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TAIL ASYMPTOTICS OF THE M/G/∞ MODEL

M. MANDJES AND P. ŻURANIEWSKI

ABSTRACT. This paper considers the so-called M/G/∞ model: jobs arrive ac-
cording to a Poisson process with rate λ, and each of them stays in the system
during a random amount of time, distributed as a non-negative random variable
B. With N(t) denoting the number of jobs in the system, the random process A(t)

records the load imposed on the system in [0, t], i.e., A(t) :=
∫ t
0 N(s)ds. The main

result concerns the tail asymptotics of A(t)/t: we find an explicit function f(·)
such that

f(t) ∼ P
(

A(t)

t
> %(1 + ε)

)
,

for t large; here % := λEB. A crucial issue is that A(t) cannot be written as the
sum of i.i.d. increments, which makes application of the classical Bahadur-Rao
result impossible; instead an adaptation of this result is required. We compare the
asymptotics found with the (known) asymptotics for % →∞ (and t fixed).

1. INTRODUCTION

Consider the so-called M/G/∞ model: jobs arrive according to a Poisson process
with rate λ, and their stay in the system constitutes an i.i.d. sequence of random
variables (Bi)i∈N, distributed as some generic non-negative random variable B.
With N(t) denoting the number of jobs in the system, the random process A(t)
records the load imposed on the system in [0, t], i.e., A(t) :=

∫ t

0
N(s)ds.

It is known that, in stationarity, the number of jobs in the system obeys a Poisson
distribution with mean % := λEB; importantly, this distribution is insensitive in
the higher moments of the job duration B. The distribution of A(t), however, can
be expressed only implicitly. Recognizing that A(t) can be decomposed in terms
of the sum of the contributions of (i) the jobs that were already present at time
0 (the number of which being Poisson distributed with mean %), and (ii) the jobs
arriving in (0, t) (the number of which being Poisson distributed with mean λt),
the Laplace transform of A(t) can be given explicitly. This enables the computa-
tion of all moments of A(t). The computation of the distribution of A(t) is less
straightforward though.

Contribution. It is known that EA(t) = %t; in the sequel we sometimes write A%(t)
rather than A(t) if we wish to emphasize the dependence on the system load %.
We thus have that A(t)/t converges to %, and it is not hard to find the correspond-
ing central limit theorem. It is less understood, however, how to find the exact
asymptotics of the tail distribution of A(t)/t, i.e., how to find an explicit function
f(·) such that

f(t) ∼ p%(t) := P (A%(t) > %t(1 + ε)) ,
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2 M. MANDJES AND P. ŻURANIEWSKI

for t large and ε > 0; identifying the tail asymptotics of A(t)/t is the main con-
tribution of this paper. As we are dealing with a rare-event probability here, the
suitable theory to be used is large-deviations theory. The complication, however,
lies in the fact that A(t) can not be written as the sum of i.i.d. random variables
(such that each of them does not depend on t). If that would have been possible,
then the classical Bahadur-Rao asymptotics would have been applicable [3]. The
main contribution of our work is to show that it is possible to adapt the proof of
the Bahadur-Rao result to allow (some) dependence between the increments, thus
identifying the exact asymptotics f(·). The proof relies on a change-of-measure
argument, in conjunction with delicate Berry-Esseen-type estimates.
To the best of our knowledge, our result is among the first results on exact asymp-
totics for sample means of dependent random variables. Here we note that there
is already a body of powerful results on rough, logarithmic asymptotics, most no-
tably the celebrated Gärtner-Ellis result [7, 10, 13]; these can be used to find the
limiting value of t−1 · log p%(t). We remark that throughout this paper is assumed
that the job durations are ‘light tailed’, i.e., their moment generating function is
finite in some open neighborhood of 0. In our paper, we also briefly discuss what
happens in heavy-tailed cases.
Renormalizing time such that EB = 1, we have that % = λ. An alternative asymp-
totic regime is that of % tending to ∞, keeping t fixed: how does p%(t) behave for
% large? In this case, it is possible to write A%(t) as the sum of i.i.d. increments
(that do not depend on %), and as a result the Bahadur-Rao result applies here.
We determine what these asymptotics look like in this regime. Through numerical
experiments we assess the differences between the asymptotic regimes, for a set of
representative job duration distributions.

