Chomsky hierarchy
[GJ98].

Context-sensitive (CS) or Type 1 grammarsA grammar is context-sensitive if each
production rule is context-sensitive. A rule is context-sensitive if actually only
one (non-terminal) symbol in its LHS gets replaced by other symbols, while the
others are found back undamaged and in the same order in the RHS. This rule
is for example context-sensitive, whereL is the left andR is the right context
of S:

L S R → L W R

1[Lin97] contains a proof that there are languages which are not inL(RE).
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Context-free (CF) or Type 2 grammars A context-free grammar is like a context-
sensitive grammar, except that it may contain only rules that have a single non-
terminal in their LHS,i. e. there are no left and right contexts as shown in this
rule:

S → X Y Z

Regular (REG) or Type 3 grammars A regular grammar contains two kinds of pro-
duction rules: (1) a non-terminal produces zero or more terminals and (2) a
non-terminal produces zero or more terminals followed by one non-terminal.
Examples for both kinds of rules are shown here:

S → x y z

S → v W

Due to the specific forms of rules in a REG grammar a more compact nota-
tion, a regular expression, is often used. Next to the alphabetT the notation
supports: parentheses and the operators union (+), concatenation (·) and star-
closure (∗). For example, the expression((a+ b · c)∗) stands for the star-closure
of {a}∪{bc}, that is, the language{λ, a, bc, aa, abc, bca, bcbc, aaa, aabc, . . . }.
More extended regular expression languages, and thus more compact, are used
in practice [Fri02]. As a convenience for later on theperiodoperator (.) is al-
ready introduced. This operator matches any symbol of the alphabet,i. e. (.·a·.)
describes the language where the second symbol is alwaysa, while the first and
third symbol may be any symbol (includinga).

2.1.1.2 Mild Context-sensitivity

Just like RE grammars, CS grammars turned out to be impractical. Although a generic
parsing algorithm can be defined,i. e. in the construction of a linear bounded automa-
ton (LBA) [Lin97, RS97a], specifying a CS grammar remains a non-trivial task, even
for a small language, resulting in incomprehensible grammars (see for an example
[GJ98]). For this reason most practical attention has gone to CF and REG gram-
mars. However, it was early discovered that “the world is not context-free”,i. e. there
are many circumstances where naturally non-CF languages appear. Linguists seem
to agree [Man94] that “all” natural languages contain constructions which cannot be
described by CF grammars. Three of such non-CF constructions are [RS97b]:

1. reduplication, leading to languages of the form{xx|x ∈ V ∗};

2. multiple agreements, modeled by languages of the form{anbncn|n ≥ 1},
{anbncndn|n ≥ 1}, etc.;
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3. crossed agreements, as modeled by{anbmcndm|n, m ≥ 1}.

Artificial languages,e. g. a programming language likeAlgol 60, have also non-CF
properties [Flo62]. Seven examples of non-CF areas where languages are found are
described in Section 0.4 of [DP89], and the section also concludes with the remark:
“the world seems to be non-context-free . . . ”. The same book describes 25 different
mechanisms for regulated rewriting. Using such a mechanism a “mild” subfamily
of CS languages is created. A mild CS language has as many CF-like properties as
possible, but is able to cover the required non-CF constructions.

Before some mechanisms of regulated rewriting are introduced the derivation pro-
cess (also known as rewriting) for CF and REG grammars is formalized.

2.1.2 The Derivation Process

If the sentencew ∈ L(G), then the following derivation exists:

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w

The stringsS, w1, w2, . . . , wn, which may contain variables as well as terminals, are
calledsentential formsof the derivation.

This application of the direct derivation can be defined as follows:

Definition 2.2. The application of the direct derivationx1wx2 ⇒ x1zx2 is allowed
iff (w → z) ∈ P , whereP is the set of productions from grammarG.

By using a subscript to the direct derivation (⇒) a specific grammar or a (labeled)
production rule may be indicated,e. g.⇒G.

Using the transitive closure of the direct derivation the set of sentences in the
languageL can be defined:

L(G) = {w ∈ T ∗|S ∗⇒ w}

This set of sentences may be further limited by specific forms of derivation. A
practical form, which will be encountered later on, isleftmostderivation. In this case
each rule used in the derivation process rewrites the leftmost non-terminal in the cur-
rent sentential form,i. e. x1 ∈ T ∗. This specific mode of derivation is indicated as
follows:

L(G) = {w ∈ T ∗|S ∗⇒
lm

w}
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2.1.2.1 Bidirectional Grammars

Until now grammars are used in generating mode,i. e. by starting with the start symbol
a specific sentence is gradually constructed. Using this process all sentences belonging
to the language can be enumerated, hence all grammars are RE grammars. Grammars
can also be used in accepting mode. In this mode a specific sentence is checked for
membership of the language. This is done by flipping the left- and right-hand sides
of the production rules. This derivation process then describes the acceptance of the
sentencew: w

∗⇒ S.
The mode of the grammar is indicated byGgen or Gacc for respectively generative

and accepting mode. When no mode is indicated (G) the generative mode is used.
A specific grammar may be usable in both modes and is then calledbidirectional
[App87, Neu91].

Notice that membership of a sentence can be resolved in either accepting or gener-
ating mode. In the latter case one enumerates all sentences until the sentence is found
(or not), although this process may be endless. The optimization of this search process
is the main target of parsing algorithms, which will be discussed in Chapter4.

2.1.2.2 Parse Trees

By keeping track of the derivation steps a parse tree of the sentence, like the one in
Figure2.1, can be build. The parse trees forG are trees with the subsequent conditions
[HMU01]:

1. each interior node is labeled by a non-terminal inN ;

2. each leaf is labeled by either a non-terminal, a terminal, orλ, however, if the
leaf is labeledλ, then it must be the only child of its parent;

3. if an interior node is labeledA, and its children are labeled

X1, X2, . . . , Xk

respectively, from the left, thenA → X1X2 . . . Xk is a production inP . Note
that the only time one of theX ’s can beλ is if that is the label of the only child,
and(A → λ) is a production ofG.

2.1.2.3 The Delta Operation

Each sentential formwi can now be associated with a parse treeti. The yield of
this tree is defined as the corresponding sentential form,i. e. yield(ti) = wi. A
tree can also be described by a set of paths,i. e. the result ofpath(ti). The in the
beginning of the chapter shown parse tree (see Figure2.1) contains, for example, the
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Figure 2.2: (a) An AND/OR-graph and (b) a packed shared forest

pathS1 · V P2 · V1 · thinks1. The subscripts indicate the order of the nodes among its
siblings in the tree2.

The path andyield operations provide a simple relationship between REG and
CF languages [Eng02]. For a languageL, let thedeltaof L, denoted byδ(L), be the
language of all yields of trees that have all their paths inL:

δ(L) = {yield(t)|path(t) ⊆ L}

The relationship mentioned above is that the CF languages are exactly the deltas
of the REG languages:L(CF) = {δ(L)|L ∈ L(REG)}.

2.1.2.4 Parse Forests

Definition2.1allows multiple production rules to have the same symbol as their LHS.
The RHSs of these rules are considered alternatives of each other. Grammars contain-
ing alternatives are called non-deterministic. If several of these alternatives lead to a
valid parse tree for the input sentence, the grammar is also ambiguous. In these cases
the sentence is not described by one parse tree, but by several,i. e. a parse forest. Such
a forest can be represented by an AND/OR-graph [Nil98, Hal73]. In these graphs con-
junctions of nodes are connected by an arc, see Figure2.2.a. In this example the last
three words of the input sentence can be explained by two (not shown in the simple
example grammar for the English language) alternative production rules for the verb
phraseV P . In one parse treeflying is an adjective to the nounplanes, in the other
structureflying is interpreted as a verb.

A packed shared forest [Tom86], see Figure2.2.b, aims at structure sharing. Pars-
ing algorithms (to be discussed in more detail in Chapter4) do easily allowsharingof
substructures by a well known dynamic programming concept: memoization [Mic68].
Thenoun nodeN and most of the terminal nodes are shared this way. This can be

2For brevity’s sake the order information in paths will be omitted most of the time.
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seen as sharing the bottom structures of the parse trees.Packingis targeted at shar-
ing the upper structures. Apacked nodecontainssub-nodeswhich have common leaf
nodes and are labeled with the same non-terminal symbol. In the example structure
the two alternatives for the verb phrase are packed together.

Packed shared forests are aimed at parse structures related to CF grammars. This
grammar type only allowslocal ambiguity. The combination of ambiguity and the
long distance dependencies of CS grammars calls for methods to indicate the global
context and scope of a node. One method to achieve this is by naming the disjunctions
and to annotate nodes in the same context with this name, see [DE90, Bla97, Bla98].

2.1.2.5 Disambiguation

In fact ambiguity may appear on many different levels in an application. Innatural
language processing(NLP) ambiguity can be found at these levels:

1. lexical ambiguity: a word has more than one meaning;

2. syntactic or structural ambiguity: a sentence has two or more parses as in Fig-
ure2.2;

3. semantic ambiguity: may directly follow from syntactic ambiguity or from the
semantic context.

The NLP community has introduced a vast amount of models and algorithms todis-
ambiguatethese ambiguities. For an overview see [JM00].

On the syntactic level disambiguation may be done by the use ofprobabilis-
tic parsing [Boo69, Sol69]. In this case each alternative is assigned a probability
[Bak79] and the parsing algorithm [Jel69] chooses the most probable parse tree. An-
other method is to ask for human interaction. Tomita describes a system where
manual disambiguation is build into the parser [Tom86]. However, it is also pos-
sible to postpone disambiguation to a higher automatic or manual level. In which
case the parser will have to deliver the complete ambiguous structure. For example,
in [KV94, vdBKMV03] the authors describe disambiguation filters, based on term
rewriting, to prune a parse forest.

2.1.3 Regulated Rewriting

By regulating the applicability of a direct derivation step the set of valid sentences of
a language can be decreased, while the basic rules keep close to their CF equivalents.
In the monograph [DP89] the authors describe 25 regulation mechanism,e. g.matrix,
programmed and random context grammars. In this section two mechanisms, which
are closely related to the one applied by feature grammar systems, are described in
detail.
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2.1.3.1 Conditional Grammars

While other mechanisms work by restricting or explicitly stating the order in which
productions may be applied the mechanism ofconditional(C) grammars is based on
conditions on the contextual sentential forms.

Definition 2.3. In a conditional grammarG = (N,T, P, S) the productionsP are of
the form(w → z,Q) where

• Q is aREG language over the alphabetV ,

• N , T andS have their normal meaning.

The rule(w → z,Q) is applicable tox = x1wx2 yieldingy = x1zx2, i. e. x ⇒ y,
iff x ∈ Q.

Example 2.2.

Take for example the following C grammar:

G = ({S, S′}, {a}, {p1, p2, p3}, S)

with

p1 = (S → S′S′, (S′)∗S+)

p2 = (S′ → S, S∗(S′)+)

p3 = (S → a, a∗S+)

[RS97b] shows that this grammar describes a known non-CF language:

L(G) = {a2n

|n ≥ 0}

In both [DP89] and [RS97b] it is shown thatL(C, CF−λ) = L(CS), i. e. C gram-
mars with CF rules but no erasing productions are equivalent to CS grammars, and
also thatL(C, CF) = L(RE). In [RS97b] this is done by giving rules for transforming
a C grammar into a CS grammar, and vice versa.

2.1.3.2 Tree-controlled Grammars

Another regulated rewriting mechanism uses the parse tree to restrict applications of
the derivation step. Those grammars, calledtree-controlled(TC) grammars, are de-
fined as follows [CM77, DP89]:
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Definition 2.4. A tree-controlledgrammar is a constructG = (N,T, P, S,R) where

• G′ = (N,T, P, S) is a CF grammar and

• R ⊆ V ∗ is regular.

L(G) consists of all wordsw generated by the underlying grammarG′ such that
there is a parse tree ofw such that each word obtained by concatenating all symbols
at any level (except the last one) from left to right is inR.

All nodes of the parse tree with the same distance to the root of the tree are on the
same level of the derivation tree.

Example 2.3.

Consider the following grammar:

G = ({S, A,B,C}, {a, b, c}, {P1, . . . , P7}, S,R)

with

P1 = (S → ABC)
P2 = (A → aA)
P3 = (A → a)
P4 = (B → bB)
P5 = (B → b)
P6 = (C → cC)
P7 = (C → c)

and

R = {S, ABC, aAbBcC}.

Evidently,

L(G) = {anbncn|n ≥ 1}.

Which is a known CS language [CM77].

Also for this type of mildly CS languages it is shown in [DP89] thatL(TC, CF−
λ) = L(CS).
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2.1.4 Grammar Systems

Until now only one grammar at a time is considered. However, grammars can coop-
erate in so called grammar systems [CVDKP94]. The theory of these systems was
inspired by the will to modelmulti-agent systems. A common technique in the field of
Artificial Intelligence (AI) is to structure those systems according to the blackboard
architecture [Nil98]. In such a system various knowledge sources work together on
solving a problem. The current state of the solution resides on the blackboard. A
protocol of cooperation encodes the control over the knowledge sources.

In a grammar system the common sentential form is on the blackboard and the
component grammars are the knowledge sources. Since its introduction in 1990 var-
ious forms of cooperation and control have been studied. Two basic classes are dis-
tinguished:cooperating distributed(CD) andparallel communicating(PC) grammar
systems. In this section only CD grammar systems will be introduced, as they form
the formal basis for feature grammar systems.

2.1.4.1 CD Grammar Systems

Definition 2.5. A CD grammar systemis a (n + 2)-tuple

Γ = (T,G1, G2, . . . , Gn, S),

where,

1. for 1 ≤ i ≤ n, eachGi = (Ni, Ti, Pi) is a (usual)CF grammar, called a
component, with

(a) the setNi of non-terminals,

(b) the setTi of terminals,

(c) Vi = Ni ∪ Ti,

(d) the setPi of CF rules, and

(e) withoutaxiom,

2. T is a subset of
⋃n

i=1 Ti,

3. V =
⋃n

i=1 Vi, and finally

4. S ∈
⋃n

i=1 Ni = N .

The components correspond to the knowledge sources solving the problem on
the blackboard, where every rule represents a piece of knowledge which results in a
possible change of the blackboard. The axiom, or start symbol,S corresponds with
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the initial state of the problem on the blackboard. The alphabetT corresponds to
knowledge pieces which are accepted as solutions or parts of solutions.

A derivation step in a grammar system is now defined as follows:

Definition 2.6. Let Γ be aCD grammar systemas in Definition2.5. Letx, y ∈ V ∗
i .

Thenx ⇒k
Gi

y is applicable iff there are wordsx1, x2, . . . , xk+1 such that:

1. x = x1, y = xk+1,

2. xj ⇒Gi
xj+1, i. e. xj = x′jAjx

′′
j , xj+1 = x′jwjx

′′
j , (Aj → wj) ∈ Pi, 1 ≤ j ≤

k.

Moreover, this leads to the following other derivation modes:

• x ⇒≤k
Gi

iff x ⇒k′

Gi
y for somek′ ≤ k,

• x ⇒≥k
Gi

iff x ⇒k′

Gi
y for somek′ ≥ k,

• x ⇒∗
Gi

iff x ⇒k
Gi

y for somek, and

• x ⇒t
Gi

iff x ⇒∗
Gi

y and there is noz 6= y with y ⇒∗
Gi

z.

Any derivationx ⇒k
Gi

y corresponds tok direct derivation steps in succession in
the component grammarGi. In a≤ k-derivation mode the component can perform at
mostk changes. The≥ k-mode requires the component to be competent enough to
perform at leastk steps. A component may work on the problem as long as it wants
when the derivation is in∗-mode. Finally, thet-mode corresponds to the case where
the component should work on the problem as long as it can.

The language induced by a CD grammar systemΓ is now defined as follows:

Definition 2.7. Let

f ∈ {∗, t, 1, 2, . . . ,≤ 1,≤ 2, . . . ,≥ 1,≥ 2, . . . },

and letΓ be a CD grammar system. Then the languageLf (Γ) generated byΓ is
defined as the set of all wordsz ∈ T ∗ for which there is a derivation

S = w0 ⇒f
Gi1

w1 ⇒f
Gi2

w2 ⇒f
Gi3

· · · ⇒f
Gir

wr = z.

Finally, the choice of the “terminal” set of a CD grammar system may be restricted.
A CD grammar system as specified in Definition2.5accepts in

style(arb) iff T is an arbitrary subset of
⋃n

i=1 Ti,
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style(ex) iff T =
⋃n

i=1 Ti,

style(all) iff T =
⋂n

i=1 Ti,

style(one) iff T = Ti for somei, 1 ≤ i ≤ n.

Now (CDnCF, f, A) denotes a class of CD grammar systems with at mostn
components working in thef -mode of derivation and accepting in styleA, where
CF denotes that CF component grammars are used.(CD∞CF, f, A) indicates a CD
grammar system with an arbitrary number of components.

2.1.4.2 Internal Control

Just like with normal grammars regulation mechanisms can be added to restrict the
application of derivation steps. This may take the form of either external or internal
control. With external control a supervisor is added or a sequence of components
is fixed in advance,e. g. by paths in a directed graph. Internal control makes use
of conditions on the current state of the problem,i. e. the sentential form. These
conditions can be used to either start or stop a component. As internal control is used
by feature grammar systems only this form of control is further investigated.

Definition 2.8. A dynamically controlledCD grammar systemΓ is a grammar system
as in Definition2.5with Gi = (Ni, Ti, Pi, πi, ρi) where

• πi is astart condition, and

• ρi is astop conditionfor componentGi.

Then the languageL(Γ) generated byΓ is defined as the set of all wordsz ∈ T ∗

for which there is a derivation

S = w0 ⇒∗
Gi1

w1 ⇒∗
Gi2

w2 · · · ⇒∗
Gir

wr = z

such that, for1 ≤ j ≤ r,

πij (wj−1) = true andρij (wj) = true

and forf ∈ {t, 1, 2, . . . ,≤ 1,≤ 2, . . . ,≥ 1,≥ 2, . . . }, the languageLf (Γ) generated
byΓ in thef -mode as the set of all wordsz ∈ T ∗ such that there is a derivation

S = w0 ⇒f
Gi1

w1 ⇒f
Gi2

w2 · · · ⇒f
Pir

wr = z

such that, for1 ≤ j ≤ r, πij
(wj−1) = true.
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Notice that when the derivation is not in∗-mode the stop conditionρij
(wj) = true

is replaced by the stop condition which is naturally given by thef -mode.
Some special types of conditions have been studied for CD grammar systems.

Conditionσ may be of these types:

type(a) iff σ(w) = true for all w ∈ V ∗,

type(rc) iff there are two subsetsR andQ of V andσ(w) = true iff w contains all
letters ofR andw contains no letter ofQ,

type(K) iff there are two wordsx andx′ overV andσ(w) = true iff x is a subword
of w andx′ is not a subword ofw,

type(K ′) iff there are two finite subsetsR andQ of V ∗ andσ(w) = true iff all
words ofR are subwords ofw and no word ofQ is a subword ofw,

type(C) iff there is a regular setR overV andσ(w) = true iff w ∈ R.

Notice thattype(C) corresponds with the conditions known from C grammars.
In the notation for grammar systems thef is now replaced by(X, Y ), whereX

indicates the start condition type andY the same for the stop condition, when the
grammar uses∗-mode. In the other derivation modes(X, f) is used, for example
(CD8CF, (rc, t), arb).

Many more variants of CD grammar systems have been studied in the literature, in-
cluding the use of bidirectional components [FH99], and the monograph [CVDKP94]
discusses a lot of them. Some variants are combined to form the basis for the con-
cept of feature grammar systems, and will be described during the formal definition
of feature grammar systems in the next section.

2.2 Feature Grammar Systems

Lets, while gradually working toward a formal definition of feature grammar systems3

using the building blocks from the previous section, return to the annotation example
from Chapter1. As stated in the introduction of this chapter the annotation items can
be seen as words in a sentence, see Figure2.3. A possible parse tree for this sentence
is also shown in the same figure.

This parse tree is the result of a derivation process driven by the this grammar:

3In NLP the term feature grammars is sometimes used to indicate a type of grammar formalisms,e. g.
HPSG [PS94] and LFG [Bre82], where next to ac-structure,i. e. a parse tree, also af -structure is con-
structed. Thef -structure contains (semantic) features which are propagated up in the tree using unification
rules. Unification leads in the end to one combinedf -structure for the root of thec-structure. Unfortunately
this type of grammars was only encountered by the author when the concept of feature grammars, where the
term feature refers to multimedia features, was already introduced to the multimedia and database research
communities.
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Example 2.4.

Image → Location Color Class

Location → url

Color → Number Prevalent Saturation

Number → int

Prevalent → flt

Saturation → flt

Class → Graphic

Class → Photo Skin Faces

Graphic → bit

Photo → bit

Skin → bitmap

Faces → int

url → http : // . . .

int → 1
int → 29053
flt → 0 .3
flt → 0 .19
bit → true

bitmap → 00 . . .

In the upcoming sections this CF grammar will be extended until the full fledged
power of a feature grammar system is reached.

2.2.1 Detectors

The dependency description evolves around the annotation extraction algorithms. Be-
fore introducing how feature grammar systems capture both output/input and contex-
tual dependencies, annotation extraction algorithms are formally introduced into the
grammar.

In a feature grammar these algorithms are bound to specific non-terminals, called
(feature) detectors. In the example grammar the set of detectors is{ Color, Graphic,
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0.03 0.19 true 00... 129053

Image

Color Class

PrevalentNumber Saturation Photo Skin Faces

Location

http://...Sentence:

Parse tree:

fltint flt bit bitmap inturl

0.0329053 0.19 true 00... 1http://...

Figure 2.3: Annotation sentence

Photo, Skin, Faces }. Each of these detector algorithms can be seen as a function,
which transforms its input sentence into an output sentence. TheFaces detector, for
example, transforms the sentence00 . . . into the sentence1 . The output sentence of
each of these detectors is conveniently described by a set of CF grammar productions,
i. e. each detector corresponds to a component in a CD grammar system.

The following definition describes the addition of feature detectors to CD grammar
systems.

Definition 2.9. A basic feature grammar systemis a (n + 6)-tuple

Γ = (D,N, T, PN , G1, G2, . . . , Gn, GS , S),

where,

1. V = (D ∪N ∪ T ) is the shared alphabet consisting of

(a) the setD of detectors, containing at leastSS ,

(b) the setN of non-terminalsand

(c) the setT of terminals,

2. PN containsproductionsof the form(N → V ∗),

3. for eachdi ∈ D, i. e. n = |D|, there is aGi = (V, Pi = Pdi
∪ PN , fi) with

(a) the setPdi consisting ofCF rulesof the form(di → V +),
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(b) a partial detectorfunctionfi : T ∗ → (D ∪ T )+, and

(c) λ 6∈ L(Gi),

4. the start componentGS = (V, PS = {(SS → D ∪N)} ∪ PN , fS) where

(a) fS is a function producing an initial sentencewS ∈ (D ∪ T )+,

5. and finallyS = SS .

All components in a feature grammar system always use the same alphabetV . In
more practical terms: there is only one symbol table as all feature grammar system
components share the same set of symbols. This variant of CD grammar systems
is denoted as(CD′

∞CF, f), where the acceptation style is deleted as it is always
style(ex). This makes it possible to share semantically meaningful non-terminals.
These non-terminals, which are not detectors, are used to group terminals. These
semantic structures can be shared by different detectors and are put in the shared set
of production rulesPN .

Each grammar component corresponds with one detector symbol. The detector
function restricts the language accepted by a feature grammar systemΓ in the follow-
ing formal way:

Definition 2.10. Let Γ be a feature grammar system as specified in Definition2.9.
Then the languageL(Γ) generated byΓ is defined as the set of all wordsw ∈ T+ for
which there is a derivation

S
∗⇒
∗
Γ wldiwr ⇒∗

Gi
wlfi(wldiwr)wr

∗⇒
∗
Γ w

Wherefi is thepartial mapping functionassociated withdetectordi.

The moment a detectordi is encountered the remainder of the derivation should
replace this symbol by the output of the associated detector functionfi(wldiwr). In
other wordsfi prescribes the sentence generated by this part of the grammar, and
forms the stop condition of the component. The grammar componentGi mimics the
unknown internal mapping offi and thus validates that the output of this detector
conforms to the grammar4. This generated sentence functions as a stop condition of
type(C), i. e. a feature grammar system is a(CD′

∞CF, (a,C)) grammar system.
Notice that the empty sentence (λ) is not allowed as output of a detector function,

i. e. λ 6∈ L(Gi). An empty sentence thus indicates the partiality of the detector
function: the mapping is unknown for the input sentence.

4 Notice that the grammar components are CF while the detector function itself may be more powerful,
i. e. produce a sentence in a CS language likeanbncn. The grammar component will only be able to
validate the CF envelope,i. e. a∗b∗c∗.
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Definition 2.9 also introduces a dummy start symbolSS . This special symbol is
introduced to make it possible to have a “real” start symbol which is either a non-
terminal or a detector. In the case of a detector theGS component will stop directly
after the application of the(SS → di) rule, as it does not contain any rules fordi, and
control will be transfered toGi. In the case of a non-terminalPN helps to parse the
initial sentence produced byfS . How fS produces this initial sentence is an imple-
mentation issue and will be discussed in Chapter4.

The feature grammar system for Example2.4 is constructed from these building
blocks (the dots (. . . ) indicates some omitted production rules from the example):

Example 2.5.

Γ =(
D = {SS , Color,Graphic, Photo, Skin, Faces},
N = {Image, Location,Number, Prevalent, Saturation, Class,

url, int, flt, bit, bitmap},
T = {http : // . . . , 1 , 29053 , 0 .03 , 0 .19 , true, 00 . . .},

PN = {(Image → Location Color Class), . . . , (bitmap → 00 . . .)},
GColor = (V, PColor = {(Color → Number Prevalent Saturation)}

∪ PN , fColor),
GGraphic = (V, PGraphic = {(Graphic → bit)} ∪ PN , fGraphic),

GPhoto = (V, PPhoto = {(Photo → bit)} ∪ PN , fPhoto),
GSkin = (V, PSkin = {(Skin → bitmap)} ∪ PN , fSkin),

GFaces = (V, PFaces = {(Faces → int)} ∪ PN , fFaces),
GS = (V, PS = {(SS → Image)} ∪ PN , fS),

S = SS

)

The derivation process of the example sentence using this feature grammar looks
as follows:

Example 2.6.

w1 = SS

⇒∗
GS

w2 = fS(w1) Color Photo Skin Faces

= http : // . . . Color Photo Skin Faces

⇒∗
GColor
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w3 = http : // . . . fColor(w2) Photo Skin Faces

= http : // . . . 29053 0 .03 0 .19 Photo Skin Faces

⇒∗
GP hoto

w4 = http : // . . . 29053 0 .03 0 .19 fPhoto(w3) Skin Faces

= http : // . . . 29053 0 .03 0 .19 true Skin Faces

⇒∗
GSkin

w5 = http : // . . . 29053 0 .03 0 .19 true fSkin(w4) Faces

= http : // . . . 29053 0 .03 0 .19 true 00 . . . Faces

⇒∗
GF aces

w6 = http : // . . . 29053 0 .03 0 .19 true 00 . . . fFaces(w5)

= http : // . . . 29053 0 .03 0 .19 true 00 . . . 1

The SS start symbol allows for the non-terminalImage to be the “real” start
symbol. The initial sentencehttp : // . . . is produced byfS and triggers the mappings
of the other detectors.

2.2.2 Atoms

Enumerating the complete terminal domain as illustrated in the example grammar is
far from practical. But as this grammar is CF, and CF grammars are closed under
substitution, a CF languageLa can be chosen to further describe each symbola in Σ .

Example 2.7.

url → {ˆ http://([ˆ :/]*)(:[0-9]*)?/?(.*)$}

int → {ˆ -?[0-9]+$}

flt → {ˆ -?[0-9]+\.[0-9]+([Ee][-+]?[0-9]+)?$}

bit → {ˆ (0 |1|(true)|(false))$}

bitmap → {ˆ (0 |1)*$}

In this case forurl the regular expression (rememberL(REG) ⊂ L(CF)) corresponds
to Lurl, and so on. The non-terminals which are the root of such a substitution lan-
guage are calledatoms(in parsing literature they are sometimes calledpre-terminals
[Tom86]). The yield of a specific (partial) parse tree rooted by an atom is called an
instantiationof the atom,i. e. 29053 is an instantiation of the atom domainint or in
short:int(29053). The complete set of terminals described by the regular expressions
are called thelexiconof the grammar.

In practice this phase is calledlexical analysis[ASU86], in which the stream of
characters or bytes is translated into pre-terminals. This abstraction process helps to
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get the actual grammar rules closer to asemantic grammar[BB75]. In a semantic
grammar the rules and symbols are designed to correspond directly to entities and
relations from the domain being discussed. This makes the results associated with the
grammar,i. e. the parse trees, better suited for (human) interaction in other system
components of the DMW application.

2.2.3 Dependencies

Do feature grammar systems as defined until now capture the dependency types as
identified in Chapter1? Contextual dependencies, like aPhoto which containsSkin
colors, may also contain one or moreFaces, are clearly described in grammars. But
how about output/input dependencies?

In the first chapter it was stated that due to the explicit handling of context de-
pendencies detectors stay generic. However, this property is limited again by the
output/input dependency. The definition of the output/input dependency of a detector
should be powerful enough to be precise, without being to restrictive on the context.
This context knowledge influences both the input and output specification of a detector
component, which will be investigated in the next two sections.

2.2.3.1 Detector Input

In Definitions2.9and2.10detector functions depend on the whole sentential form as
input, but in reality the mapping function only uses a part of this information. For
example:fFaces only needs the bitmap of skin pixels to find the number of faces, all
the other information, like it is a photo, is irrelevant for its mapping. This form of
mild context-sensitivity can be captured by adding a regulated rewriting mechanism
as a start condition to a detector component.

