
Associative Storage Modification Machines

John Tromp
Centrum voor Wiskunde en Informatica

P.O. Box 4079, 1009 AB Amsterdam
The Netherlands

Email: tromp@cwi.nl

Peter van Emde Boas
ILLC, Departments of Mathematics and Computer Science

University of Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam

The Netherlands
Email: peter@fwi.uva.nl

Abstract
We present a parallel version of the storage modification machine.

This model, called the Associative Storage Modification Machine (ASMM),
has the property that it can recognize in polynomial time exactly what
Turing machines can recognize in polynomial space. The model there­
fore belongs to the Second Machine Class, consisting of those parallel
machine models that satisfy the parallel computation thesis. The Asso­
ciative Storage Modification Ma.chine obtains its computational power
from following pointers in the reverse direction.

1985 AMS(MOS) Subject Classification: 68Q05, 68Q10, 68Q15.
CR Categories: B.3.2, B.4.3, D.4.1, D.4.4.
Keywords and Phrases: machine model, storage modification
machine, pointer machine, parallel computation thesis, complexity
theory, pspa.ce, second machine class, simulation.

291

292 J. Tromp and P. van Emde Boas

1 Introduction

The Storage Modification Machine (SMM) is a machine model introduced by
Schonhage in 1977 [16). The model has its predecessor in the Kolmogorov­
Uspenskii machine (KUM) [10). Schonhage advocates his model as a model of
extreme flexibility.

The model resembles the Random Access Machine (RAM) [1] as far as
it has a stored program and a potentially infinite memory structure where it
stores its data. Whereas the RAM uses an infinite sequence of storage reg­
isters, ea.eh capable of storing an arbitrarily large integer, the SMM operates
on a directed graph by creating nodes and (re)directing pointers. The main
difference between the SMM and the KUM is that the KUM operates on
undirected instead of directed graphs.

We can approximately model an SMM by a Pascal program that uses
records of pointers to records to describe the directed graph 1 :

type pointer= 'node;
node =record a,b: pointer end;

var head : pointer;

In contrast with Pascal, pointers are not allowed to be nil or undefined;
they must always point to some node. The (finite) set of pointer names, in the
example {a, b}, is called the alphabet of directions, denoted .6.. The pointers
in the graph are labeled with the elements of A such that each node in the
digraph has, for each direction 5 E A, exactly one outgoing 8-pointer. The
graph thus has regular outdegree IAI. To complete the analogy between an
SMM and a Pascal program, the latter must be restricted to the use of only
one variable; the pointer head. By repeated application of the Pascal nev

· statement, the program can create an arbitrarily large data structure. This is
a.cl.dressed with expressions like head-. b- .a-. b-. b- .a. Similarly, the SMM
addresses its storage with words (strings) over A, like babba. In the SMM
model, there is only a conceptual head pointer-at any time, one node, call
the center, is distinguished as the one from where addressing starts. Thus
the centre, whose identity can change dynamically, is addressed by the empty

1 In Pascal -r denotes the type 'pointer to T'; a value of this type is the address of an
object of type T. Indirection through a pointer is written asp-, which refers to the object
at which p points.

Associative Storage Modification Machines 293

word f, and other nodes a.re addressed by following pointers starting from the
center.

It has been established that from the perspective of computational com­
plexity theory the SMM (if equipped with the correct space measure [12, 21])
is computationally equivalent to the other standard sequential machine models
like the Turing machine and the RAM. This equivalence a.mounts to the fact
that these models simulate ea.eh other with polynomially bounded overhead
in time and constant factor overhead in space, thus satisfying the so-called
invariance thesis [17, 22].

