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Abstract-The aim of this paper is to design a cl888 of two-step Runge-Kutte.-Nystrom methods 
of arbitrarily high order for the special second-order equation y"(t) = f(y(t)), for use on parallel 
computers. Starting with an a-stage implicit two-step Runge-Kutta.-Nystrom method of order p 
with k = p/2 implicit stages, we apply the highly parallel predictor-corrector iteration process in 
P(EC)m E mode. In this way, we obtain an explicit two-step Runge-Kutte.-Nystrom method that 
has order p for all m and that requires k(m + 1) right-hand side evaluations per step of which each 
k evaluation can be computed in parallel. By a number of numerical experiments, we show the 
superiority of the parallel predictor-corrector methods proposed in this paper over both sequential 
and pa.rallel methods available in the literature. 

Keywords-Runge-Kutts.-Nystrom methods, Predictor-corrector methods, Parallelism. 

1. INTRODUCTION 

In the literature, several explicit Runge-Kutta-Nystrom (RKN) methods have been proposed for 
the nonstiff second-order initial-value problem (IVP) 

<P:i~t) = f(y(t)), y(to) =Yo, y'(to) = y~, to~ t ~ T. (1.1) 

Methods up to order 10 can be found in [1-4]. In order to exploit the facilities of multiprocessor 
computers, a class of predictor-corrector (PC) methods based on (one-step) RKN correctors have 
recently been considered in [5,6]. In the present pa.per, we propose a. class of parallel PC methods 
based on a. new cl888 of two-step RKN correctors. The new corrector method is designed by 
replacing in an s-stage, implicit, one-step RKN method s - k stage values by extrapolation 
formulas using information from the preceding step (see Section 2). In this way, we obtain 
a k-stage, implicit, two-step RKN corrector (TRKN corrector). A natural option chooses for 
the generating one-step RKN method a collocation method with optimal order of accuracy (see, 
e.g., [3, 7]). Unfortunately, it turns out that the resulting TRKN correctors a.re often zero-unstable. 
However, by changing the location of the collocation points in the generating RKN method, we 
succeeded in finding zero-stable TRKN correctors of arbitrarily high stage and step point order. 

These investigations were supported by the University of Amsterdam who provided the author with a. resea.rch 
grant for spending a total of two years at the Centre for Ma.thematics a.nd Computer Science, Amsterdam, The 
Netherlands. The author is grateful to P. J. van der Houwen and B. P. Sommeijer for their help during the 
preparation of this paper. 
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We do not claim that the collocation points obtained in this pa.per a.re the best possible. A 
further study of this topic will be subject of future research. 

Having designed suitable TR.KN correctors, we apply the highly parallel PC iteration scheme. 
The resulting method is analogous to the parallel iterated RKN (PIRKN) methods proposed 
in [5,6) and will therefore be termed parallel-iterated TRKN metlwd (PITR.KN method). 

Although, for a given number of processors, the order of the PITRKN methods proposed in this 
pa.per equals that of the PIRKN method, their rate of convergence is much better, so that their 
efficiency is expected to be increased (see Section 4). The increased efficiency is demonstrated in 
Sections 4.1 and 4.2, where numerical results are presented by comparing the PITR.KN methods 
with PIRKN methods and with sequential RKN methods available in the literature. 

2. TWO-STEP RKN METHODS 

In this section, we define the class of TRKN correctors that will be used in the parallel PC 
iteration scheme. For simplicity of notation, we assume that equation (1.1) is a scalar equation. 
However, all considerations below can be straightforwardly extended to a system of ODEs, a.nd 
therefore, also to nonautonomous equations. We will start with a fully implicit s-stage collocation­
based RKN method (see, e.g., [7]). For a scalar equation {1.1), this method assumes the form 

Un= tine+ hu~c + h2Af (Un), 

'Un+i =Un+ h~ + h2 b T /(Un), 

u~+l = u~ + hdT /(Un), 

{2.la) 

(2.lb) 

(2.lc) 

where A is an s-by-s matrix, b, c, d, and e are s-dimensional vectors, e is the vector with unit 
entries, c is the collocation vector, and Un is the stage vector corresponding to the nth step. 
Furthermore, we use the convention that for a.ny given vector v = (vi), f(v) denotes the vector 
with entries /(v;). In this paper, we confine the considerations to the case where (2.1} is based 
on a collocation vector c with all its components different from 1, i.e., the stage values differ from 
the step-point values. The method (2.1) will be referred to as the generating RKN method. 

