
SAT-based Verification for Timed Component
Connectors

Stephanie Kemper1

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands, s.kemper@cwi.nl

Abstract

Component-based software construction relies on suitable models underlying components, and in particular
the coordinators which orchestrate component behaviour. Verifying correctness and safety of such systems
amounts to model checking the underlying system model, where model checking techniques not only need
to be correct but—since system sizes increase—also scalable and efficient.
In this paper, we present a SAT-based approach for bounded model checking of Timed Constraint Automata.
We present an embedding of bounded model checking into propositional logic with linear arithmetic, which
overcomes the state explosion problem to deal with large systems by defining a product that is linear in the
size of the system. To further improve model checking performance, we show how to embed our approach
into an extension of counterexample guided abstraction refinement with Craig interpolants.

Keywords: Timed Constraint Automata, Abstraction Refinement, Model Checking, SAT,
Component-based Software Engineering

1 Introduction

Component-based software engineering amounts to constructing large systems by
composing individual components. The correctness and safety of these concurrent
systems depend on actions that happen at the right time, i.e., before or after a
certain deadline, or within a certain time interval. As components are often available
as black boxes only, timed coordination has to be done by the time-aware component
connectors. Timed Constraint Automata [4] (TCA) have been originally defined as
a semantical model for the coordination language Reo [3]. They offer a powerful
stand-alone coordination mechanism for implementing coordinating connectors in
networks of timed components exchanging data through multiple channels.

The computational complexity introduced by the infinite state space of these
real-time systems leads to severe limitations in scalability even within very well-
established model checkers like Uppaal (http://www.uppaal.com). Aside from the

1 Part of this research has been funded by the Dutch BSIK/BRICKS project.

Electronic Notes in Theoretical Computer Science 255 (2009) 103–118

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.10.027

mailto:s.kemper@cwi.nl
http://www.uppaal.com
http://www.elsevier.com/locate/entcs

omnipresent state explosion problem [9] already present in finite state model check-
ing, current model checking techniques for real-time systems are still limited in
the number of concurrent quantitative temporal observations (measured by clocks).
A particularly dramatic cause of the state explosion problem is the exponential
blow-up obtained by forming the cross product for parallel composition of TCA. To
avoid this, we define a linear-size parallel composition for the logical representation
of TCA. Typically, only a reduced part of the full parallel composition has to be
expanded from our representation during satisfiability checking (SAT solving).

Very sophisticated and well-optimised techniques (e.g., [17]) guide high-end SAT
solvers to explore only a comparably narrow fragment around the part of the state
space relevant for the particular safety property. We build upon this development
by choosing a linear arithmetic/propositional encoding, a philosophy that has suc-
cessfully proven its great potential in finite state systems [8]. With this basis, we
exploit the particularities of transition systems induced by TCA using abstraction
refinement to deal with the challenges of infinite states.

Timed Constraint Automata.
TCA are a combination of constraint automata [5] (CA) and timed automata

(TA) with location invariants [2,1], offering a powerful coordination mechanism to
model coordinators in dynamically reconfiguring networks of a static number of
components. Rather than having direct static connections between the compo-
nents, communication is orchestrated by connectors “in the middle”, which impose
a certain communication pattern—for example delays—on associated components.
Moreover, the coordinator can dynamically reconfigure the network (connections),
by sending data values received from an input component to different output com-
ponents (and vice versa). Still, from the component’s perspective, communication
happens via the same connection in all cases. The major conceptual difference to
other timed models like TA is that a positive amount of time is required to elapse
before every visible data flow. This reflects the idea that actions which happen at
the same time are truly atomic and thus collapse to a single transition.

Abstraction Refinement.
Abstraction refinement [9,12] is a promising direction of research to overcome

the challenges of the state explosion problem and infinite state model checking,
while preserving correctness of verification results. Abstraction techniques over-
approximate system behaviour by removing constraints that are considered irrele-
vant for verifying a particular specification. If the abstract system is safe (no error
state is reachable) then, by conservative over-approximation, so is the original.

Based on the representation of TCA in propositional logic with linear arithmetic,
the iterative abstraction refinement loop consists of the following steps: applying
the abstraction function to the representation, we automatically produce a simpler
abstract version of it. After unfolding the resulting transition formula k times, a
satisfiability check solves the bounded reachability question in the abstract system.
Depending on the outcome, the system has either been proven safe (error state is

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118104

unreachable) within bound k, or needs to be analysed with respect to an abstract
counterexample (concretised), again using SAT solving. If the abstract counterex-
ample has a counterpart in the non-abstracted system, then the real-time system is
unsafe. Otherwise, the counterexample is spurious and results from an inappropri-
ate choice of abstraction. Analysing the counterexample (with Craig interpolants
derived by the SAT solver, e.g. FOCI (based on [16]) or MathSAT [15]) then helps
to refine the abstraction and start over until the system is proven safe (within
bound k) or unsafe.

Implementation
We have extended the CA editor in the Eclipse Coordination Tools [10] to

support generation and editing of TCA (including various syntactical checks, e.g.
well-formedness of clock constraints). Within this platform, we have implemented
the translation of TCA to propositional formulas with linear arithmetic constraints
(front end), as described in this paper. Further, we have implemented the generation
of input files for the MathSAT solver (back end), allowing us to analyse the under-
lying TCA in detail. Having split the formula generation in two parts, it is very easy
to switch to another solver, by just exchanging the back end. This implementation
is scheduled to be part of the next release of the Eclipse Coordination Tools.

