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Recently a uniqueness condition for Gibbs measures in terms of disagreement percolation (a type of dependent 
percolation involving two realizations) has been obtained. In general this condition is sufficient but not necessary 
for uniqueness. In the present paper we study the hard-core lattice gas model which we abbreviate as hard-core 
model. This model is not only relevant in Statistical Physics, but was recently rediscovered in Operations Research 
in the context of certain communication networks. 

First we show that the uniqueness result mentioned above implies that the critical activity for the hard-core 
model on a graph is at least PJ ( 1 - PJ, where P< is the critical probability for site percolation on that graph. 

Then, for the hard-core model on bi-partite graphs. we study the probability that a given vertex ,. is occupied 
under the two extreme boundary conditions, and show that the difference can be written in terms of the probability 
of having a ·path of disagreement' from 1· to the boundary. This is the key to a proof that, for this case, the 
uniqueness condition mentioned above is also necessary, i.e. roughly speaking, phase transition is equivalent with 
disagreement percolation in the product space. 

Finally, we discuss the hard-core model on "ll." with two different values of the activity, one for the even, and 
one for the odd vertices. It appears that the question whether this model has a unique Gibbs measure, can, in 
analogy with the standard ferromagnetic Ising model, be reduced to the question whether the third central moment 
of the surplus of odd occupied vertices for a certain class of finite boxes is negative. 

1. Introduction 

In this introduction we will briefly discuss the notions which play an important role in this 
paper: Percolation, Mi .vv fields, Gibbs measures, and the hard-core lattice gas model. As 
abbreviation of th• we will just write 'hard-core model'. First of all we need some 
graph-theoretic te )bgy: 

In this paper \ll :.-deal with connected graphs which are finite or countably infinite and 
locally finite. The last means that every vertex has finitely many edges. A graph will typically 
be denoted by G, and the set of its vertices by Ve. Vertices are denoted by u, w, i, j, etc. 
Two vertices u and w are adjacent (notation u ~ w) if there is an edge between them. 
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A path from 1· tow of length n is a sequence of vertices 1·0 = r, 1· 1, 1·2, ••• , L',,=w with the 
property that 1'; - r;+ 1, 0..;; i..;; n - I. An infinite path is a sequence of vertices l'ih t'i. ... of 
which infinitely many are distinct and which has the property l'; - l'; + 1, i = 0, 1, 2, .... For 
B c V 0 , 88 denotes the boundary of B. i.e. the set of all vertices which are not in B but are 
adjacent to some vertex in B. 

A graph G is bipartite if Va is the union of two subclasses (called the euen and the odd 

subclass), with the property that no vertex is adjacent to any vertex in the same subclass. 
Paths between vertices in the same subclass always have even length and paths between 
vertices in different subclasses have odd length. Vertices in the even (odd) subclass are 
called even vertices (odd vertices). 

Two vertices are said to have the same partity if they belong to the same subclass. 
•Percolation. Suppose each vertex i is, independent of all other vertices, open (i.e. 

accessible) with probability p; and closed with probability 1 - p;. Denote the corresponding 
probability measure by P 1,., 1• For a realization of the process a path is called open if all its 
vertices are open. We say that percolation occurs if P1,.,i (there exists an infinite open path) 
> 0 (in which case this probability is even 1 since the event is a tail event). In case all p;' s 
are equal, say p, we write PP for the above probability measure and define the critical 
probability Pc= inf{p: P1,( there exists an infinite open path) > 0}. This critical probability 
depends on G. One of the first results in percolation was to show that p, < 1 for a large class 
of graphs, including the square lattice (Broadbent and Hammersley, 1957). The above 
model is called independent site percolation. If the vertices do not behave independent of 
each other we speak of dependent percolation, and if the edges rather than the vertices are 
open or closed we speak of bond percolation. For further study, see Grimmett ( 1989) and 
Kesten ( 1982). 

• Markozfields and Gibbs measures. Let S be a finite or countably infinite set and define 
{l= 5vc;. Elements of a will typically be denoted by w= ( W;, i E v c).We are interested in 
certain probability measures µ on {l (equipped with the a-algebra generated by the events 
(w;=s), iEV0 , sES; we will call this the obuious a-algebra). Roughly speaking,µ is 
called a Marko1• field if, for each finite set of vertices B, the conditional distribution of the 
configuration inside B, given the configuration outside B, depends only on the configuration 
on 08 • A specification is a prescription of such conditional probabilities, and we say thatµ 
is a Gibbs measure (or Gibbs state) for a given specification p if the conditional probabilities 
forµ, mentioned above, are ( µ-a.s.) equal to the values prescribed by p. For more precise 
and general definitions see Georgii ( 1988) or Prum and Fort ( 1991). If G is infinite, a 
specification may have more than one Gibbs measure, in which case we say that there is a 
phase transition. A central problem in the theory is to determine if a given specification has 
a unique Gibbs measure. Several uniqueness results, with references, can be found in the 
bibliographical notes to chapter 8 in Georgii ( 1988). In van den Berg ( 1991) a uniqueness 
result is given which involves a special kind of percolation in the product space. In the 
present paper we will (among other things) develop that result in more detail for the hard­
core model. 

•The hard-core model. Let a;, i E V 0 be positive real numbers. If G is finite, the hard-
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core measure on G with acticities a;, i E V 0 is defined as the following probability measure 
on fl= { 0, l} h;: 

f(W is feasible) n/EVtli;"' µ(w)= , 
z ( I. I l 

where I denotes the indicator function, feasible means W;W; = 0 for all i -j, and z is the 

normalizing constant (called partition function). It is not difficult to see thatµ, is Markov 

and that it can also be characterized as follows: denote, for i E V 0 , p; =a;! (a;+ I) and let 

P{p;J be the probability measure under which the w;, i E V 0 , are independent r.v.'s with 

P( W; = 1 ) = P;· Then µ, is just P {'" 1 , conditioned on "having no adjacent I's". 