In Section2.1.3C grammars were introduced. Using these conditions on the sen-
tential form a detector component can only become active when its input is available.
Take once more theFaces detector: it needs the skinbitmap derived from the image.
The REG languageRFaces = (.∗ · 00. . . · .∗), using the in Section2.1.1.1defined
regular expression syntax, indicates that the sentential form should always contain a
specific bitmap. However, as this condition works directly on the sentential form it
does not give much control over the semantic context,e. g. the non-terminal level,
where the desired input data resides in. TC grammars could give more grip on this
context as they operate on the parse tree. But both mechanisms of the C and TC gram-
mars restrict the context of the desired input in a horizontal fashion,i. e. C grammars
limit the left and right contexts in the sentential form, while TC grammars limit the
level sentences of the parse tree. To be able to create these conditions the developer
of a detector needs to have complete knowledge about the context of the detector in a
specific feature grammar system, which is just what the system should circumvent.

An easier and more context-free way is to look at the parse tree vertically,i. e. use
the paths in the parse tree. This new regulated rewriting mechanism,i. e. leading to
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path-controlled(PC) grammars, can be defined as follows:

Definition 2.11. In a path-controlled grammarG = (N,T, P, S) the productionsP
are of the form(w → z,R) whereR is a REG language over the alphabetV . N , T
andS have their normal meaning. The rule(w → z,R) is applicable tox = xlwxr

yielding y = xlzxr, i. e. x ⇒ y, iff the parse treet associated tox satisfiesR ⊆
path(t).

Notice thatPC grammars are at least as powerful as C grammars,i. e. a C grammar
can always be translated into aPC grammar.

A special variant of this type of grammars areleft path-controlled(lPC) gram-
mars. In their case only paths referring to the left context ofw, xl, are allowed.

Definition 2.12. In a left path-controlled grammarG = (N,T, P, S) the productions
P are of the form(w → z,R) whereR is aREGlanguage over the alphabetV . N , T
andS have their normal meaning. The rule(w → z,R) is applicable tox = xlwxr

yieldingy = xlzxr, i. e. x ⇒ y, iff the parse treet associated tox satisfiesδ(R ⊆
path(t)) ⊆ xl.

Thedeltaoperation (δ, see Section2.1.2.3) creates a new sentence from the selec-
tion of paths fromt which is created by the intersection betweenpath(t) andRi. This
new sentence may only contain terminals fromxl.

Adding this specific version of the path control mechanism to Definition2.9gives
the formal definition of alPC feature grammar system:

Definition 2.13. A left path-controlled feature grammar systemis a feature grammar
systemΓ as in Definition2.9with Gi = (V, Pi, Ri, fi), whereRi is a REG language
overV . The start (Ri) and stop (fi) conditions of the componentGi restrict a deriva-
tion in the following way:

wj = wldiwr ⇒∗
Gi

wlfi(δ(Ri ∩ path(tj)))wr = wj+1

Such thatδ(Ri ⊆ path(tj)) ⊆ wl. Wheretj is the parse tree associated with the
sentential formwj , i. e. yield(tj) = wj .

The new sentence created by thedeltaoperation contains exactly the information the
detectorfi needs to perform its mapping,i. e. the context knowledge is optimally
limited.

Using the atoms as terminal level, and adding this additional rewriting mechanism
the example feature grammar looks formally as follows:
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Example 2.8.

Γ =(
D = {SS , Color, Graphic, Photo, Skin, Faces},
N = {Image, Location,Number, Prevalent, Saturation, Class},
T = {url, int, flt, bit, bitmap},

PN = {(Image → Location Color Class), . . . ,
(Class → Photo Skin Faces)},

GColor = (V, PColor = {(Color → Number Prevalent Saturation)}
∪ PN , (.∗ · Location · url), fColor),

GGraphic = (V, PGraphic = {(Graphic → bit)} ∪ PN , (.∗ ·Number · int)+
(.∗ · Prevalent · flt) + (.∗ · Saturation · flt), fGraphic),

GPhoto = (V, PPhoto = {(Photo → bit)} ∪ PN , (.∗ · Color · .∗), fPhoto),
GSkin = (V, PSkin = {(Skin → bitmap)} ∪ PN , (.∗ · Location · url), fSkin),

GFaces = (V, PFaces = {(Faces → int)} ∪ PN , (.∗ · bitmap), fFaces),
GS = (V, PS = {(SS → Image)} ∪ PN , ∅, fS),

S = SS

)

The derivation process of the example sentence using thislPC feature grammar
looks as follows (see the parse tree in Figure2.4 for the binding of the regular path
expressions):

Example 2.9.

w1 = SS

⇒∗
GS

w2 = fS(λ) Color Photo Skin Faces

= url(http://. . .) Color Photo Skin Faces

⇒∗
GColor

w3 = url(http://. . .) fColor(url(http://. . .)) Photo Skin Faces

= url(http://. . .) int(29053) flt(0.03) flt(0.19) Photo Skin Faces

⇒∗
GP hoto

w4 = url(http://. . .) int(29053) flt(0.03) flt(0.19)

fPhoto(int(29053) flt(0.03) flt(0.19)) Skin Faces

= url(http://. . .) int(29053) flt(0.03) flt(0.19) bit(true) Skin Faces

⇒∗
GSkin
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PrevalentNumber Saturation Photo Skin Faces

Location

flt(0.03)int(29053) flt(0.19) bit(true) bitmap(00...) int(1)url(http://...)

SS

Figure 2.4: A parse tree constructed by alPC feature grammar system

w5 = url(http://. . .) int(29053) flt(0.03) flt(0.19) bit(true)

fSkin(url(http://. . .)) Faces

= url(http://. . .) int(29053) flt(0.03) flt(0.19) bit(true) bitmap(00. . .) Faces

⇒∗
GF aces

w6 = url(http://. . .) int(29053) flt(0.03) flt(0.19) bit(true) bitmap(00. . .)

fFaces(bitmap(00. . .))

= url(http://. . .) int(29053) flt(0.03) flt(0.19) bit(true) bitmap(00. . .) int(1)

The derivation form in this example is unspecified: control may be transfered to
any detector for which the input sentence is valid. For example, after derivation ofw2

control can be transfered to bothGColor andGSkin. The example derivation favors
the leftmost symbol,i. e. resembles aleftmostderivation (see Section2.1.2). The
leftmost derivation of detector symbols is always applicable in alPC grammar, as this
rewrite mechanism enforces that the input sentence of the leftmost symbol is always
available (when the sentence is valid). However, notice that normal non-terminals take
precedence over detectors,e. g. theClass non-terminal is resolved before control is
transfered to theColor detector. So the leftmost derivation takes place on the control
level of the grammar system.

Using thelPC rewriting mechanism for a feature grammar system has a practi-
cal advantage: it implements adeadlockprevention mechanism. Deadlock situations
occur when the regular expressions of two or more detectors depend on each others,
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not yet available, parse trees. The start conditions of these detectors can thus never
be satisfied. A common deadlock prevention strategy islinear ordering[Sta92]. lPC
implements this strategy in a straightforward fashion: detectors only depend on the
existence of preceding terminals, and can thus naturally be ordered from left to right.

The addition of left path-control to a feature grammar system turns it from a
(CD′

∞CF, (a,C)) into a(CD′
∞CF, (lPC,C)) system.

2.2.3.2 Detector Output

Just like the detector function in Definition2.9 depends on a sentential form for its
input its result should also exactly match a sentential form,i. e. the stop condition
of the component. In the example grammar this works fine as there are no nested
detectors like:

Example 2.10.

Color → Number isBitmap Prevalent Saturation

with

GisBitmap = (V, PisBitmap = {(isBitmap → bit)} ∪ PN , (.∗ ·Number · .∗), fisBitmap)

This newisBitmap detector takes theNumber of colors and maps it tobit(true)
when there are exactly two colors, otherwise it returnsbit(false). Integrating this call
into the derivation of Example2.9:

Example 2.11.

w3a = url(http://. . .) fColor(url(http://. . .)) Photo Skin Faces

= url(http://. . .) int(29053) isBitmap flt(0.03) flt(0.19) Photo Skin Faces

⇒∗
GisBitmap

w3b = url(http://. . .) int(29053) fisBitmap(int(29053)) flt(0.03) flt(0.19) Photo Skin

Faces

= url(http://. . .) int(29053) bit(false) flt(0.03) flt(0.19) Photo Skin Faces

This example shows that theColor detector now needs to know the exact position of
the isBitmap detector in its output sentence. Definition2.9 captures this by stating
that fi is a mapping fromV ∗ into (D ∪ T )+. How to lift the burden of this con-
text knowledge from the detector function? Optimally the range domain becomes a
member ofT+. As stated in Section2.2.1the output sentence,z, can be seen as the
only member of language described by aREG language. By enlargingz ∈ T+ to
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a language containing all possible nestings of detectors, the detector implementation
can become less context-sensitive.

fi(w) = a1 . . . am = zdi

A = (d1 + · · ·+ dn)
fD(zdi) = (A∗ · a1 ·A∗ . . . A∗ · aq ·A∗ . . . A∗ · am ·A∗)

The functionfD takes the output offi and turns it into a REG language consisting of
all words interleaved with arbitrary sequences of detectors, represented by the REG
languageA.

Definition 2.14. Let aconditional feature grammar systemΓ be a feature grammar
system as in Definition2.9 wherefi is a mapping fromw ∈ T+ into z ∈ T+. The
stop conditionfi of the componentGi restricts the derivation in the following way:

wj = wldiwr ⇒∗
Gi

wlzwr = wj+1

where

z ∈ fD(fi(wj))

The functionfD : T+ → L(REG) maps the output sentence,zdi
, of fi into a REG

language where each terminal,aq a word inzdi , is enveloped by an arbitrary sequence
of detectors.

Notice that this adapted stop condition is also used for the output of the special
“dummy” detectorfS .

Using this latest addition to the concept of feature grammar systems the (extended)
example derivation can be (partially) rewritten:

Example 2.12.

w2 = url(http://. . .) Color Photo Skin Faces

⇒∗
GColor

w3a = url(http://. . .) int(29053) isBitmap flt(0.03) flt(0.19) Photo Skin Faces

⇒∗
GisBitmap

w3b = url(http://. . .) int(29053) bit(false) flt(0.03) flt(0.19) Photo Skin Faces

where
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w3a ∈ fD(fColor(w2)) = (A∗ · int(29053) ·A∗ · flt(0.03) ·A∗ · flt(0.19) ·A∗)

w3b ∈ fD(fisBitmap(w3a)) = (A∗ · bit(false) ·A∗)

and

A = (SS + Color + Graphic + Photo + Skin + Faces + isBitmap)

The derivation of the symbolColor from w2 into w3a is a member of the language
generated byfD(fColor(w2) and thus satisfies the stop condition of theGColor com-
ponent. So the implementation of theColor detector function is now just as context-
sensitive as needed, as it contains a precise specification of the input and produces a
context-free sentence.

2.2.4 Ambiguous Feature Grammar Systems

Just like any other grammar feature grammar components may be ambiguous. In
fact support for ambiguity is identified in Section1.2.1as a main requirement of the
target application domain ofAcoi. Take for example the classification of theImage
into either aPhoto or aGraphic. It is possible that both classes are valid,i. e. the
fPhoto andfGraphic detectors both return a valid output. This results in two parse
trees combined in one forest as discussed in Section2.1.2.4.

In such a forest the possibility exists that detector input can be bound to nodes
from different parse trees,i. e. the binding is ambiguous. To illustrate this the example
grammar is extended with an object recognizer,e. g. to find a vehicle.

Example 2.13.

Image → Location Color Class Object

Object → V ehicle

with

GV ehicle = (V, PV ehicle = {(V ehicle → bit)} ∪ PN ,

(.∗ · Location · url + .∗ · Class · .∗), fV ehicle)

As shown in this extension theV ehicle detector constructs an input sentence contain-
ing the location of the image and the detected class. It uses the class to select between
different image segmentation algorithms for photos and graphics. When the class de-
tectors are confident enough,i. e. only one is valid, the input sentence of theV ehicle
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Figure 2.5: A parse forest containing quasi-nodes plus context and confidence anno-
tations

detector can only be bound to one class. However, in the case of ambiguity two bind-
ings are possible. TheV ehicle detector cannot prefer one class over the other. Instead
it needs to be executed twice: once for each class.

To reflect this in the parse forest the detector node is split in two levels: (1) a
top quasi-node, thequasi-root, and (2) one or more bottom quasi-nodes, thequasi-
foots. Quasi-nodes belong to quasi-trees which are inspired by D-Theory [MHF83].
[VS92] states: “vp1 [the quasi-root] andvp2 [the quasi-foot] can both refer to the
same node, to avoid confusion, henceforth we will call themquasi-nodes.” In the
feature grammar system case the quasi-root represents the detector symbol within its
rule context. Each quasi-foot represents one possible execution of the detector. By
gluing together the quasi-root with one of the quasi-foots one specific instantiation of
the detector call is chosen. An example parse forest containing quasi-nodes, indicated
with dashed outlines, for theV ehicle detector is shown in Figure2.5. The figure also
shows that when there is only one bottom node the quasi-nodes can be glued together
into a normal tree node.

The parse forest in this figure contains additional information to cope with the long
distance dependencies of a feature grammar system: nodes are explicitly labeled with
a context. As Section2.1.2.4already said, CF grammars have only local ambiguity
which makes it easy to locate the separate parse trees. However, due to the more ad-
vanced dependencies of detector nodes additional information is needed. In the NLP
community named disjunctions (NDs) are used [Bla97]. However, NDs expect each
disjunction to be of the same arity. Which means that when the third disjunction of a
controllerND is valid the third disjunction in thecontrolleddisjunction should also be
valid. In the simple example of Figure2.5 this is true: theClass disjunction controls
the V ehicle disjunction, and within their parse trees the indices of the disjunctions
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Figure 2.6: Execution of theColor detector

match. However, the input sentence of a detector may be constructed from terminal
nodes obtained from several disjunctions,i. e. there will not be one controlling dis-
junction. So instead of naming disjunctions each node is provided with a context. This
context consists of a list of binary flags, where each flag represents a parse tree and
indicates if the node belongs to it (true) or not (false). In the example forest there are
two trees. Most nodes belong to both trees, except for the differentClass alternatives
and their dependentV ehicle quasi-foots. Limiting the binding of detector parameters
to the scope of the current quasi-root is now easily implemented by a binary operation
(see Section4.3.3.2).

Next to contexts the parse forest in Figure2.5also contains detector confidences.
Although bothClass detectors are valid, they are not both as confident. TheGraphic
detector is90% sure that the image is a graphic, while thePhoto detector has only
a confidence of15%. Providing this information may help the user or librarian in
disambiguating the parse forest. The confidence values are in this case seen as node
annotations, but may also be just modeled as ordinary leaf nodes.

Notice that the parse forest shown in Figure2.5describes several sentences, which
may partially overlap. This is another reason why a packed shared parse forest as
introduced in Section2.1.2.4is not usable in the case of ambiguous feature grammar
systems. A packed shared forest describes always one sentence.

2.2.5 Mildly Context-sensitive Feature Grammar Systems

Combining the two forms of regulated rewriting as defined in Definitions2.13 and
2.14 with Definition 2.9 the definition ofmildly context-sensitive feature grammar
systemsis obtained. This form of feature grammar systems is used throughout the rest
of this thesis.

Figure 2.6 illustrates the working of theColor detector. Theurl instantiation
belongs to its input sentence, as specified byRColor = (.∗ · Location · url). The
fColor detector uses this information to load the image, analyze it, and produce the
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output sentence: an integer and two floats. This sentence is parsed and matches the
rules in the feature grammar system, so the stop condition is satisfied. The detector has
only limited knowledge of the context it operates in: its input and its output. The CF
grammar rules within the components can be used to place these detectors in different
contexts. However, the start and stop conditions will enforce that these contexts match
the (limited) knowledge of the detector.

2.3 Discussion

In this chapter the formal theory of feature grammar systems has been described. To
achieve mild context-sensitivity this theory is based on a combination of CD grammar
systems and a regulated rewriting mechanism. The major extensions to these existing
theories include the addition of detector functions to produce (part of) the sentence
just-in-time and thePC andlPC regulation mechanisms. A detector function directly
determines, when the start condition is satisfied, the stop condition of the grammar
component. This enables a very tight integration between user-defined functions and
the grammar component, while staying formally sound. ThelPC mechanism allows
mildly context-sensitive specification of the start condition, while also implementing
a deadlock prevention strategy.

Two kinds of dependencies were identified in Chapter1 as key components of
a declarative dependency description language. A feature grammar system captures
them both. The RHSs of the CF production rules within each grammar component de-
scribe the context dependencies. While the regular expressions of the start conditions
of the same components capture output/input dependencies.

Using a feature grammar system a parse tree/forest can be build which represents
all (ambiguous) contextual knowledge about the extracted annotations, and may thus
form a good basis for incremental maintenance.

Next toAcoi there are some systems which are also focus at controlling the flow
of annotation extraction, or could be used for that purpose. MOODS [GYA97] is
based on the extension of an object oriented schema with semantic objects. The novel
aspect of a semantic object is its processing graph. In a processing graph extraction
algorithms are linked together. The developer defines a split point in the processing
graph. The first part is executed in a data-driven way when a new object instance is
inserted into the database. The last part is executed in a demand-driven fashion during
query processing. Additionally, the object can be extended with inference rules, which
can be checked during query processing. There is no specific support in MOODS for
context dependencies, unless they are hard-coded as an output/input dependency.

In the Mirror system [dVEK98, dV99] extraction algorithms are encapsulated in
daemon (CORBA) objects. The daemons issue aget_workquery to the database,
which functions as a data pool, extract the meta-data (i. e. annotations) for the re-
turned objects and then issue afinish_workquery to commit their results. All knowl-
edge about dependencies is embedded in theget_workqueries,i. e. there is no global
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declarative specification. Context dependencies thus need to be tightly bound,i. e.
hardcoded, and may become distributed over several daemon objects.

Linda tuple spaces [Gel95] can form an alternative for the daemon architecture.
The daemon requests its input data once from the tuple space, instead of polling for it
from time to time, blocks and becomes active when the tuple space notifies the avail-
ability of the data. However, although this offers a different implementation model it
does not resolve the need for hardcoding the context dependencies.

Dataflow languages are also focused on output/input dependencies. For exam-
ple, Microsoft DirectShow [Mic99] offers a way to tie algorithms together using filter
graphs. This builds a pipeline of algorithms through which multimedia streams flow.
The target of such systems is to produce mainly one final result,e. g. a video con-
verted from color to black and white and from the MPEG format to AVI format. In a
feature grammar system the result is a parse forest which contains all the annotation
information, which may be considered intermediate data in the pipeline.

The ToolBus system [BK94, BK96, dJK] provides a coordination architecture for
heterogeneous, distributed software systems. The coordination mechanism,i. e. the
toolbus, is steered by T scripts, which are based on process algebra [BK86]. A T script
contains one or more processes, while each process may control one or more external
tools. Tools communicate,i. e. send messages or share data, with each other using the
bus. To overcome different data formats the tools are encapsulated by adapters which
transform the native formatted data into the general form used by the bus,i. e. ATerms
[vdBdJKO00]. The ToolBus thus addresses separation of coordination (T scripts),
representation (ATerms) and computation (the tools). This closely resembles feature
grammar systems: where grammar components provide coordination, the parse tree
provides representation and detectors computation. The main difference being the,
in the case of feature grammar systems, by default constructed parse tree. This tree
contains (semantic) contextual knowledge both for data and processes. This knowl-
edge is, as shown in the introductory chapter, indispensable for the application domain
considered in this thesis. However, ATerms are generic data types and can be used to
describe trees or forests [Vis97]. But in the implementation the dependencies would
become implicit in a, more generic, T script and possibly even hidden inside ATerm
messages. To enable reasoning about these dependencies,e. g. to allow the FDS to
steer incremental maintenance, this knowledge would have to made explicit again. So
once more a declarative dependency description,i. e. in the form of a feature gram-
mar system, would be needed. However, this makes the ToolBus a possible, feature
grammar driven, candidate to implement parts of theAcoi system,e. g. the FDE.





Chapter 3

Feature Grammar Language

There is nothing that can be said by mathematical symbols and relations
which cannot also be said by words. The converse, however, is false.
Much that can be and is said by words cannot successfully be put into
equations, because it is nonsense.

C. Truesdell

The mathematical notation introduced and used in the previous chapter is, although
precise, not very convenient in everyday life. In this chapter a more practical notation
is introduced: the feature grammar language. This language describes how a feature
grammar is specified,i. e. it is ameta-language.

In AppendixA the complete specification of the language is given using theEx-
tended Backus-Naur Form(EBNF). The ancestor of EBNF,Backus-Naur Form(BNF),
is a CF grammar notation mostly used for specifying programming languages,i. e. it
was first used to define ALGOL 60. In the upcoming sections parts of the language are
introduced by language snippets related to the example feature grammar. AppendixB
contains the collection of feature grammars, which has been build for the various case
studies (see Chapter7).

The next section introduces the core of the language which directly maps on the
formalization of feature grammar systems. Subsequently additions to this language
will be described whose main purpose is to provide shortcuts for developers or to
steer the FDE or FDS in their analysis of the grammar.

3.1 The Basic Feature Grammar Language

The core of the feature grammar system is formed by the shared alphabetV = (D ∪
N ∪T ), the production rules as distributed over the various grammar components, the
start and stop conditions of these components, and the start symbol. In the subsequent
subsections the notation for these core components is shown.
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3.1.1 Production Rules

Production rules form the heart of every grammar. As Definition2.1 and the section
on ambiguous grammars showed there are alternative interpretations possible for one
non-terminal. The extended notation (in this specific form also calledregular right
part grammars(RRPG) [LaL77]) makes it possible to combine these alternatives syn-
tactically into one rule.

1 Image : Location ( Color Class )?;
2 Color : RGB* Number Prevalent Saturation;
3 Class : Graphic | Photo Skin Faces;
4 RGB : Red Green Blue;

5 Location : url;
6 Number : int;
7 Prevalent : flt;
8 Saturation : flt;
9 Graphic : bit;

10 Photo : bit;
11 Skin : bitmap;
12 Faces : int;
13 Red : int;
14 Green : int;
15 Blue : int;

The RGB non-terminal is introduced into the example to make it rich enough to
illustrate some extended features.

In this notation a production rule’s LHS and RHS are separated by a colon and the
rule is terminated with a semicolon. Alternative representations for the same LHS are
grouped together and then separated by vertical bars,| (see theClass rule). Symbol
sequences,i. e. optional, star and positive closure, are indicated by respectively?, ∗
and+ occurrence indicators (see theImage andColor rules). Furthermore, sym-
bols can be combined into groups using brackets. These groups can have their own
occurrence indicators and embedded alternatives (see once more theImage rule).

All these extended constructs for production rules can be rewritten into the basic
formal version of the production rules. For symbol sequences there are two methods.
The first method of rewriting uses therecursiveinterpretation. In this interpretation
theRGB∗ sequence is rewritten into the following formal rules:

Color → Number Prevalent Saturation

Color → α Number Prevalent Saturation

α → RGB

α → RGB α

RGB → Red Green Blue
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Figure 3.1: (a) A right-recursive and (b) an iterative interpretation of a list construct

This interpretation has as advantage that it is easy to explain because the transforma-
tion to a basic CF grammar is simple. Disadvantages are the introduction of anony-
mous variables (in this caseα) and the lopsided parse tree (see Figure3.1.a), which in
generally does not correspond to ones intuition.

The iterative interpretation of symbol sequences is more intuitive. It sees the
RGB∗ sequence as an abbreviation of:

Color → Number Prevalent Saturation

Color → RGB Number Prevalent Saturation

Color → RGB RGB Number Prevalent Saturation

Color → RGB RGB RGB Number Prevalent Saturation

Color → . . .

. . .

RGB → Red Green Blue

The advantage of this interpretation is a beautiful parse tree (see Figure3.1.b), but has
as disadvantages that it involves an infinite number of production rules and that the
nodes in the parse tree have a varying fan-out.

Next to rewrites the occurrence indicators may also directly be interpreted by the
parser implementation (see [GJ98]), i. e. using IF-statements for optional symbols,
WHILE-statements for star closure and REPEAT-statements for positive closure. The
resulting parse tree will adhere to the iterative interpretation. However, this imple-
ments these indicators in a greedy fashion and thus favors greedy alternatives. Notice
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Atom name Substitution language (as a regular expression)

bit ^(0|1|(true)|(false))$
chr ^.$
int ^-?[0-9]+$
flt ^-?[0-9]+\.[0-9]+([Ee][-+]?[0-9]+)?$
str ^.*$

Table 3.1: Default atom types

that is the case with most implementations of regular expressions [Fri02]. Only some
languages support special constructs to make expressions non-greedy,e. g.the regular
expression syntax used byTcl 8andPerl 5supports*? for a non-greedy star-closure.
A parser using this implementation strategy may only find one parse (a(b(c d))) for
the input sentence(c d) using this grammar:

1 a: b e?;
2 b: c d?;
3 e: d;

A second parse tree, which postpones the consumption ofd, i. e. a(b(c) e(d)), will
notbe found by this parser implementation.

Which of these alternative interpretations of symbol sequences is chosen is a FDE
implementation decision. In Chapter4 the actual implementation of the FDE will be
discussed and in Section4.3.1.1this specific decision will be made and explained.

Symbol groups are rewritten by introducing anonymous symbols.

Image → Location

Image → Location β

β → Color Class

The anonymous symbol, in this caseβ, inherits the occurrence indicators and em-
bedded alternatives of the symbol group. Notice that theImage rule is duplicated to
eliminate the sequence once.

3.1.2 Atoms

The feature grammar language supports a default set of atom types,e. g. several nu-
meric types and strings (see Table3.1). However, additional types may be supported
by the DBMS, for example by using an extension mechanism. To be able for a fea-
ture grammar to use these new types they have to be defined and a REG validation
language can be added.



Section 3.1:The Basic Feature Grammar Language 49

1 %atom image::bitmap {^[01]*$};

The bitmap type, available in the extension moduleimage, is defined. Thebitmap
specific rule defines the REG substitution language from which a validbitmap atom
value is a member. Using this regular expression the FDE can validate a specific
bitmap instantiation. When there is no regular expression the default validation code
provided by the system will always accept each terminal of this atomic type.

Next to the atom definitions there are also atom declarations. Using an atom dec-
laration several production rules can be summarized in one command.

1 %atom flt Prevalent, Saturation;

This declaration is a simple shortcut for these two rules:

1 Prevalent : flt;
2 Saturation : flt;

Notice, once more (see also Section2.2.2), that the application of this shortcut
helps to make the production rules semantically more meaningful,i. e. more useful
for human consumption.

3.1.3 Detectors

The production rules already provide insight in which symbol belongs to the set of
terminals and non-terminals,i. e. non-terminals appear as the LHS of a rule. To get
the set of detector symbols those are explicitly declared.

1 %detector Color(preceding::Location/url);

2 %detector Graphic(preceding::Number/int,
3 preceding::Prevalent/flt,
4 preceding::Saturation/flt);
5 %detector Photo(preceding::Color);

6 %detector Skin(preceding::Location/url);
7 %detector Faces(preceding::bitmap);

The output/input dependency is formally represented by the REG languageRi for
detectordi. In the detector declaration fordi Ri is represented as a set of regular path
expressions. In Section2.1.1with the introduction of REG grammars it was already
stated that there are many extended regular expression languages,e. g. like the one
used for the specification of the atom substitution languages. For the specification of
the regular path expressions theXPathlanguage [W3C01d] is adopted by the feature
grammar language.
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Figure 3.2: The XPath axes

3.1.3.1 The XPath Language

The XPath language is a W3C standard for describing paths in a document in the eX-
tensible Markup Language (XML) [W3C00]. XML, derived from the older Standard
Generalized Markup Language (SGML) standard, is becoming a standard document
format for data exchange between systems on the WWW. An XML document de-
scribes a tree structure of nodes. Each tree node is identified by an element name,
encloses an area in the document identified by the opening and closing tags, may have
zero or more textual values, may have a set of zero or more attributes,i. e. name/value
pairs, and may be the parent of zero or more child nodes. The parse trees, as encoun-
tered until now, map naturally on this document format.

The basic XPath expression consist of a sequence of steps separated by/ or //,
where the first indicates “goto a matching child” and the latter “goto a matching de-
scendant”. An example XPath expression is:preceding::Location/url [
xf:starts-with(., "http://") ] .

The first step,preceding::Location , is evaluated in the context of the cur-
rent node, for example the newColor detector node. The evaluation of this step
may result in zero or more result nodes. In this case it leads to theLocation node.
The next step,url[xf:starts-with(.,"http://")] , is evaluated for each
of these result nodes. And selects the nodeurl which satisfies the predicate. As this
is the last step the result of this expression contains only this node. The upcoming
paragraphs will describe the basic building blocks of each step: the optional axis, the
nodetest and the set of zero or more step qualifiers.

The XPath specification defines a total of 13 axes to traverse from one node to
another. These axes describe the whole parse tree from the view point of the con-
text node: theancestor, descendant, following, precedingand self axes (see also
Figure 3.2). Other axes form sub- and supersets from these basic axes: thechild,
parent, descendant-or-self, following-sibling, preceding-siblingandancestor-or-self
axes. Most of these axes are forward axes,i. e. nodes are traversed in the order in
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which they were added to the tree (the document order). In contrast, theparent, an-
cestor, ancestor-or-self, preceding, andpreceding-siblingaxes traverse the nodes in
reverse document order.

The axis is used to select the set of possible nodes to move to. This set may be
further reduced using a node test: either an exact match on the symbol name or a
wildcard match.

The last part of the step specification is a, possibly empty, set of step qualifiers. A
step qualifier takes the form of a predicate,i. e. a boolean expression on the context of
the step. In this expression logical comparisons and an extensive set of functions may
be used. The example expression uses thexf:starts-with function to check if
the value of the terminalurl uses the HTTP protocol. The value of the terminal is
indicated by the single dot, which is the abbreviated syntax forself::node() .

All kinds of (user defined) functions are part of the XPath standard. Due to this a
full fledged XPath expression may have a selective power that goes beyond a standard
regular expression language. To stay in line with the formal feature grammar system
of Chapter2 the XPath expressions used for detector parameter binding are limited to
axis steps and symbol name node tests1.

This subset of XPath expression language is adopted by the feature grammar lan-
guage with (initially) two convenient changes:

1. as parameter path expressions should, enforced by thelPC rewriting mecha-
nism, point backward into the tree the default axis in the first step of a path
expression ispreceding:: instead ofchild:: , notice that in all subse-
quent stepschild:: is still the default;

2. XPath expressions always return a node set, however, in a feature grammar the
interest is mainly for, depending on the axis (forward or reverse), the first or last
item in the nodeset (sorted on document order).

