Feature Grammar Systems
Incremental Maintenance
of Indexes to

Digital Media Warehouses

Menzo Windhouwer

...van M voor M:-)

Feature Grammar Systems

Incremental Maintenance
of Indexes to
Digital Media Warehouses

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus
prof. mr. P. F. van der Heijden
ten overstaan van een door het
college voor promoties ingestelde commissie
in het openbaar te verdedigen
in de Aula der Universiteit
op donderdag 6 november 2003, te 14.00 uur

door Menzo Aart Windhouwer
geboren te Apeldoorn

Promotiecommissie
Promotor: prof. dr M. L. Kersten

Overige commissieleden: prof. dr P. M. G. Apers
prof. dr P. M. E. de Bra
prof. dr P. van Emde Boas
prof. dr P. Klint

Faculteit

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

The research reported in this thesis was carried out at CWI, the Dutch national research

laboratory for mathematics and computer science, within the ttzeee Mining and
Knowledge Discoverya subdivision of the research clusteformation Systems

@

SIKS Dissertation Series No-2003-16.
The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Graduate School for Information and Knowledge Systems.

The research and implementation effort reported in this thesis was carried out within
the Advanced Multimedia Indexing and Searchimjgital Media Warehouseand
Waterlandprojects.

ISBN 90 6196 522 5

Cover design and photography by Dick Windhouwen{v.windhouwer.nl).

http://www.windhouwer.nl/

Contents

1 Digital Media Warehouses
1.1 Multimedia Information Retrieval.

1.2 Annotations

121
1.2.2
1.2.3
1.2.4

1.3 The Acoi System

131
1.3.2
1.3.3

1.4 Discussion

TheSemanticGap
Annotation Extraction Algorithms
Annotation Extraction Dependencies.
Annotation Maintenance

A Grammar-based Approach
System Architecture. L.
CaseStudies
1.3.3.1 The WWW Multimedia Search Engine.
1.3.3.2 The Australian Open Search Engine.
1.3.3.3 Rijksmuseum Presentation Generation

2 Feature Grammar Systems

2.1 A Grammar Primer

211

2.1.2

2.1.3

214

A Formal Specification of Languages and Grammats. . .

2.1.1.1 The Chomsky Hierarchy.
2.1.1.2 Mild Context-sensitivity
The Derivation Process.
2.1.2.1 Bidirectional Grammars.
2122 ParseTrees.
2.1.2.3 TheDeltaOperation.
2124 ParseForests. 0o
2.1.25 Disambiguation. L.
Regulated Rewriting
2.1.3.1 Conditional Grammars.
2.1.3.2 Tree-controlled Grammars
Grammar Systems oo

Contents

2141 CDGrammarSystems. 24

2142 InternalControl. 26

2.2 Feature Grammar Systems. 27
221 Detectors. 28
222 AIOMS. . . . e e 32
223 Dependencies. e 33
2231 Detectorlnput 33

2.2.3.2 DetectorOutput 37

2.2.4 Ambiguous Feature Grammar Systems 39
2.2.5 Mildly Context-sensitive Feature Grammar Systems . . . 41

2.3 DISCUSSION e e e 42
Feature Grammar Language 45
3.1 The Basic Feature Grammar Language. 45
3.1.1 ProductionRuleso 46
312 AIOMS. . . . e e e e 48
3.1.3 Detectors. 49
3.1.3.1 The XPathlLanguage 50

3.1.3.2 Detector Confidence. 52

3.1.4 TheStartSymbal 52

3.2 The Extended Feature Grammar Language 53
3.21 ProductionRules 53
3.2.1.1 Additional Sequence Types. 53

3.21.2 Constants. 54

3.22 Detectors. 54
3.2.2.1 Whitebox Detectors 54

3.222 Plugins 56

3.22.3 Classifiers. 57

3.23 TheStartSymbal 58
3231 References. 58

3.2.4 Feature GrammarModules. 61
3.25 ChangeDetection. 62

3.3 Discussion e 63
Feature Detector Engine 65
41 AParserPrimer 66
4.1.1 More Parsing Algorithms for Context-free Grammars. . . 69

4.2 Parsing Feature Grammar Systems. 73
4.2.1 Exhaustive Backtracking for Feature Grammar Systems. 75
4.2.1.1 Leftrecursion. 78

4212 Lookahead 80

4.2.1.3 Memoization 81

4.3 The Feature Detector Engine. 82

vii

43.1 TheSymbolTable. 84
4311 Rewriting, 84

4312 SemanticChecks 85

432 TheParser. e 86
433 TheParseForest. 86
4331 XMLandDOM. 86

4.3.3.2 LabelingParseTrees 88

4.3.3.3 MemoizedParseTrees 90

434 TheSentences i v i i i i 92
435 Detectors. e e 93
4351 Detectorlnput 93

435.2 BlackboxDetectors 94

4353 Plugins e 94

4354 Classifiers. 95

4.3.5.5 Start Symbols and References. 95

4.3.5.6 Deadlock Resolution. 96

4.4 DISCUSSION . . v v v e e e e e e e e e e e 97
Feature Databases 99
5.1 The Monet DatabaseKernel 99
51.1 Monetand XML 100
5.1.1.1 SemistructuredData. 100

5.1.1.2 MonetXMLandXMark 101

51.1.3 XQuery e 102

5.2 AFeatureDatabase. 102
5.2.1 ADatabaseSchema 103
5.2.2 Aparse forest XML document. 105
5.2.3 InsertingaParseForest 107
5.2.4 Replacing a (Partial) Parse Forest. 107
5.25 QueryFacilites 0. 108
5.2.6 Adding Database Management to a Database Kernel . . 109

5.3 Discussion e 110
Feature Detector Scheduler 111
6.1 TheDependency Graph. 111
6.2 IdentifyingChange. 114
6.2.1 ExternalChanges. 114
6.2.2 InternalChanges 115
6.2.2.1 The StartCondition 115

6.2.2.2 The Detector Functian. 115

6.2.2.3 The Stop Condition 116

6.3 ManagingChange. 116
6.3.1 The (Re)validationProcess 117

viii Contents
6.3.2 Lookup Table Management 117

6.4 DISCUSSION i e e e e 118
7 Case Studies 119
7.1 The Acoi Implementation 119
7.1.1 AcoiPrehistory. 119
7.1.2 TheAcoiProject., 120
7.1.3 Acoil998 e 120
7.14 Acoi2000. e 120
7.15 Acoi2002 e 121
716 AcoiFuture. 122

7.2 The WWW Multimedia Search Engine. 123
7.21 TheFeatureGrammars. 123
7.2.2 The System Architecture., 124
7.23 Lessonslearned, 125

7.3 The Australian Open Search Engine. 126
7.3.1 The Webspace Method. 127
7.32 COBRA. . . . e 128
7.3.3 The Australian Open DMW Demonstrator 128
734 Lessonslearned 132

7.4 Rijksmuseum Presentation Generation 133
7.4.1 TheStyleRepository 133
7.4.2 TheDataRepository 135
7.4.3 The Presentation Environment 136
7.4.4 AStyleFeature Grammar 137
7.4.5 Generating the Presentation. 139
746 Lessonslearned, 141

7.5 DISCUSSION v i e e e 142
8 Conclusion and Future Work 143
8.1 Conclusion. e 143
8.2 FutureWork. e 144
8.2.1 Feature Grammar Systems 144
8.2.2 Feature Grammar Language. 144
8.2.3 Feature DetectorEngine., 145
8.2.4 FeatureDatabase. 145
8.2.5 Feature Detector Scheduler 145
8.2.6 Digital MediaWarehouses 146

8.3 Discussion 146

A The Feature Grammar Language 147

B Feature Grammars
B.1 The WWW Feature Grammar.
B.2 The Text Feature Grammar. v v v v v v ...
B.3 The HTML Feature Grammar.
B.4 Thelmage Feature Grammar.
B.5 TheAudioFeature Grammar. v v v v
B.6 The MIDIFeature Grammar. v v v v v v v u o
B.7 The MP3 Feature Grammar. v . v v v v ...
B.8 TheVideoFeature Grammar.
B.9 The MPEG Feature Grammar.
B.10 The Acoi Feature Grammar.
B.11 The Tennis Feature Grammar,
B.12 The Australian Open Feature Grammar.
B.13 The Rijksmuseum Feature Grammar

C XML documents
C.1 Aschemadocument.
C.2 Aparseforestdocument

Abbreviations
Bibliography
Index
Samenvatting
Curriculum Vitae
Acknowledgments

SIKS Dissertation Series

151
151
151
152
153
153
154
154
154
155
155
155
156
156

159
159
161

163

165

179

183

185

189

191

Chapter 1

Digital Media Warehouses

Yama said, “Surely knowledge should be free to everyone, since all knowl-
edge is the qift of the Preservers.”

“Ah, but if it was freed,” Kun Nurbo said, “who would look after it?
Knowledge is a delicate thing, easily destroyed or lost, and each part
of the knowledge we look after is potentially dependent upon every other
part. | could open the library to all tomorrow, if | was so minded, but | will
not. You could wander the stacks for a dozen years, Yama, and never find
what you are looking for. | can lay my hand on the place where the answer
may lie in a few hours, but only because | have spent much of my life
studying the way in which the books and files and records are catalogued.
The organization of knowledge is just as important as knowledge itself,
and we are responsible for the preservation of that organization.”

Paul J. McAuley- Ancients of Days

Encouraged by the low price of digitizing methods d. digital cameras, scanners)
and storage capacitg(g. DVDs) collections of media objects are quickly becoming
popular. Public services like libraries and museums digitize their collections and make
parts of it available to the public. Likewise, the public digitizes private information,
e. g.holiday pictures, and shares it on the World Wide Web (WWW). Vast collections
of digital media are thus constructed in a relatively easy manner.

The management of these media objects encompasses many more aspects than
just populating thaigital media warehous€DMW). First, there is the retention issue
of the digital content; will the digital image be accessible in 25 years from now?
Dedicated databas&[bh97] and file systemsH] have been developed to handle
the input, storage and output of media streams. Second, security issues play a role:
who is allowed to retrieve the data and should the data be encrypted? Third, the mass
of information in a DMW stresses our capability to find relevant information: how to
retrieve all images related to, for example, jazz music? The next section will delve

Chapter 1Digital Media Warehouses

librarian

>
L

/A
ZIN/N<—
3

N
2
2
=

Relevance
‘ feedback

Query specification Visualization

Annotation

Search Engine Database <>

Automatic | Manual

On line Off line
Figure 1.1: Multimedia information retrieval system

deeper into this last issue, because the contribution of this thesis lies within this grand
challenge.

1.1 Multimedia Information Retrieval

A known and limited subset of a warehouse can be accessed by browsing: the com-
mon practice of every day life on the WWW. However, if this subset is unknown,
identifying relevant media objects in the vast collection poses a major problem.

Identifying relevant media objects is studied in the areanaftimedia informa-
tion retrieval This research community is multidisciplinary and thus attracts scientist
from various discipliness. g.computer vision, artificial intelligence, natural language
processing and database technology. These disciplines play their specific role in the
subsystems of the generic multimedia information retrieval system sketched in Fig-
urel.1(based onl[]). A small walk through this generic system will clarify the
information flow between and the individual roles of the various subsystems.

The user,. e. the person in the left part of the figure, starts a session with the
system to resolve a query intention, for example: find a portrait of the jazz trumpeter
Chet Baker. Query specification tools offer assistance in translating the query inten-
tions into query clues understood by the system. For examplery-by-sketckiQbS)

[4 } or query-by-tex{QbT) |) ,] are well-known
paradigms being used. In QbS a global impression of the image has to be drawn. Key-
words or phrases, like “Chet Baker”, “jazz” or “trumpet”, form the clues used by the

Section 1.1Multimedia Information Retrieval 3

QbT paradigm.

These query clues are subsequently translated by the search engine into database
gueries. The type of the information stored in the database, and thus these translations,
is as diverse as the query specification paradigms. For example: the QbS paradigm
maps the clues on numerical feature vectors containing information about color, tex-
ture and shapes. The keywords and phrases from the QbT paradigm may map on
entries in an ontology], controlled vocabulary or textual annotations. This
mapping from query clues to the information stored forms the basis to find matching
media objects. When the mapping is also used for the ranking of matching objects the
search engine needs a notion of similarity: how similar are two objects in the space
induced by the mapping? Using this distance metric the objects can be ranked from
the best to the worst matchd/94.

The database executes the query specification to match and rank the media objects.
A visualization tool presents these query results for further inspection to the user. Also
for this part of the generic system many paradigms are available: the results may be
shown as clusters in a multidimensional spaced|] or the user can browse
through them {]. Other senses than the user’s eyes may also be used to present
the query resultse. g. when the media type is audio or a score the musical theme is
played []

In most cases the user will have to refine the query to zoom in on the relevant
set of multimedia objects\| ,]. This relies on a better understanding by
the user of the database content thus allowing a better formulation of the information
need. Query refinement is supported by a relevance feedback mechanisny pe,

]], which allows the user to indicate the positive and
negatlve relevance of the objects retrieved. These indications are used by the system to
adjust the query clues better to the user’s query intention. Such a mechanism connects
the visualization tool to the query specification tool and creates an interactive loop.
The hypothesis is that when the user terminates the loop he or she will have found the
media objects in the collection with a best match to the query intention.

In every system part the original media objects play a role. These media objects
can be either stored directly in the database, or reside on a different storage medium,
e. g. the file servers of the WWW. The information exchanged between the various
subsystems will seldom contain the raw media objects. Instead database keys, file-
names otJniform Resource Identifie®JRIS) [] are passed along.

The information about the collection of media objects is produced by the anno-
tation subsystem. Part of this system handles the interaction with the libragan,
the person in the right part of Figufiel. This librarian uses his domain knowledge
and standard conventions,g. in the vain of the traditionahnglo-American Cata-
loguing RulefAACR2R) |], to annotate the media objects. These annotations
range from content-independeni(], e. g. this image was added to the collec-
tion at July 1, 1998, to content-descriptive ddtaj01], e. g. this image is a portrait
of Chet Baker {]. Apart from a manual part the annotation system also has an

Chapter 1Digital Media Warehouses

automatic part. In the automatic part the system uses algorithms and additional in-
formation sources, like an ontology or a thesaurus, to automatically extract additional
information. Interaction between the two parts may be used to complete and verify
the annotatione. g.automatic extracted concepts may be approved by the librarian.

The database functions as a persistent buffer between the off line produced an-
notation information and the on line use of this information to answer queries. This
database is managed bybatabase Management SystépBMS). A DBMS offers
not only persistent storage of the data, but also other functionality needed by a DMW.
For example, to assure a consistent representation and to control mixed access, but
also, one of the major research themes in database technology, query optimization.
The search engine will profit from the last one in its search for matching media ob-
jects.

As the main focus of this thesis lies within the idea of automatic annotation ex-
traction extraction the coming section will further describe the role of this subsystem.

1.2 Annotations

As discussed in the walk through and shown in Figuiethe annotation information

is produced manually and/or automatically extracted. However, with the increasing
size of media collections manual annotation of all media objects becomes unfeasi-
ble. Likewise, when the collection is unconstrainied, contains media objects from
various domains, manual annotation of the objects can never meet all possible query
intentions. Even for domain and size restricted collections manual annotation remains
hard, due to the fact that annotations tend to be subjedtiee,they describe the
personal perception of the librarian. These aspects increase the importance of the
automatic part of the annotation subsystem.

1.2.1 The Semantic Gap

The holy grail for automatic annotation is to take over the content-descriptive part of
the manual burden. To realize this, themantic gafpoetween raw sensor data and
“real world” concepts has to be bridged. For visual data this gap is defined as follows

[I:

The semantic gap is the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same
data have for a user in a given situation.

This definition may be generalized to raw sensor data in general without loss of valid-
ity.

The semantic gap is visualized in Figut€2. The user with all his/her general
knowledge will have many associations with this photo. These associations range
from generic to specific ones, g. from “this is a portrait” to “this is a portrait of

Section 1.2Annotations 5

§ Sensors senses S
& oa)
extracted semantic
interpretation interpretation

Color features:
- Number: 29035
- Prevalent: 0.03 <

- Saturation: 0.19 Semantic gap

Figure 1.2: The semantic gap visualized

the jazz trumpeter Chet Baker”. Ideally, in the case where there is no semantic gap,
the computer system can extract the same information from a digital version of this
photo. Algorithms to classify this image as a photo and to detect the frontal face
are available. Combining this basic information the validity of the generic semantic
concept portrait can be induced. The validity of more specific concepts often depends
on the availability of more contextual knowledge about the media object.

However, the semantic gap is still not filled and may never be. One of the reasons
is the role of ambiguity. The more abstract a concept becomes the more subjective,
due toe. g. cultural context-sensitivity, interpretations are possible. HakPDq the
authors distinguish three image content levels:

level 1 primitive features: color, texture, shape;

level 2 derived (or logical) features: contains objects of a given type or contains indi-
vidual objects;

level 3 abstract attributes: named events or types of activities, or emotional or reli-
gious significance.

The higher the level the more subjective, and thus ambiguous, annotations become.
State of the art annotation extraction algorithms reach level 2. Level 3 algorithms are
only possible for clearly defined and distinguishable (narrow) domains. To provide
enough support for an attack on the third level the annotation subsystem will need
specialized constructs to handle this ambiguéty. using probabilistic reasoning.

1.2.2 Annotation Extraction Algorithms

The predominant approach to try and bridge the semantic gap is the translation of
the raw data into low-level features, which are subsequently mapped into high-level,
i.e. semantic meaningful, concepts. This approach is reflected in frameworks like

Chapter 1Digital Media Warehouses

ADMIRE [] and COBRA [PPJ0(and thecompositional semantiaeethod used
in[].

Low-level features (level 1) are directly extracted from the raw media data and
relate to one or more feature domains embedded in the specific medigbtye][

For images color, texture and shape features are well known examples. The choice of
domains gets even bigger when several media types are combined into one multimedia
object,e. g.a video which may be seen as a, time related, sequence of images with an
audio track.

Rules, which may be implicit, map these low-level features into semantic concepts
(level 2 and 3). An expert may hard-code these rudeg, a combination of boolean
predicates, or they may be learned by a machine learning algoritht&7q]. Such
an algorithm may result in human readable rules, as is the case with decision rules
[], or the rules may be hidden inside a blackbexg. in the case of a neural
network [].

In fact there is a wealth of research on extraction algorithms for both features and
concepts. When a subset of them are used to annotate a collection of media objects
they depend on each other to create a coherent annotation.

1.2.3 Annotation Extraction Dependencies

Annotations of the example image of Chet Baker may be extracted by using these
mappings (illustrated in Figure.3):

1. the image is classified as a photo: feature valaeg,the number of colors and
the saturation of these colors, are used in a boolean rule, which determines if
the image is a photo or no&f 1

2. the photo contains a human face: the group of skin colors irciie2c3color
space, are used to find skin areas and these areas form the input to a neural
network which determines the presence of a human face in the phéta((.

This example shows that concepts do not only depend on features, they may also de-
pend on each other. In this example the face detection presupposes that the image is
classified as a photo. This is a different kind of dependency. The dependency between
feature and concept extraction is based on a direct output/input relation: the output of
the feature detector is input for the photo decision rule. This type of dependencies is
called anoutput/input dependencyHowever, the dependency between the two con-
cepts is based on context: the photo concept functions as a contextual filter for the
face concept.

This context dependen@an be hardcoded as an output/input dependency. Unfor-
tunately this will harm the generality of the face detector: it can not be reused in a
different context, where there is no photo pre-filter. Context dependency is a design
decision or domain restriction and is not enforced by the extraction algorithm. In this
specific case the decision to use the photo classifier as a pre-filter is made because

Section 1.2Annotations 7

Color features: . This
Feature - Number: 29053 Boolean image
T Prevalent. — > .
detector - Prevalent: 0.03 rule isa
A - Saturation: 0.19 photo
. .

175}
]
k3|
=
]
2
8 Feature Neural
3 detector net
I
i)
=
Q
o . .

Raw Feature Concept

. Features P Concepts
data extraction extraction
>

output/input dependencies

Figure 1.3: Automatic information extraction steps

the face detector is expensive, while the photo classifier is cheap. By using the photo
classifier as a pre-filter only images with a high chance on the presence of a face will
be passed on to the expensive face detector. Due to the explicit handling of this con-
text dependency the face detector stays generic in nature and is able to be reused in a
different contexte. g.black and white images.

The subsystem which controls the automatic information extraction has to take
care of these dependencies and use them to call the algorithms, evaluate the rules and

run the machine learning algorithms to produce the features and concepts to be stored
in the database.

1.2.4 Annotation Maintenance

Complicating the task of the annotation subsystem further, supporting multimedia in-
formation retrieval in a non-static environment, like the WWW, involves the mainte-
nance of the annotations, features and concepts, stored in the database so they reflect
the current status in this evolving environment.

There are several possible sources of change leading to the need of annotation

Chapter 1Digital Media Warehouses

maintenance. Assuming that the media objects are not stored in the database, only the
annotations are, the first source iseternalone. The media objects themselves may

be modified. Upon each modification the automatic (and manual) annotation has to
be redone to guarantee that the database contains the correct and up-to-date data. Two
other sources can be seeni@ternal to the system: changes in the extraction algo-
rithms and in the dependencies between them. If an algorithm is improved (or a bug
is fixed), the specific features or concepts have to be updated. Due to the output/input
and context dependencies between features and concepts this change may trigger the
need for reruns of many other extraction algorithms. Finally, the output/input and
context dependencies may change. The addition or removal of a context dependency
may, again, trigger the need for reruns of extraction algorithms.

When the dependencies and algorithms are embedded in a, hand crafted, special
purpose program there is basically one option: rework the program and do a complete
rerun of the annotation process for the affected multimedia objects. However, when
(at least) the dependencies are described in a declarative manner, a supervisor program
can take care of the maintenance process. Such a supervisor analyzes the dependencies
and reruns only the extraction algorithms which are affected by the change. In this way
a complete rerun, including unnecessary reruns of expensive algorithms, is prevented
and the database is maintained incrementally.

1.3 The Acoi System

Although incremental maintenance of multimedia annotations has been identified as a
key research topics{K99, there has been little actual research to solve this problem
and no satisfactory solution exists yet. This thesis describesdbiesystem archi-
tecture and its reference implementation, which provides a sound framework for the
automatic part of the annotation subsystem, including incremental maintenance.

1.3.1 A Grammar-based Approach

Formal language theory forms the foundation of this framework. Its choice was based
on the observation that proper management of annotations all involve context:

the semantic gapthe more specific a concept, the more structural contextual know-
ledge is needed for validation (see Sectloh.));

disambiguation the more abstract a concept, the more user specific contextual know-
ledge is needed to disambiguate it (see Secti@ri);

contextual dependencyto promote reuse of detectors, context dependencies should
be explicitly handled (see Sectidn?.3;

Section 1.3The Acoi System 9

incremental maintenance exact knowledge of the origing,e. the context, of an
annotation is needed to localize the impact of internal or external changes and
thus enabléncrementaimaintenance (see Sectitr?.4).

The Acoi system would thus benefit from a dependency description or process-
ing model which covers context knowledge for both annotations and extraction algo-
rithms. Traversing the dependency description a path from the start of the extraction
process to the actual extraction of a specific annotation can be maintained. A set
of annotation paths can easily be described by a tree. Sets of validitreegalid
annotation paths, are naturally modeled by grammars. Grammars form a context pre-
serving basis for a dependency description. However, the context descriptions should
be underspecified enough to keep algorithms generic and enable, and even promote,
reuse. The theoretical and practical implications of this intuition is investigated in this
thesis.

1.3.2 System Architecture

Detailed descriptions of th&coi system components, shown in Figuré, and their
relationships form the core of the thesis.

Chapter2 starts with a description of thacoi system foundation: thésature
grammar systemsThis foundation is based on a careful embedding of extraction
algorithms into formal language theory and to formally describe both types of infor-
mation extraction dependencies.

The next chapter introduces a non-mathematical notation for feature grammar sys-
tems: thefeature grammar languageThis language supports the core of a feature
grammar system. Based on earlier experience extensions are added to conveniently
support the various forms of feature and concept extraction.

In Chapter4, the Feature Detector Engin€éFDE) uses the execution semantics
of feature grammar systems to produce the annotations. This involves traversing the
dependencies described and execution of its associated extraction algorithms. The
core is supplied by a practical algorithm taken from natural language research and
compiler technology and adapted to handle the specific needs of feature grammar
systems.

The impact of the system on the database is discussed in Chaptde engine
delivers its datai, e. annotations and their complete context, in a format related to the
semantics of the feature grammar language. This format is generic and can be mapped
to the requirements of any DBMS. In this chapter a DBMS specific mapping for the
Monet back-end and related optimization issues are discussed.

The Feature Detector Schedul¢FDS), described in Chaptér analyzes the de-
pendenciesi. e. the possible contexts, in a specific feature grammar to localize the
effect of changes in source data, algorithms or dependencies. When the parts af-
fected are identified, the scheduler triggers incremental maintenance runs of the en-
gine, which result in the propagation of changes to the database.

10

Chapter 1Digital Media Warehouses

o
Y
£

‘Feature Grammar

Detector

Feature Trigger| Feature
Detector €—» Detector
Scheduler Engine

* Modification * : A

Database A

developer

Search Engine

Figure 1.4:Acoi system architecture

1.3.3 Case Studies

Various real world applications have been used to identify and evaluate functional,
performance and capacity requirements for Aleei system architecture. The case
studies will be entirely exposed in ChapferBut throughout the thesis they will also,

just like the reference implementation, function as running examples to illustrate how
specific requirements are met by the system architecture. Therefor the succeeding
subsections will shortly introduce the case studies.

1.3.3.1 The WWW Multimedia Search Engine

The WWW is probably the largest unconstrained collection of multimedia objects
available. Search engines have extracted text-based entry points to function as road-
signs to browse this vast collection. With the growing popularity of the web the search
and retrieval of other media types is getting more attentog,both AltaVista |]

and Google | are offering some support for retrieval of multimedia objects.
However, this support is still based on tegtg. keywords extracted from either the

Section 1.3The Acoi System 11

URL of the object or from the web page it appears on. Content- or concept-based
retrieval play only a significant role in research prototypes, like WebSeet)q,
WebSEEK |] and ImageScape. §]. These prototypes allow the retrieval of
images on the basis of a limited set of, hardwired, conceptg,faces or landscape
elements.

The Acoi system architecture is used to build and maintain a multimedia search
engine’s index. With advances in computer vision and sensor informatics the number
of automatic extractable features and concepts will gradually increase. Due to the
system’s ability to maintain its index incrementally (prototypes of) new features or
concept extraction algorithms are easily added. This ability also makes it well suited
to adapt to the dynamic behavior of the Internet, the index is continually updated
instead of completely recreated.

The basis is a simple model of the web: web objects and their links. This model
is then evolutionary enhanced with content-based feature and concept extraction algo-
rithms.

1.3.3.2 The Australian Open Search Engine

This Australian Open case study also involves the maintenance of a search engine’s in-
dex. Butin this case the domain is restricted to the Australian Open tennis tournament.
In the WWW case study the model contains multimedia objects and generic relations.
This limited model makes it possible to extract only very generic features and con-
cepts,e. g. this video contains 25 shots. However, in this case study the system also
contains conceptual information and, combined with domain knowledge, more spe-
cific feature and concept extraction can be realized, this video of a tennis match
between Monica Seles and Jennifer Capriati contains 25 shots of which 20 show the
tennis court.

The prime benefit of the Australian Open case study is to test the flexibility and
open character of the system architecture. Abe system is embedded in a larger
application and has to interact with separate systems, which handle the conceptual
data or function as distributed extraction algorithms.

1.3.3.3 Rijksmuseum Presentation Generation

The Rijksmuseum in Amsterdam, like many other museums, makes part of its collec-
tion available in digital format This gives the public alternative and interactive ways
to browse the collection. The database underlying this interactive system contains
manual annotations of the museum pieces.

The underlying database is semistructured in natuee, the annotation is not
always complete. Thécoi system is used, in this case, as a style database. If the
annotator did not specify the style period of a painting the system tries to infer the

www.rijksmuseum.nl

http://www.rijksmuseum.nl/

12

Chapter 1Digital Media Warehouses

correct style using the dependency description and associated extractors. The thus au-
tomatically augmented annotation may help in several ways. It may help the annotator
in completing the annotation by providing useful hints. Furthermore, it may allow the
museum visitor to retrieve possible matches.

The features and concepts extracted may also be used to influence and optimize
the layout of the hypermedia presentation generated to browse a query result.

1.4 Discussion

This introductory chapter surveyed the domain of digital media warehouses. A hum-

ber of research challenges exist within this domain and are the focus of attention

for a multidisciplinary research community. The research described in this thesis is

dedicated to the problem of automatic extraction and (incremental) maintenance of
multimedia annotations. To retain enough contextual knowledge a grammar-based
approach is taken, which grounds the approach in a well-studied field of computer

science. The subsequent chapters start with laying the formal basis and work towards
a practical solution to the problem. Chapfewill showcase the solution in the form

of the evaluation of several case studies in the problem domain, and may thus be of
main interest to practical oriented readers.

Chapter 2

Feature Grammar Systems

A wise man once said
that everything could be explained with mathematics
He has denied
His feminine side
Now where is the wisdom in that?
Marillion — This is the 21 century

The core of incremental maintenance of the annotation index lies in the understand-
ing and analysis of the dependency description. In this chapter the dependency de-
scriptions used by thacoi system architecture, called feature grammar systems, are
introduced.

As the name suggests feature grammar systems are related to grammars known
from natural language<. g. English or Dutch. Sentences in these languages are
constructed from basic building blocks: words. Each language has a set of rules which
describe how words can be put in a valid order, and what the semantic meaning of
this order is. These rules form the grammar of the languageg,like the following
grammar rules for a subset of the English language.

Example 2.1.

S—NPVP

NP — John
NP — Mary

VP -V,
VP -V, NP

Chapter 2Feature Grammar Systems

John ’ thinks ’

Figure 2.1: A parse tree

VP -V, S

Vi — laughs
Vi — loves
Vy — thinks

O

Sentences can now be tested for membership of the language induced by these specific
grammar rules. A valid sentenc¢econsists of two parts: a noun phrada” and a

verb phrasé/P. Each of these phrases may (again) consist of other pangs,a

specific verb type. This can be repeated until the individual words of the sentence are
reached. The result of such a process, also knowpaasing is theparse treeof a
sentence. Figurg.1shows the parse tree for this sentendghn thinks Mary laughs

Notice that the complete parsing context is captured by this tree.

The fundamental idea behind feature grammar systems is that the same process
of deriving a parse tree, and thus the underlying formal theories and practices, can
be used as a driving force to produce the annotation of a multimedia object. To start
once more with the basis: annotation items are seen as the words. Sentences formed
by combinations of these words should be valid in a feature grammar syistera,
specialized dependency description.

Section 2.1A Grammar Primer 15

As stated in the previous chapter two kinds of dependencies should be captured in
these descriptions: output/input and contextual dependencies. Looking at the structure
of the grammar rules it is easy to see that the right-hand sides of the rules capture
contextual dependencies: in the context of a specific verb pht&sa verbV; should
always be followed by a noun phragéP. Output/input dependencies are directly
related to annotation extraction algorithms. But those are not found in the grammar
rules. The addition of feature grammar systems is that these algorithms are bound to
specific symbols in the grammar. Upon encountering such a special symbol during
the derivation process the output/input dependencies can be resolved by using the
contexts stored in the gradually build parse tree. In fact the output/input dependencies
are associated with the context of the left-hand side of a rule.

The first part of this chapter is devoted to embedding the additions of feature gram-
mar systems into results of formal language theory. To support the understanding of
this embedding the next section shortly recalls some relevant grammar theory. Readers
which are familiar with grammar theori,e. the Chomsky hierarchy, the (regulated)
rewriting process and grammar systems, may skip to Segtibn

A feature grammar itself is a valid sentence in a meta languagéediere gram-
mar language The next chapter describes how the expressive power of feature gram-
mar systems is captured by the feature grammar language. Using this theoretical basis
Chapterst and6 will describe appropriate adaptations of formal language technolo-
gies used by the annotation subsystem to maintain the database. This database, as will
be described in Chaptér stores a collection of the annotation sentencesa subset
of all possible sentences in the language induced by the feature grammar, along with
their parse trees.

2.1 A Grammar Primer

Grammars are a key concept in computer science and many theoretical and practical
issues related to them have been studied extensively. The theoretical implications of
grammars are studied in the field of formal language theory (se&T,] for

an introduction) and form the basis of this chapter. Parsing algorithms @s&&][

for an overview),i. e. how to efficiently determine if a sentence is a valid member

of a language, is one of the more practical issues and will play an important role in
Chapterd.

2.1.1 A Formal Specification of Languages and Grammars

The formal specification starts with a languageL consists of sentences constructed
by concatenation of symbols from the alphabgti.e. L C ¥*. A grammarG
describes the languad€ G) and is defined as follows.

Definition 2.1. A grammarG is defined as a quadrupleé = (N, T, P, S), where

16

Chapter 2Feature Grammar Systems

1. N is a, non-empty, finite set of symbols calfemh-terminalor variables
2. T'is a, possibly empty, finite set of symbols catkninalsi.e. T C ¥,
3.NNT =0,

4. V=NUT,

5. Pis afinite set of rules of the forf. — R), calledproductionssuch that

(@) L € V+isthe left-hand side (LHS) of a production and
(b) R € V*is the right-hand side (RHS) of a production, and

6. S € N is a special symbol called thstartvariable oraxiom

O

A production rule inP where the RHS is an empty string is written & — 1)),
i.e. X represents the empty string. Such a production rule is also called an erasing
production.

2.1.1.1 The Chomsky Hierarchy

Grammars which apply to Definitiod.1 are calledrecursively enumerabléRE) or

Type 0 grammars. These grammars permit the description of a large set of lariguages
however, they are also unmanageableay. there is no general efficient parsing algo-
rithm. This problem led to a key work in formal language theory: the Chomsky hier-
archy of grammars{J]. In this hierarchy grammars are organized on the basis of
their expressive power. The hierarchy starts with phrase structure grammars, and on
each subsequent level restrictions are added. The restrictions result in gradually eas-
ier to “understand” or to parse grammars, but these grammars become also gradually
less expressive. The following other grammar types belong to the Chomsky hierarchy

[GJ94.

Context-sensitive (CS) or Type 1 grammarsA grammar is context-sensitive if each
production rule is context-sensitive. A rule is context-sensitive if actually only
one (non-terminal) symbol in its LHS gets replaced by other symbols, while the
others are found back undamaged and in the same order in the RHS. This rule
is for example context-sensitive, whekds the left andR is the right context
of S:

LSR—LWR

Ul] contains a proof that there are languages which are n6{ RE)).

Section 2.1A Grammar Primer 17

Context-free (CF) or Type 2 grammars A context-free grammar is like a context-
sensitive grammar, except that it may contain only rules that have a single non-
terminal in their LHSj. e. there are no left and right contexts as shown in this
rule:

S—-XYZ

Regular (REG) or Type 3 grammars A regular grammar contains two kinds of pro-
duction rules: (1) a non-terminal produces zero or more terminals and (2) a
non-terminal produces zero or more terminals followed by one non-terminal.
Examples for both kinds of rules are shown here:

S—xyz
S—vW

Due to the specific forms of rules in a REG grammar a more compact nota-
tion, a regular expression, is often used. Next to the alphAkbEe notation
supports: parentheses and the operators urigngoncatenation-J and star-
closure). For example, the expressiofu + b - ¢)*) stands for the star-closure

of {a}U{bc}, thatis, the languagg\, a, be, aa, abe, bea, bebe, aaa, aabe, . . . }.

More extended regular expression languages, and thus more compact, are used
in practice []. As a convenience for later on thperiod operator () is al-

ready introduced. This operator matches any symbol of the alphadét, a-.)
describes the language where the second symbol is alwayfsile the first and

third symbol may be any symbol (including.

2.1.1.2 Mild Context-sensitivity

Just like RE grammars, CS grammars turned out to be impractical. Although a generic
parsing algorithm can be defindde. in the construction of a linear bounded automa-

ton (LBA) [, }, specifying a CS grammar remains a non-trivial task, even

for a small language, resulting in incomprehensible grammars (see for an example
[]). For this reason most practical attention has gone to CF and REG gram-
mars. However, it was early discovered that “the world is not context-free"there

are many circumstances where naturally non-CF languages appear. Linguists seem
to agree |] that “all” natural languages contain constructions which cannot be
described by CF grammars. Three of such non-CF constructions 862 [}:

1. reduplication leading to languages of the forfnz|z € V*};

2. multiple agreementsmodeled by languages of the forfa"b"c"|n > 1},
{a"b™c"d"|n > 1}, etc.;

18

Chapter 2Feature Grammar Systems

3. crossed agreementas modeled bya"b™c"d™|n,m > 1}.

Artificial languagesg. g. a programming language lik&lgol 60, have also non-CF
properties []. Seven examples of non-CF areas where languages are found are
described in Section 0.4 obP89, and the section also concludes with the remark:
“the world seems to be non-context-free ...”. The same book describes 25 different
mechanisms for regulated rewriting. Using such a mechanism a “mild” subfamily
of CS languages is created. A mild CS language has as many CF-like properties as
possible, but is able to cover the required non-CF constructions.

Before some mechanisms of regulated rewriting are introduced the derivation pro-
cess (also known as rewriting) for CF and REG grammars is formalized.

2.1.2 The Derivation Process

If the sentencev € L(G), then the following derivation exists:

S=>w=>w == w, =>w

The stringsS, wy, ws, . . . ,w,, Which may contain variables as well as terminals, are
calledsentential form®f the derivation.
This application of the direct derivation can be defined as follows:

Definition 2.2. The application of the direct derivatiam, wxs = 124 is allowed
iff (w — z) € P, whereP is the set of productions from grammét
O

By using a subscript to the direct derivatica) a specific grammar or a (labeled)
production rule may be indicated,g.=¢.

Using the transitive closure of the direct derivation the set of sentences in the
languagel can be defined:

L(G) = {w € T*|S = w}

This set of sentences may be further limited by specific forms of derivation. A
practical form, which will be encountered later on|éEmostderivation. In this case
each rule used in the derivation process rewrites the leftmost non-terminal in the cur-
rent sentential formi.e. x; € T*. This specific mode of derivation is indicated as
follows:

L(G)={weT"|S l:*> w}

Section 2.1A Grammar Primer 19

2.1.2.1 Bidirectional Grammars

Until now grammars are used in generating made,by starting with the start symbol

a specific sentence is gradually constructed. Using this process all sentences belonging
to the language can be enumerated, hence all grammars are RE grammars. Grammars
can also be used in accepting mode. In this mode a specific sentence is checked for
membership of the language. This is done by flipping the left- and right-hand sides
of the production rules. This derivation process then describes the acceptance of the
sentencev: w = S.

The mode of the grammar is indicated@y¢™ or G*<¢ for respectively generative
and accepting mode. When no mode is indicat@)l the generative mode is used.
A specific grammar may be usable in both modes and is then dailiectional
[:].

Notice that membership of a sentence can be resolved in either accepting or gener-
ating mode. In the latter case one enumerates all sentences until the sentence is found
(or not), although this process may be endless. The optimization of this search process
is the main target of parsing algorithms, which will be discussed in Chépter

2.1.2.2 Parse Trees

By keeping track of the derivation steps a parse tree of the sentence, like the one in
Figure2.1, can be build. The parse trees diare trees with the subsequent conditions

[I:
1. each interior node is labeled by a non-terminaMnp

2. each leaf is labeled by either a non-terminal, a terminal,drowever, if the
leaf is labeled\, then it must be the only child of its parent;

3. if an interior node is labeled, and its children are labeled

X17X27"'7Xk’

respectively, from the left, thed — X; X5 ... X} is a production inP. Note
that the only time one of th&’s can be) is if that is the label of the only child,
and(A — X) is a production of5.

2.1.2.3 The Delta Operation

Each sentential formw; can now be associated with a parse ttge The yield of
this tree is defined as the corresponding sentential faren, yield(t;) = w;. A
tree can also be described by a set of paittes, the result ofpath(t;). The in the
beginning of the chapter shown parse tree (see Figujecontains, for example, the

20

Chapter 2Feature Grammar Systems

Figure 2.2: (a) An AND/OR-graph and (b) a packed shared forest

pathS; - VP, -V - thinks;. The subscripts indicate the order of the nodes among its
siblings in the tre@

The path andyield operations provide a simple relationship between REG and
CF languagest]. For a languagd., let thedeltaof L, denoted by(L), be the
language of all yields of trees that have all their path&:in

5(L) = {yield(t)|path(t) C L}

The relationship mentioned above is that the CF languages are exactly the deltas
of the REG languages’(CF) = {§(L)|L € L(REG)}.

2.1.2.4 Parse Forests

Definition 2.1 allows multiple production rules to have the same symbol as their LHS.
The RHSs of these rules are considered alternatives of each other. Grammars contain-
ing alternatives are called non-deterministic. If several of these alternatives lead to a
valid parse tree for the input sentence, the grammar is also ambiguous. In these cases
the sentence is not described by one parse tree, but by séveralparse forest. Such
a forest can be represented by an AND/OR-grajop,]. Inthese graphs con-
junctions of nodes are connected by an arc, see Figjara. In this example the last
three words of the input sentence can be explained by two (not shown in the simple
example grammar for the English language) alternative production rules for the verb
phraseV P. In one parse treé¢lying is an adjective to the nouplanes, in the other
structurefiying is interpreted as a verb.

A packed shared forest§maq, see Figure.2.b, aims at structure sharing. Pars-
ing algorithms (to be discussed in more detail in Chag}elo easily allowsharingof
substructures by a well known dynamic programming concept: memoizaiioa§].
The noun node N and most of the terminal nodes are shared this way. This can be

2For brevity’s sake the order information in paths will be omitted most of the time.

Section 2.1A Grammar Primer 21

seen as sharing the bottom structures of the parse tReekingis targeted at shar-
ing the upper structures. packed nodeontainssub-nodesvhich have common leaf
nodes and are labeled with the same non-terminal symbol. In the example structure
the two alternatives for the verb phrase are packed together.

Packed shared forests are aimed at parse structures related to CF grammars. This
grammar type only allow$ocal ambiguity. The combination of ambiguity and the
long distance dependencies of CS grammars calls for methods to indicate the global
context and scope of a node. One method to achieve this is by naming the disjunctions
and to annotate nodes in the same context with this nameDse&)] :].

2.1.2.5 Disambiguation

In fact ambiguity may appear on many different levels in an applicatiomatnral
language processin@NLP) ambiguity can be found at these levels:

1. lexical ambiguity a word has more than one meaning;

2. syntactic or structural ambiguitya sentence has two or more parses as in Fig-
ure2.2

3. semantic ambiguitymay directly follow from syntactic ambiguity or from the
semantic context.

The NLP community has introduced a vast amount of models and algorithdis-to
ambiguatethese ambiguities. For an overview se&1p(.

On the syntactic level disambiguation may be done by the usgraifabilis-
tic parsing [)]- In this case each alternative is assigned a probability
[] and the parsing algorithm/{/69 chooses the most probable parse tree. An-
other method is to ask for human interaction. Tomita describes a system where
manual disambiguation is build into the parséniji8g. However, it is also pos-
sible to postpone disambiguation to a higher automatic or manual level. In which
case the parser will have to deliver the complete ambiguous structure. For example,
in [,] the authors describe disambiguation filters, based on term
rewriting, to prune a parse forest.