Organisation of the Paper.
In the next section, we discuss some related work. After introducing TCA and

bounded model checking (BMC) in Section 3, we present a faithful representation
of TCA in propositional logic with linear arithmetic for BMC in Section 4, and give
some soundness results. In Section 5, we introduce a uniform abstraction, extend
the algebraic perspective on soundness from Section 4 to correspondence results
about abstraction, and briefly recall how to exploit spurious counterexamples for
refining abstractions. Section 6 concludes the paper and discusses some future work.

2 Related Work

Blechmann and Baier [7] present a purely propositional symbolic encoding of CA,
tailored for finite-state bisimulation checking using ordered binary decision dia-
grams. While it is not clear how to integrate timing information into their approach
(and how to handle the induced infinite state space), our approach in addition is
specifically fitted for abstraction refinement.

Jhala and McMillan [13] present an abstraction refinement approach for predi-
cate abstraction. Using interpolants, they generate refinements which take into ac-
count specific characteristics of the property. A limitation, however, is the fact that
their approach relies on an appropriate choice of predicates for predicate abstrac-
tion. Our approach can be considered as a quick (hence, scalable) approximation of
predicate abstraction, where predicate discovery is evident by exploiting the nature
of TCA.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 105

The abstraction refinement framework presented by Clarke et al. [9] works with
Kripke structures originating from finite state programs. In contrast, our approach
deals with the challenges of infinite state model checking, as introduced by the
notion of real-time clocks. Further, we directly use a formula representation which
is tailored for SAT-based bounded model checking.

In this paper, we build on the SAT-based approach for TA presented by Kemper
and Platzer [14], but take into account the special transition characteristics of TCA
(namely that a positive amount of time has to elapse before every visible transition),
and include data and data constraints. We define an abstraction function that is
simple, yet powerful, and is able to preserve more information in the abstract case
than the corresponding abstraction function in [14], which reduces the number of
spurious counterexamples.

The model checker Vereofy (http://www.vereofy.de) provides tools for model
checking (untimed) CA, but to the best of our knowledge, the framework presented
in this work is the first approach for model checking TCA.

3 Timed Constraint Automata

In this section, we introduce the standard notations for TCA [4] in the dense time
domain Time=R≥0, and for BMC [8], and we present our running example.

3.1 Syntax

In the sequel, let N be a finite, nonempty set of ports, through which TCA exchange
data values, and let Data be a finite data domain of possible data values which can
be sent or received via ports. For simplicity of representation, we assume Data

contains a special element ⊥ representing “no data”.

Definition 3.1 [Data Constraint, Clock Constraint] A data assignment δ∈DA(N)
over (data domain Data and) port set N is a mapping δ:N→Data, assigning to
each port A∈N the data value which is (currently) pending at A. 2 We use the
shorthand notation dA for the value δ(A). A clock valuation ν∈V(X) over a finite
set of clocks X is a mapping ν:X→Time assigning to each clock x∈X an element
from the time domain Time, its current value.

Data constraints dc∈DC(N) over (data domain Data and) port set N , and clock
constraints cc∈CC(X) over X are defined as follows:

dc ::= true | dA=d | dc1 ∧ dc2 | ¬dc, with A∈N and d∈Data

cc ::= true | x∼n | cc1 ∧ cc2, with x∈X , n∈N and ∼ ∈{<,≤,=,≥, >}.

We use the symbol |= for the standard satisfaction relation on data and clock
constraints. To ensure that clock constraints hold among subsequent steps, we
assume them to be convex, i.e., they do not contain ∨,¬ [1]. This property is used

2 If no data is pending at port A, δ(A) evaluates to the special value “no data”.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118106

http://www.vereofy.de

for efficient representation. Non-convex clock constraints however can be simulated
by splitting locations (for invariants) respectively transitions (for guards).

Definition 3.2 [Timed Constraint Automaton] A TCA (over data domain Data) is
a tuple T =(S,X ,N , E, s0, I), with S a finite set of locations, s0∈S the initial loca-
tion, X a finite set of clocks, N a finite set of ports, I:S→CC(X) a function assigning
a clock constraint (location invariant) to every location, and the finite set of transi-
tions E⊆S×2N×DC(N)×CC(X)×2X×S. For a transition t=(s, N, dc, cc, X, s′)∈E,
we require dc∈DC(N) (data guard of t) and cc∈CC(N) (clock guard of t), and both
to be satisfiable. X is called clock set of t, and N is called port set of t; if N=∅,
transition t is called invisible, otherwise, it is called visible.

The idea of visible and invisible transitions is that the latter do not represent
observable data flow (as no ports are involved), but just serve for internal syn-
chronisation purposes, for example by resetting clocks. The former correspond to
observable behaviour, namely data flow through all ports contained in the port set
of the transition.

Remark 3.3 [Notation of TCA] If not stated otherwise, below we shall always
assume the constituents of a TCA T to be denoted as T =(S,X ,N , E, s0, I).

Within a system of TCA, two automata synchronise if the port sets of the
involved transitions coincide on common ports. This gives rise to the following
definition.

