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DIVISIBILITY PROPERTIES OF INTEGERS x, k 
SATISFYING lk + ... + (x - l)k = xk 

P. MOREE, H.J.J. TE RIELE, AND J. URBANOWICZ 

ABSTRACT. Based on congruences mod p and on properties of Bernoulli poly

nomials and Bernoulli numbers, several conditions are derived for x , k ;:: 2 to 

satisfy the Diophantine equation I k + 2k + · · . + (x - I )k = xk . It is proved that 

ord2(x - 3) = ord2k + 3 and that x cannot be divisible by any regular prime. 

Furthermore, by using the results of experiments with the above conditions on 

an SGI workstation it is proved that x cannot be divisible by any irregular 

prime < 10000 and that k is divisible by the least common multiple of all 

the integers ~ 200 . 

1. INTRODUCTION 

We are interested in natural numbers x and k satisfying the Erdos-Moser 
Diophantine equation 

(1) 

Notice that (x, k) = (3, l) is the only solution for k = l. From now on we 
assume that k ~ 2 . Erdos and Moser [ 12] conjectured that in this case ( 1) has 
no solutions. However, it has not even been proved that ( 1) has only finitely 
many solutions (x, k). Assume that (x, k) is a solution of (1). Moser [12] 
proved that x exceeds C, where C = 101000000 . Best and one of the authors 
[l] proved that for every k there is at most one x satisfying (1). From their 
work and also from an analytical expression of Delange [ 4, Theoreme 2] for 
Li~m<y(y-m)k with y real and > 1, it follows that k/x tends to log2 as x 

tends to infinity. So we have a lower bound for k which is of the same order 
of magnitude as Moser's lower bound C for x . Lemma 7 below provides an 
explicit lower bound. 

On the divisibility properties of x and k very little has been published. 
Moser [12] proved that k is even and that x = 0 or 3 (mod 8) . In this paper 
we will establish further divisibility properties of x and k . In §2 we give a 
number of mathematical preliminaries. Section 3 gives our main mathematical 
results which are proved in §4. Numerical searches based on the results of §3 
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are described in §5. Combination of the mathematical and numerical results 

yields that if (x , k) is a solution of ( 1) then 

(i) x = 3 (mod 2ord2k+3), x is not divisible by any regular prime, and if 

x is divisible by some irregular prime p , then p > 10000 . 

(ii) k should be divisible by the number M = 28 • 35 • 54 • 73 • 11 2 • i 32 • 

172 • 192 • 23 · · · 199 ( log10(M) = 94.359 ... ). 

For other references on the Erdos-Moser conjecture, see, e.g., [5, pp. 85-86], or 

the introduction of [ 16]. The present paper is an extension, both mathematically 

and numerically, of [9]. Further numerical material can be found in [11], 1 where 

we also present a heuristic argument to support the truth of the conjecture of 

Erdos and Moser. 
A possible generalization of ( 1) is the equation 

k k k - k 
al + az + · · · + ax-1 - ax , 

where a1 , a2 , · · · is any arithmetic progression. We expect that the methods 

we use for ( 1) will yield similar results for this equation. 

For the more general equation 

Y~ + Y1 + · · · + Y~-1 = Y~ 
it is proved in [3] that this equation has infinitely many integer solutions y 1 , 

Y2, ... , Yn with Yi =/:. 0 whenever k 2: 18 and n 2: 1 + k 2 • 

Remark. In Lemma 11 of this paper we prove that x = 3 (mod 8), following 

Moser [12), but we would like to mention that already in 1987, A. Schinzel 

communicated a proof to one of us (JU) that x = 3 (mod 2ord2k+ 1) . In Lemma 

12 we sharpen this result to x = 3 (mod 2ord2k+3) and show that this is best 

possible. This implies, with 28 1 k (cf. (ii) above), that x = 3 (mod 211 ). 

2. MA TH EMA TI CAL PRELIMINARIES 

Let k and x be integers 2: 2. Put Sk(x) = l::i::;m::;x-l mk and, for any 

prime p, 

l<m<x-1 
- pfm 

and fk (1 ; p) = -1 . Recall that Euler's totient, rp ( n) , is the number of inte

gers in [ l , n] cop rime with n and that rp (PA) = pA- I (p - 1) for any prime 

p and positive integer ). . A rational number u/v with coprime integers u 

and v is said to be p-integral if p f v, and to be divisible by pµ if pµlu. If 

a = pµu/v with p f u, v, and µ integral, then ordpa := µ. Let Bn, respec

tively Bn(x) denote the nth Bernoulli number, respectively polynomial. The 

following results are well known and can be found in [ 6, Chapter 15] or [ 19]: 

Pl. BnE(Q, Bn(O)=Bn, Bo=l, Bi=-1/2, B2=l/6 and Bn=O if 

n 2: 3 and odd. If n 2: 2 is even then sgn(Bn) = (- l)n/2+1 . 

P2. (The von Staudt-Clausen theorem.) If !Bnl = Sn/Tn, 2ln and (Sn, Tn) 

= 1, then p!Tn if and only if p- lln, and p- lln implies pBn = -1 

(mod p). From the latter congruence it follows that Tn is squarefree. 

1 This is available upon request from the second author, or through anonymous ftp from 

ftp.cwi.nl. 
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P3. (The Kummer congruence.) If n 2: 2, n = r (mod p - 1), n ¥=. O 
(mod p-1), then Bn/n is p-integral and Bn/n = Br/r (mod p). More 
generally, if n = r (mod rp(p;.)), n ¥=. 0 (mod p - 1) and A. 2: l, then 
we have 

P4. For x 1 , x2 E C, 

Bn(X1 + X2) = t C)Bi(X1)x~-i. 
1=0 

In the special case x 1 = 0, x2 = x we have 

P5. (The power summation formula.) For natural numbers n 2: l and 
a;::: 2 we have 

Bn(a) = nSn-1(a) + Bn. 