Using these path expressions the input sentence for a detectordi can be selected.
When one of the expressions results in an empty node set,i. e. Ri 6⊆ path(tj), the
start condition of the grammar component is not satisfied, and the detector function
fi will not be executed, which in the leftmost derivation process results in rejection of
the detector symbol.

To retrieve the value of a node the XPath functiontext() is used. This function
returns a concatenation of all values under the inner node. This allows the use of a
non-terminal, which may carry more semantics, to indicate a terminal’s value,e. g.the
XPath expressionLocation is equal toLocation/url . This helps once more to
keep the feature grammar specification more semantic oriented (see Section3.1.2).

1The extension to a more complete version of the XPath standard would need a reevaluation of the role
of Ri.
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3.1.3.2 Detector Confidence

All detectors should at least return one information token (see Definition2.9). As
indicated in Section2.2.4the disambiguation process would benefit from knowledge
about the detector confidence. By enforcing the output of this confidence level,i. e.
making it a default rewrite of a detector production rule, the developer of a feature
grammar can conceptually write detectors which output an empty sentence. This can
be used to allow the use of the detector symbol to model a binary decision,i. e. using
the partiality of the detector function. The presence of the detector symbol in the parse
forest then indicates the success of the function and thus the (maybe in-confident)
validity of a concept. The absence of the confidence level, and thus of the symbol, is
then used to model the failure.

These feature grammar declarations and rules:

1 %detector Color(Location);

2 %detector Graphic(Number, Prevalent, Saturation);
3 %detector Photo(Color);

4 %detector Skin(Location);
5 %detector Faces(bitmap);

6 Color : RGB* Number Prevalent Saturation;
7 Class : Graphic | Photo Skin Faces;

are rewritten into the following formal rules:

Color → ρ Number Prevalent Saturation

Color → ρ α Number Prevalent Saturation

Graphic → ρ

Photo → ρ

Skin → ρ bitmap

Faces → ρ int

Notice that the feature grammar does not contain any explicit rules for theGraphic
andPhoto detectors, they are added to feature grammar system by the rewrite. The
special terminalρ describes the confidence value. This value may be seen as an anno-
tation (or attribute) of the LHS (see also Figure2.5).

3.1.4 The Start Symbol

The feature grammar language as defined until now only misses the declaration of the
start symbol.
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1 %start Image(child::Location);

This start declaration provides the information to construct the special grammar com-
ponentGS . First of all the dummy start symbolSS directly passes control on to
the Image symbol, in this case a non-terminal. Furthermore, the parameter defines
which initial words the special detector functionfS should generate,i. e. in this case
one word: aLocation instantiation. HowfS determines this instantiation depends on
the implementation,e. g.ask the user or look for the sentence on the command line of
the FDE.

For specification of these parameters a special subset of XPath expressions is, once
more, adopted. In this case only forward steps are allowed,i. e. the parse tree can only
be traversed from the root to its descendants. This also means that the original default
axis of XPath is used in these path expressions,i. e.child:: .

3.2 The Extended Feature Grammar Language

The core of the language has been defined in the previous section. However, to make
the life of a developer easier several shortcuts have been introduced. Other additions
provide the developer with the possibility to influence the analysis and usage of the
feature grammar by the tools in theAcoi system architecture.

3.2.1 Production Rules

3.2.1.1 Additional Sequence Types

Symbol sequences, like the positive or star closure, lead to collections of symbols.
The most natural form for storing this collection in a DBMS is a list, as it guarantees
that the symbols can be reconstructed in exactly the same order.

1 Color : RGB[*] Number Prevalent Saturation;

Notice that this rule is equivalent to the originalColor rule, as list is the default type.
However, this may not always be needed and, as keeping information about the order
of the symbols costs storage space, the feature grammar developer can give a hint that
the collection type may be changed to a set.

1 Color : RGB{*} Number Prevalent Saturation;

When a list is limited in size another optimization may be to turn the type into a tuple,
which has better selection properties.

1 Color : RGB<16:16> Number Prevalent Saturation;
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This example shows another addition to the feature grammar language: it allows to
exactly specify,i. e. with a lower and upper bound, how many symbols are allowed
in the collection (which may be of any type). This case is equivalent to a rule where
the Color rule contains exactly 16RGB non-terminals. When the lower bound is
omitted it defaults to zero.

These constructs are all very tight related to the storage model for the parse trees,
and thus will be revisited in Chapter5.

3.2.1.2 Constants

The extended language also allows a constant of a builtin type to be placed as a symbol
in the right-hand side of a rule.

1 Segment : Scene*;
2 Scene : Begin End Type;
3 Type : "tennis" Tennis;
4 Type : "closeup";
5 Type : "audience";
6 Type : "other";

This set of example rules describes the type of scenes found in a video of a tennis
match. For each scene theSegment detector finds it also determines the type and
puts this as a string token in the output sentence. This token now determines which
alternative rule ofType is validated,i. e. for a tennis scene theTennis detector will
be called. This spares the need for an explicit whitebox detector (to be discussed in
the next section).

1 %detector TennisType [ str = "tennis" ];

2 Type : str TennisType Tennis;

The other types can be handled in the same fashion. Furthermore, notice that another
approach may be to add a normal detector for each type, which would implement
the type detection algorithm now present in theSegment detector. The need for the
constant would then disappear, and it would become possible to have several types for
the same scene,i. e. ambiguity.

3.2.2 Detectors

3.2.2.1 Whitebox Detectors

One step in the annotation extraction process is the combination of the low-level fea-
tures into high-level concepts. One way to do this combination is through a binary
decision rule. Recall the description of the XPath language: the last part of the step
specification consists of a, possibly empty, set of step qualifiers. Each step qualifier is
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a predicate on the context of the step.Whitebox detectorsprovide the preferred way
to embed such a predicate in the feature grammar.

In step qualifiers all XPath expressions are allowed, but not all of them will result
in a boolean value. For these situations the XPath specification [W3C01d] provides
these rules to derive the predicate truth value:

1. if the result of the expression is an empty node set, the predicate truth value is
false;

2. if the result is one numeric value, this value is rounded and compared to the
context position,i. e. the position of the context node in the processed sequence
of nodes, this will always beoneas the processed sequence contains only the
detector node;

3. if the result is one boolean value, the predicate truth value is equal to this
boolean value;

4. if the result node set contains at least one node, the predicate truth value istrue;

5. otherwise there is a serious error and a runtime error will be raised.

When the predicate truth value equalstrue the detector symbol will be accepted,
and otherwise rejected.

This partial feature grammar shows the simple decision rule for thePhoto detec-
tor:

1 %detector Photo [
2 Number > 200
3 and Prevalent < 0.26
4 and Saturation < 0.67 ];

On the basis of the number of colors, the existence of a prevalent color and the average
saturation of the colors the image is classified as a photo (or not). But XPath allows
also more advanced expressions,e. g. these quantified expressions to extract a color
map concept:

1 %detector ColorMap [
2 some $RGB in RGB satisfies
3 $RGB/Red != $RGB/Green
4 or $RGB/Red != $RGB/Blue ];

5 %detector GrayMap [
6 every $RGB in RGB satisfies
7 $RGB/Red = $RGB/Green
8 and $RGB/Red = $RGB/Blue ];

9 Color : RGB* Map Number Prevalent Saturation;
10 Map : ColorMap | GrayMap;
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Plugin name Description

exec Execute an external program
perl Execute aPerl script

matlab Execute aMatlab script

Table 3.2: Default plugins

TheColorMap concept is validated by checking the existence of one or more non-
gray pixels. While theGrayMap does the opposite check: the existence of only gray
pixels.

To emphasize the difference between whitebox detectors the original detectors,
where the implementation is not specified within the feature grammar itself, are called
blackbox detectors.

3.2.2.2 Plugins

The blackbox detectors can do basically everything that is supported by the host lan-
guage. However, this may also ask for extensive knowledge of the in and outs of the
host language and its interfaces (APIs) by the developer. In this sectionpluginsare
introduced. A plugin frees the developer from this low-level knowledge, either by
completely taking over the burden of low-level coding or by transferring the coding
task to an external application. This external application may provide the developer
with a higher-level language to code his annotation extraction algorithms in.

The task implemented by a plugin always follows the same steps. However, these
steps need to be adapted to the specific detector. The detector specific knowledge
embedded in a feature grammar is the in- and output specification. So the plugin needs
access to this information. This access is provided by the symbol table. The symbol
table contains information about all the symbols in the grammar and their associations
described in the component production rules. Due to these privileges plugins should
only be developed by experts with knowledge about theAcoi API.

1 %detector matlab::Color(Location);

This detector communicates with the Matlab engine [Mat01], which is linked into the
FDE or runs as a separate server. It assumes that theColor command exists in Matlab
and calls it with theLocation parameter. The answer of the Matlab engine is parsed
and the data is returned as the output sentence.

The feature grammar language also allows a plugin to get its implementation di-
rectly from the feature grammar,i. e. as in the case of whitebox detectors. In fact
whitebox detectors are by default available as thexpath plugin.

1 %detector xpath::Photo [
2 Number > 200
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Figure 3.3: Emperical cycle

3 and Prevalent < 0.26
4 and Saturation < 0.67 ];

This code snippet is equivalent to the previousPhoto whitebox detector declaration.
In the same vain other whitebox plugins can be developed. TheAcoi system pro-

vides a default library function to instantiate templates with embedded XPath expres-
sions.

3.2.2.3 Classifiers

Classifiersare an alternative to whitebox detectors to validate a concept. Instead of
decision rules, most likely constructed by a human expert, they provide bridges to
machine learning algorithms.

Machine learning algorithms can be characterized by the cycle shown in Fig-
ure 3.3. The process starts with a number of observations. These observations are
analyzed to find patterns. If patterns are found a theory, or hypothesis, is formulated
to explain the pattern. This theory is used to predict new phenomena that can be
verified by new observations.

Take for example this classifier:

1 %classifier bpnn::Faces(Skin);

The classifierFaces makes use of the pluginbpnn. Thebpnn plugin, written by an
expert, managesback propagation neural networks. The plugin can handle the generic
steps of the classification cycle for this specific machine learning algorithm.

A back propagation neural network learns incrementally,i. e. the theory is updated
after each observation is seen by the algorithm. The observations consist of a set of in-
put sentences the developer feeds to the FDE. An observation for this classifier would
contain the fact that the image contains one face. When theFaces detector is en-
countered its input, theSkin/bitmap terminal, is selected from the parse tree. The
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Classifier plugin name Description

decrules Learn/use C4.5 decision rules [Qui93]
bpnn Train/use a neural network [Mit97]

Table 3.3: Default classifier plugins

developer provided the expected output of theFaces detector: the sentenceint(1).
The neural network is then trained by analyzing the actual and the expected output.
On the basis of the error between these the internal parameters of neural network will
be adapted.

When the developer did not provide an observation the theory is used to predict
the output. The theory is not updated until new observations are fed to the classifier.

Other algorithms may learn per batch. In this case the algorithm will collect and
store the observations. When there is no observation the theory will be build using
this collected data. It will then use this, just-in-time, formulated theory to predict the
actual output.

Formally the classifier is split into two detectors:

Faces → int Faces.analyze

Faces → Faces.predict

Faces.analyze → ρ

Faces.predict → ρ int

Faces is a non-terminal, whileFaces.analyze andFaces.predict are both detectors.
Due to the fact that an integer,i. e. the observation, is present in the parsed sentence
a specific alternative is chosen. The first alternative will take this integer as input and
train the neural network, while the second alternative will use the net to predict the
value of the integer. The natural value forρ in the case of an observation is1.0, i. e.
its confidence is high as its been provided by the developer.

The Acoi implementation provides a default set of classifier plugins. Thebpnn
plugin is an example of an incremental learning algorithm.Decision rules, a batch
learning algorithm, are available through thedecrules plugin.

3.2.3 The Start Symbol

3.2.3.1 References

Until now there was always only one parse forest. But the main goal is to build
and maintain a database of such parse forests, or in fact its building blocks: parse
trees. It is possible to keep all these parse trees independent of each other in the
construction phase, and to postpone resolving dependencies to the moment of insertion
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into the database. In fact this was done in early versions of theAcoi system (see
Chapter7). However, as this knowledge would not be explicit and the system could
thus not exploit it, the coding burden would be completely passed on to the developer.

Take for example the WWW multimedia search engine. On the WWW HTML
pages contain the links which connect all the web objects together. By adding a de-
tector which parses the HTML and extracts the links the structure of the WWW can
be described by a feature grammar.

Example 3.1.

1 %start WebObject(Location);

2 %detector HTML_type [ Location\[ends-with(.,".html")\] ];

3 %detector HTML(Location);

4 %atom str Title;

5 WebObject : Location WebBody;
6 WebBody : HTML_type HTML;
7 HTML : Title? WebObject*;

However, the WWW is not a tree but a graph. And this graph may contain cy-
cles, which would lead to infinitely deep parse forests. This would make the feature
grammar impractical. How to prevent the FDE from reanalyzing an object over and
over again, thus storing redundant information in the parse tree? The developer may
add detectors, which check if a web object has already been analyzed, and alter pro-
duction rules,i. e. add optionality such that a partial parse tree containing foreign key
information is also valid.

Once more the FDE can manage these dependencies better if they are made ex-
plicit. TheHTMLfeature grammar illustrates when a cycle in the graph may be intro-
duced: the start symbolWebObject is reused in a production rule. The start declara-
tion already contains information on the data items an initial sentence should contain
to start a parsing process. When this information is viewed as key information the
FDE gets the ability to check the database for the existence of this specific (partial)
parse tree. However, if the parse tree does not exist yet this key information is also
enough to start building the parse tree.

This solves the case when the start symbol is reused, however, in other cases in-
formation would still be redundant. Keyword search can be added to the WWW ap-
plication by extending theHTMLmodule with these production rules:

1 %atom str Word;
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Figure 3.4: Parse tree structure (a) without and (b) with references

2 HTML : Title? Body WebObject*;
3 Body : KeyWord*;

4 KeyWord : Word Synset*;
5 Synset : Synonym* Hypernym* Hyponym*;
6 Synonym : Keyword;
7 Hypernym : Keyword;
8 Hyponym : Keyword;

From the body of the HTML page keywords are extracted. These keywords are related
with WordNet synsets [CSL01], which allow to expand the search with synonyms,
hypernyms and hyponyms. If for each keyword encountered on the WWW a new
partial parse tree would be added the database would explode in no time. Using the
WWW case study a sample of 150,000 web objects lead to 850,000 keywords which
were on average 40 times reused. This explosion is prevented by permitting multiple
start symbols,e. g.a start declaration for theKeyword symbol is added.

1 %start KeyWord(Word);

The FDE can now use the same strategy for binding a parse tree for this start
symbol. A start symbol which reoccurs in the RHS of a production rule is also known
as areference. This emphasized in the language by adding a& prefix to the symbol
occurrence. Figure3.4shows how this addition of references to start symbols affects
the parse tree structure.

This conversion of a tree into a graph structure has also implications for the
XPath expressions as used to specify either a detector input or a whitebox predi-
cate. Resolving these paths could lead to endless loops,e. g. the XPath expres-
sion preceding::Location could reenter the same tree over and over again
by encountering the sameWebObject symbol again. To resolve this, references
have to be crossed explicitly, which basically means that a XPath expression can
not cross over to a start symbol. This splits the global parse tree, as shown in Fig-
ure 3.4.a, into several parse trees combined by references in a graph, as shown in
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Figure3.4.b. Take once more the XPath expressionpreceding::Location . Us-
ing this convention onlyLocation symbols in the local parse tree can be found. To
cross a reference,i. e. a start symbol, the XPath expression would look as follows:
preceding::&WebObject//Location . The& prefix, which is not part of the
XPath standard, allows the adapted XPath interpreter to resolve the//Location
path in the parse tree to which aWebObject reference is bound. In the next chapter
this feature grammar specific addition to the XPath language will be translated back
into native XPath expressions, however, this depends on the implementation specific
representation of feature grammar parse trees in XML documents.

A drawback of this is the reintroduction of deadlock situations when binding the
detector parameters. The XPath expression may lead to a (indirect) self-reference,i. e.
a detector needs access toxr and thus violates thelPC regulated rewrite rules and thus
the deadlock prevention strategy (see Section2.2.3.1). As there is no general solution
for this, an exception is passed on to the detectors implementation. The developer
may, for example, know how to retrieve the requested token fromxr or which default
value to pick.

The use of references is also related to the quasi-nodes introduced in Section2.2.4.
Quasi-nodes were introduced to handle the binding of ambiguous parameters to the
right detector calls. Start symbols are always detectors, remember the introduction of
SS . The reference is the quasi-root containing the (ambiguous) binding information.
The refereedSS is the quasi-foot.

Notice also that with the addition of multiple start symbols the feature grammar
now describes formally a set of feature grammar systems where one is instantiated on
the moment a start symbol is chosen,i. e. SS → . . . is generated on-the-fly.

3.2.4 Feature Grammar Modules

One of the main goals of feature grammar systems is to keep detectors generic, so
they are easily applicable in another context. This goal is further supported by the
concept of feature grammar modules. In such a module related detectors, atoms and
their production rules are grouped and available for reuse by other feature grammars.

1 %module WWW;

2 %start WebObject(Location);

3 %detector WebHeader(Location);

4 %atom www::url {^http://([^ :/]*)(:[0-9]*)?/?(.*)$};
5 %atom temporal::date;

6 %atom url Location;
7 %atom date Modification;
8 %atom lng Length;
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9 WebObject : Location WebHeader WebBody;
10 WebHeader : Modification Length;

ThisWWWfeature grammar module gives basic support for the WWW. The module
offers a start symbol,WebObject, and a detector to retrieve basic HTTP header infor-
mation,WebHeader. Furthermore, it contains the definition of two atomic types:url
anddate. These feature grammar statements show how theImage feature grammar
uses theWWWmodule:

1 %module Image;
2 %use WWW;

3 WebBody : Image;
4 Image : Color Class;

In this example both theLocal andWebBody symbols are unique for the union of the
Image andWWWfeature grammars. However, when this is not the case naming con-
flicts arise. Assuming that the module names are unique, they are used as namespaces
to resolve such conflicts. An explicit namespace is added as a prefix to the symbol
name,e. g.WWW :: WebBody.

Declarations and definitions always happen in the scope of the active namespace,
i. e. the module in which the declaration or definition takes place. This means that
atoms and detectors can not be redefined by another feature grammar module. How-
ever, additional production rules are allowed,i. e. to add an alternative view. The
Image feature grammar uses this construction to add theImage view on aWebBody
symbol. In this way feature grammars are easily extensible.

3.2.5 Change Detection

In Chapter1 several sources of change were identified:

internal sources either the dependency description or the implementation of detector
functions change;

external sources the source data changes, the system may check for these changes
by itself (polling) or may be alerted by the librarian.

The upcoming sections will describe the features the feature grammar language offers
to theAcoi system to detect some of the changes.

Versions One of the triggers for incremental maintenance of a set of parse trees are
changes in detector implementations and the production rules. Changes in implemen-
tation may not always be reflected in the feature grammar,e. g. a bug fix does not
have to lead to changes in the output, and thus the production rules, of a detector. To
indicate these changes detectors have a version.
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1 %version Skin 1.23.4;

Increments of the version indicate a change in implementation and forces the FDS to
determine if any persistent stored parse trees are affected and should be updated. The
priority which is assigned to this change is depending on the level of change: major
(the first number), minor (the second number) or service (the last number).

Polling Detector versions handle the notification of internal detector changes. To
poll for external changes an (optional) poll detector related to a start symbol is added.
The arguments of this detector are at least the required initial sentence as part of the
start declaration.

1 %detector WebObject.poll(Location,WebHeader/Modification);

An implementation of this poll detector will be called by the FDS (see Chapter6)
on a regular basis to check if a stored parse tree needs to be updated. When no poll
detector is defined the default poll detector is used, which always returnstrue, i. e.
always indicates an external change.

3.3 Discussion

This chapter described the feature grammar language: a convenient notation for fea-
ture grammar systems, including several syntactic shortcuts. The language aims at
being readable, although a clear understanding of the use of CS grammars is still
needed to construct one,e. g. understand the relationship between rules, trees and
regular path expressions. This should not prevent the usability of the language as its
target audience are DMW and annotation extraction algorithm developers, who will
be schooled in basic computer science topics.

With the rise of XML more and more languages are expressed in XML and thus
have the advantage of standardized tools like SAX parsing and DOM parse trees.
But those languages tend to be verbose and non-transparent. However, an XML-ized
version of the feature grammar language may be constructed as an intermediate format
to gain those advantages. This language could be defined as an extension on one of
the upcoming XML schema languages (see Section5.2.1).
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Feature Detector Engine

. . . Sharpen line forty-eight between twenty point twenty-seven.

. . . Profile trace.

. . . Stop. Back up.

. . . Stop.

. . . Enhance.

. . . Seesaw.

. . . Stop!

. . . Enhance.

. . . Enhance.

. . .

. . . Hey!
Rick Deckard– Blade Runner

Grammars are mostly used to validate a sentence’s membership of a specific language.
This process of validation, called parsing, may lead to the construction of a parse tree,
i. e. an internal representation of the structure of the sentence. The parsing process
forms the heart of theFeature Detector Engine(FDE). During this process the FDE
encounters detector symbols, binds their input sentence, executes the associated al-
gorithms, and validates their output sentence (the actual parsing). There are many
different parsing algorithms. Yet only a few of these algorithms are suited for process-
ing a feature grammar system. The next section will review the predominant parsing
algorithms for CF grammars. The remainder of the chapter is focused on the imple-
mentation decisions for the FDE, based on a parsing algorithm well suited for feature
grammar systems.
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Figure 4.1: The basic PDT

4.1 A Parser Primer

The membership of a sentencew in a languageL(G) can be checked using a parser,
which is especially constructed for that grammar. Parsers are based on specific types of
(finite) automata. For each grammar type or language family a specific type of (finite)
automata is used. A REG language is parsed using afinite automaton(FA), while a CF
language needs the more advanced functionality of apush-down automaton(PDA).

The basic automaton is an acceptor,i. e. accepts or rejects an input sentence. When
the automaton also has additional output,e. g. a structural description of the symbols
encountered, it is called a transducer.

The transducer version of the PDA,i. e. thepush-down transducer(PDT), is ba-
sically a FA with a stack-based memory and an output tape, see Figure4.1. The read
head of the input tape can read one symbol at a time from the tape. The same goes for
the write head of the output tape: it can write one symbol at the time. Both the read
and write head advance to the next symbol after reading or writing. The end of both
the input sentence and the stack is indicated by the special symbol$. The stack-based
memory allows the PDT to push and pop symbols on or from the stack in a last-in
first-out (LIFO) way.

The transducer description includes a set of states. The states of the PDT are
restricted to these types, which are directly related to its capabilities:

start the PDT;

read a single symbol from the input tape;

write a symbol on the output tape;

push a single symbol on top of the stack;

pop the topmost symbol from the stack;
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Figure 4.2: A non-deterministic PDT for theImage CF grammar

accept the input string and stop;

reject the input string and stop.

Using these states and a set of state transitions the PDT can be used to implement
a parsing algorithm. To illustrate this Figure4.2 shows a PDT for this example CF
grammar:
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Example 4.1.

Image → Location

Image → Location α;

α → Color Class

Color → Number Prevalent Saturation

Color → β Number Prevalent Saturation

β → RGB

β → RGB β

RGB → Red Green Blue

Class → Graphic

Class → Photo Skin Faces

Location → url

Number → int

Prevalent → flt

Saturation → flt

Graphic → bit

Photo → bit

Skin → bitmap

Faces → int

Red → int

Green → int

Blue → int

The PDT starts with the start symbolImage on its stack. After thestart state the
controller moves to thepopstate, where theImage symbol is popped from the stack.
Based on this symbol the PDT chooses a transition to a next state. Figure4.3 shows
the (possible) condition of the PDT the second time it visits thepopstate. Theaccept
state is reached when both the stack and the read tape are empty (reached by both
popping and reading a$ symbol). The output tape will then contain a textual descrip-
tion of the parse tree,e. g. Image ( Location http://... α ( Color
( Number 29053 ...) ...) ) .

On its way to theacceptor rejectstate the controller has to choose a move to a next
valid state. In the case of either a pop or a read state, the valid options are determined
by respectively the symbol on top of the stack or under the read head of the input tape.
If there is always precisely one valid move, the PDA or PDT is calleddeterministic
(DPDA or DPDT), when there are more valid options the PDA or PDT is callednon-
deterministic(NPDA or NPDT). The PDT in Figure4.2 is non-deterministic,e. g.
after a pop of theImage symbol there are two valid moves (due to the alternative
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Figure 4.3: The condition of the PDT

production rules). In such a case the NPDT follows both choices,i. e. it is in several
states at the same time. However, some of these choices will never lead to an accept
state and will thus not yield a valid parse tree. On the other hand several choices may
lead to valid parse trees. When more than one valid parse tree can describe the same
input sentence the grammar isambiguous(see also Section2.1.2.4).

A PDA or PDT can be automatically generated from a CF grammar. The algorithm
implemented in the PDT and sketched above performs a top-down parsing strategy –
an intuitive method. In the next section a short overview of other methods and their
most important properties are given.

4.1.1 More Parsing Algorithms for Context-free Grammars

A top-down algorithm, as has been sketched and implemented in a PDT in the previous
section, starts with the start symbol and tries, by traversing the production rules in a
smart way, toproducethe input sentence. Abottom-up algorithmworks just the other
way around: it starts with the input sentence and tries toreduceit back to the start
symbol.

Both algorithms can be used to parse the input sentence of Figure2.3using the ex-
ample CF grammar. Due to space considerations a simplified version of the grammar
is used (see Figure4.4) to illustrate the behavior of the two basic algorithms.

Furthermore, the end of the input sentence is once more indicated with the special
$ terminal. This terminal reappears at the end of the rule for the start symbol,Im.
This rule takes care for a correct detection of the end of the input sentence.

Figure4.5shows the steps taken by a specific top-down parsing algorithm,i. e. a
depth-first algorithm. The information used by this algorithm consists of two parts:
the active rules and the sentence. The current position within a rule (or the sentence)
is indicated with a bullet (•). This bullet splits a rule in amatchpart and aprediction
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part. The algorithm always follows one alternative. For example, in stepj the Gr
alternative of theCl non-terminal is tried, only when this one fails the next alternative,
Ph, is tried in stepk. When none of the active rules has a prediction left and the input
sentence is also completely consumed, and both these conditions are enforced by the
start rules forIm, the input sentence can be accepted. By keeping track of the active
rules the parse tree can be gradually build during the parsing process.

The application of a bottom-up algorithm,i. e. a breadth-first algorithm, is shown
in Figure4.6. The breadth-first algorithm inspects several possible parses in each step.
Each parse under consideration is represented by a stack with attached partial parse
trees. Each step in this algorithm consists of two phases. In theshift phase the next
input symbol is appended to each stack. The followingreducephase then examines
all stacks and if they allow one or more reductions copies of the stack are made and
the reductions applied to them. These reductions produce the partial parse trees. The
first reduction is applied in stepd: the shift phase added theSa token to the first
stack, which enabled the reduction of theNu Pr Sa symbol sequence to theCo non-
terminal. This process continues until there is no input left. In the total of six (partial)
trees left in steph there is only one which contains the start symbol,Im, which is also
the root of the parse tree.

Both parsing algorithms process the input sentence from left to right,i. e. they
aredirectional. However, there are also some algorithms which arenon-directional.
These methods may access the input sentence in any order they like. This requires the
input sentence to be completely available upfront, while conventional algorithms work
on a stream of tokens. To illustrate this: the breadth-first used algorithm in Figure4.6
is well suited for on-line parsing where a source outside of the parser produces the
input sentence gradually.

Table4.1shows a taxonomy of parsing algorithms (based on [GJ98], where these
algorithms are described in more depth). The taxonomy shows that directional pars-
ing algorithms can be further grouped. The description of top-down and bottom-up

The simplified CF grammar: The simplified input sentence:
1 Im → Lo $ Lo Nu Pr Sa Ph Sk Fa $
2 Im → Lo α $
3 α → Co Cl
4 Co → Nu Pr Sa
5 Co → β Nu Pr Sa
6 β → RGB
7 β → RGB β
8 RGB → R G B
9 Cl → Gr

10 Cl → Ph Sk Fa

Figure 4.4: The simplified CF grammar and input sentence
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Active rules Sentence
a. 1. Im → •Lo $ •Lo Nu Pr Sa Ph Sk Fa $

b. 1. Im → Lo • $ Lo •Nu Pr Sa Ph Sk Fa $

c. 1. Im → •Lo α $ •Lo Nu Pr Sa Ph Sk Fa $

d. 1. Im → Lo • α $ Lo •Nu Pr Sa Ph Sk Fa $

e. 1. Im → Lo α • $ Lo •Nu Pr Sa Ph Sk Fa $
2. α → •Co Cl Lo •Nu Pr Sa Ph Sk Fa $

f. 2. α → Co • Cl Lo •Nu Pr Sa Ph Sk Fa $
3. Co → •Nu Pr Sa Lo •Nu Pr Sa Ph Sk Fa $

g. 3. Co → Nu • Pr Sa Lo Nu • Pr Sa Ph Sk Fa $

h. 3. Co → Nu Pr • Sa Lo Nu Pr • Sa Ph Sk Fa $

i. 3. Co → Nu Pr Sa• Lo Nu Pr Sa • Ph Sk Fa $

j. 2. α → Co Cl• Lo Nu Pr Sa • Ph Sk Fa $
3. Cl → •Gr Lo Nu Pr Sa • Ph Sk Fa $

k. 3. Cl → •Ph Sk Fa Lo Nu Pr Sa • Ph Sk Fa $

l. 3. Cl → Ph • Sk Fa Lo Nu Pr Sa Ph • Sk Fa $

m. 3. Cl → Ph Sk • Fa Lo Nu Pr Sa Ph Sk • Fa $

n. 3. Cl → Ph Sk Fa• Lo Nu Pr Sa Ph Sk Fa • $

o. 1. Im → Lo α $• Lo Nu Pr Sa Ph Sk Fa $•

Figure 4.5: A top-down parse for the example CF grammar
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Figure 4.6: A bottom-up parse for the example CF grammar
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top-down bottom-up
non-directional Unger parser CYK parser
directional predict/match automaton shift/reduce automaton

1. depth-first 1. depth-first
1.a. backtracking
1.b. exhaustive backtracking
2. breadth-first 2. breadth-first
2.a. deterministic breadth-first 2.a. restricted breadth-first
2.a.1. LL(k) 2.a.1. Earley

2.a.2. Tomita
2.b. deterministic breadth-first
2.b.1. LR(k)
2.b.2. SLR(1)
2.b.3. LALR(1)

Table 4.1: A taxonomy of parsing algorithms

parsing already showed that either a depth-first or a breadth-first search strategy can
be applied. Research on efficient algorithms,i. e. algorithms with linear complexity,
has mainly focused on bottom-up, directional and deterministic methods. They use
some form of look-ahead,i. e. one or more tokens of the input sentence, to decide
which production rule to follow. Bottom-up parsers are more powerful for determin-
istic parsing as they will use more context,i. e. have seen more of the input sentence,
before making a decision [Par93]. Although these variants are not shown in this table,
deterministic algorithms can be generalized,i. e. made non-deterministic, by adding
(pseudo-)parallel features [Lan74, Rek91].