For most sequential models there have been proposed parallel machine
models based on the classical. sequential version. For the Turing machine Sav­
itch [15] has proposed a parallel version based on parallel recursive branching;
a model based on nondeterm.inistic forking on a shared set of tapes was de­
scribed by Wiedermann [24, 25], but this model turns out to be polynomially
equivalent in time a.nd space with the standa.rd sequential devices. The rich­
ness of parallel models based on the RAM is even much greater, which makes
it hard, if not impossible to refer to a small set of representative models.
There are models based on shared memory and alternative models based on
local storage and message passing. Hybrid combinations occur as well. Within
each class there exist more refined distinctions like the resolution strategy for
resolving write conflicts in shared memory models, the available arithmetic
instructions and the mechanism for restricting the number of processors acti­
vated during a computation. Moreover, there exist sequential mode~ which
become computationally equivalent to parallel models due to their power to
create a.nd manipulate exponentially large values in a linear number of steps
in the uniform time measure. Also, by exploiting the alternating mode of
computation [5], some standard sequential devices become computationally
equivalent to the parallel ma.chines.

For a more detailed survey of parallel models we refer to [20, 22]. For the
purpose of the present paper it suffices to give some impression of the overall
landscape of parallel machine models.

It turns out that most parallel models proposed in the literature belong to
the so-called Second Machine Class consisting of machine models which obey
the Parallel Computation Thesis. This thesis expresses that the class of lan­
guages recognized in nondeterministic polynomial time on the parallel device
is equal to the class PSPACE of languages recognized in polynomial space

294 J. Tromp and P. van Emde Boas

on a sequential device. Conversely all la.ngua.ges in PSPACE a.re recognized
in deterministic polynomial time on the parallel machine. In our reading the
Parallel Computa.tion Thesis entails the equivalence of deterministic and non­
deterministic polynomial time on the pa.rallel model. The models for which
the thesis was originally formula.ted obey this more restricted thesis as well.
And indeed those models for which nondeterministic polynomial time seems
to exceed PSPACE nowadays a.re held to be more powerful.

Not all para.I.lei models obey the a.hove para.I.lei computation thesis. Some
wea.k models turn out to be polynomial time equivalent to the sequential
models (the para.I.lei Turing machine proposed by Wiederma.nn, a.nd its equiv­
alents (24, 25] being a typical example). Other models, like the P-RAM
presented by Fortune and Wyllie (7] deviate from the thesis by recognizing ex­
ponentially time bounded languages in polynomial nondeterministic time on
the parallel device; some para.I.lei devices even recognize arbitrary languages
in constant time [13]. The second ma.chine class therefore represents a. fre­
quently occurring version of the power of uniform unrestricted parallelism
ra.ther tha.n the union of all possible parallel machine models. Second ma.­
chine class members can be characterized a.s providing the right mixture of
exponential growth potential together with the proper degree of uniformity.
The exponential growth potential is required for the implementation of the
transitive closure algorithm on a directed graph of exponential size (which
models the computation graph of some PSPACE-bounded machine), or the
direct solution of the PSPACE-complete problem QBF in polynomial time.
The uniformity is required for performing the simulation of a polynomial-time
computation of the nondeterministic version of the para.I.lei ma.chine in poly­
nomial space. See [22] for more details on the standard strategies for proving
membership in the second machine class.

In this pa.per we propose (as far as we know for the first time) a pa.ra.llel
version of the storage modification ma.chine which belongs to the second ma­
chine class. To our knowledge few parallel versions of pointer machines have
been investigated in the complexity theory literature. The earliest reference
known to us concerns a parallel version of the Kolmogorov-Uspenskii ma.chine
which was proposed by Ba.rzdin [2, 3]. This ma.chine operates like a.n irregular
cellular array of finite state automata in a graph which is dynamically changed
by the individual nodes interacting with their neighbourhood. A single com­
putation step resembles a parallel rewrite step in a graph grammar derivation.

Associative Storage Modification Machines 295

In this model all nodes are active in every computa.tion step; if their neighbor­
hood ma.tches the pa.ttern required by the instruction the node will tra.nsform
its environment. The Hardware Modifica.tion Ma.chine (HMM) introduced by
Dymond a.nd Cook [6] behaves in a. similar wa.y. This model indeed ha.s been
investigated for its complexity beha.vior. From Lam and Ruzzo [llj it fol­
lows tha.t the ma.chine is equivalent with constant factor time overhea.d.s with
a. restricted version of the P-RAM of Fortune a.nd Wyllie. From this result
one can observe that the HMM represents another example of the cla.ss of de­
vices which a.re located beyond the second ma.chine class - its nondeterministic
version accepts NEXPTIME in polynomial time.

