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Abstract. We analyse the computational complexity of finding Nash
equilibria in simple stochastic multiplayer games. We show that restrict-
ing the search space to equilibria whose payoffs fall into a certain inter-
val may lead to undecidability. In particular, we prove that the following
problem is undecidable: Given a game G, does there exist a pure-strategy
Nash equilibrium of G where player 0 wins with probability 1. Moreover,
this problem remains undecidable if it is restricted to strategies with
(unbounded) finite memory. However, if mixed strategies are allowed,
decidability remains an open problem. One way to obtain a provably
decidable variant of the problem is to restrict the strategies to be posi-
tional or stationary. For the complexity of these two problems, we obtain
a common lower bound of NP and upper bounds of NP and PSpace re-
spectively.

1 Introduction

We study stochastic games [18] played by multiple players on a finite, directed
graph. Intuitively, a play of such a game evolves by moving a token along edges of
the graph: Each vertex of the graph is either controlled by one of the players, or
it is stochastic. Whenever the token arrives at a non-stochastic vertex, the player
who controls this vertex must move the token to a successor vertex; when the
token arrives at a stochastic vertex, a fixed probability distribution determines
the next vertex. The play ends when it reaches a terminal vertex, in which case
each player receives a payoff. In the simplest case, which we discuss here, the
possible payoffs of a single play are just 0 and 1 (i.e. each player either wins or
loses a given play). However, due to the presence of stochastic vertices, a player’s
expected payoff (i.e. her probability of winning) can be an arbitrary probability.

Stochastic games have been successfully applied in the verification and syn-
thesis of reactive systems under the influence of random events. Such a system is
usually modelled as a game between the system and its environment, where the
environment’s objective is the complement of the system’s objective: the envi-
ronment is considered hostile. Therefore, traditionally, the research in this area
? This research was supported by the DFG Research Training Group 1298 (AlgoSyn).



has concentrated on two-player games where each play is won by precisely one of
the two players, so-called two-player, zero-sum games. However, the system may
comprise of several components with independent objectives, a situation which
is naturally modelled by a multiplayer game.

The most common interpretation of rational behaviour in multiplayer games
is captured by the notion of a Nash equilibrium [17]. In a Nash equilibrium, no
player can improve her payoff by unilaterally switching to a different strategy.
Chatterjee & al. [6] showed that any simple stochastic multiplayer game has a
Nash equilibrium, and they also gave an algorithm for computing one. We argue
that this is not satisfactory. Indeed, it can be shown that their algorithm may
compute an equilibrium where all players lose almost surely (i.e. receive expected
payoff 0), while there exist other equilibria where all players win almost surely
(i.e. receive expected payoff 1).

In applications, one might look for an equilibrium where as many players as
possible win almost surely or where it is guaranteed that the expected payoff
of the equilibrium falls into a certain interval. Formulated as a decision prob-
lem, we want to know, given a k-player game G with initial vertex v0 and two
thresholds x, y ∈ [0, 1]k, whether (G, v0) has a Nash equilibrium with expected
payoff at least x and at most y. This problem, which we call NE for short, is
a generalisation of Condon’s SSG Problem [8] asking whether in a two-player,
zero-sum game one of the two players, say player 0, has a strategy to win the
game with probability at least 1

2 .

Our main result is that NE is undecidable if only pure strategies are consid-
ered. In fact, even the following, presumably simpler, problem is undecidable:
Given a game G, decide whether there exists a pure Nash equilibrium where
player 0 wins almost surely. Moreover, the problem remains undecidable if one
restricts to pure strategies that use (unbounded) finite memory. However, for the
general case of arbitrary mixed strategies, decidability remains an open problem.
If one restricts to simpler types of strategies like stationary ones, the problem
becomes provably decidable. In particular, for positional (i.e. pure, stationary)
strategies the problem becomes NP-complete, and for arbitrary stationary strate-
gies the problem is NP-hard but contained in PSpace. We also relate the com-
plexity of the latter problem to the complexity of the infamous Square Root Sum
Problem (SqrtSum) by providing a polynomial-time reduction from SqrtSum to
NE with the restriction to stationary strategies.