4.2 Parsing Feature Grammar Systems

As summarized in the previous section, there exists a plethora of techniques to parse
sentences and validate their membership of a CF language. However, are these pars-
ing techniques also applicable to grammar systems and feature grammar systems in
particular?

Grammar systems have been mostly studied in theory, however, some first steps
have been taken to use them for practical purposes [PS98]. One step in this process
is to investigate the use of (existing) parsing algorithms. In [MM96] the authors take
a first step by investigating the deterministic subclass of grammar systems as a basis
for parsing. However, as identified in the previous chapters the application domain
of feature grammar systems benefits from non-determinism. In this section a suitable
non-deterministic parsing algorithm for feature grammar systems is selected.

In a grammar system parsing operates on two different levels: the global grammar
system,i. e. transfer of control between grammar components, and the local grammar
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component,i. e. the actual parsing of a (partial) sentence. This is also reflected in the
basic ingredients of the derivation process for a feature grammar system, as formally
described in Chapter2:

bind a grammar componentGi gathers its input sentence by binding its REG expres-
sionRi with thepath metamorphosis of the partial parse treetj ;

detect a detector functionfdi
maps the input into a, just-in-time produced, partial

sentence;

parse the partial sentencezdi
is parsed, and thus validated, by the corresponding

grammar componentGi, resulting in an extended partial parse tree;

(un)nest the yield z of the partial parse tree derived usingGi contains the words
in zdi enveloped by arbitrary sequences of detectors, as described by the REG
language derived byfD from zdi

.

The just-in-time behavior determines where the control of the system lies initially:
with the “dummy” detectorSS . This implies a top-down algorithm, which is con-
firmed by the needs of the binding step. As this last step depends on the availability
of a (partial) parse tree which can be transformed into a set of neat paths in which
the regular expression,Ri, can be resolved. The nesting of detector components asks
for a component to hand over the control to another component. As stated in Sec-
tion 2.2.3.1, the lPC rewriting mechanism has been added to prevent deadlock sit-
uations and prefers leftmost derivation on the control or grammar system level. So
the grammar system level calls for a top-down leftmost,i. e. directional, parsing algo-
rithm.

Within a component a complete sentencezdi
is available, which in principle may

be parsed with any of the non-deterministic parsing algorithms described in the previ-
ous section. What complicates this parsing process is the nesting of detectors. Upon
encountering a detector there are two alternatives: (1) delay validation of the detector
until the stop condition of the grammar component is satisfied, or (2) first validate the
detector and then go on with validation of the output sentence. The first alternative
closely follows the formal derivation method as described in Chapter2, but does not
fit within any CF parsing algorithm. The second alternative allows the use of a stan-
dard top-down algorithm,i. e. control is handed over to the detector and handed back
after validation.

Both levels allow, and even favor, the use of an adapted top-down algorithm. There
are even more, general, reasons for the use of a top-down instead of a bottom-up
algorithm:

1. people parse sentences top-down [AS88, RJ99], i. e. debugging a top-down
parse is thus more intuitive for a feature grammar developer;
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2. these algorithms provide better support for the addition of semantic actions
[Par93], e. g.detector functions, as they provide more context information,i. e.
the same reason why detector parameters can be bound;

3. the same context gives also easy support for informative error reporting [GJ98],
which, once more, helps during debugging.

A top-down algorithm has been implemented in the current version of the FDE
and will be described in more detail in the next subsection.

4.2.1 Exhaustive Backtracking for Feature Grammar Systems

The top-down algorithm used within the FDE is based on anexhaustive backtracking
algorithm. Backtracking indicates depth-first behavior: one alternative is chosen and
followed until it either fails or succeeds. Upon failure the algorithm backtracks until
an untried alternative is found and tries that one. The adjective exhaustive means that
the algorithm used by the FDE also backtracks when the alternative is successful. By
doing this the algorithm handles ambiguous feature grammars and constructs the parse
forest.

To show the algorithm in action a basic feature grammar is constructed in relatively
the same manner as the CF grammar in Figure4.4. Figure4.7 shows this simplified
feature grammar. The same figure shows the formal feature grammar system derived
from the grammar. The rewrite of the rules involves the introduction of anonymous
symbols,i. e. α andβ, for the handling of a symbol group and sequences.

Figure4.8 shows the various parsing actions, grouped per controlling grammar
component. The actions are directly associated with the basic ingredients described
before. A component which gets control starts with an empty output sentence. The
REG expression associated with the detector isbindedin the parse forest (see Fig-
ure 4.9 for the basic AND/OR graph) resulting in the input sentence. The output
sentence is then filled by thedetectaction,i. e. the mapping function is applied. The
parsing process of this sentence is then interleaved with control transfers to nested de-
tectors. To be able to resume the parsing process the output sentence is pushed on the
stack of sentences under inspection when control is transferred to a nested detector.
This allows the delayed evaluation of the remainder of the stop condition by popping
this stack when control is transferred back.

The exhaustive backtracking behavior of the algorithm is illustrated in stepa,
when the second alternative rule ofIm is considered (and found valid in stepk),
even after the first rule has already been found valid.

Most algorithms pose limitations on the grammars they can parse. This is also true
for a top-down parsing algorithm like exhaustive backtracking. The next subsection
will investigate these limitations. The last two subsections will look at optimizations
to make the algorithm more efficient by avoiding unnecessary backtracking and doing
double work.
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Figure 4.7: The simplified feature grammar (system)
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Figure 4.8: A top-down parse for the simplified feature grammar system
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4.2.1.1 Left-recursion

The major limitation of top-down methods are their inability to handle left-recursive
grammars. To illustrate this problem consider this, direct left-recursive, grammar:

S → S a

S → b

To validate the production rule ofS the parser will try to validateS over and over
again, thus entering an endless loop. Fortunately standard rewrite rules are available
for left-recursion elimination. For example this grammar generates the equivalent
language:

S → b α

S → b

α → a α

α → a
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This is the same result as when theright-recursiveinterpretation for symbol sequences
is used,i. e. both grammars are equivalent with this rule in the extended notation of
the feature grammar language(see Section3.1.1):

1 S : b a*;

These rewritten grammars show that any finite valid input sentence will have to start
with a b terminal, followed by an optional tail ofa terminals.

Indirect left-recursion is the case where left-recursion takes place after encounter-
ing several other non-terminals,e. g.as is the case in this grammar:

S → A B c

B → C d

B → A B f

C → S e

A → λ

Recursion elimination in this grammar takes extensive rewrites (see for the algorithm
pages 176 – 178 in [ASU86]): elimination of empty rules, elimination of unit rules
and finally flatting of the rules interleaved with elimination of direct recursion. This
whole process (using the rewrite rules based on the basic CF grammar notation) results
in this grammar:

S → B c

B → α β

B → α

α → γ

γ → c e d

γ → f c e d

γ → f β c e d

β → f

β → fβ

Notice that during the application of the rewrite rules symbols disappear and new
anonymous symbols are added. Unfortunately this hinders the automatic application
of the rewrite rules, especially when detector symbols are involved. The FDE can on
one hand not decide to call the detector just once, as is the case with the rewrite rule
for direct recursion which uses the extended notation. And on the other hand it can
also not split the detector in two: one detector which produces the head (S) and one
which produces the tail (α). The same goes for indirect left-recursion elimination.
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This moves the burden of removing left-recursion of a detector symbol to the de-
veloper,i. e. the developer should manually decide when the detector fails and end the
infinite production. The need for explicit rewrites by the developer is not uncommon
in the world of grammar driven tools,e. g.a parser generator like Yacc [LMB92] does
not rewrite the grammar rules, but only warns the developer. The main reason for
this is that, not unlike the detector functions in a feature grammar system, actions are
associated to the grammar rules. And the developer has to modify these actions along
with the grammar rules. However, the FDE offers support by warning the developer
when left-recursion appears.

4.2.1.2 Lookahead

Deterministic top-down parsing algorithms, and also some bottom-up variants, depend
on lookahead. The algorithm looks ahead in the stream of tokens to be parsed to
determine which alternative of a rule to choose. Depending on the lookahead depth the
alternatives can share longer prefixes. In theory a lookahead of more then one token
(k > 1) has been studied [RS70, PQ95], however, due to the exponential explosion in
time and space (|T |k) practical parsers have almost always implemented a lookahead
of only one token.

The most common form of lookahead is implemented by two sets:FIRSTk and
FOLLOWk. Both are based on thek-prefix of a string,w = a1 . . . an:

k : w =
{

w |w| ≤ k
a1 . . . ak |w| > k

Using this prefix operation theFIRSTk andFOLLOWk sets are defined as follows:

FIRSTk(α) = {k : w|α ∗⇒ w}

FOLLOWk(A) = {FIRSTk(β)|S ∗⇒ βAγ}

where

w ∈ T ∗, A ∈ N,α ∈ V ∗, β ∈ T ∗, γ ∈ V ∗

The parse table is now constructed as follows: for every(A → α) α is added to the
(A,w) entry of the table for everyw in FIRSTk(αFOLLOWk(A)) (see [GJ98]).

In [PQ96] the authors argue for the use of more lookahead to make grammars more
natural. The rewrite from aLL(k) or LR(k) grammar to aLL(1) or LR(1) grammar
may involve the introduction of many new (anonymous) symbols,i. e. to left-factor
the rules, thus leading to obfuscation of the semantic meaning. The penalty for the
use of more lookahead is the extra space needed for the lookahead table and the extra
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time spent to check this table and make the decision. In [Par93] the author describes
a linear, approximate, lookahead operation,LOOK1

k , which should minimize this
penalty (|T | ∗ k). This operation is defined as follows:

FIRST 1
k (α) = {a|α ∗⇒ w ∧ w = xay ∧ x ∈ T k−1}

FOLLOW 1
k (A) = {FIRST 1

k (β)|S ∗⇒ αAβ}
LOOK1

k(A → α • β) = {FIRST 1
k (βFOLLOW 1

k (A))}

where

a ∈ T, y ∈ V ∗, α, β ∈ V ∗

A set ofLOOK1
k tables now allows to look at just the discriminating tokenτi, instead

of having to inspect up to allk tokens.
In the FDE non-determinism is allowed. However, lookahead is still useful to pre-

vent time consuming parsing and superfluous execution of detectors. By augmenting
the exhaustive backtracking algorithm with some form of lookahead the FDE will be
able to skip (many of) these dead alleyways.

In a feature grammar system the lookahead is restricted to the sentence belonging
to one grammar component. So the sets and the table are constructed on a per compo-
nent basis. To simulate a complete grammar a default erasing production is added for
each detector symbol, including the component detector itself, appearing within the
grammar component.

Using theLOOK1
k operation the parser can skip the validation of aCo alternative

(see stepb in Figure 4.8) by looking at the second token in the lookahead. When
this token isR choose alternative(Co → ρ β . . . ), when it isNu validate the rule
(Co → ρ Nu . . . ).

Normally the lookahead depth is determined by steadily incrementingk until all
decisions have become deterministic. In a feature grammar system two or more alter-
natives may completely overlap within the grammar component,i. e. the terminals are
only interleaved with (at least one) different detectors. This may result in aLOOK1

k

table which will still contain two or more rules for one set of lookahead values.

4.2.1.3 Memoization

Several parsing algorithms,e. g. chart parsers, depend for their efficiency on a well-
know technique from dynamic programming: memoization [Mic68]. This technique
basically means that each part of the input sentence is only parsed once. When, due to
for example backtracking, the same partial sentence is reparsed the memoized parse
tree is returned, thus saving processing time. In [Nor91] the author shows that by us-
ing this technique in a simple (deterministic) top-down parser the efficiency becomes
equivalent to the much more advanced Earley parser,i. e. O(n3) (wheren is the length
of the sentence).
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The same technique can be applied within the FDE, but it can also be taken one
step further. Remember that the target of theAcoi system is to store the constructed
parse trees persistently in a database. Also, references were added to the language in
Section3.2.3.1. These references make it possible to share (partial) parse trees. This
can be generalized even more by sharing detector executions as stored in the database.
This is possible as, stated in Chapter2, detectors are (deterministic) functions,i. e. the
same input always results in the same output. Once a detector has been called with
a certain input the output may be memoized and reused, thus preventing superfluous
execution. However, memoized detector functions should really be side effect free.
Memoization will, for example, spoil the value of an internal counter which needs to
be incremented to reflect the actual number of symbol instances.

When detector parse trees are memoized the storage will contain two kind of trees:
elementary treesandauxiliary trees. Elementary trees are rooted by start symbols,
they exist individually. Auxiliary trees are rooted by other detectors, they always need
to be (indirectly) associated to a elementary tree. This distinction is also known in a
NLP technique:tree adjoining grammars(TAG) [AR01]. In some variants of TAG
trees are also described by D-Theory and quasi-nodes are used to perform substitution
and adjoining. Substitution is, in the case of feature grammar systems, the binding of
a specific auxiliary detector tree to an elementary tree.

Memoization may also partially resolve the problems with left-recursion (see Sec-
tion 4.2.1.1), depending on the type of repetition. If the recursive structure also repeats
the instantiations, this instantiation will be memoized, be referenced the next time it
is encountered and thus break the recursion in the parser. The recursion in the con-
structed graph will be retained by the memoization reference.

4.3 The Feature Detector Engine

This section will describe the actual implementation of the exhaustive backtracking
algorithm in the FDE. Before going into the details of the various components within
the FDE, the actual form of the FDE needs to be determined.

A grammar can be used in two basic ways: (1) it can be interpreted by a generic
parser, or (2) it can be input to a generator which produces a specific parser. These
two ways lead to two basic architectures as shown in Figure4.10. Of course both
architectures have their advantages and disadvantages.

The main advantage of the generic parser is its adaptability. A change in the gram-
mar leads to updates of its internal bookkeeping structures, and because those are not
hardcoded the changes can be done during runtime [HKR90]. This adaptability comes
at a loss of performance, which is the main advantage of a specialized, generated,
parser. But in this case changes to the grammar can only be reflected by regenera-
tion and recompilation. To prevent the FDS from having to manage these (possibly
complicated) steps the FDE is implemented as a feature grammar driven parser.

Figure4.10shows that the parser is preceded by a lexer. In traditional parsers the
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Figure 4.10: (a) A generic parser and (b) a specialized parser

lexer, which performs the lexical analysis, splits the input byte stream into meaningful
tokens. In the FDE only a subset of the lexical analysis is needed, as the initial sen-
tence and the output sentences produced by the detectors are already split into tokens.
However, their validity is still checked using the specific atom validation rules (see
Sections2.2.2and3.1.2).

The internal architecture of the FDE is shown in Figure4.11and contains these
components:

the symbol table is filled by a specific parser (based on the EBNF grammar in Ap-
pendixA) for the feature grammar language and contains all the information
derived from the specific feature grammar, which is constructed by the devel-
oper;

the set of detectorsare implemented by the developer and each of them can dynam-
ically be loaded into the FDE;

the set of plugins are implemented by an expert and can take over the role of a de-
tector, they can also be dynamically loaded into the FDE;

the set of tokens is gradually extended with the output of detectors, in fact multiple
sets of tokens exist concurrently (one for each grammar component);

the controller uses the symbol table to call the detectors, to parse the tokens, and to
gradually build the parse forest,i. e. implements the exhaustive backtracking
parsing algorithm;

the parse forest is a DOM tree and can, when the parsing process has ended success-
fully, be dumped as an XML document containing all valid parse trees.

In the next subsections these components will be revisited and their specific im-
plementation and optimization will be discussed.
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Figure 4.11: The FDE components

4.3.1 The Symbol Table

The symbol table is the basic bookkeeping structure of the FDE. It contains all infor-
mation derived by parsing a specific feature grammar (which conforms to the language
of AppendixA). This parsing step ensures the syntactic validity of the grammar. As
shown in Chapter3 some of the language constructs need additional semantic com-
pletion,i. e. rewrites. When the feature grammar system is complete a semantic check
is needed to validate some additional constraints and warn the developer of some (un-
wanted) properties of the grammar. The rewrites and semantic checks are the topics
of the upcoming subsections.

4.3.1.1 Rewriting

The use of the feature grammar language allows a developer to describe a feature
grammar system in a intuitive fashion. However, to achieve this some symbols and
rules have become implicit. At some points during the parsing of a feature grammar
these symbols and rules are made explicit by applying specific rewrites or adding
annotations to the symbol entry in the symbol table.

Symbol sequencesIn the FDE symbol sequences are not rewritten but the occur-
rence indicators are translated into a lower and upper bound. These bounds
are checked by a WHILE-statement in the parser implementation (see Sec-
tion 3.1.1), i. e. greedy alternatives are favored.

Symbol groups For each symbol group an anonymous is introduced, according to the
rewrites shown in Section3.1.1. Extra care is taken to prevent these symbols to
clog up the parse forest by the use ofedge folding.
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Detector confidencesThe compulsory confidence value (see Section3.1.3.2) is en-
forced by the implementation skeleton of detectors, this will be illustrated in
Section4.3.5.2.

Classifiers Once more the formal rewrite is embedded within the parser instead of
applying the rewrite explicitly. Due to the specific entry in the symbol table the
FDE knows when and how to call theanalyze or thepredict detectors (see
Section3.2.2.3).

Notice that the greediness of this implementation would not notice the ambiguity
of the example parse in Section4.2.1. Only one alternative of theImage rules will
be found. The greedy implementation conforms more to the usual semantic meaning
of optionality: the symbol exists or not,i. e. both alternatives are not considered at
the same time. As indicated in Section3.1.1the greedy implementation results in a
iterative interpretation of symbol sequences. This interpretation circumvents the intro-
duction of anonymous symbols and keeps resolving the XPath expressions relatively
easy.

4.3.1.2 Semantic Checks

The semantic analysis of the grammar ensures that the symbol table and the embed-
ded grammar rules are semantically consistent. Furthermore, a series of checks is
performed on the grammar to warn the developer of “unwanted” properties:

Check for unknown symbols When a symbol appears in a RHS, which has no rules
but is also not a terminal or a detector, the symbol table does not know it yet.
These unknown symbols become non-terminals with an, implicit, empty rule.

Check for naming conflicts A naming conflict happens when there are several (im-
ported) namespaces to which a symbol can be bound.

Check for unique rules A warning is issued when a non-terminal contains exactly
the same production rule more than once.

Check for factors The rules are checked for possible shared pre- and suffixes, a
warning is issued when such a possibility is found.

Check for recursion Left-recursive non-terminals may lead to infinite parses. The
FDE issues a warning when left-recursion is found, however, only the developer
can resolve these or may have already solved them in the detector implementa-
tion.

Check for non-reachable symbolsThis check issues warnings about symbols which
may never be reached from a specific start symbol. Notice that these symbols
may be reachable from another valid start symbol.
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Check for valid path expressionsUsing the detector dependency graph (as will be
discussed in Chapter6) the FDE checks if all the paths point to one or a set of
other nodes.

Check for independent alternatives Path expressions may not point into other alter-
natives of the same context node, as each alternative will belong to a different
parse tree and this will make the alternatives order dependent.

Check for possible deadlocksCheck if a reference crossing in a parameter path ex-
pression may lead to violation of the linear ordering of detectors.

During the parsing process the controller uses the production rules and symbol
information from the table to adapt its generic implementation of the exhaustive back-
tracking algorithm to the specific feature grammar system.

4.3.2 The Parser

Recursive descent is a popular method to implement exhaustive backtracking. In this
method specialized functions are generated for each non-terminal, which are recur-
sively called according to the exact semantics of the production rules. In this case,
where the FDE is a generic parser, the specialized function is replaced by a generic
one which adapts its behavior on the basis of knowledge from the symbol table and
the production rules. The implementation of this generic function is shown in pseudo
code in Figure4.12. The other parsing functions (see lines 10 to 21) are all vari-
ations on this function. For example theparse-detector function will create a local
new sentences by executing the detector function (after successfully binding the input
sentence), and will check if it is empty before declaring itself valid.

The next sections will focus on the various components the parser interacts with:
the set of sentences and the set of parse trees,i. e. the parse forest.

4.3.3 The Parse Forest

The parse forest is the main result of the FDE. Due to the, possible, ambiguous nature
of a feature grammar system and its mild context-sensitivity the parse forest is a rather
complex data structure. To manage this structure several control mechanisms have
been introduced in Section2.2.4. Before discussing the actual implementation and
use of these mechanisms the global (standardized) data structure is introduced.

4.3.3.1 XML and DOM

As has been shortly mentioned in Section3.1.3.1XML documents describe tree struc-
tures [W3C00]. Due to the fact that XML is very popular as an exchange format on
the WWW it, and many related standards, has been quickly adopted and implemented
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Figure 4.12: Implementation of the generic parsing function
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for a wide range of operating systems and programming languages. The FDE im-
plementation uses an implementation [Vei03] of the Document Object Model (DOM)
standard [W3C01a] as an internal representation of the parse tree. This DOM tree
can be easily accessed by XPath expressions,i. e. whitebox detectors and parameter
expressions are easily resolved.

4.3.3.2 Labeling Parse Trees

In the parse forest as introduced in Section2.2.4each node is labeled with a specific
context, i. e. the parse trees the node is a member of. This context is a list of binary
flags, where each flag represents a parse tree. When the flag istrue the node belongs
to the parse tree. The disadvantage of this rather simple scheme becomes clear when
a new tree is added to the forest. All known nodes have to be revisited to indicate if
they belong to the new tree (or not). To prevent these superfluous runs through the
forest the context of a node should only be set when the parsing algorithm visits this
node,i. e. in apre-or post-visitation.

A pre-visitation takes place when the parser starts the validation of a non-terminal.
At that moment the parser only knowns the intermediate number of trees in the forest:
this number is called thescopeof the context. In principle the node is a possible
member of all new parse trees which are added later on, however, those trees are
outside its current scope. A new tree (except for the initial tree) always shares nodes
with an older tree,e. g. its ancestors or the trees it took its detector parameters from.
At least the root of the forest is shared by all trees.

After validation of the production rules of a non-terminal the node receives a post-
visitation. At that moment the parser knows how many parse trees have been added
by these rules and the scope of the context can be enlarged.

To illustrate the use of the context and scope in pre- and post-visitation this, rather
artificial but highly ambiguous, feature grammar is used:

1 %module ambigue;

2 %start S();

3 %detector b [ return i = 1 ];
4 %detector c [ return i = 10 ];
5 %detector d [ return j = 100 ];

6 %detector e [ return i = a//i * 2 ];
7 %detector g [ return i = a//i + 2 ];
8 %detector h [ return i = a//i - 2 ];

9 %atom i, j;

10 S : a e?;
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j(100)i(10)

i(3) i(8)

i(1)

i(-1) i(12)

hghg

hghg

i(2) i(20)f f
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e

b

b
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d

d
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S

scopecontext
tree 1

tree 2

tree 3

tree 4

tree 5

node
pre post

Figure 4.13: A parse forest

11 a : b | c | d;
12 b : i;
13 c : i;
14 e : i f;
15 d : j;
16 f : g | h;
17 g : i;
18 h : i;

A run of the FDE for this feature grammar (which has only one possible run)
results in the parse forest shown in Figure4.13. This forest contains 5 trees. The
scope of the node contexts increases with the top-down left to right construction of
the parse tree. The non-terminala has three valid alternatives leading to the addition
of two new trees, as the first alternative extends the existing tree. The parameter of
the detectore has now an ambiguous binding: eitheri(1) or i(10). This leads to two
quasi-foots representing two executions of the detector functionfe in the two contexts.
The non-terminalf has once more two alternatives leading to the addition of two new
trees, each within their specific context. Theg subtrees extend the existing trees, while
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theh subtrees are derived new trees.
A node can determine which other nodes in the forest belong to its context by this

binary operation ($ indicates the current node and@ indicates the inspected node):

npad(@scope,@context) & npad($scope, $context)
=

npad(max(@scope, $scope),max(@context, $context))

Thenpad function sets all flags outside of the context scope to the default valuetrue.
Themax operations determine which of the nodes is deeper and further to the right of
the forest,i. e. more specific as nodes higher and more to the left have a smaller scope
and are shared more. Take for example the two possibleh roots. The first one does
not havei(10) in its scope and context (wheret = true andf = false):

npad(3, ftf) & npad(4, tfft) 6= npad(max(3, 4),max(ftf, tfft))
ttftf & ttfft 6= npad(4, tfft)

ttfff 6= ttfft

Doing the same inspection for the secondh root results in a positive match:

npad(3, ftf) & npad(5, tfftf) = npad(max(3, 5),max(ftf, tfftf))
ttftf & tfftf = npad(5, tfftf)

tfftf = tfftf

This also shows that the validity contexts of theh roots are in fact determined by their
ancestor, thee quasi-foots.

In the post-visitation all contexts of the compulsory children of the node,i. e. those
with a lower bound of one or more, are unified. See for example the quasi-root ofe.
The third tree does not contain ane node, however, this symbol is optional leading to
a validS node and thus to a valid third parse tree. The post context replaces the pre
context.

This matching operation is used for resolving ambiguous parameter bindings by
adding a feature grammar system specific nodetests to the XPath expression.

4.3.3.3 Memoized Parse Trees

Persistently memoized parse trees function for the FDE as a persistent lookup table
of detector calls. Each detector call is identified by a quasi-foot which contains infor-
mation about a specific input sentence. As a detector is a partial function this input
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Figure 4.14: A deadlock situation due to (a) a direct and (b) an indirect self reference

sentence always maps to the same, stored, output sentence. The FDS, which will be
discussed in detail in Chapter6, manages the lookup table.

The moment the FDE has assembled a complete input sentence a request for the
parse tree is send to the FDS. When there exists a mapping for this input sentence the
FDS will return the unique identifier for the tree and its availability, the FDE will then
take the appropriate action:

1. when the parse tree isavailable, the identifier is stored within the quasi-foot as
a place holder;

2. when the parse tree isunder construction, the FDE will have to wait till it is
know if the mapping exists,i. e. the parse tree becomes available, is unknown
or a deadlock situation occurs (which will be discussed in the next paragraph);

3. when the mappingdoes not exist, the detector symbol can be rejected by the
parser;

4. when the mapping of a black- or whitebox detectors isunknownthe FDE will
inform the FDS that it will execute the detector to instantiate the parse tree,i. e.
the parse tree becomes under construction.

In principle parse trees are not loaded from the lookup table, until a value is needed
as part of an input sentence. The FDE then sends a request for the complete parse
tree or the specific value, depending on the abilities of the underlying XML storage
structure, to the FDS. When the parse tree is still under construction there may be a
deadlock situation. Such a situation occurs when, by a reference, the linear ordering
is violated. Figure4.14illustrates the two basic deadlock forms: due to a direct self-
reference,e. g. d(&S//i) , or an indirect self-reference,e. g.d(&S//&S//i) . As
a global deadlock resolution strategy is not possible the detector is informed and ex-
pected to handle the situation leading to a memoizable parse tree (see Section4.3.5.6).

In the previous section the trees within the parse forest have been labeled using a
scope and context mechanism. However, these elementary and auxiliary parse trees
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Figure 4.15: (a) Local parse forests are (b) combined in a global forest.

will be memoized. A memoized parse tree may be loaded in another forest with a
different context. During saving, the context has to be localized, while during loading
the context has to be globalized. Localization means that the parse tree loses the
inherited global context, only the local context remains. Globalization then reinstates
a, possibly different, global context.

Figure4.15illustrates this process. The local forests are derived from Figure4.13.
Notice that bits in use by siblings are stripped out,e. g.bit 4 for the second alternative
of e. Figure4.15.b globalizes the context once more by replacing bit 1 by the global
context. As the first alternative claims another bit,i. e. creating a difference between
the scopes of the quasi-root and the current scope, bit 4 is once more inserted for
the second alternative. This dynamic behavior of the context bits makes it useless to
persistently store the post-context as a change in one of the memoized trees may use
up more bits.

4.3.4 The Sentences

Sentences are produced per grammar component by the detector function. Internally
a sentence is a simple linked list of tokens. Figure4.12shows that for each alternative
production rule a copy of the sentence is made (s′). In fact only a copy of the token
pointer is made, so each alternative points to its own current position in the sentence.
Each copy is associated with a context,i. e. corresponds with a specific parse tree
within the parse forest.

The stack of sentences under inspection, needed for resuming the validation of the
sentence after control has been temporarily transfered to another grammar component
(see the upcoming Section4.2.1), is implicit, as each sentence is a local variable of a
specific call of theparse-detector function.
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4.3.5 Detectors

4.3.5.1 Detector Input

Detector parameters are identified by XPath expressions. These XPath expressions are
normalized by the feature grammar parser. In this process these rewrites are applied:

1. The default axis for the first step ispreceding:: ;

2. By default only the last match is returned,i. e. add[fn:position() = 1]
for a reverse axis and[fn:position() = fn:last()] for a forward
axis.

3. The feature grammar specific reference operation&node is translated into a
node[fg:bind(@id)] call. This FDE specific XSLT extension function re-
turns a nodeset containing the root node of the refereed (memoized) parse tree,
i. e. this may have to be loaded just-in-time from the database.