Definition 3.4 [TCA Product] Let Ti=(Si,Xi,Ni, Ei, s0,i, Ii), i=1, 2, be TCA, with
X1∩X2=∅ and S1∩S2=∅ (can be achieved by renaming). The product of T1 and
T2, denoted T1��T2, is a new TCA T1��T2=(S1×S2,X1∪X2,N1∪N2, E, (s0,1, s0,2), I),
with I:S1×S2→CC(N1∪N2) such that I(s1, s2)=I1(s1)∧ I2(s2), and E is defined by

(s1, N1, dc1, cc1, X1, s′1)∈E1

(s2, N2, dc2, cc2, X2, s′2)∈E2

N1∩N2 = N2∩N1, N1 �=∅, N2 �=∅, dc1∧dc2 �=false

(〈s1, s2〉, N1∪N2, dc1∧dc2, cc1∧cc2, X1∪X2, 〈s′1, s′2〉)∈E
(1)

(s1, N1, dc1, cc1, X1, s′1)∈E1, N1∩N2 = ∅, s2∈S2

(〈s1, s2〉, N1, dc1, cc1, X1, 〈s′1, s2〉)∈E
(2)

and the symmetric rule of the latter.

Rule (1) captures the synchronisation of visible transitions: the nonempty port
sets have to coincide on common ports, i.e. data flows through the same set of
shared ports on both transitions. The case where N1∩N2=N2∩N1=∅ (i.e., the set
of shared ports is empty) represents a system step where each automaton performs a
local visible transition. Rule (2) describes the execution of a local transition (visible
or invisible) in one automaton, while the other automaton remains in its current
location. Note that in case this local transition is preceded by a time delay, the
other automaton actually performs a delay transition.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 107

3.2 Semantics

In TCA, a positive amount of time has to elapse before every visible transition,
while invisible transitions may be instantaneous. The underlying idea is that all
actions which happen at the same time atomically collapse to a single transition.
Other timed models, like e.g. TA, allow to execute a sequence of visible transitions
without delays in between, such that a sequential order is imposed on actions which
conceptually happen at the same time. Such behaviour is ruled out in the semantics
of TCA, which is defined as the set of runs of the associated labelled transition
system (LTS) ST [4].

Configurations 〈s, ν〉 of ST consist of a location s and a clock valuation ν, such
that ν satisfies the invariant I(s) of s. A delayed transition 〈s, ν〉 N,δ,t−−−→〈s′, ν+t[X:=0]〉
in ST , with t>0, results from a transition (s, N, dc, cc, X, s′) in T . It increases all
clocks by the same amount of time t (delay), such that the guard cc is satisfied
afterwards, data flows through all ports in N , while the data assignment δ satisfies
the data constraint dc, and all clocks in X are reset to zero. In addition, an in-
visible transition (s, ∅, true, cc,X, s′) in T gives rise to an instantaneous transition
〈s, ν〉 ∅,∅,0−−→〈s′, ν[X:=0]〉 in ST , where ν satisfies the guard cc, and all clocks in X

are set to zero. A run of ST starting in configuration q, denoted q, is a sequence
of transitions q=q N,δ,t−−−→q1

N′,δ′,t′−−−−→ . . . which is either time divergent (i.e. infinite, and
t+t′+ . . . =∞) or finite and ends in a terminal configuration 〈s, ν〉 (i.e. without
outgoing transitions, allowing for infinite passage of time: ∀t>0:ν+t|=I(s)). The
trace semantics of T is given by the set RunT of initial runs (i.e., starting in the
initial configuration) of ST . With RunT,k, we denote the set of finite prefixes of
elements of RunT of (at most) length k.

3.3 Example

An example for a TCA network with dynamic reconfiguration is shown in Figure 1.
We assume Data={1, 2} (thus, actually Data={1, 2,⊥}, and we omit constraints
equal to true as well as empty sets on transitions.

ic1

CO:

c2

{A}, x:=0, dA=1

x=3

{C}, x<3, dC=1

{B}, x:=0, dB=2

x=3

{C}, x<3, dC=2

s1

C1:

{A}, dA=1 s2

C2:

{B}, dB=2 s3

C3:

{C}, v>2,

v:=0

〈i, x=0〉 {A},δ(A)=1,2−−−−−−−−−→〈c1, x=0〉 {C},δ(C)=1,1−−−−−−−−−→〈i, x=1〉 {B},δ(B)=2,1−−−−−−−−−→〈c2, x=0〉 ∅,∅,3−−−→〈i, x=3〉 . . .

Fig. 1. Dynamic Reconfiguration of a Network

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118108

The automata represent a network of three simple components (C1, C2 and C3, in
the middle), together with a coordinator (CO, at the top) which orchestrates data
flow between the components. The general idea of the coordinator is to repeatedly
receive input from either component C1 (through port A) or C2 (through port B),
and to send the received data value to component C3 (through port C), which delays
for at least 2 time units between the receiving of subsequent data items. Further,
the connector only accepts data value 1 from C1, and data value 2 from C2. The
reconfiguration of connecting either C1 or C2 to C3 is done purely by the coordinator;
from the perspective of C3, nothing changes, since data always arrives through the
same port C. In addition, the coordinator has a timeout constraint: if the received
data item is not accepted by C3 within 3 time units, it is lost, which is represented
by the invisible transitions with guard x=3. An example run of the coordinator is
shown at the bottom of Figure 1.

3.4 Bounded Model Checking

Bounded model checking (BMC) has turned out to be amongst the most promising
approaches for verification of safety properties [8]. The principle is to examine prefix
fragments of the transition system, and successively increase the exploration bound
until it reaches (a computable indicator of) the diameter of the system—in which
case the system has been proven safe—or an unsafe run has been discovered.