2.1.3 Regulated Rewriting

By regulating the applicability of a direct derivation step the set of valid sentences of

a language can be decreased, while the basic rules keep close to their CF equivalents.
In the monographi) P89 the authors describe 25 regulation mechanisrg, matrix,
programmed and random context grammars. In this section two mechanisms, which
are closely related to the one applied by feature grammar systems, are described in
detail.

22

Chapter 2Feature Grammar Systems

2.1.3.1 Conditional Grammars

While other mechanisms work by restricting or explicitly stating the order in which
productions may be applied the mechanisneafditional(C) grammars is based on
conditions on the contextual sentential forms.

Definition 2.3. In a conditional grammaé& = (N, T, P, S) the productions” are of
the form(w — z, Q) where

* () is aREGIlanguage over the alphabétf,
e N, T andS have their normal meaning.

The rule(w — z, Q) is applicable tar = zywzs yieldingy = x1zz9,i.€.2 =y,
iff x € Q.

O
Example 2.2.
Take for example the following C grammar:
G = ({S’ S/}a {a}a {plap27p3}a S)
with
p1 = (S — 8’8, (5)*ST)
p2= (8" — 8,87(8)")
p3 = (S — a,a*S™)
[] shows that this grammar describes a known non-CF language:
L(G) = {a*'|n> 0}
O

In both |]Jand [}itis shown thatZ(C, CF—\) = £(CS), i.e. C gram-
mars with CF rules but no erasing productions are equivalent to CS grammars, and
also that(C, CF = L(RE). In[] this is done by giving rules for transforming
a C grammar into a CS grammatr, and vice versa.

2.1.3.2 Tree-controlled Grammars

Another regulated rewriting mechanism uses the parse tree to restrict applications of
the derivation step. Those grammars, catieg-controlled(TC) grammars, are de-
fined as follows {)]:

Section 2.1A Grammar Primer 23

Definition 2.4. Atree-controlledyrammar is a construatr = (N, T, P, S, R) where
* G’ =(N,T, P,S)is aCF grammar and
e R C V*isregular

L(G) consists of all wordsv generated by the underlying gramm@f such that
there is a parse tree ab such that each word obtained by concatenating all symbols
at any level (except the last one) from left to right isin

O

All nodes of the parse tree with the same distance to the root of the tree are on the
same level of the derivation tree.

Example 2.3.

Consider the following grammar:

G=({S A4, B,C} {abc},{P,...,P},S R)

with

P2 = (A — aA)

P3 = (A — a)

P, = (B — bB)

Pﬁ = (C — CC)

P7 = (C — C)
and

R ={S,ABC,aAbBcC}.
Evidently,

L(G) = {a"b"c"|n > 1}.

Which is a known CS languag€&[177].

O

Also for this type of mildly CS languages it is shown inff89 that £L(TC, CF—
A) = L(CS9).

24

Chapter 2Feature Grammar Systems

2.1.4 Grammar Systems

Until now only one grammar at a time is considered. However, grammars can coop-
erate in so called grammar systems/| . The theory of these systems was
inspired by the will to modemulti-agent system#\ common technique in the field of
Artificial Intelligence (Al) is to structure those systems according to the blackboard
architecture [lil98]. In such a system various knowledge sources work together on
solving a problem. The current state of the solution resides on the blackboard. A
protocol of cooperation encodes the control over the knowledge sources.

In a grammar system the common sentential form is on the blackboard and the
component grammars are the knowledge sources. Since its introduction in 1990 var-
ious forms of cooperation and control have been studied. Two basic classes are dis-
tinguished:cooperating distributedCD) andparallel communicatingPC) grammar
systems. In this section only CD grammar systems will be introduced, as they form
the formal basis for feature grammar systems.

2.1.41 CD Grammar Systems
Definition 2.5. A CD grammar systeris a (n + 2)-tuple

I'=(T,G1,Gs,...,Gy, S),

where,

1. for1 < i < n, eachG; = (N;,T;, P;) is a (usual)CF grammay called a
componentwith

(a) the setN; of non-terminals
(b) the setT; ofterminals
(c) Vi=N;UT;,
(d) the setP; of CF rules and
(e) withoutaxiom,
2. T'isasubsetof);_, T;,
3. V=U,V;, and finally
4. SelJ,N,=N.
O

The components correspond to the knowledge sources solving the problem on
the blackboard, where every rule represents a piece of knowledge which results in a
possible change of the blackboard. The axiom, or start syntbogrresponds with

Section 2.1A Grammar Primer 25

the initial state of the problem on the blackboard. The alphdbebrresponds to
knowledge pieces which are accepted as solutions or parts of solutions.
A derivation step in a grammar system is now defined as follows:

Definition 2.6. LetI’ be aCD grammar systeras in Definition2.5. Letz,y € V*.
Thenz :»g y is applicable iff there are words, , z2, . . ., zx+1 such that:

1. 2 =21,y = k41,
2. Tj =G; Tj+1, i.e. Tj = $9Aj1’}',(l,’j+1 = a:;.wjx;’7 (AJ — ’LUj) € P“]. <5<
k.
Moreover, this leads to the following other derivation modes:

« x=5" iff x =f yfor somek’ <k,

« x=2" iff o =y for somek’ > k,

« x =y iffx=F yfor somek, and
« o=t iff v =% yandthereis no # y withy =% .
O

Any derivationz :>’5 y corresponds t& direct derivation steps in succession in
the component grammé#;. In a < k-derivation mode the component can perform at
mostk changes. The> k-mode requires the component to be competent enough to
perform at leask steps. A component may work on the problem as long as it wants
when the derivation is in-mode. Finally, theé-mode corresponds to the case where
the component should work on the problem as long as it can.

The language induced by a CD grammar systeisinow defined as follows:

Definition 2.7. Let

fefnt1,2,...,<1,<2,...,>1,>2,...}

and letI" be aCD grammar systemThen the languagé ;(I") generated byl" is
defined as the set of all wordse T for which there is a derivation

S = wy :>éi1 w1 jé’iz wWo ﬁéis Ce :>éi7- w, = 2.
U

Finally, the choice of the “terminal” set of a CD grammar system may be restricted.
A CD grammar system as specified in Definitid® accepts in

style(ard) iff T is an arbitrary subset ¢f]"_, 7,

26

Chapter 2Feature Grammar Systems

style(ex) iff T =, T;,
style(all) iff T =N, T,
style(one) iff T =T, for somei, 1 <i < n.

Now (CD,CF, f,A) denotes a class of CD grammar systems with at most
components working in th¢-mode of derivation and accepting in style where
CF denotes that CF component grammars are used).CF, f, A) indicates a CD
grammar system with an arbitrary number of components.

2.1.4.2 Internal Control

Just like with normal grammars regulation mechanisms can be added to restrict the
application of derivation steps. This may take the form of either external or internal
control. With external control a supervisor is added or a sequence of components
is fixed in advancee. g. by paths in a directed graph. Internal control makes use
of conditions on the current state of the problang. the sentential form. These
conditions can be used to either start or stop a component. As internal control is used
by feature grammar systems only this form of control is further investigated.

Definition 2.8. Adynamically controlledCD grammar systeri is a grammar system
as in Definition2.5with G; = (N, T;, P;, 7;, p;) where

* 7, is astart conditionand

* p; is astop conditiorfor component;.

Then the languagé (T") generated by is defined as the set of all wordse T*
for which there is a derivation

S=wo =g, wi=g, W2 =g, Wr=2

such that, forl < j <r,

i, (wj—1) = true and p;, (w;) = true

andforf e {t,1,2,...,<1,<2,...,>1,>2,...},thelanguagd. ;(I') generated
by I in the f-mode as the set of all wordse T* such that there is a derivation
S = wo ééil wy :Sélé wy - :xéir Wy = 2

such that, forl < j <r, m;, (w;_1) = true.

Section 2.2Feature Grammar Systems 27

Notice that when the derivation is notiamode the stop condition; (w;) = true
is replaced by the stop condition which is naturally given by fhaode.

Some special types of conditions have been studied for CD grammar systems.
Conditiono may be of these types:

type(a) iff o(w) = trueforallw € V*,

type(rc) iff there are two subset® and@ of V ando(w) = true iff w contains all
letters of R andw contains no letter of),

type(K) iff there are two words: andz’ overV ando(w) = true iff « is a subword
of w andz’ is not a subword ofv,

type(K') iff there are two finite subset® and @ of V* ando(w) = true iff all
words of R are subwords ofv and no word of?) is a subword ofv,

type(C) iff there is a regular sek overV ando(w) = true iff w € R.

Notice thattype(C') corresponds with the conditions known from C grammars.

In the notation for grammar systems tfies now replaced by X,Y’), whereX
indicates the start condition type andthe same for the stop condition, when the
grammar uses-mode. In the other derivation modé€X, f) is used, for example
(CDgCF,(re,t), arb).

Many more variants of CD grammar systems have been studied in the literature, in-
cluding the use of bidirectional components{99, and the monograph] i
discusses a lot of them. Some variants are combined to form the basis for the con-
cept of feature grammar systems, and will be described during the formal definition
of feature grammar systems in the next section.

2.2 Feature Grammar Systems

Lets, while gradually working toward a formal definition of feature grammar systems
using the building blocks from the previous section, return to the annotation example
from Chapterl. As stated in the introduction of this chapter the annotation items can
be seen as words in a sentence, see FigLieA possible parse tree for this sentence
is also shown in the same figure.

This parse tree is the result of a derivation process driven by the this grammar:

3In NLP the term feature grammars is sometimes used to indicate a type of grammar formaligms,
HPSG [] and LFG [], where next to a-structure,i. e. a parse tree, also gstructure is con-
structed. Thef-structure contains (semantic) features which are propagated up in the tree using unification
rules. Unification leads in the end to one combirfestructure for the root of the-structure. Unfortunately
this type of grammars was only encountered by the author when the concept of feature grammars, where the
term feature refers to multimedia features, was already introduced to the multimedia and database research
communities.

28 Chapter 2Feature Grammar Systems

Example 2.4.

Image — Location Color Class

Location — url

Color — Number Prevalent Saturation
Number — int
Prevalent — flt

Saturation — flt

Class — Graphic
Class — Photo Skin Faces
Graphic — bit
Photo — bit
Skin — bitmap

Faces — int

url — hitp: // ...
int — 1

int — 29053
flit— 0.8
flt—0.19
bit — true

bitmap — 00 ...

O

In the upcoming sections this CF grammar will be extended until the full fledged
power of a feature grammar system is reached.

2.2.1 Detectors

The dependency description evolves around the annotation extraction algorithms. Be-
fore introducing how feature grammar systems capture both output/input and contex-
tual dependencies, annotation extraction algorithms are formally introduced into the
grammar.

In a feature grammar these algorithms are bound to specific non-terminals, called
(feature) detectors. In the example grammar the set of detectprsd&r, Graphic,

Section 2.2Feature Grammar Systems 29

Parse tree:

Sentence: http://... 29053 0.03 0.19 true 00... 1

Figure 2.3: Annotation sentence

Photo, Skin, Faces }. Each of these detector algorithms can be seen as a function,
which transforms its input sentence into an output sentence Fines detector, for
example, transforms the sentenge. . . into the sentence. The output sentence of
each of these detectors is conveniently described by a set of CF grammar productions,
i. e. each detector corresponds to a component in a CD grammar system.

The following definition describes the addition of feature detectors to CD grammar
systems.

Definition 2.9. A basic feature grammar systésm (n + 6)-tuple
I'= (D7N7T7PN7G17G27'"JGn7GS7S)7
where,
1. V = (DUNUT) is the shared alphabet consisting of

(a) the setD of detectorscontaining at leasb’s,
(b) the setV of non-terminalsand
(c) the setl of terminals

2. Py containsproductionsof the form(N — V™),
3. foreachd; € D,i.e.n =|D|, there is aG; = (V, P, = P4, U Py, f;) with

(a) the setP,, consisting ofCF rulesof the form(d; — V1),

30

Chapter 2Feature Grammar Systems

(b) a partial detectorfunctionf; : T* — (DUT)*, and
() A ¢ L(Gy),

4. the start componertts = (V, Ps = {(Ss — D U N)} U Py, fs) where
(@) fsis afunction producing an initial sentenegs € (DU T) T,
5. and finallyS = Sg.
O

All components in a feature grammar system always use the same alphalnet
more practical terms: there is only one symbol table as all feature grammar system
components share the same set of symbols. This variant of CD grammar systems
is denoted agCD’._CF, f), where the acceptation style is deleted as it is always
style(ex). This makes it possible to share semantically meaningful non-terminals.
These non-terminals, which are not detectors, are used to group terminals. These
semantic structures can be shared by different detectors and are put in the shared set
of production rulesPy.

Each grammar component corresponds with one detector symbol. The detector
function restricts the language accepted by a feature grammar systethe follow-
ing formal way:

Definition 2.10. LetT" be a feature grammar system as specified in Definifiéh
Then the languagé (T') generated by is defined as the set of all wordse T+ for
which there is a derivation

* *
S =1 widsw, =6, wi fi(wdiw,)w, 2w

Wheref; is thepartial mapping functiomssociated witliletectord;.
O

The moment a detectat; is encountered the remainder of the derivation should
replace this symbol by the output of the associated detector funftiand;w,). In
other wordsf; prescribes the sentence generated by this part of the grammar, and
forms the stop condition of the component. The grammar compdrgntimics the
unknown internal mapping of; and thus validates that the output of this detector
conforms to the grammér This generated sentence functions as a stop condition of
type(C), i. e. a feature grammar system i@D’._CF, (a,C)) grammar system.

Notice that the empty sentenc¥) (s not allowed as output of a detector function,
i.e. A ¢ L(G;). An empty sentence thus indicates the partiality of the detector
function: the mapping is unknown for the input sentence.

4 Notice that the grammar components are CF while the detector function itself may be more powerful,
i.e. produce a sentence in a CS language tiké™c". The grammar component will only be able to
validate the CF envelopeg. a*b*c*.

Section 2.2Feature Grammar Systems 31

Definition 2.9 also introduces a dummy start symlsy. This special symbol is
introduced to make it possible to have a “real” start symbol which is either a non-
terminal or a detector. In the case of a detector@ecomponent will stop directly
after the application of théSs — d;) rule, as it does not contain any rules &r and
control will be transfered t@-;. In the case of a non-termin&ly helps to parse the
initial sentence produced bfs. How fs produces this initial sentence is an imple-
mentation issue and will be discussed in Chagter

The feature grammar system for Examglé is constructed from these building
blocks (the dots.(.) indicates some omitted production rules from the example):

Example 2.5.

I'=(
D = {Sg, Color, Graphic, Photo, Skin, Faces},
N = {Image, Location, Number, Prevalent, Saturation, Class,
url,int, flt, bit, bitmap},
T ={http: //...,1,29053,0.03,0.19, true, 00 ...},
Py = {(Image — Location Color Class), ..., (bitmap — 00 ...)},
Geotor = (V, Pooior = {(Color — Number Prevalent Saturation)}
U P, fcolor)s
Garaphic = (V, Paraphic = {(Graphic — bit)} U Py, fGraphic)s
G Photo = (V, Pphoto = {(Photo — bit)} U P, fPhoto);
= (V, Psgin = {(Skin — bitmap)} U Px, fskin),
GFaces = (V, Praces = {(Faces — int)} U Py, fraces),
Gs = (V,Ps = {(Ss — Image)} U Py, fs),
S =08g
)

GSkin =

O

The derivation process of the example sentence using this feature grammar looks
as follows:

Example 2.6.
wy; = Sg
=Gy
we = fs(w1) Color Photo Skin Faces
= http: //... Color Photo Skin Faces

"
= Gcolor

Chapter 2Feature Grammar Systems

ws =hitp: // ... footor(w2) Photo Skin Faces
=http: //... 29053 0.03 0.19 Photo Skin Faces
:>5Ph,otn

wa =hitp: //... 29053 0.03 0.19 fphoto(ws) Skin Faces
=http: //... 29053 0.03 0.19 true Skin Faces
:>85kin,

ws = hitp: // ... 29053 0.03 0.19 true fsiin(ws) Faces
=http: //... 29058 0.03 0.19 true 00 ... Faces
= Craces

we = hitp: //... 29058 0.03 0.19 true 00 ... fraces(ws)
=hitp: //... 29053 0.03 0.19 true 00 ... 1

O

The Sg start symbol allows for the non-terminainage to be the “real” start
symbol. The initial sentendetp : // ... is produced bys and triggers the mappings
of the other detectors.

2.2.2 Atoms

Enumerating the complete terminal domain as illustrated in the example grammar is
far from practical. But as this grammar is CF, and CF grammars are closed under
substitution, a CF languade, can be chosen to further describe each symbol>: .

Example 2.7.

url — {* http/I([/T¥)([0-9%)2/2(4)$)
int — {* -?[0-9]+$}
flt — {° -2[0-9]+\.[0-9]+([Ee][-+]?[0-9]+)?$}
bit — {" (0|1|(true)|(false))$}
bitmap — {" (0]1)*$}

O

In this case fowr! the regular expression (rememl&HREG) C L£(CF)) corresponds
to L,.;, and so on. The non-terminals which are the root of such a substitution lan-
guage are calledtoms(in parsing literature they are sometimes calpee-terminals
[]). The yield of a specific (partial) parse tree rooted by an atom is called an
instantiationof the atomj. e. 29053 is an instantiation of the atom domaint or in
short:int(29053. The complete set of terminals described by the regular expressions
are called théexiconof the grammar.

In practice this phase is calldeical analysiq], in which the stream of
characters or bytes is translated into pre-terminals. This abstraction process helps to

Section 2.2Feature Grammar Systems 33

get the actual grammar rules closer teemantic grammajf]. In a semantic
grammar the rules and symbols are designed to correspond directly to entities and
relations from the domain being discussed. This makes the results associated with the
grammar,i. e. the parse trees, better suited for (human) interaction in other system
components of the DMW application.

2.2.3 Dependencies

Do feature grammar systems as defined until now capture the dependency types as
identified in Chaptefl? Contextual dependencies, likdP&oto which containsSkin

colors, may also contain one or mafces, are clearly described in grammars. But
how about output/input dependencies?

In the first chapter it was stated that due to the explicit handling of context de-
pendencies detectors stay generic. However, this property is limited again by the
output/input dependency. The definition of the output/input dependency of a detector
should be powerful enough to be precise, without being to restrictive on the context.
This context knowledge influences both the input and output specification of a detector
component, which will be investigated in the next two sections.

2.2.3.1 Detector Input

In Definitions2.9 and2.10detector functions depend on the whole sentential form as
input, but in reality the mapping function only uses a part of this information. For
example:frq..s only needs the bitmap of skin pixels to find the number of faces, all
the other information, like it is a photo, is irrelevant for its mapping. This form of
mild context-sensitivity can be captured by adding a regulated rewriting mechanism
as a start condition to a detector component.

In Section2.1.3C grammars were introduced. Using these conditions on the sen-
tential form a detector component can only become active when its input is available.
Take once more thE'aces detector: it needs the skiritmap derived from the image.

The REG languag@pqces = (.* - 00...-.*), using the in Sectio.1.1.1defined
regular expression syntax, indicates that the sentential form should always contain a
specific bitmap. However, as this condition works directly on the sentential form it
does not give much control over the semantic contex. the non-terminal level,
where the desired input data resides in. TC grammars could give more grip on this
context as they operate on the parse tree. But both mechanisms of the C and TC gram-
mars restrict the context of the desired input in a horizontal fashienC grammars

limit the left and right contexts in the sentential form, while TC grammars limit the
level sentences of the parse tree. To be able to create these conditions the developer
of a detector needs to have complete knowledge about the context of the detector in a
specific feature grammar system, which is just what the system should circumvent.

An easier and more context-free way is to look at the parse tree verticalluse
the paths in the parse tree. This new regulated rewriting mechanisnieading to

34

Chapter 2Feature Grammar Systems

path-controlled PC) grammars, can be defined as follows:

Definition 2.11. In a path-controlled grammat = (N, T, P, S) the productionsP
are of the form(w — z, R) whereR is aREGIlanguage over the alphab&t. N, T
and S have their normal meaning. The rul@ — z, R) is applicable tox = z;wz,
yieldingy = x;zx,, i.e. x = y, iff the parse treg¢ associated ta: satisfiesR C
path(t).

O

Notice thatPC' grammars are at least as powerful as C gramniagsa C grammar
can always be translated intaPaC' grammar.

A special variant of this type of grammars dedt path-controlled({ PC) gram-
mars. In their case only paths referring to the left context of,, are allowed.

Definition 2.12. In aleft path-controlled gramma¥ = (N, T, P, S) the productions
P are of the form(w — z, R) whereR is aREGlanguage over the alphab&. N, T
and S have their normal meaning. The rul@ — z, R) is applicable tox = z;wz,
yieldingy = z;zx,, i.e. x = y, iff the parse tree associated ta satisfiesd(R C
path(t)) C ;.

O

Thedeltaoperation §, see SectioR.1.2.3 creates a new sentence from the selec-
tion of paths fromt which is created by the intersection betweanh (¢) andR;. This
new sentence may only contain terminals from

Adding this specific version of the path control mechanism to Defini@gives
the formal definition of d PC feature grammar system:

Definition 2.13. A left path-controlled feature grammar systena feature grammar
systenT" as in Definition2.9with G, = (V, P;, R;, f;), whereR; is aREGlanguage

overV. The start ®;) and stop ;) conditions of the compone&t; restrict a deriva-

tion in the following way:

wj = widsw, =g, wi fi(§(R; N path(ty)))w, = wji1

Such thaty(R; C path(t;)) € w;. Wheret; is the parse tree associated with the
sentential formw,, i. e. yield(t;) = w;.
O

The new sentence created by thedta operation contains exactly the information the
detectorf; needs to perform its mapping,e. the context knowledge is optimally
limited.

Using the atoms as terminal level, and adding this additional rewriting mechanism
the example feature grammar looks formally as follows:

Section 2.2Feature Grammar Systems

Example 2.8.

P =(
D = {Sg, Color, Graphic, Photo, Skin, Faces},
N = {Image, Location, Number, Prevalent, Saturation,Class},
T = {url,int, flt, bit, bitmap},
Py = {(Image — Location Color Class),...,
(Class — Photo Skin Faces)},
Gcotor = (V, Poolor = {(Color — Number Prevalent Saturation)}
U Py, (.* - Location - url), fcotor)s
Geraphic = (V, Paraphic = {(Graphic — bit)} U Py, (.* - Number - int)+
(.* - Prevalent - flt) + (.* - Saturation - flt), faraphic)s
G photo = (V, Pppoto = {(Photo — bit)} U Py, (.* - Color - .*), fprhoto)s
Gskin = (V, Pskin = {(Skin — bitmap)} U Py, (.* - Location - url), fskin),
Graces = (Vi Praces = {(Faces — int)} U Py, (.* - bitmap), fraces),
Gs = (V, Ps = {(Ss — Image)} U Py, 0, fs),
S =Sg
)
O

The derivation process of the example sentence using Bisfeature grammar
looks as follows (see the parse tree in Figlréfor the binding of the regular path
expressions):

Example 2.9.

w1 = Ss
=G
wa = fs(A) Color Photo Skin Faces
= url(http:/l...) Color Photo Skin Faces
= Gootor
ws = url(http/l...) fooior (url(http:/l...)) Photo Skin Faces
= url(http://...) int(29053 f1£(0.03) f1t(0.19) Photo Skin Faces
:>*GPh,oto
wa = url(http:/l. ..) int(29053 f1t(0.03) fit(0.19)
fPhoto(1nt(29053 f1t(0.03) f1£(0.19) Skin Faces
= url(http://...) int(29053 f1¢(0.03) f1t(0.19) bit(true) Skin Faces

.
= Gskin

36

Chapter 2Feature Grammar Systems

Figure 2.4: A parse tree constructed by feature grammar system

ws = url(http://...) int(29053 fit(0.03) f1¢(0.19) bit(true)
fskin(uri(http:/l...)) Faces
= url(http://...) int(29053 f1t(0.03) fIt(0.19) bit(true) bitmap(00...) Faces

= Graces
we = url(http://...) int(29053 f1¢(0.03) f1t(0.19) bit(true) bitmap(00...)
SfFaces(bitmap(00...))
= url(http://...) int(29053 f1t(0.03) f1t(0.19) bit(true) bitmap(00...) int(1)

O

The derivation form in this example is unspecified: control may be transfered to
any detector for which the input sentence is valid. For example, after derivation of
control can be transfered to boffv,;.- andGsiin. The example derivation favors
the leftmost symbolj. e. resembles deftmostderivation (see Sectiod.1.2. The
leftmost derivation of detector symbols is always applicablel/iR@ grammar, as this
rewrite mechanism enforces that the input sentence of the leftmost symbol is always
available (when the sentence is valid). However, notice that normal non-terminals take
precedence over detectoesg. the Class non-terminal is resolved before control is
transfered to th€ olor detector. So the leftmost derivation takes place on the control
level of the grammar system.

Using thel PC rewriting mechanism for a feature grammar system has a practi-
cal advantage: it implementsdeadlockprevention mechanism. Deadlock situations
occur when the regular expressions of two or more detectors depend on each others,

Section 2.2Feature Grammar Systems 37

not yet available, parse trees. The start conditions of these detectors can thus never
be satisfied. A common deadlock prevention stratedipésar ordering[]. IPC
implements this strategy in a straightforward fashion: detectors only depend on the
existence of preceding terminals, and can thus naturally be ordered from left to right.

The addition of left path-control to a feature grammar system turns it from a
(CD.L CF,(a,C))intoa(CD. CF,(IPC,C)) system.

2.2.3.2 Detector Output

Just like the detector function in Definitidh9 depends on a sentential form for its
input its result should also exactly match a sentential fdare, the stop condition

of the component. In the example grammar this works fine as there are no nested
detectors like:

Example 2.10.

Color — Number isBitmap Prevalent Saturation
with
GisBitmap = (V, Pispitmap = {(isBitmap — bit)} U Py, (.* - Number - ."), fisBitmap)
O

This newisBitmap detector takes thé&/umber of colors and maps it tdit(true)
when there are exactly two colors, otherwise it returingfalse). Integrating this call
into the derivation of Exampl2.9:

Example 2.11.

wsq = url(http/l...) footor (url(http:/l...)) Photo Skin Faces
= url(http://...) int(29053 isBitmap f1t(0.03) f1t(0.19) Photo Skin Faces
:>EisBitmap
wsp = url(http:/l...) int(29053 fispitmap(int(29053) fit(0.03) f1t(0.19) Photo Skin
Faces

= url(http://...) int(29053 bit(false) f1t(0.03) fIt(0.19 Photo Skin Faces
O

This example shows that thi&olor detector now needs to know the exact position of
the isBitmap detector in its output sentence. Definitiard captures this by stating

that f; is a mapping froml’* into (D U T)*. How to lift the burden of this con-

text knowledge from the detector function? Optimally the range domain becomes a
member of"". As stated in Sectiofi.2.1the output sentence, can be seen as the
only member of language described byR& G language. By enlarging € T to

38

Chapter 2Feature Grammar Systems

a language containing all possible nestings of detectors, the detector implementation
can become less context-sensitive.

A" vap - AT LAY cag - AT LA - ay, - ATY)

The functionfp takes the output of; and turns it into a REG language consisting of
all words interleaved with arbitrary sequences of detectors, represented by the REG
languageA.

Definition 2.14. Let aconditional feature grammar systdmbe a feature grammar
system as in DefinitioB.9 where f; is a mapping fromv € T into z € T*. The
stop conditionf; of the componen®; restricts the derivation in the following way:

wj = wydiw, =G, WW, = Wjt1
where

z € fp(fi(w;))

The functionfp : Tt — L(REG) maps the output sentence,, of f; into a REG
language where each terminal, a word inz,,, is enveloped by an arbitrary sequence
of detectors.

O

Notice that this adapted stop condition is also used for the output of the special
“dummy” detectorfs.

Using this latest addition to the concept of feature grammar systems the (extended)
example derivation can be (partially) rewritten:

Example 2.12.

we = url(http:/l...) Color Photo Skin Faces
:>*GColo1'
wsq = url(http://...) int(29053 isBitmap fit(0.03) fit(0.19) Photo Skin Faces
:>*GisBit7nu.p

wsp = url(http://...) int(29053 bit(false) fit(0.03) f1¢(0.19) Photo Skin Faces

where

Section 2.2Feature Grammar Systems 39

wia € fi(footor(w2)) = (A™ - int(29053 - A* - f1¢(0.03) - A™ - f1£(0.19) - A”)
wsp € fD (fisBit'map(wiia)) = (A* . bZt(false) . A*)

and

A = (Ss + Color + Graphic + Photo + Skin + Faces + isBitmap)

O

The derivation of the symbdl'olor from ws into ws, is a member of the language
generated by p (feoror (w2) and thus satisfies the stop condition of the,;. com-

ponent. So the implementation of th&lor detector function is now just as context-
sensitive as needed, as it contains a precise specification of the input and produces a
context-free sentence.

2.2.4 Ambiguous Feature Grammar Systems

Just like any other grammar feature grammar components may be ambiguous. In
fact support for ambiguity is identified in Sectidr2.1as a main requirement of the
target application domain &coi. Take for example the classification of thewage
into either aPhoto or aGraphic. It is possible that both classes are valia. the
fPhoto @Nd farapnic detectors both return a valid output. This results in two parse
trees combined in one forest as discussed in Seétib2.4

In such a forest the possibility exists that detector input can be bound to nodes
from different parse trees,e. the binding is ambiguous. To illustrate this the example
grammar is extended with an object recognieeg.to find a vehicle.

Example 2.13.

Image — Location Color Class Object
Object — Vehicle

with
Gvenicte = (V, Pvenicie = {(Vehicle — bit)} U Py,
(." - Location - url +.* - Class - .*), fvenicie)
O

As shown in this extension tHéehicle detector constructs an input sentence contain-

ing the location of the image and the detected class. It uses the class to select between
different image segmentation algorithms for photos and graphics. When the class de-
tectors are confident enoughe. only one is valid, the input sentence of thehicle

40

Chapter 2Feature Grammar Systems

= =]
O fal SS
1.00
2]
Image
~_

X] o] =5
Location Color Class Object
1.00
Ny =
]]] ™ [a] [zm] [za] S
Number Prevalent Saturatio: Graphic Photo Skin Faces ¢ Vehicl
0.90 0.15 095 0.75 A

e
| Vehicle
0.80. “G0.54,

[z [z [z [z =) [zm) [m) [zm) = [zm)
urlhttp://..), int(53) f110.30) f110.01) bit(true) bit(true) bitmap(00...), int(0) bit(true) bit(true)

Figure 2.5: A parse forest containing quasi-nodes plus context and confidence anno-
tations

| Vehicle

detector can only be bound to one class. However, in the case of ambiguity two bind-
ings are possible. ThEehicle detector cannot prefer one class over the other. Instead
it needs to be executed twice: once for each class.

To reflect this in the parse forest the detector node is split in two levels: (1) a
top quasi-node the quasi-root and (2) one or more bottom quasi-nodes, dgo@si-
foots Quasi-nodes belong to quasi-trees which are inspired by D-ThéwryB3].

[] states: ‘p; [the quasi-root] andp, [the quasi-foot] can both refer to the
same node, to avoid confusion, henceforth we will call thegumsi-nodes’ In the

feature grammar system case the quasi-root represents the detector symbol within its
rule context. Each quasi-foot represents one possible execution of the detector. By
gluing together the quasi-root with one of the quasi-foots one specific instantiation of
the detector call is chosen. An example parse forest containing quasi-nodes, indicated
with dashed outlines, for théehicle detector is shown in Figurg 5. The figure also

shows that when there is only one bottom node the quasi-nodes can be glued together
into a normal tree node.

The parse forest in this figure contains additional information to cope with the long
distance dependencies of a feature grammar system: nodes are explicitly labeled with
a context. As Sectiofi.1.2.4already said, CF grammars have only local ambiguity
which makes it easy to locate the separate parse trees. However, due to the more ad-
vanced dependencies of detector nodes additional information is needed. In the NLP
community named disjunctions (NDs) are uset:p7]. However, NDs expect each
disjunction to be of the same arity. Which means that when the third disjunction of a
controllerND is valid the third disjunction in theontrolleddisjunction should also be
valid. In the simple example of Figui5this is true: theClass disjunction controls
the Vehicle disjunction, and within their parse trees the indices of the disjunctions

Section 2.2Feature Grammar Systems 41

Image Image

a) Binding the b) Executing the c) Validating the
input sentence detector output sentence

Figure 2.6: Execution of th€olor detector

match. However, the input sentence of a detector may be constructed from terminal
nodes obtained from several disjunction®. there will not be one controlling dis-
junction. So instead of naming disjunctions each node is provided with a context. This
context consists of a list of binary flags, where each flag represents a parse tree and
indicates if the node belongs to ttie) or not false. In the example forest there are

two trees. Most nodes belong to both trees, except for the difféfknts alternatives

and their dependenfehicle quasi-foots. Limiting the binding of detector parameters

to the scope of the current quasi-root is now easily implemented by a binary operation
(see Sectiord.3.3.9.

Next to contexts the parse forest in Fig@r& also contains detector confidences.
Although bothClass detectors are valid, they are not both as confident. hephic
detector is90% sure that the image is a graphic, while tRéoto detector has only
a confidence of5%. Providing this information may help the user or librarian in
disambiguating the parse forest. The confidence values are in this case seen as node
annotations, but may also be just modeled as ordinary leaf nodes.

Notice that the parse forest shown in Figdr&describes several sentences, which
may partially overlap. This is another reason why a packed shared parse forest as
introduced in Sectiof.1.2.4is not usable in the case of ambiguous feature grammar
systems. A packed shared forest describes always one sentence.

2.2.5 Mildly Context-sensitive Feature Grammar Systems

Combining the two forms of regulated rewriting as defined in Definitidris3 and
2.14 with Definition 2.9 the definition ofmildly context-sensitive feature grammar
systemss obtained. This form of feature grammar systems is used throughout the rest
of this thesis.

Figure 2.6 illustrates the working of th&'olor detector. Theurl instantiation
belongs to its input sentence, as specifiedRay,;,, = (.* - Location - url). The
foolor detector uses this information to load the image, analyze it, and produce the

42

Chapter 2Feature Grammar Systems

output sentence: an integer and two floats. This sentence is parsed and matches the
rules in the feature grammar system, so the stop condition is satisfied. The detector has
only limited knowledge of the context it operates in: its input and its output. The CF
grammar rules within the components can be used to place these detectors in different
contexts. However, the start and stop conditions will enforce that these contexts match
the (limited) knowledge of the detector.

2.3 Discussion

In this chapter the formal theory of feature grammar systems has been described. To
achieve mild context-sensitivity this theory is based on a combination of CD grammar
systems and a regulated rewriting mechanism. The major extensions to these existing
theories include the addition of detector functions to produce (part of) the sentence
just-in-time and theé>C andi PC regulation mechanisms. A detector function directly
determines, when the start condition is satisfied, the stop condition of the grammar
component. This enables a very tight integration between user-defined functions and
the grammar component, while staying formally sound. TR€' mechanism allows
mildly context-sensitive specification of the start condition, while also implementing

a deadlock prevention strategy.

Two kinds of dependencies were identified in Chagters key components of
a declarative dependency description language. A feature grammar system captures
them both. The RHSs of the CF production rules within each grammar component de-
scribe the context dependencies. While the regular expressions of the start conditions
of the same components capture output/input dependencies.

Using a feature grammar system a parse tree/forest can be build which represents
all (ambiguous) contextual knowledge about the extracted annotations, and may thus
form a good basis for incremental maintenance.

Next to Acoi there are some systems which are also focus at controlling the flow
of annotation extraction, or could be used for that purpose. MOCBS\P7] is
based on the extension of an object oriented schema with semantic objects. The novel
aspect of a semantic object is its processing graph. In a processing graph extraction
algorithms are linked together. The developer defines a split point in the processing
graph. The first part is executed in a data-driven way when a new object instance is
inserted into the database. The last part is executed in a demand-driven fashion during
query processing. Additionally, the object can be extended with inference rules, which
can be checked during query processing. There is no specific support in MOODS for
context dependencies, unless they are hard-coded as an output/input dependency.

In the Mirror system :] extraction algorithms are encapsulated in
daemon (CORBA) objects. The daemons issuget workquery to the database,
which functions as a data pool, extract the meta-diata (@nnotations) for the re-
turned objects and then issudigish_workquery to commit their results. All knowl-
edge about dependencies is embedded ig¢heworkqueries|. e. there is no global

Section 2.3Discussion 43

declarative specification. Context dependencies thus need to be tightly hoeind,
hardcoded, and may become distributed over several daemon objects.

Linda tuple spacesiel99 can form an alternative for the daemon architecture.
The daemon requests its input data once from the tuple space, instead of polling for it
from time to time, blocks and becomes active when the tuple space notifies the avail-
ability of the data. However, although this offers a different implementation model it
does not resolve the need for hardcoding the context dependencies.

Dataflow languages are also focused on output/input dependencies. For exam-
ple, Microsoft DirectShow!}] offers a way to tie algorithms together using filter
graphs. This builds a pipeline of algorithms through which multimedia streams flow.
The target of such systems is to produce mainly one final resudt, a video con-
verted from color to black and white and from the MPEG format to AVI format. In a
feature grammar system the result is a parse forest which contains all the annotation
information, which may be considered intermediate data in the pipeline.

The ToolBus system{K94, ,] provides a coordination architecture for
heterogeneous, distributed software systems. The coordination mechamisthe
toolbus, is steered by T scripts, which are based on process al@gtia)[A T script
contains one or more processes, while each process may control one or more external
tools. Tools communicaté,e. send messages or share data, with each other using the
bus. To overcome different data formats the tools are encapsulated by adapters which
transform the native formatted data into the general form used by the bu&Terms
[]. The ToolBus thus addresses separation of coordination (T scripts),
representation (ATerms) and computation (the tools). This closely resembles feature
grammar systems: where grammar components provide coordination, the parse tree
provides representation and detectors computation. The main difference being the,
in the case of feature grammar systems, by default constructed parse tree. This tree
contains (semantic) contextual knowledge both for data and processes. This knowl-
edge is, as shown in the introductory chapter, indispensable for the application domain
considered in this thesis. However, ATerms are generic data types and can be used to
describe trees or forestsif97]. But in the implementation the dependencies would
become implicit in a, more generic, T script and possibly even hidden inside ATerm
messages. To enable reasoning about these dependenget allow the FDS to
steer incremental maintenance, this knowledge would have to made explicit again. So
once more a declarative dependency descriptian,in the form of a feature gram-
mar system, would be needed. However, this makes the ToolBus a possible, feature
grammar driven, candidate to implement parts ofAbei systemg. g.the FDE.

Chapter 3

Feature Grammar Language

There is nothing that can be said by mathematical symbols and relations
which cannot also be said by words. The converse, however, is false.
Much that can be and is said by words cannot successfully be put into
equations, because it is nonsense.

C. Truesdell

The mathematical notation introduced and used in the previous chapter is, although
precise, not very convenient in everyday life. In this chapter a more practical notation
is introduced: the feature grammar language. This language describes how a feature
grammar is specified, e. it is ameta-language

In AppendixA the complete specification of the language is given usindethe
tended Backus-Naur For(EBNF). The ancestor of EBNBackus-Naur ForniBNF),
is a CF grammar notation mostly used for specifying programming languiages,
was first used to define ALGOL 60. In the upcoming sections parts of the language are
introduced by language snippets related to the example feature grammar. Appendix
contains the collection of feature grammars, which has been build for the various case
studies (see Chapté}.

The next section introduces the core of the language which directly maps on the
formalization of feature grammar systems. Subsequently additions to this language
will be described whose main purpose is to provide shortcuts for developers or to
steer the FDE or FDS in their analysis of the grammar.

3.1 The Basic Feature Grammar Language

The core of the feature grammar system is formed by the shared alghabdtD U

N UT), the production rules as distributed over the various grammar components, the
start and stop conditions of these components, and the start symbol. In the subsequent
subsections the notation for these core components is shown.

46

Chapter 3Feature Grammar Language

A w N R

© ® ~N o «

10

11

12

13

14

15

3.1.1 Production Rules

Production rules form the heart of every grammar. As Definifidnand the section

on ambiguous grammars showed there are alternative interpretations possible for one
non-terminal. The extended notation (in this specific form also cadigdlar right

part grammargRRPG) | 1) makes it possible to combine these alternatives syn-
tactically into one rule.

Image : Location (Color Class)?;
Color : RGB* Number Prevalent Saturation;
Class : Graphic | Photo Skin Faces;
RGB : Red Green Blug;

Location »ourl;

Number oint;

Prevalent : flt;

Saturation : flt;

Graphic . bit;

Photo . bit;

Skin . bitmap;

Faces o int;

Red oint;

Green o int;

Blue Lint;

The RGB non-terminal is introduced into the example to make it rich enough to
illustrate some extended features.

In this notation a production rule’s LHS and RHS are separated by a colon and the
rule is terminated with a semicolon. Alternative representations for the same LHS are
grouped together and then separated by vertical bésse theClass rule). Symbol
sequencesd, e. optional, star and positive closure, are indicated by respectively
and + occurrence indicators (see tlierage and Color rules). Furthermore, sym-
bols can be combined into groups using brackets. These groups can have their own
occurrence indicators and embedded alternatives (see once mdradhe rule).

All these extended constructs for production rules can be rewritten into the basic
formal version of the production rules. For symbol sequences there are two methods.
The first method of rewriting uses tlecursiveinterpretation. In this interpretation
the RG B* sequence is rewritten into the following formal rules:

Color — Number Prevalent Saturation
Color — a Number Prevalent Saturation
a — RGB
a — RGB «
RGB — Red Green Blue

Section 3.1The Basic Feature Grammar Language 47

Figure 3.1: (a) A right-recursive and (b) an iterative interpretation of a list construct

This interpretation has as advantage that it is easy to explain because the transforma-
tion to a basic CF grammar is simple. Disadvantages are the introduction of anony-
mous variables (in this cagg and the lopsided parse tree (see Fidgtifea), which in
generally does not correspond to ones intuition.

The iterative interpretation of symbol sequences is more intuitive. It sees the
RGB* sequence as an abbreviation of:

Color — Number Prevalent Saturation

Color — RGB Number Prevalent Saturation

Color — RGB RGB Number Prevalent Saturation
Color — RGB RGB RGB Number Prevalent Saturation

Color — ...

RGB — Red Green Blue

The advantage of this interpretation is a beautiful parse tree (see Bigubg but has
as disadvantages that it involves an infinite number of production rules and that the
nodes in the parse tree have a varying fan-out.