4. The parse forest may contain several types of anonymous nodes,e. g. quasi-
foots. The developer does not know about those nodes and thus will not take
care of them within his XPath expressions. Between each two steps a skip ex-
pression is inserted in the vain of/descendant::*[contains(@type,
’.q.’)]/ . This a rather expensive solution. It is cheaper to prevent creating
these nodes at all. This can be done with anonymous nodes which do not con-
tain additional information,e. g. group nodes. These parse forests stay closer
to the semantic grammar and are also calledReduced Derivation Trees(RDT)
[JS98].

5. Detector parameters may only be bound within the context of the current node.
This XPath nodetest will only allow nodes which are within the current context
scope:

[ fg:and(
fg:npad( @scope, @ctxt),
fg:npad( current()/@scope, current()/@ctxt) )

=
fg:npad( fg:max( @scope, current()/@scope),

fg:max( @ctxt, current()/@ctxt) ) ]

The resulting XPath expressions can be resolved against the internal DOM tree.
The result may be several sets of input parameters for different contexts. For each
context a detector call will be bound to a quasi-foot.
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1 (Confidence,Sentence) Skin(Token myLocation) {

2 Sentence mySentence = newSentence();

3 Image myImage = openImage(getValue(myLocation));
4 Bitmap myBitmap = deriveBitmap(myImage, false);

5 Iterator myPixels = newIterator(getPixels(myImage));
6 while(hasMore(myPixels))
7 if (isSkin(nextElement(myPixels)))
8 nextBit(myBitmap, true);

9 putToken(mySentence, "Skin/bitmap", myBitmap);

10 return (0.95, mySentence);

11 }

Figure 4.16: Implementation of theSkin blackbox detector in pseudo code

4.3.5.2 Blackbox Detectors

Blackbox detectors are implemented in the host language of the FDE,i. e. a general
purpose language(GPL) like C. Figure4.16shows an implementation of theSkin
detector in pseudo code.

The detector receives its input sentence as a set of tokens from the parse tree. It
uses this information,i. e. the Location of the Image, to load the image. A new
bitmap is created and filled by iterating over the pixels of the image and determining
if they are a skin pixel or not. The newbitmap token is then added to the newly
created output sentence which is returned to the FDE. Next to the sentence also the
compulsory confidence information is returned: theSkin detector knows for95%
sure that these pixels are really skin.

4.3.5.3 Plugins

Plugins take over a large part of the coding burden from the developer by implement-
ing a generic detector. Plugins come in the two basic variants of detectors: blackbox
and whitebox. In the first case only the input parameters are provided, while in the
latter case those are embedded within a template in adomain specific language(DSL),
like XPath.

Figure4.17shows the implementation of thematlab plugin. The plugin receives
a list of requested parameters belonging to one context. Using the symbols name,e. g.
Color, a command call is constructed. When the command was successfully executed
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1 (Confidence, Sentence) matlab(Symbol mySymbol, List myParams) {
2 Engine myEngine = startEngine(getProperty("matlab")));
3 if (myEngine) {

4 String myCommand = getName(mySymbol) + "(";
5 Iterator myIterator = newIterator(myParams);
6 if (hasMore(myIterator))
7 myCommand += getValue(nextElement(myIterator));
8 while(hasMore(myIterator))
9 myCommand += "," + getValue(nextElement(myIterator));

10 myCommand += ")";

11 Sentence mySentence = runEngine(myEngine, myCommand);
12 if (closeEngine(myEngine) && mySentence)
13 return (1.0, mySentence);
14 }
15 return (0.0, newSentence());
16 }

Figure 4.17: Implementation of thematlab plugin in pseudo code

the output sentence and a confidence of100% is returned to the FDE. When the exe-
cution was unsuccessful a zero confidence is returned, which will lead to rejection of
the symbol.

The same process happens for whitebox plugins although the FDE handles, instead
of the list of parameters, the instantiated template over to the plugin implementation.
So binding detector parameters is always done by the FDE, just like with blackbox
detectors. But a plugin has additional access to the symbol table and can thus adapt
its course on the actual rule context of the symbol.

4.3.5.4 Classifiers

Classifiers are special in the sense that they imply two detectors, both are in fact im-
plemented as a plugin. Figure4.18and Figure4.19show the implementation of these
two detectors for thebpnn classifier.

4.3.5.5 Start Symbols and References

Start symbols and references are once more implemented as plugins,i. e. the feature
grammar developer does not have to provide any code for these detectors.

Only one start symbol is instantiated in a specific FDE run. This detector looks in
the environment of the FDE for the required initial tokens. This environment consists
of notifications of the FDS, the command line of the FDE or interaction with the
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1 (Confidence,Sentence)bpnn.analyze(Symbol mySymbol,List myParams){
2 Confidence myResult = 1.0;

3 bpnn myNN = openBPNN(getName(mySymbol)+".net");
4 if (!myNN)
5 myNN = newBPNN(getLength(getParameters(mySymbol)),4,2);

6 Iterator myIterator = newIterator(myParams);

7 targetBPNN(myNN, 1, myResult);
8 targetBPNN(myNN, 2, atoi(getValue(nextElement(myIterator))));

9 integer i = 1;
10 while (hasMore(myIterator))
11 inputBPNN(myNN, i++, getValue(nextElement(myIterator)));

12 trainBPNN(myNN);
13 saveBPNN(myNN, getName(mySymbol)+".net");
14 closeBPNN(myNN);

15 return (myResult, newSentence());
16 }

Figure 4.18: Implementation of thebpnn.analyze detector in pseudo code

librarian. When all tokens are available the parsing algorithm starts the validation
process.

References take their required tokens from the sentence under inspection. Then
they request the FDS for the identifier and status of the parse tree belonging to the
sentence constructed from these tokens (see Section4.3.3.3). If the parse tree is not
yet known the FDE can build the parse tree, as the input sentence is available, and it
needs to know if the tree is valid.

4.3.5.6 Deadlock Resolution

Sections3.2.3.1and4.3.3.3identified that deadlocks have to be resolved by the devel-
oper within the detector implementation. For this the developer will have to check if
one of the tokens received from the FDE is empty1. The developer has then three op-
tions: (1) use a default value, (2) know how to retrieve the value, which will only work
when the token is part of the output sentence of this detector, or (3) let the detector
fail. In the case of failure the detector symbol will not be accepted by the FDE.

1This means a self reference because when the token is just not available in the parse forest the detector
would not have been executed,i. e. its start condition is not valid.
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1 (Confidence,Sentence)bpnn.predict(Symbol mySymbol,List myParams){
2 Confidence myResult = 0.0;

3 bpnn myNN = openBPNN(getName(mySymbol)+".net");
4 if (!myNN) {
5 myNN = newBPNN(getLength(getParameters(mySymbol)),4,2);
6 saveBPNN(myNN, getName(mySymbol)+".net");
7 }

8 integer i = 1;
9 Iterator myIterator = newIterator(myParams);

10 while (hasMore(myIterator))
11 inputBPNN(myNN, i++, getValue(nextElement(myIterator)));

12 feedforwardBPNN(myNN);
13 Confidence myResult = outputBPNN(myNN, 1);
14 Sentence mySentence = newSentence(outputBPNN(myNN, 2));

15 closeBPNN(myNN);

16 return (myResult, mySentence);
17 }

Figure 4.19: Implementation of thebpnn.predict detector in pseudo code

4.4 Discussion

This chapter contained a detailed description of the design and implementation deci-
sions made for the FDE. The FDE steers the actual annotation extraction process by
interpreting a specific feature grammar system described by a feature grammar. The
top-down parsing algorithm, implemented in the FDE, is interrupted by the execution
of detector algorithms.

This execution model may seem not too different from the way actions are associ-
ated to attribute grammars [GJ98] and interrupt the parser,e. g.as in parsers generated
by Yacc [LMB92]. However, those actions can only intervene in a limited way in the
parsed sentence,e. g. push a token back on the stack. The parsed sentence is com-
pletely available, while in the FDE the parsed sentence is extended just-in-time. This
limits the parser severely in taking decisions based on lookahead. As discussed, looka-
head can only be used within a grammar component, where the complete sentence is
available. Bottom-up algorithms, like used in Yacc, may be used within individual
components. However, the control transfer between components complicates this.
Postponing this transfer may enable the use of, in general, more efficient bottom-up
algorithms, and is thus an interesting topic for future research.
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Performance can also be boosted by replacing the depth-first algorithm with a
breadth-first algorithm,i. e. each parse tree gets its own parsing thread. Detectors
should already be side-effect free, but shared data structures, like the parse forest, will
have to be guarded by critical sections or replaced by localized copies. Investigation
of the theory of PC grammar systems may also be of interest here.

The current implementation is inC. However, other implementation strategies
are well possible,e. g. in a functional language or in the form of generation of Tool-
Bus scripts or translating context dependencies into output/input dependency for a
dataflow or a daemon architecture (see Section2.3). However, theC implementation
gave more freedom in staying close to a well known parsing algorithm and thus study
the impact of the extensions of feature grammar systems. A future ToolBus or dae-
mon implementation may allow to incorporate more concurrency, and may also allow
relaxation of the deadlock prevention strategy.



Chapter 5

Feature Databases

Systems have sub-systems and sub-systems have sub-systems and so on
ad finitum - which is why we’re always starting over.

Every program is a part of some other program and rarely fits.
Alan J. Perlis– Epigrams on Programming

The FDE implementation described in the previous chapter produces a forest of parse
trees,i. e. elementary and auxiliary trees. These trees are stored in a feature database
for two reasons: primarily as a persistent buffer for the on line use by the DMW
search engine and, secondarily, as a lookup table for memoized detector calls. The
parse trees produced by the FDE are in fact XML documents. The mass storage of
XML documents has been a major research topic since the rise of XML asthe data
exchange format for Internet-based applications. In this chapter the storage scheme
for XML documents as used by the currentAcoi implementation is described in more
detail. The backend of this XML mapping is theMonet database kernel. TheAcoi
system functioned as a test case for many of its unique aspects. These unique aspects
are introduced in the next section, while the other sections will reflect on the mapping
used and the lessons learned.

5.1 The Monet Database Kernel

The Monet database kernel [BK95, Bon02] provides, for main memory optimized,
access toBinary Association Tables(BATs). BATs are the actual implementation
primitives for theDecomposed Storage Model(DSM) [CK85]. On top of this kernel
several front-ends have been build. These front-ends use the extensibility features
of Monet: the Monet Interpreter Language (MIL) [BK99] and its dynamic loading
mechanism for accessing libraries ofC code. In the case of the relational model
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Relational front-end

mapping rules

SELECT Title
FROM Albums
WHERE Artist=”Chet Baker”

Monet back-end

Albums

Artist
Chet Baker
Miles Davis
John Coltrane
Ella Fitzgerald
The Dave Brubeck Quartet

ID
455
456
457
458
459

Title
Chet Baker Plays
Kind of Blue
A Love Supreme
First Lady of Song
Time Out

Artist
Chet Baker
Miles Davis
John Coltrane
Ella Fitzgerald
The Dave Brubeck Quartet

ID
455
456
457
458
459

Title
Chet Baker Plays
Kind of Blue
A Love Supreme
First Lady of Song
Time Out

oid
137@0
138@0
139@0
140@0
141@0

oid
137@0
138@0
139@0
140@0
141@0

oid
137@0
138@0
139@0
140@0
141@0

Albums_ID Albums_Title Albums_Artist tmp1 := select(Albums_Artist,
               ”Chet Baker”);

tmp2 := semijoin(Albums_Title,
                 tmp1);

print(tmp2);

SQL

MIL

L
og

ic
al

 m
od

el
Ph

ys
ic

al
 m

od
el

Figure 5.1: A relational front-end forMonet.

tables are vertically decomposed into binary tables, see Figure5.1. SQL queries are
translated into MIL commands which provide access to the appropriate BATs.

5.1.1 Monet and XML

Just as for the relational model an XML specificMonet front-end can be build. In fact
several of such front-ends have been built, and they will be shortly described in this
section. Where appropriate the mappings are illustrated with (parts of) the parse forest
shown in Figure4.9, assuming that confidences (ρ) are stored as attributes, that end-
of-sentence markers ($) are not stored, and that all leafs contain a lexical instantiation.

An easy way to store XML documents in a database is into abinary large object
(BLOB). This has been a popular way in the early days of the integration of XML into
databases. However, its drawback is that to access the XML contents the XML doc-
ument has to be (re)parsed. This approach prevents the use of the query optimization
facilities of a DBMS. The solution to these problems is shredding. Shredding means
that the XML document is parsed only once and the contents are directly exposed to
the DBMS, which can thus optimize the access to it. All the methods described in the
upcoming sections use a shredding approach.

5.1.1.1 Semistructured Data

The Magnum Object Algebra (MOA) [BWK98] is an intermediate language between
an object calculus,e. g. OQL, and the database execution language,i. e. MIL. In
[vZAW99] the authors investigate an extension to MOA to also handle semistructured



Section 5.1:The Monet Database Kernel 101

data in the form of XML documents. The tree is represented by a set of binary associ-
ations. Each association describes a parent/child combination.

Taking the example parse forest the database stores these associations:

SS [ρ] = {< o1, “1.00” >},
SS/Im = {< o1, o2 >},
Im/Lo = {< o2, o3 >,< o2, o4 >},
Im/α = {< o2, o7 >},
α/Co = {< o7, o8 >},

...

Sk/cdata = {< o18, o19 >},
Fa/cdata = {< o20, o21 >},

cdata[string] = {< o5, “http://...” >,< o6, “http://...” >,

< o10, “29053” >,< o12, “0.03” >,< o14, “0.19” >,

< o17, “true” >,< o19, “00...” >,< o21, “1” >}

In this case there is no large overlap in structure, but when instantiations of a par-
ent/child relationship occur distributed over the document they will all end up in the
same association,e. g. like thecdata[string] BAT.

This mapping provides a good on average query performance, even when used
with an off-the-shelf DBMS, as has been benchmarked by [FK99].

5.1.1.2 Monet XML and XMark

Monet XML has been developed with the parent/child mapping from the MOA ap-
proach as starting point. Two basic features distinguish Monet XML [SKWW00,
Sch02] from other XML to database tables mappings:

1. the decomposition method is independent of the presence of aDocument Type
Definition(DTD) or other schema, but explores the structure of the document at
runtime;

2. it tries to minimize the volume of data to be processed during a query by storing
associations according to their context in the tree.

This basically means that database tables are created upon need, and these tables
are not only vertically decomposed, but also horizontal. The horizontal decomposi-
tion is administered by the path catalog which contains information about the specific
context of the associations stored in the table. This leads to this specific database
instantiation for the example parse forest:
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SS [ρ] = {< o1, “1.00” >},
SS/Im = {< o1, o2 >},

SS/Im/Lo = {< o2, o3 >,< o2, o4 >},
SS/Im/Lo/cdata = {< o3, o5 >,< o4, o6 >},

SS/Im/Lo/cdata[string] = {< o5, “http://...” >,< o6, “http://...” >},
...

SS/Im/α/Cl/Fa = {< o15, o20 >},
SS/Im/α/Cl/Fa[ρ] = {< o20, “0.77” >},

SS/Im/α/Cl/Fa/cdata = {< o20, o21 >},
SS/Im/α/Cl/Fa/cdata[string] = {< o21, “1” >}

It is clear that this approach uses a larger number of tables due to the use of more
context in the distribution of the nodes,i. e. several tables containcdata[string] in-
formation. This makes it possible to directly zoom in on a specific part of the XML
document by resolving path expressions mainly in the path catalog. On the other hand
complete reconstruction of an XML document is more expensive.

The Monet XML project also includes the definition of the XMark benchmark
[SWK+01, SWK+02]. This benchmark is used to assess an XML database’s abili-
ties to cope with a broad spectrum of different queries, typically posted in real-world
application scenarios. It is widely used to assess systems.

5.1.1.3 XQuery

Based on [Gru02] an XQuery interface on top ofMonet is currently under construction
[GvKT03]. [GvK03] describes one of the major optimized operations: the staircase
join. The optimizations in this implementation make use of a node numbering scheme.
Each node is assigned apre- and apost-order, i. e. resulting in a coordinate for a
node in thepre/postplane. The staircase join uses extensive knowledge about the
distribution of nodes in this plane with respect to a certain context node to prune areas
from the search space.

Figure5.2shows the parse forest of Figure4.9in the pre/post plane. The informa-
tion about these nodes is stored in a small number of BATs from which each has the
unique and dense pre-orders as the head column.

5.2 A Feature Database

Most of the XML facilities for Monet were developed concurrently withAcoi. As
such, anAcoi specific mapping had to be defined and implemented. In this section
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this mapping is described. It is based on the parent/child mapping from the MOA
approach. Care has been taken to keep the interaction, from the FDE and FDS stand-
points, purely XML and hence independent of the storage system and mapping. In
this case the XML documents are transformed by an XSLT stylesheet [W3C01b] into
a MIL script. This script inserts the data from the parse forest into the database.

Notice that this mapping is just a baseline implementation. Other mappings and
systems,i. e. the discussed mappings forMonet or the XML support of an off-the-shelf
DBMS, may prove to be a more effective and efficient XML storage alternative. Due
to the XML exchange layer these alternatives can relatively easy replace the current
storage backend.

5.2.1 A Database Schema

DTD-based or schema-less XML mappings support only one basic data type: charac-
ter data (CDATA). However, a feature grammar contains information about the atomic
types of the data leafs in the parse forest. To create a database schema which takes
advantage of this information,e. g. the integer equivalent ofint(29053) is cheaper
to store than the corresponding character string, the grammar can be translated into a
XML document providing schema information. Currently there are several compet-
ing XML schema languages. The major ones are: XML Schema [Fal01], Relax NG
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[CM01] and Schematron [Jel02]. These languages can be partially intertwined. For
example Schematron assertions may be embedded in an XML Schema [XFr01], while
XML Schema datatypes can be reused inside Relax NG schemas [CK01]. All these
language have their strong and weak points. A favorable combination [vdV01] may
look as follows: structures described by Relax NG, data types by XML Schema1 and
additional validation rules by Schematron.

Once more these schema languages were developed concurrently to theAcoi sys-
tem. In the current implementation a straightforward propriety XML-based schema
language is used. However, any other “standard” schema language may replace this
language. The schema document contains a list of non-terminals,i. e. all the LHSs,
and their possible children,i. e. all the RHSs. The symbols are all annotated with
meta-information,e. g. the symbol type, and the lower and upper bound. Using an
XSLT stylesheet this document is translated into a MIL script to create the database
tables.

This part of the schema document (a complete version is found in AppendixC.1):

1 ...
2 <Image:Color type=".non-terminal.detector.blackbox.">
3 <Image:RGB type=".non-terminal." coll="list" lbnd="0"
4 hbnd="infinit"/>
5 ...
6 </Image:Color>
7 <Image:RGB type=".non-terminal.">
8 <Image:Red type=".non-terminal."/>
9 ...

10 </Image:RGB>
11 <Image:Red type=".non-terminal.">
12 <fg:int type=".terminal.atom."/>
13 </Image:Red>
14 ...

is translated into these MIL statements:

1 ...
2 VAR Image_Color_Image_RGB_parent := new(void,oid);
3 VAR Image_Color_Image_RGB_child := new(void,oid);
4 VAR Image_RGB_Image_Red_parent := new(void,oid);
5 VAR Image_RGB_Image_Red_child := new(void,oid);
6 VAR Image_Red_fg_int_parent := new(void,oid);
7 VAR Image_Red_fg_int_child := new(void,oid);
8 VAR fg_int := new(oid,int);
9 ...

1The data types of XML Schema lack a decent type system[Lew02], however, at least it provides an
extension to the limited set of DTD data types.
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The BATs withvoid head andoid tail will store the tree structure of the parse forest.
Data from leaf nodes are stored in specific BATs which contain a tail column of the
atomic type.

Thevoid head produces a dense numbering scheme for a specific edge type, re-
sulting in aligned array access of all the base and meta-data associated to the edge.
This meta-data is stored in additional BATs. For example this BAT stores the position
of aRGB instance in a specific list:

1 VAR Image_Color_Image_RGB_list := new(void,int);

Other examples of needed meta-data are the context and scope of the nodes, the ver-
sion and confidence of detectors and their input relations.

Next to these data BATs also information about the feature grammar system is
stored. This enables the use of generic procedures which follow the dependencies
between the various nodes,e. g. to reconstruct the original XML document.

5.2.2 A parse forest XML document

The FDE contains in memory a parse forest in the form of an XML document. This
internal document contains more meta-data than needs to be stored in the database.
Using an XSLT script this internal format is stripped down. AppendixC.2 contains
an example of the final parse forest XML document. Some portions of this document
will be described in this section.

1 <?xml version="1.0"?>
2 <fg:forest
3 xmlns:fg="http://www.cwi.nl/~acoi/fg/forest"
4 xmlns:WWW="http://www.cwi.nl/~acoi/WWW"
5 xmlns:Image="http://www.cwi.nl/~acoi/Image"
6 >
7 <fg:elementary context="1:1" confidence="1.00" idrefs="2@1"
8 start="WWW:WebObject" date="20030625"
9 >

10 ...
11 </fg:elementary>
12 <fg:auxiliary date="20030625">
13 ...
14 </fg:auxiliary>
15 <fg:auxiliary date="20030625">
16 ...
17 </fg:auxiliary>
18 </fg:forest>

The root of the documentfg : forest contains information about the feature grammar
modules used,i. e. they are mapped to XML namespaces. The root contains at least
onefg : elementary child node and zero or morefg : auxiliary child nodes.
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1 ...
2 <fg:elementary context="1:1" confidence="1.00" idrefs="2@1"
3 start="WWW:WebObject" date="20030625"
4 >
5 <WWW:WebObject id="5478@0" context="1:1">
6 <WWW:Location id="1" context="1:1">
7 <WWW:url id="2" context="1:1">
8 <![CDATA[http://...]]>
9 </WWW:url>

10 </WWW:Location>
11 <WWW:WebHeader idrefs="5479@0" context="1:1"/>
12 <WWW:WebBody id="7" context="1:1">
13 <Image:Image id="8" context="1:1">
14 <Image:Color idrefs="5480@0" context="1:1"/>
15 <Image:Class id="15" context="1:1">
16 <Image:Photo idrefs="5486@0" context="1:1"/>
17 <Image:Skin idrefs="5487@0" context="1:1"/>
18 <Image:Faces idrefs="5488@0" context="1:1"/>
19 </Image:Class>
20 </Image:Image>
21 </WWW:WebBody>
22 </WWW:WebObject>
23 </fg:elementary>
24 ...

Each parse forest is based on one start symbol, which roots the elementary trees. To
these elementary trees auxiliary trees, which are rooted by detectors or references, may
be attached. Theidrefs attributes of inner nodes,i. e. a quasi-root, refer to specific
instantiations of the auxiliary trees,i. e. the quasi-foot nodes. When there is more than
one reference the node is ambiguous and eachidref will point to a detector call for a
different context. Theidrefs attribute offg : elementary refer to the initial tokens.

1 ...
2 <fg:auxiliary date="20030625">
3 <Image:Color id="5480@0" idrefs="2" context="1:1"
4 confidence="1.00" version="1.0.0"
5 >
6 <Image:Number id="9" context="1:1">
7 <fg:int id="10" context="1:1">
8 <![CDATA[29053]]>
9 </fg:int>

10 </Image:Number>
11 <Image:Prevalent id="11" context="1:1">
12 <fg:flt id="12" context="1:1">
13 <![CDATA[0.03]]>
14 </fg:flt>
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15 </Image:Prevalent>
16 <Image:Saturation id="13" context="1:1">
17 <fg:flt id="14" context="1:1">
18 <![CDATA[0.19]]>
19 </fg:flt>
20 </Image:Saturation>
21 </Image:Color>
22 </fg:auxiliary>
23 ...

Auxiliary trees contain the output of a detector call or are placeholders for a reference
to an elementary tree.

Notice that only root nodes contain anid with a@0 prefix, which indicates that it
is database unique. Theid attribute of an inner node is just a normal integer and needs
to be turned into a database unique identifier upon insertion into the database. This
minimizes the need for the FDE to request unique identifiers from the database when
a node is added to the tree.

5.2.3 Inserting a Parse Forest

The insertion script forMonet is generated just as the schema script: by an XSLT
stylesheet. For the example auxiliary tree these MIL statements are generated:

1 ...
2 Image_Color_idrefs.insert(id2oid("5480@0"),id2oid("2"));
3 Image_Color_context.insert(id2oid("5480@0"),context("1:1"));
4 Image_Color_confidence.insert(id2oid("5480@0"),flt("1.00"));
5 Image_Color_version.insert(id2oid("5480@0"),version("1.0.0"));
6 Image_Color_Image_Number_parent.insert(id2oid("5480@0"));
7 Image_Color_Image_Number_child.insert(id2oid("9"));
8 Image_Number_context.insert(id2oid("9"),context("1:1"));
9 Image_Number_fg_int_parent.insert(id2oid("9"));

10 Image_Number_fg_int_child.insert(id2oid("10"));
11 fg_int.insert(id2oid("10"),int("29053"));
12 fg_int_context.insert(id2oid("10"),context("1:1"));
13 ...

5.2.4 Replacing a (Partial) Parse Forest

The roots of the elementary and auxiliary (partial) parse forests contain database
unique identifiers. Those are used to check if the forest is already stored in the
database. If this is true the new forest will replace the old one. As this new forest
may have a complete new shape and thus not neatly replace the old forest, the old
forest is deleted from the database before the new forest is inserted. To support this
a stored procedure, generated by XSLT from the schema document, is called. This
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procedure knows which BATs are involved with this specific type op (partial) parse
forests and pointer chases the specific forest or, in the case of a bulk operation, forests.

5.2.5 Query Facilities

As MIL is still the primary means to interact withMonet (the SQL and XQuery inter-
faces are still under development) anAcoi specific query interface has been developed.
Once more this interface is based on the combination of an XML document and an
XSLT style sheet.

The XML document contains zero or more selection trees and one projection tree.
In the selection trees predicates on terminal values are specified. More than one selec-
tion tree is needed when the predicates are disjunctive or there are several conjunctive
predicates on the same terminal. In the projection tree the nodes the user wants to
be part of the answer XML document are marked. This query document requests all
portraits from the database.

1 <?xml version="1.0"?>
2 <fg:query
3 xmlns:fg="http://www.cwi.nl/~acoi/fg/query"
4 xmlns:WWW="http://www.cwi.nl/~acoi/WWW"
5 xmlns:Image="http://www.cwi.nl/~acoi/Image"
6 grammar="video" start="WWW:WebObject"
7 >
8 <fg:select>
9 <WWW:WebObject>

10 <WWW:WebBody>
11 <Image:Image>
12 <Image:Class>
13 <Image:Faces>
14 <fg:int min="1" max="1"/>
15 </Image:Faces>
16 </Image:Class>
17 </Image:Image>
18 </WWW:WebBody>
19 </WWW:WebObject>
20 </fg:select>
21 <fg:project>
22 <WWW:WebObject>
23 <WWW:Location project="true">
24 <WWW:url project="true"/>
25 </WWW:Location>
26 </WWW:WebObject>
27 </fg:project>
28 </fg:query>

The XSLT sheet translates this query document into a MIL script which starts with
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Figure 5.3: The query interface.

the predicates and traverses up the selection tree. After all selected trees are collected
a traversal down the projection tree for each selected tree is started and each requested
projection is printed. Some special measures are needed to check the contextual va-
lidity, i. e. a conjunction is only valid within the same context.

As query documents get quite verbose a simplegraphical user interfaceGUI
shows the tree derived from a specific schema document (see Figure5.3). Using this
tree control projection nodes can be marked and simple predicates can be defined. The
query can then be stored as an XML document or directly be executed.

5.2.6 Adding Database Management to a Database Kernel

Monet is a database kernel, which means that it only provides the kernel primitives
for a full fledged DBMS. The previous sections described how a feature grammar spe-
cific XML front-end was build on top of this kernel, however, there are still some key
components lacking. To get a reasonable data throughput for a web crawler concur-
rent updates of the database are needed. BATs are by default not locked on read or
write access,i. e. locking is left to the application programmer. The default extension
modules offer thefork command and thelockatom type as building blocks for concur-
rency and a transaction mechanism. Using these a simple transaction system on the
MIL level was realized, thus allowing concurrent access.

To allow asynchronous communication between theAcoi tools and theMonet
backend a queuing mechanism was added. This enables a FDE to put its XML in-
sertion request into the queue and request the next instructions from the FDS.

The bottom-line was achieved when all queries spend the major part of their idle
time in waiting on the non reentrant MIL parser. The next major version ofMonet will
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contain a reentrant MIL parser.

5.3 Discussion

This chapter described several possible XML storage schemes. This type of research
has been developing rapidly over the past few years (see [Bou03] for an extensive
overview of mappings). The current, rather ad-hoc, implementation used byAcoi is
just a bottom line. Replacement by one of those, concurrently developed or newer,
schemes,e. g.Monet XML, is now more of an engineering task than a research topic.



Chapter 6

Feature Detector Scheduler

The library is a growing organism.
S.R. Ranganathan- Law five ofThe Five Laws of Library Science

The FDE, as introduced in Chapter4, can easily construct a huge collection of hi-
erarchical structures, which are related by references and thus, on a higher level of
abstraction, form a graph. The previous chapter introduced a persistent storage model
for these structures based onMonet. However, the annotations contained in these
structures should be kept synchronized with the (external) multimedia objects they
describe. Next to those external changes, the annotation extraction algorithms may
change over time,i. e. another reason for maintenance. This chapter describes the
contour of theFeature Detector Scheduler(FDS), whose main goal is to steer the
FDE to execute incremental parses and thus propagate the localized changes. Un-
fortunately, there is no complete FDS implementation experience, but the sketch is
backed by prototypes of the core parts.

The core parts of the FDS are shown in Figure6.1. In the subsequent sections
these components will pass the revue and their relations to each other will be de-
scribed in some depth. The last section will also contain a short discussion on the
implementation.

6.1 The Dependency Graph

The basis of the FDS is its analysis of the dependency graph. The dependency graph
describes how all the known symbols of a feature grammar relate to each other. Fig-
ure 6.2 shows the dependency graph based on the exampleHTMLfeature grammar
(see Example3.1).

The symbols play these roles (notice that symbols may play multiple roles):
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Figure 6.1: The FDS components

start symbols are the roots of the hierarchical structures,e. g. theWebObject sym-
bol;

detector symbols are the symbols which are associated with an annotation extraction
algorithm,e. g. theWebHeader symbol;

transparent symbols are anonymous symbols introduced by the rewrite rules,e. g.
the _grp_1_ symbol, which is introduced to capture the grouped optionality of
theWebHeader andWebBody symbols;

terminal symbols are instantiated with a value belonging to the symbols domain,i. e.
they contain the real annotation information like thedate atom;

non-terminal symbols are the symbols without any other specific role. They provide
an intermediate semantic (grouping) level.