This formula enables us to express the left-hand side of ( l) in terms of 
Bernoulli polynomials. Putting Pk+I (x) = Bk+I (x) - Bk+ I - (k + l)xk, 
it follows that ( 1) is equivalent to Pk+ 1 (x) = 0. 

P6. For even n we have 

2An < IBn/nl ::; n2 An/3, 

where An:= (n - 1)!/(2n)n. 
An odd prime p is said to be regular if p f Br for every even integer r in 
the interval [O, p - 3] . If this condition is not satisfied, p is called irregular 
and the pairs (r, p) with p I B, are called irregular pairs. Their number, the 
index of irregularity, is denoted by i(p). For a fixed irregular pair (r, p), let 
ao E [O, p) be the unique integer such that a0 = B, / rp (mod p) , a1 E [O, p) 
be the unique integer such that a1 = Br+p- 1/p(r + p - 1) (mod p) (see P3) and 
Tr ,p the set of integers t in [O, p) satisfying -a1 = t( a1 - a0 ) (mod p) . The 
only integers n with n = r (mod p - 1) such that p 21(Bn/n) are the n such 
that n = r + t(p - 1) (mod rp(p 2 )) and t E Tr,p (see [8]). An algorithm to 
compute the sets Tr,p can be found in [8]. Wagstaff [18] found that for every 
irregular pair ( r, p) with p < 125000 the set T,, P has only one element. 
Buhler et al. [2] have calculated all irregular primes up to one million, 2 but 
they have not calculated the sets T, ,p • 

3. STATEMENT OF THE MATHEMATICAL RESULTS 

The main result of this paper is Theorem 1. The computational results of this 
paper are derived from Theorem 1' and Lemma 10 below. Theorem 1' is used 
to show that k cannot belong to certain congruence classes, and in combination 
with Lemma 10 it is used to investigate the divisibility of x . 

2This was extended recently to four million. 
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Theorem 1. Let pJ.. be a prime power > 1 and let r, p - l f r, be any even 
integer in the interval [2, rp(pJ..)). Put e = min(3, A.). For i = 1, ... , e let 
Qi be the remainder of r on division by rp(pi). If fr(a; p) "¥. 0 (mod p,i.) for 
all a E [2, pJ.. - 1] coprime with p and if there exists 1 :::; i :::; e such that 
pi f(B(}J gi) (and pi\(B(}1 / QJ) for j < i), then the equation ( 1) has no solutions 
(x, k) with k 2'. A. and k = r (mod rp(pJ..)), and with the additional condition 
k::l (modp) inthecase i=3, Q1 -;f.2 (modp-1) andpfB(}i-2· 

Remark 1. By Lemmas 2 and 3 below the condition fr(a; p) -;f. 0 (mod p,i.) for 
all a E [2, pJ.. - 1] co prime with p , is equivalent to the condition f, (a ; p) "¥. 
O, -3a' (mod pJ..) for all a E [2, (pJ..-1)/2] coprime with p. This reduces the 
amount of numerical work needed to check this condition by a factor of about 
2. 

Remark 2. The condition fr (a ; p) -;f. 0 , -3a' (mod pJ..) for all a E 
[2, (PJ.. - 1)/2] coprime with p, can be weakened to fr( a; p) -;f. 0, -3a' 
(mod pJ..) for all a E [2, (PA. - 1) /2] coprime with p and such that µa -;f. ± 1 
(mod p) , where µ = l or 2 . For if µa = ± 1 (mod p) , it would follow that 
p\µx ± 1 and hence, by Lemma 4 below, that p - l \k, which yields a contra
diction with the assumption p - 1 f r . 

Remark 3. By Moser's result that k is even if (x, k) is a solution of ( 1 ), and 
the fact that rp (PJ..) is even, there is no loss that Theorem 1 is restricted to the 
case that r is even. 

Since in practice the condition pi f (B(}J Qi) for i ~ 2 is only rarely not 
satisfied, and it requires arithmetic modulo pi (i 2'. 2) to check whether or 
not pi\(Be)Qi) (for i = 2 see [8]), for numerical work (cf. §5) we will use 
Theorem 1 only for i = 1 . In order to check whether p f (Beil Q1) we use 
congruences due to Vandiver [17], [18, (4)] and Voronoi [18, (l)]. So we arrive 
at the following numerical variant of Theorem 1. 

Theorem 11 • Let pJ.. be a prime power with A. :::; C ( = 10106 ) and let r, p-1 fr, 
be any even integer in the interval [2, rp(pJ..)). Let Q = g1 be the remainder of 
r on division by p - 1 . If 

f,(a;p)10,-3a' (modpJ..) 

for all a E [2, (pJ.. - 1) /2] coprime with p and (only in the case p 2'. 3 7) if at 
least one of the three integers 

S1 := (2(}-I + 1) L s(}-l - 2e- 1 L s(}-I, 

p/6<s<p/5 3p/10<s<p/3 

S2 := L se-i or S3 := L s(}-I 
p/6<s<p/4 p/4<s<p/3 

is not divisible by p, then the equation ( 1) has no solutions (x, k) with k = r 
(mod rp(pJ..)). 

Remark. Note that S1 has about p / 15 terms while S2 and S3 have about 
PI l 2 terms each; hence in order to check nondivisibility by p , one should first 
test S1 and next S2 and S3 . The two sums which occur in S1 are parts of the 
sums in S2 and S3 , respectively. 
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If (r, p;.) is a pair with r even, p-1 fr, r E [2, cp(p;.)) such that f,(a; p) ;t:. 
0 (mod p;.) for all a E [2, p;. - l] cop rime with p , we call ( r, p;.) a potentially 
good pair. If, furthermore, ll ::; C and at least one of the integers S1 , S2, and 
S3 is not divisible by p, then (r, p;.) is called a good pair. If (at least) one of 
the above conditions is not satisfied, then (r, p;.) is said to be not a good pair. 
In this terminology, Theorem 1' can be reformulated as follows: 

'If (r, p;.) is a good pair, then the equation (1) has no solutions (x, k) with 
k = r (mod cp(p;.)) .' 