Next to rewrites the occurrence indicators may also directly be interpreted by the
parser implementation (se&J]99), i.e. using IF-statements for optional symbols,
WHILE-statements for star closure and REPEAT-statements for positive closure. The
resulting parse tree will adhere to the iterative interpretation. However, this imple-
ments these indicators in a greedy fashion and thus favors greedy alternatives. Notice

Chapter 3Feature Grammar Language

| Atom name]| Substitution language (as a regular expression) |

bit AO|1|(true)|(false))$

chr n$

int A-2[0-9]+$

flt A-2[0-9]+\.[0-9]+([Ee][-+]?[0-9]+)?$
str NS

Table 3.1: Default atom types

that is the case with most implementations of regular expressions]. Only some
languages support special constructs to make expressions non-gragthye regular
expression syntax used Bgl 8 andPerl 5supports*? for a non-greedy star-closure.
A parser using this implementation strategy may only find one paif$¢c«(d))) for
the input sentencé: d) using this grammar:

e?;
d?;

eoe
oo o

A second parse tree, which postpones the consumptiahioé. a(b(c) e(d)), will
notbe found by this parser implementation.

Which of these alternative interpretations of symbol sequences is chosen is a FDE
implementation decision. In Chaptéthe actual implementation of the FDE will be
discussed and in Secti@gn3.1.1this specific decision will be made and explained.

Symbol groups are rewritten by introducing anonymous symbols.

Image — Location
Image — Location
B — Color Class

The anonymous symbol, in this cage inherits the occurrence indicators and em-
bedded alternatives of the symbol group. Notice thatlthege rule is duplicated to
eliminate the sequence once.

3.1.2 Atoms

The feature grammar language supports a default set of atom geseveral nu-

meric types and strings (see Talld). However, additional types may be supported

by the DBMS, for example by using an extension mechanism. To be able for a fea-
ture grammar to use these new types they have to be defined and a REG validation
language can be added.

1

-

[

N

oos W N

Section 3.1The Basic Feature Grammar Language 49

| %atom image::bitmap {M01]*$};

Thebitmap type, available in the extension moduteage, is defined. Théitmap
specific rule defines the REG substitution language from which a ¥#lidap atom
value is a member. Using this regular expression the FDE can validate a specific
bitmap instantiation. When there is no regular expression the default validation code
provided by the system will always accept each terminal of this atomic type.

Next to the atom definitions there are also atom declarations. Using an atom dec-
laration several production rules can be summarized in one command.

| %atom fit Prevalent, Saturation;
This declaration is a simple shortcut for these two rules:

Prevalent : fit;
Saturation : flt;

Notice, once more (see also SectidR.2), that the application of this shortcut
helps to make the production rules semantically more meaningéulmore useful
for human consumption.

3.1.3 Detectors

The production rules already provide insight in which symbol belongs to the set of
terminals and non-terminals,e. non-terminals appear as the LHS of a rule. To get
the set of detector symbols those are explicitly declared.

%detector Color(preceding::Location/url);

%detector Graphic(preceding::Number/int,
preceding::Prevalent/flt,
preceding::Saturation/flt);

%detector Photo(preceding::Color);

6 | Yodetector Skin(preceding::Location/url);

%detector Faces(preceding::bitmap);

The output/input dependency is formally represented by the REG langafm
detectord;. In the detector declaration fak R; is represented as a set of regular path
expressions. In Sectioh1.1with the introduction of REG grammars it was already
stated that there are many extended regular expression langeagebke the one

used for the specification of the atom substitution languages. For the specification of
the regular path expressions tiPathlanguage [] is adopted by the feature
grammar language.

Chapter 3Feature Grammar Language

Figure 3.2: The XPath axes

3.1.3.1 The XPath Language

The XPath language is a W3C standard for describing paths in a document in the eX-
tensible Markup Language (XML)/J]. XML, derived from the older Standard
Generalized Markup Language (SGML) standard, is becoming a standard document
format for data exchange between systems on the WWW. An XML document de-
scribes a tree structure of nodes. Each tree node is identified by an element name,
encloses an area in the document identified by the opening and closing tags, may have
zero or more textual values, may have a set of zero or more attrilbwngesame/value

pairs, and may be the parent of zero or more child nodes. The parse trees, as encoun-
tered until now, map naturally on this document format.

The basic XPath expression consist of a sequence of steps separated by
where the first indicates “goto a matching child” and the latter “goto a matching de-
scendant”. An example XPath expression [seceding::Location/url [
xf:starts-with(., "http://")] .

The first steppreceding::Location , Is evaluated in the context of the cur-
rent node, for example the ne@olor detector node. The evaluation of this step
may result in zero or more result nodes. In this case it leads td.¢hetion node.

The next stepyrl[xf:starts-with(.,"http://")] , is evaluated for each

of these result nodes. And selects the nadewhich satisfies the predicate. As this

is the last step the result of this expression contains only this node. The upcoming
paragraphs will describe the basic building blocks of each step: the optional axis, the
nodetest and the set of zero or more step qualifiers.

The XPath specification defines a total of 13 axes to traverse from one node to
another. These axes describe the whole parse tree from the view point of the con-
text node: theancestor descendantfollowing, precedingand self axes (see also
Figure 3.2). Other axes form sub- and supersets from these basic axeshitte
parent descendant-or-selfollowing-sibling preceding-siblingand ancestor-or-self
axes. Most of these axes are forward axes, nodes are traversed in the order in

Section 3.1The Basic Feature Grammar Language 51

which they were added to the tree (the document order). In contragiateat an-
cestor ancestor-or-selfpreceding andpreceding-siblingaxes traverse the nodes in
reverse document order.

The axis is used to select the set of possible nodes to move to. This set may be
further reduced using a node test: either an exact match on the symbol name or a
wildcard match.

The last part of the step specification is a, possibly empty, set of step qualifiers. A
step qualifier takes the form of a predicdte, a boolean expression on the context of
the step. In this expression logical comparisons and an extensive set of functions may
be used. The example expression usescftetarts-with function to check if
the value of the terminalr! uses the HTTP protocol. The value of the terminal is
indicated by the single dot, which is the abbreviated syntasdtir:node()

All kinds of (user defined) functions are part of the XPath standard. Due to this a
full fledged XPath expression may have a selective power that goes beyond a standard
regular expression language. To stay in line with the formal feature grammar system
of Chapter2 the XPath expressions used for detector parameter binding are limited to
axis steps and symbol name node tests

This subset of XPath expression language is adopted by the feature grammar lan-
guage with (initially) two convenient changes:

1. as parameter path expressions should, enforced byR6erewriting mecha-
nism, point backward into the tree the default axis in the first step of a path
expression ipreceding:: instead ofchild:: , notice that in all subse-
quent stepshild:: is still the default;

2. XPath expressions always return a node set, however, in a feature grammar the
interest is mainly for, depending on the axis (forward or reverse), the first or last
item in the nodeset (sorted on document order).

Using these path expressions the input sentence for a detkaan be selected.
When one of the expressions results in an empty node.setR; Z path(t;), the
start condition of the grammar component is not satisfied, and the detector function
fi will not be executed, which in the leftmost derivation process results in rejection of
the detector symbol.

To retrieve the value of a node the XPath functiext() is used. This function
returns a concatenation of all values under the inner node. This allows the use of a
non-terminal, which may carry more semantics, to indicate a terminal’s valgghe
XPath expressiohocation is equal toLocation/url . This helps once more to
keep the feature grammar specification more semantic oriented (see Settipn

1The extension to a more complete version of the XPath standard would need a reevaluation of the role

52

Chapter 3Feature Grammar Language

-

3.1.3.2 Detector Confidence

All detectors should at least return one information token (see Definktign As
indicated in Sectior2.2.4the disambiguation process would benefit from knowledge
about the detector confidence. By enforcing the output of this confidence ilexel,
making it a default rewrite of a detector production rule, the developer of a feature
grammar can conceptually write detectors which output an empty sentence. This can
be used to allow the use of the detector symbol to model a binary dedistonsing
the partiality of the detector function. The presence of the detector symbol in the parse
forest then indicates the success of the function and thus the (maybe in-confident)
validity of a concept. The absence of the confidence level, and thus of the symbol, is
then used to model the failure.

These feature grammar declarations and rules:

%detector Color(Location);

%detector Graphic(Number, Prevalent, Saturation);
%detector Photo(Color);

%detector Skin(Location);

%detector Faces(bitmap);

Color : RGB* Number Prevalent Saturation;
Class . Graphic | Photo Skin Faces;

are rewritten into the following formal rules:

Color — p Number Prevalent Saturation
Color — p o Number Prevalent Saturation
Graphic — p
Photo — p
Skin — p bitmap

Faces — pint

Notice that the feature grammar does not contain any explicit rules fartaghic

and Photo detectors, they are added to feature grammar system by the rewrite. The
special terminab describes the confidence value. This value may be seen as an anno-
tation (or attribute) of the LHS (see also Figixé).

3.1.4 The Start Symbol

The feature grammar language as defined until now only misses the declaration of the
start symbol.

Section 3.2The Extended Feature Grammar Language 53

1 \ %start Image(child::Location);

This start declaration provides the information to construct the special grammar com-
ponentGg. First of all the dummy start symbds directly passes control on to
the Image symbol, in this case a non-terminal. Furthermore, the parameter defines
which initial words the special detector functigp should generate,e. in this case
one word: al.ocation instantiation. Howfs determines this instantiation depends on
the implementatiore. g.ask the user or look for the sentence on the command line of
the FDE.

For specification of these parameters a special subset of XPath expressions is, once
more, adopted. In this case only forward steps are alloivedthe parse tree can only
be traversed from the root to its descendants. This also means that the original default
axis of XPath is used in these path expressiorschild::

3.2 The Extended Feature Grammar Language

The core of the language has been defined in the previous section. However, to make
the life of a developer easier several shortcuts have been introduced. Other additions
provide the developer with the possibility to influence the analysis and usage of the
feature grammar by the tools in teoi system architecture.

3.2.1 Production Rules
3.2.1.1 Additional Sequence Types

Symbol sequences, like the positive or star closure, lead to collections of symbols.
The most natural form for storing this collection in a DBMS is a list, as it guarantees
that the symbols can be reconstructed in exactly the same order.

\Color . RGB[*] Number Prevalent Saturation;

[

Notice that this rule is equivalent to the origir@blor rule, as list is the default type.
However, this may not always be needed and, as keeping information about the order
of the symbols costs storage space, the feature grammar developer can give a hint that
the collection type may be changed to a set.

\Color : RGB{*} Number Prevalent Saturation;

-

When a list is limited in size another optimization may be to turn the type into a tuple,
which has better selection properties.

1 \Color : RGB<16:16> Number Prevalent Saturation;

54

Chapter 3Feature Grammar Language

o o A~ W N R

-

N

This example shows another addition to the feature grammar language: it allows to
exactly specifyj. e. with a lower and upper bound, how many symbols are allowed
in the collection (which may be of any type). This case is equivalent to a rule where
the Color rule contains exactly 1&G B non-terminals. When the lower bound is
omitted it defaults to zero.

These constructs are all very tight related to the storage model for the parse trees,
and thus will be revisited in Chaptér

3.2.1.2 Constants

The extended language also allows a constant of a builtin type to be placed as a symbol
in the right-hand side of a rule.

Segment . Scene*;

Scene : Begin End Type;
Type : "tennis" Tennis;
Type . "closeup”;

Type : "audience";

Type . "other";

This set of example rules describes the type of scenes found in a video of a tennis
match. For each scene ti$gment detector finds it also determines the type and
puts this as a string token in the output sentence. This token now determines which
alternative rule ofl'ype is validated,. e. for a tennis scene thHBennis detector will

be called. This spares the need for an explicit whitebox detector (to be discussed in
the next section).

%detector TennisType [str = "tennis" |;
Type . str TennisType Tennis;

The other types can be handled in the same fashion. Furthermore, notice that another
approach may be to add a normal detector for each type, which would implement
the type detection algorithm now present in $w&yment detector. The need for the
constant would then disappear, and it would become possible to have several types for
the same scene.e. ambiguity.

3.2.2 Detectors
3.2.2.1 Whitebox Detectors

One step in the annotation extraction process is the combination of the low-level fea-
tures into high-level concepts. One way to do this combination is through a binary
decision rule. Recall the description of the XPath language: the last part of the step
specification consists of a, possibly empty, set of step qualifiers. Each step qualifier is

A w N R

A w N R

© N o u

©

10

Section 3.2The Extended Feature Grammar Language 55

a predicate on the context of the stafghitebox detectorprovide the preferred way
to embed such a predicate in the feature grammar.

In step qualifiers all XPath expressions are allowed, but not all of them will result
in a boolean value. For these situations the XPath specificaticiCD1d provides
these rules to derive the predicate truth value:

1. if the result of the expression is an empty node set, the predicate truth value is
false

2. if the result is one numeric value, this value is rounded and compared to the
context positioni. e. the position of the context node in the processed sequence
of nodes, this will always beneas the processed sequence contains only the
detector node;

3. if the result is one boolean value, the predicate truth value is equal to this
boolean value;

4. if the result node set contains at least one node, the predicate truth value is
5. otherwise there is a serious error and a runtime error will be raised.

When the predicate truth value equtilgse the detector symbol will be accepted,
and otherwise rejected.

This partial feature grammar shows the simple decision rule foPthe o detec-
tor:

%detector Photo [
Number > 200
and Prevalent < 0.26
and Saturation < 0.67 J;

On the basis of the number of colors, the existence of a prevalent color and the average
saturation of the colors the image is classified as a photo (or not). But XPath allows
also more advanced expressioasy. these quantified expressions to extract a color
map concept:

%detector ColorMap [
some $RGB in RGB satisfies
$RGB/Red '= $RGB/Green
or $RGB/Red != $RGB/Blue J;

%detector GrayMap [

every $RGB in RGB satisfies
$RGB/Red = $RGB/Green
and $RGB/Red = $RGB/Blue ;
Color : RGB* Map Number Prevalent Saturation;

Map : ColorMap | GrayMap;

56

Chapter 3Feature Grammar Language

[

1

2

| Plugin name| Description]
exec Execute an external prograT

perl Execute aPerl script
matlab Execute aV/ atlab script

Table 3.2: Default plugins

The Color M ap concept is validated by checking the existence of one or more non-
gray pixels. While th&zray M ap does the opposite check: the existence of only gray
pixels.

To emphasize the difference between whitebox detectors the original detectors,
where the implementation is not specified within the feature grammar itself, are called
blackbox detectors

3.2.2.2 Plugins

The blackbox detectors can do basically everything that is supported by the host lan-
guage. However, this may also ask for extensive knowledge of the in and outs of the
host language and its interfaces (APIs) by the developer. In this sqitigmsare
introduced. A plugin frees the developer from this low-level knowledge, either by
completely taking over the burden of low-level coding or by transferring the coding
task to an external application. This external application may provide the developer
with a higher-level language to code his annotation extraction algorithms in.

The task implemented by a plugin always follows the same steps. However, these
steps need to be adapted to the specific detector. The detector specific knowledge
embedded in a feature grammar is the in- and output specification. So the plugin needs
access to this information. This access is provided by the symbol table. The symbol
table contains information about all the symbols in the grammar and their associations
described in the component production rules. Due to these privileges plugins should
only be developed by experts with knowledge aboutita API.

\ %detector matlab::Color(Location);

This detector communicates with the Matlab engire{01], which is linked into the
FDE or runs as a separate server. It assumes thétdhe command exists in Matlab
and calls it with theLocation parameter. The answer of the Matlab engine is parsed
and the data is returned as the output sentence.

The feature grammar language also allows a plugin to get its implementation di-
rectly from the feature grammair,e. as in the case of whitebox detectors. In fact
whitebox detectors are by default available asatheth plugin.

%detector xpath::Photo [
Number > 200

-

Section 3.2The Extended Feature Grammar Language 57

Observation

Prediction Analysis

Figure 3.3: Emperical cycle

and Prevalent < 0.26
and Saturation < 0.67 |;

This code snippet is equivalent to the previdtisoto whitebox detector declaration.

In the same vain other whitebox plugins can be developed.Athiesystem pro-
vides a default library function to instantiate templates with embedded XPath expres-
sions.

3.2.2.3 Classifiers

Classifiersare an alternative to whitebox detectors to validate a concept. Instead of
decision rules, most likely constructed by a human expert, they provide bridges to
machine learning algorithms.

Machine learning algorithms can be characterized by the cycle shown in Fig-
ure 3.3, The process starts with a number of observations. These observations are
analyzed to find patterns. If patterns are found a theory, or hypothesis, is formulated
to explain the pattern. This theory is used to predict new phenomena that can be
verified by new observations.

Take for example this classifier:

\%classifier bpnn::Faces(Skin);

The classifietF'aces makes use of the plugibpnn. Thebpnn plugin, written by an
expert, managdsack propagation neural network$he plugin can handle the generic
steps of the classification cycle for this specific machine learning algorithm.

A back propagation neural network learns incrementaky,the theory is updated
after each observation is seen by the algorithm. The observations consist of a set of in-
put sentences the developer feeds to the FDE. An observation for this classifier would
contain the fact that the image contains one face. Wherf'thes detector is en-
countered its input, th8kin/bitmap terminal, is selected from the parse tree. The

Chapter 3Feature Grammar Language

| Classifier plugin name Description]
decrules Learn/use C4.5 decision rules(ii9F
bpnn Train/use a neural network/[t97]

Table 3.3: Default classifier plugins

developer provided the expected output of fheces detector: the sentencet(1).
The neural network is then trained by analyzing the actual and the expected output.
On the basis of the error between these the internal parameters of neural network will
be adapted.

When the developer did not provide an observation the theory is used to predict
the output. The theory is not updated until new observations are fed to the classifier.

Other algorithms may learn per batch. In this case the algorithm will collect and
store the observations. When there is no observation the theory will be build using
this collected data. It will then use this, just-in-time, formulated theory to predict the
actual output.

Formally the classifier is split into two detectors:

Faces — int Faces.analyze
Faces — Faces.predict
Faces.analyze — p

Faces.predict — p int

Facesis anon-terminal, whiléd'aces.analyze andFaces.predict are both detectors.
Due to the fact that an integérg. the observation, is present in the parsed sentence
a specific alternative is chosen. The first alternative will take this integer as input and
train the neural network, while the second alternative will use the net to predict the
value of the integer. The natural value foin the case of an observationig), i.e.
its confidence is high as its been provided by the developer.

The Acoi implementation provides a default set of classifier plugins. @he:
plugin is an example of an incremental learning algoritHbecision rules a batch
learning algorithm, are available through #e:rules plugin.

3.2.3 The Start Symbol
3.2.3.1 References

Until now there was always only one parse forest. But the main goal is to build

and maintain a database of such parse forests, or in fact its building blocks: parse
trees. It is possible to keep all these parse trees independent of each other in the
construction phase, and to postpone resolving dependencies to the moment of insertion

Section 3.2The Extended Feature Grammar Language 59

into the database. In fact this was done in early versions ofthe system (see
Chapter7). However, as this knowledge would not be explicit and the system could
thus not exploit it, the coding burden would be completely passed on to the developer.

Take for example the WWW multimedia search engine. On the WWW HTML
pages contain the links which connect all the web objects together. By adding a de-
tector which parses the HTML and extracts the links the structure of the WWW can
be described by a feature grammar.

Example 3.1.

1 | Yostart WebObject(Location);

2 | %detector HTML_type [Location\[ends-with(.,".htmI")\]];
3 | %detector HTML(Location);

4 | Y%atom str Title;

s | WebObject : Location WebBody;

s | WebBody : HTML_type HTML;
7 | HTML . Title? WebObject*;

O

However, the WWW is not a tree but a graph. And this graph may contain cy-
cles, which would lead to infinitely deep parse forests. This would make the feature
grammar impractical. How to prevent the FDE from reanalyzing an object over and
over again, thus storing redundant information in the parse tree? The developer may
add detectors, which check if a web object has already been analyzed, and alter pro-
duction rulesj. e. add optionality such that a partial parse tree containing foreign key
information is also valid.

Once more the FDE can manage these dependencies better if they are made ex-
plicit. The HTMLfeature grammar illustrates when a cycle in the graph may be intro-
duced: the start symbdl ebObject is reused in a production rule. The start declara-
tion already contains information on the data items an initial sentence should contain
to start a parsing process. When this information is viewed as key information the
FDE gets the ability to check the database for the existence of this specific (partial)
parse tree. However, if the parse tree does not exist yet this key information is also
enough to start building the parse tree.

This solves the case when the start symbol is reused, however, in other cases in-
formation would still be redundant. Keyword search can be added to the WWW ap-
plication by extending thelTMLmodule with these production rules:

1 | Y%oatom str Word;

60 Chapter 3Feature Grammar Language
start
start reference
a b.
Figure 3.4: Parse tree structure (a) without and (b) with references
2 | HTML : Title? Body WebObiject*;
3 | Body . KeyWord*;
4 | KeyWord : Word Synset*;
s | Synset : Synonym* Hypernym* Hyponym?*;
6 | Synonym : Keyword;
7 | Hypernym . Keyword;
s | Hyponym . Keyword;

-

From the body of the HTML page keywords are extracted. These keywords are related
with WordNet synsets(]], which allow to expand the search with synonyms,
hypernyms and hyponyms. If for each keyword encountered on the WWW a new
partial parse tree would be added the database would explode in no time. Using the
WWW case study a sample of 150,000 web objects lead to 850,000 keywords which
were on average 40 times reused. This explosion is prevented by permitting multiple
start symbolse. g.a start declaration for th& eyword symbol is added.

| Ystart KeyWord(Word);

The FDE can now use the same strategy for binding a parse tree for this start
symbol. A start symbol which reoccurs in the RHS of a production rule is also known
as areference This emphasized in the language by adding arefix to the symbol
occurrence. Figuré.4shows how this addition of references to start symbols affects
the parse tree structure.

This conversion of a tree into a graph structure has also implications for the
XPath expressions as used to specify either a detector input or a whitebox predi-
cate. Resolving these paths could lead to endless lamms, the XPath expres-
sion preceding::Location could reenter the same tree over and over again
by encountering the samié ebObject symbol again. To resolve this, references
have to be crossed explicitly, which basically means that a XPath expression can
not cross over to a start symbol. This splits the global parse tree, as shown in Fig-
ure 3.4.a, into several parse trees combined by references in a graph, as shown in

Section 3.2The Extended Feature Grammar Language 61

Figure3.4.b. Take once more the XPath expresgioeceding::Location . Us-

ing this convention only.ocation symbols in the local parse tree can be found. To
cross a referencé,e. a start symbol, the XPath expression would look as follows:
preceding::&WebObject//Location . The& prefix, which is not part of the
XPath standard, allows the adapted XPath interpreter to resolviéLtheation

path in the parse tree to whichlEebObject reference is bound. In the next chapter
this feature grammar specific addition to the XPath language will be translated back
into native XPath expressions, however, this depends on the implementation specific
representation of feature grammar parse trees in XML documents.

A drawback of this is the reintroduction of deadlock situations when binding the
detector parameters. The XPath expression may lead to a (indirect) self-reférence,

a detector needs accesstoand thus violates thie?C' regulated rewrite rules and thus

the deadlock prevention strategy (see Sectidn3.]). As there is no general solution

for this, an exception is passed on to the detectors implementation. The developer
may, for example, know how to retrieve the requested token frpir which default

value to pick.

The use of references is also related to the quasi-nodes introduced in Se2tibn
Quasi-nodes were introduced to handle the binding of ambiguous parameters to the
right detector calls. Start symbols are always detectors, remember the introduction of
Ss. The reference is the quasi-root containing the (ambiguous) binding information.
The refereeds is the quasi-foot.

Notice also that with the addition of multiple start symbols the feature grammar
now describes formally a set of feature grammar systems where one is instantiated on
the moment a start symbol is chosem, Ss — ... is generated on-the-fly.

3.2.4 Feature Grammar Modules

One of the main goals of feature grammar systems is to keep detectors generic, so
they are easily applicable in another context. This goal is further supported by the
concept of feature grammar modules. In such a module related detectors, atoms and
their production rules are grouped and available for reuse by other feature grammars.

%module WWW;

Y%start WebObject(Location);

%detector WebHeader(Location);

%atom www::url {Mhttp://([N :N%)(:[0-9]%)?/2(*)$};
%atom temporal::date;

%atom url Location;

%atom date Modification;

%atom Ing Length;

62

Chapter 3Feature Grammar Language

9

10

-

N

w

IS

WebObject : Location WebHeader WebBody;
WebHeader : Modification Length;

ThisWWWeature grammar module gives basic support for the WWW. The module
offers a start symboly/ ebObject, and a detector to retrieve basic HTTP header infor-
mation,WebH eader. Furthermore, it contains the definition of two atomic types.
anddate. These feature grammar statements show howrtiagie feature grammar
uses thavVwWwiodule:

%module Image;
%use WWW;
WebBody . Image;
Image : Color Class;

In this example both thé&ocal andW ebBody symbols are unique for the union of the
Image andWW\Weéature grammars. However, when this is not the case naming con-
flicts arise. Assuming that the module names are unique, they are used as hamespaces
to resolve such conflicts. An explicit namespace is added as a prefix to the symbol
namee.g. WWW :: WebBody.

Declarations and definitions always happen in the scope of the active namespace,
i.e. the module in which the declaration or definition takes place. This means that
atoms and detectors can not be redefined by another feature grammar module. How-
ever, additional production rules are alloweds. to add an alternative view. The
Image feature grammar uses this construction to addrttege view on alW ebBody
symbol. In this way feature grammars are easily extensible.

3.2.5 Change Detection
In Chapterl several sources of change were identified:

internal sources either the dependency description or the implementation of detector
functions change;

external sourcesthe source data changes, the system may check for these changes
by itself (polling) or may be alerted by the librarian.

The upcoming sections will describe the features the feature grammar language offers
to theAcoi system to detect some of the changes.

Versions One of the triggers for incremental maintenance of a set of parse trees are

changes in detector implementations and the production rules. Changes in implemen-
tation may not always be reflected in the feature grammay, a bug fix does not

have to lead to changes in the output, and thus the production rules, of a detector. To
indicate these changes detectors have a version.

1

-

Section 3.3Discussion 63

| %version Skin 1.23.4;

Increments of the version indicate a change in implementation and forces the FDS to
determine if any persistent stored parse trees are affected and should be updated. The
priority which is assigned to this change is depending on the level of change: major
(the first number), minor (the second number) or service (the last number).

Polling Detector versions handle the naotification of internal detector changes. To
poll for external changes an (optional) poll detector related to a start symbol is added.
The arguments of this detector are at least the required initial sentence as part of the
start declaration.

\ %detector WebObject.poll(Location,WebHeader/Modification);

An implementation of this poll detector will be called by the FDS (see Ch&jter

on a regular basis to check if a stored parse tree needs to be updated. When no poll
detector is defined the default poll detector is used, which always retiwrgs. e.

always indicates an external change.

3.3 Discussion

This chapter described the feature grammar language: a convenient notation for fea-
ture grammar systems, including several syntactic shortcuts. The language aims at
being readable, although a clear understanding of the use of CS grammars is still
needed to construct one, g. understand the relationship between rules, trees and
regular path expressions. This should not prevent the usability of the language as its
target audience are DMW and annotation extraction algorithm developers, who will
be schooled in basic computer science topics.

With the rise of XML more and more languages are expressed in XML and thus
have the advantage of standardized tools like SAX parsing and DOM parse trees.
But those languages tend to be verbose and non-transparent. However, an XML-ized
version of the feature grammar language may be constructed as an intermediate format
to gain those advantages. This language could be defined as an extension on one of
the upcoming XML schema languages (see Sediarn).

Chapter 4

Feature Detector Engine

... Sharpen line forty-eight between twenty point twenty-seven.
... Profile trace.
... Stop. Back up.

.. Stop.
...Enhance.
...Seesaw.
... Stop!
...Enhance.

..Enhance.

.. Hey!

Rick Deckard- Blade Runner

Grammars are mostly used to validate a sentence’s membership of a specific language.
This process of validation, called parsing, may lead to the construction of a parse tree,
i.e. an internal representation of the structure of the sentence. The parsing process
forms the heart of th&eature Detector Enginé=DE). During this process the FDE
encounters detector symbols, binds their input sentence, executes the associated al-
gorithms, and validates their output sentence (the actual parsing). There are many
different parsing algorithms. Yet only a few of these algorithms are suited for process-
ing a feature grammar system. The next section will review the predominant parsing
algorithms for CF grammars. The remainder of the chapter is focused on the imple-
mentation decisions for the FDE, based on a parsing algorithm well suited for feature
grammar systems.

66

Chapter 4Feature Detector Engine

Stack Finite

state
control

Output

Figure 4.1: The basic PDT

4.1 A Parser Primer

The membership of a senteneein a languagd.(G) can be checked using a parser,
which is especially constructed for that grammar. Parsers are based on specific types of
(finite) automata. For each grammar type or language family a specific type of (finite)
automatais used. A REG language is parsed usfimjta automatorfFA), while a CF
language needs the more advanced functionalitymfsh-down automatoiPDA).

The basic automaton is an acceptag, accepts or rejects an input sentence. When
the automaton also has additional outmug. a structural description of the symbols
encountered, it is called a transducer.

The transducer version of the PDiAg. the push-down transducdPDT), is ba-
sically a FA with a stack-based memory and an output tape, see Figuréhe read
head of the input tape can read one symbol at a time from the tape. The same goes for
the write head of the output tape: it can write one symbol at the time. Both the read
and write head advance to the next symbol after reading or writing. The end of both
the input sentence and the stack is indicated by the special syimbbe stack-based
memory allows the PDT to push and pop symbols on or from the stack in a last-in
first-out (LIFO) way.

The transducer description includes a set of states. The states of the PDT are
restricted to these types, which are directly related to its capabilities:

start the PDT;

read a single symbol from the input tape;
write a symbol on the output tape;

push a single symbol on top of the stack;

pop the topmost symbol from the stack;

Section 4.1A Parser Primer 67
terminal state goto goto reject state,
O state © state transition - pop state - if there is no other valid state transition

Cﬁﬁ‘ﬁ“‘(‘ﬁ

an url an int abit abitmap an int an int an int an int

wnte wnte wme
Photo Red Blue

Saturation ppogo Xi Faces Graphic Green __— Blue

Prevalent

start

Figure 4.2: A non-deterministic PDT for themage CF grammar

accept the input string and stop;

reject the input string and stop.

Using these states and a set of state transitions the PDT can be used to implement
a parsing algorithm. To illustrate this Figude2 shows a PDT for this example CF
grammar:;

Chapter 4Feature Detector Engine

Example 4.1.

Image — Location
Image — Location «;
a — Color Class
Color — Number Prevalent Saturation
Color — 8 Number Prevalent Saturation
B8 — RGB
B8 — RGB g
RGB — Red Green Blue
Class — Graphic
Class — Photo Skin Faces
Location — url
Number — int
Prevalent — flt
Saturation — flt
Graphic — bit
Photo — bit
Skin — bitmap
Faces — int
Red — int
Green — int

Blue — int

O

The PDT starts with the start symhbhage on its stack. After thetart state the
controller moves to thpopstate, where thémage symbol is popped from the stack.
Based on this symbol the PDT chooses a transition to a next state. Biggleows
the (possible) condition of the PDT the second time it visitsghpstate. Theaccept
state is reached when both the stack and the read tape are empty (reached by both
popping and reading &isymbol). The output tape will then contain a textual descrip-
tion of the parse trees.g.Image (Location http://... a (Color
(Number 29053 ...) ..)) .

On its way to theacceptor rejectstate the controller has to choose a move to a next
valid state. In the case of either a pop or a read state, the valid options are determined
by respectively the symbol on top of the stack or under the read head of the input tape.
If there is always precisely one valid move, the PDA or PDT is catflegerministic
(DPDA or DPDT), when there are more valid options the PDA or PDT is calted
deterministic(NPDA or NPDT). The PDT in Figuré.2 is non-deterministice. g.
after a pop of thelmage symbol there are two valid moves (due to the alternative

Section 4.1A Parser Primer 69

29053

Input ‘ ‘ ‘ g ‘
Stack Finite
state
control

/7:dng
@)
=1
—t

o
=
—*

uoneso|

Figure 4.3: The condition of the PDT

production rules). In such a case the NPDT follows both choicesit is in several

states at the same time. However, some of these choices will never lead to an accept
state and will thus not yield a valid parse tree. On the other hand several choices may
lead to valid parse trees. When more than one valid parse tree can describe the same
input sentence the grammarambiguougsee also Section.1.2.9.

A PDA or PDT can be automatically generated from a CF grammar. The algorithm
implemented in the PDT and sketched above performs a top-down parsing strategy —
an intuitive method. In the next section a short overview of other methods and their
most important properties are given.

4.1.1 More Parsing Algorithms for Context-free Grammars

A top-down algorithmas has been sketched and implemented in a PDT in the previous
section, starts with the start symbol and tries, by traversing the production rules in a
smart way, tgroducethe input sentence. Bottom-up algorithnworks just the other

way around: it starts with the input sentence and triesetluceit back to the start
symbol.

Both algorithms can be used to parse the input sentence of Elgiusing the ex-
ample CF grammar. Due to space considerations a simplified version of the grammar
is used (see Figuré 4) to illustrate the behavior of the two basic algorithms.

Furthermore, the end of the input sentence is once more indicated with the special
$ terminal. This terminal reappears at the end of the rule for the start syrhhol,

This rule takes care for a correct detection of the end of the input sentence.

Figure4.5 shows the steps taken by a specific top-down parsing algoritiema
depth-first algorithm. The information used by this algorithm consists of two parts:
the active rules and the sentence. The current position within a rule (or the sentence)
is indicated with a bullets). This bullet splits a rule in anatchpart and grediction

70

Chapter 4Feature Detector Engine

part. The algorithm always follows one alternative. For example, in stiye Gr
alternative of the”l non-terminal is tried, only when this one fails the next alternative,
Ph, is tried in stept. When none of the active rules has a prediction left and the input
sentence is also completely consumed, and both these conditions are enforced by the
start rules forl'm, the input sentence can be accepted. By keeping track of the active
rules the parse tree can be gradually build during the parsing process.

The application of a bottom-up algorithing. a breadth-first algorithm, is shown
in Figure4.6. The breadth-first algorithm inspects several possible parses in each step.
Each parse under consideration is represented by a stack with attached partial parse
trees. Each step in this algorithm consists of two phases. Istifigphase the next
input symbol is appended to each stack. The followmducephase then examines
all stacks and if they allow one or more reductions copies of the stack are made and
the reductions applied to them. These reductions produce the partial parse trees. The
first reduction is applied in steg@: the shift phase added thgén token to the first
stack, which enabled the reduction of tNe: Pr Sa symbol sequence to thgo non-
terminal. This process continues until there is no input left. In the total of six (partial)
trees left in stef there is only one which contains the start symbet, which is also
the root of the parse tree.

Both parsing algorithms process the input sentence from left to rigit,they
aredirectional However, there are also some algorithms whichreme-directional
These methods may access the input sentence in any order they like. This requires the
input sentence to be completely available upfront, while conventional algorithms work
on a stream of tokens. To illustrate this: the breadth-first used algorithm in Figure
is well suited for on-line parsing where a source outside of the parser produces the
input sentence gradually.

Table4.1 shows a taxonomy of parsing algorithms (based®nc[], where these
algorithms are described in more depth). The taxonomy shows that directional pars-
ing algorithms can be further grouped. The description of top-down and bottom-up

The simplified CF grammar: The simplified input sentence:
Im—Lo$ Lo Nu Pr Sa Ph Sk Fa $
Im—Loa$

a— CoCl

Co — Nu Pr Sa

Co— 8 Nu Pr Sa

8 — RGB

8 — RGB

RGB — RG B

Cl— Gr

10 | Cl - Ph Sk Fa

© ® N o o A W N B

Figure 4.4: The simplified CF grammar and input sentence

Section 4.1A Parser Primer

Active rules Sentence
a. | 1.Im — eLo$ eLo Nu Pr Sa Ph Sk Fa $
b. | 1.Im — Loe$ Loe Nu Pr Sa Ph Sk Fa $
c. | 1.Im —eLoa$ eLo Nu Pr Sa Ph Sk Fa $
d. | 1.Im — Loea'$ Loe Nu Pr Sa Ph Sk Fa $
e. | 1.Im —Loae $ Loe Nu Pr Sa Ph Sk Fa $

2.a — eCo Cl Loe Nu Pr Sa Ph Sk Fa $
fol2.a—CoeCl Loe Nu Pr Sa Ph Sk Fa $

3.Co— eNu Pr Sa Loe Nu Pr Sa Ph Sk Fa $
g.- | 3.Co— NuePr Sa Lo Nue Pr Sa Ph Sk Fa $
h.| 3.Co— Nu PreSa LoNuPreSaPhSkFa$}
i. | 3.Co— Nu Pr Sae Lo Nu Pr Sa e Ph Sk Fa $

j. | 22aa— CoCle Lo Nu Pr Sa e Ph Sk Fa $
3.Cl — oGr Lo Nu Pr Sa e Ph Sk Fa $

k. | 3.Cl — ePh Sk Fa Lo Nu Pr Sae Ph Sk Fa$
l.13.Cl— PheSkFa LoNuPrSaPheSkFa$
m. | 3.Cl - Ph Ske Fa Lo Nu Pr Sa Ph Ske Fa$
n. | 3.Cl — Ph Sk Fae Lo Nu Pr Sa Ph Sk Fae$

o. | 1.Im — Lo o $e Lo Nu Pr Sa Ph Sk Fa $e

Figure 4.5: A top-down parse for the example CF grammar

Chapter 4Feature Detector Engine

72

o4 A4S Ud

N
%)

g U NN

N
%)

/d\

R

wy
o4 4SS 4d vS 4d NN
N1/ N1/
20 °0
/) \
of S Y4 PS d4d N
N/ N
2D %0
oL S Yd
N/
) g U NN
DS 4d NN
N
o4 S Yd %D
of A4S Y4 vS dAd N
o4 4SS 4d vS 4d NN
N1/ N1/
Lo D

o1

o7

o7

o7

o7
o7

‘S

o4 A4S Ud
N
o)

o4 A4S Ud
NI
o)

o4 S U4d
o4 A4S Ud
45 Yd
A4S Yd
Yd
Yd

DS 4d PN
N
°0
ns d4d PN
ns d4d N
N
°0
ng 4d N
DS 4d PN
N
°0
DS 4d PN
g U DN
N
°0
DS 4d PN
DS d4d PN
N
°0
DS 4d PN
dd NN

N

o7

o7

o1
o7

o7
o1

o7
o1

o1
o1
o1
o7
o7

— 4 <«

—

3 <

J

(panunuod) xoels aan asred |enred

»oes aai asied [ensed

Figure 4.6: A bottom-up parse for the example CF grammar

Section 4.2Parsing Feature Grammar Systems 73

top-down bottom-up
non-directional | Unger parser CYK parser
directional predict/match automaton shift/reduce automaton
1. depth-first 1. depth-first

1.a. backtracking

1.b. exhaustive backtracking
2. breadth-first 2. breadth-first

2.a. deterministic breadth-first 2.a. restricted breadth-first
2.a.1. LL(k) 2.a.1. Earley

2.a.2. Tomita

2.b. deterministic breadth-first
2.0.1. LR(k)
2.b.2. SLR(2)
2.b.3. LALR(2)

Table 4.1: A taxonomy of parsing algorithms

parsing already showed that either a depth-first or a breadth-first search strategy can
be applied. Research on efficient algorithms, algorithms with linear complexity,

has mainly focused on bottom-up, directional and deterministic methods. They use
some form of look-ahead, e. one or more tokens of the input sentence, to decide
which production rule to follow. Bottom-up parsers are more powerful for determin-
istic parsing as they will use more conteixg. have seen more of the input sentence,
before making a decisio’fr93. Although these variants are not shown in this table,
deterministic algorithms can be generalize@, made non-deterministic, by adding
(pseudo-)parallel featuresgn74 1.

4.2 Parsing Feature Grammar Systems

As summarized in the previous section, there exists a plethora of techniques to parse
sentences and validate their membership of a CF language. However, are these pars-
ing techniques also applicable to grammar systems and feature grammar systems in
particular?

Grammar systems have been mostly studied in theory, however, some first steps
have been taken to use them for practical purposes){]. One step in this process
is to investigate the use of (existing) parsing algorithms.MivIP6] the authors take
a first step by investigating the deterministic subclass of grammar systems as a basis
for parsing. However, as identified in the previous chapters the application domain
of feature grammar systems benefits from non-determinism. In this section a suitable
non-deterministic parsing algorithm for feature grammar systems is selected.

In a grammar system parsing operates on two different levels: the global grammar
system|. e. transfer of control between grammar components, and the local grammar

74

Chapter 4Feature Detector Engine

componentj. e. the actual parsing of a (partial) sentence. This is also reflected in the
basic ingredients of the derivation process for a feature grammar system, as formally
described in Chapter:

bind a grammar componeii; gathers its input sentence by binding its REG expres-
sion R; with the path metamorphosis of the partial parse tteg

detect a detector functiory;, maps the input into a, just-in-time produced, partial
sentence;

parse the partial sentence,, is parsed, and thus validated, by the corresponding
grammar componert¥;, resulting in an extended partial parse tree;

(un)nest the yield z of the partial parse tree derived usifg contains the words
in z4, enveloped by arbitrary sequences of detectors, as described by the REG
language derived byp from zg4;, .

The just-in-time behavior determines where the control of the system lies initially:
with the “dummy” detectorSs. This implies a top-down algorithm, which is con-
firmed by the needs of the binding step. As this last step depends on the availability
of a (partial) parse tree which can be transformed into a set of neat paths in which
the regular expressiom®;, can be resolved. The nesting of detector components asks
for a component to hand over the control to another component. As stated in Sec-
tion 2.2.3.1 the [PC rewriting mechanism has been added to prevent deadlock sit-
uations and prefers leftmost derivation on the control or grammar system level. So
the grammar system level calls for a top-down leftmbst, directional, parsing algo-
rithm.

Within a component a complete sentengeis available, which in principle may
be parsed with any of the non-deterministic parsing algorithms described in the previ-
ous section. What complicates this parsing process is the nesting of detectors. Upon
encountering a detector there are two alternatives: (1) delay validation of the detector
until the stop condition of the grammar component is satisfied, or (2) first validate the
detector and then go on with validation of the output sentence. The first alternative
closely follows the formal derivation method as described in Chaptbut does not
fit within any CF parsing algorithm. The second alternative allows the use of a stan-
dard top-down algorithri, e. control is handed over to the detector and handed back
after validation.

Both levels allow, and even favor, the use of an adapted top-down algorithm. There
are even more, general, reasons for the use of a top-down instead of a bottom-up
algorithm:

1. people parse sentences top-dowr s,], i.e. debugging a top-down

parse is thus more intuitive for a feature grammar developer;

Section 4.2Parsing Feature Grammar Systems 75

2. these algorithms provide better support for the addition of semantic actions
[], e. g.detector functions, as they provide more context informatian,
the same reason why detector parameters can be bound;

3. the same context gives also easy support for informative error repotiiiig]]
which, once more, helps during debugging.

A top-down algorithm has been implemented in the current version of the FDE
and will be described in more detail in the next subsection.

4.2.1 Exhaustive Backtracking for Feature Grammar Systems

The top-down algorithm used within the FDE is based oexmaustive backtracking
algorithm. Backtracking indicates depth-first behavior: one alternative is chosen and
followed until it either fails or succeeds. Upon failure the algorithm backtracks until
an untried alternative is found and tries that one. The adjective exhaustive means that
the algorithm used by the FDE also backtracks when the alternative is successful. By
doing this the algorithm handles ambiguous feature grammars and constructs the parse
forest.