Let us remark that our game model is rather restrictive: First, players receive
a payoff only at terminal vertices. In the literature, a plethora of game models
with more complicated modes of winning have been discussed. In particular,
the model of a stochastic parity game [5,24] has been investigated thoroughly.
Second, our model is turn-based (i.e. for every non-stochastic vertex there is only
one player who controls this vertex) as opposed to concurrent [12,11]. The reason
that we have chosen to analyse such a restrictive model is that we are focussing
on negative results. Indeed, all our lower bounds hold for (multiplayer versions
of) the aforementioned models. Moreover, besides Nash equilibria, our negative



results apply to several other solution concepts like subgame perfect equilibria
[20,21] and secure equilibria [4].

For games with rewards on transitions [15], the situation might be different:
While our lower bounds can be applied to games with rewards under the average
reward or the total expected reward criterion, we leave it as an open question
whether this remains true in the case of discounted rewards.

Due to space constraints, most proofs are either only sketched or omitted
entirely. For the complete proofs, see [23].

Related Work. Determining the complexity of Nash Equilibria has attracted
much interest in recent years. In particular, a series of papers culminated in
the result that computing a Nash equilibrium of a two-player game in strategic
form is complete for the complexity class PPAD [10,7]. More in the spirit of our
work, Conitzer and Sandholm [9] showed that deciding whether there exists a
Nash equilibrium in a two-player game in strategic form where player 0 receives
payoff at least x and related decision problems are all NP-hard. For infinite
games without stochastic vertices, (a qualitative version of) the problem NE
was studied in [22]. In particular, it was shown that the problem is NP-complete
for games with parity winning conditions and even in P for games with Büchi
winning conditions.

For stochastic games, most results concern the classical SSG problem: Con-
don showed that the problem is in NP ∩ co-NP [8], but it is not known to be
in P. We are only aware of two results that are closely related to our prob-
lem: First, Etessami & al. [13] investigated Markov decision processes with, e.g.,
multiple reachability objectives. Such a system can be viewed as a stochastic
multiplayer game where all non-stochastic vertices are controlled by one single
player. Under this interpretation, one of their results states that NE is decidable
in polynomial time for such games. Second, Chatterjee & al. [6] showed that the
problem of deciding whether a (concurrent) stochastic game with reachability
objectives has a positional-strategy Nash equilibrium with payoff at least x is
NP-complete. We sharpen their hardness result by showing that the problem re-
mains NP-hard when it is restricted to games with only three players (as opposed
to an unbounded number of players) where, additionally, payoffs are assigned at
terminal vertices only (cf. Theorem 5).

2 Simple stochastic multiplayer games

The model of a (two-player, zero-sum) simple stochastic game [8] easily gener-
alises to the multiplayer case: Formally, a simple stochastic multiplayer game
(SSMG) is a tuple G = (Π,V, (Vi)i∈Π , ∆, (Fi)i∈Π) such that:

– Π is a finite set of players (usually Π = {0, 1, . . . , k − 1});
– V is a finite, non-empty set of vertices;
– Vi ⊆ V and Vi ∩ Vj = ∅ for each i 6= j ∈ Π;
– ∆ ⊆ V × ([0, 1] ∪ {⊥})× V is the transition relation;



– Fi ⊆ V for each i ∈ Π.

We call a vertex v ∈ Vi controlled by player i and a vertex that is not contained in
any of the sets Vi a stochastic vertex. We require that a transition is labelled by
a probability iff it originates in a stochastic vertex: If (v, p, w) ∈ ∆ then p ∈ [0, 1]
if v is a stochastic vertex and p = ⊥ if v ∈ Vi for some i ∈ Π. Moreover, for
each pair of a stochastic vertex v and an arbitrary vertex w, we require that
there exists precisely one p ∈ [0, 1] such that (v, p, w) ∈ ∆. For computational
purposes, we require additionally that all these probabilities are rational.

