
TIJAH Scratches INEX 2005:
Vague Element Selection, Image Search,

Overlap, and Relevance Feedback?

Vojkan Mihajlović1, Georgina Ramı́rez2, Thijs Westerveld2, Djoerd Hiemstra1,
Henk Ernst Blok1, and Arjen P. de Vries2

1 University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{v.mihajlovic, d.hiemstra, h.e.blok}@utwente.nl
2 Centre for Mathematics and Computer Science,

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{georgina, thijs, arjen}@cwi.nl

Abstract. Retrieving information from heterogeneous data sources in
a flexible manner and within a single (database) framework is still a
challenge. In this paper we present several extensions of our prototype
database system TIJAH developed for structured retrieval. The exten-
sions are aimed at modeling vague selection of XML elements and image
retrieval. All three levels (conceptual, logical, and physical) of the TIJAH
system are enhanced to support the extensions. Additionally, we analyze
different ways of removing overlap and explain how structural informa-
tion can be used for relevance feedback.

1 Introduction

In this paper we discuss our participation at INEX 2005 with TIJAH, a three-
level database system for structured information retrieval. The TIJAH system
[12, 13, 15] is developed as a transparent XML-IR database system consisting of
conceptual, logical, and physical levels. TIJAH was originally developed to han-
dle queries with the strict selection of XML elements, specified in the NEXI query
language [18] and to reason about textual information. This year we extended it
in three directions: toward handling vague specification of XML elements in the
query (similar to [5]), toward supporting retrieval from heterogeneous domains
(images and videos), following the guidelines from multimedia retrieval database
systems [3], and toward supporting different approaches to remove overlap. More-
over, we continue with the relevance feedback experiments [16] using the TIJAH
system.

The first point that we want to address in this paper is handling imprecise
specification of elements in the XML search. Similarly to users giving a num-
ber of terms as hints for searching within a document, XML elements specified

? The research described in this paper is funded by NWO grant number 612.061.210.

within the query need not be considered as a strict requirement but as a hint
for structural search. Therefore, when formulating a query the user can state
that the search (support) element or answer (target) element should be treated
as a hint or as a constraint in the retrieval process. To support vague search we
introduced vague element selection as a concept in our TIJAH system.

On the other hand, to cope with the heterogeneous data sources (text and
images) each level of the TIJAH system is extended with new features that can
express image search. Image search is handled in the same framework as text
search: At the conceptual level where NEXI query language is extended for query
by example image search, and at logical level where new operators are introduced
in the Score Region Algebra (SRA) [13]. However, due to different nature of the
domain data, images are stored and handled in a different manner than textual
XML data at the physical level.

We also present our approaches for removing overlap and for relevance feed-
back. To remove overlapping elements from the result set (for the user not to see
the same information twice), we define a utility function that intends to capture
the amount of useful information each element contains. Once we know the util-
ity value of each node, we remove overlap by returning the most useful node in
each path. Our relevance feedback approach uses the structural characteristics
of the relevant elements to update the priors in a language modeling framework.

The paper is organized as follows. The following section explains the ex-
tensions introduced in the TIJAH system to model vague XML element spec-
ification. Section 3 details our approach for image retrieval. The overlap and
relevance feedback approaches are discussed in Section 4 and 5 respectively. We
wrap-up the paper with the results from the experiments performed for each
track and its sub-tasks in Section 6 and with conclusions and future directions
in Section 7.

2 Vague Node Selection

This section details the motivation and the implementation of vague selection of
nodes in our three-level database framework. We explain the extensions on each
level aimed for vague search on elements.

2.1 Vague element node selection in NEXI

Instead of extending our conceptual parser for rewriting content-and-structure
(CAS) and content-only plus structure (COS) queries into SV, VS, and VV CAS
and COS queries (SSCAS and SSCOS are equal to CAS and COS in our case),
where prefix ‘S’ denotes strict and ‘V’ vague specification of target and support
elements, we decided to extend the NEXI grammar with one extra symbol ‘∼’.
The ‘tilde’ symbol is used in front of the element name in the query specifica-
tion, denoting that the element name does not have to be strictly matched in
the query evaluation. We support this decision by arguing that the user should
be responsible for stating his confidence in the knowledge of the hierarchical

organization of the data he is querying, or whether he is certain or not what the
element name is in which he wants to search for information.

Since we decided to extend the NEXI syntax with the vague selection we
had to manually rewrite the queries for each CAS and COS scenario except the
SSCAS and SSCOS. For example, the (SS)CAS query 225:

//article[about(.//fm//atl, "digital libraries")]

//sec[about(.,"information retrieval")]

is rewritten into three variants:
– SVCAS: //article[about(.//∼fm//∼atl, "digital libraries")]

//sec[about(.,"information retrieval")]

– VSCAS: //article[about(.//fm//atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

– VVCAS: //article[about(.//∼fm//∼atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

We decided not to consider the ‘article’ element as a vague element in case it is
not the target element or it is not the element in which the about search should
be performed, as in these cases the ‘article’ element just serves as a focusing
element for deeper search in the XML tree.