Definition 3.5 [Bounded safety] Let T be a TCA, let s∈S be an error location. T
is safe with respect to s within bound k, denoted by T |=k¬∃�s, if there is no run in
RunT,k ending in s. Otherwise, T is called unsafe with respect to s.

The lifting of ¬∃�s to reason about configurations rather than locations is
straightforward. On the basis of these reachability properties, other bounded LTL
specifications can be verified as well, using the encoding in [6].

4 Representation of Timed Constraint Automata

In this section, we construct a formula ϕ(T) in propositional logic with linear arith-
metic that represents the behaviour of a TCA T (given by the runs of ST , cf. Sec-
tion 3.2), by defining transition characteristics from step t-1 to step t. For BMC,
we unfold ϕ(T) k times (for k steps), which yields a formula ϕ(T)k representing all
(prefixes of) runs of ST for k steps. This formula, together with a representation of
the safety property, is unsatisfiable iff T is safe within bound k.

4.1 Basic Components

The possible behaviour of a TCA depends on the values of its constituents (clocks,
locations, data pending at ports), and changes over time. Therefore, we “parame-
terise” the variables representing these constituents by the step t they are evaluated
in, and we call this localisation: the localisation ψt of a formula ψ is obtained by

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 109

adding index t to all variable symbols occurring in ψ. Thus, if ψ is of vocabulary
x, s, d, ψt is of vocabulary xt, st, dt instead. In particular, we use:

Locations For every location s∈S, the Boolean variable st represents whether the
TCA is in location s in step t.

Data Values, Ports The injective mapping Δ:Data→N assigns a natural number
ti to each element di of Data, with 1≤ti≤|Data|, and t|Data| def= t⊥ representing ⊥.
For every port A∈N , the Boolean activity variable At of A represents whether
data flows through A in step t, and the natural data variable DAt of A represent
which data occurs at A in step t (in case of no data flow, DAt evaluates to t⊥).

Data Constraints For a data constraint dA=di, with Δ(di)=ti, the formula
At ∧(DAt=ti) evaluates to true iff δ(A)=di in step t.

Clocks For every clock x∈X , the rational variable xt (clock reference) represents
the absolute point in time where x was last reset prior to step t. An additional
rational variable zt (absolute time reference) represents the absolute amount of
time that has passed until step t. The clock value of x at step t is thus obtained
by zt−xt. Note that linear arithmetic is equisatisfiable for rational and real
variables [14].

Clock Constraints For a clock constraint cc=x∼n (cf. Definition 3.1), the formula
zt−xt∼n, denoted cct, evaluates to true iff cc holds in step t, and the formula
zt−xt 1∼n, denoted cctΔ and called inter-step representation, evaluates to true
iff cc holds in step t and x has not been reset since step t-1.

The representation of other constraints is straightforward, by using conjunctions
(and negations, in case of data constraints) of the aforementioned representations.

The inter-step representation is needed for correct representation of delayed
transitions in ST , cf. Section 3.2: the invariant of the target location s′ is evaluated
under the valuation ν+t[X:=0], that means after the time delay and after the
execution of the transition. In contrast, the invariant of the source location s and
the clock guard of the transition are evaluated under the valuation ν+t, that means
after the passage of time, but before the execution of the transition. The inter-step
representation is used to access the clock value at this particular point in time “in
the middle” of the execution step.

4.2 Transition Relation

The representation of the transition relation needs to take care of the special be-
haviour of TCA, namely, that every visible transition has to be preceded by a pos-
itive time delay, whereas invisible transitions may be instantaneous. It constrains
the possible valuations of variables representing the configuration at subsequent
step t depending on those at step t-1. Conceptually, the delay is represented by
evolving from t-1 to t, while the (instantaneous) location change takes place at t.

Definition 4.1 [Timed Constraint Automaton Representation] Let T be a TCA,
let e=(s, N, dc, cc, X, s′) and e′=(s, ∅, true, cc,X, s′) be a visible respectively invisi-
ble transition in T . The formula representation ϕ(T) of the transition relation of T

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118110

is defined in (10) in Figure 2.

ϕi(T) = s̄0 ∧ I(s̄)0 ∧
V

s∈S,s �=s̄

¬s0 ∧
V

A∈N
(¬A0 ∧(DA0=t⊥))∧ V

x∈X
(x0=0)∧(z0=0) (3)

ϕv(e) = st 1 ∧
V

A∈N
At ∧

V
A�∈N

¬At ∧ dct ∧
V

x∈X
(xt=zt)∧

V
x�∈X

(xt=xt 1)∧(zt 1<zt)∧ cctΔ ∧ I(s)tΔ ∧ s′t

(4)

ϕτ (e) = st 1 ∧
V

A∈N
¬At ∧

V
x∈X

(xt=zt)∧
V

x�∈X
(xt=xt 1)∧(zt 1≤zt)∧ cctΔ ∧ I(s)tΔ ∧ s′t (5)

ϕE(T) =
W

e∈E,N �=∅
ϕv(e) ∨ W

e∈E,N=∅
ϕτ (e) (6)

ϕS(T) =
V

s∈S

`
¬st ∨ I(s)t

´
∧ V

s′∈S,s≺s′
¬(st ∧ s′t) (7)

ϕD(T) =
V

A∈N

`
¬At ⇔ DAt=t⊥

´
∧ V

A∈N

`
(DAt≥t1)∧(DAt≤t⊥)

´
(8)

ϕd(s) = st 1 ∧ st ∧(zt 1≤zt)∧
V

A∈N
¬A∧ V

x∈X
(xt=xt 1) (9)