Now we turn to the case that G is infinite. In that case we say that a probability measure 

µon { 0, I } v,, is a hard-core measure on G with activities a;, i E Ve; if for all finite B c Ve; 

andalla:E{O, l}n, 

/(a is feasible) n;esll:" 
µ,(w= a on BI wv,,\R) = --------'..=:.--'­

z 
( µ,-a.s.) , 

where, this time, feasible means u;a:; = 0 for all i. j E B with i -.i and a;w; = 0 for all i E B, 

j E 8B with i -j, and where Z is the appropriate normalizing constant, and wvu\R denotes 

the collection ( vector) of r. v.' s w;, i E Vu\ B. 

In words: the conditional distribution on a finite set B, given the configuration outside B 

is just the distribution under which those vertices of B which are adjacent to a vertex of 88 

with value l, have, with probability I, value 0, and whose restriction to the remaining subset 

A of Bis just the (finite-case) hard-core measure for A with activities a;. i EA. (Note that 

the measure µ, of ( I. I) also satisfies this property, so that this gives indeed a natural 

extension to infinite graphs.) The fact that at least one such measure exists follows from 

standard arguments (see Georgii, 1988). It is also clear from the definitions that all such 

measures are Markov, and are Gibbs states for the same specification. It has been shown by 

Dobrushin ( I 968b) (for the d-dimensional cubic lattice ( d ?> 2) with all a,' s equal and 

sufficiently large) that phase transition can indeed occur for this model, i.e. there are cases 

where there is more than one hard-core measure with the same activities. (Dobrushin's 

result was recently rediscovered by Louth ( 1990) in the context of communication models 

mentioned below.) For a more general class of lattices phase transition for the hard-core 

model was proved by Runnels ( 1975). 

Motil'C1tio11 (~lthe hard-core model 

The hard-core model is relevant in statistical physics as a simple model of a gas whose 

paiticles have a non-negligible size: w; = I ( 0) means that the vertex i is occupied by a 

particle (empty); the condition that two adjacent vertices are not both occupied prevents 

particles from overlapping. The model also arises by taking certain limits for the Ising 

antiferromagnet (see e.g. Dobrushin, Kolafa and Shlosman. 1985). Recently, the model 

was rediscovered in Operations Research in the context of communication networks (see 

Kelly, 1991, and Louth, 1990): consider (the finite graph) Gas a communication network 
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where calls arrive at the vertices according to independent Poisson streams with intensities 
A;. i E VG. The durations of the calls are assumed to be independent, exponentially distributed 
r.v.'s with mean T;, iE VG. If, upon arrival of a call at a vertex i, this vertex and all its 
neighbours are idle, the call is transmitted and i will be busy for the duration of the call. 
However, if upon arrival of the call, i or at least one of its neighbours is busy, the call is 
Jost. (Generalizations of this communication model have been studied by Kelbert and Suhov 
( J 990).) The evolution of the system in time (as a { 0, 1 } vc_valued process, where 1 means 
busy and O means free) is a (continuous-time) Markov Chain, and it is not difficult to see 
(by checking the detailed balance equations) that the stationary distribution is given by 
( I. I ) with a;= A. ;T;. i E VG· Using the principles of the theory of infinite interacting particle 
systems, see e.g. Liggett ( 1985), the time evolution described above makes also sense for 
infinite graphs: then the time-reversible equilibria are the Gibbs measures for the hard-core 

model with activities a;= A.;T;. i E VG. 
In Section 2 we present some general results (i.e. for general Markov fields and for hard­

core models on general graphs). In Section 3 we show that, for hard-core models on bipartite 
graphs, phase transition is equivalent to a certain type of dependent percolation. Even for 
non-experts these sections should be accessible after having read this introduction. 

The last section, Section 4, is somewhat separate from the others. In this section, for a 
good understanding of which familiarity with Ising model theory is desirable but not 
essential, we specialize even further and restrict to the d-dimensional cubic lattice. Using 
similarities with the standard Ising model, we shed some light on the question whether the 
hard-core model with two different values of the activities (one for the even class and one 
for the odd class) has a unique Gibbs measure. 

2. General results 

We start this section with the following definition: a path of disagreement for the pair 
( w, w') is a path in G on which all vertices i have w; if: w;. 

In van den Berg ( 1991) the following uniqueness condition for Gibbs measures, in terms 
of a type of dependent percolation is given: 

Theorem 2.1. Let G be a countable, locally finite, connected graph, VG its set of vertices, 
and S afinite or countably infinite set. Let the probability measuresµ, and µ,' on S Va (with 

the obvious <r-algebra) be Markou fields with the same specification. Consider two inde­
pendent realizations, one underµ,, the other under µ,'. If ( µ, x µ,') ( ( w, w') has an infinite 
path of disagreement) =0, thenµ,=µ,'. O 

As a corollary, that paper also gives a uniqueness condition in terms of independent 
percolation. That corollary is a little too weak for our purpose and we give instead the 
following, whose proof is very similar: 
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Corollary 2.2. Let G, S, fL and µ.,'as defined in Theorem 2. l. Consider again two inde­

pendent realizations, one underµ, the other under µ'. Let,fi1r each L'ertex i, N; be the set 

of neighbours of i, and define 

p;= sup (µXµ')(wi4'w;lw;=a 1 andwj=ajforal/jENi). 
a.a'E'=SN1 ;0=!=0:' 

( 2.1) 

Consider the percolation process where each certex of G, independently of all others, is 

open with probability Pi and closed with probability I - Pi· If P1,,,i (there exists an infinite 

open path) = 0, then µ = µ'. 