Vague element selection can be treated similarly as a query expansion on
terms in traditional IR. For example, if a user searches for the term ‘conclusion’,
he might also be satisfied with terms ‘decision’, ‘determination’, ‘termination’, or
‘ending’ in the answer. In structured documents, if a user asks for ‘car’ elements,
he would probably not mind getting ‘auto’ or ‘vehicle’ elements as an answer.
The problem of element name matching is studied in the research area of schema
matching and numerous techniques exist that try to resolve this problem (see [4]
for survey). However, we decided to simplify the vague element name search task
and use the results from INEX 2004 assessments to find the expanded element
names. We define the list of expanded element names based on the list of element
names assessed as relevant in INEX 2004 assessments process. The lists that we
exploit in this paper, termed element name expansion lists are the following3:
– One manual set of lists with the default score 0.55, based on 2004 experiments

(for the complete lists see [14]). For example, sec expansion list looks like:
{sec, abs, fm, vt, p, article, bdy, bm, app}. The lists are formed
out of highly exhaustive elements in the assessments list and by making the
lists symmetric in terms of adding the most useful IEEE collection element
names, such as sec,p,abs,..., to the expanded name list of other element
names that are in the particular expanded element name list. For example,
since for the abs element name, the kwd element name is in its expanded
list, abs is added to the kwd expansion list.

– One set of lists automatically generated out of assessments with marginal,
fair, or high exhaustivity and specificity. The default score is based on a
number of relevant elements of that specific name, normalized by a total
number of relevant elements, for all distinct target elements. For example, if
5 out of 50 elements assessed as relevant for sec answer element in the 2004
assessments set are p elements than the default score for p elements is 0.1.

3 A more exhaustive set of expansion lists can be found in [14]

2.2 A complex selection operator for vague node selection

The logical level is based on Score Region Algebra – SRA [13]. The SRA data
model consists of a set of regions, each defined by its start (s), end (e), type
(t), name (n), and score (p). The operators in SRA are selection operators
(σn=name,t=type(R), σ�num(R), R1 = R2, and R1 < R2), score computation op-
erator (R1 =p R2), score combination operators (R1 up R2 and R1 tp R2), and
score propagation operators (R1 I R2 and R1 J R2). Retrieval models are trans-
parently implemented using abstract functions for score computation (f=), com-
bination (⊗ and ⊕), and propagation (I and J) [13].

The vague node selection at the conceptual level (NEXI) is translated into
complex vague node selection operator at the logical level. The operator is de-
fined in SRA as a union of all XML element regions that match the names of
the ‘expanded name regions’ within the element name expansion list. By default
all ‘expanded regions’ are down-weighted by a predefined factor. The definition
of the operator is as follows:

σ
expansion(class)
n=name,t=type (R1) := {(r1.s, r1.e, r1.n, r1.t, r.p) | r1 ∈ R1 ∧ r1.t = type

∧ (r1.n, r.p) ∈ expansion(class, name)} (1)

Here expansion(class) is a set that contains all the expansions for all the region
names in one expansion class, where expansion list for each region name is:

expansion(class, name) := {(ex n1, ex w1), (ex n2, ex w2), ..., (ex nn, ex wn)}

Here ex ni is a expanded element name and ex wi is a real number in the range
[0, 1] denoting the down-weight factor. The operator σ

expansion(class)
n=name,t=node (R1) assigns

name (ex n) and score (ex w) values to the region name (n) and score (p) based
on the name and score values in the expansion list expansion(class, name).

For the vague selection we use the fusion of equivalence classes [11] (eq class)
and our manual and automatic INEX 2004 expansion element name lists. This
is done in such way that every expanded element name in these lists that has the
equivalent name in the eq class name part is also expanded with the eq class
equivalent names for name. This expansions are termed manual55 for manual
run and mm for the automatic one. Therefore, the eq class selection on section
elements can be expressed as σ

expansion(eq class)
n=‘sec’,t=node (R), and vague node selection

(∼sec), using manual expansion list, can be transformed into the next SRA
operation σ

expansion(manual55)
n=‘sec’,t=node (R). In such a way we can transparently define the

set of expanded nodes and their respective weights and use them for vague node
selection in a vague element name selection retrieval scenarios.

2.3 The implementation of the vague selection operator

At the physical level, since we are working with the known INEX IEEE data col-
lection, and as we used static INEX equivalence element name list and expansion
element name lists based on INEX 2004 assessments, we decided to replicate the
lists and store them as tables at the physical level, i.e., in MonetDB [1]. Thus,
we have three tables with (entity name, expansion name, expansion weight) for

manual55, mm, and eq class lists. The complex selection operator is then im-
plemented as an additional MIL function (MIL stands for MonetDB Interpreter
Language and is used to implement operators in TIJAH [15]) that uses data
from these tables.