For a given vertex v ∈ V , we denote the set of all w ∈ V such that there
exists p ∈ (0, 1]∪{⊥} with (v, p, w) ∈ ∆ by v∆. For technical reasons, we require
that v∆ 6= ∅ for all v ∈ V . Moreover, for each stochastic vertex v, the outgoing
probabilities must sum up to 1:

∑
(p,w):(v,p,w)∈∆ p = 1. Finally, we require that

each vertex v that lies in one of the sets Fi is a terminal (sink) vertex : v∆ = {v}.
So if F is the set of all terminal vertices, then Fi ⊆ F for each i ∈ Π.

A (mixed) strategy of player i in G is a mapping σ : V ∗Vi → D(V ) assigning
to each possible history xv ∈ V ∗Vi of vertices ending in a vertex controlled by
player i a (discrete) probability distribution over V such that σ(xv)(w) > 0 only
if (v,⊥, w) ∈ ∆. Instead of σ(xv)(w), we usually write σ(w | xv). A (mixed)
strategy profile of G is a tuple σ = (σi)i∈Π where σi is a strategy of player i in
G. Given a strategy profile σ = (σj)j∈Π and a strategy τ of player i, we denote
by (σ−i, τ) the strategy profile resulting from σ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists
w ∈ v∆ with σ(w | xv) = 1. Note that a pure strategy of player i can be
identified with a function σ : V ∗Vi → V . A strategy profile σ = (σi)i∈Π is called
pure if each σi is pure.

A strategy σ of player i in G is called stationary if σ depends only on the
current vertex: σ(xv) = σ(v) for all xv ∈ V ∗Vi. Hence, a stationary strategy
of player i can be identified with a function σ : Vi → D(V ). A strategy profile
σ = (σi)i∈Π of G is called stationary if each σi is stationary.

We call a pure, stationary strategy a positional strategy and a strategy profile
consisting of positional strategies only a positional strategy profile. Clearly, a
positional strategy of player i can be identified with a function σ : Vi → V . More
generally, a pure strategy σ is called finite-state if it can be implemented by a
finite automaton with output or, equivalently, if the equivalence relation ∼ ⊆
V ∗×V ∗ defined by x ∼ y if σ(xz) = σ(yz) for all z ∈ V ∗Vi has only finitely many
equivalence classes.1 Finally, a finite-state strategy profile is a profile consisting
of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialised SSMG. A strategy (strategy profile) of
(G, v0) is just a strategy (strategy profile) of G. In the following, we will use the
abbreviation SSMG also for initialised SSMGs. It should always be clear from
the context if the game is initialised or not.

1 In general, this definition is applicable to mixed strategies as well, but for this paper
we will identify finite-state strategies with pure finite-state strategies.



Given an SSMG (G, v0) and a strategy profile σ = (σi)i∈Π , the conditional
probability of w ∈ V given the history xv ∈ V ∗V is the number σi(w | xv) if
v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ ∆ if v is a stochastic vertex.
We abuse notation and denote this probability by σ(w | xv). The probabilities
σ(w | xv) induce a probability measure on the space V ω in the following way: The
probability of a basic open set v1 . . . vk ·V ω is 0 if v1 6= v0 and the product of the
probabilities σ(vj | v1 . . . vj−1) for j = 2, . . . , k otherwise. It is a classical result
of measure theory that this extends to a unique probability measure assigning a
probability to every Borel subset of V ω, which we denote by Prσv0 .

For a set U ⊆ V , let Reach(U) := V ∗ · U · V ω. We are mainly interested
in the probabilities pi := Prσv0(Reach(Fi)) of reaching the sets Fi. We call the
number pi the (expected) payoff of σ for player i and the vector (pi)i∈Π the
(expected) payoff of σ.