Now, let k be an arbitrarily given integer ( k < s) and let the parameters of the generating 
RKN method (2.1) be partitioned according to 

where ~; are i-by-j matrices, Ci, bi, di, ~ are i-dimensional vectors. Defining the vector 
Un = ((u~•-k))T, (U~k))T)T, where u~-kl, u~l are (s - k)-dimensional and k-dimensional 
stage subvectors, respectively, the generating RKN method (2.1) can be written in the form 

u~-k) = 'Un ea-k + hu~ Ca-k + h2 Aa-k,a-k I ( u~•-k)) + h2 Aa-k,k f ( u~k)) , 
u~> = Un ek + hu~ Ck + h2 Ak,a-k f ( u~-k)) + h2 Akk f ( u~k)) , 

un+1 = Uri + hu.~ + h2 b~_,. J ( u~·-"'>) + h2 br J ( ui"'>) , 

u' - u' + hdT f (u<•-k)) + hdT I (u<1c>) n+l - n a-k n k n • 

{2.la') 

(2.lb') 

(2.lc') 

Suppose that we replace u~-k) by an extrapolation formula. based on the stage vector Un-1· 
Then, we obtain the method 

Yn = Yn v+Ba-k,a-k Vn-1 +B1-k,k Wn-11 

W n = Yn e1c + hy~ C1e + h2 Ak,a-lc /(V n} + h2 Akk /(W n), 

n~ 1, 

n~O, 
{2.2a) 
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Yn+l = Yn + hy~ + h2 b"J_k /(V n) + h2 bI f (W n), 

Y~+l = Y~ + hdI-k /(Vn) + hdI /(Wn) 1 

n~O 

n ~ 0, 
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(2.2b) 

(2.2c) 

where the B;.; are i-by-j extrapolation matrices and v is an (s - k)-dimensional vector. The 
vector (V;r, W~) T may be considered as the new stage vector for (2.2). Obviously, (2.2} can 
be considered as a two-step RKN method (TRKN method) with s - k explicit and k implicit 
stages, using the stage vectors (VJ, WJ)T and (VJ_1 , WJ_1)T. We shall call Vn and Wn the 
stage subvectors of the TRKN method. The parameters v and B;.; in (2.2a) are defined by order 
conditions which will be discussed in the next section. In addition to the initial values y0 and y6, 
the TRKN method (2.2) requires s - k starting values, that is, the (s - k)-dimensional starting 
vector Vo. 

2.1. Order Conditions for the Explicit Stages 

In this section, we describe the derivation of the parameter matrices Ba-k,a-lci Ba-k,k and 
vector v in (2.2a.). In this derivation, we assume that Vo is provided with the same order of 
accuracy as the stage order of the generating RKN method (2.1). We start with the following 

lemma. 

LEMMA 2.1. Let U(s-k)(tn) denote the vector with components y(tn + e;.h), i = 1,. .. ,s - k, 
with y the locally exact solution of (1.1). Moreover, let Un= y,. = y(tn) and u~ = y~ = y'(tn)­
If (2.1) has stage order r* ~ s and if u~-k) (tn) - V n = O(hq+l ), then 

PROOF. Since the RKN method (2.1) is a collocation method, it has at least stage order r• = s 
and step point order p* = s, for all sets of distinct collocation points Cj, i = 1, ... , s. The first 
relation is immediate from 

Using this relation, we find 

u~k) - Wn = [unek + hu~ Ck+ h2 Ak,s-kf (u~-k)) + h2 Akk I (u~k>)] 
- [Yn ek + hy~ C1; + h2 Ak,a-k f (V n) + h2 Akk f (W n)] 

= h2Ak,s-k [! (u~-k>)-f(Vn)] +h2A1c1c [! (u~k>)-!(Wn)] 
=· 0 (hr•+3 ) + O(hq+a) + O(h2) [u~l - Wn J , 

which proves the second relation. 

Now, we arrive at the following result for the TRKN method defined by (2.2). 

I 

THEOREM 2.1. If (2.1) has stage order r* ~sand step point order p• ~ s, and ifU~-k)(tn) -
Vn = O(hq+1), then the TRKN method (2.2) bas stage order r = min(r*, q) and step point 
order p = min(p*, r* + 1, q + 1) for any set of collocation points. 