ϕ(T) = ϕi(T)∧ϕE(T)∧ϕS(T)∧ϕD(T) (10)

ϕ(T)k =
V

1≤j≤k

ϕ(T)j/t (11)

ϕ(T1��T2) = ϕ(T1)∧ϕ(T2) (12)

ϕ(T1��T2)k =
V

1≤j≤k

ϕ(T1��T2)j/t (13)

Fig. 2. Transition relation representation

The automaton starts in its initial location s̄ (3) in step 0, 3 the invariant of
which has to be satisfied, all clocks are set to zero, and data must not flow through
any port. Before executing a visible transition (4) in step t, T is in location s. After
the elapse of a positive amount of time (zt 1<zt), after which the invariant I(s)tΔ
of s and the clock guard cctΔ of the transition hold, T switches to location s′. All
clocks referenced in the clock set X are set to the actual point in time, while the
values of the other clocks do not change. Data flows through all ports A contained
in the port set N , while the other ports are inactive, and the data constraint dct
is satisfied. Due to convexity, the invariant needs to be checked at the end of the
time delay only, as it inductively holds at the beginning (3), (7). The execution of
an invisible transition (5) is similar, except that the amount of time elapsed may be
zero, and data must not flow through any port. The disjunction of all visible and
invisible transitions expresses nondeterministic transition choice (6).

In any step, the current location is unique, and its invariant holds (7) (≺ denotes
an arbitrary but fixed order on the location set S). For ports without data flow,
the pending data value has to be the special value “no data”, and only values from
the domain Data may be pending at the ports (8).

4.3 Unfolding for Bounded Model Checking

In order to represent the reachability problem of BMC for a TCA T in logic, the
formula representation ϕ(T) (10) is unfolded, i.e., instantiated for all steps up to
bound k. The resulting formula ϕ(T)k is called k-unfolding of T , and is defined
in (11), where ψj/t denotes the localisation of ψ, with index t replaced by j.

3 To avoid confusion with localisation indices, in (3) we denote the initial location as s̄ rather than s0, so
its representation is s̄0 rather than the odd-looking (s0)0.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 111

Intuitively, a satisfying interpretation (model) of ϕ(T)k corresponds to a run
of ST of length k, i.e., to one possible behaviour of T for the first k steps. Check-
ing the reachability of an error location s amounts to conjoining ϕ(T)k with the
representation ρ

def= s0∨s1∨ . . .∨sk of the reachability property, such that T |=k¬∃�s

holds iff the conjunction ϕ(T)k∧ρ is unsatisfiable. Lifting ρ to reason about con-
figurations or even execution sequences is straightforward. For example, an LTL
property s→© s′ can be represented as ρ=(s0∧s′1)∨(s1∧s′2)∨ . . . (sk 1∧s′k).

4.4 Example

Consider again the TCA C3 in Figure 1. With Data={1, 2,⊥}, and Δ such that
Δ(1)=1, Δ(2)=2, and Δ(⊥)=3, the representation of C3 according to Definition 4.1
is shown in Figure 3 (we omit constraints equal to true).

ϕi(C3)=s30∧¬C0∧(DC0=3)∧(v0=0)∧(z0=0) ϕD(C3)=(¬s3t⇔(DCt=3))∧(DCt≥1)∧(DCt≤3)

ϕE(C3)=s3t 1∧Ct∧(vt=zt)∧(zt 1<zt)∧(zt−vt 1>2)∧s3t ϕ(C3)=ϕi(C3)∧ϕE(C3)∧ϕD(C3)

Fig. 3. TCA Representation Example

4.5 Product of Timed Constraint Automata

The cross product of TCA, as defined in Definition 3.4, is exponential in the worst
case, which is a severe limitation to the size of systems that can be verified. We
define a logical representation of systems of TCA which is linear in the number of
automata. The basic idea is to retain the representations of the individual automata,
and model check them “in parallel”. We require variables representing common
ports to have the same name in both representations, such that constraints involving
these ports are automatically satisfied simultaneously in both representation.

To model single local transitions, as described by (1) in Definition 3.4, we in-
troduce explicit delay transitions (cf. Section 3.1): the representation of a delay
transition ϕd(s) in location s is defined in (9). Note that these delay transitions
are in accordance with Definition 3.2, as they correspond to invisible loops of the
form (s, ∅, true, true, ∅, s). Therefore, in particular, (9) permits zero-delays. For
two TCA T1 and T2, with X1∩X2=∅ and S1∩S2=∅ (can be achieved by renaming),
the representation of T1��T2, denoted ϕ(T1��T2), is given in (12), where (6) is un-
derstood to be the disjunction of (4), (5) and (9). The k-unfolding of the product
is defined in the same way as for individual automata, it is shown in (13).

Note that the existence of such a linear product is not immediately clear, but
in fact is a result of our design decision of explicitly mentioning all ports on each
transition (cf. (4), (5) and (9)). This decision—though seeming unnecessary at first
glance—together with the assumption that common ports have the same name, en-
sures that transitions in different TCA may only be executed in parallel if they fulfil
the conditions described in Definition 3.4. In this way, we do not need to mention
all possible synchronisations explicitly, and thus avoid the exponential blow-up.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118112

Theorem 4.2 (Correctness of representation) The formula representation of
TCA, as defined in Definition 4.1, is correct, that means it exhibits the same be-
haviour as T .