To show the algorithm in action a basic feature grammar is constructed in relatively
the same manner as the CF grammar in Figu#e Figure4.7 shows this simplified
feature grammar. The same figure shows the formal feature grammar system derived
from the grammar. The rewrite of the rules involves the introduction of anonymous
symbolsi. e. « andg, for the handling of a symbol group and sequences.

Figure 4.8 shows the various parsing actions, grouped per controlling grammar
component. The actions are directly associated with the basic ingredients described
before. A component which gets control starts with an empty output sentence. The
REG expression associated with the detectdrimsledin the parse forest (see Fig-
ure 4.9 for the basic AND/OR graph) resulting in the input sentence. The output
sentence is then filled by thetectaction,i. e. the mapping function is applied. The
parsing process of this sentence is then interleaved with control transfers to nested de-
tectors. To be able to resume the parsing process the output sentence is pushed on the
stack of sentences under inspection when control is transferred to a nested detector.
This allows the delayed evaluation of the remainder of the stop condition by popping
this stack when control is transferred back.

The exhaustive backtracking behavior of the algorithm is illustrated in step
when the second alternative rule b is considered (and found valid in sté,
even after the first rule has already been found valid.

Most algorithms pose limitations on the grammars they can parse. This is also true
for a top-down parsing algorithm like exhaustive backtracking. The next subsection
will investigate these limitations. The last two subsections will look at optimizations
to make the algorithm more efficient by avoiding unnecessary backtracking and doing
double work.

Chapter 4Feature Detector Engine

76

(

5§ =8
(5fp =g NI n{(§wr d — S§)} =54 °A) =D
(Paf (48 -) =AY NI N {(§ 9 = pg)} = PAgA) = "D
(asf(or -) =15 ‘NG N {($d — 48)} =454 °A) = 45D
(udf
‘(g)+ (ad -)+ (N -) =14y ‘NI N{(§ 0 — yd)} = “dd ‘A) = 14D
(of

‘s -)+ d)+ (N) =P NG N{($d — u4D)} =27 ‘A) = PO

«AOO.\.AO\N. *.v — OongﬁND

{($ 05 4d "N I —0D)(§ 05 Ud NN ¢ I — 0D)} = °OF ‘A) = °OD

Lo 45 Yd —10) ‘(40— 10)(d DY — DY)
(daoy —¢)(@oy +—¢9)
BCD 0) + dv Ad o Eb Aoq — Sbw =

Ng

BA%F\Umerhj\ZrmrUhmuegnQW ”rﬁ

Hgoy ‘g0 o wurt =N

Yool ‘Y4S ‘Yd ‘w0 Sgt =
)=

:widlsAs Jewwrelb ainyea) paydwis ayl

e4 S ud | 19 :

‘g 9y

‘e4Ss'es'ld
‘nN‘g'D'y'o

(1S)e4
‘(oS
‘(es'id'nN)ud
((es'1d'nN)ID
(0700

(o

‘eS Id NN 99y
(1D 00) o7

10)
994
0D
wi

woregs,

10103819p%
10]0319pP%
10]0919pP%
10103819pP%
10]0319pP%

Hels%

T

0T

:Jewwrelb ainres) paydwis ay |

Figure 4.7: The simplified feature grammar (system)

77

Section 4.2Parsing Feature Grammar Systems

ge S 1 540eq [04U0D JajSURIISAUUN
e paddod aq 1,ued d :pireaur
ge $de — upg
s :asted
ge ssep oydeib ayy 10818p LUsa0p (DS + g m N) O L 10819p
ge (s -)+ (ad -)+ (AN -) pug ‘0o
geoqd 4 £p) |01U0D JajsueIISaU
geo7d ounH — 10
eg o7 d og wyd — Sy geoqd 4De — 1Dy
geo7d :asred S5 oy geoqd 01D 0D — g
geoqd :asred S5
0g d S' 91 sj0eq |01JU0D JBJSUBIISBUUN
g d g d «— vyg eg PG ug NN d WME 0B(Q [01IU0D J3jsuelrisauun
geod ged — g eg PG ug NN d eg PG ug NN d — 0D p
g de $ de — vyg $@DG ug NN d geDg ug NN d — 0D p
g de :asred g S @ug NN d goseug NN d— 0D
g de saoey ay1 s10919p (35) P A S 10819p § DS L @ NN J g DS 4J eNN d — 0D
ge (45 -) pug Pdp | L gvgad nN ed $ DS 4d PN ®d — 0Dy
$ PGS 4g NN de $ PGS 4g NN de — 0D Y
geo7d ol £p) [013U0D JBJSURI}ISBU $ 0S5 ud NN de :asred
geogd eD.T 4S Yd — 10 § DS ud MN de g O WOUIM dATeUIBI[E UE SBY 0 D 3joeipoeg
geogqd :asred So T gDS ag NN ®d paddod aq 1,ued Y :pieaur
$ PS5 ud "N @ J gDYye — god9
ged S 1 540q [04U0D JBJSURIISAUUN §PS ug nN ®d egnY — g
og d g Jd — 4S5 $ PS ud "N @ d anye — g
geod ged — yg'g $ S 4 NN ®d $ S U4 NN ®g d— oDy
g de g de — 3yg°g $ S 4g NN ®d $ PG U NN g ed — oDy
g de :asred $ PGS 4g NN de $ PS 4 PN ¢ de — 0Dy
gde sjexid upis sy spa1ep (07) 1S £ 10818p $ PS 4d PN de :osred
e (o1 -) pug 4S5 Yy § DG ug NN de saines} 10j0d ay sp@1ep (07) O £ 10810p
ge (o1 + ") puig 0o
geoqd 1S 70y jonu0 Jaysuen ISBU
geo7d D ®YS Yd — 10°S geoqd ©D 70} |01U0 JBjSURIISBU
geo7d :asred S5 6 geoqd 1D @0 «— g
geo7d 1D 0pe «— ©'¢g
og Jd S 91 sj0eq |013U02 JBJSUBIISBUUN geoqd ®0 0 — w'g
g d eg d — yqg-g geo7d 0 @O0 «— wWfg
geod ged — yqg-g go7ed 0 OTe «— W] Z
g de g de — yg-g go7ed :esred
gde :osred go7ed SAITRUIA)E UR Sey wL [HoeIpeq
g de ssepoloydaysparep (vs +d nAr) Yd [10010p geogqd 00T «— wy-g
$e (s)+ (ad -)+ (RN -) puig ddp | f goTed o7e «— wyg
go7ed gewyrd«— Sg-T
geo7d U d o) jonuoo Jeysue IsaU go7ed gwred — Sgg
geoqd v 4S @ Yd — 107 go7de g wyde — Sgp
geoqd DI YS Yde — 1D go7 de :osred
geogqd :esred g o7 de Qouajuas [eniul ay s1819p () S f 10810p
geogd aAeUIfE UE SeY 1D yoeipoeq So 2 ge @ :puiq S5
ERIEES uonoy Juauodwod ERIEIER uonoy Juauodwod

Figure 4.8: A top-down parse for the simplified feature grammar system

78

Chapter 4Feature Detector Engine

Ol
OO

Figure 4.9: Partial parse forests for the steps in Figuge

AL

42.1.1 Left-recursion

The major limitation of top-down methods are their inability to handle left-recursive
grammars. To illustrate this problem consider this, direct left-recursive, grammatr:

S—Sa
S —b

To validate the production rule & the parser will try to validateS over and over
again, thus entering an endless loop. Fortunately standard rewrite rules are available
for left-recursion elimination. For example this grammar generates the equivalent
language:

S—ba
S —b
a—aa

o — a

Section 4.2Parsing Feature Grammar Systems 79

This is the same result as when tight-recursiveinterpretation for symbol sequences
is used,. e. both grammars are equivalent with this rule in the extended notation of
the feature grammar language(see Secidnl):

'S : b ax

These rewritten grammars show that any finite valid input sentence will have to start
with a b terminal, followed by an optional tail af terminals.

Indirect left-recursion is the case where left-recursion takes place after encounter-
ing several other non-terminaks,g.as is the case in this grammar:

S—ABc
B—-Cd
B—ABf
C—Se
A— A

Recursion elimination in this grammar takes extensive rewrites (see for the algorithm
pages 176 — 178 in/[1): elimination of empty rules, elimination of unit rules

and finally flatting of the rules interleaved with elimination of direct recursion. This
whole process (using the rewrite rules based on the basic CF grammar notation) results
in this grammar:

S— Bec

B—apg

B — «a

o —y

vy—ced

vy— fced

vy— fBced

B—f

B — fB

Notice that during the application of the rewrite rules symbols disappear and new

anonymous symbols are added. Unfortunately this hinders the automatic application
of the rewrite rules, especially when detector symbols are involved. The FDE can on
one hand not decide to call the detector just once, as is the case with the rewrite rule
for direct recursion which uses the extended notation. And on the other hand it can

also not split the detector in two: one detector which produces the Iah(one
which produces the taih(). The same goes for indirect left-recursion elimination.

80

Chapter 4Feature Detector Engine

This moves the burden of removing left-recursion of a detector symbol to the de-
veloper,. e. the developer should manually decide when the detector fails and end the
infinite production. The need for explicit rewrites by the developer is not uncommon
in the world of grammar driven tools, g.a parser generator like Yaccly] does
not rewrite the grammar rules, but only warns the developer. The main reason for
this is that, not unlike the detector functions in a feature grammar system, actions are
associated to the grammar rules. And the developer has to modify these actions along
with the grammar rules. However, the FDE offers support by warning the developer
when left-recursion appears.

4.2.1.2 Lookahead

Deterministic top-down parsing algorithms, and also some bottom-up variants, depend
on lookahead. The algorithm looks ahead in the stream of tokens to be parsed to
determine which alternative of a rule to choose. Depending on the lookahead depth the
alternatives can share longer prefixes. In theory a lookahead of more then one token
(k > 1) has been studied?[57(], however, due to the exponential explosion in
time and spacd1|*) practical parsers have almost always implemented a lookahead
of only one token.

The most common form of lookahead is implemented by two 9e{9R.57; and
FOLLOW,. Both are based on theprefix of a stringw = a; ... a,:

w |lw| < k
k:w=
ay...a |w| >k

Using this prefix operation the1 RST, and O LLOW}, sets are defined as follows:

FIRST(a) = {k : wla = w}
FOLLOW},(A) = {FIRST:(B)|S = BAy}

where
weT" Ae NaeV* BeT " veV”

The parse table is now constructed as follows: for eydry- «) « is added to the
(A, w) entry of the table for every in FIRST;,(«FOLLOW}(A)) (see [5J99).

In[] the authors argue for the use of more lookahead to make grammars more
natural. The rewrite from & L(k) or LR(k) grammar to @& L(1) or LR(1) grammar
may involve the introduction of many new (anonymous) symbiots, to left-factor
the rules, thus leading to obfuscation of the semantic meaning. The penalty for the
use of more lookahead is the extra space needed for the lookahead table and the extra

Section 4.2Parsing Feature Grammar Systems 81

time spent to check this table and make the decisionPingj the author describes
a linear, approximate, lookahead operati&)O K}, which should minimize this
penalty (T'| « k). This operation is defined as follows:

FIRST}(a) = {ala = wAw = zay Az € T*'}
FOLLOW(A) = {FIRSTL(B)|S = aAB}
LOOKL(A — ae3) = {FIRST}(BFOLLOW}(A))}

where
aeT,yeV* a,BeV"

A set of LOOK| tables now allows to look at just the discriminating tokerinstead
of having to inspect up to akt tokens.

In the FDE non-determinism is allowed. However, lookahead is still useful to pre-
vent time consuming parsing and superfluous execution of detectors. By augmenting
the exhaustive backtracking algorithm with some form of lookahead the FDE will be
able to skip (many of) these dead alleyways.

In a feature grammar system the lookahead is restricted to the sentence belonging
to one grammar component. So the sets and the table are constructed on a per compo-
nent basis. To simulate a complete grammar a default erasing production is added for
each detector symbol, including the component detector itself, appearing within the
grammar component.

Using theLOO K operation the parser can skip the validation ¢f@alternative
(see step in Figure 4.8) by looking at the second token in the lookahead. When
this token isRk choose alternativéCo — p § ...), when it isNu validate the rule
(Co—pNu ...).

Normally the lookahead depth is determined by steadily incremeftimgtil all
decisions have become deterministic. In a feature grammar system two or more alter-
natives may completely overlap within the grammar componeatthe terminals are
only interleaved with (at least one) different detectors. This may resulfi@@kK}
table which will still contain two or more rules for one set of lookahead values.

4.2.1.3 Memoization

Several parsing algorithms, g. chart parsers, depend for their efficiency on a well-
know technique from dynamic programming: memoizatibhcp8]. This technique
basically means that each part of the input sentence is only parsed once. When, due to
for example backtracking, the same partial sentence is reparsed the memoized parse
tree is returned, thus saving processing time.NorP1] the author shows that by us-

ing this technique in a simple (deterministic) top-down parser the efficiency becomes
equivalent to the much more advanced Earley parserQ (n?) (wheren is the length

of the sentence).

82

Chapter 4Feature Detector Engine

The same technique can be applied within the FDE, but it can also be taken one
step further. Remember that the target of Meei system is to store the constructed
parse trees persistently in a database. Also, references were added to the language in
Section3.2.3.1 These references make it possible to share (partial) parse trees. This
can be generalized even more by sharing detector executions as stored in the database.
This is possible as, stated in Chaptedetectors are (deterministic) functions. the
same input always results in the same output. Once a detector has been called with
a certain input the output may be memoized and reused, thus preventing superfluous
execution. However, memoized detector functions should really be side effect free.
Memoization will, for example, spoil the value of an internal counter which needs to
be incremented to reflect the actual number of symbol instances.

When detector parse trees are memoized the storage will contain two kind of trees:
elementary treeandauxiliary trees Elementary trees are rooted by start symbols,
they exist individually. Auxiliary trees are rooted by other detectors, they always need
to be (indirectly) associated to a elementary tree. This distinction is also known in a
NLP technique:tree adjoining grammar¢TAG) []. In some variants of TAG
trees are also described by D-Theory and quasi-nodes are used to perform substitution
and adjoining. Substitution is, in the case of feature grammar systems, the binding of
a specific auxiliary detector tree to an elementary tree.

Memoization may also partially resolve the problems with left-recursion (see Sec-
tion4.2.1.9, depending on the type of repetition. If the recursive structure also repeats
the instantiations, this instantiation will be memoized, be referenced the next time it
is encountered and thus break the recursion in the parser. The recursion in the con-
structed graph will be retained by the memoization reference.

4.3 The Feature Detector Engine

This section will describe the actual implementation of the exhaustive backtracking
algorithm in the FDE. Before going into the details of the various components within
the FDE, the actual form of the FDE needs to be determined.

A grammar can be used in two basic ways: (1) it can be interpreted by a generic
parser, or (2) it can be input to a generator which produces a specific parser. These
two ways lead to two basic architectures as shown in Figut@ Of course both
architectures have their advantages and disadvantages.

The main advantage of the generic parser is its adaptability. A change in the gram-
mar leads to updates of its internal bookkeeping structures, and because those are not
hardcoded the changes can be done during runtiiié:P0]. This adaptability comes
at a loss of performance, which is the main advantage of a specialized, generated,
parser. But in this case changes to the grammar can only be reflected by regenera-
tion and recompilation. To prevent the FDS from having to manage these (possibly
complicated) steps the FDE is implemented as a feature grammar driven parser.

Figure4.10shows that the parser is preceded by a lexer. In traditional parsers the

Section 4.3The Feature Detector Engine 83

grammar
parser
grammar generator
input okens arse input rokens arse
lexer » parser lexer parser
sentence tree sentence tree
a. b.

Figure 4.10: (a) A generic parser and (b) a specialized parser

lexer, which performs the lexical analysis, splits the input byte stream into meaningful
tokens. In the FDE only a subset of the lexical analysis is needed, as the initial sen-
tence and the output sentences produced by the detectors are already split into tokens.
However, their validity is still checked using the specific atom validation rules (see
Sections2.2.2and3.1.2.

The internal architecture of the FDE is shown in Figdr&l and contains these
components:

the symbol table is filled by a specific parser (based on the EBNF grammar in Ap-
pendixA) for the feature grammar language and contains all the information
derived from the specific feature grammar, which is constructed by the devel-
oper;

the set of detectorsare implemented by the developer and each of them can dynam-
ically be loaded into the FDE;

the set of plugins are implemented by an expert and can take over the role of a de-
tector, they can also be dynamically loaded into the FDE;

the set of tokensis gradually extended with the output of detectors, in fact multiple
sets of tokens exist concurrently (one for each grammar component);

the controller uses the symbol table to call the detectors, to parse the tokens, and to
gradually build the parse foreste. implements the exhaustive backtracking
parsing algorithm;

the parse forestis a DOM tree and can, when the parsing process has ended success-
fully, be dumped as an XML document containing all valid parse trees.

In the next subsections these components will be revisited and their specific im-
plementation and optimization will be discussed.

84

Chapter 4Feature Detector Engine

,,,,,,,,,,,,,,, > feature
= grammar

developer

[plugin ﬂ

-
3
3| symbol table

/

parser

initial
tokens

database

sentences

parse forest

A4
A\ 4

Feature Detector Engine

Figure 4.11: The FDE components

4.3.1 The Symbol Table

The symbol table is the basic bookkeeping structure of the FDE. It contains all infor-
mation derived by parsing a specific feature grammar (which conforms to the language
of AppendixA). This parsing step ensures the syntactic validity of the grammar. As
shown in ChapteB some of the language constructs need additional semantic com-
pletion,i. e. rewrites. When the feature grammar system is complete a semantic check
is needed to validate some additional constraints and warn the developer of some (un-
wanted) properties of the grammar. The rewrites and semantic checks are the topics
of the upcoming subsections.

4.3.1.1 Rewriting

The use of the feature grammar language allows a developer to describe a feature
grammar system in a intuitive fashion. However, to achieve this some symbols and
rules have become implicit. At some points during the parsing of a feature grammar
these symbols and rules are made explicit by applying specific rewrites or adding
annotations to the symbol entry in the symbol table.

Symbol sequencedn the FDE symbol sequences are not rewritten but the occur-
rence indicators are translated into a lower and upper bound. These bounds
are checked by a WHILE-statement in the parser implementation (see Sec-
tion 3.1.7), i. e. greedy alternatives are favored.

Symbol groups For each symbol group an anonymous is introduced, according to the
rewrites shown in SectioB.1.1 Extra care is taken to prevent these symbols to
clog up the parse forest by the useealge folding

Section 4.3The Feature Detector Engine 85

Detector confidencesThe compulsory confidence value (see Sec8dn3.) is en-
forced by the implementation skeleton of detectors, this will be illustrated in
Sectior4.3.5.2

Classifiers Once more the formal rewrite is embedded within the parser instead of
applying the rewrite explicitly. Due to the specific entry in the symbol table the
FDE knows when and how to call thewalyze or the predict detectors (see
Section3.2.2.3.

Notice that the greediness of this implementation would not notice the ambiguity
of the example parse in Sectidn2.1 Only one alternative of thémage rules will
be found. The greedy implementation conforms more to the usual semantic meaning
of optionality: the symbol exists or not,e. both alternatives are not considered at
the same time. As indicated in Secti8rl.1the greedy implementation results in a
iterative interpretation of symbol sequences. This interpretation circumvents the intro-
duction of anonymous symbols and keeps resolving the XPath expressions relatively
easy.

4.3.1.2 Semantic Checks

The semantic analysis of the grammar ensures that the symbol table and the embed-
ded grammar rules are semantically consistent. Furthermore, a series of checks is
performed on the grammar to warn the developer of “unwanted” properties:

Check for unknown symbols When a symbol appears in a RHS, which has no rules
but is also not a terminal or a detector, the symbol table does not know it yet.
These unknown symbols become non-terminals with an, implicit, empty rule.

Check for naming conflicts A naming conflict happens when there are several (im-
ported) namespaces to which a symbol can be bound.

Check for unique rules A warning is issued when a non-terminal contains exactly
the same production rule more than once.

Check for factors The rules are checked for possible shared pre- and suffixes, a
warning is issued when such a possibility is found.

Check for recursion Left-recursive non-terminals may lead to infinite parses. The
FDE issues a warning when left-recursion is found, however, only the developer
can resolve these or may have already solved them in the detector implementa-
tion.

Check for non-reachable symbolsThis check issues warnings about symbols which
may never be reached from a specific start symbol. Notice that these symbols
may be reachable from another valid start symbol.

86

Chapter 4Feature Detector Engine

Check for valid path expressions Using the detector dependency graph (as will be
discussed in Chapté) the FDE checks if all the paths point to one or a set of
other nodes.

Check for independent alternatives Path expressions may not point into other alter-
natives of the same context node, as each alternative will belong to a different
parse tree and this will make the alternatives order dependent.

Check for possible deadlocksCheck if a reference crossing in a parameter path ex-
pression may lead to violation of the linear ordering of detectors.

During the parsing process the controller uses the production rules and symbol
information from the table to adapt its generic implementation of the exhaustive back-
tracking algorithm to the specific feature grammar system.

4.3.2 The Parser

Recursive descent is a popular method to implement exhaustive backtracking. In this
method specialized functions are generated for each non-terminal, which are recur-
sively called according to the exact semantics of the production rules. In this case,
where the FDE is a generic parser, the specialized function is replaced by a generic
one which adapts its behavior on the basis of knowledge from the symbol table and
the production rules. The implementation of this generic function is shown in pseudo
code in Figure4.12 The other parsing functions (see lines 10 to 21) are all vari-
ations on this function. For example therse-detector function will create a local
new sentence by executing the detector function (after successfully binding the input
sentence), and will check if it is empty before declaring itself valid.

The next sections will focus on the various components the parser interacts with:
the set of sentences and the set of parse tremshe parse forest.

4.3.3 The Parse Forest

The parse forest is the main result of the FDE. Due to the, possible, ambiguous nature
of a feature grammar system and its mild context-sensitivity the parse forest is a rather
complex data structure. To manage this structure several control mechanisms have
been introduced in Sectioh2.4 Before discussing the actual implementation and
use of these mechanisms the global (standardized) data structure is introduced.

4.3.3.1 XML and DOM

As has been shortly mentioned in Sectih.3.1XML documents describe tree struc-

tures |]. Due to the fact that XML is very popular as an exchange format on
the WWW it, and many related standards, has been quickly adopted and implemented

87

Section 4.3The Feature Detector Engine

(pywa‘, r)uinial
pus
puinmal
L woly ,7a18[9p
) == pya)
pus
pua
[W10} pajeja. sapou e alajep
S
prpa ol sppe
:PI[eA S| 4 3|nJ Ji
pus
pus
S'SoU = \%
‘pieA st 4 jna |
pus
Yeaiq
pifeAul si -£anl
1§40 puUNOQ J9MO] 8L} > punoq J|
pus
1 + punoq = punoq
yealq
) == 524 Y
(oquiAs syLayy’,s ¢, JRUILISI-BUNSUOD = Sa.¢
‘feulwal e S| [oquIAS sy} JI 8S[3
{oquiAs sysayy’,s , puilIB)-uoU-asIed = sa.

144

(a4

44

114

(U4

6€

8¢

L8

9e

G€

e

€e

(43

1€

og

62

82

x4

9

14

e

o4

44

114

(4

6T

‘[eullwIg)-uoU € S| [OqWIAS sY.aU) JI 8S|9
foquiAs syuayy’,s ¢ showAuoue-asred = sa.
:SnowAuoue SI |oquIAS Y481 JI 9S|9
(oquiAs sysayy’,s ¢, aproa1ap-asied = sau
:10J0919p € S| |0qWIAS sy4ayl §l 3S|D
{oquiAs sysayy’,s ¢ BpyIsseld-asied = sa.
:1a1jISse|d © S| [OqUIAS sy.1ay) JI 9S|o
foquiAs syuayy s ¢ pers-asied = sau
:|JoquIAS 1Ie1S © SI [OqUWIAS SY.4 Y] JI
1840 punog Jaybiy ay > punoq a|iym
0 = punoq
;8 Ul ,54oes oy
:8|nJ uononpoud ul sy JoquiAs Loes 1o}
3240°SWO0U) POALIBP $230°,gx81u0d (Mau) ul sAdod = s
3|4 Jo syuawalinbal peayex 00| sy} saydlew s §i
:7ujoquwiAs Jo ajnJ uononpolid yoes oy
0 = prpa
7629°S Ul 7410} SPOU € UM [Ul puedxs = T

8T

LT

9T

ST

T

€T

[43

T

oT

4

1

uoneuawa|dwi
() :pIfeAul s suuaymIndino

pajoadsul aq 01 Sispurewal aduaiuas ndul ay) g
soa.) asled papuaixs ayl .. [,

z

T

(s ‘L) :p1en si 2uuaymindino

parepifea Buiaq [euiwisl-uou ay) :ju
Jepaonoadsul Japun asusiuas ndul 8yl Jo Japurewal ay) s
UONONIISUOD Japun saau) assed ayl - [

€

4

T

ndul
[eulwial-uou-asteduonouny

Figure 4.12: Implementation of the generic parsing function

88

Chapter 4Feature Detector Engine

10

for a wide range of operating systems and programming languages. The FDE im-
plementation uses an implementatiof i3] of the Document Object Model (DOM)
standard V[] as an internal representation of the parse tree. This DOM tree
can be easily accessed by XPath expressioaswhitebox detectors and parameter
expressions are easily resolved.

4.3.3.2 Labeling Parse Trees

In the parse forest as introduced in Sectibh.4each node is labeled with a specific
context i. e. the parse trees the node is a member of. This context is a list of binary
flags, where each flag represents a parse tree. When the flag ithe node belongs

to the parse tree. The disadvantage of this rather simple scheme becomes clear when
a new tree is added to the forest. All known nodes have to be revisited to indicate if
they belong to the new tree (or not). To prevent these superfluous runs through the
forest the context of a node should only be set when the parsing algorithm visits this
node,i. e. in apre-or postvisitation.

A pre-visitation takes place when the parser starts the validation of a non-terminal.
At that moment the parser only knowns the intermediate number of trees in the forest:
this number is called thecopeof the context. In principle the node is a possible
member of all new parse trees which are added later on, however, those trees are
outside its current scope. A new tree (except for the initial tree) always shares nodes
with an older treee. g. its ancestors or the trees it took its detector parameters from.
At least the root of the forest is shared by all trees.

After validation of the production rules of a non-terminal the node receives a post-
visitation. At that moment the parser knows how many parse trees have been added
by these rules and the scope of the context can be enlarged.

To illustrate the use of the context and scope in pre- and post-visitation this, rather
artificial but highly ambiguous, feature grammar is used:

%module ambigue;

Y%start S();

%detector b[retuni =11
%detector c [retun i = 10 J;
%detector d [return j = 100];
%detector e[retuni = alli * 2];
%detector g[retuni = alli + 21];
%detector h[retuni =alli-2]
%atom i s

S ca e

11
12
13
14
15
16
17

18

Section 4.3The Feature Detector Engine

89

TN COR CKIR CRIN X XD KOIOKO KOO
g \h Lo . h

context scope DTN TR CRIK ORI (K] TR0 KK KO
ha— i { h A i h

Figure 4.13: A parse forest

a b]c|d
b D0

c .

e A

d S

f g | h

g SR

h 0

A run of the FDE for this feature grammar (which has only one possible run)
results in the parse forest shown in Figdrd3 This forest contains 5 trees. The
scope of the node contexts increases with the top-down left to right construction of
the parse tree. The non-terminahas three valid alternatives leading to the addition
of two new trees, as the first alternative extends the existing tree. The parameter of

the detector has now an ambiguous binding: eithi€t) or#(10). This leads to two
quasi-foots representing two executions of the detector fungtionthe two contexts.

The non-terminaf has once more two alternatives leading to the addition of two new
trees, each within their specific context. Thsubtrees extend the existing trees, while

90

Chapter 4Feature Detector Engine

the h subtrees are derived new trees.
A node can determine which other nodes in the forest belong to its context by this
binary operation{ indicates the current node afdindicates the inspected node):

npad(Qscope, Qcontext) & npad($scope, $context)

npad(maz(Qscope, $scope), maz(Qcontext, $context))

Thenpad function sets all flags outside of the context scope to the default vadie
Themax operations determine which of the nodes is deeper and further to the right of
the forestj. e. more specific as nodes higher and more to the left have a smaller scope
and are shared more. Take for example the two possilbtots. The first one does

not havei(10) in its scope and context (whete= true andf = false):

npad(3, ftf) & npad(4,tf ft) # npad(maz(3,4), max(ftf,tfft))
tftf & ttf ft # npad(4,tf ft)
tfff#tff

Doing the same inspection for the secdnrbot results in a positive match:

npad(3, ftf) & npad(5,tf ftf) = npad(maz(3,5), maz(ftf,tfftf))
teftf &tfftf = npad(5,tfftf)
tfftf=tfref

This also shows that the validity contexts of theoots are in fact determined by their
ancestor, the quasi-foots.

In the post-visitation all contexts of the compulsory children of the nbdethose
with a lower bound of one or more, are unified. See for example the quasi-reot of
The third tree does not contain amode, however, this symbol is optional leading to
a valid S node and thus to a valid third parse tree. The post context replaces the pre
context.

This matching operation is used for resolving ambiguous parameter bindings by
adding a feature grammar system specific nodetests to the XPath expression.

4.3.3.3 Memoized Parse Trees

Persistently memoized parse trees function for the FDE as a persistent lookup table
of detector calls. Each detector call is identified by a quasi-foot which contains infor-
mation about a specific input sentence. As a detector is a partial function this input

Section 4.3The Feature Detector Engine 91

b.

Figure 4.14: A deadlock situation due to (a) a direct and (b) an indirect self reference

sentence always maps to the same, stored, output sentence. The FDS, which will be
discussed in detail in Chaptérmanages the lookup table.

The moment the FDE has assembled a complete input sentence a request for the
parse tree is send to the FDS. When there exists a mapping for this input sentence the
FDS will return the unique identifier for the tree and its availability, the FDE will then
take the appropriate action:

1. when the parse tree &vailable the identifier is stored within the quasi-foot as
a place holder;

2. when the parse tree imder constructionthe FDE will have to wait till it is
know if the mapping existg, e. the parse tree becomes available, is unknown
or a deadlock situation occurs (which will be discussed in the next paragraph);

3. when the mappingloes not existthe detector symbol can be rejected by the
parser;

4. when the mapping of a black- or whitebox detectorariknownthe FDE wiill
inform the FDS that it will execute the detector to instantiate the parse tece,
the parse tree becomes under construction.

In principle parse trees are not loaded from the lookup table, until a value is needed
as part of an input sentence. The FDE then sends a request for the complete parse
tree or the specific value, depending on the abilities of the underlying XML storage
structure, to the FDS. When the parse tree is still under construction there may be a
deadlock situation. Such a situation occurs when, by a reference, the linear ordering
is violated. Figuret.14illustrates the two basic deadlock forms: due to a direct self-
referencee.g. d(&S/fi) , or an indirect self-reference, g.d(&S//&S//i) . As
a global deadlock resolution strategy is not possible the detector is informed and ex-
pected to handle the situation leading to a memoizable parse tree (see 86t

In the previous section the trees within the parse forest have been labeled using a
scope and context mechanism. However, these elementary and auxiliary parse trees

92

Chapter 4Feature Detector Engine

—
KTIXT

DOD0DDDIDD

Figure 4.15: (a) Local parse forests are (b) combined in a global forest.

will be memoized. A memoized parse tree may be loaded in another forest with a
different context. During saving, the context has to be localized, while during loading
the context has to be globalized. Localization means that the parse tree loses the
inherited global context, only the local context remains. Globalization then reinstates
a, possibly different, global context.

Figure4.15illustrates this process. The local forests are derived from Figgliz
Notice that bits in use by siblings are stripped @ug.bit 4 for the second alternative
of e. Figure4.15b globalizes the context once more by replacing bit 1 by the global
context. As the first alternative claims another big, creating a difference between
the scopes of the quasi-root and the current scope, bit 4 is once more inserted for
the second alternative. This dynamic behavior of the context bits makes it useless to
persistently store the post-context as a change in one of the memoized trees may use
up more bits.

4.3.4 The Sentences

Sentences are produced per grammar component by the detector function. Internally
a sentence is a simple linked list of tokens. Figlue2shows that for each alternative
production rule a copy of the sentence is magg (In fact only a copy of the token
pointer is made, so each alternative points to its own current position in the sentence.
Each copy is associated with a conteixg. corresponds with a specific parse tree
within the parse forest.

The stack of sentences under inspection, needed for resuming the validation of the
sentence after control has been temporarily transfered to another grammar component
(see the upcoming Secti@gn2.J), is implicit, as each sentence is a local variable of a
specific call of theparse-detector function.

Section 4.3The Feature Detector Engine 93

4.3.5 Detectors
4.3.5.1 Detector Input

Detector parameters are identified by XPath expressions. These XPath expressions are
normalized by the feature grammar parser. In this process these rewrites are applied:

1. The default axis for the first step geceding:: ;

2. By default only the last match is returnece. add[fn:position() = 1]
for a reverse axis anffn:position() = fn:last()] for a forward
axis.

3. The feature grammar specific reference operafondeis translated into a
noddfg:bind(@id)] call. This FDE specific XSLT extension function re-
turns a nodeset containing the root node of the refereed (memoized) parse tree,
i. e. this may have to be loaded just-in-time from the database.

4. The parse forest may contain several types of anonymous nedgsguasi-
foots. The developer does not know about those nodes and thus will not take
care of them within his XPath expressions. Between each two steps a skip ex-
pression is inserted in the vain fifescendant::*[contains(@type,
g/ . This a rather expensive solution. It is cheaper to prevent creating
these nodes at all. This can be done with anonymous nodes which do not con-
tain additional informatione. g. group nodes. These parse forests stay closer
to the semantic grammar and are also calkedluced Derivation TregRDT)

[159%.

5. Detector parameters may only be bound within the context of the current node.
This XPath nodetest will only allow nodes which are within the current context
scope:

[fg:and(
fg:npad(@scope, @ctxt),
fg:npad(current()/@scope, current()/@ctxt))
fg:npad(fg:max(@scope, current()/@scope),
fg:max(@ctxt, current()/@ctxt))]

The resulting XPath expressions can be resolved against the internal DOM tree.
The result may be several sets of input parameters for different contexts. For each
context a detector call will be bound to a quasi-foot.

94

Chapter 4Feature Detector Engine

-

© N o o

10

11

(Confidence,Sentence) Skin(Token myLocation) {
Sentence mySentence = newSentence();

Image mylmage = openlmage(getValue(myLocation));
Bitmap myBitmap = deriveBitmap(mylmage, false);

Iterator myPixels = newlterator(getPixels(mylmage));
while(hasMore(myPixels))
if (isSkin(nextElement(myPixels)))
nextBit(myBitmap, true);
putToken(mySentence, "Skin/bitmap", myBitmap);

return (0.95, mySentence);

Figure 4.16: Implementation of thekin blackbox detector in pseudo code

4.3.5.2 Blackbox Detectors

Blackbox detectors are implemented in the host language of the IF©E general
purpose languagéGPL) like C. Figure4.16 shows an implementation of thgkin
detector in pseudo code.

The detector receives its input sentence as a set of tokens from the parse tree. It
uses this informationi. e. the Location of the Image, to load the image. A new
bitmap is created and filled by iterating over the pixels of the image and determining
if they are a skin pixel or not. The neWitmap token is then added to the newly
created output sentence which is returned to the FDE. Next to the sentence also the
compulsory confidence information is returned: tiein detector knows fo95%
sure that these pixels are really skin.

4.3.5.3 Plugins

Plugins take over a large part of the coding burden from the developer by implement-
ing a generic detector. Plugins come in the two basic variants of detectors: blackbox
and whitebox. In the first case only the input parameters are provided, while in the
latter case those are embedded within a templatelonaain specific languag®SL),
like XPath.

Figure4.17shows the implementation of theatlab plugin. The plugin receives
a list of requested parameters belonging to one context. Using the symbolssgme,
Color, acommand call is constructed. When the command was successfully executed

w N e

© ® ~N o o A

10

11

12

13

14

15

16

Section 4.3The Feature Detector Engine 95

(Confidence, Sentence) matlab(Symbol mySymbol, List myParams) {
Engine myEngine = startEngine(getProperty("matlab")));
if (myEngine) {

String myCommand = getName(mySymbol) + "(*;
Iterator mylterator = newlterator(myParams);
if (hasMore(mylterator))

myCommand += getValue(nextElement(mylterator));
while(hasMore(mylterator))

myCommand += "" + getValue(nextElement(mylterator));
myCommand += ")";

Sentence mySentence = runEngine(myEngine, myCommand);
if (closeEngine(myEngine) && mySentence)
return (1.0, mySentence);

return (0.0, newSentence());

Figure 4.17: Implementation of theatlab plugin in pseudo code

the output sentence and a confidence@f% is returned to the FDE. When the exe-
cution was unsuccessful a zero confidence is returned, which will lead to rejection of
the symbol.

The same process happens for whitebox plugins although the FDE handles, instead
of the list of parameters, the instantiated template over to the plugin implementation.
So binding detector parameters is always done by the FDE, just like with blackbox
detectors. But a plugin has additional access to the symbol table and can thus adapt
its course on the actual rule context of the symbol.

4.3.5.4 Classifiers

Classifiers are special in the sense that they imply two detectors, both are in fact im-
plemented as a plugin. Figudel8and Figure4.19show the implementation of these
two detectors for thépnn classifier.

4.3.5.5 Start Symbols and References

Start symbols and references are once more implemented as plugirtbe feature
grammar developer does not have to provide any code for these detectors.

Only one start symbol is instantiated in a specific FDE run. This detector looks in
the environment of the FDE for the required initial tokens. This environment consists
of notifications of the FDS, the command line of the FDE or interaction with the

96

Chapter 4Feature Detector Engine

-

N

10

11

12
13

14

15

16

(Confidence,Sentence)bpnn.analyze(Symbol mySymbol,List myParams){
Confidence myResult = 1.0;

bpnn myNN = openBPNN(getName(mySymbol)+".net");
if ('myNN)
myNN = newBPNN(getLength(getParameters(mySymboal)),4,2);

Iterator mylterator = newlterator(myParams);

targetBPNN(myNN, 1, myResult);
targetBPNN(myNN, 2, atoi(getValue(nextElement(mylterator))));

integer i = 1,
while (hasMore(mylterator))
inputBPNN(myNN, i++, getValue(nextElement(mylterator)));

trainBPNN(myNN);
saveBPNN(myNN, getName(mySymbol)+".net");
closeBPNN(myNN);

return (myResult, newSentence());

Figure 4.18: Implementation of thenn.analyze detector in pseudo code

librarian. When all tokens are available the parsing algorithm starts the validation
process.

References take their required tokens from the sentence under inspection. Then
they request the FDS for the identifier and status of the parse tree belonging to the
sentence constructed from these tokens (see SettioB.3. If the parse tree is not
yet known the FDE can build the parse tree, as the input sentence is available, and it
needs to know if the tree is valid.

4.3.5.6 Deadlock Resolution

Sections3.2.3.1and4.3.3.3identified that deadlocks have to be resolved by the devel-
oper within the detector implementation. For this the developer will have to check if
one of the tokens received from the FDE is empijhe developer has then three op-
tions: (1) use a default value, (2) know how to retrieve the value, which will only work
when the token is part of the output sentence of this detector, or (3) let the detector
fail. In the case of failure the detector symbol will not be accepted by the FDE.

1This means a self reference because when the token is just not available in the parse forest the detector
would not have been executed. its start condition is not valid.

-

N

~ o 0o~ W

10

11

12

13

14

15

16

17

Section 4.4Discussion 97

(Confidence,Sentence)bpnn.predict(Symbol mySymbol,List myParams){
Confidence myResult = 0.0;

bpnn myNN = openBPNN(getName(mySymbol)+".net");

if ('myNN) {
myNN = newBPNN(getLength(getParameters(mySymbol)),4,2);
saveBPNN(myNN, getName(mySymbol)+".net");

}

integer i = 1,
Iterator mylterator = newlterator(myParams);
while (hasMore(mylterator))
inputBPNN(myNN, i++, getValue(nextElement(mylterator)));

feedforwardBPNN(myNN);
Confidence myResult = outputBPNN(myNN, 1);
Sentence mySentence = newSentence(outputBPNN(myNN, 2));

closeBPNN(myNN);

return (myResult, mySentence);

Figure 4.19: Implementation of th@nn.predict detector in pseudo code

4.4 Discussion

This chapter contained a detailed description of the design and implementation deci-
sions made for the FDE. The FDE steers the actual annotation extraction process by
interpreting a specific feature grammar system described by a feature grammar. The
top-down parsing algorithm, implemented in the FDE, is interrupted by the execution
of detector algorithms.

This execution model may seem not too different from the way actions are associ-
ated to attribute grammars;[99 and interrupt the parseg, g.as in parsers generated
by Yacc []. However, those actions can only intervene in a limited way in the
parsed sentence, g. push a token back on the stack. The parsed sentence is com-
pletely available, while in the FDE the parsed sentence is extended just-in-time. This
limits the parser severely in taking decisions based on lookahead. As discussed, looka-
head can only be used within a grammar component, where the complete sentence is
available. Bottom-up algorithms, like used in Yacc, may be used within individual
components. However, the control transfer between components complicates this.
Postponing this transfer may enable the use of, in general, more efficient bottom-up
algorithms, and is thus an interesting topic for future research.

98

Chapter 4Feature Detector Engine

Performance can also be boosted by replacing the depth-first algorithm with a
breadth-first algorithmi. e. each parse tree gets its own parsing thread. Detectors
should already be side-effect free, but shared data structures, like the parse forest, will
have to be guarded by critical sections or replaced by localized copies. Investigation
of the theory of PC grammar systems may also be of interest here.

The current implementation is i@@. However, other implementation strategies
are well possiblee. g. in a functional language or in the form of generation of Tool-
Bus scripts or translating context dependencies into output/input dependency for a
dataflow or a daemon architecture (see Secti@h However, the” implementation
gave more freedom in staying close to a well known parsing algorithm and thus study
the impact of the extensions of feature grammar systems. A future ToolBus or dae-
mon implementation may allow to incorporate more concurrency, and may also allow
relaxation of the deadlock prevention strategy.

Chapter 5

Feature Databases

Systems have sub-systems and sub-systems have sub-systems and so on
ad finitum - which is why we’re always starting over.

Every program is a part of some other program and rarely fits.
Alan J. Perlis- Epigrams on Programming

The FDE implementation described in the previous chapter produces a forest of parse
trees,i. e. elementary and auxiliary trees. These trees are stored in a feature database
for two reasons: primarily as a persistent buffer for the on line use by the DMW
search engine and, secondarily, as a lookup table for memoized detector calls. The
parse trees produced by the FDE are in fact XML documents. The mass storage of
XML documents has been a major research topic since the rise of XMheatata
exchange format for Internet-based applications. In this chapter the storage scheme
for XML documents as used by the curreébi implementation is described in more
detail. The backend of this XML mapping is tiMonet database kernel. Thecoi

system functioned as a test case for many of its unique aspects. These unique aspects
are introduced in the next section, while the other sections will reflect on the mapping
used and the lessons learned.