Literature. Our approach heavily relies on the seminal work by Bahadur and Rao
[3], and in particular the proof of this result as presented in [6]; a substantially
more general result is due to Höglund [11]. There are close connections to the
vast body of literature that is devoted to asymptotic expansions of Poisson sums
of i.i.d. random variables; in this respect we mention the results in [5, 8].

Organization. This paper is organized as follows. In Section 2 the model is in-
troduced in detail. Also, a set of preliminaries is given (with emphasis on large
deviations results). Section 3 contains the main results, most notably the exact
asymptotics of p%(t) for t large. Section 4 indicates what happens when % is large.
Numerics are provided that give insight into the accuracy of the resulting approx-
imations.

2. MODEL, PRELIMINARIES AND GOAL

Model. We consider a model in which jobs arrive according to a Poisson process
with rate λ > 0. While in the system, they generate traffic at a (normalized) rate 1,
for a duration that is distributed as a generic random variableB. The durations are
independent of each other, and independent of the arrival process. It is assumed
that B has a finite moment generating function in some open neighborhood of 0,
so that a fortiori also the mean EB is finite. Denote the instantaneous load imposed
on the system, i.e., λEB, by %. This model is commonly referred to as the M/G/∞
input model. Let N(t) be the number of jobs in the system at time t; it is a classical
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result that its equilibrium distribution is Poisson with mean % [2]. Denote the load
imposed on the system in the interval [0, t] by

A(t) :=
∫ t

0

N(s)ds.

In this paper we study A(t), where it is assumed that the M/G/∞ system is in
equilibrium at time 0.

Computation of moment generating function. In principle, A(t) is uniquely character-
ized by its moment generating function (mgf). We now show how to compute this
mgf. We decomposeA(t) intoA−(t) andA+(t). HereA−(t) is the contribution due
to the jobs arriving in (0, t], and A+(t) due to the jobs that were already present
at time 0. It is standard that A−(t) and A+(t) are independent. The mgf s of both
A−(t) and A+(t) can be computed. Regarding A+(t), recall that the number of
jobs present at time 0 has a Poisson distribution with mean %. The distribution of
its residual life time Br is given by

P(Br > t) =
1

EB

∫ ∞

t

P(B > s)ds.

Distinguishing between the situation that the job leaves before time t and is still
present at time t, we readily obtain

log EeϑA+(t) = log
∞∑

k=0

e−% %
k

k!

[∫ t

0

eϑsfBr (s)ds+ eθtP(Br > t)
]k

= %Vt(ϑ), where Vt(ϑ) :=
∫ t

0

eϑsfBr (s)ds+ eθtP(Br > t)− 1.

This means that if eθtP(Br > t) → 0 as t→∞, then

(1) log EeϑA+(t) → %
(
EeϑBr

− 1
)

= %

(
MB(ϑ)− 1
ϑ · EB

− 1
)
,

where MB(ϑ) := EeϑB .

We now focus on A−(t). First recall that the number of arriving jobs has a Poisson
distribution with mean λt. Then observe that any arrived job enters the system
at a time epoch that is uniformly distributed on (0, t] (and the arrival epochs of
the individual jobs, conditional on the number of jobs, are independent). Again
distinguishing between the jobs that have left at time t and the jobs that are still
present, we obtain

log EeϑA−(t) = log
∞∑

k=0

e−λt (λt)
k

k!

[∫ t

0

1
t

∫ t−s

0

fB(r)eϑrdrds

+
∫ t

0

1
t

∫ ∞

t−s

fB(r)eϑ(t−s)drds
]k

.

Routine calculations yield:

(2) log EeϑA−(t) = λWt(ϑ),

where

Wt(ϑ) := −t+
∫ t

0

(t− s)fB(s)eϑsds+
∫ t

0

eϑsP(B > s)ds..

Instantaneous input. We now consider a related model, namely the model in which
the arriving jobs transmit their traffic immediately into the system. Let Ā(t) be the
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input process for the corresponding model with instantaneous input (i.e., com-
pound Poisson). Then it requires a trivial computation to show that, for any t ≥ 0,

log EeϑĀ(t) = tΛ(ϑ), where Λ(ϑ) := λMB(ϑ)− λ;

observe that Ā(t) has (being a compound Poisson process) independent and iden-
tically distributed increments (unlike A(t)).

