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Abstract. We study the relation between state transformers based on 
directed complete partial orders and predicate transformers. Concepts 
like 'predicate', 'liveness', 'safety' and 'predicate transformers' are for­
mulated in a topological setting. We treat state transformers based on 
the Hoare, Smyth and Plotkin power domains and consider continuous, 
monotonic and unrestricted functions. We relate the transformers by iso­
morphisms thereby extending and completing earlier results and giving 
a complete picture of all the relationships. 

1 Introduction 

In this paper we give a full picture of the relationship between state transformers 
and predicate transformers. For the state transformers we consider the Hoare, 
Smyth and Plotkin power domains. We give a full picture in the sense that 
we consider algebraic directed complete partial orders (with a bottom element) 
(and not only flat domains), we consider not only continuous state transformers, 
but also the monotonic ones and the full function space, we do not restrict to 
bounded nondeterminism, and we treat all the three power domains with or 
without empty set. The first item is important when we want to use domains 
for concurrency semantics. The second and third item give more freedom in 
the sense that we can use these transformations also for specification purposes 
without constraints on computability. Having the empty set in a power domain 
can be important to treat deadlock. Our treatment includes the Plotkin power 
domain. 

For state transformers we use an extension of the standard power domains. 
For predicate transformers we start from the (informal) classification of predi­
cates in liveness and safety predicates of Lamport [Lam77). Later Smyth [Smy83) 
followed by [AS85, Kwi91) used topology to formalize this classification. Also we 
use topology for defining predicates and safety and liveness predicate transform­
ers. We consider predicate transformers with predicates that are the intersection 
of safety and liveness predicates. 
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We prove that the Hoare state transformers are isomorphic to safety predi­
cate transformers, the Smyth state transformers are isomorphic to the liveness 
predicate transformers, and that the Plotkin state transformers are isomorphic 
to the "intersection" predicate transformers. So for the first time we are able to 
give a full picture of all the relationships filling several gaps that were present 
in the literature. 

Next we discuss how this paper is related to previous work. Power domains 
for dcpo's were introduced in [Plo76], [Smy78] and [Plo81]. Our power domains 
are slightly more general in the sense that we do no restrict to non-empty (Scott­
) compact sets. Besides the standard ways of adding the empty set to the Smyth 
[Smy83] and to the Plotkin [MM79, Plo81, Abr91] power domains, we also add 
the empty set in all the three power domain as a separate element, comparable 
only with itself and with the bottom. 

Predicate transformers were introduced in [Dij76] with a series of health­
ness conditions. Back and von Wright [Bac80, vW90] use only the monotonicity 
restriction on predicate transformers. They use predicate transformers for re­
finement and provide a nice lattice theoretical framework. Nelson [Nel89) has 
(for the fiat case) used "compatible" pairs of predicate transformers for giving 
semantics to a language with backtracking. Smyth [Smy83] introduced predicate 
transformers (with the Dijkstra healthiness conditions) for non-flat domains. Our 
definition of predicate transformers is parametric with respect to the collection 
of predicates (observable, liveness and safety). Furthermore, a new (general­
ization) of the multiplicativity restriction is introduced and a generalization of 
"compatible" pairs of predicate transformers is given. 

Isomorphisms between state and predicate transformers have been given for 
the flat case of the Smyth power domain in [Plo79] (and for countable nondeter­
minism in [AP86)), and for the flat case of the Hoare power domain in [Plo81). 
Also De Bakker and De Roever [Bak80, Roe76] studied (from a semantical point 
of view) for the fiat case the relation between state transformer and predicate 
transformer semantics. Moreover, for the fiat case of the Plotkin power domain 
we have proposed an isomorphism in [BK92). 

For the general case of the compact Smyth power domain in the paper 
[Smy83) an isomorphism is given for continuous state transformers. He uses 
a topological technique which Plotkin later used in [Plo81) for the continuous 
Hoare state transformers. A recent work includes an operational point of view 
in Van Breugel [Bre93). In the present paper we give some new isomorphisms for 
the Hoare and the Smyth power domains, showing also how the previous ones 
can be obtained as combinations of the new isomorphisms. Our definition of 
multiplicativity for predicate transformers permits us to use a technique similar 
to that used for the flat case. Furthermore we give isomorphisms for the Plotkin 
power domain. As far as we know no isomorphism was known for the non-fiat 
Plotkin power domain (as for example is remarked in [Plo81) and in [Smy83)). 