5.1 The Monet Database Kernel

The Monet database kerneB[K95,] provides, for main memory optimized,
access tdBinary Association TableBATs). BATs are the actual implementation
primitives for theDecomposed Storage Mod&SM) []. On top of this kernel
several front-ends have been build. These front-ends use the extensibility features
of Monet: the Monet Interpreter Language (MILBK99] and its dynamic loading
mechanism for accessing libraries ©f code. In the case of the relational model

100

Chapter SFeature Databases

Relational front-end

Albums SELECT Title SQU
FROM Albums
WHERE Artist="Chet Baker”

455 | Chet Baker Plays | Chet Baker
456 | Kind of Blue Miles Davis

457 | A Love Supreme | John Coltrane
458 | First Lady of Song | Ella Fitzgerald
459 | Time Out The Dave Brubeck Quartet

X X

mapping rules

v v

Albums_ID Albums_Title Albums_Artist tmpl := select (Albums_Artist,
"Chet Baker”);

Logical model

137@0 |455 || 137@0 | Chet Baker Plays || 137@0 | Chet Baker

138@0 |456 | | 138@0 | Kind of Blue 138@0 | Miles Davis

139@0 {457 || 139@0 | A Love Supreme 139@0 | John Coltrane

140@0 | 458 || 140@0 |First Lady of Song || 140@0 | Ella Fitzgerald

141@0 459 || 141@0 | Time Out 141@0 | The Dave Brubeck Quartet

tmp2 := semijoin(Albums_Title,
tmpl) ;

Physical model

print (tmp2);
MIL

Monet back-end

Figure 5.1: A relational front-end faovionet.

tables are vertically decomposed into binary tables, see FiglreSQL queries are
translated into MIL commands which provide access to the appropriate BATS.

5.1.1 Monet and XML

Just as for the relational model an XML specifionet front-end can be build. In fact
several of such front-ends have been built, and they will be shortly described in this
section. Where appropriate the mappings are illustrated with (parts of) the parse forest
shown in Figuret.9, assuming that confidences) @re stored as attributes, that end-
of-sentence marker§)are not stored, and that all leafs contain a lexical instantiation.

An easy way to store XML documents in a database is iftnary large object
(BLOB). This has been a popular way in the early days of the integration of XML into
databases. However, its drawback is that to access the XML contents the XML doc-
ument has to be (re)parsed. This approach prevents the use of the query optimization
facilities of a DBMS. The solution to these problems is shredding. Shredding means
that the XML document is parsed only once and the contents are directly exposed to
the DBMS, which can thus optimize the access to it. All the methods described in the
upcoming sections use a shredding approach.

5.1.1.1 Semistructured Data

The Magnum Object Algebra (MOAR]] is an intermediate language between
an object calculuse.g. OQL, and the database execution language, MIL. In
[] the authors investigate an extension to MOA to also handle semistructured

Section 5.1The Monet Database Kernel 101

data in the form of XML documents. The tree is represented by a set of binary associ-
ations. Each association describes a parent/child combination.
Taking the example parse forest the database stores these associations:

Ssp] = {< 01,1.00" >},
Sg/Im = {< 01,09 >},
Im/Lo = {< 03,03 >,< 02,04 >},
Im/a={< 02,07 >},
a/Co = {< 07,08 >},

Sk/cdata = {< 018,019 >},
Fa/cdata = {< 099,021 >},
cdatalstring) = {< o5, “http:/].." >, < og, “http:/l..." >,
< 010,“29053" >, < 012,%0.03" >, < 014,°0.19" >,
< o017, "“true” >, < 019, “00..." >, < 091,“1" >}

In this case there is no large overlap in structure, but when instantiations of a par-
ent/child relationship occur distributed over the document they will all end up in the
same associatioe, g.like thecdata[string] BAT.

This mapping provides a good on average query performance, even when used
with an off-the-shelf DBMS, as has been benchmarkedy20].

5.1.1.2 Monet XML and XMark

Monet XML has been developed with the parent/child mapping from the MOA ap-
proach as starting point. Two basic features distinguish Monet XMIK\[
] from other XML to database tables mappings:

1. the decomposition method is independent of the presenc®otament Type
Definition(DTD) or other schema, but explores the structure of the document at
runtime;

2. ittries to minimize the volume of data to be processed during a query by storing
associations according to their context in the tree.

This basically means that database tables are created upon need, and these tables
are not only vertically decomposed, but also horizontal. The horizontal decomposi-
tion is administered by the path catalog which contains information about the specific
context of the associations stored in the table. This leads to this specific database
instantiation for the example parse forest:

102 Chapter S5Feature Databases

Sslp]l = {< 01,"1.00" >},
Ss/Im = {< 01,09 >},
Ss/Im/Lo = {< 02,03 >,< 09,04 >},
Sg/Im/Lo/cdata = {< 03,05 >, < 04,06 >},
Sg/Im/Lo/cdatalstring] = {< o5, “http:/].." >, < og, “http:/[.." >},

Ss/Im/a/Cl/Fa = {< 015,020 >},
Ss/Im/a/Cl/Falp] = {< 020, “0.77" >},

Ss/Im/a/Cl/Fa/cdata = {< 099,021 >},

Ss/Im/a/Cl)Fa/cdatalstring] = {< 021,“1" >}

It is clear that this approach uses a larger number of tables due to the use of more
context in the distribution of the nodese. several tables contaifdata[string] in-
formation. This makes it possible to directly zoom in on a specific part of the XML
document by resolving path expressions mainly in the path catalog. On the other hand
complete reconstruction of an XML document is more expensive.

The Monet XML project also includes the definition of the XMark benchmark
[,]. This benchmark is used to assess an XML database’s abili-
ties to cope with a broad spectrum of different queries, typically posted in real-world
application scenarios. It is widely used to assess systems.

5.1.1.3 XQuery

Based on(;] an XQuery interface on top eflonet is currently under construction
[- [] describes one of the major optimized operations: the staircase
join. The optimizations in this implementation make use of a node numbering scheme.
Each node is assignedpe- and apostorder,i.e. resulting in a coordinate for a
node in thepre/postplane. The staircase join uses extensive knowledge about the
distribution of nodes in this plane with respect to a certain context node to prune areas
from the search space.

Figure5.2shows the parse forest of Figutedin the pre/post plane. The informa-
tion about these nodes is stored in a small number of BATs from which each has the
unigue and dense pre-orders as the head column.

5.2 A Feature Database

Most of the XML facilities for Monet were developed concurrently withcoi. As
such, anAcoi specific mapping had to be defined and implemented. In this section

Section 5.2A Feature Database 103

ok
o

(0,0) 2 4 6 8 10 12 pre
Figure 5.2: Thepre/postplane.

this mapping is described. It is based on the parent/child mapping from the MOA
approach. Care has been taken to keep the interaction, from the FDE and FDS stand-
points, purely XML and hence independent of the storage system and mapping. In
this case the XML documents are transformed by an XSLT stylestiéet D11 into
a MIL script. This script inserts the data from the parse forest into the database.
Notice that this mapping is just a baseline implementation. Other mappings and
systemsi. e. the discussed mappings fdonet or the XML support of an off-the-shelf
DBMS, may prove to be a more effective and efficient XML storage alternative. Due
to the XML exchange layer these alternatives can relatively easy replace the current
storage backend.

5.2.1 A Database Schema

DTD-based or schema-less XML mappings support only one basic data type: charac-
ter data (CDATA). However, a feature grammar contains information about the atomic
types of the data leafs in the parse forest. To create a database schema which takes
advantage of this informatiore. g. the integer equivalent afx¢(29053) is cheaper

to store than the corresponding character string, the grammar can be translated into a
XML document providing schema information. Currently there are several compet-
ing XML schema languages. The major ones are: XML Schemé[], Relax NG

104

Chapter SFeature Databases

© ® N o g A W N B

10

11

12

13

[] and SchematronJEl07]. These languages can be partially intertwined. For
example Schematron assertions may be embedded in an XML Sciema], while
XML Schema datatypes can be reused inside Relax NG schenias] All these
language have their strong and weak points. A favorable combinatitrOfl] may
look as follows: structures described by Relax NG, data types by XML Schanth
additional validation rules by Schematron.

Once more these schema languages were developed concurrenthAtoitbgs-
tem. In the current implementation a straightforward propriety XML-based schema
language is used. However, any other “standard” schema language may replace this
language. The schema document contains a list of non-terminalsall the LHSs,
and their possible children,e. all the RHSs. The symbols are all annotated with
meta-informationg. g. the symbol type, and the lower and upper bound. Using an
XSLT stylesheet this document is translated into a MIL script to create the database
tables.

This part of the schema document (a complete version is found in Appént)ix

<Image:Color type=".non-terminal.detector.blackbox.">
<Image:RGB type=".non-terminal." coll="list" lbnd="0"
hbnd="infinit"/>

</Image:Color>
<Image:RGB type=".non-terminal.">
<Image:Red type=".non-terminal."/>

</Image:RGB>

<Image:Red type=".non-terminal.">
<fg:int type=".terminal.atom."/>

</Image:Red>

14 | ...

© ® N o U A W N B

is translated into these MIL statements:

VAR Image_Color_Image_RGB_parent := new(void,oid);
VAR Image_Color_Image_RGB_child := new(void,oid);
VAR Image_RGB_Image_ Red_parent new(void,oid);
VAR Image_RGB_Image_Red_child new(void,oid);
VAR Image_Red_fg_int_parent = new(void,oid);
VAR Image_Red_fg_int_child = new(void,oid);
VAR fg_int := new(oid,int);

1The data types of XML Schema lack a decent type system)?], however, at least it provides an
extension to the limited set of DTD data types.

-

© ® N o o A W N B

i
©

Section 5.2A Feature Database 105

The BATs withvoid head andid tail will store the tree structure of the parse forest.
Data from leaf nodes are stored in specific BATs which contain a tail column of the
atomic type.

The void head produces a dense numbering scheme for a specific edge type, re-
sulting in aligned array access of all the base and meta-data associated to the edge.
This meta-data is stored in additional BATs. For example this BAT stores the position
of a RG'B instance in a specific list:

\VAR Image_Color_Image_RGB_list := new(void,int);

Other examples of needed meta-data are the context and scope of the nodes, the ver-
sion and confidence of detectors and their input relations.

Next to these data BATs also information about the feature grammar system is
stored. This enables the use of generic procedures which follow the dependencies
between the various nodes,g.to reconstruct the original XML document.

5.2.2 A parse forest XML document

The FDE contains in memory a parse forest in the form of an XML document. This
internal document contains more meta-data than needs to be stored in the database.
Using an XSLT script this internal format is stripped down. AppendiR contains

an example of the final parse forest XML document. Some portions of this document
will be described in this section.

<?xml version="1.0"?>

<fg:forest
xmins:fg="http://www.cwi.nl/~acoi/fg/forest"
xmlns:WWW="http://www.cwi.nl/~acoi/ WWW"
xmlins:Image="http://www.cwi.nl/~acoi/lmage"

<fg:elementary context="1:1" confidence="1.00" idrefs="2@1"
start="WWW:WebObject" date="20030625"
>

</fg:elementary>
<fg:auxiliary date="20030625">

</fg:auxiliary>
<fg:auxiliary date="20030625">

</fg:auxiliary>
</fg:forest>

The root of the documenfly : forest contains information about the feature grammar
modules used, e. they are mapped to XML namespaces. The root contains at least
onefg : elementary child node and zero or morgy : auxiliary child nodes.

106 Chapter S5Feature Databases

1

2 <fg:elementary context="1:1" confidence="1.00" idrefs="2@1"

3 start="WWW:WebObject" date="20030625"

4 >

5 <WWW:WebObject id="5478@0" context="1:1">

6 <WWW:Location id="1" context="1:1">

7 <WWW:url id="2" context="1:1">

8 <!/[CDATA[http://...]]>

9 </WWW:url>

10 </WWW:Location>

1 <WWW:WebHeader idrefs="5479@0" context="1:1"/>

12 <WWW:WebBody id="7" context="1:1">

13 <Image:lmage id="8" context="1:1">

14 <Image:Color idrefs="5480@0" context="1:1"/>

15 <Image:Class id="15" context="1:1">

16 <lmage:Photo idrefs="5486@0" context="1:1"/>
17 <Ilmage:Skin idrefs="5487@0" context="1:1"/>
18 <lmage:Faces idrefs="5488@0" context="1:1"/>
19 </Image:Class>

20 </Image:lmage>

21 </WWW:WebBody>

22 </WWW:WebObject>

23 </fg:elementary>

24 | ...

Each parse forest is based on one start symbol, which roots the elementary trees. To
these elementary trees auxiliary trees, which are rooted by detectors or references, may
be attached. Theirefs attributes of inner nodes,e. a quasi-root, refer to specific
instantiations of the auxiliary treeise. the quasi-foot nodes. When there is more than
one reference the node is ambiguous and edahyf will point to a detector call for a
different context. Thédre f s attribute of f g : elementary refer to the initial tokens.

1

2 <fg:auxiliary date="20030625">

3 <lmage:Color id="5480@0" idrefs="2" context="1:1"
4 confidence="1.00" version="1.0.0"

5 >

6 <lmage:Number id="9" context="1:1">

7 <fg:int id="10" context="1:1">

8 <I[CDATA[29053]]>

9 </fg:int>

10 </Image:Number>

1 <Image:Prevalent id="11" context="1:1">
12 <fg:flt id="12" context="1:1">

13 <I[CDATA[0.03]]>

14 </fg:fit>

Section 5.2A Feature Database 107

15 </Image:Prevalent>

16 <Ilmage:Saturation id="13" context="1:1">
17 <fg:flt id="14" context="1:1">

18 <|[CDATA[0.19]]>

19 </fg:fit>

20 </Image:Saturation>

21 </Image:Color>

22 </fg:auxiliary>

23 | ...

Auxiliary trees contain the output of a detector call or are placeholders for a reference
to an elementary tree.

Notice that only root nodes contain &hwith a @0 prefix, which indicates that it
is database unique. Thé attribute of an inner node is just a normal integer and needs
to be turned into a database unique identifier upon insertion into the database. This
minimizes the need for the FDE to request unique identifiers from the database when
a node is added to the tree.

5.2.3 Inserting a Parse Forest

The insertion script foMonet is generated just as the schema script: by an XSLT
stylesheet. For the example auxiliary tree these MIL statements are generated:

Image_Color_idrefs.insert(id2oid("5480@0"),id20id("2"));
Image_Color_context.insert(id20id("5480@0"),context("1:1"));
Image_Color_confidence.insert(id20id("5480@0"),flt("1.00"));
Image_Color_version.insert(id2oid("5480@0"),version("1.0.0"));
Image_Color_Image_Number_parent.insert(id2oid("5480@0"));
Image_Color_Image_Number_child.insert(id2oid("9"));
Image_Number_context.insert(id2oid("9"),context("1:1"));
Image_Number_fg_int_parent.insert(id2oid("9"));

10 | Image_Number_fg_int_child.insert(id20id("10"));

u | fg_int.insert(id20id("10"),int("29053"));

12 | fg_int_context.insert(id2oid("10"),context("1:1"));

13 | .

© ® N o ¢ A~ W N R

5.2.4 Replacing a (Partial) Parse Forest

The roots of the elementary and auxiliary (partial) parse forests contain database
unique identifiers. Those are used to check if the forest is already stored in the
database. If this is true the new forest will replace the old one. As this new forest

may have a complete new shape and thus not neatly replace the old forest, the old
forest is deleted from the database before the new forest is inserted. To support this
a stored procedure, generated by XSLT from the schema document, is called. This

108

Chapter SFeature Databases

© ® N o ¢ A~ W N B

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

2

©

procedure knows which BATs are involved with this specific type op (partial) parse
forests and pointer chases the specific forest or, in the case of a bulk operation, forests.

5.2.5 Query Facilities

As MIL is still the primary means to interact witflonet (the SQL and XQuery inter-
faces are still under development)aeoi specific query interface has been developed.
Once more this interface is based on the combination of an XML document and an
XSLT style sheet.

The XML document contains zero or more selection trees and one projection tree.
In the selection trees predicates on terminal values are specified. More than one selec-
tion tree is needed when the predicates are disjunctive or there are several conjunctive
predicates on the same terminal. In the projection tree the nodes the user wants to
be part of the answer XML document are marked. This query document requests all
portraits from the database.

<?xml version="1.0"?>
<fg:query
xmins:fg="http://www.cwi.nl/~acoi/fg/query"
xmins:WWW="http://www.cwi.nl/~acoi/ WWW"
xmins:Image="http://www.cwi.nl/~acoi/lmage"
grammar="video" start="WWW:WebObject"
>
<fg:select>
<WWW:WebObject>
<WWW:WebBody>
<Image:lmage>
<Image:Class>
<Image:Faces>
</Image:Faces>
</Image:Class>
</Image:lmage>
</WWW:WebBody>
</WWW:WebObject>
</fg:select>
<fg:project>
<WWW:WebObject>
<WWW:Location project="true">
<WWW:url project="true"/>
</WWW:Location>
</WWW:WebObject>
</fg:project>

</fg:query>

The XSLT sheet translates this query document into a MIL script which starts with

Section 5.2A Feature Database 109

File FGrammar Query
project| narre | minimum [maximum
] WebOhject
@ [Location

[y urt
@[WehHeader
@ [WebBody
@ [HTML
@ Jlmage
@[Calar
@ [Class
Graphic
Photo
@[] Skin
@ [Faces
[y int 1 1

OdooooooooOORED

.

Figure 5.3: The query interface.

the predicates and traverses up the selection tree. After all selected trees are collected
a traversal down the projection tree for each selected tree is started and each requested
projection is printed. Some special measures are needed to check the contextual va-
lidity, i. e. a conjunction is only valid within the same context.

As query documents get quite verbose a singmaphical user interfaceGUI
shows the tree derived from a specific schema document (see BiguréJsing this
tree control projection nodes can be marked and simple predicates can be defined. The
guery can then be stored as an XML document or directly be executed.

5.2.6 Adding Database Management to a Database Kernel

Monet is a database kernel, which means that it only provides the kernel primitives
for a full fledged DBMS. The previous sections described how a feature grammar spe-
cific XML front-end was build on top of this kernel, however, there are still some key
components lacking. To get a reasonable data throughput for a web crawler concur-
rent updates of the database are needed. BATs are by default not locked on read or
write accessi, e. locking is left to the application programmer. The default extension
modules offer théork command and thieck atom type as building blocks for concur-
rency and a transaction mechanism. Using these a simple transaction system on the
MIL level was realized, thus allowing concurrent access.

To allow asynchronous communication between atei tools and theMonet
backend a queuing mechanism was added. This enables a FDE to put its XML in-
sertion request into the queue and request the next instructions from the FDS.

The bottom-line was achieved when all queries spend the major part of their idle
time in waiting on the non reentrant MIL parser. The next major versianoogt will

110

Chapter SFeature Databases

contain a reentrant MIL parser.

5.3 Discussion

This chapter described several possible XML storage schemes. This type of research
has been developing rapidly over the past few years (gee(] for an extensive
overview of mappings). The current, rather ad-hoc, implementation usaddbys

just a bottom line. Replacement by one of those, concurrently developed or newer,
schemese. g.Monet XML, is now more of an engineering task than a research topic.

Chapter 6

Feature Detector Scheduler

The library is a growing organism.
S.R. RanganatharLaw five of The Five Laws of Library Science

The FDE, as introduced in Chaptér can easily construct a huge collection of hi-
erarchical structures, which are related by references and thus, on a higher level of
abstraction, form a graph. The previous chapter introduced a persistent storage model
for these structures based dtonet. However, the annotations contained in these
structures should be kept synchronized with the (external) multimedia objects they
describe. Next to those external changes, the annotation extraction algorithms may
change over timei, e. another reason for maintenance. This chapter describes the
contour of theFeature Detector SchedulédFDS), whose main goal is to steer the
FDE to execute incremental parses and thus propagate the localized changes. Un-
fortunately, there is no complete FDS implementation experience, but the sketch is
backed by prototypes of the core parts.

The core parts of the FDS are shown in Figéré In the subsequent sections
these components will pass the revue and their relations to each other will be de-
scribed in some depth. The last section will also contain a short discussion on the
implementation.

6.1 The Dependency Graph

The basis of the FDS is its analysis of the dependency graph. The dependency graph
describes how all the known symbols of a feature grammar relate to each other. Fig-
ure 6.2 shows the dependency graph based on the exahtipMLfeature grammar
(see Examplg.1).

The symbols play these roles (notice that symbols may play multiple roles):

112 Chapter 6Feature Detector Scheduler

S E
= 3
Feature
Notify grammar
© External Symbol table) Internal
Poll change? Dependencygraph change?
Invalidate? A
(re)validation
........ o priority queue
...... >
2 Database
§ d XML Invalid
ocument nodes
F‘:
Detect Lookup table manager o .
mﬂ—» Call graph ‘ < (re)validator

Figure 6.1: The FDS components

start symbols are the roots of the hierarchical structuresy. the WebObject sym-
bol;

detector symbols are the symbols which are associated with an annotation extraction
algorithm,e. g.the WebH eader symbol;

transparent symbols are anonymous symbols introduced by the rewrite rudeg,
the grp_1_ symbol, which is introduced to capture the grouped optionality of
theWebH eader andW ebBody symbols;

terminal symbols are instantiated with a value belonging to the symbols doman,
they contain the real annotation information like thee atom;

non-terminal symbols are the symbols without any other specific role. They provide
an intermediate semantic (grouping) level.

This information is stored in the symbol table (see Sectichl). From the pro-
duction rules the basic dependency graph is derived. Then the various path expres-
sions are resolved on this meta-leviek. all instantiation (value) related predicates
are skipped. For example for this whitebox predicate:

Section 6.1The Dependency Graph 113

WWW::WebObject

WWW::WebHeader WWW::WebBody

‘

7 \
url str
\ P \

e

~ - ~ -

Detector ‘ Tranéparént . ~ Terminal ™
symbol _symbol . _symbol _
Context dependency O/1 dependency Key dependency Reference dependency
» L 4 o

Figure 6.2: TheHTMLfeature grammar dependency graph

1 | Y%odetector ColorMap [

2 some $RGB in RGB satisfies

3 $RGB/Red = $RGB/Green
4 or $RGB/Red !'= $RGB/Blue];

these paths are resolved, withvlor M ap as the context node, within the graph:
1. self :: x/preceding :: RGB
2. self :: x/preceding :: RGB/child :: Red
3. self :: x/preceding :: RGB/child :: Green
4. self :: x/preceding :: RGB/child :: Blue

This whole construction process results in these relationships between the nodes
in the dependency graph:

context dependenciesare the most basic parent/child relationship between the LHS
and the symbols in the RHS of a rule. The chilé. the RHS symbol, always

114

Chapter 6Feature Detector Scheduler

depends for its validity on the validity of the pareng. the LHS symbol. For
parents the validity depends on all the mandatory children, those depen-
dencies with a lower bound of one or more. The@bObject does not depend
onthe grp_1_symbolto be valid, howevergrp 1 _depends ofl ebObject.
This way the parent/child dependency also enforces sibling dependencies;

output/input dependenciesbetween annotation extraction algorithms: an algorithm
takes it input parameter from the result parse tree of another algorithm. Assum-
ing that the output of the algorithm directly depends on this input, changes in
the values of the parameter symbols lead to the need to rerun the algorithm. For
example: théVebH eader detector depends on tHecation non-terminal as
input parameter;

key/reference dependencieslefine the relationships between quasi-roots and foots.
Start symbols may specify an initial set of required tokens. The same tokens are
used to resolve referencesg. they function as a composite key to an (unique)
hierarchical structure. When those key values change the referential integrity of
the relationships have to be revalidated. A tree rooted ByeaObject symbol
is identified by itsLocation. Links found in a HTML page are represented by
references to the correspondifigebObject trees. These references should be
removed when specifid’ebObject trees are deleted.

Upon a change in the feature grammar system the dependency graph is recreated.
However, to localize change and start updating the parse trees in the database the FDS
needs one (or even several) starting points. The next section shows how these starting
points are identified.

6.2 Identifying Change

Sectionl.2.4identified two sources, which are also reflected in the feature grammar
language (see Sectigh2.5, of change in a DMW: external and internal. The FDS
has to cope with both sources by using the handles specified in the feature grammar
system and given by the developer.

6.2.1 External Changes

The first type of changes happen outside of the annotation system: the source mul-
timedia data, which may or may not reside in the same database as the annotations,
changes The FDS may be notified of such changes by four sources: (1) the librarian,
(2) the FDE requests validation of a (new) multimedia object,(3) an (external) sys-
tem,e. g.a database trigger, or (4) the exploration date of stored data passes a certain
threshold.

INotice that a new multimedia object is also considered a change.

Section 6.21dentifying Change 115

The FDS reacts to these notifications by polling the source data. This polling is
supported by a special detector, which is associated with a start symbol. The polling
detector always receives the initial token set plus additional tokens needed to establish
any modification of the source data since the annotations were extracted. For example
the polling for web objects takes not only the location of the object but also the stored
modification date (see the example in Sectioh.5. The polling detector can then
simply send a HTTRHEADrequest to the web server and determine if the returned
modification date is newer than the stored date.

When the object is considered modified its root node is invalidated in the database
and added to the (re)validation queue.

6.2.2 Internal Changes

Updates to the feature grammar system and its associated detector implementations
are considered internal to the annotation systea,it has all the information about

them. The stored annotations should reflect the current output of these implementa-
tions. These internal changes are always related to detector symleolgrammar
components, and thus to the start condition, the detector function and the stop condi-
tion, i. e. the production rules. Notice that instead of single multimedia objects, as is
the case with external change, internal changes refer to sets of multimedia objects.

6.2.2.1 The Start Condition

The start condition changes when one or more of the XPath expressions for binding
of the parameters change. This invalidates the lookup talelethe memoized parse

trees, rooted by this detector as the input sentences may have changed. The conse-
guence is that all these trees are deleted and the parse trees they were member of are
scheduled for revalidation. During the revalidation process the new lookup table will

be reconstructed using the new input sentences.

6.2.2.2 The Detector Function

Changes in the implementation of a detector function are reflected by the version
declaration for the specific detector. Such a version consists of three levels. The
lowest level indicates aervice revision These revisions will not lead to invalidation

of any nodes in the current stored parse trees, so the FDS does not have to take any
further actionj. e. the data is updated when an external change or more severe internal
change triggers revalidation. Changes of the next levelgtimer revisionswill lead

to invalidation of the partial parse trees. However, the data may still be used to answer
queries. Those revalidations are scheduled with a low priority. High priorities are used
for invalidations caused byajor revisions In these cases the changes are so severe
that the stored data has become unusable and are deleted from the database.

116

Chapter 6Feature Detector Scheduler

© ® N o G A W N B

10

11

12

13

14

15

16

17

6.2.2.3 The Stop Condition

The production rules of the feature grammar component describe the valid output sen-
tences. When these rules change the output sentences have to be revalidated. Changes
to these rules can be found by a tree matching algorithi&3),)
]. With the rise of XML these algorithms have found a new public, and sev-

eral implementations are (freely) (on line) availabéed. [:

]). From both feature grammar versions the derived XML schema doc&ment
(see Sectiorp.2.]) is fed into the diff implementation. For example, thelta tool
[] will report these changes, when the web objects MIME type is extracted by
WebH eader:

<WWW:WebHeader deltaxml:delta="WFmodify">
<WWW:Modification deltaxml:delta="unchanged"/>
<WWW:Length deltaxml.delta="unchanged"/>
<WWW:MIME_type deltaxml:delta="add" type=".non-terminal."/>
</WWW:WebHeader>

<WWW:MIME_type deltaxml:delta="add" type=".non-terminal.">
<WWW:Primary type=".non-terminal."/>
<WWW:Secondary type=".non-terminal."/>

</WWW:MIME_type>

<WWW:Primary deltaxml:delta="add" type=".non-terminal.">
<fg:str type=".terminal.atom."/>

</WWW:Primary>

<WWW:Secondary deltaxml:delta="add" type=".non-terminal.">
<fg:str type=".terminal.atom."/>

</WWW:Secondary>

18 | ...

In this case the detector can directly be identified, in other cases the context depen-
dencies in the dependency graph have to be traversed from child to parent to the first
detector node(8)

6.3 Managing Change

Using the indicators of the previous section a priority queue has been filled with invalid
(partial) parse trees. In the process of revalidation the FDS communicates about the
parse trees with several FDEs and keeps knowledge about the global relationships
between these trees. The next sections will describe this process and the use of this
knowledge in some more detail.

2if the original grammar is not available anymore the schema can be derived from the meta information
in theMonet database.
3When a intermediate non-terminal is reused in different contexts, there may be multiple detector roots.

Section 6.3Managing Change 117

6.3.1 The (Re)validation Process

The invalidation of nodes in the parse tree, and the scheduling of their revalidation,
is handled by the FDS using these steps (the example assumes tHatih&ader
detector implementation has changed, an internal change):

1. The FDS has invalidated all partial parse trees which have an instantiation of
a WebHeader symbol as root. This involvedVebH eader, Modification
andLength nodes (and related terminal nodes), as can be derived by traversing
the rule dependencies. For these parse trees incremental parsing processes are
scheduled, which can be handled by the FDE. The followup action of the FDS
is determined by the result returned by the FDE.

2. If the sub-tree is still valid, the output/input dependencies are checked for mod-
ification. If there has been a modification the dependent detector needs to be
revalidated.

3. Ifthe subtree has become invalid, the context dependencies are followed upward
to the first detector or start symbol which is marked invalid. The FDS will repeat
the whole procedure for these invalid symbols.

4. The referential integrity is checked using key/reference dependencies, when key
values have been changed or parse trees have become invalid.

6.3.2 Lookup Table Management

During the revalidation task other (memoized) parse trees (see Séciian)d may

be encounter. The FDE provides the input sentence for the mapping described by the
requested parse tree. The FDS will query the lookup table stored in the database for
the existence of this mapping and return the appropriate information:

. when the mapping is available: the unique identifier of the tree;
. when the mapping does not existnall value;

. when the mapping is unknown: a new unique identifier;

A W N P

. when the mapping is under construction: a timeout after which the FDE will
have to resent its request;

5. when a deadlock is detected (see below): the unique identifier and the type of
deadlock (direct of indirect).

Next to the requests to resolve or initialize a parse tree, the FDEs also inform the
FDS about the validation results (independently of the database storage). Using this
information the FDS maintains a call graph of parse trees currently under construction.

118

Chapter 6Feature Detector Scheduler

Detecting a cycle in this graph indicates a (in)direct deadlock, which is reported to the
FDE. The FDE passes this information on to the detector (see Secidng, and

will return the resultj. e. the mapping is available or does not exist (meaning that the
deadlock could not be resolved).

6.4 Discussion

As stated in the introduction this chapter contains a sketch of the envisioned system
architecture of the FDS, backed by a partial prototype implementation. Fglre
shows the various components. Based on the detection and localization of internal
and/or external changes incremental FDE runs are scheduled and controlled by the
FDS.

The external change detection component is mainly an interface to the polling de-
tectors. This is a continuous process. With a slight extension to the XML schema
documentsj. e. to also contain the XPath expressions, the internal change detector
component can be completely implemented around an implementation of a tree dif-
ference algorithm. The algorithm to derive the dependency graph from the symbol
table has been implemented in the latest versioficof, as will be shown in the next
chapter. The FDE has also been implemented (see Chgpaed experiments with
incremental parsing have been conducted. However, adaptations, like submitting par-
tial parse trees to both the database and the FDS, may be needed. The (re)validator
and the lookup table manager have not been implemented, so the sketches of these
components have to be validated by an actual implementation in the future.

Chapter 7

Case Studies

De oplosmythe (1)
Met een computer is elk probleem op te lossen.

De oplosmythe (2)
Met een computer is mijn probleem op te lossen.

De oplosmythe (3)
Met een computer is een of ander probleem op te lossen.
Joachim Graf De computerwetten van Murphy

Throughout the development of thieoi system and its major componeriéature
grammars several case studies were conducted to assess its practical impact. In the
next sections these case studies will be described together with the lessons learned.
However, thedcoi system itself is also a case study in software engineering of a system
based upon feature grammar systems. This chapter starts with a section describing the
successive versions of the system. The case studies can then be related to the version
being used, and to the changes they inspired.

7.1 The Acoi Implementation

TheAcoi system is developed by the database research group of the Dutch Centre for
Mathematics and Computer Science (CWI) from 1997 to 2003. This section contains
a brief history of the system development so the case studies, which will follow later
on in this chapter, can be placed in the right context.

7.1.1 Acoi Prehistory

Before Acoi became a project subsidized by several national projects (AMIS, DMW
and Waterland) the database research group already had laid some foundations. In

120 Chapter 7Case Studies

the late eighties the Grammatical Database Model was investigated in two unpub-
lished manuscriptskferss,] and a prototype implementation developed by a
master student. This model is based on this quadrypleF, G, T). L is a language
described by an unambiguous CF gramntaiis a set of transducers defined fbr
which can produce a new sentence from an existing sentéhisea set of guardians
defined forL which determine if a new sentence is valid and, findllyis a collec-

tion of builtin and user defined types. The transducers and guardians from this model
closely resemble the black- and whitebox feature detectors from the feature grammar
systems. However, the design of this model was never completely finished.

Acoi stands forAmsterdam Catalog of Imagesd the system'’s first aim was to
build and maintain a collection of images for research purposes. Feature detectors
were identified as a basic building block for a database-based content-based image
guery system. The Acoi image algebra{98,] was a result of these efforts.

Both lines of (past) research flowed naturally into fei project.

7.1.2 The Acoi Project

In the fall of 1997Acoi became a CWI project for providing database support for the
management of multimedia features. This internal project was mainly funded by the
national DMW project, which will be described in some more detail in Sectién

Note that although not all the components were implemented in the various versions
of the Acoi system, the general architecture shown in Figurehas been clear from

the start. The exact details still needed to be filled in, which is the focus of this thesis.

7.1.3 Acoi 1998

The research started with the construction of a web robot in Java to gather images
from the World Wide Web. This robot interacted with and helped debuggingdhet
database server using the ODMG interface, which was under development at that mo-
ment. Concurrent to this robot a first version of a feature grammar based toolset was
implemented]. This implementation would read in a specific feature gram-
mar and generate th@ source code for a grammar specific recursive descent parser.

7.1.4 Acoi 2000

The first rewrite, which was mainly targeted at a cleanup of the code base,afdhe
system was still based on parser source code generation. The parse trees constructed
by this generated FDE could first be dumped as a skbahacro calls]
The expansion of these macro calls would lead to a MIL script to insert the parse tree
into theMonet database. Later on, this propriety setup was replaced by the combina-
tion of XML and XSLT (see Chaptes).

The image robot was also rewritten into a feature grammar with an accompa-
nying set of detectors. This provided the first experience with the general system

-

Section 7.1The Acoi Implementation 121

architecture. Parts of the previous implementation were not reused as mainly string
handling, needed for the parsing of the HTML pages, is far too expensiveun.

Also controlling timeouts on HTTP connections turned out to be cumbersome. The
implementation of HTML related detectors was therefore doriEdhand later on in

Cl ,].

Based on the performance characteristics of the system during several case studies
the internals of the system underwent several optimizations. First of all the token
pool was hierarchically organized so larger portions were shared by different recursive
descent levels in the parsing process. This allowed descending and asceéraling,
backtracking, to be cheap and to cut away extensive copying of tokens.

The next optimization concerned the binding of detector parameters. In this bind-
ing process the internal tree had to be traversed. This tree could be traversed by a
path expression language loosely based on XPath 1.0. However, when this tree grew
big these traversals would visit too many nodes. By allowing additional hints in the
path expression, e. indicating forward or backward traversal, these superfluous node
visits could be prevented. For example:

\%detector shotlist(ancestor::video/child-forward::filename);

would ensure that traversal of theild axis would start at the first child efideo. This
in contrast to the default traversal strategy which implemented a backward depth-first
search.

Feature grammars were seen as CF grammars with an limited amount of context-
sensitivity [], i. e. not yet as a specific instantiation of CD grammar systems.
Ambiguity was only allowed in a limited fashion: all alternatives should consume
exactly the same tokens.

Around the FDE an extensible set of scripts in various languages,Tcl, MIL
and XSLT, was build to implement the WWW search engine (see Figdye These
scripts contained various hooks to insert knowledge not explicit in the feature grammar
(at that time). This setup will be discussed in some more depth in Setfion

This version ofAcoi has been used extensively for case studies and has been de-
scribed in |)) , ,].

7.1.5 Acoi 2002

To accommodate the expected FDS implementation, the FDE was rewritten into an
interpreter. As indicated in Chaptdran interpreter handles a changing grammar
more easily and spares the FDS the hassle to manage a recompilation of a grammar
specific FDE.

The feature grammar language, and also its parser, was redesigned to cope with
modules, whitebox detectors, classifiers and plugins. The support for these features
was added to the generic FDE. Detectors and plugins became dynamic loadable li-
braries. Furthermore, the implementation made use of more XML standards: DOM

122 Chapter 7Case Studies

Data

1010101011110110011
1000110110101011110|
0101010110111011111
01110111

_______________ Candidates

=

Monet FDE

Y

xmlxmlxmlxmlxml
xmlxmlxmIxmlxml
xmlxmlxmlxmlxml
xmlxmlxmIxmlxml
xmlxmlxml

file

Parse tree

Figure 7.1: The WWW multimedia search engine architecture.

for the internal parse tree format and subsets of XPath for whitebox detectors and de-
tector parameters/pi03]. Feature grammar checks were added to warn for various
(possible) weaknesses in the grammar. This included the semantic checks described
in Section4.3.1.2

A first implementation of the FDS was able to construct and visualize the de-
pendency graph. Also experiments were conducted with various implementations of
XML diff algorithms.

The robot was once more reimplemented. In this case the monolithic grammar
was cut up into several media type related feature grammar modules. Lessons on the
patterns embedded in these modules will be described in the upcoming Ségtion

7.1.6 Acoi Future

The current implementation @fcoi still lacks some of the key aspects of the theory
described in this thesis. The main absence is a complete FDS to replace the scripts
which make up the WWW robot. The current FDS implementation lacks interaction
with one or more FDEs and an interface to a tree diff algorithm to find some internal
changes.

As described in Chaptef parse forests can be stored in one XML document by
adding a scope and context attribute. At this point this level of ambiguity is not sup-
ported by the FDE. The FDE allows multiple alternatives to be true, but they all should
describe the same subsentence. However, the scope/context scheme has been proto-
typed using a set of XML documents and XSLT templates.

Section 7.2The WWW Multimedia Search Engine 123

Likewise, the view of feature grammars as feature grammar systems is not com-
pletely reflected in the implementation. This view makes a cleaner separation between
subsentences as produced by different detector functions and thus belonging to differ-
ent grammar components. This asks for these sentences to be only within the scope of
their component and thus prevents the need for hierarchical sharing of tokens.

OnceMonet completely supports an XML/XQuery front-end (see Secfidi) the
specific XSLT scripts can be deleted as XML documents can than be stored natively.
This would also accommodate a closer, but still standardized, binding between the
FDE and the database. Also allowing a clean addition of support for both memoization
and references.

7.2 The WWW Multimedia Search Engine

One of the first targets fokcoi was the construction of an image index for the Dutch
AMIS project. The size of the index aimed for was 1,000,000 images. To find these
images the HTML pages containing their URLs had to be parsed and interpreted, so
soon the index was extended with a full text indexing facility. As this case study
played a major role over the yearsH)] annota-

tion extraction algorithms were added for other muIt|med|a types. In the upcoming
sections the feature grammars and system architecture involved will be discussed in
more detail.

7.2.1 The Feature Grammars

Moving away from the first monolithic feature grammar, the current set of feature
grammar modules are very similar to the running examples in the previous chapters
and showcased in Appendi The major decision points used in the grammars are
based on the MIME type of the multimedia object under inspection. This MIME type
is retrieved by the generid’ebH eader detector which knows the HTTP protocol to
retrieve this information. Using thprimary and secondaryMIME type, whitebox
detectors in the feature grammar steer the FDE to the set of multimedia type specific
detectorsge. g. language detection for HTML pages and face detection for images.
Detectors for a specific multimedia type are grouped into one feature grammar mod-
ule. TheAcoi module combines all the modules into one grammar, which is used
by the FDE to harvest links from the web. The complete set of detectors is listed in
Table7.1

As all multimedia web objects are related through HTML pages it is possible to
traverse these anchors and access a specific context of an object. Using this naviga-
tional information this, typical, query can be answersdow me a web page about
“Chet Baker” containing a portrait This query combines key words from the HTML
page (“Chet Baker”) with a high-level concept (portrait) extracted from the image
object.

124

Chapter 7€Case Studies

Multimedia type |

Detectors

|

Generic web objects

HTTP header information

allowance by the robot exclusion protoc

0

Text files DRUID language classification

HTML pages title, anchors and text extraction
WordNet synsets(]

images global color features

graphic/photo classificatior\[
skin coverage(]

face detectionl[H96]

portrait classification
thumbnail creation

]

MP3 audio files

ID3 tag extraction

MIDI audio files

MIDI fields

MPEG video files

animated video icon

Table 7.1: The WWW multimedia search engine detector set.

7.2.2 The System Architecture

The system architecture (shown in Figutré) uses a set of shell, Tcl, MIL and XSLT

scripts to explore the World Wide Web. The various system components provide hooks
to plugin feature grammar specific scripts. These hooks are mainly used to implement

knowledge about references, as those are not supported by the generic tals in
2002. The FDS as described in Chapiexploits the explicit knowledge of multiple

start symbols and references and can take over the role of these scripts in a future

version ofAcoi.

A small walk through will clarify the role of the various system parts. The user,
i.e. the librarian, starts the database server and provides an initial set of candidate
URLs. The user also starts one or more robots for corresponding Internet domains
and/or multimedia types. Each robot contacts the database server for a subset of the
candidates and starts a number of FDESs to index these. The FDE returns the location
of the XML document containing the parse forest to the robot, which in its turn tells it

to the database server. The database server contacts the Tomcat servletengiihe [

to retrieve the XML document and transform it into a MIL script. The servlet engine

provides several advantages: (1) it limits the startup time adave-based XSLT pro-

cessot, (2) it provides the possibility to run each robot on a different remote machine

and thus makes the architecture more scalable.

1XT [] is, although written inJava, one of fastest XSLT processors#{i01].

startup time of the/ava interpreter is still significant, but can be reduced to a one time affair by embedding
XT in a servlet |]. The alternative to link in a XSLT processor with the FDE has been proved to
be still slower than thisXT" setup when the parse forest grows into a XML document of several hundred

megabytes.

However, the

Section 7.2The WWW Multimedia Search Engine 125

The extensibility of the system was tested several times by the addition of new
detectors. A detector basically means the addition of a new branch to a parse forest.
For this the FDE supports incremental parses of existing parse trees. This parse tree is
loaded from the database and a special command line option tells the FDE for which
symbol to start (and stop) the detection process. The FDE will thus rebuild the internal
parse tree using the retrieved tokens and will start detection when the new symbol is
encountered. When the FDE returns to the symbol in the post traversal the detection
is stopped again. In this way the extended parse tree (or forest) is build and sent to the
database server. The database server will replace the old parse tree by this new one.

Using this architecture the robot harvested (within 2 weeks in 2000) links to
4,300,000 web objects from which it entirely indexed about 2,000,000. The index
contained 750,000 images from which about 10% were classified as photographs. The
major bottleneck of the system was the MIL parser inNtoaet database server. This
parser is non-reentrant and thus protected by a lock. Concurrent parse forest insertion
scripts spent their time mainly waiting to obtain this lock.