Law of large numbers, central-limit theorem. It is readily verified that, as t→∞,

E exp
(
ϑ
Ā(t)− %t√

t

)
→ exp

(
σ2

2
ϑ2

)
, with σ2 := λEB2.

This essentially means, apart from Ā(t)/t converging to % almost surely, that

Ā(t)− %t

σ
√
t

→dN(0, 1),

with N (0,1) being a standard-Normal random variable, and ‘→d’ denoting con-
vergence in distribution.
The next question is: does A(t) obey the same law of large numbers and central-
limit theorem as its instantaneous-input counterpart Ā(t)? To this end, we deter-
mine

lim
t→∞

E exp
(
ϑ
A(t)− %t√

t

)
.

It is first observed from (1) that

lim
t→∞

E exp
(
ϑ
A+(t)√

t

)
= 0.

Bearing in mind (2), and using

lim
t→∞

λ

∫ t

0

eϑs/
√

tP(B > s)ds = %,

and

lim
t→∞

(
−λt+ λ

∫ t

0

(t− s)fB(s)eϑs/
√

tds− ϑ%
√
t

)
= lim

t→∞

(
−λt+ λ

∫ t

0

(t− s)fB(s)
(

1 +
ϑs√
t

+
ϑ2s2

2t

)
ds− ϑ%

√
t

)
= −%+

σ2

2
ϑ2,

we conclude that A(t) has the same law of large numbers and central-limit theo-
rem as Ā(t).

Large deviations. Now that we have seen that Ā(t) and A(t) have the same law of
large numbers and central-limit theorem, we may wonder whether they have the
same large deviations. To this end, let us first compute the exponential decay rate
of the probability thatA(t)/t exceeds an extreme value, i.e., some value larger than
%. First observe that Eqn. (2) implies that

lim
t→∞

1
t

log EeϑA−(t) = lim
t→∞

(
−λ+ λ

∫ ∞

0

(
1− r

t

)
1[0,t)(r)fB(r)eϑrdr

)
,

which equals, by virtue of ‘monotone convergence’,

−λ+ λ

∫ ∞

0

fB(r)eϑrdr = Λ(ϑ).



TAIL ASYMPTOTICS OF THE M/G/∞ MODEL 5

From (1), we conclude that the contribution of A+(t) can be neglected in the sense
that also

lim
t→∞

1
t

log EeϑA(t) = Λ(ϑ).

It now follows from the Gärtner-Ellis result [6, Thm. 2.3.6] that A(t)/t obeys the
following logarithmic asymptotics:

Lemma 2.1. The logarithmic asymptotics of A(t)/t are, for a > %, given by

lim
t→∞

1
t

log P
(
A(t)
t

> a

)
= −I(a) := − sup

ϑ
(ϑa− Λ(ϑ)) .

It is immediate from the Gärtner-Ellis theorem that Ā(t)/t satisfies the same large
deviations as A(t)/t, i.e., there is exponential decay with rate function I(·). Un-
like A(t), however, Ā(t) has independent and identically distributed increments;
assuming for ease that t is integer, then we can write

Ā(t) =
t∑

i=1

Xi, with Xi := Ā(i− 1, i),

with Ā(τ, σ) the traffic generated in this instantaneous-input system between time
epochs τ and σ. Realizing that their distribution coincides with that of a Poisson(λ)
number of independent jobs (each of them distributed as the random variable B),
it follows that log E exp(ϑXi) = Λ(ϑ). Now the so-called Bahadur-Rao result [3]
can be applied to find the exact asymptotics of Ā(t)/t:

lim
t→∞

√
t etI(a) · P

(
Ā(t)
t

> a

)
= Ca,

for some constant Ca, given by

Ca :=
(
η
√

2πΛ′′(η)
)−1

=
(
η
√

2πλM ′′
B(η)

)−1

,

where η ≡ ηa solves Λ′(η) = a. The goal of this note is to find the exact asymptotics
of A(t)/t, with as main question: does A(t)/t have the same exact asymptotics
Ā(t)/t? The next section will reveal that the respective exact asymptotics differ by
a constant.