PROOF. For the local truncation error of the TRKN method (2.2), we may write 

0 ( p•+1) y(tn+t) - Yn+l = y("t,.+1) - ttn+l + 'Un+t - Yn+l = h + Un+i - Yn+t, 

y'(tn+t) -y~+l = y'(tn+1) - u~+l + U~+l -Y~+l = 0 ( hP•+t) + U~+l -Y~+t· 
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By virtue of Lemma 2.1, we have 

Un+i -Yn+i = h2 b~-k (! (u!:-">) - f(Vn)) + h2 b~ (! (u~A:>) - f(Wn)) 

= 0 (hr"+3 + hq+S) + 0 ( hr"+& + hq+5) = 0 ( hr"+3 + hq+3 ) 

u~+i -y~+i = hdI-k (! (ui•-k))-f(Vn)) +hdI (! (u~k))-tCWn)) 
= 0 ( hr"+2 + hq+2 ) + 0 ( hr"+4 + h9+') = 0 ( hr"+2 + hq+2). 

Hence, we obtain p = min(p*, r• + 1, q+ I) and r = min(r*, q, p) = min(r'", q) (because r* ~ p'") 
which proves the assertion of the theorem. I 

The order conditions for the vector Vn ensuring that u~•-kl(tn) - Vn = O(hq+l) are de­
rived by replacing V n1 Yn1 V n-11 and W n-l by the exact solution values y(tn es-k + c,_kh), 
y(tn), y(tn-le•-k + Cs-kh), y(tn-1 ek + ckh), respectively. On substitution of these exact values 
into (2.2a) and by requiring that the residue is of order q + 1 in h, we a.re led to 

y(tn 8s-k + Cs-kh) - y(tn)v - B11-k,11-kY('tn-1 e11-k + Ce-kh} - Ba-k,kY(tn-1 ek + ckh) 
= 0 (hq+l). (2.3) 

Using ( s + 1 )-point Lagrange interpolation formulas with abscissa vector a = ( c T, 1) T, we obtain 
(see, e.g., [8, p. 878]) 

s+l ( d ) (•+1) 
y(tn + th) = L L;(t +I) y(tn-1 +a; h) + c.+l(t) h dt y(t*), 

J=l 
•+l II x-a· 

L;(x) := --' , 
i=l,i;i&J a; - ~ 

1 11+1 

c,+1(t) == < l)t II (t + 1 - ai), 
s+ i=l 

(2.4) 

where t* is a suitably chosen point in the int.erval containing the values tn, tn-1 + Ci h, i = 
1, ... , s + 1. Hence, 

11-k • 
y(tn + Cµh) - L L3(c,.. + 1) y(tn-1 +a; h) - L L3(cµ + 1) y(tn-1 + a3 h) 

j=l j=11-k+l 

( 
d )(a+l) 

- L11+i(Cµ + l}y(tn-1 + h) = c.+i(c,..) h dt y (t;) , (2.5a) 

where t; is a suitably chosen point in the int.erval containing the values tn, tn-l + Ci h, i = 
1, ... , s + 1, µ = 1, ... , s - k. Using componentwise notation, we obtain 

where t• = ( ti, ... , t:_,.,) T. By defining 

Ba-k,a-k := (L1 (ca-k +e._,.,), ... , La-1c (ca-k + e.-1c)), 

Bs-k,k := (La-k+i (c•-"' + e.-1c), ... ,L. (ca-k + e,-A:)), 

v := Ls+i (ea-AT+ ea-k), 

{2.5b) 

(2.6) 

a comparison with (2.4) reveals that we achieve q = s for any set of collocation points, a.nd 
q = s + 1, if C6+i(c,_k) vanishes. 
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2.2. Zero-Stability 

Since we have transformed the one-step RKN method (2.1) into the two.step method (2.2), we 
have to check the property of zero-stability. To that end, we rewrite (2.2) in the one-step form 

Yn = RYn-1 + hSYn-1 +hP/(Yn}+h2Q/(Yn), (2.7) 

where Y n := (V n1 Wm Yn+l1 Vn.+1) T, and P, Q, R, Sare all (s + 2)-by-(s + 2) matrices given 
by 

( B•-•.•-• B,-k,k v o,_.) c-· .. -· Oa-k,k o,_11: o,_,) 
R- 01:,a-k 01c,k ek Ok s- Ok,•-k Ok,k Ok Ck 