The scalability of the index has been extended on the level afitimet database
server by passing the terms on to a specialized full text indexing sei®ficed]. This
service uses several machines for horizontal fragments of the term index. A term is
assigned to a fragment based ontfiédf ranking model []. This integration
has been described iBY]Jand |]

This WWW indexing engine is different from traditional search engines at several
points. Traditional search engines are mostly based on information retrieval (IR) the-
ory and use technology common in this line of reseafchfN99], e. g.inverted files
instead of a database system. These IR indexes are build from scratch with each new
web crawl. In the feature grammar case updates to the index happen incrementally,
i.e. queries (readers) and crawling (writers) find place on the same database using
concurrent transactions. Furthermore, due to the feature grammar the index is easily
extended with new multimedia types and new features.

7.2.3 Lessons Learned

The WWW multimedia search engine has been incrementally developed during the
various version ofacoi. The extended language features — modules and references
— were mainly inspired by this case study. Modules make it possible to easily reuse
well defined parts of the feature grammar in a different contexd, the other case
studies. The fact that the anchors between HTML pages form a graph complicated
the annotation extraction from the start. Its possible to keep this knowledge implicit
by embedding it in the detector implementations. However, making it explicit gives
the Acoi tools the opportunity to handle referential integrity and to offer support for
complicated recursive structurese. deadlock detection. Ambiguity did not play a
major role within this feature grammar system. Decision points are deterministic and
mostly handled by whitebox detectors.

Chapter 7€Case Studies

user

Q&A
—<—> Webspace Conceptual level
7
Y. S
O : Y
Q T Q Content : .
NS Analysis <> Feature grammar Logical level
O 3 S

Re

inter— or intranet

XML storage Physical level

C O DD
o [FEE

Figure 7.2: The DMW project levels.

7.3 The Australian Open Search Engine

Research on thacoi system has been mainly carried out within Digital Media
Warehous€DMW) project. This projects aim was to advance content-based retrieval
techniques in large multimedia databases. To achieve this goal the project was split up
in sub-projects for three levels (see Figur8):

1. the conceptual level focuses on querying semi-structured data;
2. the logical level focuses on steering multimedia annotation extraction;

3. the physical level focuses on the storage of semi-structured data.

The logical level directly interacts with a collection of content analysis algorithms,
also part of the research portfolio of the project.

Feature grammar systems and the accompamyingsystem implement the log-
ical level. The physical level was implemented by Monet XML (see Sed&itri.J.
Both the content analysis algorithms and the conceptual level were developed at the
University of Twente. Before describing the Australian Open case study in more detail
the research of these project members is shortly desétibed

2parts of the subsequent sections are written by the co-authors of DMW related papers.

Section 7.3The Australian Open Search Engine 127

Concept layers
Objects D>)| Events

Mapping
methods

- Local & global Feature layer
- Static & temporary extended

Video & Image
Processing

Video raw data
(LT T T LTI LTI I

Figure 7.3: The COBRA video modeling framework.

7.3.1 The Webspace Method

The conceptual level focuses on limited domains of the Inteinet,intranets and

large web-sites. The content provided on such domains is often highly related and
structured. This aspect makes it feasible to determine a set of concepts, which ade-
guately describe the content of the document collection at a semantic level.

The Webspace Method/{07] offers a methodology to model and search such
a document collection, called a webspace. The Webspace Method defines concepts
in a webspace schema using an object-oriented data model. This collection is stored
as XML documents in the XML storage level of the global system architecture, see
Figure7.2. A strong correlation between the persistent documents is achieved, since
the structure of each XML document describes (a part of) the webspace schema in
turn. Actually each document contains a materialized view over the webspace schema;
it contains both content and schematic information.

The webspace schema is used to formulate queries over the entire document col-
lection. Novel within the scope of search engines and query formulation over docu-
ment collections is that it allows an user to integrate information stored in different
documents in a single query. Traditional search engieeg. (AltaVista) are only
capable to query the content of a single document at a time. Furthermore, using the
Webspace Method specific conceptual information can be fetched as the result of a
query, rather than a bunch of relevant document URLSs.

128 Chapter 7Case Studies

I' _______________________

E : . k : Hypertext

i Article i :

i i

[.

i i | body::Hypertext [

T it | video

i N bomimima _t :

1

i Is_covered_in

I e o -
[i i
: : Player i Profile i
.. 1 1
; : name::varchar(50) About document::Uri :
: : | video::Video i
.. 1
; .

Figure 7.4: A fragment of the webspace schema for the Australian Open website.

7.3.2 COBRA

In line with Chapterl the COBRA video modeling framework’Et03 recognizes

four layers (see Figuré.3): the raw data, the feature, the object, and the event layer.
The object and event layers consist of entities characterized by prominent spatial and
temporal dimensions respectively. Ifgi03 several instantiations of this model are
constructed for different domains and using different machine learning techniques.
As will be shown in the upcoming section, feature grammar systems provide a way to
build domain specific instantiations of the COBRA model.

7.3.3 The Australian Open DMW Demonstrator

To demonstrate the power of the DMW system the Australian Open demonstrator
was build | , :]. The Australian
Operi is a grand slam tennis tournament on a yearly basis. The demonstrator is based
on the tournament of 2001.

The conceptual elements available in the structure of the website were modeled in
a webspace schema. A fragment of this schema is shown in FigliréJsing a set
of special purpose feature grammars the HTML pages from the original website were
transformed into the base XML documents of the webspace. These documents contain
an instantiation of part of the schema (see the areas in FigdyeAs the website did
not contain any video fragments from the matches, some matches were recorded and
digitized. Then the index database for the base data, including the multimedia content,
was build. For this the webspace tools extracted meta-data from the base documents,
and triggered the FDE when a multimedia object was found. The FDE would then
steer the video annotation extraction process. This process worked along the lines

Swww.ausopen.org

http://www.ausopen.org/

Section 7.3The Australian Open Search Engine 129

T e

Shot segmentation and classification

Shots:
- Tennis
- Audience
- Close up ...
Dominant color filtering
Player Features: é Events:
segmentation 2::';%2‘?0“ - X position £ - Net playing
. -'Y position = - Rally
—_ D —— —5 | O
- Area N o - Longest point
- Eccentricity 3 - Shortest point
- Orientation 8
L

Figure 7.5: Tennis video annotation.

shown in Figure7.5 and captured in the feature grammar in Appendigl This
feature grammar is a domain specific instantiation of the COBRA model. Notice that
this grammar reuses feature grammar modules developed for the WWW multimedia
search engine.

Finally a special purpose query interface was build. The formulation of a query
in this GUI can be divided into three steps. During the first step, the query skeleton
is constructed, using the visualization of the conceptual schema. Secondly, the con-
straints of the query are formulated, using the attributes of classes used in the query
skeleton. In the last step, the user has to define the structure of the result of the query,
which is generated as a materialized view on the conceptual schema.

Before continuing with the individual steps of the query formulation process, the
queries presented below are used to illustrate the power of the search engine with
respect to query formulation. The queries express the typical information need of an
expert user querying the Australian Open document collection. It also shows, how
after each query, the information need of the user can be refined, resulting in a more
complex query over a document collection.

Q1. ‘Search for left-handed female players, who have played a match in one of the

130 Chapter 7Case Studies

A (Concept |Multimedia] | name
b - %
/ #iateh | Profile| Player| [T MMO = —
/ = @ [location English |
[B [T © [header inner’
i . 0@ 3 mm_tyne charnpion
I o m | [text_tyne
[l name] O @ Chtext
oo wo [] O [htmi_type
0 = bt
@0 gend: female O ? D title [l case-sensitive
Ok pict Image] @ [body s
[history Hypertext = § D kayw - =
(] D word winner champion
| @ [anchor
O % CIDRUID
(] language en en
(] probahility
[@[3 status
[l i} advanced query (htmb

Figure 7.6: Formulating a query.

(quarter/semi) final rounds. For each of those players, show the player's name,
picture, nationality, birth-date, and the document URLSs containing information
about this player. Also show category, round and court of the match

Q2. ‘Like query 1, with the extra constraint that the player has already won a previ-
ous Australian Open. Include that history in the result of the query

Q3. ‘Extend query 2 with the constraint that the result should also contain video-
fragments, showing net-playing evénts

The first example query shows how conceptual search is used to obtain specific
information originally stored in three different documents. The second example query
extends the first query and provides an example illustrating the integration of content-
based text retrieval in the conceptual framework. The third example query extends the
complexity of the query even more, by integrating content-based video retrieval.

1. Constructing the query skeleton The first step of the query formulation pro-
cess involves the construction of the query skeleton. This skeleton is created,
using a visualization of the webspace schema. This visualization consists of a
simplified class diagram, and only contains the classes and associations between
the classes, as defined in the webspace schema. The user simply composes the
guery skeleton, based on his information need, by selecting classes and related
associations from the visualization. The (single) graph that is created represents
the query skeleton.
In Figure7.6.a a fragment taken from the GUI of the webspace search engine is
presented, which shows the query skeleton (depicted in black-filled text boxes),
that is used for the query formulation of the three example queries.

2. Formulating the constraints. In the second step of the query formulation pro-
cess, the constraints of the query are defined. In Figui:e another fragment

Section 7.3The Australian Open Search Engine 131

of the GUI of the search engine is presented, showing the interface that is used
for this purpose. For each class contained in the query skeleton a tab is acti-
vated, which allows a user to formulate the conceptual constraints of the query.
As shown in the figure, a row is created for each attribute. Each row contains
two check boxes, the name of the attribute, and either a text field or a button.

The first checkbox is used to indicate whether the attribute is used as a con-
straint of the query. The second checkbox indicates whether the results of the
guery should show the corresponding attribute. If the type of the attribute is a
BasicType, a textfield is available that allows the user to specify the value of
the constraint, if the first checkbox is checked. If the attribute is of Wyfee
bClass, a button is available, which, if pressed, activates the interface that is
used to query that particular multimedia object.

Figure7.6.c shows the interface that is used to formulate queries ldyper-
text-objects,i. e. define content-based constraints. The figure shows both a
low-level and advanced interface to the underlying feature grammar system. In
the low-level interface projection and selection criteria can be filled in (see Sec-
tion 5.2.5. The advanced interface is similar to the interfaces offered by the
well-known search engines such as Google and Alta-Vista. The main part of
the query-interface allows a user to formulate one or more terms, which are
used to find relevant text-objects, The interface also allows the user to perform
a case-sensitive search, and to select the language éfyibertext-object in
which the user is interested.

Figure7.6.b shows the attributes of claBsayer. The constraints with respect

to the player, specified in the first two example queries, are transposed in the
selections depicted in the figure. Two constraints are formulated. The con-
straint that the user is only interestedf@maleplayers is defined by selecting
the constraint checkbox in front of gender, and by specifying the conceptual
term femalé. The second constraint refers to the second example query, where
an extra condition with regard to the player’s history is formulated. Again, the
corresponding checkbox is activated, and the interface of Figéreis started,

and completed. In this case, the query-termismiher and ‘championare used

to find the relevanHypertext-objects that are associated with the player’s his-
tory.

3. Defining the resulting view. The second column of checkboxes is used to
specify which attributes will be shown in the resulting views defined by the
query. The XML document that is generated by the webspace search engine
contains a (ranked) list of views on the webspace that is being queried. Besides
selecting the attributes and the classes that will be shown as the result of the
guery, the user also has to determine which class is used asdhef the
resulting view. In FigureZ.7 a screenshot of the result for the third query is
shown. It includes a link to a tennis scene of the match played by Monica Seles

132

Chapter 7€Case Studies

1.83827948486295 ® Player
gender female
nome monlca seles
feistory
Australian Opens Played: 5
Best Singles Pexformance: Winner (1991, 1992, 1993, 1998)
Best Doubles Performance: Semi Finalist (1991)

Events Entered:Women s Singles Women 5 Doubles (with Martina Hingis)
documents

012345678010111213 14 1518 17 18 19,20 21, 22]
pictuie

ahout
O Profile
birthdore 2 december, 1973
reetionadity mnited states of america
iz wonr by
C Match
coegory women’s singles
cowt:rod laver arena
round. qr. finals
videofrogreert
httpitvzwol.orglansopenfvidescapriatiselesaoll mpg
1. tenmis scene from frame 2016 to frame 2634

Figure 7.7: The result of example query 3.

in the quarter final round. The tennis scene shows a video-fragment in which
Monica Seles plays near the net.

This DMW architecture consisting of webspaces, feature grammars, an instantia-
tion of the COBRA video model and efficient XML storage resulted in a search en-
gine which allows a combination of conceptual and content-based multimedia search
[], thus giving the user the power to post very specific queries to the database.

7.3.4 Lessons Learned

The feature grammar system for the Australian Open case study is a direct extension
to the set of feature grammars for the WWW multimedia search engine. The extension
did inspire two language features: constants within the production rules and plugins.
The Segment detector not only detects scenes within the video but also their type. To
prevent superfluous type detectors, this type was encoded as a string and matched by
a string constant in the various alternatives. A remote procedure call (RPC) detector
was developed which was quite generic and thus easily converted into the template-
like approach of a plugin.

The main focus of this case study was the embedding of¢hiesystem within the
larger DMW application. In the WWW search engine the feature grammar is the main
schema, but in this case the grammar is connected to the conceptual webspace schema.

Section 7.4Rijksmuseum Presentation Generation 133

Both the webspace tools araoi could have steered the meta-data and multimedia
extraction process. The choice was made for a top-down implementationthe
conceptual level triggers the logical level.

Looking back, the embedding stoi within the current DMW system could have
been more tight. On the one hand by a tighter coupling with the webspace schema
and thus with the conceptual data, allowing more specific semantic contexts for de-
tectors. This coupling could be created by translating the concepts and their attributes
into elementary feature grammar trees. Also on the side of the multimedia content
analysis the current integration is shallove. the detector granularity is very coarse.

By splitting the implementation of th8egment andTennis detectors into smaller
detectors, decision points can be made explicit and thus become manageable by the
FDE and FDS. Drawbacks of a finer detector granularity is the possible many conver-
sions needed from token to actual values, strings to integers or floats, and opening

and closing of the media object. The latter drawback may be circumvented by adding
a generic caching interface to theoi toolset.

7.4 Rijksmuseum Presentation Generation

As stated in Chapter museums are digitizing their collection and making them avail-
able to the public. The Rijksmuseum, situated in Amsterdam, did the same. High
resolution scans of photos made of paintings, statues etc. and the existing annotation
database were made available to researchers in the Token2000 project. The Rijksmu-
seum Presentation Generation project developed an architecture for using (automatic
extracted) annotation information for the automatic generation of user specific hyper-
media presentations$lf , 1.

The architecture is shown in Figure8 and consists of three major units:

« the style repository, which embodies style schemata, style grammars and rule-
bases for different presentation styles;

« the data repository, containing the images and related meta-data, and the re-
trieval engine;

« the presentation environment, including a presentation generator and a hyper-
media browser.

In the next sections these units will be introduced and the way in which they inter-
act with each other will be described.
7.4.1 The Style Repository

The aim of the style repository is twofold. On the one hand it provides a collection
of representations describing styles in fine art, suati@sobscur, impressionisnor

4Parts of the subsequent sections are written by the co-authors of these papers.

134

Chapter 7€Case Studies

Tell me all about clair obscur -

‘ Query Generalisation ‘ ‘ Linguistic Analysis

\ All | Clair-obscur

| Lists Artists
| Time Period

- —a

FD:'i::ieL:n Feature Grammar Presentation Style
u
Artists Portraits

Images — {Landscapes

. N 0
Time Period
Format
Feature Gramma

Presentation Style

Presentation environment
Linear

Query result Topic Separated 6 Portraits 3 Landscapes
6 Portraits
9 Images {3Landscapes 1]2 ‘ 5 ‘ 6 ‘ ‘ 7 ‘ 8 ‘
3 Texts Seatal :
2 on Portraits 314 9
1 on Landscapes
4 Titles 3| 6 2| 4 9|7
3 on Portraits Optimalisati ‘ ‘ ‘ ‘ ‘ ‘
1 on Landscape 15 8
Portr. Land Go Back
o s[e][L2]a] ™ o] 7 o
1,5 8 auery

Figure 7.8: Hypermedia presentation generation framework.

cubism in a structured way. These collections are designed to improve the retrieval
of images or other meta-data in the data repository (see the data repository section
below). On the other hand it provides a presentation rule-base in which rhetorical
structures describe how retrieved material can be presented.

The collection of representations of fine art styles provides for each style mainly
text-based schemata. A schema holds information about the definition, the main pe-
riod, the inventor of this style, other artists using or improving it, etc.. The advantage
of these style ontologies is that they allow an enlargement of the search-space, if the
style plays a prominent part in the query. This is state-of-the-art technology within
the retrieval community§R0(. The development of text-based ontologies is still a
mainly manual task, which is today quite well supported["99].

This information, while important, is insufficient, low level feature descriptions
are also required. Rather than a random choice of features as a style description,
features that represent the intrinsic characteristics of a particular style need to be col-

Section 7.4Rijksmuseum Presentation Generation 135

lected. Inclair-obscurimages, for example, a clear distinction of light and dark areas
can be found. Usually there is one dominant light source, predominantly filled with
high luminance colors, alongside dark areas with a high proportion of brown col-
ors which can be blended with other objectsi{74]. Thus, a collection of features
such as color, shapes, brightness, either in the form of their extraction algorithms or as
threshold values for a particular style, facilitate the automatic identification of relevant
material. Such a collection can naturally be represented by a feature grammar.

Note that the development of feature-based representations also requires human
effort, in particular by specialized experts who have an understanding of the composi-
tional structures of an imag@§i6(. The collection of these features is, on the other
hand, not too difficult, since tools for this particular task do existPOq.

The third representation form in the style repository is of a different sort. Here
rules are collected which describe rhetorical presentation structures, as addressed in
the Rhetorical Structure Theory/[] or Cognitive Coherence Relationsp96],
which might vary between general and specialized levels. If, for example, the pre-
sentation environment is educationally oriented, it can build presentations on a larger
level of the form: Introduction Topic; Introduction Subtopic 1; Details Subtopic 1;
Introduction Subtopic 2; Details Subtopic 2; Introduction Next Topic. A more de-
tailed level specifies what an introduction measgy. show a definition of the topic
in combination with a visual example of the topic. Another detailed description might
be concerned with the sort of interaction, such as a linear presentation in the form of a
slide show, or a more interactive way in the form of additional buttons for individual
traversal. The combination of these rules form themselves schemata, which can then
be connected to relevant styles. The design of these schemata and the connection to
particular style representations again requires human effort, such as that of a graphical
designer of a museum Web environment. Development environments which support
such tasks are described in()]. Once these presentation rules are in
place, a system can react to the particular needs of a user.

7.4.2 The Data Repository

The repository, as shown in Figui®e8, stores annotation schemata in the form of
XML-based documents and media-based data, such as images in various formats (pic,
gif, tiff, etc.). The repository itself can be realized using federated database technol-
ogy.

The annotation documents are created by experts, using ontology-based environ-
ments for task-specific controlled vocabulary/subject indexing schemata for in-depth
semantic-based indexing of various mediztR03]. Note that annotation schemata
are different from the style representations. Annotation schemata provide informa-
tion about one particular image or artist. For example, they capture information about
the title of an image, its painter, production date, a list of exhibitions where it was
presented, reviews, and so forth. The annotation process follows a strata-oriented
approach, which allows a fine-granulated space-oriented description of media con-

136 Chapter 7Case Studies

tent, where particular areas within an image can be especially annotated. The con-
nection can be based on linking mechanisms as described in XML path and pointer
[i]jor MPEG-4 |].

As visualized in Figure’.8, the annotations will hardly ever be completed. Most
of the time only the most basic data will be available. Thus, even if the potential
search space can be enlarged, as described earlier, there may still be a very limited
information space to apply the query to.

Imagine that a user would like to know everything about Rembrandt and the differ-
ent styles he painted his images in. With the textual representation the system might be
able to find images by Rembrandt in the database. However, if these images have no
further annotation attached than "Artist = Rembrandt’ it would not be able to classify
the retrieval results according to the query. Having access to the style specific rep-
resentation of intrinsic features, the image can now be analyzed during the retrieval
process and decide based on the results which of the relevant styles is the most appro-
priate for this particular image. As a side effect, the feature information gained can be
used as additional annotation for the image, not only in classifying it as a particular
style, but also providing several different representations of it, which can be, for ex-
ample, useful for presentational purposes. An image in the stglaiofobscurcan be
additionally represented in a grid that contains the light and dark areas. This grid can
form the basis for a presentation of images, where the style of the images and the style
of the presentation correspond. The FDE steers this automatic annotation extraction
process based on the feature grammar from the style repository.

As the main goal of the suggested framework is to facilitate the automatic genera-
tion of user-centered multimedia presentations, the result space will not only contain
the retrieved data, associated meta-data, and the relations between these different units
but also information required for their presentation. Moreover, it also returns physical
information about the retrieved datag. image size and image file type.

7.4.3 The Presentation Environment

The presentation environment, as displayed in Figuge is basically a constraint-
based planning system, which uses the definitions provided in the style representa-
tion schemata and the presentation stylés@]. Since the system can access
descriptions based on spatial, gradient and color features, the presentation genera-
tor is in the position to analyze the retrieved material based on the relevant presen-
tation design, according to design issues such as graphic direction, scale, volume,
depth, shapesd.. physical manipulation of the material for better integration into

the presentation), temporal synchronization (interactive or linear presentation), etc.,
and provides a format that a hypermedia browser can integrgtSMIL or MPEG-

4]) 3].

Section 7.4Rijksmuseum Presentation Generation 137

Figure 7.9: Feature detection steps.

7.4.4 A Style Feature Grammar

Feature grammars play a role in both the style and data repositories. In both cases
they extract the low-level feature descriptions, which can be used for the selection
of relevant material and for the layout of the presentation. But in the latter case the
features are also mapped to high-level concepts. These concepts correspond to manual
annotations, and can thus replace these when they are not available.

This section will shortly describe the algorithms involved in detecting low-level,
presentation oriented, features and high-level, manual annotation replacement, con-
cepts. The grammar itself is available in Appendi® 3.

Since the design aims at an approach that is data-driven and can therefore operate
unsupervised, it is important to incorporate adaptive decision-making algorithms. For
instance, in the case of thdair-obscurstyle a vague high-level description of the
style could be “abrightly lit object or person surrounded bydark background”.

To translate this vague conceptual description into an operational low-level feature-

138

Chapter 7€Case Studies

extractor, precise values need to be assigned to fuzzy concepts sbhdigrdsand
dark. However, these cannot be fixed in advance because these values depend on the
context,dark andbright being defined relative to the rest of the painting.

The proposed approach is data-driven in that it inspects the data in search for
natural thresholdg, e. thresholds that are dictated by the structure apparent in the
data []. To be more precise, assume a numerical image-featurat can be
computed at each of thepixel in the image€. g.hue, or brightness, see Figuté.a).

This gives rise to a numerical dataset x», ..., x,. The histogram gives an idea of
how these values are distributed over the image. If, in terms of this feature, the image
has a clear structure then a multi-modal histogram is expected, with peaks over the
most-frequently occurring feature values.

For instance, in the case ofair-obscur, computing the brightness histogram (at
least) two peaks are expected: one peak at low values created by the pixels in the dark
regions, and one at high values corresponding to bright pixels, see Figure

Locating the grey-value at the minimum in between these peaks determines a
threshold that can be used to separate the bright from the dark regions in the image.
This seemingly simple task is complicated by the fact that a data-histogram almost
never has a clear-cut unimodal or multi modal structure, but exhibits many local max-
ima and minima due to statistical fluctuations. The challenge therefore is to devise
a mathematically sound methodology that allows us to construct a smoothed version
of the histogram, suppressing the spurious local extrema that unduly complicate the
histogram structure.

For this the empirical distribution functiof,, (x) is introduced, which for each
feature-valuer determines the fraction of observationsthat are smaller tham.

The reason for switching to the empirical distribution is that it allows to compute
the precise probability that the given sample is drawn from a theoretically proposed
distribution F'(z). The idea is simple: search for tisenoothestlistribution F' that

is compatible with the data,e. such that there is a high probability that the sample
x1,...,%, has been obtained by sampling fram

In mathematical parlance this amounts to solving the following constrained opti-
mization problem: giver¥,, (x) find F'(x) that minimizes the functional

U(F) = /(F”(gc))2 dx subject tosup | F, (z) — F(z)] < e.

(The value fore is fixed in advance by specifying an acceptable level of statistical
risk). This optimization problem can be solved using standard spline-fitting routines.
Once the shape of the smoothest compatible distributias determined, its inflec-
tion points can be used to determine the genuine local minima in the histogram, thus
yielding natural thresholds for the image-segmentation extractor.

The lowest of these thresholds is then used to segment the image into dark and light
areas, see Figure9.c. And as a next step information about the areas is localized by
overlaying the image with a grid, see Figur&.d.

Section 7.4Rijksmuseum Presentation Generation 139

In the feature grammar of Appendix 13 these steps are distributed over several
detectors and their dependencies are described. For examplgéghiesegment
detector calculates the brightness value of each pixel, this set of values is then taken
as input by thévisto_segment detector to determine the segmentation thresholds.

The grammar defines several other (global) features. For exampte, ther de-
tector computes the normalized correlation between the color histogram of the paint-
ing and two average normalized histograms, respectivelglfr-obscurand non-
clair-obscurpaintings (see for a similar approachgr97).

| | classified as— | clair-obscur cubism impressionism unknown
18 clair-obscur paintings 17 - - 1
25 cubist paintings 6 21 3 1
56 impressionist paintings 1 5 31 20
83 unclassified paintings 70 1 26 -

| 182 paintings \ 94 27 60 22|

Figure 7.10: Results for the style feature grammar

All these features form the input for the final step: determining if the painting is
in theclair-obscuror one of the other styles. For this step style specific decision trees
are derived using C4.5Jui93, resulting in the detectordair_obscur, cubism and
impressionism. The performance of the feature grammar in annotating paintings
with the various styles is shown in FigurelQ The last column corresponds with
the event that there is no matching style found, the validity of thestyle rule is
optional.

Notice also that more than one of the alternatigle rules can be valid, which
means that a painting can be annotated with multiple styles,ambiguous views
on the same painting. So the support for ambiguity byAba& system comes in to
play here. When a painting matches more styles multiple parse trees describe this one
image. Each alternative, rooted by a detector, also contains a confidence value. In this
case this confidence value is based on the support of the decision rule.

Furthermore, this grammar is mainly constructed to recognize paintings in the
clair-obscurstyle. More features may be needed to fine tune the decision rules for the
other stylesge. g.impressionismThe use of a feature grammar is well suited for this
evolutionary approach as it supports incremental maintenance of the annotations.

7.4.5 Generating the Presentation

Part of the prototype implementation for the Rijksmuseum case study is a generation
engine that is able to transform a high-level description of a presentéation(' 00]

in the concrete final-form encoding that is readily playable on the end-user’s system.
In this system the final encoding form is SMIIA].

140 Chapter 7Case Studies

Figure 7.11: Ordered retrieval result before optimization.

The presentation generation engine of the system is a constraint-based planning
system. The constraint system is used for solving the design-based constraints, such
as:

« the overall presentation dynamics (e.g. linear or interactive) and the resulting
subdivision of information blocks;

 organizing material for each information block, e.g. number of elements on a
page and their spatial outline based on the actual size of each information unit;

 optimization of ordered material based on additional style criteria, such as color
or brightness distribution, in particular to emphasize a particular style.

The use of the annotations produced by the FDE are mainly of interest in the
last bullet. The inner details of the other parts of the system itself, especially the
transformation of the presentation structures generated by the constraint engine into a
SMIL presentation, have been discussed/in]

Its assumed that the system constructs a linear presentation for educational reasons
and creates topic blocks to present the material. Finally, based on spatial constraints,
it calculates how many images for each topic block can be presented on a page.

At this stage the generator tries to arrange the images in each topic block in such
a way that the style criteria farlair-obscurare fulfilled. A decision rule could look

Section 7.4Rijksmuseum Presentation Generation 141

as follows:

style_order(Image_Style, List_ Of Images, Images_Per_Page,
Presentation_List):
gradient-match(Image_Style, List_Of Images, Result__List),
border-match(Result_List, Images_Per_Page,
Presentation__List).

With this rule the system analyzes not the image itself but rather its grid abstrac-
tion, as shown in Figuré.9.d. The system tries, for a particular styler{age_Style),
to order the images of one topiddst_of Images) based on the pattern provided
by those cells of the grid that represent light values. The analysis of these patterns is
based on graphical shapes, such as triangle or rectangles. The direction of the light
is derived from a number of criteria, such as solidness of a pattern (main light cen-
ter), position in the grid (at the border indicates that the light source is outside the
image), and the direction of the dissolve of this shape (direction of light beam). For
Figure7.9.d the result is that the light source is outside the image, that light is com-
ing from the left side and dissolves towards the right side in a rectangular way. The
Result__List groups images in lists, where light follows similar directions, such as
left, up-left, up, up-right, right, down-right, down, down-left, circular.

Once that is done, the system tries to align the images based on similar border
pattern. Take once again Figured.d as the example, the system would try to find an
image which shares a similar distribution of light and dark cells (up or down by one
grid cell) but only on its right side. The combination of images is performed on the
previous calculated maximum size of images per page.

Figure 7.11 shows the random image sequence. While the final presentation in
Figure 7.12 uses the optimized order. This presentation is based on the rhetorics
of an educational-oriented presentation, which requires introductions of topics and
subtopics.

The temporal duration for every single page is calculated by the number of pre-
sented objects and their graphical complexity, the number of words for text elements,
or temporal presentation qualifiers such as fade-in or out times for media units. The
last screen offers choices for the next step.

7.4.6 Lessons Learned

The Rijksmuseum feature grammar has a much finer detector granularity than the
previous grammars. It also called for the reuse of various detectors within a different
context. The same feature detectors are used to determine global and. Ecpér

grid cell, features.

The use of decision rules for the various art styles inspired the addition of classi-
fiers as a special instance of detector plugins. Furthermore, ambiguity plays a major
role in this grammar as various styles may match concurrently. This triggered the
addition of support for detector confidences and parse forests.

142 Chapter 7Case Studies

[

Clair-obscur Clair-obscur Clair-obscur
la cl St. Paul

Lol

Clair-obscur

Portraits

Rembrandt

Clair-obscur

Clair-obscur

_ e a F» New Query
Back
Landscapes 7 Exit
‘\‘.\‘v\‘ 5
-3 - £

Figure 7.12: The optimized presentation.

7.5 Discussion

The case studies in this chapter showed the viability oftwe system and its formal
basis feature grammar systems. Due to its focus on limited context-sensitivity basic
building blocks for an multimedia annotation system can be constructed. Actual appli-
cations can then be build by putting these bloéks, grammar components, together
using the dependencies.

Next to being a description of the actual annotations, feature grammar systems
can also be used in a more traditional way: to describe a workflow and its associated
meta-data. This was done in a rec@vdaterlandrelated case study. Thcoi system
offers in this case the advantage that new workflow actions can be easily plugged in.
Furthermore, the whole infrastructure,g. plugins, can be used to easily automate
these actions.

Creating a semi-automatic feature grammar is one of the future research topics.
Manual detectors may provide new annotations or validate automatically extracted
annotations. A case study may provide insights in how conveniently the current im-
plementation supports this mixed type of annotation extraction.

Comparison of thécoi system with peer systems, and thus evaluation of imple-
mentation issue®. g.performance, remains future work. As discussed in Sectidhs
and 4.4the explicit description and usage of context knowledge is unique to feature
grammar systems, but can also be used to generate specifications, although probably
more verbose and fragmented, for these peer systems. Applying such a translation of
one or several of the case studies may enable comparable runs of these systems, and
thus provide (more) insight into their specific strengths and weaknesses.

Chapter 8

Conclusion and Future Work

If SETI@home works, for example, we’ll need libraries for communicat-
ing with aliens. Unless of course they are sufficiently advanced that they
already communicate in XML.

Paul Graham- The Hundred-Year Language

This thesis describes many formal, architectural and implementation aspects of the
Acoi system. They have provided the author with a wide scale of research topics and
challenges during the past years. This final chapter concludes the description of this
system by providing a look backward, into the past, and a look forward, into the future.

8.1 Conclusion

The aim of theAcoi system was to implement support for the complete life cycle of

a DMW (Digital Media Warehousgi. e. creation, storage and maintenance, by vari-
ous interpreters of one declarative description. The model underlying this description
would have to support these key requirements: (1) providing context for (possible)
bridging of the semantic gap, (2) allowing ambiguous interpretations, (3) describing
both contextual and output/input dependencies, (4) give enough context for incremen-
tal maintenance, and (5) keep the input specification of algorithms generic enough to
enable and promote reuse. As all these requirements involve some form of context
grammars, as known from formal language theory, were considered a good starting
point.

Chapter2 provided the formal basis for the system. Mildly context-sensitive fea-
ture grammar systems allow the embedding of annotation extraction algorittens,
feature detector functions, on a low level inside the grammar formalism, while un-
derspecifying their context. The feature grammar language of Chaptéroduced
a more natural notation of this formalism. The next three chapters described the var-
ious interpretors, the FDH-¢ature Detector Enginethe database schema and the

144

Chapter 8Conclusion and Future Work

FDS (Feature Detector Schedulemeeded for the various life cycle stages. These
core chapters of the thesis address the key requirements using formal language theory.
This is mainly visible in the design of the FDE, which is directly related to practical
algorithms from the computer science research fields of natural language processing
and compiler technology. Where needed proper extensions of this theory and related
practice have been defined.

The three case studies from Chapieyave an impression of the practical impact
of the Acoi system. Formal language theory in the form of feature grammar systems,
with its focus on extending and in the same time limiting context-sensitivity, appears
to be indeed well suited to meet the identified requirements of a DMW annotation
subsystem. This, as this thesis already shows, makes a plethora of formal techniques
and practical experience available to this application domain. Future experiments with
a mature FDS implementation and further evaluation of the complete system may add
additional support for this conclusion.

8.2 Future Work

The various components of teoi system provide a basis for the annotation subsys-
tem of a DMW. However, there is always room for improvement, as has been indicated
in various places throughout the thesis. The next sections will revisit these areas of
future work and also describe some additional ones.

8.2.1 Feature Grammar Systems

The description of feature grammar systems is directly based on the formal theories
of cooperating distributed grammar systems and regulated rewriting. Contributions
of this thesis to these theories deC ((left) path-controlledl grammars (see Sec-
tion 2.2.3.7. Intuition tells that these grammars are as powerful as conditional gram-
mars, however, this should backed up by a formal proof.

Detector functions can produce C&agntext-Sensitijesentences, however, the
feature grammar components are Cotext-Freg In a future version ofcoi the
CF components may be replaced by CS or mildly CS components,!PC' (left
Path-Controlled components. This will also have to be reflected in the feature gram-
mar language. In the case bPC components a regular path expression could be
associated to arbitrary non-terminals instead of only to detector symbols.

8.2.2 Feature Grammar Language

The core feature grammar language directly relates to the underlying feature grammar
system. The extensions to the language provide shortcuts to the developer. One of
tasks of these extensions is to keep the grammar semantically rich and to avoid clutter
with additional symbols which are only there to steer the extraction process. Ideally

Section 8.2Future Work 145

these additional symbols are all anonymous so they are transparent to both the devel-
oper and the user. Additional language constructs may proof to be convenignt,
directly embedding of anonymous whitebox detectors in the production rules. Also
the use of symbol or symbol specific scripts, in the vain of attribute grammars, for the
propagation of confidence values may proof an interesting addition.

8.2.3 Feature Detector Engine

The current FDE implementation is based on a depth-first top-down parsing algo-
rithm: exhaustive backtracking. Experiments with other parsing algorithms, and thus
with other moments of control transfer between components, can provide alternatives
for this algorithm. Another interesting experiment will be the use of a breadth-first al-
gorithm to add some form of parallelism to the FDE. These alternative algorithms can
also be realized by translating a specific feature grammar system into a specification
for a coordination systene. g.a T script for ToolBus.

A detector function can depend on some external functionality, which is (tem-
porarily) unavailable. Adding annknown result state next teuccess and failure
may enable the FDE to proceed validation partially and to return later to the detector
to retry its execution.

8.2.4 Feature Database

As already stated in Chaptérthe current storage scheme can be replaced by an-
other, probably better suited, XML storage scheme. The query process of the feature
database is also still in its infancy. For example further experiments with the usage
of the confidence values of detectors as input to a probabilistic reasoning scheme or a
ranking formula will be useful. This is directly related to a proper use of the, possible,
various alternative interpretations of one multimedia object.

At the moment all annotations are extracted during the building of the index. How-
ever, some annotations or features may be more dynareichey are computed on
demand and are not persistent. These derived annotations and features may be used
to capture properties of the whole index at a specific moment in firee the mo-
ment of query execution. The impact of these type of symbols on the analysis of the
dependency by the FDS will have to be investigated.

8.2.5 Feature Detector Scheduler

The implementation of the FDS has been sketched and some core components have
been prototyped. Future work certainly contains an actual implementation of the com-
plete FDS, accompanied by further experiments in the domain of, for example, the
WWW multimedia search engine.

146

Chapter 8Conclusion and Future Work

8.2.6 Digital Media Warehouses

The case studies of Chaptégave insight or hints in how to embed the system in a
complete DMW system. But in most cases Bwei system functioned as a blackbox.
Future experiments could involve a further integration of the various system compo-
nents. The manual annotation part is one of the first components which comes to
mind. How well will the Acoi system cope with manual detectors and semi-automatic
annotation extraction? If this turns out favorable for vei system it will implement
a complete annotation subsystem.

Comparison with the execution characteristics of other systems may become pos-
sible by implementing a common task, and may give insight in both modeling power
and performance of the competing systems.