3. EXACT ASYMPTOTICS

We mentioned above that A(t) does not consist of t i.i.d. increments, being the rea-
son why we cannot use Bahadur-Rao to compute the exact asymptotics of A(t)/t.
This is, however, not entirely true. It is true that the A(i − 1, i) (with A(τ, σ) the
amount of traffic entering between τ and σ in our gradual-input system) are not
independent (they are identically distributed), but, interestingly, we can still write
A−(t) as the sum of t i.i.d. increments (assuming for ease t to be integer). This is
done as follows.
Let Xi be constructed as follows. First we draw Ni from a Poisson distribution
with mean λ. Then each of these Ni corresponds to an arrival at a uniformly dis-
tributed epoch in (0, t]; say the j-th arrives at time Tij . Then Xi is the amount of
traffic generated by these Ni jobs in (0, t]. This can be alternatively written as

Xi :=
Ni∑
j=1

min{t− Tij , Bij},
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with the Bij i.i.d., distributed as the random variable B. Then the Xi are i.i.d., and
A−(t) equals

∑t
i=1Xi.

This does, however, not mean that we can use the Bahadur-Rao result now, as in
our setting the i.i.d. increments Xi depend on t (and this is why we write in the
sequel Xi(t) rather than just Xi). Our goal is now to enhance the Bahadur-Rao
result so that it also covers our setting.
Our proof essentially mimics the line of reasoning of the Bahadur-Rao result in
Dembo and Zeitouni. We start, however, with a number of results on the mgf of
X(t), where X(t) is a generic random variable distributed as the Xi(t)’s. Relying
on computations similar to those leading to (2), we get that

Λt(ϑ) := log EeϑX(t) = −λ+ λ

∫ t

0

(
1− s

t

)
fB(s)eϑsds+ λ · 1

t

∫ t

0

eϑsP(B > s)ds.

We observe that for any ϑ ≥ 0, we have that Λt(ϑ) ↑ Λ(ϑ). It is an easy verification
that

(3) Λ(ϑ)− Λt(ϑ) ∼ λ

t

(∫ ∞

0

sfB(s)eϑsds−
∫ ∞

0

eϑsP(B > s)ds
)

=
λ

t
· ϕ(ϑ);

here

ϕ(ϑ) := M ′
B(ϑ) +

1
ϑ
− 1
ϑ
·MB(ϑ) ≥ 0,

where the last inequality (being valid for ϑ > 0) follows from MB(ϑ)− ϑM ′
B(ϑ) ≤

MB(0) = 1, due to the convexity of MB(ϑ). Likewise,

Λ′(ϑ)− Λ′t(ϑ) ∼ λ

t
· ψ(ϑ), with ψ(ϑ) := M ′′

B(ϑ)− 1
ϑ2

+
1
ϑ2

·MB(ϑ)− 1
ϑ
·M ′

B(ϑ),

and

(4)
Λ′(ϑ)
Λ(ϑ)

− Λ′t(ϑ)
Λt(ϑ)

∼ λ

t
· ζ(ϑ), with ζ(ϑ) :=

ψ(ϑ)
Λ(ϑ)

− ϕ(ϑ)
Λ(ϑ)

· Λ′(ϑ)
Λ(ϑ)

.

Now sample the Xi(t) under a new measure under which the density f(·) of the
Xi(t) is replaced by the density g(·), given through g(x) = f(x) · exp(ηx− Λt(η)).
The standard change-of-measure identity yields, in self-evident notation:

P
(
A−(t)
t

≥ a

)
= Eg

(
e−ηA−(t)+tΛt(η) · 1{A−(t)≥at}

)
= et(Λt(η)−ηat) · Eg

(
e−η(A−(t)−tat) · 1{A−(t)≥at}

)
;

here we use the notation at := Λ′t(η)/Λt(η). Now note that (3) and (4) imply that

lim
t→∞

exp(t(Λt(η)− ηat))
exp(t(Λ(η)− ηa))

= e−λϕ(η) · eηλζ(η).

In order to get into a central-limit scaling, we define

Yi(t) :=
Xi(t)− at√

Λ′′t (η)
, W (s, t) :=

1√
t
·

t∑
i=1

Yi(s).
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Hence, with Fs,t(·) the distribution function of W (s, t) under g,

Eg

(
e−η(A−(t)−tat) · 1{A−(t)≥at}

)
= Eg

(
e−η

√
Λ′′

t (η)
√

tW (t,t) · 1{
W (t,t)≥(a−at)

√
t/
√

Λ′′
t (η)

})
=

∫ ∞

(a−at)
√

t/Λ′′
t (η)

e−η
√

Λ′′
t (η)

√
txdFt,t(x).