The computational power of our ASMM model origina.tes from the possi­
bility of traversing pointers in their reverse order. By using reverse directions,
an ASMM can address, from a given node x, all the nodes tha.t are a.ssocia.ted
with x by pointing to x (hence the na.me2). More than one node ca.n be reached
on a. path by traversing pointers in the reverse direction. Note tha.t a.t this
point it is crucial that we have based ourselves on the SMM rather than the
older KUM model; in a.n undirected graph traversing pointers in the reverse
direction ma.kes no sense.

As in the standard SMM model the finite control accesses the storage
structure by mea.ns of a single center node. The power of tra.versing reversed
pointers is used only in two types of instructions: the new and the set instruc­
tion. The first argument of the above two instructions is a path which now
may contain reverse pointers. This path therefore no longer denotes a. single
node but a. set of nodes (which in fa.et may be empty). The action described
by the instruction now will be performed for all nodes in this set in parallel.
The second argument of the set instruction is required to be a. path consisting
of forward pointers only; it therefore always denotes a single node. Therefore
the action performed by the two instructions above is deterministic.

Our model may be considered to be a member of the cla.ss of sequential
ma.chines which operate on large objects in unit time and obtain their power of
parallelism thereof. Other models of this character a.re the vector ma.chines of
Pra.tt a.nd Stockmeyer [14], the MRAM proposed by Hartmanis a.nd Simon [9]
and simplified by Bertoni et a.l. [4), and also the EDITRAM presented by
Stegwee et a.l. [18, 22].

2compare with cordent-addreuable auociatitJt memorJ

298 J. Tromp and P. van Emde Boas

(second argument of set to a.nd both arguments of the if instruction) a.re
strings over .6.. All arguments a.re finite strings which a.re written literally in
the program. We first describe their meaning for the SMM:

1. new W: crea.tes a new node which will be located at the end of the path
tra.ced by W; if W = f. the new node will become the center; otherwise
the last pointer on the path la.beled W will be directed towards the new
node. All outgoing pointers of the new node will be directed to the
former node p* (W)

2. set W to V: redirects the last pointer on the path labeled by W to
the former node p*(V); if W =f. this simply mea.ns that p*(V) becomes
the new center; otherwise the structure of the graph is modified.

3. if V = W (if V # W) then(instr): depending on whether p*(V) and
p*(W) coincide or not, the conditional instruction (instr) (conditional
jump suffices) is executed or skipped.

In the ASMM model the .6.-structure can be addressed by words (also
called paths) over the alphabet of normal a.nd reverse directions 3... Every
word W E 3..• addresses the (possibly empty) set of all the nodes reachable
from the center by following the consecutive directions and reverse directions
in W.

The notion of 'addressing' is formalized by the mapping P : 3.. *--+ 2x,
defined by:

P(E) = {c}

P(Wa) = {p(x,a)ix E P(W)}

P(Wa) = {xjp(x,a) E P(W)}.

Note: It will often be convenient to give a name to a.n address path
V E .C.*. In the code fragments presented in this paper, we will use paths
having such a name v as a prefix, in addition to fully explicit paths. This
serves two purposes. First, fixed nodes that have been given descriptive names
can be addressed by their name rather than some a.rbitra.ry path (we say that
a. node is fixed iff it has a. constant address). Second, if we a.re using one of
the pointers from a fixed node to traverse pa.rt of the graph, it can be given

Associative Storage Modification Machines 299

a. name that more closely resembles its function: that of a variable. We will
use :aria.ble names without specifying which path they stand for, omiting the
details of the creation of spare nodes to provide the required3 pointers.

A node x is said to be directly addressable if it is reachable from the center
by normal (non-reversed) directions, i.e. 3 VE b..*: P(V) = {x}.