8.3 Discussion

This thesis touched upon one of the key research challenges of a DMW: multimedia
annotation extraction and (incremental) maintenance. Although there are still many
open issues to be resolved, theoi system, with feature grammar systems as basis,
rallied formal language theory and practice to meet this challenge with success.

g B W NP

© ®© N o

10

11

16

18

19

20

Appendix A

The Feature Grammar

Language

This appendix contains the feature grammar language in an EBNF nofagiothe notation as
used by the W3C for the XML specificatioii\f

#character classes

#literals or constants

integer = -2 dig
unsigned-integer::= digit+

#a detector plugin
prefix = scope

#simplified XPath expression

digit = [0-9]

exponent = [Ee][-+]?{D}+
letter o= [La-zA-Z]

any i= [#x0-#XFFFE]

it+

i}

float = -2 digit+ ' digit+ exponent?

string =" oany* v

constant := float | integer | string
#a symbol

symbol u= letter (letter | digit)*
#a scope

scope u= letter (letter | digit)*

#the prefix puts an symbol in a scope, this scope
#may refer to a feature grammar, an ADT module or

148

Appendix A:The Feature Grammar Language

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

xpath ::= absolute | relative
absolute w= ' relative? | "/I" relative
relative = step (') step | "/I" step)*
step = axis? ((symbol | ™*) | dereference)
| abbreviation
axis u= "self:" | "parent:" | "child::"
| "ancestor::" | "ancestor-or-self::"
| "preceding::" | "preceding-sibling::"
| "descendant:" | "descendant-or-self::"
| "following::" | "following-sibling::"
abbreviation SRR
#a feature grammar specific addition
dereference = '& symbol

#a list of detector parameters, if no axis is specified for
#the first step it defaults to preceding::

detector-params ::= (" (detector-param ('/
detector-param)*) ')
detector-param ::= constant | xpath

#even more simplified XPath expression

s-path .= s-absolute | s-relative
s-absolute =l s-relative? | "/" s-relative
s-relative = s-step (/" s-step | "/[" s-step)*
s-step = s-axis? (symbol | *")
s-axis = "self::" | "child::"
| "descendant:" | "descendant-or-self::"

#a list of start symbol parameters, if no axis is specified
#for the first step it defaults to the standard child:
start-params w='(C (start-param (')

start-param)*) ')
start-param = s-path

#collection type and bounds specification for symbols on the
#right-handside of a rule

bounds u= list | set | tuple
list w= T range T | range
set w={ range ¥
tuple ©= < int-range ">’
range == wild-range | int-range
int-range = unsigned-integer
('’ unsigned-integer)?
wild-range =R Y Y

#the feature grammar language, i.e. the start symbol of this

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

#EBNF
feature-grammar ::= module-decl decl*
decl = use-decl | start-decl
| poll-decl | atom-decl

| detector-decl | classifier-decl
| version-decl | rule-decl

#module declarations
module-decl =
use-decl =

1.1

"%module" scope ’;

#start declaration
start-decl

#poll declaration
poll-decl

#atom and atom rule declarations
atom-decl

"%use" scope (', scope)*)

= "Opstart" symbol start-params ’;

= "%detector" symbol ".poll" start-params '’}

= "%atom" prefix? symbol

(((symbol (') symbol)*)?
| ¢ anys ¥))2 Y

#detector declarations
detector-decl S
detector-decl =

T any+ T 77

#classifier declaration
classifier-decl ::= "%classifier" prefix? symbol

#version declaration

version-decl = "%version" symbol
unsigned-integer
unsigned-integer .’
unsigned-integer '}’

#rule declaration

rule-decl 2= rhs " lhs "}

rhs u= prefix? symbol

lhs = (&7 prefix? symbol
Ihs 2= "C lhs)y

Ihs = lhs ’|" Ihs

"%detector" prefix? symbol detector-params ’;
"%detector" prefix? symbol

detector-params '}’

bounds? | constant)+

o v A~ W

10

11

12

13

14

15

16

1

2

Appendix B

Feature Grammars

B.1 The WWW Feature Grammar

%module
Yostart

%detector
%detector
%detector
%detector

%atom
%atom

%atom
%atom
%atom

WebObject
WebHeader
MIME
Status

WWW;
WebObject(Location);

WebHeader(Location);
Robot(Location,"AcoiRobot");
Explored(MIME);
Tried(parent::Status);

www::url {(*http://([* /1%)(:[0-9]%)?/?(.%)$)
|(Mile:/1(%)$)};
temporal::date;

url Location;
date Modification;
Ing Length;

. Location (Robot WebHeader WebBody)? Status;

. Redirect? MIME Moadification? Length?;
: Primary Secondary;
: Explored | Tried;

B.2 The Text Feature Grammar

%module

%use

Text;

WWW,

152

Appendix BFeature Grammars

12

13

14

16

18

19

20

%detector TextType [MIME/Primary = "text"];
%detector DRUID(Location);

%atom str Language;

WebBody : TextType Text;
Text . DRUID;
DRUID . Language,;

B.3 The HTML Feature Grammar

%module HTML;
%use Text;

%detector HTMLType [MIME/Secondary = "html"];
%detector HTML(Location);

%atom str Title, Word, Link, Alt;
%atom bit Embedded;

WebBody : HTMLType HTML;

HTML . Title Body? Anchor*;

Body : &Keyword+;

Anchor . &WebObject Embedded Link? Alt?;
Y%start Keyword(Word);

%detector Synset(Word);

Y%start Synonyms(Word);

Y%start Hypernyms(Word);

Y%start Hyponyms(Word);

Keyword : Word Synset;

Synset : &Synonyms &Hypernyms &Hyponyms;
Synonyms Tid str+;

Hypernyms : id str+;
Hyponyms Did str+;

12

Section B.4The Image Feature Grammar 153

B.4 The Image Feature Grammar
%module Image;
%use WWW,;

%detector ImageType [MIME/Primary = “image"];

4 | %detector Portrait [Faces/Number = 1];

%detector Global(Location);
%detector Icon(Location);

%classifier decrules::Photo(Global);
%classifier decrules::Graphic(Global);
%detector Skin(Location);

%detector Faces(Location);
%detector exec::Histogram(Location);

%atom vector::flts;

%atom int Number;

%atom flt Prevalent, Far, NormalizedFar, Saturation, Percentage;
%atom flts HSB, RGB;

%atom bit Animated;

WebBody . ImageType Image;

Image : Global Icon Class;

Global . Size Color Animated;

Size : Width Height Ratio;

Color : Number Prevalent Neighbor Saturation Histogram;
Neighbor . Far NormalizedFar;

Histogram : RGB HSB;

Icon . Location;

Class : Graphic | Photo (Skin Faces Portrait?)?;
Skin . Percentage;

Faces : Number;

B.5 The Audio Feature Grammar
%module Audio;
%use Www

%detector AudioType [MIME/Primary = "audio"];

WebBody . AudioType Audio;

154

Appendix BFeature Grammars

10

11

B.6 The MIDI Feature Grammar

%module MIDI;

%use Audio;

%detector MIDIType [MIME/Secondary = "midi"];
%detector exec::MIDI(Location);

%atom int QuarterNode, Id, Channel, Track;
%atom str Lyrics, Name, Contour;

Audio : MIDIType MIDI;

MIDI : QuarterNode Musician* Lyrics* Profile*;
Musician . Instrument Channel;

Instrument : Id Name?;

Profile . Track Contour;

B.7 The MP3 Feature Grammar

%module MP3;

%use Audio;

%detector MP3Type [MIME/Secondary = "mpeg"];
%detector ID3(Location);

%atom str Title, Performer, Album, Genre;
%atom int Year;

Audio . MP3Type MP3;
MP3 . ID37?;
ID3 . Title Performer Album Year Genre;

B.8 The Video Feature Grammar

%module Video;
%use WWWwW
%detector VideoType [MIME/Primary = "video"];

WebBody . VideoType Video;

o g A~ W N

© N o a

Section B.9.The MPEG Feature Grammar 155

B.9 The MPEG Feature Grammar
%module MPEG;
%use Video;

%detector MPEGType [MIME/Secondary = "mpeg"];
%detector Icon(Location);

Video . MPEGType MPEG;
MPEG . lcon;

B.10 The Acoi Feature Grammar

%module Acoi;

%use WWW;

%use Text, HTML,;
%use Image;

%use Audio, MIDI, MP3;
%use Video, MPEG;

B.11 The Tennis Feature Grammar
%module Tennis;
%use Video;

%atom flt xPos, yPos, Ecc, Orient;
%atom int FrameNo, Area;

%detector xml-rpc::Segment(WebObject/Location);

%detector xml-rpc::Tennis(WebObject/Location,
ancestor::Scene/Begin/FrameNo,
ancestor::Scene/End/FrameNo);

%detector Netplay [some $Player in Player satisfies
$Player.yPos <= 170

I;
%detector Rally(parent::Tennis);
Video : Segment;

Segment . Scene?,;
Scene : Begin End Type;

156 Appendix BFeature Grammars

16 | Type : "tennis" Tennis;

17 | Type . "closeup";

18 | Type . "audience";

19 | Type . "other";

20 | Begin . FrameNo;

21 | End : FrameNo;

22 | Tennis : Frame+ Event;

23 | Frame : FrameNo Player;

24 | Player : XPos yPos Area Ecc Orient;
s | Event : Netplay? Rally?;

B.12 The Australian Open Feature Grammar

1 | Yomodule AO;

2 | %use Acoi;
3 | %use Tennis;

B.13 The Rijksmuseum Feature Grammar

1 | %emodule Rijksmuseum;

2 | %ouse Image;

3 | %atom flt threshold;

4 | %atom int columns, rows;

s | %atom int column, row;

s | Yoatom int X, y, width, height;

7 | %atom flt dark_coverage, light _coverage;
s | %atom int number;

9 | %atom flt corr, non_corr, norm_corr;

10 | %atom flt scalar;
1 | %atom bit onoff;

12 | %detector light(Location);

13 | %detector global(WebObject/Location);
14 | %odetector contrast(WebObject/Location);
15 | %detector grid(WebObject/Location);

16 | Yodetector histo_segment(Location);

17 | Y%odetector segment(Location,

18 ancestor::light/histo_segment/threshold);
19 | %detector light_dist(ancestor::image/general/light/segment/name,
20 shape);

2 | Y%detector region(grid);
22 | %detector co_histo(WebObject/Location);

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Section B.13The Rijksmuseum Feature Grammar

157

%detector cu_histo(WebObject/Location);
%detector im_histo(WebObject/Location);

%classifier decrules::clair_obscur(corr,non_corr,contrast/scalar);
%classifier decrules::cubism(corr,non_corr,contrast/scalar);

Image : general global local style;
general . light;
light . Location histo_segment segment;

histo_segment: threshold+;

segment . Location;

shape . bbox;

bbox : X y width height;
features . light_dist;

light_dist : light_coverage dark_coverage;

global . shape features contrast;
local : grid region;

contrast . scalar;

grid : columns rows cell*;

cell : column row shape features;
region . number;

style : co_histo clair_obscur;
style . cu_histo cubism;

style : im_histo impressionism;
style T

co_histo : COrr non_corr norm_corr;
cu_histo : COrr non_corr norm_corr;

im_histo : COrr non_corr norm_cofrt;

%classifier decrules::impressionism(corr,non_corr,contrast/scalar);

© ® N o o A W N B

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

Appendix C

XML documents

C.1 A schema document

<?xml version="1.0"?>

<fg:grammar
xmins:fg="http://www.cwi.nl/~acoi/fg/schema"
xmlns:WWW="http://www.cwi.nl/~acoi/WWW"
xmins:image="http://www.cwi.nl/~acoi/ WWW"

<WWW:WebObject type=".non-terminal.start.">
<WWW:Location type=".non-terminal."/>
<WWW:WebHeader type=".non-terminal.detector.blackbox."/>
<WWW:WebBody type=".non-terminal."/>
</WWW:WebObject>
<WWW:WebHeader type=".non-terminal.detector.blackbox.">
<WWW:Madification type=".non-terminal."/>
<WWW:Length type=".non-terminal."/>
</WWW:WebHeader>
<WWW:Location type=".non-terminal.">
<WWW:url type=".terminal.atom." module="www"/>
</WWW:Location>
<WWW:Modification type=".non-terminal.">
<WWW:date type=".terminal.atom." module="temporal"/>
</WWW:Modification>
<WWW:Length type=".non-terminal.">
<fg:lng type=".terminal.atom."/>
</WWW:Length>
<WWW:WebBody type=".non-terminal.">
<Ilmage:Image type=".non-terminal."/>
</WWW:WebBody>
<Ilmage:Skin type=".non-terminal.detector.blackbox.">

160 Appendix CXML documents

29 <Image:bitmap type=".terminal.atom." module="image"/>
30 </Image:Skin>
31 <Image:Color type=".non-terminal.detector.blackbox.">

32 <Image:RGB type=".non-terminal."

33 coll="list" lbnd="0" hbnd="infinit"/>

3 <Image:Number type=".non-terminal."/>
35 <Image:Prevalent type=".non-terminal."/>
36 <Ilmage:Saturation type=".non-terminal."/>

37 </Image:Color>

38 <Image:Faces type=".non-terminal.detector.blackbox.">
39 <fg:int type=".terminal.atom."/>

40 </Image:Faces>

a <Image:Red type=".non-terminal.">

a2 <fg:int type=".terminal.atom."/>

4 </Image:Red>

4 <Image:Green type=".non-terminal.">

s <fg:int type=".terminal.atom."/>

46 </Image:Green>

a7 <Image:Blue type=".non-terminal.">

8 <fg:int type=".terminal.atom."/>

" </Image:Blue>

50 <Image:Number type=".non-terminal.">
51 <fg:int type=".terminal.atom."/>

52 </Image:Number>

53 <Image:Prevalent type=".non-terminal.">
54 <fg:flt type=".terminal.atom."/>

55 </Image:Prevalent>

56 <Ilmage:Saturation type=".non-terminal.">
57 <fg:flt type=".terminal.atom."/>

58 </Image:Saturation>

59 <lmage:lmage type=".non-terminal.">

60 <Image:Color type=".non-terminal.detector.blackbox."/>
61 <Image:Class type=".non-terminal."/>
62 </Image:lmage>

63 <Image:Class type=".non-terminal.">

64 <Image:Graphic type=".non-terminal.detector.blackbox."/>
65 <Image:Photo type=".non-terminal.detector.whitebox."/>
66 <Image:Skin type=".non-terminal.detector.blackbox."/>

67 <Image:Faces type=".non-terminal.detector.blackbox."/>

68 </Image:Class>
69 <Image:RGB type=".non-terminal.">

70 <Image:Red type=".non-terminal."/>
7 <lmage:Green type=".non-terminal."/>
72 <Image:Blue type=".non-terminal."/>

73 </Image:RGB>

74 | </fg:grammar>

N

© ® N o U A W N B

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Section C.2A parse forest document 161

C.2 A parse forest document

<?xml version="1.0"?>

<fg:forest
xmins:fg="http://www.cwi.nl/~acoi/fg/forest"
xmlns:WWW="http://www.cwi.nl/~acoi/ WWW"
xmins:Image="http://www.cwi.nl/~acoi/lmage"

<fg:elementary context="1:1" confidence="1.00" idrefs="2"
start="WWW:WebObject" date="20030625"
>
<WWW:WebObject id="5478@0" context="1:1">
<WWW:Location id="1" context="1:1">
<WWW:url id="2" context="1:1">
<!/[CDATA[http://...]]>
</WWW.url>
</WWW:Location>
<WWW:WebHeader idrefs="5479@0" context="1:1"/>
<WWW:WebBody id="7" context="1:1">
<Image:lmage id="8" context="1:1">
<Image:Color idrefs="5480@0" context="1:1"/>
<Image:Class id="15" context="1:1">
<lmage:Photo idrefs="5486@0" context="1:1"/>
<Ilmage:Skin idrefs="5487@0" context="1:1"/>
<lmage:Faces idrefs="5488@0" context="1:1"/>
</Image:Class>
</Image:lmage>
</WWW:WebBody>
</WWW:WebObject>
</fg:elementary>
<fg:auxiliary date="20030625">
<WWW:WebHeader id="5479@0" idrefs="2" context="1:1"
confidence="1.00" version="1.0.0"

>
<WWW:Modification id="3" context="1:1">
<WWW:date id="4" context="1:1">
<I/[CDATA[Jul 23 2001]]>
</WWW:date>
</WWW:Modification>
<WWW:Length id="5" context="1:1">
<fg:lng id="6" context="1:1">
<I[CDATA[14197]]>
</fg:Ing>
</WWW:Length>
</WWW:WebHeader>

</fg:auxiliary>

162

Appendix CXML documents

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

<fg:auxiliary date="20030625">
<Ilmage:Color id="5480@0" idrefs="2" context="1:1"
confidence="1.00" version="1.0.0"
>
<Image:Number id="9" context="1:1">
<fg:int id="10" context="1:1">
<I[CDATA[29053]]>
</fg:int>
</Image:Number>
<Image:Prevalent id="11" context="1:1">
<fg:flt id="12" context="1:1">
<I[CDATA[0.03]]>
<[/fg:flt>
</Image:Prevalent>
<Image:Saturation id="13" context="1:1">
<fg:flt id="14" context="1:1">
<I[CDATA[0.19]]>
<[/fg:flt>
</Image:Saturation>
</Image:Color>
</fg:auxiliary>
<fg:auxiliary date="20030625">
<Ilmage:Photo id="5486@0" idrefs="10 12 14"
context="1:1" confidence="0.85" version="1.0.0"
/>
</fg:auxiliary>
<fg:auxiliary date="20030625">
<lmage:Skin id="5487@0" idrefs="2" context="1:1"
confidence="0.95" version="1.0.0"
>
<Image:bitmap id="16" context="1:1">
<I[CDATA[00...]]>
</Image:bitmap>
</Image:Skin>
</fg:auxiliary>
<fg:auxiliary date="20030625">
<lmage:Faces id="5488@0" idrefs="16" context="1:1"
confidence="0.77" version="1.0.0"
>
<fg:int id="17" context="1:1">
<I[CDATA[1]]>
</fg:int>
</Image:Faces>
</fg:auxiliary>
</fg:forest>

Abbreviations

AACR Anglo-American Cataloguing Rules

Acoi Amsterdam catalog of images

ADMIRE ADvanced Multimedia Retrieval Model
AMIS Advanced Multimedia Indexing and Searching
API Application Programming Interface

BAT Binary Association Table

BNF Backus-Naur Form

C Conditional (grammar)

CD Cooperating Distributed (grammar system)
CF Context-Free

CNF Chomsky Normal Form

COBRA COntent-Based RetrievAl

CSs Context-Sensitive

DBMS DataBase Management System

DMW Digital Media Warehouse

DOM Document Object Model

DPDA Deterministic Push-Down Automata
DPDT Deterministic Push-Down Transducer
DSL Domain-Specific Language

EBNF Extended Backus-Naur Form

FA Finite Automata

FDE Feature Detector Engine

FDS Feature Detector Scheduler

GNF Greibach Normal Form

GPL General Purpose Language

GUI Graphical User Interface

HPSG Head-Driven Phrase Structure Grammar
HTML HyperText Markup Language

IR Information Retrieval

LBA Linear Bounded Automata

164 Abbreviations

LFG Lexical-Functional Grammar

LHS Left-Hand Side

LIFO Last-In First-Out

IPC left Path-Controlled (grammar)

MIL Monet Interpreter Language

MIME Multipurpose Internet Mail Extensions
MOA Magnum Object Algebra

MPEG Moving Picture Experts Group

ND Named Disjunction

NLP Natural Language Processing

NPDA Non-deterministic Push-Down Automata
NPDT Non-deterministic Push-Down Transducer
ODMG Object Data Management Group

PC Path-Controlled (grammar)

PC Parallel Communicating (grammar system)
PDA Push-Down Automata

PDT Push-Down Transducer

Qbs Query by Sketch

QbT Query by Text

RDT Reduced Derivation Tree

RE Recursively Enumerable

REG REGular

RHS Right-Hand Side

RPC Remote Procedure Call

RRPG Regular Right Part Grammar

SGML Standard Generalized Markup Language
SMIL Synchronized Multimedia Integration Language
SQL Structured Query Language

TC Tree-Controlled (grammar)

URI Uniform Resource ldentifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

www World Wide Web

XML eXtensible Markup Language

XPath XML Path language

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

Bibliography

[ACC199]

[Alt01]

[App87]

[ARO1]

[Arn74]
[AS88]

[ASF97]

[ASUS6]

[Bak79]

[BB75]

G. Auffret, J. Carrive, O. Chevet, T. Dechilly, R. Ronfard, and B. Bachimont.
Audiovisual-based hypermedia authoring: using structured representations for
efficient access to av documents. In Klaus Tochterman, Jorg Westbomke,
Uffe K. Will, and John J. Leggett, editorBroceedings of the 10th ACM con-
ference on Hypertext and Hypermedimges 169 — 178, Darmstadt, Germany,
February 1999. ACM.135

AltaVista. AltaVista - Image Search www.altavista.com/sites/
search/simage , 2001. 10

D. E. Appelt. Bidirectional grammars and the design of natural language gen-
eration systems. IRroceedings of Third Conference on Theoretical Issues in
Natural Language Processing (TINLAP;®pages 185 — 191, New Mexico State
University, Las Cruses, New Mexico, January 198R

Anne Abeillé and Owen Rambowlree Adjoining Grammars: Mathematical,
Computational and Linguistic PropertiesUniversity of Chicago Press, first
edition, January 200182

R. Arnheim.Art and Visual Perception: A Psychology of the Creative.lBaber
and Faber, London, 1974135

G. T. M. Altmann and M. J. Steedman. Interaction with context during human
sentence processing.ognition 30(3):191 — 238, 198874

Vassilis Athitsos, Michael J. Swain, and Charles Frankel. Distinguishing pho-
tographs and graphics on the world wide web.Warkshop on Content-Based
Access of Image and Video Librarjd2uerto Rico, June 1997, 124, 139

Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmanCompilers — Principles,
Techniques, and Tool$\ddison-Wesley, 198632, 79

J. Baker. Trainable grammars for speech recognitio@p@ech Communication
Papers for the 97th Meeting of the Acoustical Society of Amepages 547 —
550, Cambridge, Massachusetts, 1979. MIT Prexs.

John Seely Brown and Richard R. Burton. Multiple representations of knowl-
edge for tutorial reasoning. In Daniel G. Bobrow and Allan Collins, editors,

Representation and Understandjiigitnguage, Thought, and Culture, pages 311

—349. Academic Press, 19783

http://www.altavista.com/sites/search/simage
www.altavista.com/sites/search/simage
www.altavista.com/sites/search/simage

166

Bibliography

[BKS6]

[BK94]

[BK95]

[BK96]

[BK99]

[Blag7]
[Blaos]

[BLFIM98]

[Blo02]

[Bon02]

[Boo69]

[Bos99]
[Bou03]
[Bre82]

[BWK98]

J.A. Bergstra and J. W. Klop. Process algebra: specification and verification in
bisimulation semantics. In M. Hazewinkel, J.K. Lenstra, and G.T.L. Meertens,
editors, Mathematics & Computer Science Wolume 4 of CWI Monograph
North-Holland, 1986.43

J.A. Bergstra and P. Klint. The toolbus - a component interconnection archi-
tecture. Technical Report P9408, Programming Research Group, University of
Amsterdam, 199443

P. A. Boncz and M. L. Kersten. Monet: An Impressionist Sketch of an Ad-
vanced Database System. Pnoceedings Basque International Workshop on
Information TechnologySan Sebastian, Spain, July 199%0

J.A. Bergstra and P. Klint. The discrete time toolbus. In M. Wirsing and M. Ni-
vat, editorsAlgebraic Methodology and Software Technology (AMAST\@#)
ume 1101 ofLecture Notes in Computer Sciengmages 286 — 305. Springer-
Verlag, 1996. 43

P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Fragmented
World. The VLDB Journgl8(2):101-119, October 1999. The original publica-
tion is available in LINK, © Springer-Verlag99

Philippe Blanche. Disambiguating with controlled disjunctionsPtaceedings
of the International Workshop on Parsing Technologie397. 21, 40

Philippe Blanche. Parsing ambiguous structures using controlled disjunctions
and unary quasi-trees. Proceedings of ACL-COLING’98998. 21

T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masintémiform Resource
Identifiers (URI): Generic SyntaxThe Internet Engineering Task Foreeyw.
ietf.org/rfc/rfc2396.txt , August 1998 1998.3

Henk Ernst Blok. Database Optimization Aspects for Information Retrieval
PhD thesis, Centre for Telematics and Information Technology, Enschede, The
Netherlands, April 2002.125

P. A. Boncz.Monet: A Next-Generation DBMS Kernel For Query-Intensive Ap-
plications Ph.d. thesis, Universiteit van Amsterdam, Amsterdam, The Nether-
lands, May 2002.99

T. L. Booth. Probabilistic representation of formal languagedEEE Confer-
ence Recors of the 1969 Tenth Annual Symposium on Switching and Automata
Theory pages 74 — 81, Waterloo, Ontario, 1969. IEEEL

Peter BoschMixed-Media File System&hD thesis, Centre for Telematics and
Information Technology, Enschede, The Netherlands, Juni 1999.

Ronald Bourret. XML Database Products www.rpbourret.com/xml/
XMLDatabaseProds.htm , 2003. 110

J. Bresnan, editofThe Mental Representation of Grammatical RelatioM$T
Press, Cambridge, MA, 19827

P. A. Boncz, A. N. Wilschut, and M. L. Kersten. Flattening an Object Algebra to
Provide Performance. IRroceedings of the IEEE International Conference on
Data Engineering (ICDE)pages 568-577, Orlando, FL, USA, February 1998.
100

http://www.ietf.org/rfc/rfc2396.txt
www.ietf.org/rfc/rfc2396.txt
www.ietf.org/rfc/rfc2396.txt
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
www.rpbourret.com/xml/XMLDatabaseProds.htm
www.rpbourret.com/xml/XMLDatabaseProds.htm

167

[BWvZ01]

[BYRN99]
[CAMO1]
[CDP99]
[CGM97]
[Cho59]

[CK85]

[CKO1]

[CL96]

[Cla99]
[CM77]

[CMO1]

[CMOY96]

[CSLO1]

[CVDKP94]

[DARO3]

[Dat01]

H. E. Blok, M. A. Windhouwer, R. van Zwol, M. Petkovic, P. M. G. Apers,
M. L. Kersten, and W. Jonker. Flexible and scalable digital library search. In
Proceedings of the International Conference on Very Large Data Bases (VLDB)
Rome, Italy, September 2001.23 125, 128

Ricardo Baeza-Yates and Berthier Ribeiro-Néfimdern Information Retrieval
Addison Wesley, 1999125

G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents.
In Proceedings of ICDE2001. 116

Carlo Colombo, Alberto Del Bimbo, and Pietro Pala. Semantics in visual infor-
mation retrieval IEEE MultiMedia 6(3):38 — 53, July 19996

S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in struc-
tured data. IfProceedings of ACM SIGMQ[1997. 116

Noam Chomsky. On certain formal properties of grammérfrmation Con-
trol, 2:137-167, 1959.16

A. Copeland and S. Khoshafian. A decomposition storage mod&rdeceed-
ings of the ACM SIGMOD International Conference on Management of,Data
pages 268 — 279, Austin, Texas, USA, May 19&®

James Clark and Kohsuke KawaguchiGuidelines for using W3C XML
Schema Datatypes with RELAX NG Oasis, www.oasis-open.org/
committees/relax-ng/xsd.html , 2001. 104

J. Cha and S. Lee. Comib: Composite icon browser for multimedia databases.
Multimedia Tools and Application8(3):203 — 223, 19963

James ClarkXT. www.blnz.com/xt/index.html ,1999. 124

K. Culik Il and H.A. Maurer. Tree controlled grammarGomputing 19:129 —
139, 1977.22, 23

James Clark and Makoto MurataRELAX NG Specification Oasis, www.
oasis-open.org/committees/relax-ng/spec-20011203.
html , 2001. 104

I.J. Cox, M.L. Miller, S.M. Omohundro, and P.N. Yianilos. Pichunter: Bayesian
relevance feedback for image retrieval Hroceedings of ICPR 199fages 361
— 369, Vienna, Austria, 19963

Princeton University Cognitive Science LaboratoryWordNet - a Lexical
Database for Englishwww.cogsci.princeton.edu/~wn/ , 2001. 60,
124

Erzsébet Csuhaj-Varhu, Jurgen Dassow, Jozef Kelemen, and Ghedrghe P
Grammar Systems: A Grammatical Approach to Distribution and Cooperation
volume 5 ofTopics in computer mathematicSordon and Breach Science Pub-
lishers, 1994.24, 27

DARPA. The DAML+OIL ontology markup languageww.daml.org , 2003.
135

Datapower. XSLTMark www.datapower.com/xml_community/
xsltmark.html ,2001. 124

http://www.oasis-open.org/committees/relax-ng/xsd.html
www.oasis-open.org/committees/relax-ng/xsd.html
www.oasis-open.org/committees/relax-ng/xsd.html
http://www.blnz.com/xt/index.html
www.blnz.com/xt/index.html
http://www.blnz.com/xt/index.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
www.oasis-open.org/committees/relax-ng/spec-20011203.html
www.oasis-open.org/committees/relax-ng/spec-20011203.html
www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.cogsci.princeton.edu/~wn/
www.cogsci.princeton.edu/~wn/
http://www.cogsci.princeton.edu/~wn/
http://www.daml.org
www.daml.org
http://www.daml.org
http://www.datapower.com/xml_community/xsltmark.html
www.datapower.com/xml_community/xsltmark.html
www.datapower.com/xml_community/xsltmark.html

168

Bibliography

[DCMO1]
[DE9O]

[Del9g]

[dJGHNOO]

[dIK]

[DP89]

[DP97]

[dV99]

[dVEKOS]

[dVWAKOO]

[Eak96]

[Eng02]

[Falos]

[Falo1]

[Fau94]
[FCPOO]

DCMI. Dublin Core Metadata Initiativedublincore.org ,2001. 3

Jochen Dorre and Andreas Eisele. Feature logic with disjunctive unification. In
Proceedings of COLING’9(pages 100 — 105, 1991

Alberto Del Bimbo. Visual Information RetrievalMorgan Kaufmann Publish-
ers, Inc., 1999.2, 6

F. de Jong, J-L. Gauvain, D. Hiemstra, and K. Netter. Language-based mul-
timedia information retrieval. IfProceedings of RIAOpages 713-725, Paris,
France, 2000.2

H.A. de Jong and P. Klint. Toolbus: the next generation.Ptaceedings of
Formal Methods Components and Objects 2002 (FMCO 20@2ppear.43

J. Dassow and G.&n. Regulated Rewriting in Formal Language Theorgl-
ume 18 of EATCS Monographs on Theoretical Computer Scien8pinger-
Verlag, 1989.18, 21, 22, 23

A. Del Bimbo and P. Pala. Retrieval by elastic matching of user skettGE&
Trans. on Pattern Analysis and Machine Intelligent®(2):121 — 132, 19972

Arjen P. de Vries. Content and Multimedia Database Management Systems
PhD thesis, Centre for Telematics and Information Technology, Enschede, The
Netherlands, December 19992

Arjen P. de Vries, Brian Eberman, and David E. Kovalcin. The design and imple-
mentation of an infrastructure for multimedia digital libraries. Aroceedings

of the 1998 International Database Engineering & Applications Sympqgsium
pages 103-110, Cardiff, UK, July 19982

A. P. de Vries, M. A. Windhouwer, P. M. G. Apers, and M. L. Kersten. Informa-
tion Access in Multimedia Databases based on Feature Mddels Generation
Computing 18(4):323-339, October 2000.21

John P. Eakins. Automatic image content retrieval - are we getting anywhere?
In Proceedings of Third International Conference on Electronic Library and
Visual Information Researclipages 123 — 135, De Montfort University, Milton
Keynes, May 1996.5

Joost Engelfriet. The delta operation: From strings to trees to strings. In
W. Brauer, H. Ehrig, J. Karhumaki, and A. Salomaa, editbosmal and Nat-

ural Computing volume 2300 of_ecture Notes in Computer Science (LNCS)
pages 39 — 56. Springer-Verlag, 20020

Christos FaloutsosSearching multimedia databases by contdfiuwer Aca-
demic Publishers, Dordrecht, NL, 1996.

David C. Fallside. XML Schema Part 0: PrimerW3C, www.w3.0rg/TR/
xmlschema-0/ , 2001. 103

Laurene V. FausetFundamentals of Neural NetworkBrentice Hall, 1994.6

G. Frederix, G. Caenen, and E. J. Pauwels. Pariss: Panoramic, adaptive and
reconfigurable interface for similarity search. Rroceedings of the ICIP 2000
International Conference on Image Processipages 222 — 225, September
2000. 135

http://dublincore.org
dublincore.org
http://dublincore.org
http://www.w3.org/TR/xmlschema-0/
www.w3.org/TR/xmlschema-0/
www.w3.org/TR/xmlschema-0/

169

[FH99]

[FK99]

[Flo62]
[Fri02]

[FSA96]

[GAS00]

[GEF*99]

[Gel95]

[GJ98]

[Goo01]
[Gro94]

[Gru02]

[GVKO3]

[GVKTO3]

[GWOs]

[GYA97]

[Hal73]

H. Fernau and M. Holzer. Bidirectional cooperating distributed grammar sys-
tems.Publicationes Mathematicae Debre¢céb4):787 — 806, 199927

Daniela Florescu and Donald Kossman. A performance evaluation of alternative
mapping schemes for storing xml data in a relational database. Technical Report
3680, INRIA, Rocquencourt, France, May 199901

R. W. Floyd. On the non-existence of a phrase-structure for algoCe&dmu-
nications of the ACM(5):483 — 484, 196218

Jeffrey E. F. Friedl. Mastering Regular Expressiong'Reilly & Associates,
Inc., second edition, 200217, 48

Charles Frankel, Michael J. Swain, and Vassilis Athitsos. WebSeer: An Image
Search Engine for the World Wide Web. Technical Report 96-14, The University
of Chicago, August 199611

Th. Gevers, F. Aldershoff, and A. W. M. Smeulders. Classification of images on
internet by visual and textual information. limternet Imaging, SPIESan Jose,
January 2000.6, 124

W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowl-
edge modeling at the millennium (the design and evolution of protege-2000).
Technical Report SMI-1999-0801, Stanford Medical Informatics (SMI), 1999.
134

David Gelernter. Generative communication in linddCM Transactions on
Programming Languages and Syste(d):80 — 112, January 19953

Dick Grune and Ceriel Jacob®arsing Techniques - A Practical Guid¥'rije
Universiteit, Amsterdam, 199815, 16, 17, 47, 70, 75, 80, 97

Google.Google Image Searchwww.google.com/imghp , 2001. 10

William . Grosky. Multimedia information systems.|[EEE MultiMedia
1(1):12-24,1994.3

Torsten Grust. Accelerating xpath location steps.Ptoceedings of the 21st
ACM SIGMOD International Conference on Management of Data (SIGMOD
2002) pages 109-120, Madison, Wisconsin, June 20022

Torsten Grust and Maurice van Keulen. Tree Awareness for Relational DBMS
Kernels: Staircase Join. Intelligent Search on XMLLecture Notes in Com-
puter Science (LNCS), © Springer-Verlag, 2003. To appdar2

Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating xpath loca-
tion steps in any rdbms (even if all you got is a binary tabd&M Transactions
on Database Systems (TOD3)03. under revision102

Michael Gorman and Paul W. Winkler, editordnglo-American Cataloguing
Rules Amer Library Assn Editions, 2nd revision edition, 1998.

James Griffioen, Raj Yavatkar, and Robert Adams. A framework for developing
content-based retrieval systems. In Mark T. Maybury, editaelligent Multi-
media Information Retrievallhe AAAI Press and The MIT Press, 19972

Patrick A. V. Hall. Equivalence between and/or graphs and context-free gram-
mars.Communications of the ACM (CACM)6(7):444 — 445, July 197320

http://www.google.com/imghp
www.google.com/imghp
http://www.google.com/imghp

170

Bibliography

[HKR90]

[HMUO1]

[IBMO1]

[Inc02]
[ISO01]

[1S002]
[Jel69]

[Jel02]

[JFS95]
[JMOO]

[JS98]

[KD96]

[Ker89]

[KKK +91]

[KNW98a]

[KNWOs8h]

[KS89]

J. Heering, P. Klint, and J. Rekers. Incremental generation of parteEE
Transactions on Software Engineerjrig(12):1344 — 1350, 199082

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ulimamtroduction to Au-
tomata Theory, Languages, and Computatidddison-Wesley, second edition,
2001. 15,19

IBM. XML Diff and Merge Toal www.alphaworks.ibm.com/tech/
xmldiffmerge , 2001. 116

Dommitt Inc. XML Diff and Merge Toaolwww.dommitt.com , 2002. 116

ISO. Overview of the MPEG-7 Standardmpeg.telecomitalialab.
com/standards/mpeg-7/mpeg-7.htm ,2001. 3

ISO. Overview of the MPEG-4 Standardmpeg.telecomitalialab.
com/standards/mpeg-4/mpeg-4.htm ,2002. 136

F. Jelinek. Fast sequential decoding algorithm using a stk Journal of
Research and Developmef#t:532 — 556, 196921

Rick Jelliffe. The Schematron Assertion Language. 1.Bcademia Sinica
Computing Centre, www.ascc.net/xml/resource/schematron/
Schematron2000.html ,2002. 104

C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution image
querying. InProceedings of SIGGRAPH 9pages 277-286, August 1993.

Daniel Jurafsky and James H. Marti@peech and Language Processifgen-
tice Hall, 2000. 21

Adrian Johnstone and Elizabeth Scott. Construction reduced derivation trees.
Technical Report CSD-TR-98-09, Department of Computer Science, Royal Hol-
loway, University of London, October 12 19983

A. Knott and R. Dale.Choosing a Set of Rhetorical Relations for Text Gen-
eration: A Data-Drive ApproachTrends in Natural Language Generation: an
Artificial Intelligence Perspective. 1996135

M. L. Kersten. A grammatical database model: An informal introduction. Un-
published manuscript, May 1989.20

P. Kophakis, A. Karmirantzos, Y. Kavaklis, E. Petrakis, and S. Orphanoudakis.
Image archiving by content: An object oriented approactSME Int. Conf. on
Image Processing, Medical Imaging pages 227 — 233, San Jose, CA, February
1991. 2

M. L. Kersten, N. Nes, and M. Windhouwer. A feature database for multimedia
objects. INERCIM Database Research Group Workshop on Metadata for Web
Databasespages 49-57, Bonn, Germany, 199820

M. L. Kersten, N. Nes, and M. A. Windhouwer. A Feature Database for Mul-
timedia Objects. Technical Report INS-R9807, CWI, Amsterdam, The Nether-
lands, July 1998.123

M. L. Kersten and A. Siebes. The grammatical datamodel; its algebra. Unpub-
lished manuscript, October 1989.20

http://www.alphaworks.ibm.com/tech/xmldiffmerge
www.alphaworks.ibm.com/tech/xmldiffmerge
www.alphaworks.ibm.com/tech/xmldiffmerge
http://www.dommitt.com
www.dommitt.com
http://www.dommitt.com
http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm
mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm
mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm
http://www.ascc.net/xml/resource/schematron/Schematron2000.html
www.ascc.net/xml/resource/schematron/Schematron2000.html
www.ascc.net/xml/resource/schematron/Schematron2000.html

171

[KSvdBB96] M. L. Kersten, F. Schippers, C. A. van den Berg, and P. A. Boncz. Mx docu-

[KV94]

[LaL77]

[Lan74]

[Lew0O]

[Lew02]

[LH96]

[Lin97]

[LMB92]

[Ltd03]

[Man94]

[Mat01]

[MBO1]

[MHF83]

[Mic68]

[Mic99]

[Mic02]

[Mit97]

mentation tool. January 1996.20

Paul Klint and Eelco Visser. Using filters for the disambiguation of context-
free grammars. In G. Pighizzini and P. San Pietro, editergceedings of the
ASNICS Workshop on Parsing Thegoages 1-20, Milano, Italy, 19941

W. R. LaLonde. Regular right part grammars and their par€ommunications
of the ACM 20(10):731-741, 197746

B. Lang. Deterministic techniques for efficient non-deterministic parsers. In
J. Loeckx, editorProceedings of the Second Colloquium on Automata, Lan-
guages and Programmingolume 14 ofLecture Notes in Computer Science
pages 225 — 269. Springer Verlag, 19723

Michael S. Lew. Next generation web searches for visual cont&iE Com-
puter, pages 4653, November 20001

Amelia Lewis. Not My Type: Sizing Up W3C XML Schema Primitivesvw.
xml.com/pub/a/2002/07/31/wxstypes.html ,2002. 104

Michael S. Lew and Nies Huijsmans. Information theory and face detection.
In Proceedings of the International Conference on Pattern Recogniiages
601-605, Vienna, Austria, 1996124

Peter Linz.An Introduction to Formal Languages and Automata - Second Edi-
tion. Jones and Bartlett Publications, 19915, 16, 17

John R. Levinne, Tony Mason, and Doug Browfex & yacc O'Reilly &
Associates, Inc., 199280, 97

Monsell EDM Ltd. Change Control for XML, in XMLwww.deltaxml.com
2003. 116

A. Manaster Ramer. Uses and misuses of mathematics in linguistid3roin
ceedings of Xth Congress on Natural and Formal Langua§esilla, 1994.17

The MathWorks, Inc.The MathWorks Homepagevww.mathworks.com
2001. 56

Colin Meek and William P. Birmingham. Thematic extractor. 2nd Annual
International Symposium on Music Information Retrie2dl01. 3

Mitchell Marcus, Donald Hincle, and Margaret M. Fleck. D-theory: Talking
about talking about trees. IRroceedings of the 21st Annual Meeting of the
Association for Computational Linguistigsages 129 — 136, 198310

D. Michie. Memo functions and machine learnirgature 218:19 — 22, 1968.
20,81

Microsoft, www.microsoft.com/Developer/PRODINFO/directx/
dxm/help/ds/default.ntm . DirectShow 1999. 43

Microsoft. Microsoft XML Diff and Patch apps.gotdotnet.com/
xmltools/xmldiff/ ,2002. 116

Tom M. Mitchell. Machine Learning McGraw-Hill, 1997. 6, 58

http://www.xml.com/pub/a/2002/07/31/wxstypes.html
www.xml.com/pub/a/2002/07/31/wxstypes.html
www.xml.com/pub/a/2002/07/31/wxstypes.html
http://www.deltaxml.com
www.deltaxml.com
http://www.deltaxml.com
http://www.mathworks.com
www.mathworks.com
http://www.mathworks.com
http://www.microsoft.com/Developer/PRODINFO/directx/dxm/help/ds/default.htm
www.microsoft.com/Developer/PRODINFO/directx/dxm/help/ds/default.htm
www.microsoft.com/Developer/PRODINFO/directx/dxm/help/ds/default.htm
http://apps.gotdotnet.com/xmltools/xmldiff/
apps.gotdotnet.com/xmltools/xmldiff/
apps.gotdotnet.com/xmltools/xmldiff/

172

Bibliography

[MM96]

[MMO9]

[MMT89]

[Nes00]

[Neu91]

[Nil9g]

[NK98]

[NLOO]

[Noro1]

[INWHT01]

INWPT01]

[0S95]

[Par93]

[Pei60]

Valeria Mihalache and Victor Mitrana. Deterministic cooperating distributed
grammar systems. Technical Report 63, Turku Centre for Computer Science,
November 1996.73

J. Martinez and N. Mouaddib. Multimedia and Databases: A SuNeywork-
ing and Information Systems Journd(1):89-123, 19993

W. C. Mann, CX. M. I. M. Matthiesen, and S. A. Thompson. Rhetorical structure
theory and text analysis. Technical Report ISI/RR-89-242, Information Sciences
Institute, University of Southern California, November 19835

N. Nes. Image Database Management System Design Considerations, Algo-
rithms and ArchitecturePh.d. thesis, Universiteit van Amsterdam, Amsterdam,
The Netherlands, December 200020

Gunter Neumann. A bidirectional model for natural language processing. In
Fifth Conference of the European Chapter of the Association for Computational
Linguistics pages 245 — 250, Berlin, Germany, April 19919

Nils J. Nilsson. Artificial Intelligence — A New Synthesi$lorgan Kaufmann,
1998. 20, 24

N. Nes and M. L. Kersten. The Acoi Algebra: a Query Algebra for Im-
age Retrieval Systems. IRroceedings of the British National Conference
on Databases (BNCODYolume 1405 of_ecture Notes in Computer Science
(LNCS), © Springer-Verlagpages 77-88, Cardiff, Wales, U.K., July 199820

F. Nack and C. Lindley. Production and maitenance environments for interac-
tive audio-visual stories. IRroceedings ACM MM 2000 Workshops - Bridging
the Gap: Bringing Together New Media Artists and Multimedia Technolqgists
pages 21 — 24, Los Angeles, CA, October 20035

Peter Norvig. Techniques for automatic memoization with application to
context-free parsingComputational Linguistigsl7(1):91 — 98, 1991381

F. Nack, M. A. Windhouwer, L. Hardman, E. Pauwels, and M. Huijberts. The
Role of High-level and Low-level Features in Style-based Retrieval and Gener-
ation of Multimedia Presentation§he New Review of Hypermedia and Multi-
mediag 7:39-65, 2001.121, 133

F. Nack, M. A. Windhouwer, E. Pauwels, M. Huijberts, and L. Hardman. The
Role of High-level and Low-level Features in Semi-automated Retrieval and
Generation of Multimedia Presentations. Technical Report INS-R0108, CWI,
Amsterdam, The Netherlands, June 200QR3

V.E. Ogle and M. Stonebraker. Chabot: Retrieval from a relational database of
images.|[EEE Computerpages 40-48, September 1995.

Terence John ParrObtaining Practical Variants ofLL(k) and LR(K) for
k > 1 by Splitting the Atomié-tuple PhD thesis, Purdue University, August
1993. 73,75,81

C. Peirce. The Collected Papers of Charles Sanders Pierce: (1) Principles of
Philosophy and (2) Elements of Logithe Belknap Press of Harvard University
Press, Cambridge, 1960.35

173

[Pet03]

[PFOO]

[PJOO]

[PQ93]

[PQ96]
[Pro03]
[PS94]
[PS98]

[PWvZt02]

[Qui93]

[RBvO100]

[Reko1]

[RHMO8]

[RHOMO8]

[RI99]

Milan Petkovic. Content-Based Video Retrieval Supported by Database Tech-
nology PhD thesis, Centre for Telematics and Information Technology, En-
schede, The Netherlands, February 20028

E. Pauwels and G. Frederix. Image segmentation by nonparametric clustering
based on the kolmogorov-smirnov distancePhoceedings of the ECCV 2000,

6th European Conference on Computer Visipages 85 — 99, Dublin, June
2000. 138

M. Petkovic and W. Jonker. A framework for video modelling.plrmceedings
of Intl. Conf. on Applied Informaticdnnsbruck, Austria, February 200@&

Terence J. Parr and Russell W. Quong. ANTLR: A predicatékl parser gen-
erator. Journal of Software, Practice & Experienc25:789, July 1995. 1995.
80

Terence J. Parr and Russell W. Quong. LL amdranslators need > 1
lookahead SIGPLAN Notices31(2), 1996. 80

The Apache Jakarta Projedpache Tomcathttp://jakarta.apache.
org/tomcat/ ,2003. 124

C. Pollard and |.A. SagHead-Driven Phrase Structure Grammadniversity
of Chicago Press, Chicago, 19927

Gheorghe Paun and Arto Salomaa, edit@smmmatical Models of Multi-Agent
SystemsTopics in Computer Mathematics. Taylor & Francis, 199&

M. Petkovic, M. A. Windhouwer, R. van Zwol, H. E. Blok, P. M. G. Apers,
M. L. Kersten, and W. Jonker. Content-based Video Indexing for the Support
of Digital Library Search. IfProceedings of the IEEE International Conference
on Data Engineering (ICDE)San Jose, California, USA, February 200228

J. Ross QuinlanC4.5: Programs for Machine LearningMorgan Kaufmann,
1993. 6, 58,139

L. Rutledge, B. Bailey, J. van Ossenbrugge, L. Hardman, and J. Geurts. Generat-
ing presentation constraints from rhetorical structuré?rivceedings of the 11th
ACM Conference on Hypertext and Hypermegiages 19 — 28, San Antonio,
Texas, USA, May - June 2000139

J. Rekers. Generalizad parsing for general context-free grammars. Technical
Report CS-R9153, Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
1991. 73

Yong Rui, Thomas S. Huang, and Sharad Mehrotra. Human perception subjec-
tivity and relevance feedback in multimedia information retrieval Ptaceed-

ings of IS&T and SPIE Storage and Retrieval of Image and Video Databases VI
San Jose, CA, January 1998.