Define by Φ(·) the distribution function of a standard normal random variable, and
by φ(·) the corresponding density. Now define and ξ(x) := (1− x2)φ(x) and γ :=
supx ξ(x) ∈ (0,∞). Observe that for any s, due to the fact that Fs,t(x) decreases in
s, it holds that

lim
t→∞

√
t

(
sup

x

(
Ft,t(x)− Φ(x)− m3

6
√
t
ξ(x)

))
(5)

≤ lim
t→∞

√
t

(
sup

x

(
Fs,t(x)− Φ(x)− m3,s

6
√
t
ξ(x)

))
+

sup
x

(
1
6
· (m3,s −m3)ξ(x)

)
=

γ

6
(m3,s −m3);

here m3 is the third moment of Yi(∞), and m3,s the third moment of Yi(s), both
under g. As we can pick s arbitrarily, we can let s grow to ∞, and we obtain that
the limit (5) is bounded above by 0. In addition, Ft,t(x) ≥ F∞,t(x), and we know
from the Berry-Esseen-type estimates in [9, Eqn. XVI.4.1] that

√
t

(
sup

x

(
F∞,t(x)− Φ(x)− m3

6
√
t
ξ(x)

))
→ 0.

We conclude that (5) equals 0. Now we can finish the proof as in [6, Thm. 3.7.4], as
we have the counterpart of their Eqn. (3.7.8), but now for i.i.d. random variables
that (mildly) depend on t. As a result, we can essentially replace the distribution
function Ft,t(·) by that of a standard Normal random variable. It follows that, for
t→∞, with N(µ, σ2) denoting, as usual a Normally distributed random variable
with mean µ and variance σ2,∫ ∞

(a−at)
√

t/
√

Λ′′
t (η)

e−η
√

Λ′′
t (η)

√
txdFt,t(x) ∼

∫ ∞

(a−at)
√

t/
√

Λ′′
t (η)

eη
√

Λ′′
t (η)

√
txdΦ(x)

=
1√
2π
eη2Λ′′

t (η)t

∫ ∞

(a−at)
√

t/
√

Λ′′
t (η)

e−
1
2 (x+η

√
Λ′′

t (η)
√

t)2dx

= eη2Λ′′
t (η)tP

(
N
(
−η
√

Λ′′t (η)
√
t, 1
)
>

(a− at)
√
t

Λ′′t (η)

)
∼

(
1− Φ

(
η
√

Λ′′t (η)
√
t+

λζ(η)√
Λ′′t (η)

√
t

))
e

1
2 η2Λ′′

t (η)t ∼ e−ηλζ(η)

η
√

2πΛ′′(η)
· 1√

t
;

in the last step the standard estimate 1− Φ(x) ∼ (2πx)−1/2e−x2/2 (as x→∞) was
applied [1]. Combining the above results, we arrive at the following proposition.

Proposition 3.1. The exact asymptotics of A−(t)/t are, for a > %, given by

lim
t→∞

√
t etI(a) · P

(
A−(t)
t

> a

)
= Ca · e−λϕ(η).
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Remark 1. It is an easy exercise in calculus to show that we can rewrite

λϕ(η) = a− λ

η
(MB(η)− 1).

As remarked earlier, λϕ(η) ≥ 0; this makes sense, as the exceedance probabilities
should be lower than in the instantaneous-input model (to see this, recall that
A(t) ≤ Ā(t)). ♦

We conclude by considering the exact asymptotics of A(t)/t. These can be deter-
mined in essentially the same way. Now A(t) can be written as the sum of X̌1 up
to X̌t, where

(6) X̌i :=
Ni∑
j=1

min{t− Tij , Bij}+
Mi∑
j=1

min{t, Br
ij},

with Ni and the Bij as before, and Mi a Poisson random variable with mean %/t

and the Br
ij i.i.d., distributed as the random variable Br; in addition, both sums in

(6) are independent. Let X̌(t) denote the generic random variable distributed as
the X̌i(t)’s. In the proof, we again get that

(Λ(ϑ)− log EeϑX̌(t)) · t

goes to a constant, say φ̌(ϑ), when t grows large; it is easily verified that

φ̌(ϑ) = ϕ(ϑ)− 1
λ

log EϑA+(∞) = ϕ(ϑ)−
(
MB(ϑ)− 1

ϑ
− EB

)
.