- T or l 0 ' - T 0T 0 1 ' o,,_k o,_k k 
oy_k 0T 0 1 oy_k 0T 0 0 k k 

c-···-· 01-k,k Oa-k o,_,) (o,_.,,_, Oa-k,k o,_k o,_.) 
P- 01c,a-k 01c,k Ok 01c Q _ A1c,a-k Ak,Jc 0.1: 01c 

- T or 0 0 ' - bT bT 0 0 , o,_k a-k k 
dI-1c dT 0 0 oI-1: 0T 0 0 k le 

and where Oi,j and Oi are, respectively, i-by-j matrices and i-dimensional. vectors with zero 
entries. For zero-stability, we have to demand that no eigenvalue of the matrix R has modulus 
greater than one, and that every eigenvalue of modulus one has multiplicity not greater than two. 
Hence, a sufficient condition for zero-stability of the TRKN method (2.2) is that the parameter 
matrix Ba-1c,,-1c has its eigenvalues within the unit circle. 

2.3. Choice of the Method Parameters 

Suppose that the generating RKN method (2.1) is a collocation method. Then, the freedom in 
the choice of the collocation points Ci of the TRKN method (2.2) can be used for obtaining some 
useful method properties. It seems natural to choose the abscissas such that the generating RKN 
method (2.1) has the highest possible order. For example, we may use the Gauss-Legendre points 
in each interval [t11 , tn+i]- However, this choice can easily violate the condition of zero-stability. 
In Table 2.1, we have listed the spectral radius p(Ba-k,a-k) of Ba-k,a-k for a few (s, k)-pai.rs. 

Table 2.1. Spectral radius p(Ba-k,a-k) of Gauss-Legendre based TRl<N methods. 

(s,k) = (3,2) (4,3) (4,2) (5,4) {5,3) (5,2) 

p(Ba-k,a-k) ,:::: .059 .023 3.05 .011 1.72 47.7 

A second option minimizes the principal error vector associated with the extrapolation formula. 
for the vector V n, i.e., the vector 

Ca-le:= Ca+i(c,_k) = (Ca+i(c1), .. .,Ca+1(Ca-A:))T, 

where, according to (2.4), 

1 •+l 1 • 
Cs+1(cµ) = ( l)l IJ (cµ +1-ai) = ( l)I Cµ IT(cµ + 1-Ci}, µ. = 1, .. . ,s-k. (2.8) 

s + . i=l 8 + . i .. 1 

This vector vanishes if the set of components of the collocation vector c contains the set of 
components of the vector Ca-/c + ea-k· By means of (2.6), it can be verified that the parameter 
matrix Ba-k,a-lc is strictly upper triangular so that it has zero eigenvalues, and consequently, the 
TRKN method is zero-stable. Thus, we have the following theorem. 

THEOREM 2.2. If the components of the collocation vector c contain the components of the 
vector c 8 _1c + e,-1c, then the 8880ciated TRKN method is zero-stable. 
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3. PARALLEL ITERATED TRKN METHODS 

Using (2.2) as corrector formula. with predictor formula. 

W (O) - C V C W(m) 
n - Yn W + k,s-k n-1 + kk n-1• (3.la) 

where the i-by-j matrices Ci; and the k-dimensional vector w are determined by order conditions, 
we arrive at the following PC iteration scheme (in P(EC)mE mode) 

V n = Yn v + B11-1c,11-1c V n-1 + Bs-k,k W~~~, 
w~t> = Yn e1c + h Ck y~ + h2 A1c,s-k /(V n) + h2 A1c1c f ( w~-l)) ' 

Yn+i = Yn + hy~ + h2 bI-1c f(Vn) + h2 b[ f (w~m)), 

j =l, ... ,m, 
(3.lb) 

Y~+i = Y~ + hdI_,. f(Vn) + hd[ f (w~m)). 

The computational costs a.re measured by the number of sequential right-hand side evaluations 
(/-evaluations) per step (notice that the (s - k) a.nd k components of the vectors f(Vn) and 

/(W'd-1» can be computed in parallel, provided that ma.x(s - k, k) processors a.re available). 
In general, we need m + 2 sequential /-evaluations. However, if c satisfies the condition of 
Theorem 2.2, then one /-evaluation can be saved, because f (V n) can be copied from the preceding 
step a.nd only k processors a.re needed. We shall call (3.1) a parallel-iterated TRKN method 
(PITRKN method). 