For example, the vague name selection operator on region table R and the
‘expansion regions’ table S for the manual55 element names in the expansion
list, in relational algebra can be defined as:

πr.s,r.e,r.n,r.t,s.weight(σs.n=name(S) 1s.n=r.n (σr.t=node(R)))

Retrieval models We based the instantiation of retrieval models on the best
models used for flat-file information retrieval, as well as XML retrieval: language
models [7], the Okapi/Inquery model [2, 17], and Garden Point XML (GPX) [6].
For the relevance score computation we used language modeling in most of the
cases (Equation 2) and Okapi and GPX in some of them (details of these models
can be found in [13]). We used sum for upwards (fI(r1, R2)) and downwards
(fJ(r1, R2)) score propagation (Equation 3). Abstract score combination oper-
ators ⊗ and ⊕ are implemented both as simple sum, or as product and sum,
except in the case of the GPX model where the instantiation is given in Equa-
tion 4. In Equations 2 to 4: r1 ≺ r2 ≡ r1.s > r2.s∧r1.e < r2.e, size(r) = r.e−r.s−1,
and Root is the collection root region.

fLM
= (r1, R2) = p1 · (λ

P
r2∈R2|r2≺r1

p2

size(r1)
+ (1− λ)

|R2|
size(Root)

) (2)

fI(r1, R2) = p1 ·
X

r2∈R2|r1≺r2

p2 , fJ(r1, R2) = p1 ·
X

r2∈R2|r2≺r1

p2 (3)

p1 ⊗ p2 = p1 ⊕ p2 =

8<:
p1 + p2 if p1 = 0 ∨ p2 = 0

A · (p1 + p2) otherwise
(4)

3 Image similarity search

To enable search on multimedia collection (provided by Lonely Planet) we also
introduced extensions to the TIJAH system defined along three levels of our
prototype DB. Also, we extended the NEXI syntax with an extra token ‘src:’
that defines the location of the source image with which the destination image
should be matched. Therefore, in multimedia query 11:

//destination[about(.//image, fruit vegetables src:/images/BN2787_4.jpg)]

//point_of_interest[about(., food fruit vegetable market)]

the first about contains a request for image similarity search. The destination
image that need to be matched is images/BN2787 4.jpg. In the preprocessing
step, the ‘src:’ part of the about is transformed into about image and its relative
path given in the NEXI ‘src:’ specification is resolved into the path to the
location where the data for image matching is stored. The image about command
is then forwarded to the logical level.

3.1 Image search in SRA

To express image search in SRA we extended the SRA operator set with the
additional operators σi and =i

p. The σi operator has similar definition as basic
score region algebra operator σn=name,t=type(R), except that the score p is now
computed by a call to an external function f i. The function f i uses information
extracted from the sample image and the image that should be selected and it
computes the score of an image region based on similarity between the sample
image and the selected image:

σi≈sample
n=name (R1) := {(r1.s, r1.e, r1.n, r1.t, f

i(r2.n, sample) | r1 ∈ R1 ∧ ∃r2 ∈ C

∧ r2 ≺ r1 ∧ r2.t = attr val ∧ r1.t = attr ∧ r1.n = name} (5)

Here sample is the location of the sample image data specified with the ‘src:’
statement in the NEXI query, resolved in the preprocessing step, C is a set of
all regions in the database, attr is the attribute node, and attr val is value of
the attribute attr.

The operator =i
p is defined in the same way as =p operator (for the exact

definition see [13]), except that it allows computing score of a region containing
images with the usage of different scoring formula than for terms (e.g., given
in Equation 2). Therefore, the about image in the multimedia query 1 is trans-
formed into the next SRA expression:

σn=‘image′,t=node(C) =
i
p σi≈‘BN2787 4.jpg’

n=file name (C)

3.2 Implementation of image search

At indexing time, we estimated a generative probabilistic model of each of the
images in the collection (see below); the model parameters are stored in separate
tables in the database. In addition, we constructed a table that links the image
identifiers to the corresponding nodes in the collection tree. The image selection
operator is implemented as a new MIL function that computes the similarity
between each collection image model and the example image.