Note that if (r, p;.) is not a good pair, this need not imply that there is a 
solution with k = r (mod rp(p;.)). By Remark 1 after Theorem 1, and Lemma 
2 below, it follows that if (r, p;.) is a good pair, then for every integer k with 
ll < k ::; C and every integer i :?: 0 such that r + i rp (p;.) < rp (pk) , the pair 
(r + irp(p;.), pk) is also good (cf. Table 1, p;. = 5, 52 ). 

To prove that k must be divisible by many different prime factors (which 
will be done in §5), we use the following result repeatedly. 

Theorem 2. Let p be a prime and let { q1 , q2 , .•. , qp-I} be a set of (not nec
essarily distinct) odd prime powers such that plrp(q;) for i = 1, ... , p - 1. 
Let M be any positive integer such that lcm(rp(qi), ... , rp(qp_ 1)) I pM, and let 
{r1, r1, ... , rp-I} denote the set of numbers such that for i = 1, ... , p - 1, 
r; = iM (mod rp(q;)) and 0::; r; < rp(q;). Then, if (r;, q;) is a good pair for 
i = 1 , ... , p - 1 , all solutions k of ( 1) which are multiples of M are also 
multiples of pM. 

Remark 1. In fact, this theorem also holds if p is a composite number, but in 
our computations we only have used it for p a prime. 

Remark 2. If rp(q;) I M for some i with 1 ::; i ::; p - 1, then ri = 0 and 
(ri, q;) is not a good pair. We should therefore require that no number <p(q;) 
divides M; that is, that ord p( <p(qi)) :?: 1 + ordp(M) for i = l, ... , p - 1 . 

Corollary (Theorem 2 for qi = q, 1 ::; i::; p - 1, with q a prime). Let p and 
q be primes with q regular and q = 1 (mod p), and 

a-I 

"L/7' ;t:. aiT, -2aiT (mod q) 
j=l 

for a= 2, ... , (q - 1)/2 and i = 1, ... , p - 1. Then all solutions k of (1) 

which are multiples of (q - l)/p are multiples of q - 1. 

Since a<q-l)/2 = (~)(mod q) (as is well known), where (~) denotes the 

Legendre symbol, the condition of the corollary becomes for p = 2 that 

Em~ m. -2m (modq) 

for a = 2, ... , ( q - 1) /2 . Assume that q :?: 23 and that the condition of the 

corollary holds. Taking a = 2 , 4, 6, 8, we conclude that -1 = ( ~) = ( ~) = 
( ~) = -( ~) . Taking a = 10 , we conclude that for no q :?: 23 can the condition 

of the corollary be satisfied. Therefore, the corollary does not work for p = 2 
and q :?: 23 . This argument can be easily extended to show that for every prime 
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q ~ 23 and for every A.~ 1, (q;i.- 1(q-1)/2, q;i.) is not a good pair. From this 
it can be deduced that by using Theorem 2 alone, we cannot prove that 16 I k . 

It appears that ( ( q - 1) / 3 , q) is not a good pair for many primes q with 
q = 1 (mod 3). This makes it difficult to apply Theorem 2 for p = 3, and so 
the cases p = 2 and p = 3 have to be dealt with by another method. Theorem 
3 provides such a method. 

Theorem 3. For l :::; i :::; s, let a, vi be integers ~ 1 and let p , qi be primes 
such that pa+v; II qi - l , and put 

R( i) = { 1:::; j <.5,pv; Ip is co prime with j and (j q~~; 1 , q) is not a good pair} . 

Write 

R= {u1, ... ,js) ER(l) x ···xR(s) I 

) d d ( . qm - 1 . qn - 1) gcd(qm - 1, qn - 1 ivi es Imp;;;;- - Jn~ 

for every l :;, m < n :::; s}. 
Suppose that (x, k) is a solution of ( 1) with 

lcm --, ... ,-- lk. ( qi - 1 q5 - 1) 
p1J1 pVs 

Then we have pa+ 1 I k provided that the set R is empty. 

Corollary. Let a , v be integers ~ l and let q be a prime such that pa+v II q - 1 
and (j(q - l)/p", q) is a good pair for every 1 :::; j:::; p" with p coprime with 
j. Then if (x, k) is a solution of (1) with (q - 1)/p" I k, it follows that 
(q - l)/pv-1 I k. 

Let M, a, and b be arbitrary integers with 0 <a< b. Assume that (x, k) 
is a solution of ( 1) and that M is a divisor of k . For Theorem 5 below it is 
convenient if one can exclude that k = a (mod b). We now present a result 
which can be used to achieve this in some cases. 

Put g = gcd(b, M) and G = b/ g. For q a prime, let eq = ordqM, 
aq = ordq G . Put H = Tiq qeq , where the product runs over those primes q for 
which aq ~ l . If g f a , then, by using Lemma 9 below, we can exclude that 
k = a (mod b), so now we assume that g I a. Put a' = a/ H (notice that a' 
is an integer). 

Theorem 4. Let M, a, and b be arbitrary integers with 0 < a < b and let 
g, G, H , a' be defined as above. Suppose g I a and there exists a prime p' of 
the form p' = 1 + g1 GH, gcd(g1 , G) = 1 and g1 I M such that (Htg1 , p') is 
a good pair, where t, 0:::; t < G, satisfies t =a'/ g 1 (mod G). Then there are 
no solutions (x, k) of(l) with MI k and k =a (mod b). 

Remark. We have Htg1 -;j. 0 (mod p' - 1). 

Proof. It suffices to show that t -;j. 0 (mod G). So suppose t = 0 (mod G). 
Then a' = 0 (mod G) and so GH I a. Since g I a (by assumption) and 
b I lcm(g, GH), it follows that b I a. Contradiction. D 
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Suppose that (x, k) is a solution of ( l ). Our strategy in proving that x has 
no small prime factors is to prove first, by using Theorem 2, that M I k for a 
(preferably large) integer M and then to use the following result. 
Theorem 5. Suppose that (x, k) is a solution of(l) and Mlk for some integer 
M . Let p be an odd prime and put g = gcd(p - 1 , M) . If p or (in case p 
is irregular) the irregular pair(s) (r, p) corresponding to p satisfy one of the 
following conditions: 

(a) p is regular, 
(b) p is irregular and p - 1 IM, 
(c) p is irregular and g fr, 
(d) p is irregular, g I r and by Theorem 4 it can be deduced that k et r 

(mod p - 1), 
then p does not divide x. 