This information is stored in the symbol table (see Section4.3.1). From the pro-
duction rules the basic dependency graph is derived. Then the various path expres-
sions are resolved on this meta-level,i. e. all instantiation (value) related predicates
are skipped. For example for this whitebox predicate:
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Figure 6.2: TheHTMLfeature grammar dependency graph

1 %detector ColorMap [
2 some $RGB in RGB satisfies
3 $RGB/Red != $RGB/Green
4 or $RGB/Red != $RGB/Blue ];

these paths are resolved, withColorMap as the context node, within the graph:

1. self :: ∗/preceding :: RGB

2. self :: ∗/preceding :: RGB/child :: Red

3. self :: ∗/preceding :: RGB/child :: Green

4. self :: ∗/preceding :: RGB/child :: Blue

This whole construction process results in these relationships between the nodes
in the dependency graph:

context dependenciesare the most basic parent/child relationship between the LHS
and the symbols in the RHS of a rule. The child,i. e. the RHS symbol, always
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depends for its validity on the validity of the parent,i. e. the LHS symbol. For
parents the validity depends on all the mandatory children,i. e. those depen-
dencies with a lower bound of one or more. TheWebObject does not depend
on the _grp_1_ symbol to be valid, however, _grp_1_ depends onWebObject.
This way the parent/child dependency also enforces sibling dependencies;

output/input dependenciesbetween annotation extraction algorithms: an algorithm
takes it input parameter from the result parse tree of another algorithm. Assum-
ing that the output of the algorithm directly depends on this input, changes in
the values of the parameter symbols lead to the need to rerun the algorithm. For
example: theWebHeader detector depends on theLocation non-terminal as
input parameter;

key/reference dependenciesdefine the relationships between quasi-roots and foots.
Start symbols may specify an initial set of required tokens. The same tokens are
used to resolve references,i. e. they function as a composite key to an (unique)
hierarchical structure. When those key values change the referential integrity of
the relationships have to be revalidated. A tree rooted by aWebObject symbol
is identified by itsLocation. Links found in a HTML page are represented by
references to the correspondingWebObject trees. These references should be
removed when specificWebObject trees are deleted.

Upon a change in the feature grammar system the dependency graph is recreated.
However, to localize change and start updating the parse trees in the database the FDS
needs one (or even several) starting points. The next section shows how these starting
points are identified.

6.2 Identifying Change

Section1.2.4identified two sources, which are also reflected in the feature grammar
language (see Section3.2.5), of change in a DMW: external and internal. The FDS
has to cope with both sources by using the handles specified in the feature grammar
system and given by the developer.

6.2.1 External Changes

The first type of changes happen outside of the annotation system: the source mul-
timedia data, which may or may not reside in the same database as the annotations,
changes1. The FDS may be notified of such changes by four sources: (1) the librarian,
(2) the FDE requests validation of a (new) multimedia object,(3) an (external) sys-
tem,e. g.a database trigger, or (4) the exploration date of stored data passes a certain
threshold.

1Notice that a new multimedia object is also considered a change.
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The FDS reacts to these notifications by polling the source data. This polling is
supported by a special detector, which is associated with a start symbol. The polling
detector always receives the initial token set plus additional tokens needed to establish
any modification of the source data since the annotations were extracted. For example
the polling for web objects takes not only the location of the object but also the stored
modification date (see the example in Section3.2.5). The polling detector can then
simply send a HTTPHEADrequest to the web server and determine if the returned
modification date is newer than the stored date.

When the object is considered modified its root node is invalidated in the database
and added to the (re)validation queue.

6.2.2 Internal Changes

Updates to the feature grammar system and its associated detector implementations
are considered internal to the annotation system,i. e. it has all the information about
them. The stored annotations should reflect the current output of these implementa-
tions. These internal changes are always related to detector symbols,i. e. grammar
components, and thus to the start condition, the detector function and the stop condi-
tion, i. e. the production rules. Notice that instead of single multimedia objects, as is
the case with external change, internal changes refer to sets of multimedia objects.

6.2.2.1 The Start Condition

The start condition changes when one or more of the XPath expressions for binding
of the parameters change. This invalidates the lookup table,i. e. the memoized parse
trees, rooted by this detector as the input sentences may have changed. The conse-
quence is that all these trees are deleted and the parse trees they were member of are
scheduled for revalidation. During the revalidation process the new lookup table will
be reconstructed using the new input sentences.

6.2.2.2 The Detector Function

Changes in the implementation of a detector function are reflected by the version
declaration for the specific detector. Such a version consists of three levels. The
lowest level indicates aservice revision. These revisions will not lead to invalidation
of any nodes in the current stored parse trees, so the FDS does not have to take any
further action,i. e. the data is updated when an external change or more severe internal
change triggers revalidation. Changes of the next level, theminor revisions, will lead
to invalidation of the partial parse trees. However, the data may still be used to answer
queries. Those revalidations are scheduled with a low priority. High priorities are used
for invalidations caused bymajor revisions. In these cases the changes are so severe
that the stored data has become unusable and are deleted from the database.
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6.2.2.3 The Stop Condition

The production rules of the feature grammar component describe the valid output sen-
tences. When these rules change the output sentences have to be revalidated. Changes
to these rules can be found by a tree matching algorithm [ZS89, ZS90, CGM97,
CAM01]. With the rise of XML these algorithms have found a new public, and sev-
eral implementations are (freely) (on line) available (e. g. [Inc02, Mic02, IBM01,
YW03]). From both feature grammar versions the derived XML schema document2

(see Section5.2.1) is fed into the diff implementation. For example, theDelta tool
[Ltd03] will report these changes, when the web objects MIME type is extracted by
WebHeader:

1 ...
2 <WWW:WebHeader deltaxml:delta="WFmodify">
3 <WWW:Modification deltaxml:delta="unchanged"/>
4 <WWW:Length deltaxml:delta="unchanged"/>
5 <WWW:MIME_type deltaxml:delta="add" type=".non-terminal."/>
6 </WWW:WebHeader>
7 ...
8 <WWW:MIME_type deltaxml:delta="add" type=".non-terminal.">
9 <WWW:Primary type=".non-terminal."/>

10 <WWW:Secondary type=".non-terminal."/>
11 </WWW:MIME_type>
12 <WWW:Primary deltaxml:delta="add" type=".non-terminal.">
13 <fg:str type=".terminal.atom."/>
14 </WWW:Primary>
15 <WWW:Secondary deltaxml:delta="add" type=".non-terminal.">
16 <fg:str type=".terminal.atom."/>
17 </WWW:Secondary>
18 ...

In this case the detector can directly be identified, in other cases the context depen-
dencies in the dependency graph have to be traversed from child to parent to the first
detector node(s)3.

6.3 Managing Change

Using the indicators of the previous section a priority queue has been filled with invalid
(partial) parse trees. In the process of revalidation the FDS communicates about the
parse trees with several FDEs and keeps knowledge about the global relationships
between these trees. The next sections will describe this process and the use of this
knowledge in some more detail.

2if the original grammar is not available anymore the schema can be derived from the meta information
in theMonet database.

3When a intermediate non-terminal is reused in different contexts, there may be multiple detector roots.
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6.3.1 The (Re)validation Process

The invalidation of nodes in the parse tree, and the scheduling of their revalidation,
is handled by the FDS using these steps (the example assumes that theWebHeader
detector implementation has changed,i. e. an internal change):

1. The FDS has invalidated all partial parse trees which have an instantiation of
a WebHeader symbol as root. This involvedWebHeader, Modification
andLength nodes (and related terminal nodes), as can be derived by traversing
the rule dependencies. For these parse trees incremental parsing processes are
scheduled, which can be handled by the FDE. The followup action of the FDS
is determined by the result returned by the FDE.

2. If the sub-tree is still valid, the output/input dependencies are checked for mod-
ification. If there has been a modification the dependent detector needs to be
revalidated.

3. If the subtree has become invalid, the context dependencies are followed upward
to the first detector or start symbol which is marked invalid. The FDS will repeat
the whole procedure for these invalid symbols.

4. The referential integrity is checked using key/reference dependencies, when key
values have been changed or parse trees have become invalid.

6.3.2 Lookup Table Management

During the revalidation task other (memoized) parse trees (see Section4.3.3.3) may
be encounter. The FDE provides the input sentence for the mapping described by the
requested parse tree. The FDS will query the lookup table stored in the database for
the existence of this mapping and return the appropriate information:

1. when the mapping is available: the unique identifier of the tree;

2. when the mapping does not exist: anull value;

3. when the mapping is unknown: a new unique identifier;

4. when the mapping is under construction: a timeout after which the FDE will
have to resent its request;

5. when a deadlock is detected (see below): the unique identifier and the type of
deadlock (direct of indirect).

Next to the requests to resolve or initialize a parse tree, the FDEs also inform the
FDS about the validation results (independently of the database storage). Using this
information the FDS maintains a call graph of parse trees currently under construction.
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Detecting a cycle in this graph indicates a (in)direct deadlock, which is reported to the
FDE. The FDE passes this information on to the detector (see Section4.3.5.6), and
will return the result,i. e. the mapping is available or does not exist (meaning that the
deadlock could not be resolved).

6.4 Discussion

As stated in the introduction this chapter contains a sketch of the envisioned system
architecture of the FDS, backed by a partial prototype implementation. Figure6.1
shows the various components. Based on the detection and localization of internal
and/or external changes incremental FDE runs are scheduled and controlled by the
FDS.

The external change detection component is mainly an interface to the polling de-
tectors. This is a continuous process. With a slight extension to the XML schema
documents,i. e. to also contain the XPath expressions, the internal change detector
component can be completely implemented around an implementation of a tree dif-
ference algorithm. The algorithm to derive the dependency graph from the symbol
table has been implemented in the latest version ofAcoi, as will be shown in the next
chapter. The FDE has also been implemented (see Chapter4) and experiments with
incremental parsing have been conducted. However, adaptations, like submitting par-
tial parse trees to both the database and the FDS, may be needed. The (re)validator
and the lookup table manager have not been implemented, so the sketches of these
components have to be validated by an actual implementation in the future.
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Case Studies

De oplosmythe (1)
Met een computer is elk probleem op te lossen.

De oplosmythe (2)
Met een computer is mijn probleem op te lossen.

De oplosmythe (3)
Met een computer is een of ander probleem op te lossen.

Joachim Graf- De computerwetten van Murphy

Throughout the development of theAcoi system and its major component,feature
grammars, several case studies were conducted to assess its practical impact. In the
next sections these case studies will be described together with the lessons learned.
However, theAcoi system itself is also a case study in software engineering of a system
based upon feature grammar systems. This chapter starts with a section describing the
successive versions of the system. The case studies can then be related to the version
being used, and to the changes they inspired.

7.1 The Acoi Implementation

TheAcoi system is developed by the database research group of the Dutch Centre for
Mathematics and Computer Science (CWI) from 1997 to 2003. This section contains
a brief history of the system development so the case studies, which will follow later
on in this chapter, can be placed in the right context.

7.1.1 Acoi Prehistory

BeforeAcoi became a project subsidized by several national projects (AMIS, DMW
and Waterland) the database research group already had laid some foundations. In
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the late eighties the Grammatical Database Model was investigated in two unpub-
lished manuscripts [Ker89, KS89] and a prototype implementation developed by a
master student. This model is based on this quadruple:(L,F,G, T ). L is a language
described by an unambiguous CF grammar,F is a set of transducers defined forL
which can produce a new sentence from an existing sentence,G is a set of guardians
defined forL which determine if a new sentence is valid and, finally,T is a collec-
tion of builtin and user defined types. The transducers and guardians from this model
closely resemble the black- and whitebox feature detectors from the feature grammar
systems. However, the design of this model was never completely finished.

Acoi stands forAmsterdam Catalog of Imagesand the system’s first aim was to
build and maintain a collection of images for research purposes. Feature detectors
were identified as a basic building block for a database-based content-based image
query system. The Acoi image algebra [NK98, Nes00] was a result of these efforts.

Both lines of (past) research flowed naturally into theAcoi project.

7.1.2 The Acoi Project

In the fall of 1997Acoi became a CWI project for providing database support for the
management of multimedia features. This internal project was mainly funded by the
national DMW project, which will be described in some more detail in Section7.3.
Note that although not all the components were implemented in the various versions
of theAcoi system, the general architecture shown in Figure1.4 has been clear from
the start. The exact details still needed to be filled in, which is the focus of this thesis.

7.1.3 Acoi 1998

The research started with the construction of a web robot in Java to gather images
from the World Wide Web. This robot interacted with and helped debugging theMonet
database server using the ODMG interface, which was under development at that mo-
ment. Concurrent to this robot a first version of a feature grammar based toolset was
implemented [KNW98a]. This implementation would read in a specific feature gram-
mar and generate theC source code for a grammar specific recursive descent parser.

7.1.4 Acoi 2000

The first rewrite, which was mainly targeted at a cleanup of the code base, of theAcoi
system was still based on parser source code generation. The parse trees constructed
by this generated FDE could first be dumped as a set ofMx macro calls [KSvdBB96].
The expansion of these macro calls would lead to a MIL script to insert the parse tree
into theMonet database. Later on, this propriety setup was replaced by the combina-
tion of XML and XSLT (see Chapter5).

The image robot was also rewritten into a feature grammar with an accompa-
nying set of detectors. This provided the first experience with the general system
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architecture. Parts of the previous implementation were not reused as mainly string
handling, needed for the parsing of the HTML pages, is far too expensive inJava.
Also controlling timeouts on HTTP connections turned out to be cumbersome. The
implementation of HTML related detectors was therefore done inTcl and later on in
C [Vei03, W3C02a].

Based on the performance characteristics of the system during several case studies
the internals of the system underwent several optimizations. First of all the token
pool was hierarchically organized so larger portions were shared by different recursive
descent levels in the parsing process. This allowed descending and ascending,i. e.
backtracking, to be cheap and to cut away extensive copying of tokens.

The next optimization concerned the binding of detector parameters. In this bind-
ing process the internal tree had to be traversed. This tree could be traversed by a
path expression language loosely based on XPath 1.0. However, when this tree grew
big these traversals would visit too many nodes. By allowing additional hints in the
path expression,i. e. indicating forward or backward traversal, these superfluous node
visits could be prevented. For example:

1 %detector shotlist(ancestor::video/child-forward::filename);

would ensure that traversal of thechild axis would start at the first child ofvideo. This
in contrast to the default traversal strategy which implemented a backward depth-first
search.

Feature grammars were seen as CF grammars with an limited amount of context-
sensitivity [SWK99], i. e. not yet as a specific instantiation of CD grammar systems.
Ambiguity was only allowed in a limited fashion: all alternatives should consume
exactly the same tokens.

Around the FDE an extensible set of scripts in various languages,e. g. Tcl, MIL
and XSLT, was build to implement the WWW search engine (see Figure7.1). These
scripts contained various hooks to insert knowledge not explicit in the feature grammar
(at that time). This setup will be discussed in some more depth in Section7.2.

This version ofAcoi has been used extensively for case studies and has been de-
scribed in [SWK99, WSK99, dVWAK00, NWH+01, WSvZ+03].

7.1.5 Acoi 2002

To accommodate the expected FDS implementation, the FDE was rewritten into an
interpreter. As indicated in Chapter4 an interpreter handles a changing grammar
more easily and spares the FDS the hassle to manage a recompilation of a grammar
specific FDE.

The feature grammar language, and also its parser, was redesigned to cope with
modules, whitebox detectors, classifiers and plugins. The support for these features
was added to the generic FDE. Detectors and plugins became dynamic loadable li-
braries. Furthermore, the implementation made use of more XML standards: DOM
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Figure 7.1: The WWW multimedia search engine architecture.

for the internal parse tree format and subsets of XPath for whitebox detectors and de-
tector parameters [Vei03]. Feature grammar checks were added to warn for various
(possible) weaknesses in the grammar. This included the semantic checks described
in Section4.3.1.2.

A first implementation of the FDS was able to construct and visualize the de-
pendency graph. Also experiments were conducted with various implementations of
XML diff algorithms.

The robot was once more reimplemented. In this case the monolithic grammar
was cut up into several media type related feature grammar modules. Lessons on the
patterns embedded in these modules will be described in the upcoming Section7.2.

7.1.6 Acoi Future

The current implementation ofAcoi still lacks some of the key aspects of the theory
described in this thesis. The main absence is a complete FDS to replace the scripts
which make up the WWW robot. The current FDS implementation lacks interaction
with one or more FDEs and an interface to a tree diff algorithm to find some internal
changes.

As described in Chapter4 parse forests can be stored in one XML document by
adding a scope and context attribute. At this point this level of ambiguity is not sup-
ported by the FDE. The FDE allows multiple alternatives to be true, but they all should
describe the same subsentence. However, the scope/context scheme has been proto-
typed using a set of XML documents and XSLT templates.
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Likewise, the view of feature grammars as feature grammar systems is not com-
pletely reflected in the implementation. This view makes a cleaner separation between
subsentences as produced by different detector functions and thus belonging to differ-
ent grammar components. This asks for these sentences to be only within the scope of
their component and thus prevents the need for hierarchical sharing of tokens.

OnceMonet completely supports an XML/XQuery front-end (see Section5.1) the
specific XSLT scripts can be deleted as XML documents can than be stored natively.
This would also accommodate a closer, but still standardized, binding between the
FDE and the database. Also allowing a clean addition of support for both memoization
and references.

7.2 The WWW Multimedia Search Engine

One of the first targets forAcoi was the construction of an image index for the Dutch
AMIS project. The size of the index aimed for was 1,000,000 images. To find these
images the HTML pages containing their URLs had to be parsed and interpreted, so
soon the index was extended with a full text indexing facility. As this case study
played a major role over the years [KNW98b, WSK99, WSK00, BWvZ+01] annota-
tion extraction algorithms were added for other multimedia types. In the upcoming
sections the feature grammars and system architecture involved will be discussed in
more detail.

7.2.1 The Feature Grammars

Moving away from the first monolithic feature grammar, the current set of feature
grammar modules are very similar to the running examples in the previous chapters
and showcased in AppendixB. The major decision points used in the grammars are
based on the MIME type of the multimedia object under inspection. This MIME type
is retrieved by the genericWebHeader detector which knows the HTTP protocol to
retrieve this information. Using theprimary andsecondaryMIME type, whitebox
detectors in the feature grammar steer the FDE to the set of multimedia type specific
detectors,e. g. language detection for HTML pages and face detection for images.
Detectors for a specific multimedia type are grouped into one feature grammar mod-
ule. TheAcoi module combines all the modules into one grammar, which is used
by the FDE to harvest links from the web. The complete set of detectors is listed in
Table7.1.

As all multimedia web objects are related through HTML pages it is possible to
traverse these anchors and access a specific context of an object. Using this naviga-
tional information this, typical, query can be answered:show me a web page about
“Chet Baker” containing a portrait. This query combines key words from the HTML
page (“Chet Baker”) with a high-level concept (portrait) extracted from the image
object.
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Multimedia type Detectors

Generic web objects HTTP header information
allowance by the robot exclusion protocol

Text files DRUID language classification
HTML pages title, anchors and text extraction

WordNet synsets [CSL01]
images global color features

graphic/photo classification [ASF97]
skin coverage [GAS00]
face detection [LH96]
portrait classification
thumbnail creation

MP3 audio files ID3 tag extraction
MIDI audio files MIDI fields
MPEG video files animated video icon

Table 7.1: The WWW multimedia search engine detector set.

7.2.2 The System Architecture

The system architecture (shown in Figure7.1) uses a set of shell, Tcl, MIL and XSLT
scripts to explore the World Wide Web. The various system components provide hooks
to plugin feature grammar specific scripts. These hooks are mainly used to implement
knowledge about references, as those are not supported by the generic tools inAcoi
2002. The FDS as described in Chapter6 exploits the explicit knowledge of multiple
start symbols and references and can take over the role of these scripts in a future
version ofAcoi.

A small walk through will clarify the role of the various system parts. The user,
i. e. the librarian, starts the database server and provides an initial set of candidate
URLs. The user also starts one or more robots for corresponding Internet domains
and/or multimedia types. Each robot contacts the database server for a subset of the
candidates and starts a number of FDEs to index these. The FDE returns the location
of the XML document containing the parse forest to the robot, which in its turn tells it
to the database server. The database server contacts the Tomcat servlet engine [Pro03]
to retrieve the XML document and transform it into a MIL script. The servlet engine
provides several advantages: (1) it limits the startup time of theJava-based XSLT pro-
cessor1, (2) it provides the possibility to run each robot on a different remote machine
and thus makes the architecture more scalable.

1XT [Cla99] is, although written inJava, one of fastest XSLT processors [Dat01]. However, the
startup time of theJava interpreter is still significant, but can be reduced to a one time affair by embedding
XT in a servlet [Tch01]. The alternative to link in a XSLT processor with the FDE has been proved to
be still slower than thisXT setup when the parse forest grows into a XML document of several hundred
megabytes.
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The extensibility of the system was tested several times by the addition of new
detectors. A detector basically means the addition of a new branch to a parse forest.
For this the FDE supports incremental parses of existing parse trees. This parse tree is
loaded from the database and a special command line option tells the FDE for which
symbol to start (and stop) the detection process. The FDE will thus rebuild the internal
parse tree using the retrieved tokens and will start detection when the new symbol is
encountered. When the FDE returns to the symbol in the post traversal the detection
is stopped again. In this way the extended parse tree (or forest) is build and sent to the
database server. The database server will replace the old parse tree by this new one.

Using this architecture the robot harvested (within 2 weeks in 2000) links to
4,300,000 web objects from which it entirely indexed about 2,000,000. The index
contained 750,000 images from which about 10% were classified as photographs. The
major bottleneck of the system was the MIL parser in theMonet database server. This
parser is non-reentrant and thus protected by a lock. Concurrent parse forest insertion
scripts spent their time mainly waiting to obtain this lock.

The scalability of the index has been extended on the level of theMonet database
server by passing the terms on to a specialized full text indexing service [Blo02]. This
service uses several machines for horizontal fragments of the term index. A term is
assigned to a fragment based on thetf ·idf ranking model [BYRN99]. This integration
has been described in [BWvZ+01] and [WSvZ+01].

This WWW indexing engine is different from traditional search engines at several
points. Traditional search engines are mostly based on information retrieval (IR) the-
ory and use technology common in this line of research [BYRN99], e. g. inverted files
instead of a database system. These IR indexes are build from scratch with each new
web crawl. In the feature grammar case updates to the index happen incrementally,
i. e. queries (readers) and crawling (writers) find place on the same database using
concurrent transactions. Furthermore, due to the feature grammar the index is easily
extended with new multimedia types and new features.

7.2.3 Lessons Learned

The WWW multimedia search engine has been incrementally developed during the
various version ofAcoi. The extended language features – modules and references
– were mainly inspired by this case study. Modules make it possible to easily reuse
well defined parts of the feature grammar in a different context,e. g. the other case
studies. The fact that the anchors between HTML pages form a graph complicated
the annotation extraction from the start. Its possible to keep this knowledge implicit
by embedding it in the detector implementations. However, making it explicit gives
the Acoi tools the opportunity to handle referential integrity and to offer support for
complicated recursive structures,i. e. deadlock detection. Ambiguity did not play a
major role within this feature grammar system. Decision points are deterministic and
mostly handled by whitebox detectors.
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Figure 7.2: The DMW project levels.

7.3 The Australian Open Search Engine

Research on theAcoi system has been mainly carried out within theDigital Media
Warehouse(DMW) project. This projects aim was to advance content-based retrieval
techniques in large multimedia databases. To achieve this goal the project was split up
in sub-projects for three levels (see Figure7.2):

1. the conceptual level focuses on querying semi-structured data;

2. the logical level focuses on steering multimedia annotation extraction;

3. the physical level focuses on the storage of semi-structured data.

The logical level directly interacts with a collection of content analysis algorithms,
also part of the research portfolio of the project.

Feature grammar systems and the accompanyingAcoi system implement the log-
ical level. The physical level was implemented by Monet XML (see Section5.1.1.2).
Both the content analysis algorithms and the conceptual level were developed at the
University of Twente. Before describing the Australian Open case study in more detail
the research of these project members is shortly described2.

2Parts of the subsequent sections are written by the co-authors of DMW related papers.
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Figure 7.3: The COBRA video modeling framework.

7.3.1 The Webspace Method

The conceptual level focuses on limited domains of the Internet,i. e. intranets and
large web-sites. The content provided on such domains is often highly related and
structured. This aspect makes it feasible to determine a set of concepts, which ade-
quately describe the content of the document collection at a semantic level.

The Webspace Method [vZ02] offers a methodology to model and search such
a document collection, called a webspace. The Webspace Method defines concepts
in a webspace schema using an object-oriented data model. This collection is stored
as XML documents in the XML storage level of the global system architecture, see
Figure7.2. A strong correlation between the persistent documents is achieved, since
the structure of each XML document describes (a part of) the webspace schema in
turn. Actually each document contains a materialized view over the webspace schema;
it contains both content and schematic information.

The webspace schema is used to formulate queries over the entire document col-
lection. Novel within the scope of search engines and query formulation over docu-
ment collections is that it allows an user to integrate information stored in different
documents in a single query. Traditional search engines (e. g. AltaVista) are only
capable to query the content of a single document at a time. Furthermore, using the
Webspace Method specific conceptual information can be fetched as the result of a
query, rather than a bunch of relevant document URLs.
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Figure 7.4: A fragment of the webspace schema for the Australian Open website.

7.3.2 COBRA

In line with Chapter1 the COBRA video modeling framework [Pet03] recognizes
four layers (see Figure7.3): the raw data, the feature, the object, and the event layer.
The object and event layers consist of entities characterized by prominent spatial and
temporal dimensions respectively. In [Pet03] several instantiations of this model are
constructed for different domains and using different machine learning techniques.
As will be shown in the upcoming section, feature grammar systems provide a way to
build domain specific instantiations of the COBRA model.

7.3.3 The Australian Open DMW Demonstrator

To demonstrate the power of the DMW system the Australian Open demonstrator
was build [BWvZ+01, WSvZ+01, PWvZ+02, WSvZ+03, WvZ03]. The Australian
Open3 is a grand slam tennis tournament on a yearly basis. The demonstrator is based
on the tournament of 2001.

The conceptual elements available in the structure of the website were modeled in
a webspace schema. A fragment of this schema is shown in Figure7.4. Using a set
of special purpose feature grammars the HTML pages from the original website were
transformed into the base XML documents of the webspace. These documents contain
an instantiation of part of the schema (see the areas in Figure7.4). As the website did
not contain any video fragments from the matches, some matches were recorded and
digitized. Then the index database for the base data, including the multimedia content,
was build. For this the webspace tools extracted meta-data from the base documents,
and triggered the FDE when a multimedia object was found. The FDE would then
steer the video annotation extraction process. This process worked along the lines

3www.ausopen.org

http://www.ausopen.org/
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Figure 7.5: Tennis video annotation.

shown in Figure7.5 and captured in the feature grammar in AppendixB.11. This
feature grammar is a domain specific instantiation of the COBRA model. Notice that
this grammar reuses feature grammar modules developed for the WWW multimedia
search engine.

Finally a special purpose query interface was build. The formulation of a query
in this GUI can be divided into three steps. During the first step, the query skeleton
is constructed, using the visualization of the conceptual schema. Secondly, the con-
straints of the query are formulated, using the attributes of classes used in the query
skeleton. In the last step, the user has to define the structure of the result of the query,
which is generated as a materialized view on the conceptual schema.

Before continuing with the individual steps of the query formulation process, the
queries presented below are used to illustrate the power of the search engine with
respect to query formulation. The queries express the typical information need of an
expert user querying the Australian Open document collection. It also shows, how
after each query, the information need of the user can be refined, resulting in a more
complex query over a document collection.

Q1. ‘Search for left-handed female players, who have played a match in one of the
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(a) (b) (c)

Figure 7.6: Formulating a query.

(quarter/semi) final rounds. For each of those players, show the player’s name,
picture, nationality, birth-date, and the document URLs containing information
about this player. Also show category, round and court of the match’.

Q2. ‘Like query 1, with the extra constraint that the player has already won a previ-
ous Australian Open. Include that history in the result of the query’.

Q3. ‘Extend query 2 with the constraint that the result should also contain video-
fragments, showing net-playing events’.

The first example query shows how conceptual search is used to obtain specific
information originally stored in three different documents. The second example query
extends the first query and provides an example illustrating the integration of content-
based text retrieval in the conceptual framework. The third example query extends the
complexity of the query even more, by integrating content-based video retrieval.

1. Constructing the query skeleton. The first step of the query formulation pro-
cess involves the construction of the query skeleton. This skeleton is created,
using a visualization of the webspace schema. This visualization consists of a
simplified class diagram, and only contains the classes and associations between
the classes, as defined in the webspace schema. The user simply composes the
query skeleton, based on his information need, by selecting classes and related
associations from the visualization. The (single) graph that is created represents
the query skeleton.

In Figure7.6.a a fragment taken from the GUI of the webspace search engine is
presented, which shows the query skeleton (depicted in black-filled text boxes),
that is used for the query formulation of the three example queries.

2. Formulating the constraints. In the second step of the query formulation pro-
cess, the constraints of the query are defined. In Figure7.6.b another fragment
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of the GUI of the search engine is presented, showing the interface that is used
for this purpose. For each class contained in the query skeleton a tab is acti-
vated, which allows a user to formulate the conceptual constraints of the query.
As shown in the figure, a row is created for each attribute. Each row contains
two check boxes, the name of the attribute, and either a text field or a button.

The first checkbox is used to indicate whether the attribute is used as a con-
straint of the query. The second checkbox indicates whether the results of the
query should show the corresponding attribute. If the type of the attribute is a
BasicType, a textfield is available that allows the user to specify the value of
the constraint, if the first checkbox is checked. If the attribute is of typeWe-
bClass, a button is available, which, if pressed, activates the interface that is
used to query that particular multimedia object.