Proof. Let, for each i, f i be the a--field generated by the variables w1,j =I= i and w./ .j =I= i. Let 

O be an arbitrary vertex. Since µ and µ' are Markov. it is easy to see that, for i * 0. 
( µ,X µ') ( ( w, w') has a path of disagreement from 0 to i If;) equals 0 if, for all j- i, 

w1 = wj, and ~Pi ( a.s.) otherwise. So in any case it is ~Pi ( a.s.). Hence the process ( J( there 

is a path of disagreement from 0 to i J) iE Ve;\ 101 is stochastically dominated by the process 

(/ (i is open) Ji E vu\ 10 1 . So we have the following: 

( µ, X µ') ( 3 an infinite path of disagreement containing 0) 

= ( µ X µ,') ( 3 infinite path II, not containing 0, such that for each i on II 

there exists a path of disagreement from 0 to i) 

~ P 1",i ( 3 infinite path II, not containing O. such that each i on II is open) 

= P1p,i ( 3 infinite open path) 

= 0 (by assumption) . ( 2.2) 

The first equality is trivial: the event on the left-hand side is just rewritten in a more 

complicated way to make it suitable for application of the stochastic dominance inequality. 

The reverse happens in the second equality. 

Since the above holds for any vertex 0, and VG is countable, we have 

( µ, X µ, ') ( 3 an infinite path of disagreement) = 0 . 

Now apply Theorem 2.1. D 

We will apply Corollary 2.2 to the hard-core model. First we define the critical activity 

a, of a graph by 

a, = inf{ a: the hard-core model with activities a;= a 

has more than one Gibbs measure} . 
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Theorem 2.3. Let G be a countablv i11finite. locally finite, connected graph. Let a;, i E Ve 

he non-negarire. Let P 1", 1"'' + 1, 1 be the probability measure under which each i, independeni 
the others is open ll'ith probability a;! (a;+ I ) and closed with probability 1 I (a;+ 1). 
( i J ~f' P1,,,., ,,, " 1 , 1 (there exists an infinite open path) = 0, then the hard-core model ori 

G H'ith acticitics a1• i E Vu has a unique Gibbs measure. 
(ii) The critical acticity <d' G satisfies ac ~ P) (I - Pc), where Pc is the critical proba­

bilityfiir site percolation on G. 

Remarks. A classical result for the square lattice is that at p = ~, there is no percolation and 
hence Pc-;;, ~ (see Harris, 1960. and Hammersley. 1961), which according to the above 
theorem. immediately yields a,~ I. Using the result Pc> ~ (Higuchi, I 982; for a more 
modem and general proof see Aizenman and Grimmett, 1991) yields ac > I. This was firs1 
proved by Dobrushin. Kolafa and Shlosman ( 1985) who were motivated by the significance 
of this special lower bound for the 2-dimensional Ising antiferromagnet. However, thei1 
proof was computer-assisted. Radulescu and Styer ( I 987) and Kirillov, Radulescu and 
Styer ( 1989) have made several simplifications, considerably reducing the amount of 
computations. However. their proof is still laborious (involving polynomials of degree 15) 
and, although their bound ( 1.185) is better than ours, we think our method gives the mos1 
elegant proof of the important inequality a,> l. 

Another reason, besides the significance for the 2-dimensional Ising antiferromagnet 
why this special bound is important is its interpretation in terms of subshifts of finite type 
(see Burton and Steif. I 992). A subshift of finite type is a set of configurations on the d­
dimensional lattice given by disallowing certain finite configurations. For example, in our 
case. we would have O's and l 's on the d-dirnensional lattice with adjacent I's forbidden. 
It is of interest in ergodic theory to know if such a set supports more than I measure of 
maximal entropy, where a measure of maximal entropy corresponds in most cases (in 
particular for the hard-core model) to a measure which has uniform conditional probabilities 
on finite sets when conditioning outside. The fact that ac > 1 in 2-dimensions tells us there 
is only one Gibbs state when a;= l which translates to the fact that the hard-core subshift 
of finite type has a unique measure of maximal entropy in 2-dimensions. In fact, we only 
need the original Harris-Hammersley result (together with Theorem 2.3 ( i)) to conclude 
this. 

Finally, we mention that by using the latest bounds for Pc, and by refining our stochastic 
dominance arguments (thus yielding smaller p;' s in ( 2. I ) ) , we can further improve the 
lower bound for a, .. 

Proof of Theorem 2.3. Part (ii) follows immediately from part ( i) and the definitions. As 
to part ( i). let i be an arbitrary vertex. We will calculate p; as defined in ( 2.1 ) : first define, 
for a, a'E {0. I }v', 

f( a, ct' l = ( µ X µ') ( W; =I= w; I w =a on N,. and w' =a' on N;) . 
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In case ak =a; = I for some k, l EN;, the conditional probability that w; = w; = O is I, 
and hence.f( a, a') = 0. Hence, since by ( 2.1) we may assume a* a', we are left with the 
cases a= 0, a'¥; 0 and the case a'= 0, a¥; 0. By symmetry it suffices to take the first, in 
which case it is easily seen that 

j(a, a')= µ,(w; = 11 w=O on N;), 

which, by definition equals a;l(a;+ I). Hence p;=aJ(a;+ 1). Now apply Corollary 
2.2. D 

We finish this section with the following theorem. First some notation: ifµ, is a probability 
measure and X and Y are r.v.'s then Eµ(X) denotes the expectation of X w.r.t. µ,, and 
Cov µ(X, Y) the covariance of X and Y w.r.t. µ, i.e. E µ(XY) - Eµ(X) Eµ( Y). 

Theorem 2.4. Let G be a finite graph andµ, a hard-core measure for G. Then,forany pair 
o.f i•ertices i,j: 

2 Cov µ ( w;. w) 

= ( µ, X µ,) ( ( w, w') has a path of disagreement, 

with euen length, from i to j) 

- ( µ, X µ,) ( ( w, w') has a path of disagreement, 

with odd length, from i to j) . 