Theorem 6. If the number C1 is such that for all irregular pairs (r, p) with 
p :::; C1 we have p2 f (B,/r), then there is no solution (x, k) of (1) with x a 
prime :::; C1 • 

Remark 1. By Theorems 5(a) and 5(b) it follows that x should furthermore be 
irregular and x - 1 f k . 
Remark 2. By the work of Wagstaff [18] it follows that we can take C1 = 
125000. It has been conjectured that the largest possible C1 is finite (see [13, 
p.22]). 

4. PROOFS OF THE THEOREMS 

4.1. Lemmas. We state and prove some lemmas which will be used in the 
proofs of the theorems. 

Lemma 1. Let m be a positive integer and let p be a prime number. Then for 
every integer s we have 

ordp ( x:~s) > (m - s)ordpx - P ~ 1. 

Proof. The proof follows at once by using the well-known fact that for m ~ 1 
we have 

d ( ')- m-A(m,p) or P m. - 1 , 
p-

where A(m, p) ~ 1 denotes the sum of the digits of m written in the base 
p. D 

The next lemma is well known in the case A.= 1 (see, e.g., [6, p. 235]). 
Lemma 2. If p is odd and p - 1 f k, then Sk(PA) = 0 (mod pl) for every A. ~ I . 
Proof. Notice that modulo pA , Sk (p;,.) is unchanged by multiplication with 
gk, where g is any primitive root modulo p (which exists for every odd 
prime). Since p - If k by assumption, gk et 1 (mod p). Together with pl I 
(gk - l)Sk(PA) it follows from this that Sk(P;,.) = 0 (mod p;..). D 
Lemma 3. For even k, and for a prime p and integers a , A. satisfying I :::; ,l :::; 
k, 1 :::; a :::; pA - I , p fa we have 

fk(P;.. - a; P) = Sk(P;,.) - fk(a; p) - 3ak (mod p;..). 
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Proof. For a = 1 and a = pJ. - l the result holds because of the definition 
of fk(l; p) and since fk(P;. - l; p) = Sk(P;.) - 2 (mod p;.). We have, using 
that k is even (in the sums below the numbers m only run through values with 

Pf m ), 

L (p" - ml - (p;. - a )k 
a+l::;m::;p'-1 

L mk - L mk - 2ak 

= Sk(PJ..) - fk(a; p) - 3ak (mod p"). 

Hence, the lemma follows immediately. D 

Lemma 4 [12]. Suppose (x, k) is a solution oj(l). Then Pl(x - 1), Pl(x + 1), 
Pl(2x - 1) or Pl(2x + 1) implies p - llk. 

For k ~ 1, put o:(k) = 112/( 112- 1). 

Lemma 5. Suppose (x, k) is a solution of(l). Then x > k. 

Proof. In [ 1 O] it is proved that x > a( k) if (x, k) is a solution of ( 1). Using 
the inequality 2 < (1 + m~I )m for every m ~ 2 (which is easy to show), we 
conclude that k < a(k) < x. D 

Lemma 6. Suppose (x, k) is a solution of(l) with even k. Then x:::; 3k/2+ 1. 

Proof. We show that x < 3(k + 1)/2. Put ti = (k~ 1 )B2ixk-2i /(k + 1) for 
i = 1, ... , k/2. Using (1), P5, P4, and Pl, we see that it suffices to prove that 

:L~~~ ti > 0. By Pl the signs of the ti alternate and t 1 > 0. So the lemma 
follows if we show that lti+i/td < 1 for i = 1, ... , k/2 - 1. Indeed, by P6 
and Lemma 5 it follows that for i = 1 , ... , k /2 - 1 

I ti+I \ = A2i+2n2(k - 2i + l)(k - 2i) £_ D 
ti 6A2ix2(2i + 1)(2i + 2) < 24x2 · 

Lemma 7. Suppose (x, k) is a solution of(l). Then k > C = 101000000. 

Proof. The proof follows by Lemma 6 on using the lower bound C 2 for x , 
which is proved in [20]. D 

Lemma 8. Let p be an odd prime number and let k be an even integer ~ 6 . If 
pix, then we have 

(2) ord ( Pk+1(x) _Bk_x2k-1B )>{2ordpx+l, ifpi-5, 
P (k + l)kx k 6 k-2 - 2ordpx, if p = 5. 

Proof. By virtue of P4 and Pl for any (x, k) we get 

Pk+1(x) Bk 2k- l B 
(k + l)kx - k - x -6- k- 2 

[ 
xk-2 3xk-3 k/2-2 (k + 1) xk-2i-2 l 

=x2 (k+l)k-2/C+ ~ 2i B2i(k+l)k. 

(3) 



DIVISIBILITY PROPERTIES OF INTEGERS x, k SATISFYING 1k + ... + (x - l)k = xk 807 

Assume that pix. Then it is easy to see that for k;:::: 6 we have 

( 
xk-2 3xk-3) 

ordp (k+ l)k -~ 2:: 1. 

Furthermore, the assumption pjx implies ordp(xm-3 /m!) 2:: 2 in the cases 
p 2: 5 and m 2:: 6 , or p = 3 and m 2:: 8 , since by Lemma 1 with s = 3 we 
have 

ordp (xm~3 ) > (m - 3)ordpx - _!!±_1 2:: m - 3 - __!!!_;:::: 1. m. p- p -1 
Using this and P2, we conclude that for l S i S k/2 - 3 if p ;:::: 5, and for 
1 Si S k/2 - 4 if p = 3, we have 

((k + 1) xk-2i-2) ((k _ 1)! xk-2i-2 ) 
ordp 2i B2i (k + l)k = ordp (2i)! B2i (k + 1_ 2i)! 2: 1. 