We have proven this by showing that every model of ϕ(T)k corresponds to a
run of length k of T , and vice versa. The results directly carry over to the product
representation. For a detailed discussion and proof, we refer to the extended version
of this paper, available at www.cwi.nl/~kemper.

4.6 Discussion

Using propositional formulas as intermediate representation (“front end”), we may
fall back on the abstraction refinement framework of [14] (“back end”), and, more
importantly, we can take advantage of existing high-performance SAT solving tech-
nologies. Our representation is specifically tailored for SAT solving: in addition to
providing conjunctive normal form (CNF) whenever possible, (7) and (8) are binary
clauses, while (3) even consists of unit clauses. With respect to speed of verification,
binary clauses are very efficient: the 2-SAT problem is polynomial. Though—due
to the disjunctive nature of transition choices—(6) is not in CNF, it can easily be
transformed to short CNF (see e.g. [11]) when introducing new symbols.

The restriction to convex clock constraints does not reduce the expressiveness
of our model (cf. Section 3.1), but on the contrary significantly simplifies the rep-
resentation formulas, since clock constraints need to be checked at the beginning
and at the end of a time delay only, rather than at all intermediate points (cf. (7)).
We further simplify verification by defining a product representation which is linear
in the number of automata (12). In this way, we also avoid the exponential state
space blow-up when forming the cross product.

Though communication is often regarded as a one-to-one relation, our represen-
tation is already suited for general n-ary communication: by having ports carrying
the same name in more than two automata, our approach naturally generalises to
one-to-many or even many-to-many communication models.

5 Abstraction

In this section, we show how to adapt the abstraction technique of abstraction by
merging omission (MO) [14] to our representation. MO is a simple and fast but
nevertheless powerful abstraction technique specifically tailored to work on logical
formulas. The removal of constraints considered irrelevant to the particular safety
property yields an over-approximation.

5.1 Abstraction by Merging Omission

The basic idea of MO is to reduce the system complexity by decreasing the num-
ber of symbols in ϕ(T), while retaining as much information about the transition
characteristics as possible (the abstract formula is weaker than ϕ(T), though). It is
defined for formulas in negation normal form (NNF), to which ϕ(T) can be easily

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 113

www.cwi.nl/~kemper

transformed. MO uniformly works on the different syntactical categories: it merges
location and port variables, by mapping them to the same image according to a map
of merging, and it removes rational variables and arithmetic constraints according
to a set of omission.

Definition 5.1 [Abstraction by merging omission] Let T be a TCA, let ϕ(T) be
in NNF. Let S, X, NA and NDA be the variable sets representing locations, clocks,
port activity variables and port data variables, respectively, all without indices,
let ϑ:NDA→NA be a mapping such that v∈NDA and ϑ(v)=v′∈NA are data and activity
variable of the same port. Let AS ⊆ X∪CC(X)∪DC(NDA) be a set not containing
compound formulas, let γ:S∪NA→S′∪̇NA′ be a mapping to some fresh sets of propo-
sitional variables S′ and NA′.

The abstraction by merging omission of ϕ(T) with respect to AS and γ is defined
by applying transformation α, as depicted in Figure 4.

α(L) =

8>>>>><
>>>>>:

L L neg., cont(L)∩(S∪ NA) �= ∅, γ(cont(L))=id (14a)

L L neg., cont(L)∩(AS ∪ S∪ NA) = ∅,
∀v∈cont(L)∩NDA:γ(ϑ(v))=id

(14b)

γ(L) L pos.,cont(L)∩AS = ∅,
∀v∈cont(L)∩NDA:γ(ϑ(v))=id

(14c)

true otherwise (14d)

α(F ∧G) = α(F)∧α(G)

α(F ∨ G) = α(F) ∨ α(G)

Here, F and G are formulas in NNF, L a literal, cont(L) the set of atomic formulas and variables occurring
in L. We understand γ to be applied recursively to elements v∈cont(L) if v∈S∪NA: for example, γ(¬s) =
¬γ(s), γ((z−x)∼c) = ((z−x)∼c), and γ(DA=t) = (DA=t).

Fig. 4. Abstraction by merging omission

MO uniformly captures abstraction on all syntactic categories contained in
ϕ(T): negative propositional variables not meant to be abstracted are kept un-
changed (14a), the map γ is applied to positive propositional variables only ((14c), γ

is the identity for symbols not meant to be abstracted). Clock constraints not con-
tained in AS are retained unchanged, for both positive (14c) and negative (14b)
constraints. Data constraints are treated in a similar way as clock constraints.
However, to guarantee α yields an over-approximation, we may retain only those
data constraints that reason about ports not merged by γ, ensured by the constraint
∀v∈cont(L)∩NDA:γ(ϑ(v))=id in (14b) and (14c). In all other cases, α maps the literal
to true (14d), in this way performing a quick variant of existential abstraction [9],
while exploiting the structural relationships of clocks and TCA. This gives rise to
the following lemma.

Lemma 5.2 (Abstraction by weakening) The abstraction MO yields a conser-
vative approximation, that means α(F) is weaker than F in the sense that the im-
plication F→α(F) is valid (true in all models).

Lifting α to the presence of localisations is straightforward: γ and AS are under-
stood oblivious to indices in the NNF of ϕ(T), such that indices directly carry over

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118114

to ϕ(T)k unchanged (defining different abstractions for different steps is possible
using the same definition of α but we consider it to be less useful). Note that α

is homomorphic with respect to {∧,∨}, which proves the equality of α(ϕ(T)k)
and α(ϕ(T))k (except for speed of computing the abstraction, where α(ϕ(T))k is
superior).