For reasons of space, proofs are not given in this paper. They can be found 
in [BK93]. 
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2 Mathematical Preliminaries 

We introduce some basic notions on domain theory and topology. For a more de­
tailed discussion on domain theory consult for example (Plo81], and for topology 
we refer to (Eng77]. 

Let P be a set ordered by i;;;;;p, x E P and let A be a subset of P. Define 
x i= {YIY E P A x i;;;;; y} and Ai= LJ{x i Ix EA}. A set A is called upper­
closed if A = A i. A subset A of a partially ordered set P is said to be directed 
if it is non empty and every finite subset of A has an upper bound in A. P 
is a (pointed) directed complete partially order set ( dcpo) if there exists a least 
element l_p and every directed subset A of P has least upper bound (lub) LJ A. 
A directed set A is eventually constant if LJ A E A. 

An element b of a dcpo P is finite if for every directed set A~ P, b i;;;;; LJ A 
implies b i;;;;; x for some x E A. The set of all finite elements of P is denoted by 
Bp and is called base. A dcpo P is algebraic if for every element x E P the set 
{bib E Bp A b i;;;;; x} is directed and has least upper bound x; it is w-algebraic if 
it is algebraic and its base is denumerable. 

Let P, Q be two partially ordered sets. A function f : P ---> Q is monotone 
(denoted by f: P --->m Q) if for all x, y E P with x i;;;;;P y we have f(x) i;;;;;Q J(y). If 
Pia a dcpo we say f is continuous (denoted by f : P --->c Q) if f(LJ A) = LJ f (A) 
for each directed set A ~ P; moreover f is stabilizing (denoted by f : P --->c. Q) if 
it is continuous and for every directed set A~ P J(A) is an eventually constant 
directed set in Q. If f : P --->c Q is continuous then f is monotone. Given a 
set /3 ~ Q, a continuous function f : P ---> c Q is said /3-algebraic (denoted by 
f : P ---> a(/3) Q) if for every directed set S ~ P and for every q E /3 such that 
qi;;;;; f(LJ S) there exists an x E S such that qi;;;;; f(x). Clearly, for Q an algebraic 
dcpo Q with base BQ, a function f : P ---> Q is continuous if and only if f is 
BQ-algebraic. A function f is strict (denoted by f: P ---> 8 Q) if f(l_p) =1-q; 
dually f is top preserving (denoted by f: P --->t Q) if and only if f(T p) = T Q· 

Let P be a dcpo and f : P---> P. We denote by µ.f the least fixed point of 
f, that is, J(µ.J) = µ.f and for every other x E P such that f(x) = x then 
µ.f i;;;;; x. For a monotone function f : P --->m P, where P is a dcpo, the least 
fixed point of f always exists and can be calculated by iteration, that is, there 
exists an ordinal >. such that µ.f = f>.., where the a-iteration of f is defined 
by j"'- = f(LJk<a fk) for every ordinal a (HP72]. If f is also continuous then 
>. :::; w. It can be of interest to consider also non-monotonic functions, at least 
when they are representation as quotient of some monotonic functions between 
dcpo, as shown in the following transfer lemma [BK92]: let P be a dcpo and Q 
be a partially ordered set, f: P --->m P be a monotone function, h: P --->c Q be 
an onto and continuous function and g : Q ---> Q be a (possibly non monotone) 
function such that go h = ho f. Then for every ordinal a the a-iteration from 
the bottom element g" exists. Moreover, if for each y E Q the partially ordered 
set h- 1(y) ~ P is finite or has either the bottom or the top element then the 
smallest fixed point µ.g exists and µ.g = h(µ.f). 

We now introduce some basic topological notions. A topology O(X) on a 
set X is a collection of subsets of X that is closed under finite intersections and 
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arbitrary unions. The pair (X, O(X)) is called topological space and the elements 
of O(X) are the open sets of the space X. A base of a topology O(X) on X is a 
subset B ~ O(X) such that every open set is the union of elements of B. A set 
S ~ X is dense if and only if X \ S contains no non-empty open sets. A G0-set 
is a countable intersection of open sets. 