3.1. Order Conditions for the Predictor 

Along the lines of Section 2.1, we can prove that the conditions 

imply that 

C1c,11-k = (L1 ( c1c + e1c), •.. , L 11 -1c( c1c + e1c)) , 

C1c,1c = (La-k+i(c1c + ek), ... , L,(c1c + e1c)), 
(3.2) 

(3.3) 

Since each iteration raises the order of the iteration error by 2, the following order relations are 
obtained: 

Wn -W~m) = 0 (h2m+s+l)' 

Un+! -Yn+i = h2 bI [f(Wn) - /(W~m))] = 0 (h2m+•+3), 

u~+l - Y~+l = hdl [1 (W n) - I ( w~m))] = 0 ( h2m+•+2) • 

Thus, we have the following theorem. 

THEOREM 2.3. H (2.2) has step point order p 2 s, and if (3.3) is satisfied, then the PITRKN 
method (3.1) has step point order min(p, 2m + s + 1), for any set of collocation points. 

3.2. The Rate of Convergence 

The convergence boundary of a PITRKN method is defined in a similar way as for the PIRKN, 
BPIRK and PISRK methods proposed in (5,9,10]. Using the model test equation y"(t) = .>.. y(t), 
where >.. runs through the eigenvalues of the Jacobian matrix ~· we obtain the iteration error 
equation 

z := >..h2 , j = l, ... ,m. 



Runge-Kutta-Nyatrom Methods 125 

Hence, with respect to the test equation, the rate of convergence is det.ermined by the spectral 
radius p(A1c1i:) of the matrix A1i:1c· We shall call p(A1i:.11) the convergence factor of the PITRKN 
method. Requiring that p(zA11:1c) <I leads us t.o the convergence condition 

!zl < _1_ or h2 < 1 . 
p(A1i:1i:) p(A11:1c) p ( f) 

The freedom in the choice of the collocation points in the TRKN corrector can be used for 
obtaining a small convergence factor p(A1i:1i:). Specification of convergence factors for a. specified 
class of PITRKN methods is reported in Section 4. 

3.3. Stability Regions 

First, let us define the (s + 2)-dimensional vectors 

E.t+l = (0, ... ,0, 1, o)T, Ea+2 = (0, ... ,0, l)T, Sa+2 = (0, ... ,0, 1, l)T 

and the matrices 

Qs-k,a+2 = v E~+l + Bs-k,s-1i:(Is-k,s-k1 Oa-1c,1i:+2) + Ba-1c,1i:(01i:,a-10 I1c1i:, 01c,2), 

P1i:,s+2 = W E~+l + C1c,a-k(ls-k,s-k1 Os-k,k+2) + C1c1i:(01i:,s-k, f1ck1 01i:,2) 1 (3.4) 

R1i:,s+2 = e1c EI+1 +Ck EI+21 

where 133 is the j-by-j identity matrix. The linear stability of the method (3.1) is determined by 
again applying it to the model test equation v''(t) = >.. y(t), where ,\ is assumed to be negative. 
Defining 

and using (3.4), we obtain 
V -Q y(m) n - s-k,s+2 .. -n 1 {3.5a) 

W~m) = (R1c,a+2 + z A1i:,s-k Qs-k,s+2) Jrim> + z A1c1c W~m-l} 

= (I+ zA1c1c + · · · + (zA1c1i:)m-l) (RA:,a+2 + zA1c,s-kQa-k,s+2) ~) 
+ (z Akk)m P1c,a+2 :xim) {3.5b) 

= [(I - zA11:1c)-1 (I - (zA1i:.1cr) (R1c,s+2 + zA1c,.-1cQ.-1c,a+2) + (zA11:1cr P1c,a+2] ~m>, 

Yn+l = Yn + hy~ + zbI-1c Vn + zbI w~m) 
= sI+2 x~m> + z b~-1c Q.-1c,s+2 :xim> + z bI ((I - z A1c1i:)-1 (I - (z A1c1cr) 

X (Rk,a+2 + Z A1c,a-k Qs-lc,a+2) + {z A1c1c)m P1i,s+2) :xim} 

= [sI+2 + zb~-k Qs-k,a+2 + zbI ((I - z A1c1i:r1 (I - (z A1c1c)m) 
(3.5c) 

X (R1c,a+2 + Z A1c,a-lc Qa-lc,a+2) + (zAklc)m .Pt,a+2)] ~), 
hy~+l = hy~ + z dI-1c v n + z dr w~m> 