Retrieval model Similarity between example images and collection images
is estimated using Gaussian mixture models (GMM). To this end, each of the
images in the collections (ω(ni)) is modeled as mixtures of Gaussians with a
fixed number of components K:

P (x|ω(ni)) =

NKX
k=1

P (Ki,k) G(x, µi,k, Σi,k), (6)

where NK is the number of components in the mixture model, Ki,k is component
k of class model ω(ni) and G(x,µ,Σ) is the Gaussian density with mean vector µ
and covariance matrix Σ. The score of an image node given an example image
from a query, is determined by the likelihood that the corresponding model
generates the feature vectors (X = {x1,x2, . . . ,xn}) representing the example

image. Like in the LM case for text, we interpolate with a background model
based on collection statistics:

f i(ni, sample) =
Y

x∈Xsample

[λ · P (x|ω(ni)) + (1− λ) · P (x)] (7)

The feature space of the vectors x is based on the DCT coefficients4 obtained
from 8x8 pixel blocks. For details of the feature vectors and the GMMs, see [19].
Equation 7 is used for similarity computation in the image selection operator
σi≈sample

n=name (R1). In image containment (R1 =i
p R2) the result score is computed

as a product of scores of the region in the left and region in the right operand.

4 Overlap removal

In an XML retrieval setting, to identify the most appropriate elements to return
to the user is not an easy problem. IR systems have difficult task to find out
which are the most exhaustive and specific elements in the tree and return only
these to the user, producing result lists without overlapping elements. So far,
most of the approaches presented to remove overlap consist of post-filtering the
ranked lists in one way or another. Basically, by selecting the highest scored
element from each of the paths.

This would be a good strategy if the retrieval model would consider, when
ranking, not only the estimated relevance of the XML element itself but also its
usefulness compared to other elements in the same path. However, since most
retrieval models rank elements independently, it is not always the case that
the highest scored element is the most appropriate unit to return to the user.
Therefore, the strategies to remove overlap that rely too much in the retrieval
model scores are not always the most effective (see Section 6.1).

In the approach presented in this paper, we define an utility function that
intends to capture the amount of useful information each element contains. This
function is equivalent to giving an utility prior to the retrieval model scores. Our
goal is to help the retrieval model to give a better estimation of the usefulness
of each node and, in consequence, gain effectiveness when removing overlap.

To model the usefulness of a node, three important aspects need to be con-
sidered: (1) the relevance score estimated by the retrieval model, (2) the size of
the element, and (3) the amount of irrelevant information it contains. For exam-
ple, if a highly relevant element is very small, the amount of useful information
it carries is also small. Whereas if a not so high scored element is longer, the
amount of useful information that the user will read is larger. Thus, the decision
of which elements are most useful should be related not only to the retrieval
model scores but also to its length. That is why length normalization techniques
are also used in XML Retrieval [9]. Similarly, whether to return a certain element
or to return some of its children should be decided according to the amount of
irrelevant information the user will have to read if the parent is returned.

4 Discrete Cosine Transform, captures both color and texture information

To implement these ideas, we define an utility function that estimates the
usefulness of a node as the product of the amount of relevant information that
element contains, the element’s score, and its length. Formally, for each of the
XML nodes (E), the utility value is estimated as:

U(E) = (1−
P

i∈nrch(E) size(i)

size(E)
) · P (E) · size(E) (8)

Where P (E) is the estimated relevance score given by the retrieval model and
nrch(E) is the set of non relevant children of E. Those children in which the
amount of relevant information (estimated as the product of the element’s length
and score, P (E) ∗ size(E)) is lower than a threshold (quality threshold). This
utility function is equivalent to giving a length prior to the elements, but instead
of using the whole element’s length as prior, we try to estimate the size of the
relevant information contained in it.

5 Relevance feedback

The main idea of any relevance feedback strategy is to use the knowledge of
relevant items to retrieve more relevant items. So far, research has concentrated
on using content-related information from the known relevant elements. However,
for XML retrieval the structural characteristics of the relevant elements might
also play an important role. Following the lines of what we started last year [15],
we investigate the potential of the structural information for this type of task and
analyze if retrieving structurally similar elements improves retrieval effectiveness.

5.1 Structural information in relevant elements

We study two different aspects of the structure of documents that can help the
retrieval system to discriminate between relevant and non relevant elements.
Namely, the containing journal of an element (the journal where that element
belongs to) and the element type. Table 1 shows the number of different journals
and element types judged relevant per topic. If we compare these numbers to
the total number of different journals (24) and different element types (187)
contained in the new collection, we can see that the knowledge of which journals
and element types are relevant for each of the topics is a very important piece
of information that can help retrieval systems to perform a better search.

One way to use the knowledge of which structural characteristics are relevant
for a certain topic is to increase the a priori belief in relevance of the elements
that have the same structural characteristics. In this way, we use the informa-
tion of which relevant journals and element types are found in the top 20, to

Table 1. Number of different journals and element types judged relevant per topic.
Statistics taken from relevance assessments 2005 version 2. Average over 28 CO topics.
All degrees of relevance are taken into account.

Type info. Avg. Median Max Min

Relevant journals 7.9 8 16 2
Relevant element types 34.4 34.5 73 9

calculate priors and increase the a priori belief in relevance of the elements that
are contained in that journal or that are from that specific element type.