Theorem 3.2. The exact asymptotics of A(t)/t are, for a > %, given by

lim
t→∞

√
t etI(a) · P

(
A(t)
t

> a

)
= Ca · e−λϕ(η) · EeηA+(∞).

A next question is whether the asymptotics of the instantaneous-input model Ā(t)
and those of the gradual-input model A(t) are ‘ordered’, as we have that e−λϕ(η) ·
EeηA+(∞) is always smaller or larger than 1. This makes sense as in the gradual-
input model traffic arrives more smoothly than in the instantaneous-input model.
It is not a property that is a priori clear, though: A(t) equals Ā(t), increased by the
contribution of the flows present at time 0, and decreased by the part of the flows
that enters the system after time t. The next proposition formalizes the ordering.

Proposition 3.3. As t→∞,

P
(
A(t)
t

> a

)/
P
(
Ā(t)
t

> a

)
→ e−λϕ(η) · EeηA+(∞) < 1.

Proof. First check that that the criterion e−λϕ(η) · EeηA+(∞) < 1 can be rewritten as

MB(η)− 1
η

>
M ′

B(η) +M ′
B(0)

2
=
M ′

B(η) + EB
2

,

which can in turn be written as

(7) H1(η) := 2(MB(η)− 1) < η(M ′
B(η) + EB) =: H2(η).

The rest of the proof is devoted to establishing this inequality for η > 0.
To this end, first observe thatM ′

B(·) is convex. HenceM ′′
B(η) > (M ′

B(η)−M ′
B(0))/η,

which is equivalent to
M ′

B(η)− ηM ′′
B(η) < EB.
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This implies (7), as H1(0) = H2(0) = 2 and

H ′
1(η) = 2M ′

B(η) < M ′
B(η) + ηM ′′

B(η) + EB = H ′
2(η).

This proves the stated. ♦

4. DISCUSSION AND NUMERICS

In this section we consider a second asymptotic regime: we show that the exact
asymptotics of p%(t) for % follow immediately from the Bahadur-Rao result. We
also provide a numerical study to assess the quality of the various approximations.

Large-load estimates. Renormalize time such that EB = 1, implying that % = λ. We
now derive the asymptotics of p%(t) for fixed t and % large. Assume for ease for
the moment that % ∈ N. It is trivial to see that A%(t) can be equivalently written as∑%

i=1 Zi(t), where the Zi(t) are i.i.d. with log mgf equal to

Ut(ϑ) := Vt(ϑ) +Wt(ϑ);

recall that Vt(ϑ) andWt(ϑ) were defined in Section 2. The Bahadur-Rao result then
entails that, for s > t,

(8) lim
%→∞

√
% e%J(s) · P

(
A%(t)
%

≥ s

)
= Ks,

where J(s) := supϑ(ϑs− Ut(ϑ)), and

Ks :=
(
ζ
√

2πU ′′t (ζ)
)−1

,

where ζ ≡ ζs solves U ′t(ϑ) = s.

Numerical example: M/M/∞. In this example we consider the case of exponentially
distributed jobs. The goal is to compare the long-timescale asymptotics of Thm.
3.2, the large-load asymptotics presented above, a Normal approximation, and
simulation-based estimates.
• We first consider the long-timescale regime. It is readily verified that

I(a) := sup
ϑ

(
ϑa− λϑ

µ− ϑ

)
= (

√
µa−

√
λ)2,

such that η = µ−
√
λµ/a. Elementary calculus yields

Λ′′(η) = λM ′′
B(η) = 2

a3/2

√
λµ

,

and

Ca =
(
λµ

a

)1/4 1
2
√
π
·
√

1
µ

1
√
µa−

√
λ

; ϕ(η) =
a

λ
−
√

a

λµ
.