For k 2: 6 , p 2: 3 , and p # 5 we have 

ordp ( (~ ~ ~)Bk-4 (k :
2
l)k) 2:: l. 

For p = 5 this order is not negative and for p = 3 we have 

ord3 ( (~ ~ ! ) Bk-6 (k :
4
1 )k) 2: 1. 

On using (3) the proof becomes complete. o 
Lemma 9 [15, Theorem 5.4.2]. Let s, a1 , ••• , as, k 1 , ••• , ks be natural num
bers with s 2: 2 . The system of simultaneous congruences x = ai (mod ki) , 
i = 1 , ... , s, has a solution if and only if gcd(ki, k1) I ai - a1 for every 
lSi<jSs. o 

Lemma 10. Suppose that (x, k) is a solution of (1) with k even and that p is 
an odd prime dividing x . Then 

(a) k ;t. 0, 2 (mod p - 1), 
(b) p is an irregular prime, 
(c) ordp(~) 2:: 2ordpx, 
(d) k = ri (mod p - 1), for some i E {1,. . ., i(p)}, where (ri, p) denotes 

the ith irregular pair and i (p) the index of irregularity, 
(e) k = ri + t(p - 1) (mod p(p - 1)), for some i E {l, ... , i(p)} and 

t E T, ,p , where the set T, ,p is de.fined in §2. 

Proof. Assume that (x, k) is a solution of ( 1) with p Ix and k is even. Then 
by Lemma 7 we have k ;:::: 6 . By Lemma 8 we get 

( 4) ordp ( 1:; + x 2 k ~ 1 Bk_2 ) 2:: 2ordpx. 

Therefore, by P2 and ordp(x2 k6' Bk_2) 2: 0, p - l lk implies ordpx < 0. 
Contradiction. If k = 2 (mod p - 1), then by P2, P3, and Pl we have Bk/k = 
B2f2 = 1/12 ;t. 0 (mod p) and we obtain ordp(Bk/k) = 0. Therefore, by 
( 4) and ordp(x2 k6I Bk_2) ;:::: 1, we get ordpx S 0. Contradiction. Part (b) 
immediately follows from (4), P2, and P3. Part (c) is a consequence of (4), 
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part (a), and P2. Parts (d) and (e) are consequences of part (c) and the work 

of Johnson [8]. D 

In the next lemma we deal with the case p = 2 , which is not covered by 

Lemma 10. 

Lemma 11. If (x, k) is a solution of (1), then x = 3 (mod 8). 

Proof. If k = 1, then x = 3, so we may assume that k ~ 2. We start from 

equality (3). Since (x, k) is a solution of ( 1 ), by Moser's result k must be even 

and x = 0 or 3 (mod 8). Moreover, by assumption we have Pk+i (x) = 0 and 

we drop this term ( ~ + 2 terms are left). Multiply each term between brackets 

by x 2 . Now suppose that x is even. Then using the fact that ord 2(B2i) = -1 

for every i 2: l (which follows by P2), we readily deduce that each of the 

2-orders of the terms in ( 3) different from Bk/ k exceeds ord 2 (Bk/ k) . This 

impossibility proves that x = 3 (mod 8) . D 

Lemma 12. If k 2: 8 and (x, k) is a solution of ( l ), then 

ord2(x - 3) = 3 + ord2k. 

Proof. By Moser's result and by Lemma 11, k must be even and x = 3 

(mod 8) . First, let us notice that for any natural k 2: 3 and r, the congruence 

a = r (mod 8) implies 

k 

ak = L C) (a - r)irk-i 
1~0 

= rk + k(a - r)rk-I + C) (a - r)2rk- 2 (mod 2ord2 k+6), 

because for i 2'.: 3 

(a-r)i (23i) 
ord2 .1 2: ord2 -.-1 > 2i 2: 6. 

l. l. 

Thus, if k 2: 4 is even and r is odd (which implies that rk- 2 = 1 (mod 8) ), 

we have 

ak = rk + k(a - r)r + k(k - l) (a - r) 2 (mod 2ord2k+6 ), 
2 

and in consequence we get 

ak = rk + k(a - r)r (mod 2ord2k+ 5). 

Applying this congruence to the equation ( 1) gives 

x-3 

0 = L ak + (x - 2)k + (x - 1 )k - xk 
a=I 

rE{±l ,±3} rE{±l,±3} 

where 
t, := and s, := L (a - r), 

l::;a::;x-4, i::;a::;x-4, 
a:r (mod 8) a:r (mod 8) 

because ak = 0 (mod 2ord2k+5), if k 2: 8 and 2la. 
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Writing x = Su + 3 , we derive without difficulty the following equalities: 

x-3 ~ k x-3 k 
t,=u=-8-, L-i t,r =-4-(1+3 ), 

rE{±l ,±3} 

s1=S3=4u(u-l), s-1=s_3 =4u(u+l), 

k · L s,r = -k · 32u = 0 (mod 2ord2k+5). 

rE{±l,±3} 

Moreover, we have 

and 
xk = 3k + 3k(x - 3) (mod 2ord2k+5). 

Collecting, this yields the congruence 

x ~ 3 (1+3k) + 1 - 2k(x - 3) - 3k = 0 (mod 2ordik+s). 

Therefore, since 
k 

3k - 4k - 1 = ~ (~)2i - 4k - 1 
1=0 

= -2k + 4(~) + s(~) + 16(~) (mod 2ord2k+4) 

(here we use that for k 2: s, s ::; i ::; k, ord2 { e)2i} = ord2 { HtD2i} ~ 
ord2k + i - ord2i 2: ord2k + 4) 

= -2k + 2k(k - 1) - 4k(k - l)(k - 2) + 6k(k - l)(k - 2)(k - 3) 

(using ~ = -4 (mod 16) and ~ = 6 (mod 16)) 

= 2k(k - 2) - 4k2(k - 2) + 4k(k - 2) + 6k3(k - 2) 

- 24k2(k - 2) + l8k(k - 2) 

= 24k(k - 2) - 28k2(k - 2) + 6k3(k - 2) 

= 0 (mod 2ord2k+4), 

we obtain the congruence 

x-3 
- 2-(-2k + 1) = 4k (mod 2ord2k+4). 