In order to facilitate the descriptions of the internal instructions we define - ' a. mapping Q : bi.* ---t 2x, from a path to the set of nodes from which the last
pointer on this path originates, by:

Q(e) =
Q(Wa) =

Q(Wa)

0
P(W)

P(Wa).

The new and set change the b..- structure from (X, c, p) to (X', <!, p) as
follows:

new W;
Here, W E .6. * determines where new nodes are inserted. If W = e, then
a new center d is created such that X' = XU { <!} and p'(c', 8) = c for all
8 E b... Otherwise, if W = U& (a is either a or a), then for every node
u E Q(W) a new node Xu is created such that X' =XU {xulu E Q(W)},
p'(u,a) =Xu, V8 E b..p'(xu,8) = p(u,a), and<!= c. All other pointers
remain unchanged.

set W to V;
Here, W E .6."' determines which pointers are redirected to the node
determined by V E bi.*. If W = e, then c' = P(V) becomes the new
center. Otherwise, if W = U&, then for every node u E Q(W), p'(u, a) =
P(V) and d = c. In both cases X' is the restriction of X to the nodes
which are reachable from d.

The third internal instruction is the if statement. Since both paths in this
instruction consist of forward pointers only, the meaning of this instruction is
equal for the SMM and the ASMM.

3fo the case of the ASMM, when we use an address like vi with v a variable name, it
is desirable for v not to he an :r:-pointer, i.e. that the address that v stands for doesn't end
with the direction x.

300 J. Tromp and P. van Emde Boas

The time complexity we use is simply the number of instructions executed.
We do not concern ourselves with the space complexity; see [12, 21] for a
discussion of the space complexity of the SMM.

3 An illustration of the power of associativity

We demonstrate the power of the ASMM model by showing the capability to
manipulate arbitrarily large sets in constant time.

The model allows the following natural representation of sets. If W is a
word over ~' a.nd a E ~ a direction, then P(Wa) is the set of all nodes
having their a-pointer directed to the node P(W). Assume that our alphabet
is ~ = {A, B, C, a, ,B, /} a.nd that the A, B, a.nd C-pointers from the center go
to three different nodes P(A), P(B) and P(C), none of which is the center. We
will now consider the sets P(Aa), P(BP) a.nd P(C, t) and see how the standard
set operators can be applied to them by using appropriate set to instructions.
We have chosen A, B and C to be directions so that the instructions with
which we will implement the set operators cannot affect the addressing of the
nodes P(A), P(B) and P(C). As long as no such interference exists, we can
generalize to the case where A, B a.nd C a.re not elements of ~ but words over

~-
The instruction set Aa,B to B; has the effect of adding to P(B"{J) the set

P(Aa), while the instruction set Aa/3 to fj removes from P(Aa) the nodes
which a.re also in P(B "{J).

The figure below now shows how the standard set operators, shown as
assignment statements in the boxes, can be implemented in terms of set to
instructions. The center f is used to direct pointers away from A or C.

set C:y to E
c:y :=0

set- Aa; to C
C:y := Aa

set B;J; to E _
Ct:=Aa \ B/3

set B;J; to C set C:ya to E

Ct:= AauBiJ Aa := AanBfj

Associative Storage Modification Machines 301

The following program illustrates how in linear time a. set P(a) of expo­
nential size ca.n be constructed (with a. singleton alpha.bet):

new O:;
set aa to c;

new O:;
set oO: to c;

Initially only the center exists, so all nodes point to the center. Hat some
point 2k nodes exist, all of which point to the center, then a.fter the new
instruction, each of these 2k nodes now points to one of 2k newly created
nodes, which a.gain point to the center. Next the set instruction makes
all 2k+i nodes point to the center. Hence a.fter k repetitions of these two
instructions the size of the set P(a) has become 2k.

In the next section we will see how these and similar constructions a.re used
to process large a.mounts of data in parallel.

4 PSPACE = ASMM-PTIME = ASMM-NPTIME

The proof of membership in the Second Ma.chine Class is usually split into two
parts:

Lemma 1 PSPACE ~ ASMM-PTIME

We prove this by sketching an ASMM which solves the PSPACE-complete
problem QBF in polynomial time.