In particular, if G is bipartite, then 

Cov µ ( W;, wj) = ± ~ ( µ, X µ,) ( ( w, w') has a path of 

disagreement from i to j), 

with + if i andj have the same parity and - if they have different parity. 

(2.3) 

(2.4) 

Remarks. ( i) This resembles a result obtained by Fortuin and Kasteleyn for spin-spin 
covariances in the Ising model (see Fortuin ( 1972), Fortuin and Kasteleyn ( 1972) and 
Newman ( 1987)). However, their result does not involve the product space, and deals with 
bond percolation instead of site percolation. 

(ii) Using the same dominance arguments as in Corollary 2.2, Theorem 2.4 provides 
upper bounds for the covariances of the hard-core model in terms of connection probabilities 
for· 'ordinary'' site percolation. 

Proof of Theorem 2.4. The second part ( 2.4) follows immediately from the first. As to the 
first, let wand w' be two independent { 0, I} vc_valued r. v .' s with distribution µ,. It is easy 
to check (just expand the right-hand side), that 

(2.5) 
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(This equation holds for any pair of r.v.'s and has been used before, see e.g. Lebowitz 

( 1974) and Liggett ( 1985, p. 78).) 
For each pair ( w, w') define the set of vertices 

C(il = {/ E Ve: ( w, w') has a path of disagreement from i to l) . 

Define the transformation T: [} X [} ~ .f2 X .f2 as follows. 
IfjEC(i), then T(w, w') =(w, w'). 
Ifj~C(i), then Texchanges wand w' on C(i), i.e. T(w, w') = (<r, u'), where ch=wk 

and u;, = w;, for all k ~ C( i), and <h = w~ and rrk = wk for all k EC( i). 
T is clearly 1-1 and. sinceµ, is Markov, T is also measure preserving. Using this and 

( 2.5 ). and settingj( w. w') = ( w;- w;) ( w1- wj), we get 

Covµ(w;. w1 )=~Eµxµ(j(w. w'))=~Eµxµ[j(w. w') +j"(T(w, w'))]. 

From the definition of T and/ we have that, if j EC( i) thenf( T( w, w')) = f( w, w'), and 
ifjfl'C(i), thenf(w. w') +f(T(w, w')) =0. (Note that this holds even when C(i) =0.) 
Hence 

Cov 1, ( w;, w1) = ~ E µ x µ [ (j( w, w') I ( ( w, w ') has a path of 

disagreement from i to j) I . ( 2.6) 

(Note that so far we only used the Markov property of µ,. Hence ( 2.6) holds for any 
Markov field on a finite graph.) 

Suppose II is a path of disagreement from i to j. Since we may assume that neither w nor 
w' has adjacent 1 's, the values of w, as well as these of w', must be alternating along ll. 
Hence, if the length of II is even, then w; = w; = I - w; = I - wj and thus f( w, w') = l. 
Similarly. if the length of II is odd, then f( w, w') = - I. This, together with ( 2.6) yields 
the desired result. 0 

Remark. As to the case i = j, note that the probability of a path of disagreement of odd 
length from i to itself is 0, and that the probability of a path of disagreement of even length 
from i to itself is just the probability that w; i= w;, which is 2P ( w; = I ) P ( w; = 0) . This is 
indeed twice the variance of w;. 

3. Results for bipartite graphs 

First we restrict to finite bipartite graphs. Let G be such graph and µ, a hard-core measure 
for G. Define the partial order < on £2 = { 0, 1} vu by: w < w' iff w; ~ w; for all even i and 
w;:;,,, w; for all odd i. It is not difficult to see that n, with this partial order, is a so-called 
distributive lattice. Moreover, using 1.1 it is easily seen that µ, satisfies the FKG condition 
( Fortuin, Kasteleyn and Ginibre, 1971 ) w .r. t. this partial order: 

µ(w/\w')µ(wVw'):;;.µ(w)µ(w'), (3.1) 
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for all wand w' ED, where w/\ w' is defined by ( w/\ w'); = min( w;, w;) for even i, and 

max(w;, w;) for odd i, and wV w' by (wV w'); =max( w;, w;) for even i and min(w;, w;) 
for odd i. 

Hence, by the FKG theorem, µ,is associated, i.e. 

µ,(AnB);;.. µ(A)µ,(B) (3.2) 

for all increasing A, B c D. 

Remark. Ac{), is increasing if wEA, w< w' implies w' EA. 

If v and v' are two probability measures on D, then we say vis dominated by v', notation 
v~ v', if v(A) ~ v'(A) for every increasing A en. 

The following dominance property is also a standard consequence of the FKG condition: 

Lemma 3.1 (dominance property). Let W c V c and a, a' E { 0, 1} w feasible (i.e. they have 

no adjacent 1 's). If a< a' then the probability measureµ, conditioned on the event ( w= a 

on W), is dominated by the prob. measureµ, conditioned on the event ( w= a' on W). D 

Now we turn to the case that G is an infinite bipartite graph. Let a;, i E V c be non-negative 
real numbers. We are interested in hard-core measures for G with activities a;, i E Ve. First 
some terminology: if WcV0 , we say w=euen (odd) on W if w;= I for all even (odd) 
i E Wand w; = 0 for all odd (even) i E W. 

Let A,,, n = I, 2, ... , be a nested sequence of finite sets of vertices such that 

LJ An=Vc. 
11=1 

For each n, denote by µ,\, the hard-core measure for A,, with euen boundary condition. 

More precisely, µ\, is the hard-core measure for All U SAil, with activities a;, i E An U 8A,,, 
conditioned on the event ( w= even on 8All). Similarly, define JL'A.. as the hard-core measure 
for A11 with odd boundary condition. 

The following result is completely analogous to a similar result for the standard ferro­
magnetic Ising model. Using µ, is Markov and the dominance property Lemma 3.1 the 
reader may, possibly after consultation of the proof for the Ising model (see e.g. Liggett, 
1985, Chapter IV), obtain a detailed proof. 