Figure7.6.c shows the interface that is used to formulate queries overHyper-
text-objects,i. e. define content-based constraints. The figure shows both a
low-level and advanced interface to the underlying feature grammar system. In
the low-level interface projection and selection criteria can be filled in (see Sec-
tion 5.2.5). The advanced interface is similar to the interfaces offered by the
well-known search engines such as Google and Alta-Vista. The main part of
the query-interface allows a user to formulate one or more terms, which are
used to find relevant text-objects, The interface also allows the user to perform
a case-sensitive search, and to select the language of theHypertext-object in
which the user is interested.

Figure7.6.b shows the attributes of classPlayer. The constraints with respect
to the player, specified in the first two example queries, are transposed in the
selections depicted in the figure. Two constraints are formulated. The con-
straint that the user is only interested infemaleplayers is defined by selecting
the constraint checkbox in front of gender, and by specifying the conceptual
term ‘female’. The second constraint refers to the second example query, where
an extra condition with regard to the player’s history is formulated. Again, the
corresponding checkbox is activated, and the interface of Figure7.6.c is started,
and completed. In this case, the query-terms ‘winner’ and ‘champion’ are used
to find the relevantHypertext-objects that are associated with the player’s his-
tory.

3. Defining the resulting view. The second column of checkboxes is used to
specify which attributes will be shown in the resulting views defined by the
query. The XML document that is generated by the webspace search engine
contains a (ranked) list of views on the webspace that is being queried. Besides
selecting the attributes and the classes that will be shown as the result of the
query, the user also has to determine which class is used as theroot of the
resulting view. In Figure7.7 a screenshot of the result for the third query is
shown. It includes a link to a tennis scene of the match played by Monica Seles
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Figure 7.7: The result of example query 3.

in the quarter final round. The tennis scene shows a video-fragment in which
Monica Seles plays near the net.

This DMW architecture consisting of webspaces, feature grammars, an instantia-
tion of the COBRA video model and efficient XML storage resulted in a search en-
gine which allows a combination of conceptual and content-based multimedia search
[WvZ03], thus giving the user the power to post very specific queries to the database.

7.3.4 Lessons Learned

The feature grammar system for the Australian Open case study is a direct extension
to the set of feature grammars for the WWW multimedia search engine. The extension
did inspire two language features: constants within the production rules and plugins.
TheSegment detector not only detects scenes within the video but also their type. To
prevent superfluous type detectors, this type was encoded as a string and matched by
a string constant in the various alternatives. A remote procedure call (RPC) detector
was developed which was quite generic and thus easily converted into the template-
like approach of a plugin.

The main focus of this case study was the embedding of theAcoi system within the
larger DMW application. In the WWW search engine the feature grammar is the main
schema, but in this case the grammar is connected to the conceptual webspace schema.
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Both the webspace tools andAcoi could have steered the meta-data and multimedia
extraction process. The choice was made for a top-down implementation,i. e. the
conceptual level triggers the logical level.

Looking back, the embedding ofAcoi within the current DMW system could have
been more tight. On the one hand by a tighter coupling with the webspace schema
and thus with the conceptual data, allowing more specific semantic contexts for de-
tectors. This coupling could be created by translating the concepts and their attributes
into elementary feature grammar trees. Also on the side of the multimedia content
analysis the current integration is shallow,i. e. the detector granularity is very coarse.
By splitting the implementation of theSegment andTennis detectors into smaller
detectors, decision points can be made explicit and thus become manageable by the
FDE and FDS. Drawbacks of a finer detector granularity is the possible many conver-
sions needed from token to actual values,i. e. strings to integers or floats, and opening
and closing of the media object. The latter drawback may be circumvented by adding
a generic caching interface to theAcoi toolset.

7.4 Rijksmuseum Presentation Generation

As stated in Chapter1 museums are digitizing their collection and making them avail-
able to the public. The Rijksmuseum, situated in Amsterdam, did the same. High
resolution scans of photos made of paintings, statues etc. and the existing annotation
database were made available to researchers in the Token2000 project. The Rijksmu-
seum Presentation Generation project developed an architecture for using (automatic
extracted) annotation information for the automatic generation of user specific hyper-
media presentations [NWP+01, NWH+01]4.

The architecture is shown in Figure7.8and consists of three major units:

• the style repository, which embodies style schemata, style grammars and rule-
bases for different presentation styles;

• the data repository, containing the images and related meta-data, and the re-
trieval engine;

• the presentation environment, including a presentation generator and a hyper-
media browser.

In the next sections these units will be introduced and the way in which they inter-
act with each other will be described.

7.4.1 The Style Repository

The aim of the style repository is twofold. On the one hand it provides a collection
of representations describing styles in fine art, such asclair-obscur, impressionismor

4Parts of the subsequent sections are written by the co-authors of these papers.
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Figure 7.8: Hypermedia presentation generation framework.

cubism, in a structured way. These collections are designed to improve the retrieval
of images or other meta-data in the data repository (see the data repository section
below). On the other hand it provides a presentation rule-base in which rhetorical
structures describe how retrieved material can be presented.

The collection of representations of fine art styles provides for each style mainly
text-based schemata. A schema holds information about the definition, the main pe-
riod, the inventor of this style, other artists using or improving it, etc.. The advantage
of these style ontologies is that they allow an enlargement of the search-space, if the
style plays a prominent part in the query. This is state-of-the-art technology within
the retrieval community [SR00]. The development of text-based ontologies is still a
mainly manual task, which is today quite well supported [GEF+99].

This information, while important, is insufficient, low level feature descriptions
are also required. Rather than a random choice of features as a style description,
features that represent the intrinsic characteristics of a particular style need to be col-
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lected. Inclair-obscurimages, for example, a clear distinction of light and dark areas
can be found. Usually there is one dominant light source, predominantly filled with
high luminance colors, alongside dark areas with a high proportion of brown col-
ors which can be blended with other objects [Arn74]. Thus, a collection of features
such as color, shapes, brightness, either in the form of their extraction algorithms or as
threshold values for a particular style, facilitate the automatic identification of relevant
material. Such a collection can naturally be represented by a feature grammar.

Note that the development of feature-based representations also requires human
effort, in particular by specialized experts who have an understanding of the composi-
tional structures of an image [Pei60]. The collection of these features is, on the other
hand, not too difficult, since tools for this particular task do exist [FCP00].

The third representation form in the style repository is of a different sort. Here
rules are collected which describe rhetorical presentation structures, as addressed in
the Rhetorical Structure Theory [MMT89] or Cognitive Coherence Relations [KD96],
which might vary between general and specialized levels. If, for example, the pre-
sentation environment is educationally oriented, it can build presentations on a larger
level of the form: Introduction Topic; Introduction Subtopic 1; Details Subtopic 1;
Introduction Subtopic 2; Details Subtopic 2; Introduction Next Topic. A more de-
tailed level specifies what an introduction means,e. g. show a definition of the topic
in combination with a visual example of the topic. Another detailed description might
be concerned with the sort of interaction, such as a linear presentation in the form of a
slide show, or a more interactive way in the form of additional buttons for individual
traversal. The combination of these rules form themselves schemata, which can then
be connected to relevant styles. The design of these schemata and the connection to
particular style representations again requires human effort, such as that of a graphical
designer of a museum Web environment. Development environments which support
such tasks are described in [ACC+99, NL00]. Once these presentation rules are in
place, a system can react to the particular needs of a user.

7.4.2 The Data Repository

The repository, as shown in Figure7.8, stores annotation schemata in the form of
XML-based documents and media-based data, such as images in various formats (pic,
gif, tiff, etc.). The repository itself can be realized using federated database technol-
ogy.

The annotation documents are created by experts, using ontology-based environ-
ments for task-specific controlled vocabulary/subject indexing schemata for in-depth
semantic-based indexing of various media [DAR03]. Note that annotation schemata
are different from the style representations. Annotation schemata provide informa-
tion about one particular image or artist. For example, they capture information about
the title of an image, its painter, production date, a list of exhibitions where it was
presented, reviews, and so forth. The annotation process follows a strata-oriented
approach, which allows a fine-granulated space-oriented description of media con-
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tent, where particular areas within an image can be especially annotated. The con-
nection can be based on linking mechanisms as described in XML path and pointer
[W3C01d, W3C02b] or MPEG-4 [ISO02].

As visualized in Figure7.8, the annotations will hardly ever be completed. Most
of the time only the most basic data will be available. Thus, even if the potential
search space can be enlarged, as described earlier, there may still be a very limited
information space to apply the query to.

Imagine that a user would like to know everything about Rembrandt and the differ-
ent styles he painted his images in. With the textual representation the system might be
able to find images by Rembrandt in the database. However, if these images have no
further annotation attached than ’Artist = Rembrandt’ it would not be able to classify
the retrieval results according to the query. Having access to the style specific rep-
resentation of intrinsic features, the image can now be analyzed during the retrieval
process and decide based on the results which of the relevant styles is the most appro-
priate for this particular image. As a side effect, the feature information gained can be
used as additional annotation for the image, not only in classifying it as a particular
style, but also providing several different representations of it, which can be, for ex-
ample, useful for presentational purposes. An image in the style ofclair-obscurcan be
additionally represented in a grid that contains the light and dark areas. This grid can
form the basis for a presentation of images, where the style of the images and the style
of the presentation correspond. The FDE steers this automatic annotation extraction
process based on the feature grammar from the style repository.

As the main goal of the suggested framework is to facilitate the automatic genera-
tion of user-centered multimedia presentations, the result space will not only contain
the retrieved data, associated meta-data, and the relations between these different units
but also information required for their presentation. Moreover, it also returns physical
information about the retrieved data,i. e. image size and image file type.

7.4.3 The Presentation Environment

The presentation environment, as displayed in Figure7.8, is basically a constraint-
based planning system, which uses the definitions provided in the style representa-
tion schemata and the presentation styles [vOGC+01]. Since the system can access
descriptions based on spatial, gradient and color features, the presentation genera-
tor is in the position to analyze the retrieved material based on the relevant presen-
tation design, according to design issues such as graphic direction, scale, volume,
depth, shapes (i. e. physical manipulation of the material for better integration into
the presentation), temporal synchronization (interactive or linear presentation), etc.,
and provides a format that a hypermedia browser can interpret,e. g.SMIL or MPEG-
4 [ISO02, W3C98, W3C01c].
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Figure 7.9: Feature detection steps.

7.4.4 A Style Feature Grammar

Feature grammars play a role in both the style and data repositories. In both cases
they extract the low-level feature descriptions, which can be used for the selection
of relevant material and for the layout of the presentation. But in the latter case the
features are also mapped to high-level concepts. These concepts correspond to manual
annotations, and can thus replace these when they are not available.

This section will shortly describe the algorithms involved in detecting low-level,
presentation oriented, features and high-level, manual annotation replacement, con-
cepts. The grammar itself is available in AppendixB.13.

Since the design aims at an approach that is data-driven and can therefore operate
unsupervised, it is important to incorporate adaptive decision-making algorithms. For
instance, in the case of theclair-obscurstyle a vague high-level description of the
style could be “abrightly lit object or person surrounded by adark background”.
To translate this vague conceptual description into an operational low-level feature-
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extractor, precise values need to be assigned to fuzzy concepts such asbright and
dark. However, these cannot be fixed in advance because these values depend on the
context,darkandbright being defined relative to the rest of the painting.

The proposed approach is data-driven in that it inspects the data in search for
natural thresholds,i. e. thresholds that are dictated by the structure apparent in the
data [PF00]. To be more precise, assume a numerical image-featurex that can be
computed at each of then pixel in the image (e. g.hue, or brightness, see Figure7.9.a).
This gives rise to a numerical datasetx1, x2, . . . , xn. The histogram gives an idea of
how these values are distributed over the image. If, in terms of this feature, the image
has a clear structure then a multi-modal histogram is expected, with peaks over the
most-frequently occurring feature values.

For instance, in the case ofclair-obscur, computing the brightness histogram (at
least) two peaks are expected: one peak at low values created by the pixels in the dark
regions, and one at high values corresponding to bright pixels, see Figure7.9.b.

Locating the grey-value at the minimum in between these peaks determines a
threshold that can be used to separate the bright from the dark regions in the image.
This seemingly simple task is complicated by the fact that a data-histogram almost
never has a clear-cut unimodal or multi modal structure, but exhibits many local max-
ima and minima due to statistical fluctuations. The challenge therefore is to devise
a mathematically sound methodology that allows us to construct a smoothed version
of the histogram, suppressing the spurious local extrema that unduly complicate the
histogram structure.

For this the empirical distribution functionFn(x) is introduced, which for each
feature-valuex determines the fraction of observationsxi that are smaller thanx.
The reason for switching to the empirical distribution is that it allows to compute
the precise probability that the given sample is drawn from a theoretically proposed
distributionF (x). The idea is simple: search for thesmoothestdistributionF that
is compatible with the data,i. e. such that there is a high probability that the sample
x1, . . . , xn has been obtained by sampling fromF .

In mathematical parlance this amounts to solving the following constrained opti-
mization problem: givenFn(x) find F (x) that minimizes the functional

Ψ(F ) =
∫

(F ′′(x))2 dx subject tosup
x
|Fn(x)− F (x)| ≤ ε.

(The value forε is fixed in advance by specifying an acceptable level of statistical
risk). This optimization problem can be solved using standard spline-fitting routines.
Once the shape of the smoothest compatible distributionF is determined, its inflec-
tion points can be used to determine the genuine local minima in the histogram, thus
yielding natural thresholds for the image-segmentation extractor.

The lowest of these thresholds is then used to segment the image into dark and light
areas, see Figure7.9.c. And as a next step information about the areas is localized by
overlaying the image with a grid, see Figure7.9.d.
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In the feature grammar of AppendixB.13 these steps are distributed over several
detectors and their dependencies are described. For example, thelight_segment
detector calculates the brightness value of each pixel, this set of values is then taken
as input by thehisto_segment detector to determine the segmentation thresholds.

The grammar defines several other (global) features. For example, theco_corr de-
tector computes the normalized correlation between the color histogram of the paint-
ing and two average normalized histograms, respectively forclair-obscurand non-
clair-obscurpaintings (see for a similar approach [ASF97]).

↓ classified as→ clair-obscur cubism impressionism unknown

18 clair-obscur paintings 17 – – 1
25 cubist paintings 6 21 3 1
56 impressionist paintings 1 5 31 20
83 unclassified paintings 70 1 26 –

182 paintings 94 27 60 22

Figure 7.10: Results for the style feature grammar

All these features form the input for the final step: determining if the painting is
in theclair-obscuror one of the other styles. For this step style specific decision trees
are derived using C4.5 [Qui93], resulting in the detectorsclair_obscur, cubism and
impressionism. The performance of the feature grammar in annotating paintings
with the various styles is shown in Figure7.10. The last column corresponds with
the event that there is no matching style found,i. e. the validity of thestyle rule is
optional.

Notice also that more than one of the alternativestyle rules can be valid, which
means that a painting can be annotated with multiple styles,i. e. ambiguous views
on the same painting. So the support for ambiguity by theAcoi system comes in to
play here. When a painting matches more styles multiple parse trees describe this one
image. Each alternative, rooted by a detector, also contains a confidence value. In this
case this confidence value is based on the support of the decision rule.

Furthermore, this grammar is mainly constructed to recognize paintings in the
clair-obscurstyle. More features may be needed to fine tune the decision rules for the
other styles,e. g.impressionism. The use of a feature grammar is well suited for this
evolutionary approach as it supports incremental maintenance of the annotations.

7.4.5 Generating the Presentation

Part of the prototype implementation for the Rijksmuseum case study is a generation
engine that is able to transform a high-level description of a presentation [RBvO+00]
in the concrete final-form encoding that is readily playable on the end-user’s system.
In this system the final encoding form is SMIL [W3C98].
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Figure 7.11: Ordered retrieval result before optimization.

The presentation generation engine of the system is a constraint-based planning
system. The constraint system is used for solving the design-based constraints, such
as:

• the overall presentation dynamics (e.g. linear or interactive) and the resulting
subdivision of information blocks;

• organizing material for each information block, e.g. number of elements on a
page and their spatial outline based on the actual size of each information unit;

• optimization of ordered material based on additional style criteria, such as color
or brightness distribution, in particular to emphasize a particular style.

The use of the annotations produced by the FDE are mainly of interest in the
last bullet. The inner details of the other parts of the system itself, especially the
transformation of the presentation structures generated by the constraint engine into a
SMIL presentation, have been discussed in [vOGC+01].

Its assumed that the system constructs a linear presentation for educational reasons
and creates topic blocks to present the material. Finally, based on spatial constraints,
it calculates how many images for each topic block can be presented on a page.

At this stage the generator tries to arrange the images in each topic block in such
a way that the style criteria forclair-obscurare fulfilled. A decision rule could look
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as follows:

style_order(Image_Style, List_Of_Images, Images_Per_Page,
Presentation_List):

gradient-match(Image_Style, List_Of_Images, Result__List),
border-match(Result_List, Images_Per_Page,

Presentation__List).

With this rule the system analyzes not the image itself but rather its grid abstrac-
tion, as shown in Figure7.9.d. The system tries, for a particular style (Image_Style),
to order the images of one topic (List_of_Images) based on the pattern provided
by those cells of the grid that represent light values. The analysis of these patterns is
based on graphical shapes, such as triangle or rectangles. The direction of the light
is derived from a number of criteria, such as solidness of a pattern (main light cen-
ter), position in the grid (at the border indicates that the light source is outside the
image), and the direction of the dissolve of this shape (direction of light beam). For
Figure7.9.d the result is that the light source is outside the image, that light is com-
ing from the left side and dissolves towards the right side in a rectangular way. The
Result__List groups images in lists, where light follows similar directions, such as
left, up-left, up, up-right, right, down-right, down, down-left, circular.

Once that is done, the system tries to align the images based on similar border
pattern. Take once again Figure7.9.d as the example, the system would try to find an
image which shares a similar distribution of light and dark cells (up or down by one
grid cell) but only on its right side. The combination of images is performed on the
previous calculated maximum size of images per page.

Figure7.11 shows the random image sequence. While the final presentation in
Figure 7.12 uses the optimized order. This presentation is based on the rhetorics
of an educational-oriented presentation, which requires introductions of topics and
subtopics.

The temporal duration for every single page is calculated by the number of pre-
sented objects and their graphical complexity, the number of words for text elements,
or temporal presentation qualifiers such as fade-in or out times for media units. The
last screen offers choices for the next step.

7.4.6 Lessons Learned

The Rijksmuseum feature grammar has a much finer detector granularity than the
previous grammars. It also called for the reuse of various detectors within a different
context. The same feature detectors are used to determine global and local,i. e. per
grid cell, features.

The use of decision rules for the various art styles inspired the addition of classi-
fiers as a special instance of detector plugins. Furthermore, ambiguity plays a major
role in this grammar as various styles may match concurrently. This triggered the
addition of support for detector confidences and parse forests.
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Figure 7.12: The optimized presentation.

7.5 Discussion

The case studies in this chapter showed the viability of theAcoi system and its formal
basis feature grammar systems. Due to its focus on limited context-sensitivity basic
building blocks for an multimedia annotation system can be constructed. Actual appli-
cations can then be build by putting these blocks,i. e. grammar components, together
using the dependencies.

Next to being a description of the actual annotations, feature grammar systems
can also be used in a more traditional way: to describe a workflow and its associated
meta-data. This was done in a recentWaterlandrelated case study. TheAcoi system
offers in this case the advantage that new workflow actions can be easily plugged in.
Furthermore, the whole infrastructure,e. g. plugins, can be used to easily automate
these actions.

Creating a semi-automatic feature grammar is one of the future research topics.
Manual detectors may provide new annotations or validate automatically extracted
annotations. A case study may provide insights in how conveniently the current im-
plementation supports this mixed type of annotation extraction.

Comparison of theAcoi system with peer systems, and thus evaluation of imple-
mentation issues,e. g.performance, remains future work. As discussed in Sections2.3
and 4.4 the explicit description and usage of context knowledge is unique to feature
grammar systems, but can also be used to generate specifications, although probably
more verbose and fragmented, for these peer systems. Applying such a translation of
one or several of the case studies may enable comparable runs of these systems, and
thus provide (more) insight into their specific strengths and weaknesses.
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Conclusion and Future Work

If SETI@home works, for example, we’ll need libraries for communicat-
ing with aliens. Unless of course they are sufficiently advanced that they
already communicate in XML.

Paul Graham– The Hundred-Year Language

This thesis describes many formal, architectural and implementation aspects of the
Acoi system. They have provided the author with a wide scale of research topics and
challenges during the past years. This final chapter concludes the description of this
system by providing a look backward, into the past, and a look forward, into the future.

8.1 Conclusion

The aim of theAcoi system was to implement support for the complete life cycle of
a DMW (Digital Media Warehouse), i. e. creation, storage and maintenance, by vari-
ous interpreters of one declarative description. The model underlying this description
would have to support these key requirements: (1) providing context for (possible)
bridging of the semantic gap, (2) allowing ambiguous interpretations, (3) describing
both contextual and output/input dependencies, (4) give enough context for incremen-
tal maintenance, and (5) keep the input specification of algorithms generic enough to
enable and promote reuse. As all these requirements involve some form of context
grammars, as known from formal language theory, were considered a good starting
point.

Chapter2 provided the formal basis for the system. Mildly context-sensitive fea-
ture grammar systems allow the embedding of annotation extraction algorithms,i. e.
feature detector functions, on a low level inside the grammar formalism, while un-
derspecifying their context. The feature grammar language of Chapter3 introduced
a more natural notation of this formalism. The next three chapters described the var-
ious interpretors, the FDE (Feature Detector Engine), the database schema and the
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FDS (Feature Detector Scheduler), needed for the various life cycle stages. These
core chapters of the thesis address the key requirements using formal language theory.
This is mainly visible in the design of the FDE, which is directly related to practical
algorithms from the computer science research fields of natural language processing
and compiler technology. Where needed proper extensions of this theory and related
practice have been defined.

The three case studies from Chapter7 gave an impression of the practical impact
of theAcoi system. Formal language theory in the form of feature grammar systems,
with its focus on extending and in the same time limiting context-sensitivity, appears
to be indeed well suited to meet the identified requirements of a DMW annotation
subsystem. This, as this thesis already shows, makes a plethora of formal techniques
and practical experience available to this application domain. Future experiments with
a mature FDS implementation and further evaluation of the complete system may add
additional support for this conclusion.

8.2 Future Work

The various components of theAcoi system provide a basis for the annotation subsys-
tem of a DMW. However, there is always room for improvement, as has been indicated
in various places throughout the thesis. The next sections will revisit these areas of
future work and also describe some additional ones.

8.2.1 Feature Grammar Systems

The description of feature grammar systems is directly based on the formal theories
of cooperating distributed grammar systems and regulated rewriting. Contributions
of this thesis to these theories arelPC ((left) path-controlled) grammars (see Sec-
tion 2.2.3.1). Intuition tells that these grammars are as powerful as conditional gram-
mars, however, this should backed up by a formal proof.

Detector functions can produce CS (Context-Sensitive) sentences, however, the
feature grammar components are CF (Context-Free). In a future version ofAcoi the
CF components may be replaced by CS or mildly CS components,e. g. lPC (left
Path-Controlled) components. This will also have to be reflected in the feature gram-
mar language. In the case oflPC components a regular path expression could be
associated to arbitrary non-terminals instead of only to detector symbols.

8.2.2 Feature Grammar Language

The core feature grammar language directly relates to the underlying feature grammar
system. The extensions to the language provide shortcuts to the developer. One of
tasks of these extensions is to keep the grammar semantically rich and to avoid clutter
with additional symbols which are only there to steer the extraction process. Ideally
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these additional symbols are all anonymous so they are transparent to both the devel-
oper and the user. Additional language constructs may proof to be convenient,e. g.
directly embedding of anonymous whitebox detectors in the production rules. Also
the use of symbol or symbol specific scripts, in the vain of attribute grammars, for the
propagation of confidence values may proof an interesting addition.

8.2.3 Feature Detector Engine

The current FDE implementation is based on a depth-first top-down parsing algo-
rithm: exhaustive backtracking. Experiments with other parsing algorithms, and thus
with other moments of control transfer between components, can provide alternatives
for this algorithm. Another interesting experiment will be the use of a breadth-first al-
gorithm to add some form of parallelism to the FDE. These alternative algorithms can
also be realized by translating a specific feature grammar system into a specification
for a coordination system,e. g.a T script for ToolBus.

A detector function can depend on some external functionality, which is (tem-
porarily) unavailable. Adding anunknown result state next tosuccess andfailure
may enable the FDE to proceed validation partially and to return later to the detector
to retry its execution.

8.2.4 Feature Database

As already stated in Chapter5 the current storage scheme can be replaced by an-
other, probably better suited, XML storage scheme. The query process of the feature
database is also still in its infancy. For example further experiments with the usage
of the confidence values of detectors as input to a probabilistic reasoning scheme or a
ranking formula will be useful. This is directly related to a proper use of the, possible,
various alternative interpretations of one multimedia object.

At the moment all annotations are extracted during the building of the index. How-
ever, some annotations or features may be more dynamic,i. e. they are computed on
demand and are not persistent. These derived annotations and features may be used
to capture properties of the whole index at a specific moment in time,i. e. the mo-
ment of query execution. The impact of these type of symbols on the analysis of the
dependency by the FDS will have to be investigated.

8.2.5 Feature Detector Scheduler

The implementation of the FDS has been sketched and some core components have
been prototyped. Future work certainly contains an actual implementation of the com-
plete FDS, accompanied by further experiments in the domain of, for example, the
WWW multimedia search engine.
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8.2.6 Digital Media Warehouses

The case studies of Chapter7 gave insight or hints in how to embed the system in a
complete DMW system. But in most cases theAcoi system functioned as a blackbox.
Future experiments could involve a further integration of the various system compo-
nents. The manual annotation part is one of the first components which comes to
mind. How well will theAcoi system cope with manual detectors and semi-automatic
annotation extraction? If this turns out favorable for theAcoi system it will implement
a complete annotation subsystem.

Comparison with the execution characteristics of other systems may become pos-
sible by implementing a common task, and may give insight in both modeling power
and performance of the competing systems.

8.3 Discussion

This thesis touched upon one of the key research challenges of a DMW: multimedia
annotation extraction and (incremental) maintenance. Although there are still many
open issues to be resolved, theAcoi system, with feature grammar systems as basis,
rallied formal language theory and practice to meet this challenge with success.
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The Feature Grammar
Language

This appendix contains the feature grammar language in an EBNF notation,i. e. the notation as
used by the W3C for the XML specification [W3C00].

1 #character classes
2 digit ::= [0-9]
3 exponent ::= [Ee][-+]?{D}+
4 letter ::= [_a-zA-Z]
5 any ::= [#x0-#xFFFE]

6 #literals or constants
7 float ::= ’-’? digit+ ’.’ digit+ exponent?
8 integer ::= ’-’? digit+
9 unsigned-integer::= digit+

10 string ::= ’"’ any* ’"’
11 constant ::= float | integer | string

12 #a symbol
13 symbol ::= letter ( letter | digit )*

14 #a scope
15 scope ::= letter ( letter | digit )*

16 #the prefix puts an symbol in a scope, this scope
17 #may refer to a feature grammar, an ADT module or
18 #a detector plugin
19 prefix ::= scope "::"

20 #simplified XPath expression
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21 xpath ::= absolute | relative
22 absolute ::= ’/’ relative? | "//" relative
23 relative ::= step ( ’/’ step | "//" step )*
24 step ::= axis? ( ( symbol | ’*’ ) | dereference )
25 | abbreviation
26 axis ::= "self::" | "parent::" | "child::"
27 | "ancestor::" | "ancestor-or-self::"
28 | "preceding::" | "preceding-sibling::"
29 | "descendant::" | "descendant-or-self::"
30 | "following::" | "following-sibling::"
31 abbreviation ::= ’.’ | ".."
32 #a feature grammar specific addition
33 dereference ::= ’&’ symbol

34 #a list of detector parameters, if no axis is specified for
35 #the first step it defaults to preceding::
36 detector-params ::= ’(’ ( detector-param ( ’,’
37 detector-param )* ) ’)’
38 detector-param ::= constant | xpath

39 #even more simplified XPath expression
40 s-path ::= s-absolute | s-relative
41 s-absolute ::= ’/’ s-relative? | "//" s-relative
42 s-relative ::= s-step ( ’/’ s-step | "//" s-step )*
43 s-step ::= s-axis? ( symbol | ’*’ )
44 s-axis ::= "self::" | "child::"
45 | "descendant::" | "descendant-or-self::"

46 #a list of start symbol parameters, if no axis is specified
47 #for the first step it defaults to the standard child::
48 start-params ::= ’(’ ( start-param ( ’,’
49 start-param )* ) ’)’
50 start-param ::= s-path

51 #collection type and bounds specification for symbols on the
52 #right-handside of a rule
53 bounds ::= list | set | tuple
54 list ::= ’[’ range ’]’ | range
55 set ::= ’{’ range ’}’
56 tuple ::= ’<’ int-range ’>’
57 range ::= wild-range | int-range
58 int-range ::= unsigned-integer
59 ( ’:’ unsigned-integer )?
60 wild-range ::= ’*’ | ’+’ | ’?’