Noting that

log EeηA+(∞) =

√
λ

µ
(
√
µa−

√
λ),

we eventually obtain that, as t→∞,

P
(
A%(t)
t

≥ a

)
∼ Ca√

t
e−(t+1/µ)(

√
µa−

√
λ)2(9)

∼ P
(
Ā%(t)
t

≥ a

)
· e−(1/µ)(

√
µa−

√
λ)2 .
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% = 5 % = 50 % = 100 % = 150

t = 100 Sim 4.57 · 10−1 2.90 · 10−1 2.53 · 10−1 1.91 · 10−1

large t 2.49 · 100 7.04 · 10−1 4.39 · 10−1 3.16 · 10−1

large % 2.48 · 100 7.00 · 10−1 4.37 · 10−1 3.14 · 10−1

Norm 4.37 · 10−1 3.08 · 10−1 2.39 · 10−1 1.92 · 10−1

t = 1000 Sim 2.76 · 10−1 5.57 · 10−2 1.26 · 10−2 3.25 · 10−3

large t 7.04 · 10−1 7.26 · 10−2 1.48 · 10−2 3.48 · 10−3

large % 7.04 · 10−1 7.26 · 10−2 1.48 · 10−2 3.48 · 10−3

Norm 3.08 · 10−1 5.68 · 10−2 1.26 · 10−2 3.07 · 10−3

t = 2000 Sim 2.27 · 10−1 1.30 · 10−2 8.69 · 10−4 5.75 · 10−5

large t 4.40 · 10−1 1.48 · 10−2 8.69 · 10−4 5.89 · 10−5

large % 4.40 · 10−1 1.48 · 10−2 8.69 · 10−4 5.89 · 10−5

Norm 2.40 · 10−1 1.27 · 10−2 7.81 · 10−4 5.35 · 10−5

TABLE 1. NUMERICAL RESULTS, ε = 0.01

• Let us now consider the large-load estimates. To this end, we first compute

Vt(ϑ) =
ϑ

µ− ϑ

(
1− e−(µ−ϑ)t

)
, Wt(ϑ) =

ϑ

(µ− ϑ)2
(
1− e−(µ−ϑ)t

)
+ t

ϑ

µ− ϑ
.

Recalling that we took µ = 1, it follows that

Ut(ϑ) = t
ϑ

1− ϑ
−
(

ϑ

1− ϑ

)2 (
1− e−(1−ϑ)t

)
.

Straightforward algebra leads to expressions for U ′t(ϑ) and U ′′t (ϑ). Now Eqn. (8)
enables us to compute the large-load asymptotics.
• A third approximation that we consider here is the Normal approximation

P (A%(t) ≥ %t(1 + ε)) ≈ Φ

(
− %tε√

VarA%(t)

)
,

with Φ(·) being the standard Normal distribution function. From the above for-
mulae we also obtain that VarA%(t) = Λ′′t (0) = 2%(t− 1 + e−t), cf. [4, 12].

Tables. In Table 1 we present numerical results for ε = 0.01. In the simulation
results, the experiment was terminated at the moment that a relative efficiency
(defined as the ratio of the confidence interval’s half length and the estimate) is
below 10%; we chose a confidence of 95%. It is observed that for (relatively) large
% and t, and ε small, all three approximations are more or less equal. This can be
understood as follows.
Based on the standard approximation Φ(x) ≈ x−1(2π)−1/2 exp(− 1

2x
2), we have

that the Normal approximation gives

(10) P (A%(t) ≥ %t(1 + ε)) ≈ 1
ε
√
π%t

e−
1
4 (%t)ε2

.

Now consider the long-timescale approximation, with a = (λ/µ)(1 + ε). It is el-
ementary to verify that for small ε it holds that

√
λ(1 + ε) −

√
λ approximately

equals 1
2

√
λε. Inserting this into (9), we obtain expression (10) for large % and t

and small ε . Regarding the large-load approximation, first verify that ζ can be
approximated by 1 − (1 + ε)−1/2. With 1 − (1 + ε)−1/2 ≈ ε/2 for ε small, Eqn. (8)