From this the lemma follows immediately. D 

4.2. Proofs of the Theorems. 

Proof of Theorem I. Let p;. be a prime power and r , f!i ( i = 1 , ... , e) be 
integers satisfying the assumptions of the theorem. Suppose (x, k) is a solution 
of ( 1) with k 2: A. , k = r (mod <p (p;.)) • The proof is divided naturally into the 
cases where p Ix and p f x . 

First assume that pix. If A. 2: 1 and p f (Be)fd1), then p f (Bk/k) by P3. 
This yields a contradiction with Lemma lO(c). If A. 2: 2 and p2 f (Be2 / e2), then 
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p 2 t (Bk/k) by P3 again. This contradicts Lemma lO(c). By Lemma 7 it follows 
that k 2: 6. If .A 2: 3, p 3 t (B12) {?3) and plB121 -2, then we have a contradiction 

with (2) by P3. If .A 2: 3, p 3 t (B 12) (!3), p f B121 -2 and p = 1 (mod k), we also 
have a contradiction with (2) by P3 again. So p f x and x can be written in 
the form b + rpA with 1 ::; b ::; p;. and b coprime with p . By Lemma 4 we can 
assume that b 2: 2. Since n = m (mod pA) implies nk = mk (mod pA) and 
k;::: .A (by assumption), we find that fk(x; p) = rSk(PA) + fk(b; p) (mod pA). 
Hence, by Lemma 2, fk (x ; p) = fk ( b ; p) (mod pA) . Since for p f n we have 
nk = n' (mod p:A.) by Euler's extension of Fermat's little theorem, it follows that 
fk ( x ; p) = f, ( b ; p) (mod pA) . Put a = b if b ::; (PA - 1) / 2 and a = p:A. - b 
otherwise. Since fk(x; p) = 0 (mod p:A.) it follows from fk(x; p) = f,(b; p) 
(mod pA) and Lemma 3 that either f,(a; p) = 0 or -3a' (mod p:A.) with a::; 
(PA. - 1)/2. We get a contradiction with the assumptions and this shows that 
there are no solutions of ( l) with k = r (mod <p (PA.)) and k ;::: A . o 
Proof of Theorem I'. Put c(x, y, z, m) = xP- 2m + yP- 2m - zP- 2m - 1. The 
result follows from Theorem 1, Lemma 7, P3, the Vandiver congruence 

B1m 
c(2, 5, 6, m) 4m 

= (l2m-l + l) L 82m-I _ 22m-l L 82m-l(modp) 

p/6<s<p/5 3p/IO<s<p/3 

[17, p. 574] which holds for p ;::: 11, the congruences 

) B2m ~ 2m l ( c( 3 , 4, 6, m 4m = L; s - mod p) , 
p/6<s<p/4 

c(2, 3, 4, m)!: = L s2m-l (modp), 
p/4<s<p/3 

which are well-known consequences of Voronoi's congruence [18] and hold for 
p 2: 11 too, and Fermat's little theorem. D 

Proof of Theorem 2. Suppose the hypothesis of the theorem is satisfied. Suppose 
furthermore that (x, k) is a solution of (1) with Mlk. We have to show 
that pMlk . To this end it suffices to show that k ¥ iM (mod pM) for i = 
1, ... , p - 1. By the definition of ri (i = 1, ... , p - 1) and M it suffices to 
show that k ¥ ri (mod <p(q;)) for i = 1, ... , p-1. But since (ri, qi) is a good 
pair for i = 1 , ... , p - 1 (by assumption), this follows on applying Theorem 
1'. 0 

Proof of Theorem 3. Suppose the hypothesis is satisfied. Then pa I k . Assume 
that pa+i t k. Together with the assumption 

( qi - 1 qm - 1) 
!cm--, ... ,-- lk pV1 pVm 

it follows that k = Ji(qi - l)/pv; (mod qi - 1) for some ji in [1, pv;] coprime 
to p for 1 ::; i :::; s. Since whenever (Ji(q1 - 1 )/ pv, , qi) is a good pair, k ¥ 
ji(qt - 1)/pv; (mod qi - 1) by Theorem 1', it follows that Ji E R(i). Con
sequently, we must have that k = ji(q1 - l)/pv; (mod qi - 1) for some tuple 
Ui, ... , is) E R(l) x · · · xR(s). By Lemma 9, (j1 , ..• , is) must be in R. Since 



DIVISIBILITY PROPERTIES OF INTEGERS x , k SATISFYING I k + · · · + (x - I )k = xk 811 

R is empty (by assumption), the assumption pa+! f k leads to a contradiction. 
Therefore pa+ 1 I k . D 

Proof of Theorem 4. Suppose (x, k) is a solution of ( 1) with M I k and 
k = a (mod b). Note that GH I b. So, in particular, k = a (mod GH). 
Since gcd(g1 , G) = 1 implies gcd(g1 , H) = 1 , it follows from H I M and 
g1 I M that Hg, I M, and so k = 0 (mod H g1). Note that there exist 
integers u and v such that a+ uGH = vH g1 • Since HI a this is equivalent 
to a'+ uG = vg1 and so v = a'/ g1 (mod G). It follows that k = Htg1 
(mod p' - 1). Since (Htg1 , p') is a good pair (by assumption), Theorem I' 
yields k :j. Htg1 (mod p' - 1). So the conclusion of the theorem follows. o 
Proof of Theorem 5. Parts (a) and (b) are consequences of respectively Lemma 
lO(b) and Lemma lO(a). To prove part (c), assume vlx. By Lemma lO(d) 
it follows that k = r (mod p - I), where (r, p) is some irregular pair. Since 
g I k and g I p - 1 we must have g I r. This contradiction with the assumption 
g f r shows that p f x . On using part ( c), the proof of part ( d) is obvious. o 
Proof of Theorem 6. Suppose that (x, k) is a solution of ( 1) with x a prime 
::; C1 , where C1 satisfies the hypothesis of the theorem. Then by Lemma l O( d) 
we have k = r (mod x - 1), with (r, x) an irregular pair. Notice that r ;:: 2. 
By Lemma 5 it then follows that k = r. Then p 2l(B,/r) by Lemma lO(c). 
Contradiction. o 

5. NUMERICAL RESULTS 

We have carried out several numerical experiments with the theorems of §3: 
5. I. Computation of all the good pairs ( r, pA) (defined after Theorem I') , 

for the even numbers r E [2, pA- I (p - 1)) , for all the prime powers 
pA E [5, 997], by using Theorem l'. 