5.2 Updating priors in a language modeling framework

For our baseline experiments, we used statistical language models (see Sec-
tion 2.3). Using Bayes’ rule and assuming independence between query terms,
the probability of an element E given a query Q can be estimated as the product
of the probability of generating the query terms qi from the element’s language
model and the prior probability of the element:

P (E|Q) ∝
Y

qi∈Q

P (qi|E)P (E) (9)

Typically, little prior knowledge about the probability of an element is avail-
able and either uniform priors are used, or P (E) is taken to be related to the
element’s length (i.e.,long elements are assumed to be more likely to contain
relevant information) (cf. [9]). However, once we have some information about
relevant elements, for example from a user’s relevance judgments, we can use
this information to update the priors. From the judgments, we can discover the
characteristics of relevant elements and update the priors in such a way that
elements with similar characteristics are favored5.

Therefore, once we get information about the structural characteristics of
the relevant elements for a given topic, we define the priors for the journals and
element types and use them to retrieve structurally similar elements. However,
since in the top 20 we may not have seen all relevant journals or element types,
there is the risk of assigning a prior equal to zero to element types or journals
that do actually contain relevant information. To avoid this effect of relying too
much on what is seen in the top 20, we interpolate P (x(E)|rel) with the general
probability of seeing elements from x(E). Thus the prior becomes:

Px(E) =
αP (x(E)|rel) + (1− α)P (x(E))

P (x(E))
, (10)

where x(E) identifies the journal (element type) to which E belongs, P (x(E)|rel)
is estimated as the fraction of relevant items belonging to the journal (element
type) and P (x(E)) is the fraction of elements in the collection that belongs to
that journal (element type).

6 Experiments

Among numerous tracks and scenarios specified for INEX 2005, we participated
in the following: all CO and CAS ad-hoc track sub-tasks, multimedia track,
interactive track, and relevance feedback track. Below, after introducing the
metrics reported in the paper, we will explain in detail our approaches for each
of these (sub)tasks.
5 Strictly speaking P (E) can no longer be called a prior, since it depends on the topic

at hand.

Metrics The official INEX metrics for 2005 ad-hoc and relevance feedback track
are based on extended Cumulative Gain (xCG) metrics [10]. The official metrics
are: normalized xCG (nxCG), effort-precision/gain-recall (ep/gr), and extended
Q and R6. The evaluation can be done either with the generalized or with the
strict quantization. In this paper we report the evaluation results obtained with
nxCG (also denoted as CG in Table 4) at various recall points: 10, 25, and 50
and mean average ep/gr. For multimedia track we report mean average precision
(MAP) values.

Note that for any document cut-off value, say 10, it can be shown that, if
strict quantization is used (or any other binary quantization), and overlap is not
taken into account, and the total number of relevant elements is bigger than 10,
then nXCG at 10 and precision at 10 give exactly the same results. However,
if the number of relevant elements is smaller than 10 for some topics, then this
might have a big impact on the measured performance.

For instance, IBM Haifa’s run “SSCAS no phrase no plus” and Max Planck
Institute’s (MPI) run “MPII TopX SSCAS” have the same average precision at
10 over 4 topics with relevant elements: 0.225 for both runs (over topic 256, 260,
270 and 275). That is, on average 22.5% of the elements inspected in the top
10 is highly exhaustive and specific. However, for one of these 4 SSCAS topics
(topic 270), only 1 relevant document is known. Because of this, the nXCG at 10
over the 4 topics is twice as high for MPI (0.450), which found the document in
its top 10, as it is for IBM (0.225), which did not find it in its top 10. Apparently,
a 100% gain in nXCG does not have to say much about the actual percentage
of relevant items seen by the user. Precision at x is less sensitive to the total
number of known relevant elements than XCG at x, and therefore defining the
ideal recall base as needed for XCG is not really an issue for precision [8].

6.1 Ad-hoc track: CO queries

Thorough The aim of the Thorough retrieval strategy is to find all highly ex-
haustive and specific elements. Thus, to find all relevant information regardless
of overlapping results. This year we submitted only two runs with the aim of
using them as baseline runs for the other tasks and sub-tasks. Description and
results for these two runs are given in Table 2. Although under the strict quanti-
zation there are not big differences between the two runs, under the generalized,
one of the runs (λ = 0.4) outperforms the other considerably. We used this run
as baseline for the rest of the CO experiments.

Table 2. CO.Thorough experiments with strict (S) and generalized (G) quantization.