61 #the feature grammar language, i.e. the start symbol of this
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62 #EBNF
63 feature-grammar ::= module-decl decl*
64 decl ::= use-decl | start-decl
65 | poll-decl | atom-decl
66 | detector-decl | classifier-decl
67 | version-decl | rule-decl

68 #module declarations
69 module-decl ::= "%module" scope ’;’
70 use-decl ::= "%use" scope ( ’,’ scope )* ’;’

71 #start declaration
72 start-decl ::= "%start" symbol start-params ’;’

73 #poll declaration
74 poll-decl ::= "%detector" symbol ".poll" start-params ’;’

75 #atom and atom rule declarations
76 atom-decl ::= "%atom" prefix? symbol
77 ( ( ( symbol ( ’,’ symbol )* )?
78 | ’{’ any+ ’}’ ) )? ’;’

79 #detector declarations
80 detector-decl ::= "%detector" prefix? symbol detector-params ’;’
81 detector-decl ::= "%detector" prefix? symbol
82 ’[’ any+ ’]’ ’;’

83 #classifier declaration
84 classifier-decl ::= "%classifier" prefix? symbol detector-params ’;’

85 #version declaration
86 version-decl ::= "%version" symbol
87 unsigned-integer ’.’
88 unsigned-integer ’.’
89 unsigned-integer ’;’

90 #rule declaration
91 rule-decl ::= rhs ’:’ lhs ’;’
92 rhs ::= prefix? symbol
93 lhs ::= ( ’&’? prefix? symbol bounds? | constant )+
94 lhs ::= ’(’ lhs ’)’
95 lhs ::= lhs ’|’ lhs
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Feature Grammars

B.1 The WWW Feature Grammar

1 %module WWW;

2 %start WebObject(Location);

3 %detector WebHeader(Location);
4 %detector Robot(Location,"AcoiRobot");
5 %detector Explored(MIME);
6 %detector Tried(parent::Status);

7 %atom www::url {(^http://([^ :/]*)(:[0-9]*)?/?(.*)$)
8 |(^file://(.*)$)};
9 %atom temporal::date;

10 %atom url Location;
11 %atom date Modification;
12 %atom lng Length;

13 WebObject : Location (Robot WebHeader WebBody)? Status;
14 WebHeader : Redirect? MIME Modification? Length?;
15 MIME : Primary Secondary;
16 Status : Explored | Tried;

B.2 The Text Feature Grammar

1 %module Text;

2 %use WWW;
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3 %detector TextType [ MIME/Primary = "text" ];

4 %detector DRUID(Location);

5 %atom str Language;

6 WebBody : TextType Text;
7 Text : DRUID;
8 DRUID : Language;

B.3 The HTML Feature Grammar

1 %module HTML;

2 %use Text;

3 %detector HTMLType [ MIME/Secondary = "html" ];
4 %detector HTML(Location);

5 %atom str Title, Word, Link, Alt;
6 %atom bit Embedded;

7 WebBody : HTMLType HTML;
8 HTML : Title Body? Anchor*;
9 Body : &Keyword+;

10 Anchor : &WebObject Embedded Link? Alt?;

11 %start Keyword(Word);

12 %detector Synset(Word);

13 %start Synonyms(Word);
14 %start Hypernyms(Word);
15 %start Hyponyms(Word);

16 Keyword : Word Synset;
17 Synset : &Synonyms &Hypernyms &Hyponyms;
18 Synonyms : id str+;
19 Hypernyms : id str+;
20 Hyponyms : id str+;
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B.4 The Image Feature Grammar

1 %module Image;

2 %use WWW;

3 %detector ImageType [ MIME/Primary = "image" ];
4 %detector Portrait [ Faces/Number = 1 ];

5 %detector Global(Location);
6 %detector Icon(Location);
7 %classifier decrules::Photo(Global);
8 %classifier decrules::Graphic(Global);
9 %detector Skin(Location);

10 %detector Faces(Location);
11 %detector exec::Histogram(Location);

12 %atom vector::flts;

13 %atom int Number;
14 %atom flt Prevalent, Far, NormalizedFar, Saturation, Percentage;
15 %atom flts HSB, RGB;
16 %atom bit Animated;

17 WebBody : ImageType Image;
18 Image : Global Icon Class;
19 Global : Size Color Animated;
20 Size : Width Height Ratio;
21 Color : Number Prevalent Neighbor Saturation Histogram;
22 Neighbor : Far NormalizedFar;
23 Histogram : RGB HSB;
24 Icon : Location;
25 Class : Graphic | Photo (Skin Faces Portrait?)?;
26 Skin : Percentage;
27 Faces : Number;

B.5 The Audio Feature Grammar

1 %module Audio;

2 %use WWW

3 %detector AudioType [ MIME/Primary = "audio" ];

4 WebBody : AudioType Audio;
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B.6 The MIDI Feature Grammar
1 %module MIDI;

2 %use Audio;

3 %detector MIDIType [ MIME/Secondary = "midi" ];

4 %detector exec::MIDI(Location);

5 %atom int QuarterNode, Id, Channel, Track;
6 %atom str Lyrics, Name, Contour;

7 Audio : MIDIType MIDI;
8 MIDI : QuarterNode Musician* Lyrics* Profile*;
9 Musician : Instrument Channel;

10 Instrument : Id Name?;
11 Profile : Track Contour;

B.7 The MP3 Feature Grammar
1 %module MP3;

2 %use Audio;

3 %detector MP3Type [ MIME/Secondary = "mpeg" ];

4 %detector ID3(Location);

5 %atom str Title, Performer, Album, Genre;
6 %atom int Year;

7 Audio : MP3Type MP3;
8 MP3 : ID3?;
9 ID3 : Title Performer Album Year Genre;

B.8 The Video Feature Grammar
1 %module Video;

2 %use WWW

3 %detector VideoType [ MIME/Primary = "video" ];

4 WebBody : VideoType Video;
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B.9 The MPEG Feature Grammar

1 %module MPEG;

2 %use Video;

3 %detector MPEGType [ MIME/Secondary = "mpeg" ];
4 %detector Icon(Location);

5 Video : MPEGType MPEG;
6 MPEG : Icon;

B.10 The Acoi Feature Grammar

1 %module Acoi;

2 %use WWW;
3 %use Text, HTML;
4 %use Image;
5 %use Audio, MIDI, MP3;
6 %use Video, MPEG;

B.11 The Tennis Feature Grammar

1 %module Tennis;

2 %use Video;

3 %atom flt xPos, yPos, Ecc, Orient;
4 %atom int FrameNo, Area;

5 %detector xml-rpc::Segment(WebObject/Location);
6 %detector xml-rpc::Tennis(WebObject/Location,
7 ancestor::Scene/Begin/FrameNo,
8 ancestor::Scene/End/FrameNo);

9 %detector Netplay [ some $Player in Player satisfies
10 $Player.yPos <= 170
11 ];

12 %detector Rally(parent::Tennis);

13 Video : Segment;
14 Segment : Scene*;
15 Scene : Begin End Type;
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16 Type : "tennis" Tennis;
17 Type : "closeup";
18 Type : "audience";
19 Type : "other";
20 Begin : FrameNo;
21 End : FrameNo;
22 Tennis : Frame+ Event;
23 Frame : FrameNo Player;
24 Player : xPos yPos Area Ecc Orient;
25 Event : Netplay? Rally?;

B.12 The Australian Open Feature Grammar
1 %module AO;

2 %use Acoi;
3 %use Tennis;

B.13 The Rijksmuseum Feature Grammar
1 %module Rijksmuseum;

2 %use Image;

3 %atom flt threshold;
4 %atom int columns, rows;
5 %atom int column, row;
6 %atom int x, y, width, height;
7 %atom flt dark_coverage, light_coverage;
8 %atom int number;
9 %atom flt corr, non_corr, norm_corr;

10 %atom flt scalar;
11 %atom bit onoff;

12 %detector light(Location);
13 %detector global(WebObject/Location);
14 %detector contrast(WebObject/Location);
15 %detector grid(WebObject/Location);
16 %detector histo_segment(Location);
17 %detector segment(Location,
18 ancestor::light/histo_segment/threshold);
19 %detector light_dist(ancestor::image/general/light/segment/name,
20 shape);
21 %detector region(grid);
22 %detector co_histo(WebObject/Location);
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23 %detector cu_histo(WebObject/Location);
24 %detector im_histo(WebObject/Location);

25 %classifier decrules::clair_obscur(corr,non_corr,contrast/scalar);
26 %classifier decrules::cubism(corr,non_corr,contrast/scalar);
27 %classifier decrules::impressionism(corr,non_corr,contrast/scalar);

28 Image : general global local style;

29 general : light;
30 light : Location histo_segment segment;

31 histo_segment: threshold+;
32 segment : Location;

33 shape : bbox;
34 bbox : x y width height;

35 features : light_dist;
36 light_dist : light_coverage dark_coverage;

37 global : shape features contrast;
38 local : grid region;

39 contrast : scalar;

40 grid : columns rows cell*;
41 cell : column row shape features;

42 region : number;

43 style : co_histo clair_obscur;
44 style : cu_histo cubism;
45 style : im_histo impressionism;
46 style : ;

47 co_histo : corr non_corr norm_corr;
48 cu_histo : corr non_corr norm_corr;
49 im_histo : corr non_corr norm_corr;
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XML documents

C.1 A schema document

1 <?xml version="1.0"?>
2 <fg:grammar
3 xmlns:fg="http://www.cwi.nl/~acoi/fg/schema"
4 xmlns:WWW="http://www.cwi.nl/~acoi/WWW"
5 xmlns:Image="http://www.cwi.nl/~acoi/WWW"
6 >
7 <WWW:WebObject type=".non-terminal.start.">
8 <WWW:Location type=".non-terminal."/>
9 <WWW:WebHeader type=".non-terminal.detector.blackbox."/>

10 <WWW:WebBody type=".non-terminal."/>
11 </WWW:WebObject>
12 <WWW:WebHeader type=".non-terminal.detector.blackbox.">
13 <WWW:Modification type=".non-terminal."/>
14 <WWW:Length type=".non-terminal."/>
15 </WWW:WebHeader>
16 <WWW:Location type=".non-terminal.">
17 <WWW:url type=".terminal.atom." module="www"/>
18 </WWW:Location>
19 <WWW:Modification type=".non-terminal.">
20 <WWW:date type=".terminal.atom." module="temporal"/>
21 </WWW:Modification>
22 <WWW:Length type=".non-terminal.">
23 <fg:lng type=".terminal.atom."/>
24 </WWW:Length>
25 <WWW:WebBody type=".non-terminal.">
26 <Image:Image type=".non-terminal."/>
27 </WWW:WebBody>
28 <Image:Skin type=".non-terminal.detector.blackbox.">
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29 <Image:bitmap type=".terminal.atom." module="image"/>
30 </Image:Skin>
31 <Image:Color type=".non-terminal.detector.blackbox.">
32 <Image:RGB type=".non-terminal."
33 coll="list" lbnd="0" hbnd="infinit"/>
34 <Image:Number type=".non-terminal."/>
35 <Image:Prevalent type=".non-terminal."/>
36 <Image:Saturation type=".non-terminal."/>
37 </Image:Color>
38 <Image:Faces type=".non-terminal.detector.blackbox.">
39 <fg:int type=".terminal.atom."/>
40 </Image:Faces>
41 <Image:Red type=".non-terminal.">
42 <fg:int type=".terminal.atom."/>
43 </Image:Red>
44 <Image:Green type=".non-terminal.">
45 <fg:int type=".terminal.atom."/>
46 </Image:Green>
47 <Image:Blue type=".non-terminal.">
48 <fg:int type=".terminal.atom."/>
49 </Image:Blue>
50 <Image:Number type=".non-terminal.">
51 <fg:int type=".terminal.atom."/>
52 </Image:Number>
53 <Image:Prevalent type=".non-terminal.">
54 <fg:flt type=".terminal.atom."/>
55 </Image:Prevalent>
56 <Image:Saturation type=".non-terminal.">
57 <fg:flt type=".terminal.atom."/>
58 </Image:Saturation>
59 <Image:Image type=".non-terminal.">
60 <Image:Color type=".non-terminal.detector.blackbox."/>
61 <Image:Class type=".non-terminal."/>
62 </Image:Image>
63 <Image:Class type=".non-terminal.">
64 <Image:Graphic type=".non-terminal.detector.blackbox."/>
65 <Image:Photo type=".non-terminal.detector.whitebox."/>
66 <Image:Skin type=".non-terminal.detector.blackbox."/>
67 <Image:Faces type=".non-terminal.detector.blackbox."/>
68 </Image:Class>
69 <Image:RGB type=".non-terminal.">
70 <Image:Red type=".non-terminal."/>
71 <Image:Green type=".non-terminal."/>
72 <Image:Blue type=".non-terminal."/>
73 </Image:RGB>
74 </fg:grammar>
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C.2 A parse forest document

1 <?xml version="1.0"?>
2 <fg:forest
3 xmlns:fg="http://www.cwi.nl/~acoi/fg/forest"
4 xmlns:WWW="http://www.cwi.nl/~acoi/WWW"
5 xmlns:Image="http://www.cwi.nl/~acoi/Image"
6 >
7 <fg:elementary context="1:1" confidence="1.00" idrefs="2"
8 start="WWW:WebObject" date="20030625"
9 >

10 <WWW:WebObject id="5478@0" context="1:1">
11 <WWW:Location id="1" context="1:1">
12 <WWW:url id="2" context="1:1">
13 <![CDATA[http://...]]>
14 </WWW:url>
15 </WWW:Location>
16 <WWW:WebHeader idrefs="5479@0" context="1:1"/>
17 <WWW:WebBody id="7" context="1:1">
18 <Image:Image id="8" context="1:1">
19 <Image:Color idrefs="5480@0" context="1:1"/>
20 <Image:Class id="15" context="1:1">
21 <Image:Photo idrefs="5486@0" context="1:1"/>
22 <Image:Skin idrefs="5487@0" context="1:1"/>
23 <Image:Faces idrefs="5488@0" context="1:1"/>
24 </Image:Class>
25 </Image:Image>
26 </WWW:WebBody>
27 </WWW:WebObject>
28 </fg:elementary>
29 <fg:auxiliary date="20030625">
30 <WWW:WebHeader id="5479@0" idrefs="2" context="1:1"
31 confidence="1.00" version="1.0.0"
32 >
33 <WWW:Modification id="3" context="1:1">
34 <WWW:date id="4" context="1:1">
35 <![CDATA[Jul 23 2001]]>
36 </WWW:date>
37 </WWW:Modification>
38 <WWW:Length id="5" context="1:1">
39 <fg:lng id="6" context="1:1">
40 <![CDATA[14197]]>
41 </fg:lng>
42 </WWW:Length>
43 </WWW:WebHeader>
44 </fg:auxiliary>



162 Appendix C:XML documents

45 <fg:auxiliary date="20030625">
46 <Image:Color id="5480@0" idrefs="2" context="1:1"
47 confidence="1.00" version="1.0.0"
48 >
49 <Image:Number id="9" context="1:1">
50 <fg:int id="10" context="1:1">
51 <![CDATA[29053]]>
52 </fg:int>
53 </Image:Number>
54 <Image:Prevalent id="11" context="1:1">
55 <fg:flt id="12" context="1:1">
56 <![CDATA[0.03]]>
57 </fg:flt>
58 </Image:Prevalent>
59 <Image:Saturation id="13" context="1:1">
60 <fg:flt id="14" context="1:1">
61 <![CDATA[0.19]]>
62 </fg:flt>
63 </Image:Saturation>
64 </Image:Color>
65 </fg:auxiliary>
66 <fg:auxiliary date="20030625">
67 <Image:Photo id="5486@0" idrefs="10 12 14"
68 context="1:1" confidence="0.85" version="1.0.0"
69 />
70 </fg:auxiliary>
71 <fg:auxiliary date="20030625">
72 <Image:Skin id="5487@0" idrefs="2" context="1:1"
73 confidence="0.95" version="1.0.0"
74 >
75 <Image:bitmap id="16" context="1:1">
76 <![CDATA[00...]]>
77 </Image:bitmap>
78 </Image:Skin>
79 </fg:auxiliary>
80 <fg:auxiliary date="20030625">
81 <Image:Faces id="5488@0" idrefs="16" context="1:1"
82 confidence="0.77" version="1.0.0"
83 >
84 <fg:int id="17" context="1:1">
85 <![CDATA[1]]>
86 </fg:int>
87 </Image:Faces>
88 </fg:auxiliary>
89 </fg:forest>



Abbreviations

AACR Anglo-American Cataloguing Rules
Acoi Amsterdam catalog of images
ADMIRE ADvanced MultImedia Retrieval Model
AMIS Advanced Multimedia Indexing and Searching
API Application Programming Interface
BAT Binary Association Table
BNF Backus-Naur Form
C Conditional (grammar)
CD Cooperating Distributed (grammar system)
CF Context-Free
CNF Chomsky Normal Form
COBRA COntent-Based RetrievAl
CS Context-Sensitive
DBMS DataBase Management System
DMW Digital Media Warehouse
DOM Document Object Model
DPDA Deterministic Push-Down Automata
DPDT Deterministic Push-Down Transducer
DSL Domain-Specific Language
EBNF Extended Backus-Naur Form
FA Finite Automata
FDE Feature Detector Engine
FDS Feature Detector Scheduler
GNF Greibach Normal Form
GPL General Purpose Language
GUI Graphical User Interface
HPSG Head-Driven Phrase Structure Grammar
HTML HyperText Markup Language
IR Information Retrieval
LBA Linear Bounded Automata
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LFG Lexical-Functional Grammar
LHS Left-Hand Side
LIFO Last-In First-Out
lPC left Path-Controlled (grammar)
MIL Monet Interpreter Language
MIME Multipurpose Internet Mail Extensions
MOA Magnum Object Algebra
MPEG Moving Picture Experts Group
ND Named Disjunction
NLP Natural Language Processing
NPDA Non-deterministic Push-Down Automata
NPDT Non-deterministic Push-Down Transducer
ODMG Object Data Management Group
PC Path-Controlled (grammar)
PC Parallel Communicating (grammar system)
PDA Push-Down Automata
PDT Push-Down Transducer
QbS Query by Sketch
QbT Query by Text
RDT Reduced Derivation Tree
RE Recursively Enumerable
REG REGular
RHS Right-Hand Side
RPC Remote Procedure Call
RRPG Regular Right Part Grammar
SGML Standard Generalized Markup Language
SMIL Synchronized Multimedia Integration Language
SQL Structured Query Language
TC Tree-Controlled (grammar)
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WWW World Wide Web
XML eXtensible Markup Language
XPath XML Path language
XSL eXtensible Stylesheet Language
XSLT XSL Transformations



Bibliography

[ACC+99] G. Auffret, J. Carrive, O. Chevet, T. Dechilly, R. Ronfard, and B. Bachimont.
Audiovisual-based hypermedia authoring: using structured representations for
efficient access to av documents. In Klaus Tochterman, Jorg Westbomke,
Uffe K. Will, and John J. Leggett, editors,Proceedings of the 10th ACM con-
ference on Hypertext and Hypermedia, pages 169 – 178, Darmstadt, Germany,
February 1999. ACM.135

[Alt01] AltaVista. AltaVista - Image Search. www.altavista.com/sites/
search/simage , 2001. 10

[App87] D. E. Appelt. Bidirectional grammars and the design of natural language gen-
eration systems. InProceedings of Third Conference on Theoretical Issues in
Natural Language Processing (TINLAP-3), pages 185 – 191, New Mexico State
University, Las Cruses, New Mexico, January 1987.19

[AR01] Anne Abeillé and Owen Rambow.Tree Adjoining Grammars: Mathematical,
Computational and Linguistic Properties. University of Chicago Press, first
edition, January 2001.82

[Arn74] R. Arnheim.Art and Visual Perception: A Psychology of the Creative Eye. Faber
and Faber, London, 1974.135

[AS88] G. T. M. Altmann and M. J. Steedman. Interaction with context during human
sentence processing.Cognition, 30(3):191 – 238, 1988.74

[ASF97] Vassilis Athitsos, Michael J. Swain, and Charles Frankel. Distinguishing pho-
tographs and graphics on the world wide web. InWorkshop on Content-Based
Access of Image and Video Libraries, Puerto Rico, June 1997.6, 124, 139

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers – Principles,
Techniques, and Tools. Addison-Wesley, 1986.32, 79

[Bak79] J. Baker. Trainable grammars for speech recognition. InSpeech Communication
Papers for the 97th Meeting of the Acoustical Society of America, pages 547 –
550, Cambridge, Massachusetts, 1979. MIT Press.21

[BB75] John Seely Brown and Richard R. Burton. Multiple representations of knowl-
edge for tutorial reasoning. In Daniel G. Bobrow and Allan Collins, editors,
Representation and Understanding, Language, Thought, and Culture, pages 311
– 349. Academic Press, 1975.33

http://www.altavista.com/sites/search/simage
www.altavista.com/sites/search/simage
www.altavista.com/sites/search/simage


166 Bibliography

[BK86] J.A. Bergstra and J. W. Klop. Process algebra: specification and verification in
bisimulation semantics. In M. Hazewinkel, J.K. Lenstra, and G.T.L. Meertens,
editors,Mathematics & Computer Science II, volume 4 ofCWI Monograph.
North-Holland, 1986.43

[BK94] J.A. Bergstra and P. Klint. The toolbus - a component interconnection archi-
tecture. Technical Report P9408, Programming Research Group, University of
Amsterdam, 1994.43

[BK95] P. A. Boncz and M. L. Kersten. Monet: An Impressionist Sketch of an Ad-
vanced Database System. InProceedings Basque International Workshop on
Information Technology, San Sebastian, Spain, July 1995.99

[BK96] J.A. Bergstra and P. Klint. The discrete time toolbus. In M. Wirsing and M. Ni-
vat, editors,Algebraic Methodology and Software Technology (AMAST’96), vol-
ume 1101 ofLecture Notes in Computer Science, pages 286 – 305. Springer-
Verlag, 1996. 43

[BK99] P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Fragmented
World. The VLDB Journal, 8(2):101–119, October 1999. The original publica-
tion is available in LINK, © Springer-Verlag.99

[Bla97] Philippe Blanche. Disambiguating with controlled disjunctions. InProceedings
of the International Workshop on Parsing Technologies, 1997. 21, 40

[Bla98] Philippe Blanche. Parsing ambiguous structures using controlled disjunctions
and unary quasi-trees. InProceedings of ACL-COLING’98, 1998. 21

[BLFIM98] T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masinter.Uniform Resource
Identifiers (URI): Generic Syntax. The Internet Engineering Task Force,www.
ietf.org/rfc/rfc2396.txt , August 1998 1998.3

[Blo02] Henk Ernst Blok. Database Optimization Aspects for Information Retrieval.
PhD thesis, Centre for Telematics and Information Technology, Enschede, The
Netherlands, April 2002.125

[Bon02] P. A. Boncz.Monet: A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications. Ph.d. thesis, Universiteit van Amsterdam, Amsterdam, The Nether-
lands, May 2002.99

[Boo69] T. L. Booth. Probabilistic representation of formal languages. InIEEE Confer-
ence Recors of the 1969 Tenth Annual Symposium on Switching and Automata
Theory, pages 74 – 81, Waterloo, Ontario, 1969. IEEE.21

[Bos99] Peter Bosch.Mixed-Media File Systems. PhD thesis, Centre for Telematics and
Information Technology, Enschede, The Netherlands, Juni 1999.1

[Bou03] Ronald Bourret. XML Database Products. www.rpbourret.com/xml/
XMLDatabaseProds.htm , 2003. 110

[Bre82] J. Bresnan, editor.The Mental Representation of Grammatical Relations. MIT
Press, Cambridge, MA, 1982.27

[BWK98] P. A. Boncz, A. N. Wilschut, and M. L. Kersten. Flattening an Object Algebra to
Provide Performance. InProceedings of the IEEE International Conference on
Data Engineering (ICDE), pages 568–577, Orlando, FL, USA, February 1998.
100

http://www.ietf.org/rfc/rfc2396.txt
www.ietf.org/rfc/rfc2396.txt
www.ietf.org/rfc/rfc2396.txt
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
www.rpbourret.com/xml/XMLDatabaseProds.htm
www.rpbourret.com/xml/XMLDatabaseProds.htm


167

[BWvZ+01] H. E. Blok, M. A. Windhouwer, R. van Zwol, M. Petkovic, P. M. G. Apers,
M. L. Kersten, and W. Jonker. Flexible and scalable digital library search. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
Rome, Italy, September 2001.123, 125, 128

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Retrieval.
Addison Wesley, 1999.125

[CAM01] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents.
In Proceedings of ICDE, 2001. 116

[CDP99] Carlo Colombo, Alberto Del Bimbo, and Pietro Pala. Semantics in visual infor-
mation retrieval.IEEE MultiMedia, 6(3):38 – 53, July 1999.6

[CGM97] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in struc-
tured data. InProceedings of ACM SIGMOD, 1997. 116

[Cho59] Noam Chomsky. On certain formal properties of grammars.Information Con-
trol, 2:137–167, 1959.16

[CK85] A. Copeland and S. Khoshafian. A decomposition storage model. InProceed-
ings of the ACM SIGMOD International Conference on Management of Data,
pages 268 – 279, Austin, Texas, USA, May 1985.99

[CK01] James Clark and Kohsuke Kawaguchi.Guidelines for using W3C XML
Schema Datatypes with RELAX NG. Oasis, www.oasis-open.org/
committees/relax-ng/xsd.html , 2001. 104

[CL96] J. Cha and S. Lee. Comib: Composite icon browser for multimedia databases.
Multimedia Tools and Applications, 3(3):203 – 223, 1996.3

[Cla99] James Clark.XT. www.blnz.com/xt/index.html , 1999. 124

[CM77] K. Culik II and H.A. Maurer. Tree controlled grammars.Computing, 19:129 –
139, 1977. 22, 23

[CM01] James Clark and Makoto Murata.RELAX NG Specification. Oasis,www.
oasis-open.org/committees/relax-ng/spec-20011203.
html , 2001. 104

[CMOY96] I.J. Cox, M.L. Miller, S.M. Omohundro, and P.N. Yianilos. Pichunter: Bayesian
relevance feedback for image retrieval. InProceedings of ICPR 1996, pages 361
– 369, Vienna, Austria, 1996.3

[CSL01] Princeton University Cognitive Science Laboratory.WordNet - a Lexical
Database for English. www.cogsci.princeton.edu/~wn/ , 2001. 60,
124

[CVDKP94] Erzsébet Csuhaj-Varhú, Jürgen Dassow, Jozef Kelemen, and Gheorghe Pǎun.
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Samenvatting

Met de opmars van personal computers en allerlei vormen van randapparatuur om traditionele
media te digitaliseren, met name onder de invloed van het als maar dalen van de aanschafkosten
en het stijgen van de opslagcapaciteit, zijn grote collecties van digitale media (digital media
warehouses) gemeengoed geworden. Maar het opslaan van digitale objecten is slechts één kant
van de zaak, de gebruikers willen deze objecten ook weer terugvinden. Het terugvinden van
deze objecten is echter geen sinecure en een omvangrijke en multidisciplinaire onderzoeksge-
meenschap houdt zich daar dan ook mee bezig.

De focus van dit proefschrift wordt gevormd door één stap in het zoekproces. De media ob-
jecten in hun digitale vorm zijn namelijk niet gemakkelijk te vinden, daarvoor moeten ze gean-
noteerd worden. Deze annotaties kunnen zowel handmatig als automatisch gecreeërd worden.
In het laatste geval worden de annotaties geproduceerd door uitgeprogrammeerde extractie-
algoritmes, die op de objecten worden losgelaten.

De extractie-algoritmes zijn van elkaar en van elkaars annotaties afhankelijk. Allereerst
kan er sprake zijn van een uit/invoer afhankelijkheid: de uitvoer van het ene algoritme is de
invoer van een volgend algoritme. Een voorbeeld hiervan is het bepalen van het type van een
afbeelding, een tekening of een foto. Dit gebeurt op basis van eerder geproduceerde annotaties,
zoals het aantal en de gemiddelde verzadiging van de kleuren in de afbeelding. Daarnaast
is er de mogelijkheid van een context afhankelijkheid. Hierbij wordt een extractie-algoritme
alleen uitgevoerd als een eerder algoritme geslaagd is. Dit wordt geïllustreerd door de volgende
afhankelijkheid: het bepalen of een afbeelding een of meerdere gezichten bevat is alleen nodig
als eerst bepaald is dat de afbeelding een foto is.

Een complicatie is de semantiek van de annotaties. Eenvoudige annotaties, bijvoorbeeld de
kleur geel komt in deze afbeelding voor, zijn eenduidig. Meer abstracte annotaties, zoals dit is
een grimmige foto, zijn ambigu. Hun validiteit is afhankelijk van de context waarin het object
zich bevindt, of de (cultureel bepaalde) context van de gebruiker. Een annotatie systeem moet
dan ook de productie en het gebruik van alternatieve interpretaties ondersteunen.

In het proefschrift wordt een formele taal, kenmerk grammatica systemen (feature gram-
mar systems), die voor het gelijktijdig beschrijven van de afhankelijkheden en de (alternatieve)
contexten is ontwikkeld. In een natuurlijke taal worden valide zinnen beschreven door een
grammatica. De grammatica bepaalt welke woorden samen, in een specifieke context, mogen
voorkomen. Een kenmerk grammatica systeem doet hetzelfde voor annotaties en extractie-
algoritmes. Daartoe bestaat een kenmerk grammatica systeem uit één of meerdere grammatica
componenten. Elk component beschrijft het resultaat van een algoritme en de afhankelijkheid
van andere componenten. Deze beschrijving kan alternatieve interpretaties bevatten.
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Het extractie-proces kan nu gestuurd worden door een kenmerk grammatica systeem te
interpreteren. Dit proces komt overeen met het parseren van zinnen in een natuurlijke of ar-
tificiële taal. Hiervoor zijn door de jaren heen veel efficiënte algoritmes ontwikkeld. Echter
slechts enkele hiervan zijn geschikt voor kenmerk grammatica systemen. Een probleem is het
dynamisch groeien van de annotatie zin: het activeren van een grammatica component leidt
tot het uitvoeren van een extractie-algoritme en dus tot de productie van annotaties. Een ander
probleem wordt gevormd door de afhankelijkheden: een extractie-algoritme kan pas worden
uitgevoerd als zijn invoer, reeds eerder geproduceerde annotaties, beschikbaar is. Hierdoor
komen alleen parseer algoritmes in aanmerking die van boven naar beneden werken. Een spe-
cifiek algoritme, die aan deze kenmerken voldoet, is geimplementeerd en produceert de anno-
taties, beschreven door een of meerdere parseerbomen. Deze bomen worden opgeslagen in een
database management systeem.

Verschillende factoren, zoals wijzigingen in de algoritmes, kunnen er echter toe leiden dat
de opgeslagen bomen, en dus ook de annotaties, niet meer de werkelijkheid weerspiegelen. Om
de invloed van deze wijzigingen te lokaliseren wordt er van het kenmerk grammatica systeem
een afhankelijkheidsgraaf afgeleid. Een planningsproces kan dan het extractie-proces gedeel-
telijk herstarten om daarmee de database te modificeren.

Het aldus ontworpen systeem,Acoi, is de afgelopen jaren aan het CWI ontwikkeld en in-
gezet bij verschillende praktijkstudies. Analyse van deze studies toont aan dat een kenmerk
grammatica systeem een praktisch inzetbaar hulpmiddel is om (alternatieve) annotaties te pro-
duceren en te onderhouden.
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