For example, given a partially ordered set X, its discrete topology is Od(X) = 
P( X) while its Alexandroff topology 0 Al( X) consists of all the upper-closed 
subsets of X. If X is a dcpo, a finer topology of X is the Scott topology Osc(X), 
where o E Osc(X) if and only if o is upper-closed and for any directed set S ~ X 
if LIS E o then Sn o ;f. 0. Let A be a collection of subsets of X; the closure 
under arbitrary intersection of A is denoted by An= {QIQ = nA' /\ A'~ A}. 

We can describe a topology by its closed sets instead of its open sets. A subset 
of a set X is closed if and only if it is the complement of an open set of a given 
topology on X. The collection of closed sets of a topological space is denoted 
by C(X) and, dually to the case of open sets, is closed under finite unions and 
arbitrary intersections. For every A ~ X there exists a closed set c and a dense 
set d such that A = c n d. 

For example, given a dcpo P the closed sets of the Alexandroff topology are 
all the lower closed sets, while a set c ~ P is closed with respect to the Scott 
topology if c is lower closed and for every directed set S ~ P if S ~ c then 
LI s E c. 

Let O(X) be a topology on a set X. A subset A ~ X is compact in O(X) 
if and only if for every collection of open sets oi E O(X) with i E I such that 
A ~ Ur oi there exists a finite subcollection Oj such that A ~ LJJ Oj. For example 
A ~ X is compact in Od(X) if and only if it is a finite set. The intersection of 
a closed set with a compact one is always compact. 

3 Predicates and Predicate Transformers 

A predicate P is a function from a set X to the boolean set Bool = { tt, ff} or, 
equivalently, is a subset of X. Topology provides an elegant way of expressing 
predicates of programs (see [Smy83], [Kwi91]) in which the open sets of a topolog­
ical space X are seen as the computable predicates. Taking different topologies 
corresponds to different restrictions on the function space. For example, with 
ff ~ tt we have that Od(X) is isomorphic to the set of all the predicates from 
X to Bool, 0 Al ( X) is isomorphic to the set of all the monotone predicates from 
X to Bool and Osc(X) is isomorphic to the set of all the continuous predicates 
from X to Bool. 

In [Lam77) two classes of predicates were introduced: safety and liveness 
predicates. In the topological view of Smyth [Smy83, Smy92) closed sets repre­
sent safety predicates while liveness predicates are G.; sets. We take arbitrary 
intersections of open sets as liveness predicates (saturated sets). This differs also 
from [AS85] where liveness predicates are dense sets (the complement does not 
contain non-empty open sets). In [Kwi91] liveness predicates are also G.;-sets. 
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In this paper we consider algebraic dcpo's together with the Scott topology. 
The Scott-closed sets are the safety predicates and are ordered by 2. The Scott­
open sets of a dcpo Y represent the computable (observable) predicates and are 
ordered by ~ . They are finitary in the sense that y E o if and only if there 
exists a b E By such that b E o and b !:;;; y. In other words, a predicate P is 
finitary if we can test whether P holds for y by testing only the finite elements 
smaller than y. Liveness predicates are the arbitrary intersection of Scott-open 
sets (that is Alexandroff open sets) and are ordered by ~. 

Consider for example the set of sequences (finite and infinite) over an alpha-
bet E ordered by the prefix ordering (for more examples see [Kwi91]). 

- Safety predicate: always a= {xlx =a* V x = aw} (Scott closed), 
- Observable predicate: eventually a= {xa\x EE*} l (Scott open), 
- Observable predicate: start with x = x l (Scott open), where x E E*, 
- Liveness predicate: infinitely often a = nneN{xlx E E* /\ lx\a. = n} f 

(Alexandroff open but not Scott open), 
- Neither safety nor liveness predicate: always a but starting with x = always 

a /\ start with x. 

Let P(Y) and P(X) be two collections of predicates on the space Y and X, 
respectively. We define predicate transformers as the monotone functions from 
P(Y) to P(X). Another natural restriction (besides monotonicity) in the case 
that Y E P(Y) is to require that a predicate transformer must be top-preserving. 
Predicate transformers mapping observable predicates to observable predicates 
are denoted by P(Y) -to P(X). . 