Lemma 3.2. The sequence µ,~1,,, n = 1, 2, ... is decreasing. More precisely ifn < n' then the 

restriction of µ~1", to An U 8A11 is dominated by µ,\,.Hence the sequence has a weak limit, 

which we call µe. Similarly, the sequence µ, ~tn• n = 1, 2, ... , is increasing and hence has a 

weak limit, which we denote by µ, 0 • The measures µ e and µ, 0 do not depend on the choice 

of the sequence A"' n = I, 2, .... For each n, JL 'A,, ~ JL An. Hence µ, 0 ~ µ,•. Both µ, e andµ 0 

are Gibbs measures for the hard-core model on G with activities a;, i E V c· Moreover, each 

Gibbs measure v for this model satisfiesµ, 0 ~ v~ µ, •. Hence this model has a unique Gibbs 

measure if and only ifµ e = µ,0 • D 
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Our aim is to show that, roughly speaking, for hard-core models on bipartite graphs, the 
reverse of Theorem 2.1 also holds. The key to this result is the following proposition, which 
is of the same spirit as Theorem 2.4. 

Proposition 3.3. let i E 1 i 11 be an aen certex. 

J.L \ ( ltJ; = I ) - f.L '.\,, ( W; = I ) 

= ( µ.. \, x µ.. '\,, )( ( w. w') has a path of disagreement from i to 811 11 ) • ( 3 .3) 

Proof. Let {211 = ( 0, I ) t,,u 8 1" and let C(i) be as defined in the proof of Theorem 2.4. This 
time let T:f211 Xf211 -'>f211 Xf.211 be the transformation given by T(w, w')=(w, w') if 
C( i) n oi1,, =I= 0 (i.e. if ( w, w') has a path of disagreement from i to 01111 ), and T( w, w') = (a. 
a') otherwise, where a,= wJ and a;= wj for}$. C( i), and ai = wj and a:;= wJ for j EC( i). 
Again it is clear that T is I - I and preserves the measure µ\, X µ 0 1,,. Hence 

µ \ ( W; = l ) = ( µ \, x µ °i,,) ( ( ( w, w I) : W; = I ) ) 

= (µ\ X f.L 0i,,) ( { ( w, w'): C(i) n M,, = 0 and w; =I}) 

+ (µ.,\, x µ\,)( {(w, w'): C(i) nM,, =1=0 and w; =I}). (3.4) 

Similarly. 

µ., '\,, ( w, = l ) = ( µ. \, x µ, '\,,) ( { ( w, w') : C( i) n M,, = 0 and w; = l } J 

+ (µ.\, X µ.°i,,)( ( (w, w'): C(i) n M 11 =1=0 and w; =I}). (3.5) 

It is easy to see that T maps the event in the first term of ( 3.5) to the event in the first term 
of ( 3.4). Hence these two terms are equal. Moreover, arguments similar to those at the end 
of the proof of Theorem 2.4 show that if w and w' E fl 11 are feasible and w =even on 811 11 

and w' =odd on 01111 , and ( w, w') has a path of disagreement from i to BA,,, then 
w; =I - w; = 0. Hence the second term in ( 3.5) equals 0. The result now follows immedi­
ately. 0 

We are now ready for the main result of this section: 

Theorem 3.4. Let G be a countably infinite, connected, locally finite, bipartite graph, VG 
its set of l'ertices, and a;, i E VG non-negatice numbers. Let µ, 0 and µ 0 be as defined in 
Lemma 3.2. Then the hard-core model on G with actiuities a;. i E Ve; has a unique Gibbs 
measure if and only if 

( µ. 0 X µ. ") ( ( w, w') has an i1\flnite path of disagreement)= 0 . 

Proof. If ( µ,0 X f.L0 ) ( ( w, w') has an infinite path of disagreement) = 0, then, by Theorem 
2. L µ."=µ."and hence, by Lemma 3.2, the Gibbs measure is unique. 
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Conversely, suppose there is a unique Gibbs measure, i.e. µ"=µ".We say that a path /1 

is perfect for ( w, w') if every even vertexj on ll has wi = J - wj = I, and every odd vertex 

j on llhas Wj = I - w; = 0. (Note that if n is a path of disagreement for ( (V, w'), and neither 

w nor w' has adjacent I's, then ll is either perfect for ( w. w' J or for ( w'. w). l 

Let A", µ\, and µ",,, be as in Lemma 3.2. Let i be an arbitrary even vertex. Sinceµ."= µ". 

and by symmetry, we have 

(/-le X /-l 0
) ( ( w, w') has an infinite path of disagreement containing i J 

= 2( /L" X µ 0
) ( ( w, w') has an infinite perfect path containing i). ( 3.6) 

Further, form< n with i E A111 we have 

(/-le x /-l 0
) ( 3 a perfect path from i to 8,1,,) 

< ( µ \, X µ "1,,) ( 3 a perfect path from i to 8.1,,) 

< ( J-l \, X µ, '.'1,,) ( 3 a perfect path from i to 8, 1111 ) • (3.7) 

The first inequality follows, after some reflection, from the dominance property in the 

beginning of this section, and the second is trivial. Now let in ( 3. 7) first n ~ x and then 

m ~ oo. This yields 

( µ, e X µ, 0
) ( 3 an infinite perfect path containing i) 

= lim ( µ, \, X µ, '.'i,,) ( 3 a perfect path from i to 8.111 ) • (3.8) 
n·--.Jo'l+ 

However, if w =even on 8A,, and w' =odd on 81111 , then a path from i to Dil,, is perfect 

if and only if it is a path of disagreement. Using this, ( 3.8). ( 3.6) and ( 3.3) we get 

( µ, e X µ,") ( 3 an infinite path of disagreement containing i) 