Lemma 2 ASMM-NPTIME ~ PSPACE

We prove this by showing how to simulate t steps of a nondeterministic
ASMM on a Turing ma.chine using O(t2) space.

304 J. Tromp and P. van Emde Boas

For a clear understanding of the construction, it is important to distinguish
between truth-values and their representation. Conceptually, the algorithm
works with truth values, 1 (true) and 0 (false). The leaves of the 2" copies of
B are assigned truth values in the obvious way according to which variable
they represent. The other nodes are assigned default truth values, which are
0 for a disjundion, a.nd 1 for a conjunction or a negation (recall that the
quantifiers have been transformed into disjunction and conjunction). Next, a.
bottom-up process repeatedly changes defaults, that a.re in disagreement with
their evaluated children, into the correct evaluation. In order to facilitate this
process, we use a mixed representation of truth values, as follows.

Call a node u' E C(u) active if its x-pointer is directed to u or passive if its
x-pointer is directed to c. A truth value is represented by the active state iff
that truth value disagrees with the default of its parent, and with the passive
state otherwise. To summarize:

I pa.rent type
pa.rent default
active value

As an example, suppose a. .., node u' E C (u) ha.s a parent V node. The
pa.rent gets a default value of O, which is to be changed into a 1 iff either of
its children evaluates to 1. Thus, 1 is the active value for u'. The value 0 is
passive for u', since it agrees with the default 0 value of its V pa.rent. Since a
.., node is 1 by default, u' is active by default, hence its x-pointer is initially
directed to u.

The representation of the truth value at a. node u therefore depends on the
type of the logical connective associated to the parent of u in the tree. This
holds also for the nodes in the tree T which a.re associated to the variables Xi.

In this tree the copies of the variables have been treated a.s logical connectives
according to the type of the qua.ntifyer binding this variable. Note that by
keeping the x-pointer of r directed to x0 , it is ma.de active by default.

In the algorithm above stages 1, 2 and 3 are used for building the tree;
during stage 4 the truth values are assigned to a.11 variable occurrences in the
copies of B, and in stages 5 and 6 all intermediate nodes are given their default
values. During the final two stages the entire tree is evaluated.

We next describe ea.eh of the a.hove stages in some more detail.

Associative Storage Modification Machines 305

In stage 1 the input is examined and used to construct a linearly sized list
a.nd tree representing the formula. We represent the type of a. node u E X U B
by directing its x-pointer to one of the special nodes V, A,...,, ..L. As noted
before, these four symbols will also be used as paths addressing the nodes. The
leaves of B a.re of type .l. and have their 1-pointer directed to the appropriate
Xi. Existentially quantified Xi have type(x;) = V and universally qua.ntified Xi

have type(x;) = /I..
When traversing the list of x;, the algorithm needs to be able to detect its

end. Since the nodes in B already use the 1-pointer to point to their children
(or single child in case of a ..., node), we have the Xi direct their 1-pointer to
the centre, and thus by comparing vx with c ca.n tell whether v addresses a
node in X or in B.

In stage 2 the parallel power of the ma.chine is used to build an exponen­
tially large tree in linear time. This is achieved by the piece of code below:

new v;
set vx to 0;
set v to O;

,\: new vxO;
set vxOx to vO;
new vxl;
set vx lx to vO;
set v to vO;
if v 1 = c then goto .\;

create r, root of T
classify it
start X traversal
0-children for C(x;)
classify in C(x1+i)
1-children for C(x;)
classify in C(x1+i)
advance to Xi+i

repeat for all Xi

The construction of 2k copies of B in stage 3 proceeds analogously. Note
that by now all the leaves of T have their x-pointer directed to b. Traversing
B in preorder, we do the following at each node v:

if vx = .l. goto .\2;
if vx = ..., goto .\1;
new vxO;
set vxOx to vO;

.\1 : new vXl;
set vxlx to vl;

do nothing at leaves
--. node has no 0-child
create 0-child
classify in C (vO)
create 1-child
classify in C (v 1)