A predicate transformer 7r : P(Y) -+ P(X) is multiplicative (denoted by 
7r: P(Y) -+M P(X)) if and only if for collections of predicates P,Q ~ P(Y) 
if np ~ nQ then npeP7r(p) ~ nqeQ1r(q). If P(Y) is closed under arbitrary 
intersection then 7r is multiplicative if and only if n_peP 7r(p) = 7r(n P) for every 
collection of predicates P ~ P(Y). If Y E P(Y) then 7r multiplicative implies 
7r top preserving. Given a predicate transformer 7r : P(Y) -+ P(X) its dual 
7r 0 : P(Y) 0 -+ P(X) 0 is given by 7r0 (p) = X \ 7r(Y \p), for every p E P(Y) 0 = 
{Y \ qlq E P(Y)}. A predicate transformer is additive (denoted by 7r : P(Y) -t A 

P(X)) if and only if its dual is multiplicative. 
A predicate transformer 7r: P(Y) -+ P(X) is intersection extensible (denoted 

by 7r: P(Y) -+1 P(X)) if npeP7r(p) E P(X) for every collection of predicates 
P ~ P(Y). Dually, if UpeP 7r(p) E P(Y) then 7r is called union extensible (de­
noted by 7r : P(Y) -+u P(X)). 

Intuitively, multiplicative predicate transformers 7r : P(Y) -+ P(X) preserve 
the logical ''ii' on predicates on Y, while the additive ones preserve the logical 
'3' (even if they are not )f. predicates in P(Y) or P(X)). If 7l' is also intersection 
(union) extensible then the logical ''ii' ('3') of 7r of an arbitrary collection of 
predicates on Y is always a predicate in P(X). 

We now define a restricted version of the Cartesian product on (multiplica­
tive) predicate transformers by requiring (multiplicativity) monotonicity on the 
intersection. 
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Definition 1. Let P1 (Y), P2 (Y) be two collections of predicates on Y and 
Qi(X), Q2(X) be two collections of predicates on X. Define (P1(Y) -+m Qi(X))® 
(P2(Y) -+m Q2(X)) as the subset of (P1(Y) -+m Qi(X)) X (P2(Y) -+m Q2(X)) 
given by: 

{(7r,p)l'v'p,p' E P1(Y),q,q1 E P2(Y) :pnq <;,p'nq':::::} 7r(p)np(q) <;, 7r(p')np(q')}. 

Similarly, define (P1(Y) -+M Qi(X)) ®M (P2(Y) -+M Q2(X)) as 

{(7r, p)i 'VP, P' <;, P1(Y), Q, Q' <;, P2(Y): n P n n Q ~ n P' n n Q' 
:::::} npeP7r(p) n nqEQp(q) <;; np'EP' ?r(p') n nq'EQ' p(q')}. 

They are ordered pointwise. 

Now we come to the definition of safety and liveness predicate transformers 
used in this paper. Let X and Y be algebraic dcpo's. The liveness predicate 
transformers are functions in Osc(Yr -+oM O(Xr for some topology O(X) 
on X. They are ordered pointwise by subset inclusion. The safety predicate 
transformers are functions in Csc(Y) -+M C(X) for some collection of closed 
set C(X) on X. They are ordered pointwise by superset inclusion. 

We can define liveness and safety predicate transformers in terms of observ­
able predicate transformers since (Osc(Yr -+oM O(X)n) ~ (Osc(Y) -+M 

O(X)) and (Csc(Y) -+M C(X)) ~ (Osc(Y) -+A O(X)). We can also change 
the subset order of the liveness predicate transformers to the deadlock order of 
[BK92], where for every 7r1, 7r2 E Osc(Y) -+M O(X), 7r1 !;;Ln 7r2 if 

(7r1(0) 5;; 7r2(0)) /\ ('Vo E Osc(Y): o -:j:. Y => 7r1(0) \ 7r1(0) <;; 7r2(0) \ 7r2(0)). 

and for safety predicate transformers Pl, P2, Pl [;5 D P2 if 

(P1(0) <;; P2(0)) /\ (Ve E Csc(Y): c #- 0 => P1(c) 2 P2(c) \ P1(0)). 

4 State Transformers 

In this section we give generalizations of the three 'classical' power domains 
on w-algebraic dcpo's, the so-called Hoare, Smyth and Plotkin power domains 
([Plo76], [Smy78] and [Plo81]). 