The major difference between our abstraction function and the one presented
in [14] is the fact that we do not in general map negative propositional variables
to true (14a). Such abstraction is of course necessary for symbols meant to be
abstracted, as ¬s does not allow to conclude ¬u in case of a merge γ(r)=γ(s)=u.
However, in case γ(s)=s, i.e. when s is kept unchanged, it is safe to keep ¬s in
the abstract formula α(ϕ(T)). Furthermore, with respect to meaningful results,
we even consider it necessary to retain ¬s, as otherwise the abstraction becomes
too coarse: mapping all negative propositional symbols to true, the abstraction
effectively deletes the consistency constraint ϕS(T) on locations (7) as well as part
of the consistency constraint ϕD(T) on data values (8), such that the rest becomes
meaningless. In particular, the existence of a TCA T̃ , as claimed in the correctness
proof of the abstraction, cannot be guaranteed any more. See the extended version
of this paper, available at www.cwi.nl/~kemper, for further details.

5.2 Example

Consider the example in Section 4.4. To abstract from timing information, we
choose AS={v}, and γ=id. The resulting formulas of applying α with respect to γ

and AS to the formulas in Figure 3 are shown in Figure 5.

α(ϕi(C3)) = s30 ∧¬C0 ∧(DC0=3)∧(z0=0) α(ϕE(C3)) = s3t 1 ∧ Ct ∧(zt 1<zt)∧ s3t

α(ϕD(C3)) = ϕD(C3) α(ϕ(C3)) = α(ϕi(C3))∧α(ϕE(C3))∧α(ϕD(C3))

Fig. 5. TCA Abstraction Example

Theorem 5.3 (Correctness of abstraction) The abstraction α yields a correct
over-approximation on runs.

This result is already captured by Lemma 5.2. Here, we have proven an even
stronger correctness result, by showing the existence of a homomorphism between
concrete and abstract sets of runs. For a detailed discussion and proof, we again
refer to the extended version of this paper, available at www.cwi.nl/~kemper.

5.3 Abstraction Refinement

In this section, we give a brief overview of our abstraction refinement methodology.
The general abstraction refinement paradigm [9] consists of three steps: (1) generate
the initial abstraction, (2) model check the abstract system, and, if required, (3)
refine the abstraction.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 115

www.cwi.nl/~kemper
www.cwi.nl/~kemper

Generate the initial abstraction If there is no additional knowledge about the
system, the initial abstraction simply removes all symbols in CC(X)∪DC(NDA) from
ϕ(T), and merges all symbols in S to a single one (we refer to [9] for improved
techniques), thereby collapsing to a single trivial location (accordingly for ports).
Yet, the next refinement iterations will quickly discover more relevant parameters.

Model checking the abstract system If α(ϕ(T))k, together with a representa-
tion ρ of the safety property (cf. Section 4.3), is unsatisfiable, the system is safe
within bound k (cf. Definition 3.5, Theorem 4.2 and Theorem 5.3). Otherwise,
the counterexample needs to be concretised, which amounts to checking ϕ(T)k∧ρ,
in conjunction with the variable valuations π representing the abstract counterex-
ample, and concretising constraints of the form u→s∨r for all locations and ports
s and r with γ(s)=γ(r)=u. This check can be done very quickly, since the single
abstract counterexample is highly restrictive. If the conjunction is satisfiable,
a counterexample to the property is found. Otherwise, the counterexample is
spurious, and the abstraction needs to be refined.

Refining the abstraction To identify ill-abstracted parameters, we stratify the
formulas ϕ(T)k, ρ and π (i.e., align them along their unfolding depth k), and
derive a sequence of Craig interpolants (e.g. [16]), 4 one for every bisection into
prefix and suffix. By definition, both the prefix of the first interpolant G≡false
and the suffix of the last interpolant G̃≡true are unsatisfiable, and, for P be-
ing the set of symbols subject to abstraction, at least one of the symbols in
IA

def= cont(G)∩P has been wrongly abstracted.
The difficulty—in particular in automatic abstraction refinement—is then to

define heuristics describing the application of the two refinement strategies (a)
refine a symbol from IA, and (b) rule out the subtrace represented by the common
parts of the prefix of G and the suffix of G̃. The former quickly collapses to the
concrete system if applied too frequently, while the latter cannot yield results as
long as essential parameters are inadequately abstracted. Thus, it is necessary to
define heuristics that strike a suitable balance between (a) and (b).

The fully automatic heuristic presented in [14] (together with its optimisations)
is a compromise between the drawbacks of the two alternatives: after refining a
parameter (a), a fixed number of traces (fractions of the unfolding depth k have
turned out to be most promising) is ruled out (b) before refining the next symbol
according to (a).

5.4 Discussion

We do not have to distinguish between abstraction of different constituents of
TCA, since α works uniformly depending just on the different syntactical cate-
gories (propositional, natural, real variables), which happen to represent different
concepts of TCA. Yet, in contrast to [14], our abstraction function does not remove
negative propositional variables from the formula in case the map of merging γ is

4 A Craig interpolant for an inconsistent pair of formulas (A, B) is a formula C that is implied by prefix A,
inconsistent with suffix B and contains only common symbols of A and B; it is thus an over-approximation
of A and an under-approximation of ¬B.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118116

the identity for these. This speeds up the verification process, since we preserve a
bigger part of the formula structure of ϕ(T), which not only provides more mean-
ingful results, but therefore also results in less cycles in the abstraction refinement
loop.