TAIL ASYMPTOTICS OF THE M/G/∞ MODEL 11

% = 1 % = 5 % = 8

t = 50 Sim 1.52 · 10−1 1.45 · 10−2 2.82 · 10−3

large t 2.51 · 10−1 1.75 · 10−2 3.43 · 10−3

large % 2.48 · 10−1 1.73 · 10−2 3.39 · 10−3

Norm 1.56 · 10−1 1.19 · 10−2 2.14 · 10−3

t = 100 Sim 8.85 · 10−2 1.14 · 10−3 6.23 · 10−5

large t 1.13 · 10−1 1.27 · 10−3 6.35 · 10−5

large % 1.12 · 10−1 1.26 · 10−3 6.31 · 10−5

Norm 7.76 · 10−2 7.41 · 10−4 2.91 · 10−5

t = 150 Sim 4.49 · 10−2 1.02 · 10−4 1.30 · 10−6

large t 5.83 · 10−2 1.06 · 10−4 1.36 · 10−6

large % 5.81 · 10−2 1.06 · 10−4 1.35 · 10−6

Norm 4.11 · 10−2 5.10 · 10−5 4.43 · 10−7

TABLE 2. NUMERICAL RESULTS, ε = 0.2

yields that in this regime the large-load approximation equals (10) as well; here it
is also used that U ′′t (ζ) ≈ 2t(1 + ε)3/2 ≈ 2t.
In Table 2 we present results for ε = 0.2. We observe that in this parameter setting
the large-deviations-based approximations outperform, for small probabilities, the
Normal approximation. Finally in Table 3 the case ε = 0.5 is considered. It shows
that the long-timescale and large-load approximations differ more than in the pre-
vious tables, particularly for ‘moderate’ values of t. The Normal approximation is
in some cases very inaccurate: it is in specific cases more than one order of magni-
tude off. In both tables we again used 10% relative efficiency and 95% confidence.

Heavy tails. The analysis presented in this paper relates to the case of light-tailed
jobs, as we assume the moment generating function to be finite in an open neigh-
borhood of 0. In the heavy-tailed case the event under consideration will be essen-
tially caused by a number of jobs present during a substantial part of the interval
[0, t]. We now sketch the heuristics of this scenario; a rigorous treatment is beyond
the scope of this paper. We focus on the case that P(B > x) ∼ L(x)x−α for some
α > 1 and a slowly-varying L(·), i.e., L(tx)/L(x) → 1 as x → ∞, for any t > 0. In
this situation we say that the tail distribution of B is regularly varying with index
α; it is known that Br is regularly varying with index α− 1.
Due to the law of large numbers, with overwhelming probability an amount of
traffic in the order of %t will be generated in the interval [0, t]. In order to make
sure that %t(1 + ε) is generated, the number of ‘long jobs’, on top of the volume %t,
should be d%εe. The probability of this scenario roughly equals

(
P
(
Br >

%εt

d%εe

))d%εe

,

which is regularly varying with index d%εe · (α− 1). To make this statement rigor-
ous, one has to show that all other scenarios that lead to the event of interest are
asymptotically negligible.
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% = 1 % = 2 % = 3 % = 4 % = 5

t = 10 Sim 1.20 · 10−1 6.07 · 10−2 3.15 · 10−2 1.53 · 10−2 7.42 · 10−3

large t 2.06 · 10−1 8.35 · 10−2 3.91 · 10−2 1.94 · 10−2 9.97 · 10−3

large % 1.94 · 10−1 7.81 · 10−2 3.63 · 10−2 1.79 · 10−2 9.13 · 10−3

Norm 1.19 · 10−1 4.78 · 10−2 2.06 · 10−2 9.21 · 10−3 4.20 · 10−3

t = 25 Sim 4.46 · 10−2 9.53 · 10−3 2.11 · 10−3 5.58 · 10−4 1.37 · 10−4

large t 6.10 · 10−2 1.16 · 10−2 2.55 · 10−3 5.93 · 10−4 1.43 · 10−4

large % 5.96 · 10−2 1.13 · 10−2 2.48 · 10−3 5.75 · 10−4 1.38 · 10−4

Norm 3.56 · 10−2 5.36 · 10−3 8.89 · 10−4 1.54 · 10−4 2.74 · 10−5

t = 50 Sim 1.06 · 10−2 5.82 · 10−4 3.89 · 10−5 2.81 · 10−6 1.68 · 10−7

large t 1.22 · 10−2 6.56 · 10−4 4.08 · 10−5 2.69 · 10−6 1.83 · 10−7

large % 1.21 · 10−2 6.48 · 10−4 4.02 · 10−5 2.65 · 10−6 1.80 · 10−7

Norm 5.78 · 10−3 1.78 · 10−4 6.10 · 10−6 2.20 · 10−7 8.17 · 10−9

TABLE 3. NUMERICAL RESULTS, ε = 0.5
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