Let X be an algebraic dcpo and A<;; X. Define A= {xl'Vb E Bx : b [; x => 
3xb E A : b [; xb} and A* = {xi(3x' E A : x' [; x) /\ ('v'b E Bx : b [; x => 
3xb EA: b [; xb)}. We have A= A if and only if A E Csc(X). Further A<;; A*, 
(A*)*= A*, and A= A* # A= A j nA. Next we define the power domains: 

Definition 2. Let X be an algebraic dcpo. Define 

• the Hoare power domain 1-i(X) = ({AIA <;; X /\ A= A}, [;H), where 
A [;H B if A ~ B, 

• the Smyth power domain S(X) = ({AIA <;; X /\ A= Ai}, [;5), where 
A [;s B if A 2 B, 
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• the Plotkin power domain P(X) = ({A[A ~ X /\. A= A'"}, kP), where 
A kP B if A iks B j and A ks B. 

If we consider only bounded nondeterminism then we can restrict the power 
domains to those sets that are compact in the Scott topology (denoted by the 
subscript co). Since every Scott closed set of a dcpo is compact in the Scott topol­
ogy we have Hco(X) = H(X). The standard definitions of the Hoare, Smyth and 
Plotkin power domains are 1£+(X),S;;';,(X) and P;;';,(X), where the superscript 
+ denotes that the power domains should be taken without the empty set. The 
same domains but with a slight different order are denoted by H6(X), S8(X) 
and P6(X). Their ordering are respectively given by 

• A kHli B if (A= {l-}) V (A= 0 => B = 0) V (A# 0 /\A kH B), 
• A ksli B if (A= X) V (A= 0 => B = 0) V (B # 0 /\A ks B), 
• A kPli B if (A= {J_}) V (A= 0 => B = 0) V (A# 0 /\A kP B). 

Most of the usual operations (such as the sequential composition) are not mono­
tone w.r.t. kSli· However, we can use the transfer lemma given in the Mathe­
matical Preliminaries for calculating least fixed points [BK92]. For an algebraic 
dcpo X, the Hoare power domain is a complete lattice. Furthermore it is also 
an algebraic dcpo with as finite elements the Scott closure of finite subsets of 
Bx. Also the Smyth power domain is a complete lattice, but in general not an 
algebraic dcpo. However its restriction Sc0 (X) is an algebraic dcpo with finite el­
ements the upper ~losure of finite subsets of Bx [Smy78]. In general, the Plotkin 
power domain is neither a complete lattice nor a dcpo (there is no bottom el­
ement because the empty set is related only with itself and {J_} is less than 
any other set different from empty set). However if X is algebraic then Pd;,(X) 
is an algebraic dcpo with finite elements the '"-closure of finite subsets of Bx 
(see [Plo76] and extensions in [Hrb87],[Hrb89]). Furthermore, P6c0 (X) coincides 
with the standard way of adding the empty set to the Plotkin power domain 
[MM79], [Plo81] and also [Abr91]. 

State transformers are functions (ordered pointwise) from an algebraic dcpo 
X to one of the power domains over an algebraic dcpo Y. 

5 Relations 

In this section we give the isomorphisms between the state transformers and 
predicate transformers domains. We start with the relation between safety pred­
icate transformers and the Hoare state transformers: 

Theorem 3. Let X and Y be two algebraic dcpo 's. We have the following order­

isomorphisms: 

1. X--+ H(Y) ~ Csc(Y) -+M Cd(X), 
2. X--+ H+(Y) ~ Csc(Y) -+sM Cd(X), 
3. X -+m H(Y) ~ Csc(Y) -+M CA1(X), 
4. X -+c 1-l(Y) ~ Csc(Y) --+ M Csc(X), 
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5. X -c. 1i(Y) ~ Csc(Y) -uM Csc(X). 

In all cases the isomorphism is given by the function -y: -y(m)(c) = {xlm(x) s;;; c} 

The function 'Y is the generalization of the weakest liberal precondition and its 
inverse is given by -y-1(p)(x) = n{clx E p(c)}. Because the isomorphism is 
always the same we can combine cases of the theorem (for example combining 
2. and 4. we get the result of [Plo81]: X -c r£+(Y) ~ Csc(Y) -sM Csc(X)). 
Theorem 3 holds also if we substitute 1i6(Y) for 1i(Y) and we take !;;;;sD as order 
for the safety predicate transformers. 