= 2( J.L e ( W; = 1) - J.L "( W; = 1)) , (3.9) 

which, by assumption, equals 0. Since an infinite path must contain an even vertex. we are 

done. D 

4. The cubic lattice with two activity parameters 

In this section, we restrict to a special bipartite graph, namely the cubic lattice "1!..d. Recall 

we mentioned earlier that it is possible that µ 0 =I= µ,e when the activity is constant on the 

entire lattice and sufficiently high (Dobrushin, l 968b). Let T be the transformation on "1l__d 

given by T(x 1, x2, ... , xd) = (x 1+1, x2 • •. ., xd). This induces a transformation on (0, l }2 ,J 

and thereby a transformation on probability measures on { 0, I I Jd. It should be clear from 

Section 3 that T µ, 0 = µ,e (and of course T µ, e = µ,").In particular ifµ," =I= µ.",thenµ," and µ." 

are not translation invariant. We say that a 'translation symmetry breaking' has occurred 

since the specification was translation invariant but there are associated Gibbs measures 

which are not translation invariant. 
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The following discussion is heuristic and for motivational purposes only. It presupposes 
a knowledge of the Ising model but will not be used when we return to our results. 

The specification for the Ising model on { - 1, I } "'" when there is no external field is 
invariant under ± I interchange. Nonetheless, when the coupling interaction becomes suf­
ficiently large, there is a ± I symmetry breaking in that there are Gibbs measures for the 
Ising model which are not invariant under ± 1 interchange. It is known that when a nonzero 
external field is added, there is always a unique Gibbs measure. By adding an external field, 
one is breaking the ± 1 symmetry at the level of the specification; i.e., the specification is 
no longer invariant under ± 1 interchange. This is precisely the symmetry which can be 
broken when there is no external field. In view of this heuristic (and Dobrushin's result 
mentioned above) it is natural to expect to have a unique Gibbs measure for the hard-core 
model if the translation symmetry of the hard-core specification is broken. 

We therefore should consider the hard-core model where the activity at the odd lattice 
points is A 1 and that at the even lattice points is ,\ 2 * ,\ 1• Throughout this section, we let 
i1,,= { -11 • ... , n)d and µ,~(A 1 , ,\J and µ,:;(,\ 1, A2 ) be µ,\,(,\1' A2) and µ,'.'1,,(A1, A2) as 
defined in accordance with Section 3, where,\ 1 is the activity on the odd lattice points and 
A 2 the activity on the even lattice points. We now include the two parameters ,\ 1 and ,\ 2 in 
our model in the notation. We also let µ,11 (A i. ,\ 2 ) simply be the hard-core model on 1111 

(i.e., with free boundary conditions). Finally, we let A~ be A11 with boundaries identified 
making it a discrete torus and µ,;,(,\ 1, A2 ) be the hard-core model on A;,. We should 
therefore conjecture that whenever,\ 1 * ,\ 2 the hard-core model has a unique Gibbs measure. 
The two theorems below give partial results in this direction. 

The approach is very similar to one of the proofs that the Ising model has a unique Gibbs 
measure whenever there is a non-zero external field. One of the key lemmas in this proof 
for the Ising model is a correlation inequality (involving three spins) called the OHS 
inequality. This inequality implies negativity of the third central moment (and therefore 
concavity) of the magnetization in finite boxes, which in turn implies differentiability of 
the pressure ( w .r.t. the external field), which, finally, implies uniqueness. The proof of the 
GHS inequality requires a certain monotonicity in the model which is only known to hold 
when the interaction is what is called ferromagnetic. Unfortunately, the hard-core model 
has an intrinsic antimonotonicity, which prevents us from obtaining an analogue of the OHS 
inequality. We have seen of course that by flipping the spins on the odd sublattice, we 
introduce a certain degree of monotonicity which proves helpful. However, this flipping 
gives us a model which is in some sense analogous to an Ising model which has a positive 
external field on the even sublattice and a negative external field on the odd sublattice. For 
such an Ising model, no GHS inequality is known. Nevertheless, we believe (but have not 
proved) that the analogue of the negativity of the third central moment of the magnetization 
does hold for the hard-core model and we show that the remaining part of the uniqueness 
proof for the Ising model can be adapted to the hard-core model. 

First we let E= E( w) be the number of even vertices in a certain finite set which have 
value I, and 0 = 0( w) be the number of odd vertices in that set which have value I. The 
choice of the set will always be clear from the context. Further, let s = O - E (i.e. the 
'surplus' of odd vertices with value 1). It appears that s is the proper analogue of the 
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magnetization and our theorems are the following. Theorem 4.1 tells us that for most 
parameter values, we get uniqueness while Theorem 4.2 tells us that the third central moment 

condition mentioned above is enough to give uniqueness when A 1 > 1. An analogue of 
Theorem 4.1 for the Ising model is essentially contained in Lebowitz and Martin-Lof 
( 1972). See Ruelle ( 1972) for related results on the Ising model. 

Theorem 4.1. For each X, the hard-core model with parameters e+h and ex-h has a unique 

Gibbs measure for all but at most countably many 1•alues of h. 

Theorem 4.2. Lets be 'the surplus of odd uertices with value I' as defined abo1·e. Assume 

that E µT,(,..,.,.. 2> [ (s- Eµl,'1 ,..,_,.. 2J (s) ) 3 ] ~ Ofor all n and for all A 1 > A2 withA 1 >I. Then the 

hard-core model with parameters A 1 and A 2 has a unique Gibbs measure whenei•er A 1 =/:.A 2 

and A 1 >I. 

Remarks. ( i) As we mentioned before, we have not (yet) been able to prove the assumption 
in this theorem. That is why we called it a partial result. In the 2-dimensional case, we have 
checked this negative third central moment assumption for all A 1 > A2 with A 1 ;;,; I on a 
number of toroids including 6 X 6 and 6 X 8. Computer capability makes it quite hard to 
check larger examples. It turned out that the third central moment of the relevant quantity 
was in fact nonpositive in all cases we checked. In fact the terms appeared negative in such 
a very systematic way that we believe it gives good support for this conjecture in general. 