5.2. Suppose we know a positive integer M such that if (x, k) is a solution 
of (1) then M I k. We find a prime p ;:: 5 such that pM I k, by 
finding sets { q1 , q2 , ... , qp-d and {r1 , r2 , •.. , r q-d as described in 
Theorem 2. This is repeated with M replaced by pM in order to find 
as many as possible different prime power divisors of k. Next, the 
same is done for the primes 2 and 3, by means of Theorem 3. 

5.3. Finding primes p which cannot divide x if (x, k) is a solution of ( 1 ), 
by means of Theorem 5 (and Theorem 4). 

All computations have been carried out on an SGI workstation. The programs 
were written in Fortran 77. 

5.1. Computation of good pairs. Application of Theorem 2 requires the de
termination of good pairs, i.e., pairs (r, pJ.) which satisfy the conditions of 
Theorem l'. As a first step to the computations described in §5.2, we have 
computed all the good pairs (r, pJ.) for the prime powers pA which satisfy 
5 ::; pA < l OOO . In Table 1 (next page) we list the good pairs ( r, pJ.) with 
5 ::; pA ::; 25. In [11, Table 1] the good pairs (r, p2) with 5 S pA ~ 125 are 
listed. The complete table is available from the second author upon request. 
Computing time was about 220 CPU seconds. 

Only in 30 cases a potentially good pair (r, p) was found, which was not 
good. All these 30 pairs appeared to be irregular. They are listed in [ 11, Table 
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TABLE 1. Good pairs ( r , pA) for the prime powers pA with 
5 s; pA s; 25 

pA 5 7 11 13 l 7 19 23 52 

r 2 24 26 24810 24612 41016 481416 26101418 

2]. Thefirstfourare (24, 103), (22, 131), (164,257), (280,347). Thetotal 
number of irregular pairs (r, p) with 3 s; p < 1000 is 81 [7]. The good pairs 
( r, pA) we actually use in the sequel are always of the form ( r, p) , that is, we 
only use congruences modulo primes. 

Assuming that the values of J,(a; p) are randomly distributed modulo pA, 
the probability that (r, pA) is potentially good is about (1 - 2p-A)(P"-i)/2 ~ 
e- 1 = 0.3679 (rounded to four decimals). This means that for each A.~ 1 we 
can expect the quantity 

._ L:s<p::;x card{r I (r, pA) is a good pair} 
G?c(x) .- L )-1( - 3)/2 s::;ps,.xP P 

to approximate e- 1 as x --+ oo (where we neglect the small probability that a 
potentially good pair is not good). We found G1(100) = 0.4016, G1(500) = 
0.3648 and G1 ( 1000) = 0.3646. 

5.2. Computations with Theorems 2 and 3 in order to find prime power divisors 
of k. Let (x, k) be a solution of ( l) and suppose we know that M I k for 
some M > I . If we can find a prime p such that ( l) has no solution satisfying 
one of the p - 1 congruences 

(5) k = iM (mod pM), i = 1, ... , p - l, 

then it follows that pM I k. Repeating this procedure with M replaced by 
pM woJld enable us to find more and more primes, and prime powers, which 
divide k. 

Such a prime p can be found as follows. Let pµ II M for some nonnegative 
integer µ and let q be a prime such that pµ+t I q - 1 and q - 1 I pM. Take 
i E {I , ... , p- 1} and let ri be the remainder of iM on division by q- 1 . It is 
easily seen that ri I- 0. If the pair (r1 , q) is a good pair, then we can conclude 
from Theorem l' that ( 1) has no solution with k = ri = i M (mod q - 1) . This 
implies that (1) has no solution for k = iM (mod pM) since q - l I pM. In 
view of the experiments mentioned in §5. l we may expect to eliminate about 
l / e of the p - l residue classes ( 5) with q . By using more of such q-primes, 
we can hope to eliminate all the residue classes of ( l). If we succeed in doing 
so, we have found sets { q1 , ... , qp- I} and { r1 , ••• , rp-d which satisfy the 
conditions of Theorem 2, and we can conclude that pM I k. One possible 
reason of failure is that the number of available q-primes is finite because of 
the condition q - l I pM. 

From Moser [12] we know that we may start with M = 2. It is not difficult 
to extend this M to 24 by using results from Table 1 as follows. Since (2, 5) 
is a good pair, it follows that k =t 2 (mod 4), so that k = 0 (mod 4). Since 
(2, 7) and ( 4, 7) are good pairs, it follows that k = 0 (mod 6). From 4 I k 
and the fact that ( 4, 17) and ( 12, l 7) are good pairs, it follows that k = 0 
(mod 8). 
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We have written a computer program which starts from M = 23 • 3 as a 
known divisor of k and tries to prove that p M I k for a given prime p 
which does not divide M, by finding sets { q1 , ... , qp- I} and { r 1 , ... , rp-1} 
(called q-sets and r-sets below) which satisfy the conditions of Theorem 2. It 
turned out to be relatively simple to extend in this way the value of M = 24 
with the prime factors 5 , 7, 11 , ... , 199, in this order. In [ 11, Table 3] 
we give the q- and r-sets for p = 5 , 7, 11 , 13 , I 7 , 19 . For the proof that 
pM I k' given that M I k ' we used the value M = Mp := 23 n3:-::;q<p, q prime q. 
For example, for p = 5, M 5 = 24 and we found the q-set {31, 31, 11, 11} 
and the r-set {24, 18, 2, 6}. For p = 7, M 7 = 120 we found the q-set 
{281 , 29, 43, 43, 211 , 421} and the r-set {l 20, 16, 24, 18, 180, 300} . It 
should be noticed that in this case we needed the largest available q-prime 421 
to complete the proof. 