Run id Description nXCG[10] nXCG[25] nXCG[50] ep/gr

LMs 04 lpS LMs, λ = 0.4, lp 0.0923 0.0885 0.1020 0.0511
CO LMs trm 085S LMs, λ = 0.85, lp 0.0923 0.0855 0.0859 0.0490

LMs 04 lpG LMs, λ = 0.4, lp 0.2480 0.2433 0.2213 0.0795
CO LMs trm 085G LMs, λ = 0.85, lp 0.2161 0.1856 0.1839 0.0596

6 http://inex.is.informatik.uni-duisburg.de/2005/inex-2005-metricsv6.pdf

Table 3. CO.Focussed experiments with strict (S) and generalized (G) quantization.

Approach nXCG[10] nXCG[25] nXCG[50] ep/gr

Naive: select articlesS 0.0115 0.0154 0.0192 0.0116

Naive: select sectionsS 0.0308 0.0417 0.0404 0.0136

Naive: select paragraphsS 0.1209 0.1538 0.1630 0.0654

CommonS 0.0978 0.0927 0.1082 0.0509

UtilityS 0.1016 0.1373 0.1498 0.0561

Naive: select articlesG 0.1582 0.1226 0.1024 0.0443

Naive: select sectionsG 0.1857 0.1753 0.1519 0.0588

Naive: select paragraphsG 0.2310 0.2197 0.2105 0.0764

CommonG 0.2193 0.1909 0.1892 0.0728

UtilityG 0.2127 0.1919 0.1977 0.0742

Focused The aim of the Focused retrieval strategy is to find the most exhaustive
and specific element in a path. Once the element is identified and returned, none
of the remaining elements in the path should be returned. In other words, the
result list should not contain overlapping elements. In our experiments for this
task, we investigate the differences in terms of effectiveness between different
approaches to remove overlap and evaluate the approach presented in Section 4.

To compare approaches, we implemented two already known ways of remov-
ing overlap: namely, the naive and the common approach. The naive approach
filters out from the result list everything except one specific type of element (as-
suming that there is no overlap between elements of the same type). The common
approach is implemented as follows: first, we select the highest scored element
from the result list and remove its ancestors and descendants, then we take the
second highest scored element and remove its ancestors and descendants, and
we continue recursively until all elements from the result list have been either
selected or removed. To evaluate our approach we use different quality thresh-
olds. We observe that although there are no significant differences between the
performance of the runs under the generalized quantization, under the strict
one, the best improvements are achieved when the threshold is not very high,
i.e., when elements are less punished for having irrelevant information. We only
report the results of the best run overall with the threshold defined as the score
of the element at position 375 (1500/4) in the original result list. Note that the
score of this element is usually very small and many of the elements exceed this
threshold. The results of all these runs are shown in Table 3.

For all measures and quantizations, the approach that performs the best
is the one that retrieves only paragraphs. In general, for the naive approach,
and as expected for a focused retrieval task, the longer the element, the worse
the performance. However, it is somehow surprising that the retrieval of sections,
which is also a rather focused unit, is not performing well. The common approach
performs well but under the strict quantization is still far from the best run.
This might be because our baseline contains a length prior that rewards longer
elements. Therefore, when removing overlap, the longer elements, which probably
are not the most exhaustive and specific on the path, are selected. Comparing
the scores of the approach presented in this paper to the ones of the common run,

Table 4. INEX 2005 CAS and COS.Thorough experiments with different vague sce-
narios and rewriting techniques evaluated using nxCG at different recall points and
ep/gr with generalized quantization.

CAS COS.Thorough

Exp. class CG[10] CG[25] CG[50] MAP CG[10] CG[25] CG[50] MAP

eq class 0.2799 0.2851 0.2644 0.05033 0.2677 0.2258 0.1787 0.03205

rw I 0.2687 0.2834 0.2645 0.04670 0.2715 0.2430 0.1894 0.03323

rw II 0.3030 0.2977 0.2679 0.05476 0.2872 0.2467 0.1898 0.03409

mm(sv) 0.2865 0.2882 0.2626 0.05219 0.2772 0.2333 0.1951 0.03657

man55(sv) 0.3066 0.2853 0.2419 0.05291 0.2727 0.2349 0.1972 0.03650

mm(vs) 0.2672 0.2658 0.2524 0.06749 0.2827 0.2499 0.2042 0.04283

man55(vs) 0.2316 0.2417 0.2391 0.06720 0.2751 0.2410 0.2060 0.04587

mm(vv) 0.2811 0.2728 0.2529 0.07062 0.2912 0.2580 0.2258 0.06060

man55(vv) 0.2545 0.2553 0.2428 0.07296 0.2851 0.2585 0.2315 0.06872

mm(vv)rwI 0.2734 0.2641 0.2603 0.05899 0.2929 0.2686 0.2262 0.06168

man55(vv)rwI 0.2427 0.2691 0.2469 0.06872 0.3040 0.2676 0.2395 0.07168

mm(vv)rwII 0.3092 0.2815 0.2366 0.05760 0.2873 0.2492 0.2168 0.05878

man55(vv)rwII 0.3005 0.2943 0.2556 0.06896 0.2956 0.2688 0.2262 0.06891

we see that under the strict quantization the re-ranking of the scores using the
utility function does improve performance considerably (in terms of precision at
high recall levels). That means that the utility function does help the retrieval
model to make a better estimation of the most useful elements in the paths.
Unfortunately, in all runs our approach is outperformed by the naive approach
of selecting paragraphs. A possible cause of this could be that our approach
rewards longer elements too much, but further analysis need to be done to test
this an other hypothesis.