Now we relate liveness predicate transformers and Smyth state transformers: 

Theorem4. Let X andY be two algebraic dcpo's. We have the following order­
isomorphisms: 

1. X - S(Y) ~ Osc(Y) -M Od(X), 
2. X - s+(Y) ~ Osc(Y) -sM Od(X), 
3. X - Sc0 (Y) ~ Osc(Y) -cM Od(X), 
4. X -m S(Y) ~ Osc(Y) -M OA1(X), 
5. X -a(P) S(Y) ~ Osc(Y) -M Osc(X), 
6. X -c. S(Y) ~ Osc(Y) -IM Osc(X), 

where {3 = {B jE S(Y)IB s;;; By}. In all cases the isomorphism is given by the 
function w: w(m)(o) = {xlm(x) s;;; o} 

The function w is a generalization of the weakest precondition and its inverse 
is given by w-1('rr)(x) = n{oix E 7r(o)}. Also in this ea.Se we can combine 
2., 3. and 5. to obtain the result of [Smy83], because Sc0 (Y) is an algebraic 
dcpo with finite elements the upper closure of finite subset of By, thus every 
continuous function from X to Sc0 (Y) is also {3-algebraic. Theorem 4 holds also if 
we substitute S8(Y) for S(Y) and we order of the liveness predicate transformer 
by !;;;;LD· 

To prove these theorems we need the following extension of the stability 
lemma of Plotkin [Plo79, AP86]: 

Lemma5. Let 7r : P(Y) -M P(X) be a multiplicative predicate transformer. 
Then x E 7r(p) {::} n{plx E 7r(p)} s;;; p for every p E P(Y) and x E X. 

Finally we relate the Plotkin state transformers with pairs of safety and 
liveness predicate transformers: 

Theorem 6. Let X and Y be two algebraic dcpo 's. We have the following order­
isomorphisms: 

1. X - P(Y) ~ (Osc(Y) -M Od(X)) ®M (Csc(Y) -M Cd(X)) 
2. X - p+(Y) ~ (Osc(Y) -+sM Od(X)) ®M (Csc(Y) -sM Cd(X)), 
3. X - 'Pco(Y) ~ (Osc(Y) -cM Od(X)) ®M (Csc(Y) -M Cd(X)), 
4. X -m P(Y) ~ (Osc(Y) -M OA1(X)) ®M (Csc(Y) -M CA1(X)), 

J 
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5. X -re Pco(Y) ~ (Osc(Y) -rcM Osc(X)) 0M (Csc(Y) -rM Csc(X)), 
6. X -re, P(Y) ~ (Osc(Y) -rrM Osc(X)) 0M (Csc(Y) -ruM Csc(X)). 

In all cases the isomorphism is given by the function 'f/: 

'f}(m)(o,c) = ({xlm(x) i~ o}, {xlm(x) ~ c}) 

The inverse of T/ is given by ry- 1(('rr, p))(x) = n{oix E ?r(o)} n n{cix E p(c)}. 
Theorem 6 holds also if we substitute P8(Y) for P(Y) and we order the safety 
and the liveness predicate transformer respectively by l;sn and i;_;;LD· 

To prove this theorem we need a different stability lemma: 

Lemma7. Let (1r,p): (P1(Y) -rM Qi(X)) 0M (P2(Y) -rM Q2 (X)). Then for 
every x E X, f> E P1 (Y), and ij E P2 (Y) we have: 

1. x E 1r(p) ~ n{plx E 1r(p)} n n{qix E p(q)} ~ f>, 
2. x E p(ij) ~ n{pjx E 1r(p)} n n{qjx E p(q)} ~ q. 

6 Conclusions and Future Work 

We have proposed a formal definition of safety and liveness predicates and of 
predicate transformers following the line of [Smy83, Kwi91]. Furthermore we 
have give generalizations of the standard definitions of power domains and of 
state transformers, and which give us a complete series of isomorphisms between 
predicate and state transformers (including the Plotkin state transformers). 

Future work includes: a generalization of the results to arbitrary topolog­
ical spaces and applications of predicate transformers to non-flat domains for 
concurrency and communication. 
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