Yong Rui, Thomas S. Huang, Michael Ortega, and Sharad Mehrotra. Relevance
feedback: A power tool in interactive content-based image retritvBE Trans
on Circuits and Systems for Video Technold®f):644 — 655, 19983

Brian Roark and Mark Johnson. Efficient probabilistic top-down and left-corner
parsing. InProceedings of the 37th Annual Meeting of the Association for Com-
putational Linguisticspages 421 — 428, 19994

http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/

174

Bibliography

[Roc71]

[RS70]
[RS97a]
[RS97b]

[RTGO8]

[SC96]

[Sch02]

[SDWWO1]

[SK98]

[SKWWO00]

[S0l69]
[SROO]

[Sta92]
[Sub97]

[SWK99]

[SWK*01]

J. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor,
The SMART retrieval system: Experiments in automatic document processing
pages 313 — 323. Prentice-Hall, 1973.

D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic top-down gram-
mars.Information and Contrql17:225 — 256, 197080

G. Rozenberg and A. Salomadandbook of Formal Languages — Vol. 1 Word,
Language, GrammarSpringer-Verlag, 199717

G. Rozenberg and A. Salomadandbook of Formal Languages — Vol. 2 Linear
Modelling: Background and ApplicatiorSpringer-Verlag, 199717, 22

Y. Rubner, C. Tomasi, and L. Guibas. Adaptive color-image embeddings for
database navigation. Proceedings of the 3rd Asian Conference on Computer
Vision (ACCV98)pages 104 — 111, Hong Kong, 1998.

John R. Smith and Shih-Fu Chang. Searching for Images and Videos on the
World-Wide Web. Technical Report 459-96-25, Columbia University, August
1996. 11

A. R. Schmidt.Processing XML in Database SysterR#1.d. thesis, Universiteit
van Amsterdam, Amsterdam, The Netherlands, November 2002.

A. Th. Schreiber, Barbara Dubbeldam, Jan Wielemaker, and Bob Wielinga.
Ontology-Based Photo AnnotationlEEE Intelligent Systemsl6(3):66—74,
May/June 2001.3

Amit P. Sheth and Wolfgang Kla$4ultimedia Data Management: Using Meta-
data to Integrate and Apply Digital MedidMcGraw-Hill, 1998. 8

A. R. Schmidt, M. L. Kersten, M. A. Windhouwer, and F. Waas. Efficient Re-
lational Storage and Retrieval of XML Documents (Extended VersionY.hie
World Wide Web and Databases - Selected Papers of WebDB &filQthe 1997

of Lecture Notes in Computer Science (LNCS), © Springer-Vedages 137—
150, 2000. 101

A. Solomaa. Probabilistic and weighted grammargormation and Contral
15:529 — 544,196921

S. Santini and J. Ramesh. Integrated browsing and querying for image
databasedEEE MultiMedig 7(3):26—39, July - September 200034

William Stallings. Operating Systemdviaxwell Macmilan, 1992.37

V. S. Subrahmaniam.Principles of Multimedia Database Systemblorgan
Kaufmann Publishers, Inc., 1997

A. Schmidt, M. Windhouwer, and M. L. Kersten. Feature grammartSA85'99
The 5th. Int'l Conference on Information Systems Analysis and Syntksis
lando, Florida, 1999.121

A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, |I. Manolescu, M. J. Carey,
and R. Busse. The XML Benchmark Project. Technical Report INS-R0103,
CWI, Amsterdam, The Netherlands, April 200102

175

[SWK*02]

[SWS'00]

[Tcho1]

[Tom86]

A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
XMark: A Benchmark for XML Data Management. Rroceedings of the Inter-
national Conference on Very Large Data Bases (VLDBjges 974-985, Hong
Kong, China, August 2002102

Arnold W. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and
Ramesh Jain. Content-based image retrieval at the end of the early W=iEs.
Transactions on Pattern Analysis and Machine Intelliger2¢12):1349-1380,
December 20004

Paul A. Tchistopolskii. PXSLServlet www.pault.com/pault/old/
Pxsl , 2001. 124

Masaru TomitaEfficient parsing for natural languagéluwer Academic Pub-
lishers, 1986.20, 21, 32

[vdBdJKOO00] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient an-

[VdBKMV03]

[vdvo1]
[Vei03]
[Vel9g]
[Vis97]

[VLdLWOO]

[VOGC'01]

[VS92]

[VWS01]

[vZ02]

notated terms.Journal of Software, Practice & Experiencg0(3):259 — 291,
2000. 43

M.G.J. van den Brand, A.S. Klusener, L. Moonen, and J.J. Vinju. Generalized
parsing and term rewriting: Semantics driven disambiguation. In B.R. Bryant
and J. Saraiva, editorfroceedings of the Third Workshop on Language Dis-
cription, Tools and Applications (LDTAO3Yolume 82 ofElectronic Notes in
Theoretical Computer Scienc2003. 21

Eric van der Vlist. Comparing XML Schema Languages/ww.xml.com/
Ipt/a/2001/12/12/schemacompare.html , 2001. 104

Daniel Veillard. The XML C library for Ghome xmlsoft.org , 2003. 88,
121,122

Daan \elthausz. Cost-effective Network-based Multimedia Information Re-
trieval. PhD thesis, Telematica Instituut, 1998.

Eelco Visser.Syntax Definition for Language PrototypinBhD thesis, Univer-
sity of Amsterdam, 199743

R. van Liere, W. de Leeuw, and F. Waas. Interactive Visualization of Multi-
dimensional Feature Spaces. New Paradigms for Information Visualizatipn
pages 58-71, Washington, DC, USA, November 2080.

J. van Ossenbruggen, J. Geurts, F. Cornelissen, L. Rutledge, and L. Hardman.
Towards second and third generation web-based multimedRrolreedings of

rhe Tenth International World Wide Web Conferenpages 279 — 488, Hong
Kong, May 2001. 136, 140

K. Vijay-Shanker. Using descriptions of trees in a tree adjoining gram@an-
putational Linguistics18(4):481 — 518, 199240

J. Vendrig, M. Worring, and A.W.M. Smeulders. Filter image browsing: In-
teractive image retrieval by using database overviesiltimedia Tools and
Applications 15(1):83-103, September 20023.

Roelof van Zwol. Modelling and searching web-based document collections
PhD thesis, Centre for Telematics and Information Technology, Enschede, The
Netherlands, April 2002.127

http://www.pault.com/pault/old/Pxsl
www.pault.com/pault/old/Pxsl
www.pault.com/pault/old/Pxsl
http://www.xml.com/lpt/a/2001/12/12/schemacompare.html
www.xml.com/lpt/a/2001/12/12/schemacompare.html
www.xml.com/lpt/a/2001/12/12/schemacompare.html
http://xmlsoft.org
xmlsoft.org
http://xmlsoft.org

176

Bibliography

[VZAW99]

[W3C98]
[W3C00]

[W3CO01a]
[W3C01b]

[W3C01c]
[W3C01d]
[W3C02a]
[W3C02b]

[WSK99]

[WSKO0]

[WSvZ+01]

[WSvZ 03]

[WvZ03]

[XFro1]

[YWO3]

R. van Zwol, P.M.G. Apers, and A.N. Wilschut. Modelling and querying
semistructured data with moa. Mroceedings of the Workshop on Semi-
Structured Data and Non-Standard Data Formats (SSDNSDF 1988)salem,
Israel, 1999.100

W3C. Synchronized Multimedia Integration Language (SMIL) 1.0 Specification
www.w3.0rg/TR/REC-smil/ , June 1998.136, 139

W3C. Extensible Markup Language (XMLvww.w3.0rg/TR/REC-xml
2000. 50, 86, 147

W3C. Document Object Model (DOMvww.w3.0org/DOM/ , 2001. 88

W3C. Extensible Stylesheet Language (XSkjvw.w3.org/Style/XSL/ ,
2001. 103

W3C. Synchronized Multimedia Integration Language (SMIL 2\@)vw.w3.
org/TR/smil20/ , August 2001.136

W3C. XML Path Language (XPath) 2.0vww.w3.0rg/TR/xpath20 , De-
cember 2001.49, 55, 136

W3C. Libwww - the W3C Protocol Library www.w3c.org/Library/ ,
2002. 121

W3C. XML Pointer Language www.w3c.org/TR/xptr/ , August 2002.
136

M. A. Windhouwer, A. R. Schmidt, and M. L. Kersten. Acoi: A System for In-
dexing Multimedia Objects. Imternational Workshop on Information Integra-
tion and Web-based Applications & Servic¥sgyakarta, Indonesia, November
1999. 121,123

M. A. Windhouwer, A. R. Schmidt, and M. L. Kersten. Acoi: A System for
Indexing Multimedia Objects. IRProceedings of the International World Wide
Web ConferencéAmsterdam, The Netherlands, May 200023

M. A. Windhouwer, A. R. Schmidt, R. van Zwol, M. Petkovic, and H. E. Blok.
Flexible and Scalable Digital Library Search. Technical Report INS-R0111,
CWI, Amsterdam, The Netherlands, December 20025, 128

M. A. Windhouwer, A. R. Schmidt, R. van Zwol, M. Petkovic, and H. E. Blok.
Flexible Digital Library Search. In A. Dahanayake and W. Gerhardt, editors,
Web-enabled Systems Integration: Challenges and Practiages 200-224.
Idea Group Publishing, 2003121, 128

M. A. Windhouwer and R. van Zwol. Combining Concept- with Content-based
Multimedia Retrieval. In H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel,
and G. Weikum, editorgntelligent Search on XML Dataolume 2818 of_ec-

ture Notes in Computer Science (LNCS), © Springer-Venages 217 — 230,
2003. 128 132

XFront, www.xfront.com/ExtendingSchemas.html . Extending XML
Schemas2001. 104

Jin-Yi Cai Yuan Wang, David J. DeWittX-Diff — Detecting Changes in XML
Documentswww.cs.wisc.edu/~yuanwang/xdiff.html ,2003. 116

http://www.w3.org/TR/REC-smil/
www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-xml
www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/DOM/
www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/Style/XSL/
www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/smil20/
www.w3.org/TR/smil20/
www.w3.org/TR/smil20/
http://www.w3.org/TR/xpath20
www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20
http://www.w3c.org/Library/
www.w3c.org/Library/
http://www.w3c.org/Library/
http://www.w3c.org/TR/xptr/
www.w3c.org/TR/xptr/
http://www.w3c.org/TR/xptr/
http://www.xfront.com/ExtendingSchemas.html
www.xfront.com/ExtendingSchemas.html
http://www.xfront.com/ExtendingSchemas.html
http://www.cs.wisc.edu/~yuanwang/xdiff.html
www.cs.wisc.edu/~yuanwang/xdiff.html
http://www.cs.wisc.edu/~yuanwang/xdiff.html

177

[ZS89]

[2S90]

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problem&IAM Journal of Computingl8(6):1245 — 1262,
1989. 116

K. Zhang and D. Shasha. Fast algorithms for unit cost editing between trees.
Journal of Algorithms11(6):581 — 621, 1990116

Index

abstract attribute§

acceptation style25

accepting grammar mod&9
Acoi, 8

Acoi image algebra] 20

Admire, 5

ALGOL 60, 45

alternative production ruleg0, 46
ambiguity,5, 20, 68

ambiguous feature grammar systei3$,

analysis57
AND/OR-graph,20
annotation extraction algorithrs,
annotation subsysterfi,
annotations4
anonymous symboll8
artificial language8
atom,32, 48

atom symbols32

atom type 48

attribute grammar®7
Australian Open128
automatonf6

auxiliary tree,82
axiom,15

back propagation neural netwoik?
basic feature grammar systef®
batch learning algorithm$38
bidirectional grammars,9

binary association table (BATY9
blackboard architectur@4
blackbox detecto56

bottom-up parsing algorithn9
bounds 54

breadth-first parsing algorithriip

Chomsky hierarchyl 6

classifier57, 95

COBRA,5, 128

compositional semantics,

conceptg, 54

conceptual level] 26

conditional feature grammar syste&g

conditional grammar2

constantb4

context,38

context dependencg, 113

context globalization91

context localization91

context-free (CF) grammars/

context-sensitive (CS) grammafsy

controlled named disjunctiod

controller named disjunctiod,0

cooperating distributed (CD) grammar sys-
tems,24

crossed agreements/

data repository].35

database management system (DBMS),
dataflow languaged,3

deadlock36, 61, 91, 96

deadlock preventior§6

decision rulef, 54, 55

decomposed storage model (DS,
delta operation] 9

dependenciesg3

dependency grapill

depth-first parsing algorithn$9
derivation,18

derivation mode25

derived featuresh

detector28, 49

detector confidencd,1, 52

180

Index

detector symbol28

detector versior;2

deterministic 20, 68

digital media warehouse (DMW),

direct derivation18

direct self-reference&)1

directional parsing algorithnv,0

disambiguation21

document object model (DOM®6

document type definition (DTD},01, 103

domain-specific languagé4

dynamically controlled CD grammar sys-
tem,26

edge folding 84

elementary tree32

erasing productior,6

exhaustive backtracking parsing algorithm,
75

extended Backus-Naur form (EBNE)5

extended regular expression languagés,

extensible markup languagE)0

extensible markup language (XML30, 86

external changey, 62, 114

feature 6

feature detector engine (FDEB5
feature detector scheduler (FDS$),1
feature grammar systents/

finite automaton (FA)66

forward axis,50

general purpose language (GP®,
generating grammar mod&9
generic parsef2

grammar,15

grammar componeng4

grammar systemg4

grammarsl5

grammatical database model,9
greedy parsing}7, 85

high-level concepts, 54
human interaction?1

indirect self-reference1
instantiation,32

internal change?, 62, 115
internal control 26
iterative interpretation47

key/reference dependendyi 4

left path-controlled (IPC) gramma4

left path-controlled feature grammar sys-
tem, 34

left-hand sidel5

left-recursion,’78

leftmost derivation18

lexical ambiguity,21

lexical analysis32

lexicon,32

Linda tuple space<l3

linear bounded automatoh?

linear ordering 36

list, 53

local ambiguity,21

logical featuresb

logical level,126

lookahead80

low-level featurep

lower bound54

machine learnings, 57

Magnum,100

match part69

Matlab,56

memoization20, 81, 90

meta-language}5

Microsoft DirectShow43

mild context-sensitivityl7

mildly context-sensitive feature grammar
systems41

Mirror, 42

module,61

Monet,99

Monet interpreter language (MILY9

MOODS, 42

multi-agent system4

multimedia information retrieval

multiple agreementd,7

named disjunctiong1, 40
namespace;?2

181

naming conflict62

natural languagel,3

neural networkg, 57
non-deterministic20, 68
non-directional parsing algorithriip
non-terminals15

observation57
optional,46
output/input dependenc§, 114

packed shared foresi)

parallel communicating (PC) grammar sys-
tems,24

parse forest20

parse treel9

path operation]9

path-controlled (PC) gramméi4

physical level 126

plugin, 56, 94

polling, 63

positive closure46

post-order,L02

post-visitation 38

pre-order,102

pre-terminals32

pre-visitation,88

pre/post planel 02

predicatef, 54

predict,57

prediction part69

presentation environmerit36

primitive featuresb

probabilistic parsing21

production rulesl5, 46

productions15

push-down automaton (PDA§S

push-down transducer (PDTH6

quasi-foot40, 61
quasi-node40, 61
quasi-root40, 61
quasi-tree40
query clues3
query-by-sketch?
query-by-text2

recursive descenB6

recursive interpretationl6, 78
recursively enumerable (RE) grammals,
reduce phase&,0

reduced derivation tree (RDTY3
reduplication17

referencep8, 95

regular (REG) grammarg,/

regular expression languade,

regular right part grammars (RRP@%
regulated rewriting21

Relax NG,103

relevance feedback,

revalidation,117

reverse axis50

right-hand sidel5

right-recursive interpretatior,8
Rijksmuseum;133

Schematron]03
scopef2, 88
self-reference$l, 91
semantic ambiguity?21
semantic concep§, 54
semantic gap}
semantic grammag?2
sentential form18
set,53

shift phase70
shredding,L00
similarity, 3
specialized parse82
staircase join102

star closure46

start condition26

start symbol 15, 52, 60, 95
stop condition26

stop condition type27
structural ambiguity?21
style repository133
subjectivity,5
substitution languag&?2
symbol table34
symbols,15

syntactic ambiguity21

terminals,15

182 Index

theory,57

ToolBus,43

top-down parsing algorithn9
transducerg6

transitive closurel.8

tree adjoining grammars (TAG32
tree-controlled grammarg?
tuple,53

Type 0 grammarsl.6

Type 1 grammarsl6

Type 2 grammarsl7

Type 3 grammarsl.7

upper bound54

validation,117
variables15

Webspace Method,27
webspace schema27
whitebox detectors4

XMark, 101

XML document,50

XML Schema,103

XPath axis 50

XPath expressiorg0, 93
XPath language&;0

XPath node tesf1

XPath step qualifie1, 55
XQuery, 102

yield operation,19

Samenvatting

Met de opmars van personal computers en allerlei vormen van randapparatuur om traditionele
media te digitaliseren, met name onder de invioed van het als maar dalen van de aanschafkosten
en het stijgen van de opslagcapaciteit, zijn grote collecties van digitale ndigita media
warehousesgemeengoed geworden. Maar het opslaan van digitale objecten is slechts één kant
van de zaak, de gebruikers willen deze objecten ook weer terugvinden. Het terugvinden van
deze objecten is echter geen sinecure en een omvangrijke en multidisciplinaire onderzoeksge-
meenschap houdt zich daar dan ook mee bezig.

De focus van dit proefschrift wordt gevormd door één stap in het zoekproces. De media ob-
jecten in hun digitale vorm zijn namelijk niet gemakkelijk te vinden, daarvoor moeten ze gean-
noteerd worden. Deze annotaties kunnen zowel handmatig als automatisch gecreeérd worden.
In het laatste geval worden de annotaties geproduceerd door uitgeprogrammeerde extractie-
algoritmes, die op de objecten worden losgelaten.

De extractie-algoritmes zijn van elkaar en van elkaars annotaties afhankelijk. Allereerst
kan er sprake zijn van een uit/invoer afhankelijkheid: de uitvoer van het ene algoritme is de
invoer van een volgend algoritme. Een voorbeeld hiervan is het bepalen van het type van een
afbeelding, een tekening of een foto. Dit gebeurt op basis van eerder geproduceerde annotaties,
zoals het aantal en de gemiddelde verzadiging van de kleuren in de afbeelding. Daarnaast
is er de mogelijkheid van een context afhankelijkheid. Hierbij wordt een extractie-algoritme
alleen uitgevoerd als een eerder algoritme geslaagd is. Dit wordt geillustreerd door de volgende
afhankelijkheid: het bepalen of een afbeelding een of meerdere gezichten bevat is alleen nodig
als eerst bepaald is dat de afbeelding een foto is.

Een complicatie is de semantiek van de annotaties. Eenvoudige annotaties, bijvoorbeeld de
kleur geel komt in deze afbeelding voor, zijn eenduidig. Meer abstracte annotaties, zoals dit is
een grimmige foto, zijn ambigu. Hun validiteit is afhankelijk van de context waarin het object
zich bevindt, of de (cultureel bepaalde) context van de gebruiker. Een annotatie systeem moet
dan ook de productie en het gebruik van alternatieve interpretaties ondersteunen.

In het proefschrift wordt een formele taal, kenmerk grammatica systefeatufe gram-
mar systenjs die voor het gelijktijdig beschrijven van de afhankelijkheden en de (alternatieve)
contexten is ontwikkeld. In een natuurlijke taal worden valide zinnen beschreven door een
grammatica. De grammatica bepaalt welke woorden samen, in een specifieke context, mogen
voorkomen. Een kenmerk grammatica systeem doet hetzelfde voor annotaties en extractie-
algoritmes. Daartoe bestaat een kenmerk grammatica systeem uit één of meerdere grammatica
componenten. Elk component beschrijft het resultaat van een algoritme en de afhankelijkheid
van andere componenten. Deze beschrijving kan alternatieve interpretaties bevatten.

184

Samenvatting

Het extractie-proces kan nu gestuurd worden door een kenmerk grammatica systeem te
interpreteren. Dit proces komt overeen met het parseren van zinnen in een natuurlijke of ar-
tificiéle taal. Hiervoor zijn door de jaren heen veel efficiénte algoritmes ontwikkeld. Echter
slechts enkele hiervan zijn geschikt voor kenmerk grammatica systemen. Een probleem is het
dynamisch groeien van de annotatie zin: het activeren van een grammatica component leidt
tot het uitvoeren van een extractie-algoritme en dus tot de productie van annotaties. Een ander
probleem wordt gevormd door de afhankelijkheden: een extractie-algoritme kan pas worden
uitgevoerd als zijn invoer, reeds eerder geproduceerde annotaties, beschikbaar is. Hierdoor
komen alleen parseer algoritmes in aanmerking die van boven naar beneden werken. Een spe-
cifiek algoritme, die aan deze kenmerken voldoet, is geimplementeerd en produceert de anno-
taties, beschreven door een of meerdere parseerbomen. Deze bomen worden opgeslagen in een
database management systeem.

Verschillende factoren, zoals wijzigingen in de algoritmes, kunnen er echter toe leiden dat
de opgeslagen bomen, en dus ook de annotaties, niet meer de werkelijkheid weerspiegelen. Om
de invloed van deze wijzigingen te lokaliseren wordt er van het kenmerk grammatica systeem
een afhankelijkheidsgraaf afgeleid. Een planningsproces kan dan het extractie-proces gedeel-
telijk herstarten om daarmee de database te modificeren.

Het aldus ontworpen systeer¢oi, is de afgelopen jaren aan het CWI ontwikkeld en in-
gezet bij verschillende praktijkstudies. Analyse van deze studies toont aan dat een kenmerk
grammatica systeem een praktisch inzetbaar hulpmiddel is om (alternatieve) annotaties te pro-
duceren en te onderhouden.

Curriculum Vitae

Education

1998 — 2003 PhD in Computer Science (expected)
Centre for Mathematics and Computer Science (CWI)

1994 - 1997 MSc in Computer Science
University of Amsterdam (UvA)

1990 - 1994 Bachelor in Business Information Technology
Hogeschool IJselland

Professional Experience

1998 — 2003 Database researcher
Centre for Mathematics and Computer Science (CWI)

1997 — 1998 Scientific system developer
University of Amsterdam (UvA)

Articles and Chapters

[1] M. A. Windhouwer and R. van Zwol. Combining Concept- with Content-based Multi-
media Retrieval. In H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and G. Weikum,
editors,Intelligent Search on XML Datavolume 2818 of.ecture Notes in Computer Sci-
ence (LNCS), © Springer-Verlagages 217 — 230, 2003.

[2] M. A. Windhouwer, A. R. Schmidt, R. van Zwol, M. Petkovic, and H. E. Blok. Flexible
Digital Library Search. In A. Dahanayake and W. Gerhardt, editdeh-enabled Systems
Integration: Challenges and Practicgsages 200 — 224. Idea Group Publishing, 2003.

[3] A.H. Salden, F. Aldershoff, S. lacob, R. Otte, and M. A. Windhouwer. Web-enabled Ad-
vanced Multimedia Systems. Rroceedings of the International Workshop on Multimedia
Signal Processing (MMSPpages 117 — 120, St. Thomas, US Virgin Islands, December
2002.

186

Curriculum Vitae

[4]

[5]

[6]

[7]

(8]

9]

(10]

(11]

A. R. Schmidt, M. L. Kersten, and M. A. Windhouwer. Querying XML Documents Made
Easy: Nearest Concept Queries.Aroceedings of the IEEE International Conference on
Data Engineering (ICDE)pages 321-329, Heidelberg, Germany, April 2001.

F. Nack, M. A. Windhouwer, L. Hardman, E. Pauwels, and M. Huijberts. The Role of
High-level and Low-level Features in Style-based Retrieval and Generation of Multimedia
PresentationsThe New Review of Hypermedia and Multimediz39-65, 2001.

A. P. de Vries, M. A. Windhouwer, P. M. G. Apers, and M. L. Kersten. Information
Access in Multimedia Databases based on Feature Moblieta. Generation Computing
18(4):323-339, October 2000.

A. R. Schmidt, M. L. Kersten, M. A. Windhouwer, and F. Waas. Efficient Relational
Storage and Retrieval of XML Documents (Extended Version). In D. Suciu and G. Vossen,
editors, The World Wide Web and Databases - Selected Papers of WebDB\200®e

1997 ofLecture Notes in Computer Science (LNCS), © Springer-Vedages 137-150,
2000.

A. R. Schmidt, M. L. Kersten, M. A. Windhouwer, and F. Waas. Efficient Relational
Storage and Retrieval of XML Documents. limernational Workshop on the Web and
Databases (In conjunction with ACM SIGMQages 47-52, Dallas, TX, USA, May
2000.

M. A. Windhouwer, A. R. Schmidt, and M. L. Kersten. Acoi: A System for Indexing
Multimedia Objects. Ininternational Workshop on Information Integration and Web-
based Applications & Service¥ogyakarta, Indonesia, November 1999.

A.R. Schmidt, M. A. Windhouwer, and M. L. Kersten. Feature GrammarBrdoeedings
of the International Conference on Systems Analysis and Synt@tasido, FL, USA,
August 1999.

M. L. Kersten, N. Nes, and M. A. Windhouwer. A Feature Database for Multimedia
Objects. IERCIM Database Research Group Workshop on Metadata for Web Databases
pages 49-57, Bonn, Germany, May 1998.

Technical Reports

(1]

(2]

(3]

(4]

M. A. Windhouwer, A. R. Schmidt, R. van Zwol, M. Petkovic, and H. E. Blok. Flexible
and Scalable Digital Library Search. Technical Report INS-R0111, CWI, Amsterdam, The
Netherlands, December 2001.

F. Nack, M. A. Windhouwer, E. Pauwels, M. Huijberts, and L. Hardman. The Role of High-
level and Low-level Features in Semi-automated Retrieval and Generation of Multimedia
Presentations. Technical Report INS-R0108, CWI, Amsterdam, The Netherlands, June
2001.

A. R. Schmidt, M. A. Windhouwer, and M. L. Kersten. Indexing Real-world Data Using
Semi-structured Documents. Technical Report INS-R9902, CWI, Amsterdam, The Nether-
lands, March 1999.

M. L. Kersten, N. Nes, and M. A. Windhouwer. A Feature Database for Multimedia Ob-
jects. Technical Report INS-R9807, CWI, Amsterdam, The Netherlands, July 1998.

187

Demonstrations

[1] M. Petkovic, M. A. Windhouwer, R. van Zwol, H. E. Blok, P. M. G. Apers, M. L. Kersten,
and W. Jonker. Content-based Video Indexing for the Support of Digital Library Search. In
Proceedings of the IEEE International Conference on Data Engineering (ICB4t) Jose,
California, USA, February 2002.

[2] H. E. Blok, M. A. Windhouwer, R. van Zwol, M. Petkovic, P. M. G. Apers, M. L. Kersten,
and W. Jonker. Flexible and scalable digital library searctPrbteedings of the Interna-
tional Conference on Very Large Data Bases (VLDBQme, Italy, September 2001.

[3] M. A. Windhouwer, A. R. Schmidt, and M. L. Kersten. Acoi: A System for Indexing
Multimedia Objects. InProceedings of the International World Wide Web Confergence
Amsterdam, The Netherlands, May 2000.

Other Publications

[1] M. A. Windhouwer.The Early Adaptors Guide to AcoCWI, 2003.
[2] CWI. Digital Media Warehouses CD-RQr2002.

Acknowledgments

“It's just a job. Grass grows, birds fly, waves pound the sand. | beat people up.”
Muhammad Ali

When | was a little boy a fascination for collecting and indexing collections already popped
up. A small card-tray, a leftover from my dad’s administration, was soon filled with a card
for each book in my small, but steadily growing, library. And when the first computer entered
my life, a borrowed old P2000, a catalog program was one of the first MBasic programs build.
Throughout the years when older stuff exited and newer hard- and software entered replacing
instantiations of this catalog program were devised). in Pascal and Clipper. So when, in
1996, | was looking for a master’s project it was not too strange to accept a project in the area
of database management.

This project on the parallelization of data mining queries brought me in, sometimes a bit
hard, contact with th&lonet database kernel prototype. Enjoying the interaction and freedom
within the database group at CWI and the UvA, | was happy to take the opportunity, after
finishing my master’s thesis, to join.

Being tired of writing text, but not of code, | became a scientific system developer. My task
was to build theAcoi image crawler for the AMIS project. However, soon it turned out that
the developing ideas could function as the basis for a PhD. In the beginning of 1997 the DMW
project was started, and | started as a PhD student at CWI. So writing text was, again, one, or
even the, main tasks, and the results of my efforts are in your hands. However, many people
had major influence on these results, and it is my honor to thank them all in this final part of the
thesis.

First of all | like to thank my promotor Martin Kersten. Just like many of my colleagues
he sent me on my research way with a, in this case developed together with Niels Nes, first
prototype. Although there is not much of the source code left the underlying ideas proved
a fertile basis. In the years not only many CVS messages asked Martin’s attention, but also
many versions of the various chapters and sections of this thesis. Thanks for the constructive
comments and the unwearying attention for my English spelling and sentence structure.

The thesis was approved by the committee members: Peter Apers, Paul de Bra, Peter van
Emde Boas and Paul Klint. | like to express my appreciation for their willingness to study this
thesis, and thank them for their constructive comments.

Large parts, if not the complete thesis, would not have been written without the constructive
environment the DMW project turned out to be. | thank Albrecht Schmidt, Roelof van Zwol,
Milan Petkovic and Arno Knobbe, my fellow DMW PhD students, for their cooperation. Al-
though it was a busy and stressful period, | have fun memories of the time we spent building the

190 Acknowledgments

Australian Open search engine and our trip to VLDB in Rome to demonstrate it. Thanks also go
to the other DMW project members throughout the years. Special thanks and appreciation go to
Arjen de Vries for giving this most fruitful period of the DMW project direction and continuous
encouragement.

| was glad with several other opportunities to improveAlgei system. Starting with a huge
hand drawn “feature grammar”, which | cherish in my archive, The Rijksmuseum case study
was dreamed up by Frank Nack. And joined by Eric Pauwels we tried to automatically classify
digitized paintings. This was an entertaining activity with some success, and also turned out to
be one of the first cross theme projects at CWI. Henk Ernst Blok stress tested the extensibility
of the Acoi framework by extending the WWW search engine with distributed full text search
capabilities. This also led to a demonstration at VLDB and a book chapter. And | also like to
mention Jeroen Vendrig. We planned for years to build a video annotation feature grammar,
unfortunately it never really happened. It has been really nice to work together with all of you.

Next to fellow project members and co-authors CW!I provided many other nice colleagues.
Stefan Manegold has been an ideal roommate for all these years. We had numerous nice conver-
sations of a technical and cultural nature. Cultural difference keep on being interesting. | hope
you did not mind the, sometimes (too) loud, music. Niels Nes and Peter Boncz | like to thank
for helping me with many technical issues, and extensive debugging sessions. Also thanks to
all the other colleagues, | am sorry | can not name you all here, but you all made CWI a nice
working environment.

De wereld buiten het CWI werd vergroot door verschillende trips naar zuidelijk Afrika.
Ronald, Patrick en Menno, ik ben benieuwd waar we, mag zich de mogelijkheid nogmaals voor-
doen, de volgende keer terecht komen. Elke safari werd weer spannender! Although Capetown
is a beautiful city, it became a favorite holiday destination due to Dave, Colette and Jane. You
have always made us feel welcome and at home and | hope to see you all in the near future.

Zonder mijn broer, Dick, had de omslag er niet zo professioneel uitgezien. Bedankt voor je
hulp en de leuke, soms drukke, tijd die we samen in Amsterdam hebben doorgebracht.

Rest mij om mijn familie te danken voor hun ondersteuning en vertrouwen door de jaren
heen. De afgelopen jaren waren (soms) zwaar voor ons allen, maar gelukkig brengt de toekomst
altijd nieuwe situaties, met zijn eigen mogelijkheden en kansen, mee. Ik deel die toekomst nu
samen met Mirjam, en ik kan geen woorden bedenken om haar daar voor te bedanken.

Menzo Windhouwer
Amsterdam, September 2003

SIKS Dissertation Series

1998-01
1998-02
1998-03
1998-04
1998-05
1999-01
1999-02
1999-03

1999-04
1999-05

1999-06
1999-07
1999-08

2000-01
2000-02
2000-03

2000-04
2000-05
2000-06

2000-07
2000-08

Johan van den Akker (CWDEGAS - An Active, Temporal Database of Au-
tonomous Objects

Floris Wiesman (UM)nformation Retrieval by Graphically Browsing Meta-
Information

Ans Steuten (TUDA Contribution to the Linguistic Analysis of Business Con-
versations within the Language/Action Perspective

Dennis Breuker (UMMemory versus Search in Games

E.W.Oskamp (RULE;omputerondersteuning bij Straftoemeting

Mark Sloof (VU)Physiology of Quality Change Modelling; Automated mod-
elling of Quality Change of Agricultural Products

Rob Potharst (EURJJassification using decision trees and neural nets

Don Beal (UM)The Nature of Minimax Search

Jacques Penders (UNThe practical Art of Moving Physical Objects

Aldo de Moor (KUB)Empowering Communities: A Method for the Legitimate
User-Driven Specification of Network Information Systems

Niek J.E. Wijngaards (VURe-design of compositional systems

David Spelt (UT)yerification support for object database design

Jacques H.J. Lenting (UMiformed Gambling: Conception and Analysis of a
Multi-Agent Mechanism for Discrete Reallocation.

Frank Niessink (VURerspectives on Improving Software Maintenance

Koen Holtman (TUERTrototyping of CMS Storage Management

Carolien M.T. Metselaar (UvASociaal-organisatorische gevolgen van kennis-
technologie; een procesbenadering en actorperspectief.

Geert de Haan (VUETAG, A Formal Model of Competence Knowledge for
User Interface Design

Ruud van der Pol (UMKnowledge-based Query Formulation in Information
Retrieval.

Rogier van Eijk (UU)rogramming Languages for Agent Communication
Niels Peek (UURecision-theoretic Planning of Clinical Patient Management
Veerle Coupé (EURSensitivity Analyis of Decision-Theoretic Networks

192

SIKS Dissertation Series

2000-09
2000-10

2000-11

2001-01

2001-02

2001-03
2001-04

2001-05

2001-06
2001-07

2001-08

2001-09

2001-10

2001-11

2002-01
2002-02

2002-03

2002-04

2002-05

2002-06

2002-07

2002-08

Florian Waas (CWIRrinciples of Probabilistic Query Optimization

Niels Nes (CWI)mage Database Management System Design Considerations,
Algorithms and Architecture

Jonas Karlsson (CW8§calable Distributed Data Structures for Database Man-
agement

Silja Renooij (UU)Qualitative Approaches to Quantifying Probabilistic Net-
works

Koen Hindriks (UU)Agent Programming Languages: Programming with Men-
tal Models

Maarten van Someren (UvAkarning as problem solving

Evgueni Smirnov (UM)Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

Jacco van Ossenbruggen (VBipcessing Structured Hypermedia: A Matter
of Style

Martijn van Welie (VU)Task-based User Interface Design

Bastiaan Schonhage (VD)ya: Architectural Perspectives on Information Vi-
sualization

Pascal van Eck (VU), Compositional Semantic Structure for Multi-Agent Sys-
tems Dynamics.

Pieter Jan 't Hoen (RULJpwards Distributed Development of Large Object-
Oriented Models, Views of Packages as Classes

Maarten Sierhuis (UvAModeling and Simulating Work Practice BRAHMS: a
multiagent modeling and simulation language for work practice analysis and
design

Tom M. van Engers (VUAKnowledge Management: The Role of Mental Mod-
els in Business Systems Design

Nico Lassing (VU)Architecture-Level Modifiability Analysis

Roelof van Zwol (UT)Modelling and searching web-based document collec-
tions

Henk Ernst Blok (UT)Patabase Optimization Aspects for Information Re-
trieval

Juan Roberto Castelo Valdueza (Uhe Discrete Acyclic Digraph Markov
Model in Data Mining

Radu Serban (VUJhe Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

Laurens Mommers (ULApplied legal epistemology; Building a knowledge-
based ontology of the legal domain

Peter Boncz (CWIMonet: A Next-Generation DBMS Kernel For Query-
Intensive Applications

Jaap Gordijn (VU)/alue Based Requirements Engineering: Exploring Innova-
tive E-Commerce ldeas

193

2002-09

2002-10
2002-11

2002-12
2002-13

2002-14

2002-15

2002-16

2002-17

2003-01

2003-02
2003-03

2003-04
2003-05
2003-06
2003-07
2003-08
2003-09
2003-10
2003-11
2003-12

2003-13
2003-14

2003-15

Willem-Jan van den Heuvel (KUBtegrating Modern Business Applications
with Objectified Legacy Systems

Brian Sheppard (UMJpwards Perfect Play of Scrabble

Wouter C.A. Wijngaards (VUMNgent Based Modelling of Dynamics: Biologi-
cal and Organisational Applications

Albrecht Schmidt (CWIRrocessing XML in Database Systems

Hongjing Wu (TUE)A Reference Architecture for Adaptive Hypermedia Ap-
plications

Wieke de Vries (UU)Agent Interaction: Abstract Approaches to Modelling,
Programming and Verifying Multi-Agent Systems

Rik Eshuis (UT)Semantics and Verification of UML Activity Diagrams for
Workflow Modelling

Pieter van Langen (VUJhe Anatomy of Design: Foundations, Models and
Applications

Stefan Manegold (CWI)Jnderstanding, Modeling, and Improving Main-
Memory Database Performance

Heiner Stuckenschmidt (VUntology-Based Information Sharing in Weakly
Structured Environments

Jan Broersen (VUYlodal Action Logics for Reasoning About Reactive Systems
Martijn Schuemie (TUDHuman-Computer Interaction and Presence in Vir-
tual Reality Exposure Therapy

Milan Petkovic (UT)Content-Based Video Retrieval Supported by Database
Technology

Jos Lehmann (UvAausation in Artificial Intelligence and Law - A modelling
approach

Boris van Schooten (UThevelopment and specification of virtual environ-
ments

Machiel Jansen (UvAJprmal Explorations of Knowledge Intensive Tasks
Yongping Ran (UMRepair Based Scheduling

Rens Kortmann (UMThe resolution of visually guided behaviour

Andreas Lincke (UvT)Xlectronic Business Negotiation: Some experimental
studies on the interaction between medium, innovation context and culture
Simon Keizer (UT)Reasoning under Uncertainty in Natural Language Dia-
logue using Bayesian Networks

Roeland Ordelman (UTQutch speech recognition in multimedia information
retrieval

Jeroen Donkers (UMYosce Hostem - Searching with Opponent Models

Stijn Hoppenbrouwers (KUNFreezing Language: Conceptualisation Pro-
cesses across ICT-Supported Organisations

Mathijs de Weerdt (TUDRlan Merging in Multi-Agent Systems

	Digital Media Warehouses
	Multimedia Information Retrieval
	Annotations
	The Semantic Gap
	Annotation Extraction Algorithms
	Annotation Extraction Dependencies
	Annotation Maintenance

	The Acoi System
	A Grammar-based Approach
	System Architecture
	Case Studies
	The WWW Multimedia Search Engine
	The Australian Open Search Engine
	Rijksmuseum Presentation Generation

	Discussion

	Feature Grammar Systems
	A Grammar Primer
	A Formal Specification of Languages and Grammars
	The Chomsky Hierarchy
	Mild Context-sensitivity

	The Derivation Process
	Bidirectional Grammars
	Parse Trees
	The Delta Operation
	Parse Forests
	Disambiguation

	Regulated Rewriting
	Conditional Grammars
	Tree-controlled Grammars

	Grammar Systems
	CD Grammar Systems
	Internal Control

	Feature Grammar Systems
	Detectors
	Atoms
	Dependencies
	Detector Input
	Detector Output

	Ambiguous Feature Grammar Systems
	Mildly Context-sensitive Feature Grammar Systems

	Discussion

	Feature Grammar Language
	The Basic Feature Grammar Language
	Production Rules
	Atoms
	Detectors
	The XPath Language
	Detector Confidence

	The Start Symbol

	The Extended Feature Grammar Language
	Production Rules
	Additional Sequence Types
	Constants

	Detectors
	Whitebox Detectors
	Plugins
	Classifiers

	The Start Symbol
	References

	Feature Grammar Modules
	Change Detection

	Discussion

	Feature Detector Engine
	A Parser Primer
	More Parsing Algorithms for Context-free Grammars

	Parsing Feature Grammar Systems
	Exhaustive Backtracking for Feature Grammar Systems
	Left-recursion
	Lookahead
	Memoization

	The Feature Detector Engine
	The Symbol Table
	Rewriting
	Semantic Checks

	The Parser
	The Parse Forest
	XML and DOM
	Labeling Parse Trees
	Memoized Parse Trees

	The Sentences
	Detectors
	Detector Input
	Blackbox Detectors
	Plugins
	Classifiers
	Start Symbols and References
	Deadlock Resolution

	Discussion

	Feature Databases
	The Monet Database Kernel
	Monet and XML
	Semistructured Data
	Monet XML and XMark
	XQuery

	A Feature Database
	A Database Schema
	A parse forest XML document
	Inserting a Parse Forest
	Replacing a (Partial) Parse Forest
	Query Facilities
	Adding Database Management to a Database Kernel

	Discussion

	Feature Detector Scheduler
	The Dependency Graph
	Identifying Change
	External Changes
	Internal Changes
	The Start Condition
	The Detector Function
	The Stop Condition

	Managing Change
	The (Re)validation Process
	Lookup Table Management

	Discussion

	Case Studies
	The Acoi Implementation
	Acoi Prehistory
	The Acoi Project
	Acoi 1998
	Acoi 2000
	Acoi 2002
	Acoi Future

	The WWW Multimedia Search Engine
	The Feature Grammars
	The System Architecture
	Lessons Learned

	The Australian Open Search Engine
	The Webspace Method
	COBRA
	The Australian Open DMW Demonstrator
	Lessons Learned

	Rijksmuseum Presentation Generation
	The Style Repository
	The Data Repository
	The Presentation Environment
	A Style Feature Grammar
	Generating the Presentation
	Lessons Learned

	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work
	Feature Grammar Systems
	Feature Grammar Language
	Feature Detector Engine
	Feature Database
	Feature Detector Scheduler
	Digital Media Warehouses

	Discussion

	The Feature Grammar Language
	Feature Grammars
	The WWW Feature Grammar
	The Text Feature Grammar
	The HTML Feature Grammar
	The Image Feature Grammar
	The Audio Feature Grammar
	The MIDI Feature Grammar
	The MP3 Feature Grammar
	The Video Feature Grammar
	The MPEG Feature Grammar
	The Acoi Feature Grammar
	The Tennis Feature Grammar
	The Australian Open Feature Grammar
	The Rijksmuseum Feature Grammar

	XML documents
	A schema document
	A parse forest document

	Abbreviations
	Bibliography
	Index
	Samenvatting
	Curriculum Vitae
	Acknowledgments
	SIKS Dissertation Series