308 J. Tromp and P. van Emde Boas

1. in8tr[i] holds the instruction executed at step i

2. nodes[i] holds the number of nodes at time i

3. center[i] holds the center a.t time i

The simulation starts a.t time 0 and ha.s ~tep i (i ~ 1) lea.ding to time
i. Ea.eh array is of length t, the number of steps to be simulated, a.nd ea.eh
arra.y element fits in t bits since the number of nodes can at most double a.fter
ea.eh step. Every node will ha.ve a. unique number, and the resulting ordering
of nodes is used for numbering nodes created by a new instruction. More
precisely, a. new W; instruction a.t step i is simulated a.s follows:

If W = f, then center[i] = nodes[i - 1] and nodes[i] = nodes[i - 1] + 1.
Otherwise, if W = Ua, then center[i] = center[i - 1] and nodes[i] =

nodes[i-1] + IQ(W)I. Semantically, if Q(W) = {xo < x1 < ... < Xk-d, then
a.t time i, p(xj, a)= nodes[i -1] + j, for j < k = IQ(W)j.

For a.11 other instructions, nodes[i] = nodes[i-1] and center[i] = center[i-
1], except that the instruction set e to V; sets center[i] to P(V). In order
to compute P(V) and to simulate the if instruction, we use the following
functions:

p(x, a, i) returns the number of the node p(x, a) at time i

P(x, W, i) returns whether x E P(W) at time i

Q(x, W, i) returns whether x E Q(W) at time i.

These functions satisfy the equations

Q(x, e, i) = false
Q(x,Ua,i) = P(x, U,i)
Q(x, Ua,i) = P(x, Ua, i)

P(x, e, i) = (x == center[i])

P(x,Ua,i) = (3 0 $ y < nodes[i] : P(y, U, i) A p(y, a, i) == x)
P(x,Ua,i) = P(p(x, a, i), U, i)

p(x, a, 0) = 0

Associative Storage Modification Machines 309

which shows that they can be easily computed, apart from the ca.se p(x, a, i)
for positive values of i. The action of p in this case depends on the value of
instr[i]; the only interesting values of which are new and set.

Consider first the case instr[i] = new W. If x 2 nodes[i - 1] then (using
Q(y, W, i)) the difference x - nodes[i - 1] can be used to find the y in Q(W)
which 'generated' and now points to x (unless W = E, in which case p(x, a, i) =
center[i-1]). Now p(x,a,i) = p(y,a,i-1). On the other hand, suppose x <
nodes[i-1]. If W = Ua (i.e. a-pointers may have changed) a.nd Q(x, W,i-
1), then x has generated p(x,a,i) = nodes[i-1] + j{y < xjq(y, W,i- l)}j.
Otherwise p(x, a, i) = p(x, o:, i - 1).

Second and last, consider the case instr[i] =set W to V. If W = UO: a.nd
Q(x, W, i-1), then p(x, a, i) is the unique y satisfying P(y, V, i-1). Otherwise
p(x, a, i) = p(x, a, i - 1).

These functions ca.n easily be coded on a Turing Ma.chine using recursion
(sta.ckfra.mes). The recursion depth is bounded by et, where c is a constant
depending only on the maximum path length of the ASMM program. Ea.eh
sta.ckfra.me holds a. return address and some node numbers and counters ea.eh
of which fits in t bits. Together with the three arrays, space O(t2) suffices for
the simulation of t steps of the ASMM.