6.2 Ad-hoc track: CAS & COS.Thorough experiments

In our experiments with queries that use structure we aimed at comparing vague
node selection approaches for all four query types (SS, SV, VS, and VV CAS
and COS) with two query rewriting techniques that we used previous years for
INEX [12, 15]. These rewriting techniques treat structural constrains as strict
but mix the terms in different about clauses. In the first rewriting approach (rw
I), all terms that are in different about clauses in the same predicate expression,
and are not at the top level (i.e., not in about(., term) expression), are added
to an extra top-level about clause in the same predicate expression. The second
approach (rw II), is an extension of the first one, where not only the terms from
non top-level abouts are added to the new about, but also all the terms from
the other predicate, if there exists any, are added to the top-level about in each
predicate.

We report the results using only VVCAS and COS.Thorough assessments as
we wanted to test the approaches on the same assessments set. We present only
the results using generalized quantization as the results using strict quantization
lead to the same conclusions (see extensive set of experiments in [14]). The
runs given in bold are the best ones for each series of experiments. In the first

set of experiments we test how much we can improve the effectiveness when
using rewriting techniques. The first three rows in Table 4 show that rewriting
techniques help; e.g., the rw II shows overall better scores, especially for early
precision as can be seen in CAS runs, and it also has higher MAP values.

In the second set of experiments we replace the strict queries with the vague
ones. The improvements are significant and they can go up to more than 100%
(e.g., for the MAP in COS “man55(vv)” run). Clearly, vague element selection
has higher MAP values than rewriting techniques, but in all CAS experiments
it has lower precision at low recall points. This can indicate that rewriting tech-
niques might be used as a precision tool, while vague element selection can be
considered as a recall tool. Looking at different vague scenarios, namely SV,
VS, and VV, and except for some early precision scores, VV runs seem to have
the best performance. Therefore, “mm(vv)” and “man55(vv)” runs are used in
combination with rewriting techniques for further experiments.

The third set of experiments confirms our assumption about the rewriting
techniques as a precision and vague element search as a recall enhancement tool.
As can be seen in Table 4 in most of the cases the combination of rw I and rw II
rewriting techniques and manual and automatic vague element search improves
early precision. However, not in all cases we managed to keep the MAP values,
especially for the rw II combinations as can be seen in CAS runs.

6.3 Multimedia track: image queries

An important goal of our multimedia extension was to showcase and test the
flexibility and extendibility of the SRA approach. In addition, we tested if using
visual similarity can contribute to better results. To this end, we compared
the multimedia queries discussed in Section 3 to similar queries with all image
similarity clauses (src:) removed. The results of these two approaches using
three different models for text search is given in Table 5. There exist differences
between the models, but we did not find any improvement using visual similarity,
in fact the best run uses only textual language models and is significantly better
than its multimedia counterpart. We believe this is partially due to the nature
of the collection and topics, but more research is needed to investigate if and
how visual information can help to improve retrieval results in this collection.

Table 5. Results for MM track.
LM MAP Okapi MAP GPX MAP

text only 0.2751 text only 0.2110 text only 0.2567
multimedia 0.2600 multimedia 0.2133 multimedia 0.2627

6.4 Relevance feedback track

To analyze the effects of using structural information in the relevance feedback
process as described in Section 5, we designed two main experiments. The first
one varies the values for α in Equation 10 to analyze the effects of assigning

different importance to the structural information found in the top 20. The
values used are: 0.75, 0.5 and 0.25. This experiment is done on top of the baseline
used in the rest of experiments, namely: CO LMs 04 lp. The second experiment
aims to identify which of the two types of structural information provides better
improvement to the overall effectiveness of the IR system. Therefore, we fix the
value of α in Equation 10 to 0.5 and analyze the gain obtained when using journal
priors, element priors, and both priors at the same time. This experiment is
done on top of one of our runs for the COS.Thorough task that uses the VVCAS
approach explained in Section 2.

Since the official results show that very little gain is obtain for any of the
runs, we do not report the numbers here. However, we observe that the journal
prior seem to slightly improve recall and that there is no significant differences
in performance when using different α’s. The element prior seems to deteriorate
the retrieval scores. We believe that this prior would perform much better when
combined with a content-oriented query expansion, but further analysis and
experiments need to be done in order to test this hypothesis.