(ii) If A 1 < I, the third central moment is not always negative. However, for the 2-
dimensional case, uniqueness for A 1 ~ I is already guaranteed by Theorem 2.3 (since Pc> 1; 
see the remark after that theorem). In general, if every vertex has an activity smaller than 
I, the configuration (in a finite box) which has maximal probability is the one where every 
vertex has value 0. In view of this it is not surprising that this case needs a separate approach. 

We give the proofs of these theorems later but first give some development. We can 
assume without loss of generality that A 1 > A2 and we can clearly reparametrize A 1 and A2 

using real numbers x and h with h > 0 by A 1 = e-< +" and A 2 = e'- h. What we need to do is 

to analyze the partition function of the hard-core model. 
Let An= { w E { 0, I ) '1" with no adjacent 1 's}. Let 0 and E be as defined just before 

Theorem 4.1. We then let Z(n, h, x) = LwEA,,A f A~= LwEA,,e(x+hJOe<x-hJE and call this 

the partition function. Recall that this is just the normalization used in the definition of the 
hard-core model measure. It is also necessary to define this concept for 'even' and 'odd' 
boundary conditions. We thereforeA~ = { wE (0, I} '1" with no adjacent l 'sand with no l 's 
at any odd points adjacent to BAil}. (In words, these are of course the configurations which 
are compatible with the even boundary condition.) Similarly, let A~ = { w E { 0, I} '1" with 
no adjacent 1 's and with no l 's at any even points adjacent to BAil}. (Similarly, these are 
the configurations which are compatible with the odd boundary condition.) We also let 
A~= {wE (0, I} Al. with no adjacent I's}. 
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Finally. Jet 

and 

· I \' ,\O,\E '\' Put hlOe_· 1x-·h)}:_:, Z'(11.1,.r)= ~ Ii=~.:: .. 
uJEA~; wEA~ 

Z"(n, h, X) = 

Z T( f ) \' \ (1),\ ~-:· = , II, 1. X = ~ ll • 

o;EAT, 

L e1,+1i1oe1,--1i>E 

(,JE:"I. ;~ 

Proposition 4.3. 

log(Z(11. h. x)) 

( 211 + I )d 

log(Z"(n. h. x)) 

(2n+l)" 

log(Z"(11, h, x)) 

and 

( 2n + l )'1 

log(Zr(n, h, x)) 

( 2n +I )'1 

all conl'erge as n --7 x to the same limit, which we denote by P( h, x). D 

We do not give the proof of this. It follows almost verbatim the proof of Theorem D. I. I 
on p. 333 in Ellis ( 1985) with only some minor modifications needed. We call P( h. x) the 
pressure in analogy with the Ising model. 

Proposition 4.4. P( h. x) isj(1r all x a concexfunction of"h. 

Proof. Since a limit of convex functions is convex, it suffices. by Proposition 4.3, to show 
that for all n and for all x. 

log(Z(n, /z, x)) 

( 211 + I )'1 

is convex in h. Computing the first derivative with respect to h gives 

~ log(Z(n, h, x)) 

oh ( 2n + l J" 
L,,,EA,,( ( 0- £)I ( 2n +I )'1)e1' +h >Oel' -h1E 

Z(n, h, x) 

We note for later purposes that this is nothing but 

E[sl ( 211 + I )'1] 

with respect to the probability measureµ,,(,\ 1, ,\ 2 ). 

Computing the second derivative yields 
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a2 log(Z(n, h, x)) 

oh 2 (2n+IJ" 

(l L ((0-E)/(2n+l)")e' 1 +ll)Oe"- 111 E = _ tuEAn 

oh Z(n, h, x) 

LwEA,,( ( 0- £) 2 I (2n +I )")e1x+ll)Oeu -liJE 

Z(n, h. x) 
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( L,"EA,,( ( 0- E) I ( 2n +I J")e<.i+ll ' 0e<x-/1)£)( LwEA,,( 0- £)e 1 i+1iioe'·'-JnE) 

Z 2 (n, h, x) 

Var(s) 

( 2n + I )'1 ' 

where the variance is computed with respect to the probability measure JJ-iAI• A2 ). Since 
the second derivative is therefore nonnegative, we obtain the desired convexity. D 

Proposition 4.5. Let j,,(x) be a sequence of differentiable conl'exfunctions defined on an 

open interval I containing x0 . Assume that j,,(x) -'> f(x) as n-'> ':l:J for all x in I and that f is 

differentiable at x0 . Then f ;, (x0 ) -'> f '(x0 ) as n-'> -x. D 

This is a well-known result for convex functions (see e.g. Lemma IV .6.3 on p. 114 in 

Ellis, 1985). 

Proposition 4.6. If P( h, x) is differentiable at h = h0, then there is a unique Gibbs measure 

for (A I• A2) = ( e'+"''. e'-"0). 

Proof. As in the proof of Proposition 4.4, one can show that 

i log(Z°(n, h, x)) _ £[ s J 
ah ( 2n + 1 )" - ( 2n + I)" 

with respect to the measure µ.,~(e'+\ e-") and that 

i log(Z0 (n, h, x)) =£[ s J 
ah (2n+l)" (2n+I)" 

with respect to the measure µ,~;(e·•·+1i, e•·- 11 ). 

Next, we recall that by Proposition 4.3, both 

log(Z"(n, h, x)) 

(2n+l)" 

for all x and h as n _,,. ac. 

log(Z"(n, h, x)) 
and 

(2n + 1 )" 
P(h,x) 

As (a/ah) P( h, x) I" -ho exists by assumption, Proposition 4.5 implies that 
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Eµ;,1e•-•".e•·"i [ s ,]-> ~P(h,x)I 
( 211 + l ) ' i)lz 1z ~ho 

and 

as n->x. 