5 Conclusion

Of all the parallel models which have been shown to belong to the Second Ma­
chine Class, the ASMM is the first to obtain its power from the use of associa­
tive addressing, thus making it a.n interesting addition to the realm of Second
Ma.chine Class devices. It provides another example that a small modification
of a ma.chine model can enforce a substantial increase in computational power.
In [4] it was shown tha.t this increase is provoked by adding multiplicative in­
structions to the unit-time standard RAM model. Similarly the ED/TRAM
model obtains its power from introducing a few edit operators that a.re avail­
able on most real life text editors anyhow. In the ASMM model it turns out
tha.t tra.versing pointers in the reverse direction is all we need to obtain full
pa.rallel power. At the same time, the fa.et that the storage structure of the
ASMM is manipulated by a finite program that interacts with the ~-structure
by means of a single center seems to be the ma.in reason why the ma.chine has

310 J. Tromp and P. van Emde Boas

not become too powerful. As shown by Lam and Ruzzo [11], a model where the
nodes become independently active finite automata. becomes equivalent with
a. restricted version of the P-RAM of Fortune and Wyllie. This suffices for
ma.king the nondeterministic version more powerful than PSPACE (except for
the unlikely ca.se that PSPACE = NEXPTIME). This situation resembles the
relation between the SIMDAG described by Goldschlager [8], where a. single
processor broadcasts its instructions to a collection of peripheral processors
and the P-RAM model of Fortune a.nd Wyllie [7] where the local processors
are independent.

Clearly there a.re other models which could serve a.s a. pa.rallelized version
of the SMM. In our model the set-to instruction is rather limited. Since its
second argument addresses a. single node, it can.not be used for setting different
pointers to different destinations. This severely limits the scope of proofs that
our machine is indeed so powerful. A more conventional approach, based on
the construction of the transition graph of a polynomial space bounded Turing
machine, and the computation of its transitive closure by pointer jumping-as
suggested by the referee-is rendered infeasible by the limitation of the set­
to instruction. Overcoming this limitation would require a. different flavour
of set-to instruction. A na.tura.l possibility is to allow the conventional set­
to instruction of the SMM to be executed in parallel with respect to many
different 'centers', the latter being specified by a. third argument which is a.
string in Li. This model has some drawbacks, however. One is the possibility
of conflicts a.rising when a pointer must be set to one node when a.d_dressed
through one center, a.nd to another node when addressed through another
center. Resolving this problem would probably detract from the elegance of
the model, one of its prime features. Another problem is that it becomes
harder to manage a.11 the pointers, since there is no simple way in which to
direct a bunch of them to some fixed node where they can be 'out of the
way'. Thus it is not a strict generalization of our model, although it should
be possible to simulate our set-to instruction with this new one by keeping
around an extra direction to always point to the real center.

Another modification suggested by the referee amounts to replacing the
flow-of-control nondeterminism by a nondeterministic da.ta manipulation in­
struction. For example both arguments in the set W to V instruction may
become strings over l..; the effect of this instruction is that each node addressed
by W redirects its outgoing pointer towards one of the nodes addressed by V.

Associative Storage Modification Machines 311

This instruction makes it possible to guess some truth value for an arbitrarily
large set of propositional variables in a single instruction, and suggests a. proof
that NP is included in ASMM-NLOGTIME (assuming tha.t the model also
is upgraded to allow the input to be rea.d in logarithmic time). Consequently
this model would fail to be a member of the Second Machine Class; since the
purpose of this paper is the design a version of the SMM belonging to the
Second Machine Class we abstain from investigating this suggestion in more
detail.

We like to use this opportunity to acknowledge for these suggestions of
the referee and his other useful remarks which we have used in revising the
manuscript.

References

[l] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design and Analysis
of Computer Algorithms, Addison-Wesley Puhl. Comp., Rea.ding, Mass.,
1974.

[2] Barzdin', Ya. M., Universal pulsing elements, Soviet Physics-Dokla.dy 9
(1965) 523-525.

[3] Barzdin', Ya. M., Universality problems in the theory of growing au­
tomata, Soviet Physics-Doklady 9 (1965) 535-537.

[4] Bertoni, A., Mauri, G. and Sa.ba.dini, N., Simulations among classes of
random access machines and equivalence among numbers succinctly rep­
resented, Ann. Discr. Math. 25 (1985) 65--90.

[5] Chandra, A.K., Kozen, D.C. a.nd Stockmeyer, L.J., Alternation, J. Assoc.
Comput. Mach. 28 (1981) 114-133.