Proving a strong correctness result for the abstraction permits to conclude the
existence of a corresponding effective abstraction technique on TCA, which produces
the abstract automaton T̃ . Yet, the formalisation of the direct construction will be
much less uniform than what has been presented here.

As a second major result of the strong correctness proof, we get that every
abstraction satisfying Lemma 5.2 is already proven correct in our framework. The
existence of the abstract TCA T̃ , however, is not a general consequence, but a
particular result of our strong correctness. This makes α a very powerful and
universal technique, yet it remains efficient due to its purely syntactical definition.

6 Conclusion and Future Work

In this paper, we have presented a SAT-based approach for bounded model checking
of TCA. We have defined an embedding of bounded model checking for systems of
TCA into propositional logic with linear arithmetic, and introduced a uniform logic-
based abstraction for clocks, locations, port names and data values. This logical
representation directly benefits from state-of-the-art SAT solving techniques, and
allows a linear-size representation of parallel composition. We expect the structural
relationships underlying the abstraction to provide the basis for a framework to
generalise our work to other scenarios.

Besides this, future work includes performance comparisons when using a log-
arithmic encoding for locations and ports (though automatic abstraction is more
involved in that case), and the application and comparison of both variants on case
studies. After having defined an abstraction that is tailored towards TCA in this pa-
per, naturally the next step is to define tailor-made refinement heuristics for TCA,
by exploiting the algebraical and logical principles underlying them. As a first step,
we plan to add isomorphy inference reasoning to strategy (b) (cf. Section 5.3).

We believe our framework provides means to better understand the functioning
of TCA, Reo coordinators and Reo networks [3] (for which TCA serve as formal
model). To further improve this, we plan to integrate a back translation from
formulas to TCA into the Eclipse Coordination Tools, such that e.g. the result of
abstraction can be viewed as a TCA in the editor. Our framework further facilitates
verification of these connectors, for example whether an implementation meets its
specification. We intend to use the framework within a testing environment of Reo
networks, which will enables us to perform black and white box testing, for example
check the feasibility of a certain interaction behaviour.

References

[1] Rajeev Alur. Timed automata. In N. Halbwachs and D. Peled, editors, CAV, volume 1633 of LNCS,
pages 8–22. Springer, 1999.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118 117

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

[3] Farhad Arbab. Reo: a channel-based coordination model for component composition. Mathematical.
Structures in Comp. Sci., 14(3):329–366, 2004.

[4] Farhad Arbab, Christel Baier, Frank S. de Boer, and Jan J. M. M. Rutten. Models and temporal logics
for timed component connectors. In SEFM, pages 198–207. IEEE Computer Society, 2004.

[5] Farhad Arbab, Christel Baier, Jan J. M. M. Rutten, and Marjan Sirjani. Modeling component
connectors in Reo by constraint automata (extended abstract). Electr. Notes Theor. Comput. Sci.,
97:25–46, 2004.

[6] Gilles Audemard, Alessandro Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking
for timed systems. In Doron Peled and Moshe Y. Vardi, editors, International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE), volume 2529 of LNCS, pages 243–259.
Springer, November 2002.

[7] Tobias Blechmann and Christel Baier. Checking equivalence for Reo networks. Electr. Notes Theor.
Comput. Sci., 215:209–226, 2008.

[8] Edmund M. Clarke, Armin Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.

[9] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM, 50(5):752–794, 2003.

[10] Eclipse Coordination Tools. http://reo.project.cwi.nl/.

[11] Reiner Hähnle. Short CNF in finitely-valued logics. In Henryk Jan Komorowski and Zbigniew W. Ras,
editors, ISMIS, volume 689 of Lecture Notes in Computer Science, pages 49–58. Springer, 1993.

[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions from
proofs. In Neil D. Jones and Xavier Leroy, editors, POPL, pages 232–244. ACM, 2004.

[13] Ranjit Jhala and Kenneth L. McMillan. Interpolant-based transition relation approximation. In Kousha
Etessami and Sriram K. Rajamani, editors, CAV, volume 3576 of Lecture Notes in Computer Science,
pages 39–51. Springer, 2005.

[14] Stephanie Kemper and André Platzer. SAT-based abstraction refinement for real-time systems. Electr.
Notes Theor. Comput. Sci., 182:107–122, 2007.

[15] The MathSAT 4 SMT solver. http://mathsat4.disi.unitn.it/index.html.

[16] Kenneth L. McMillan. An interpolating theorem prover. In Kurt Jensen and Andreas Podelski, editors,
TACAS, volume 2988 of Lecture Notes in Computer Science, pages 16–30. Springer, 2004.

[17] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In DAC, pages 530–535. ACM, 2001.

S. Kemper / Electronic Notes in Theoretical Computer Science 255 (2009) 103–118118

http://reo.project.cwi.nl/
http://mathsat4.disi.unitn.it/index.html

	Introduction
	Related Work
	Timed Constraint Automata
	Syntax
	Semantics
	Example
	Bounded Model Checking

	Representation of Timed Constraint Automata
	Basic Components
	Transition Relation
	Unfolding for Bounded Model Checking
	Example
	Product of Timed Constraint Automata
	Discussion

	Abstraction
	Abstraction by Merging Omission
	Example
	Abstraction Refinement
	Discussion

	Conclusion and Future Work
	References