7 Conclusions and Future Work

Throughout the paper we show that the TIJAH database system is flexible
enough to incorporate advanced search techniques, such as vague element selec-
tion and relevance feedback, and search on heterogeneous data sources, such as
a combination of images and text. For vague search, query rewriting techniques
seem to be more suitable for obtaining higher precision at low recall points, while
vague element selection is more suitable for higher average precision. Their com-
bination however can boost the early precision, but it can also have negative
influence on mean average precision. The simple image search model shows no
improvements when combined with text search model. The approach presented
to re-rank retrieval scores using an utility function seems to improve effective-
ness when removing overlap. Unfortunately, this method does not outperform
the simple approach of selecting the paragraph elements. Using only the struc-
tural characteristics of the elements in a relevance feedback process does not
help retrieval performance in our case.

We plan to continue the experimental evaluation of different scenarios for
search in structured documents: (1) the focused search using different utility
functions to improve the effectiveness of overlap removal, (2) the vague element
search with different assignment of non-uniform down-weighting factors and its
combination with rewriting techniques, (3) the usage of structural relevance
feedback in combination with content-oriented query expansion, and (4) the
image search for improving retrieval results.

8 Acknowledgments

We would like to thank Roberto Cornacchia at CWI, Amsterdam, for providing
the visual similarity code and for pre-processing the Lonely Planet images.

References

1. P. Boncz. Monet: a Next Generation Database Kernel for Query Intensive Appli-
cations. PhD thesis, CWI, 2002.

2. J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY Retrieval System.
In Proceedings of the 3rd DEXA Conference, 1992.

3. A.P. de Vries. Content and Multimedia Database Management Systems. PhD
thesis, University of Twente, Twente, The Netherlands, 1999.

4. A. Doan and A.Y. Halevy. Semantic Integration Research in the Database Com-
munity. AI Magazine, 26:83–94, 2005.

5. N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based on Infor-
mation Retrieval Concepts. ACM TOIS, 22(2):313–356, 2004.

6. S. Geva. GPX - Gardens Point XML Information Retrieval at INEX 2004. In
N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the 3rd INEX Workshop,
volume 3493 of Lecture Notes in Computer Science, pages 276–291, 2005.

7. D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
University of Twente, Twente, The Netherlands, 2001.

8. D. Hiemstra and V. Mihajlović. The Simplest Evaluation Measures for XML In-
formation Retrieval that Could Possibly Work. In Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, 2005.

9. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length Normalization in XML
Retrieval. In Proceedings of the 27th ACM SIGIR Conference, pages 80–87, 2004.

10. G. Kazai, M. Lalmas, and A.P. de Vries. The Overlap Problem in Content-oriented
XML Retrieval Evaluation. In Proceedings of the 27th ACM SIGIR Conference,
2004.

11. G. Kazai, M. Lalmas, and S. Malik. INEX’03 Guidelines for Topic Developments.
In Proceedings of the 2nd INEX Workshop, ERCIM Workshop Proceedings, 2004.

12. J. List, V. Mihajlović, A. de Vries, G. Ramirez, and D. Hiemstra. The TIJAH
XML-IR System at INEX 2003. In Proceedings of the 2nd INEX Workshop, ERCIM
Workshop Proceedings, 2004.

13. V. Mihajlović, H.E. Blok, D. Hiemstra, and P.M.G. Apers. Score Region Algebra:
Building a Transparend XML-IR Database. In Proceedings of the ACM CIKM
Conference, 2005.

14. V. Mihajlović, D. Hiemstra, and H. E. Blok. Vague Element Selection and Query
Rewriting for XML Retrieval. In Proceedings of the 6th Dutch-Belgian Information
Retrieval Workshop, 2006.

15. V. Mihajlović, G. Ramı́rez, A.P. de Vries, D. Hiemstra, and H.E. Blok. TIJAH
at INEX 2004: Modeling Phrases and Relevance Feedback. In Proceedings of the
3rd INEX Workshop, volume 3493 of Lecture Notes in Computer Science, pages
276–291, 2005.

16. G. Ramı́rez, T. Westerveld, and A.P. de Vries. Structural Features in Content
Oriented XML Retrieval. In Proceedings of the ACM CIKM Conference, 2005.

17. S. E. Robertson and S. Walker. Some Simple Effective Approximations to the
2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings of the 17th
ACM SIGIR Conference, 1994.

18. A. Trotman and R. A. O’Keefe. The Simplest Query Language That Could Possibly
Work. In N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the 2nd INEX
Workshop, ERCIM Publications, 2004.

19. T. Westerveld. Using generative probabilistic models for multimedia retrieval. Ph.d.
thesis, University of Twente, Enschede, The Netherlands, November 2004.