For the primes 23 , ... , 199 Table 4 in [ 11] only presents the different values 
of q which occur in the q-sets (in order to save space), and not the q- and 
r-sets themselves. 

Example. Consider the case p = 23 . The values of q which occur in the 
corresponding q-set are 47, 139, 277, 461, and 691. Theorem 2 is ap
plied with M = M 23 = 233 · 5 · 7 · 11 · 13 · 17 · 19. The program generates 
primes of the form q = 46t + 1 for which 7} I M . The first is q = 4 7 . 
We have M (mod 46) = 14 and the program checks which of the pairs (14i 
(mod 46), 47), i = I, ... , 22, are good. This is found to be the case for 
i = l , 2 , 10, 11 , 12 , 13 , 14 , 15 , 17 , 18 , 1 9, 22 . It follows that qi = 4 7 for 
these 12 values of i and that ri = 14, 28, 2, 16, 30, 44, 12, 26, 8, 22, 36, 
32, respectively, for these 12 values of i. The next q-prime is 139. We have 
M (mod 138) = 60 and, by checking the remaining values of i, it is found 
that (60i (mod 138), 139) is a good pair for i = 8, 9, 16. It follows that 
qg = q9 = q16 = 139 and that rg = 66, r9 = 126, and r16 = 132. Contin
uing in this way, we eliminated the remaining residue classes with q = 277 
( i = 4, 20 ), q = 461 ( i = 5, 6, 7, 21 ), and q = 691 ( i = 3). o 

With the knowledge that 23 • 3 · 5 · · · l 99 I k we next increased the pow
ers of the primes ;::: 5 and :::; 19 in k with the help of Theorem 2. Table 
5 of [ 11] is similar to Table 3 of [ 11 ], but now the prime p by which we 
multiply M is already in M at least to the first power. For example, for 
M = 23 n3:-::;q:-:,:;97, q prime q with M I k we proved that 5M I k by finding the 
q-set {1451 , 10 l , l 01 , 101} and the corresponding r-set { 580, 60, 40, 20} . 
From the results of Table 5 in [ 11) it follows that 54 • 73 • 11 2 • 132 • 172 • 192 I k . 
Computing time was about 1 OOO CPU seconds. We expect it to be easy to ex
tend the set of prime power divisors of k , if more computing time would be 
spent. 

In order to increase the exponents of 2 and 3 in k, we used Theorem 3 (and, 
in one case, Theorem 4) to prove that 28 I k and 35 I k . For the proofs that 
27 I k and 28 I k we could use the corollary to Theorem 3 with p = 2, v = 3 
and a = 6 respectively a = 7 . The details of our use of Theorem 3 are given 
in [ 11, Table 6]. In one case, namely in the proof that 26 I k , we eliminated 
k = 2080 (mod 3328), where 2080 = 5(q1 -1)/8, by using Theorem 4 with 
M = 25 • 35 • 54 • 73 • 11 2 • 132 • 172 • 192 • 23 · · · 199, a = 2080 = 5 · 25 • 13 , 
and b = q1 - 1 = 3328 = 28 • 13. The good pair (Htg1 , p') we found is 
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(16416, 43777), with H = 25 , t = 3, g, = 32 • 19, p' = 1 + g,GH, and 
G= 23 . 

Summarizing this section, we have shown that if (x, k) is a solution of (1), 
then 

28355473 11 2 132 172 19223 .. · 199 I k, 

where the three dots represent the product of the primes between 23 and 199. 
In particular, km( l , ... , 200) I k . From Lemma 12 it follows that x = 3 
(mod 2 11 ). 

5.3. Computations with Theorem 5 (and Theorem 4) in order to find primes 
which cannot divide x . We have written a program which for a given irreg
ular pair ( r, p) checks the conditions (b ), ( c), and ( d) of Theorem 5 with 
M = 2s 3s 547311 2 132 1 72 19223 .. · 199 , as computed in the previous section. 
Conditions (b) and (c) are easy to check. Condition (d) was checked by means 
of Theorem 4 with a = r and b = p - 1 . We ran our program for the first 
500 irregular primes (the 500th being 10061), 382 of them having index 1, 102 
having index 2, and 16 having index 3, so that these correspond to 634 irregular 
pairs. We found 424 pairs satisfying condition (b ), 125 satisfying condition 
(c), and 85 satisfying condition (d). In (11, Tables 7-9] we list the latter 85 
pairs and the corresponding good sieving pairs (Htg1 , p') for which Theorem 
4 holds (in all 8 5 cases, H = l ) . In order to find these 8 5 good pairs, our 
program had to generate a total of 260 primes p' in Theorem 4, an average 
of about three per good pair. The largest sieving prime used was p' = 293177, 
for the irregular pair (2672, 5639) . Computer time used was about 340 CPU 
seconds. The first four lines of Table 7 in [ 11] are as follows: 

TABLE 2. The first 4 irregular pairs (r, p) satisfying condition 
(d) of Theorem 5, gcd(p-1, M) with Mas computed in §5.2, 
and a corresponding good sieving pair (Htg1 , p') that can be 
used to apply Theorem 4 

irregular pair ( r , p) 
(94,467) 

( 194,467) 
(90,587) 
(92,587) 

g = gcd(p - l , M) 
2 
2 
2 
2 

good sieving pair (Htg1 , p') 
( 1026, 1399) 
(3456,7457) 

(90,1759) 
(2436,3517) 

In conclusion, we have shown that if (x, k) is a solution of ( 1 ), then x is 
not divisible by any irregular prime < 10000 . By Lemma I O(b) and Lemma 
11 it then follows that x is not divisible by any prime < 10000 . 
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