[6] Dymond, P.W. and Cook, S.A., Hardware complexity and parallel c~mpu­
tation, Proc. 2lst Ann. IEEE Syrop. Foundations of Computer Science,
1980, pp. 360--372.

[7] Fortune, S. and Wyllie, J., Parallelism in random access machines, Proc.
lOth Ann. ACM Syrop. Theory of Computing, 1978, pp. 114-118.

312 J. Tromp and P. van Emde Boas

[8] Goldschlager, L.M., A universal interconnection pattern for parallel com­
puters, J. Assoc. Comput. Mach. 29 (1982) 1073-1086.

[9] Hartmanis, J. and Simon, J., On the structure of feasible computations,
in Rubinoff, M. and Yovits, M.C. (Eds.), Advances in Computers, Vol. 14
, Acad. Press, New York, 1976, pp. 1-43.

[10] Kolmogorov, A.N. a.nd Uspenskii, V.A., On the definition of an algorithm,
Uspehi Mat. Nauk 13 (1958) 3-28 ; AMS Transl. 2nd ser. 29 (1963) 217-
245.

[11] Lam, T.W. and Ruzzo, W.L., The power of parallel pointer manipulation,
Proc. lst Ann. ACM Symp. Parallel Algorithms and Architectures, 1989,
pp. 92-102

[12] Luginbuhl, D.R. and Loui, M.C., Hierarchies and space measures for
pointer machines, Inf. and Comput., 1993, to appear; also: Report UILU­
ENG-88-2245, Department of Electr. Engin., University of Illinois at
Urbana-Champaign, 1988.

[13] Parberry, I., Parallel speedup of sequential machines: a defense of the
parallel computation thesis, SIGACT News 18, nr. 1, 1986, pp. 54-67.

[14] Pratt, V.R. and Stockmeyer, L.J., A characterization of the power of
vector machines, J. Comput. Syst. Sci. 12 (1976) 198-221.

[15] Savitch, W.J., Recursive Turing machines, Inter. J. Comput. Math. 6
(1977) 3-31.

[16] Schonha.ge, A., Storage modification machines, SIAM J. Comput. 9 (1980)
490-508.

[17] Slot, C. a.nd van Emde Boas, P., The problem of space invariance for
sequential machines, Inf. and Comp. 77 (1988) 93-122.

[18] Stegwee, R.A., Torenvliet, L. and van Emde Boas, P., The power of your
editor, Report RJ 4711 (50179), IBM Research Lab., San Jose, Ca.., 1985.

[19] Stockmeyer, L., The polynomial time hierarchy, Theor. Comp. Sci. 3
(1977) 1-22.

Associative Storage Modification Machines 313

[20] van Emde Boas, P., The second machine class 2: an encyclopaedic view
on the Parallel Computation Thesis, in: Rasiowa., H. (Ed.), Ma.thema.tica.l
Problems in Computation Theory, Bana.ch Center Publica.tions, Vol. 21,
Warsaw, 1987, pp. 235-256.

[21] van Emde Boas, P., Space measures for storage modification machines,
Inf. Proc. Lett. 30 (1989) 103-110.

[22] van Emde Boas, P., Machine models and simulations, in: van Leeuwen, J.
(Ed.), Handbook of Theoretical Computer Science, North-Holland Puhl.
Comp. 1990, pp. 1-66.

[23] Wagner, K. a.nd Wechsung, G., Computational Complexity, Ma.thema.tis­
che Monogra.phien Vol. 19, VEB Deutscher Verlag der Wissenscha.ften,
Berlin (DDR), 1986, also: Reidel Puhl. Comp., Dordrecht, 1986.

[24] Wiederma.nn, J., Parallel Turing machines, Techn. Rep. RUU-CS-84-11,
Dept. of Computer Science, University of Utrecht, Utrecht, 1984.

[25] Wiederma.nn, J., Weak parallel machines; a new class of physically feasible
parallel machine models, I.M. Havel & V. Koubek (Eds.), proc. Mathe­
matical Foundations of Computer Science 1992, Springer Lecture notes
in Computer Science 629 (1992) pp. 95-111.