= E!+2 ~m} + zd!-1c Q,-1c,s+2X~m) + zdr ((I -zA1c1cr1 (I - (zA1c1cr) 

x (R1c,a+2 + z A1i:,s-1c Q.-1c,a+2) + (z A1c1cr P1c,s+2) ~m) 

= [EI+2 + zdJ_1i:Qs-lc,a+2 + zdI ((I- zA1c1c)-1 (I -(zA1ck)m) 
(3.5d) 

X (R1c,s+2 + Z Ak,a-k Q s-k,s+2) + (zA1c1c)m P1c,a+2)] ~m) 1 
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By introducing the ma.trices 

Mk,a+2(z) = (I-zAu)- 1 (l-(zAkk)m)(R1c,a+2 +zA1c,.-1i:Qa-k,a+2) + (zAkkr Pk,•+2• 

Ma+2(z) = S~+2 + zbI-1c Qs-k,a+2 + zbl 

x ((I - zAkk)-1 (I - (z A1c1c)m)(R1c,a+2 + zAk,a-k Qs-k,a+2) + (zA1rk)m Pk,•+2), 

M;+2(z) = E~+2 + Z d~-k Qa-k,a+2 + z dl 

x ((I - z Akk)-1 (I - (z Akk)m) (R1c,a+2 + z Ak,a-k Q.-1c •• +2) + (z Akkr PA:,.+2), 

the relations (3.5) yield the recursion 

( 
Qs-k,s+2) 

Mm(z) = Mk,a+2(z) . 
M.+2(z) 
M:+2(z) 

~~1 = Mm(z) ~m) 1 

The (s + 2)-by-(s + 2) matrix Mm(z) defined by (3.6), which determines the stability of the 
PITRKN methods, will be called the amplification matriz, its spectral radius p(Mm(z}) the 
stability function. For a given m, the stability intervals of the PITRKN methods are defined by 

(-,B(m), 0) := {z: p(Mm(z)) < 1, z :5 O}. 

The stability boundaries f3(m) for the PITRKN methods used in our experiments can be found 
in Section 4. 

4. NUMERICAL EXPERIMENTS 
In this pa.per, we report numerical results for PITR.KN methods with s = 2k and 

k=2, ... ,5, (4.1) 

where ci, ••• , c1c a.re the k component.a of the k-dimensional Gauss-Legendre collocation vector. 
By this choice, we have that p" = s, r• = s, and q = s + 1 (because the vector Ca+i(Cs-k) 
vanishes), so that the PITRKN methods defined by (3.1) have orders= 2k (see Theorems 2.1 
and 2.3) and can be implemented on k = s/2 processors. These orders and number of processors 
are the same as used by the PIR.KN methods proposed in (5,6]. However, a direct numerical 
computation reveals that the convergence factor as defined in Section 3.2 is much smaller than 
that of PIRKN methods (see Table 4.1). 

Table 4.1. Convergence factors for various p•h-order PITRKN and PIRKN methods. 

Parallel pth-<>rder PC methods p=4 p=6 p=8 p= 10 

Direct PIRKN methods ( c:f. [5]) 0.048 0.029 0.018 0.013 

Indirect PIRKN methods ( c:f. [5]) 0.083 0.046 0.027 0.019 

PITRKN methods 0.026 O.OUi 0.009 0.006 

As shown in Table 4.2, the stability boundaries of the PITRKN methods are sufficiently large 
for nonstiff problems. 

Table 4.2. Stability boundaries /j(m) for various pth-order PlTRKN methods. 

p'h-order PITRKN methods p=4 p=6 p=8 p=lO 

m=l 0.42 0.09 0.00 0.00 
m=2 4.15 1.37 0.51 0.10 

m=3 7.93 1.fYT 2.54 1.13 

m=4 8.50 16.20 7.48 3.74 
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In order to see the efficiency of the various PC methods, we applied a dynamical strategy for 
determining the number of iterations in the successive steps using the stopping criterion 

(4.2) 

where p is the order of the corrector method, and C is a parameter depending on the method 
and on the problem. Notice that by this criterion, the iteration error is of the same order in h as 
the underlying corrector. 