H can be shown that (somewhat analogous to the Ising model) 

Eµ<i e' +" « - ,, i [ s I ,] " · (2n+ )' 

--> µ,' ( e<+", e' -h )( w: w( 1) = I) - µ, '( e' +1i, e' -h) ( w: w( 0) = I) , 

as 11--> x, where 0 and 1 denote the vertices ( 0, 0, ... , 0) and ( 1, 0, ... , 0), respectively. 
However, we do not need this and all we need is the weaker 

lim sup Eµ«e•+he<-"i [ s d] 
11~-x. ". (2n+I) 

o:;:;µe(e'+",e'- 11 )(w:w(l)=l)-µ,e(e'+h,e'-")(w:w(0)=1), (4.1) 

which follows easily from s = 0 - E and monotonicity (Lemma 3 .2). 
Similarly 

;;:;, µ, 0 ( e<+1i, e-1i) ( w: w( l) = I) - µ,0 ( e'+", e-1i) ( w: w( 0) = I) . ( 4.2) 

In view of the above, this gives us 

µ 0 (e'+h, e'-")(w: w(l) = 1) - µ,"(e'+", e'-")(w: w(O) =I) 

However, since µ 0 o:;:; µ,'(Lemma 3.2), we also have 

µ"(e'+",e'-")(w: w(O)=l)o:;:;µe(e'+",e'-")(w: w(O)=l), (4.4) 

and 

µ"(e'+", e'-h)(w: w(l) =I)~ µ,e(e'+", e'- 11 )(w: w(l) = l). (4.5) 

From ( 4.3 )-( 4.5) we clearly obtain 

µ,"(e·'+\ e'-h)(w: w(l) = 1) = µ,e(e'+", e'-")(w: w(l) = 1), 

and 

µ," ( e' + \ e' - ") ( w: w ( 0) = I ) = µ, e ( e-' + ", e-' - ") ( w: w ( 0) = l ) . 
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Lastly, the fact thatµ.,";:, µ.,"and the equality of the I-dimensional marginals immediately 
gives that µ.," = µ.," as desired. This last step is fairly clear and is obtained by a simple 
modification of Corollary 2.8 on p. 75 of Liggett ( 1985). 0 

We are now in a position to prove Theorems 4.1 and 4.2. 

Proof of Theorem 4.1. Choose x such that e' =A 1• It is well-known that a convex function 
from IR to IR is differentiable at all but at most countably many points. Hence for fixed x 
P(h, x) is differentiable at all but at most countably many values of h. By Proposition 4.6, 
the hard-core model with parameters (e'+", e-1i) has a unique Gibbs measure for all but 
at most countably many values of h. D 

Proof of Theorem 4.2. Fix A 1 and ,\ 2 with A 1 > A2 and ,\ 1 > I. We want to show that the 
hard-core model with parameters(,\ 1, A2 ) has a unique Gibbs measure. 

Take h0 and x so that A= e' +ho and ,\ 2 = e' - 1111 (note that h0 > 0). To apply Proposition 
4.6, we want to show that (a; ah) P( h, x) I h ~ho exists. 

Let 

7 log(Z7 (n, h,x)) 
P,,(h,x)= (2n+l)d 

Recall that the proof of Proposition 4.4 showed that 

with respect to the measure µ.,~( e' +h. ex-h). We call this last quantity M(n, h, x). 

Choose h' E ( 0, h0 ) with e' +h' > I. Then, for all h > h ', 

h 

P?,'ch,x)-P?,(h',x)= f M(n,y,x) dy. ( 4.6) 

h' 

Assuming for the moment that M(n, y, x) is concave in y for y > h', we proceed as follows. 
Since - l ,,;;,, M( n, y, x) ,,;;,, I for all n, y and x, we can choose nk--? rx such that for all rational 
yE(h',rx), 

lim M(nk> y, x) =M(y, x) exists. 
k-... x 

Moreover, since M ( n, y, x) is concave as a function of y on ( h ', rx), it even follows (see 
Theorem VI.3.3 on p. 214 of Ellis, 1985) that 

lim M(nk, y, x) =M(y, x) exists 
k-"x 

for ally in ( h ', oo). Letting nk--? co in ( 4.6) and using bounded convergence gives 
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P!h.xJ-PU1'.x)= J M(y.x) dy. 
ii' 

Next. M( r. x) is a concave function ofy on ( h ', x) since it is a limit of concave functions. 
It is thercfo~e also continuous on (h', x). Since P(h, x) can be expressed as an integral of 
a continuous function on ( h ', x), it follows that P( h, x) is differentiable on ( h ', :N) and so 

in particular at h0 as desired. 
Finally, we show that, under the assumption in the theorem, M( n, y, x) is indeed concave 

in \'on ( h ', x). It suffices to show that its second derivative is :;;;; 0 for ally> h'. The first 
derivative of M(n, v, x), or. equivalently, the second derivative of log(Zr(n, y, x) )/ 

( 211 + l )'1, can be obtained in complete analogy to the computation in the proof of Propo­

sition 4..+ and equals 

Lo, E.·\ i{ ( 0 - E) 2 I ( 211 + l ) ") el I+\' JOei I - l)t. 

Z'(11, y, x) 

( 2..:,,,G,\ 1( ( 0- £)I (2n +I )")e( l+l)Oel 1-111-.·) o:,,,EAT( 0- £)ell+ 1·)0e1' 

Differentiating this last expression with respect toy and simplifying yields 

i\ I i 
;:-; M ( 11, y, X) = / Eµrl e' +' e' -- ' l [ ( S - EµT\ e' +, c·' - ' 1 ( S) ) · J r1y- (211+!)'". " . 

which is ,;;; 0 by assumption. D 
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