4.1. Comparison with Parallel Methods 

In this section, we report numerical results obtained by the best parallel methods available 
in the literature, the (indirect) PIH.KN methods proposed in [6] a.nd the PITR.KN methods 
considered in this paper. The absolute error obtained a.t the end of the integration interval is 
presented in the form 10-d (d may be interpreted as the number of correct decimal digits (NCD)). 
Furthermore, in the tables of results, Neeq denotes the total number of sequential !-evaluations, 
and Nsteps denotes the total number of integration steps. The following three problems possess 
exact solutions in closed form. Initial conditions a.re taken from the exact solutions. 

4.1.1. Linear nonautonomous problem 

Ail a first numerical test, we apply the various pth_order PC methods to the linear problem 
( cf. [5]) 

d2 y(t) = (-2a(t) + 1 -a(t) + 1) 
dt2 2(a(t) - 1), a(t) - 2} y(t), a(t) = ma.x(2cos2 (t), sin2{t)), 0 ~ t :5 20, 

(4.3) 
with exact solution y(t) = (- sin(t), 2sin(t)) T. The results listed in Table 4.3 clearly show that 
the PITRKN methods a.re by far superior to the PIRKN methods of the same order. The average 
number of sequential f-evaluations per step for PITRKN methods is about two for all methods. 

pth-order 

PC methods 

PIRKN 
PITRKN 

PIRKN 
PITRKN 

PIRKN 
PITRKN 

PIRKN 
PITRKN 

Table 4.3. Values of NCD/Naeq for problem (4.3) obtained by various pth_order 
parallel PC methods. 

p Nrtepe = 80 Notepa =.160 Nataps =320 Nstepa == 640 Natepe = 1280 

4 4.o I 237 5.3 / 411 6.s I 958 1.1/1919 8.9 I 3836 
4 4.s I 1s1 6.2 / 321 7.5 I 641 8.7 / 1281 10.0 I 2561 

6 1.4 I a20 9.2 I 640 11.0 I 1280 12.8 / 2559 14.6 / 5119 
6 s.2 I 163 10.s / 322 i2.5 I 642 14.4 / 1282 1s.2 / 2s62 

8 1i.o I 399 13.4 / 799 1s.8 I 1600 18.2 / 3198 20.6 / 6398 
8 i2.1 I 211 14.2 / 380 17.9 I 683 20.2 / 1283 22.8 I 2563 

10 13.3 I 436 1s.o I 921 20.9 I 1881 23.8 / 3803 

10 14.2 / 233 11.3 / 407 20.a I 150 24.1 / 1403 

4.1.2. Nonlinear Fehlberg problem 

a 

io- 1 

10-1 

io-3 

10-3 

10-4 

10-4 

10-4 

10-4 

For the second numerical example, we consider the often-used orbit equation ( cf., e.g., [1,2, 
11,12]) 

d2 y(t) = (-4t2, - r~t)) (t) 
dt2 2 y ' - -4t2 

r{t) 

r(t) = JyHt) + ~(t), fir< t < 10. v2- - (4.4) 
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Pth-order 

PC methods 

PIRKN 
PITRKN 

PIRKN 
PITRKN 

PIRKN 
PITRKN 

PIRKN 
PlTRKN 
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Table 4.4. Ve.lues of NCD/Naeq for problem (4.4) obtained by various pth_order 
pare.llel PC methods. 

p Natepa = 200 Natepa = 400 Natepa =800 Neteps = 1600 Natepa = 3200 

4 1.6 I 591 2.8 / 1191 4.o I 2400 5.2 I 4800 6.4 I 9600 
4 2.7 /441 3.8 I 802 s.1 I 1601 6.4 / 3201 1.6 I 6401 

6 4.o / 115 5.8 I 1532 1.6 / 3096 9.4 / 6257 11.2 I 12648 
6 5.3 I 495 1.1 I 880 9.o / 1601 1i.o I a201 12.9 / 6401 

8 6.6 / 1022 9.o I 2032 1i.5 I 4028 13.9 I 7966 16.3 / 15725 
8 s.1 I 575 11.1 / 1os1 13.5 / 1988 15.9 I 3672 18.3 / 001s 

10 9.4 /1234 12.4 I 2458 15.5 I 4893 18.s / 9734 21.5 I 19332 
10 iu / 674 14.5 / 1156 18.1 I 2139 2u I 4094 2a.8 I 1191 

0 

1<>2 
1<>2 

1<>3 

1<>3 

1<>3 

1<>3 

1<>3 

11>3 

The exact solution is given by y(t) = (cos(t2), sin(t2)) T. The results a.re reported in Table 4.4. 
For this nonlinear problem, we observe a similar superiority of the PITRKN methods over the 
PIRKN methods as in the previous example. 

4.1.3. Newton's equations of motion problem 

The third example is the two-body gravitational problem for Newton's equation of motion (see 
[13, p. 245]): 

d2y1(t) Y1(t) d2y2(t) Y2(t) 
dt2 = - (r(t))3, dt2 = - (r(t))S, 0 ~ t ~ 20, 

Y1(0) = 1- e, Y2(0) = 0, Y!(O) = 0, y~(O} = [§, 
(4.5) 

where r(t) = ..jy~(t) + y~(t). The solution components a.re Y1(t) = cos(u) - e, 112(t) = 
..j(l + e){l - e) sin(u), where u is the solution of Kepler's equation t = u-esin(u) and e denotes 
the eccentricity of the orbit. In this example, we set e = 0.3. As in the two preceding examples, 
the results listed in Table 4.5 show that the PITRKN methods a.re about twice as efficient as the 
PIRKN methods. 

pth-order 

PC methods 

PIRKN 
PITRKN 

PIRKN 
PITRKN 

PTRKN 
PITRKN 

PIRKN 
PITRKN 

Table 4.5. Values of NCD/NM<t for problem (4.5) obtained by various pth_order 
pare.llel PC methods. 

p Netepe = 100 Natep• = 200 Natepa = 400 Nstept = 800 Natep• = 1600 

4 1.9 I 200 3.3 I 400 5.o I 841 6.2 I 1995 7.3 I 4800 
4 3.1 I 200 4.1 I 400 5.3 / 800 6.4 / 1601 1.6 / 3201 

6 5.1 I 360 6.8 I soo 8.6 / 1600 10.4 / 3200 12.2 / 6400 

6 5.7 I 232 7.5 / 402 9.1 / 802 10.s / 1602 12.6 I 3202 

8 1.1 I 450 10.1 I 917 12.5 / 1934 14.9 / 4000 17.3 I 8000 

8 9.4 I 268 10.6 / 497 12.9 I 890 15.2 / 1663 17.6 / 3203 

10 10.4 / s11 13.3 I 1050 16.2 / 2121 19.2 / 4306 22.2 I 8706 

10 io.8 I 297 13.7 I 546 16.8 / 1022 19.6 / 1898 22.s I 3515 

c 

101 

101 

io-1 

io-1 

10-2 

10-2 

io-2 

10-2 
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4.2. Comparison with Sequential Methods 

In Section 4.1, the PITRKN methods were compared with PIRKN methods (the most efficient 
parallel methods for nonstiff problems). In this section, we will compare the PITRKN methods 
with the sequential methods currently available. 

We restricted our tests to the comparison of our tenth-order PITRKN method (PITRKN 10 

method) with a few well-known sequential codes for the orbit problem (4.4). We selected some 
embedded RKN pairs presented in the form p(y + 1) or (y + l)p constructed in [1,2,11,12] and 
the RKN code DOPRIN taken from [14]. We reproduced the best results obtained by these 
sequential methods given in the literature (cf., e.g., [6,12]) and added the results obtained by 
PITRKN 10 method. In spite of the fact that the results of the sequential methods are obtained 
using a stepsize strategy, whereas PITRKN 10 method is applied with fixed stepsizes, it is the 
PITRKN10 method that performs most efficiently (see Table 4.6). 

Table 4.6. Comparison with the sequential methods for problem (4.4). 

Methods Nsteps NCD Nseq 

11{10) pair {from [12]) 919 20.7 15614 

8(9)-pair (from [l]) 1452 13.5 15973 

9(10)-pair (from [2]) 628 15.1 8793 

3235 21.4 45291 

11(12)-pair (from [11]) 876 20.3 17521 

DOPRIN (from [14)) 1208 12.3 9665 

4466 16.3 35729 

16667 20.3 133337 

PITRKN10 (in this pa.per) 200 11.4 674 

400 14.5 1156 

800 18.1 2139 

1600 21.l 4094 

5. CONCLUDING REMARKS 

In this paper, we proposed a new class of two-step RKN correctors of order 2k, where k is the 
number of implicit stages. When solved by parallel predictor-corrector iteration, the sequential 
costs are considerably less than those of the best parallel and sequential methods available in the 
literature. 
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