Drawing an SSMG. When drawing an SSMG as a graph, we will use the following
conventions: The initial vertex is marked by an incoming edge that has no source
vertex. Vertices that are controlled by a player are depicted as circles, where the
player who controls a vertex is given by the label next to it. Stochastic vertices
are depicted as diamonds, where the transition probabilities are given by the
labels on its outgoing edges (the default being 1

2 ). Finally, terminal vertices
are represented by their associated payoff vector. In fact, we allow arbitrary
vectors of rational probabilities as payoffs. This does not increase the power of
the model since such a payoff vector can easily be realised by an SSMG consisting
of stochastic and terminal vertices only.

3 Nash equilibria

To capture rational behaviour of (selfish) players, John Nash [17] introduced the
notion of, what is now called, a Nash equilibrium. Formally, given a strategy
profile σ, a strategy τ of player i is called a best response to σ if τ maximises
the expected payoff of player i: Pr(σ−i,τ

′)
v0 (Reach(Fi)) ≤ Pr(σ−i,τ)

v0 (Reach(Fi)) for
all strategies τ ′ of player i. A Nash equilibrium is a strategy profile σ = (σi)i∈Π
such that each σi is a best response to σ. Hence, in a Nash equilibrium no player
can improve her payoff by (unilaterally) switching to a different strategy.

Previous research on algorithms for finding Nash equilibria in infinite games
has focused on computing some Nash equilibrium [6]. However, a game may have
several Nash equilibria with different payoffs, and one might not be interested
in any Nash equilibrium but in one whose payoff fulfils certain requirements.
For example, one might look for a Nash equilibrium where certain players win
almost surely while certain others lose almost surely. This idea leads us to the
following decision problem, which we call NE:2

Given an SSMG (G, v0) and thresholds x, y ∈ [0, 1]Π , decide whether
there exists a Nash equilibrium of (G, v0) with payoff ≥ x and ≤ y.

2 In the definition of NE, the ordering ≤ is applied componentwise.



For computational purposes, we assume that the thresholds x and y are vectors
of rational numbers. A variant of the problem which omits the thresholds just
asks about a Nash equilibrium where some distinguished player, say player 0,
wins with probability 1:

Given an SSMG (G, v0), decide whether there exists a Nash equilibrium
of (G, v0) where player 0 wins almost surely.

Clearly, every instance of the threshold-free variant can easily be turned into an
instance of NE (by adding the thresholds x = (1, 0, . . . , 0) and y = (1, . . . , 1)).
Hence, NE is, a priori, more general than its threshold-free variant.

Our main concern in this paper are variants of NE where we restrict the
type of strategies that are allowed in the definition of the problem: Let PureNE,
FinNE, StatNE and PosNE be the problems that arise from NE by restricting
the desired Nash equilibrium to consist of pure strategies, finite-state strategies,
stationary strategies and positional strategies, respectively. In the rest of this
paper, we are going to prove upper and lower bounds on the complexity of these
problems, where all lower bounds hold for the threshold-free variants, too.

Our first observation is that neither stationary nor pure strategies are suf-
ficient to implement any Nash equilibrium, even if we are only interested in
whether a player wins or loses almost surely in the Nash equilibrium. Together
with a result from Sect. 5 (namely Proposition 8), this demonstrates that the
problems NE, PureNE, FinNE, StatNE, and PosNE are pairwise distinct prob-
lems, which have to be analysed separately.

Proposition 1. There exists an SSMG that has a finite-state Nash equilibrium
where player 0 wins almost surely but that has no stationary Nash equilibrium
where player 0 wins with positive probability.

Proof. Consider the game G depicted in Fig. 1 (a) played by three players 0, 1
and 2 (with payoffs in this order). Obviously, the following finite-state strategy
profile is a Nash equilibrium where player 0 wins almost surely: Player 1 plays
from vertex v2 to vertex v3 at the first visit of v2 but leaves the game immediately
(by playing to the neighbouring terminal vertex) at all subsequent visits to v2;
from vertex v0 player 1 plays to v1; player 2 plays from vertex v3 to vertex v4 at
the first visit of v3 but leaves the game immediately at all subsequent visits to v3;
from vertex v1 player 2 plays to v2. It remains to show that there is no stationary
Nash equilibrium of (G, v0) where player 0 wins with positive probability: Any
such equilibrium induces a stationary Nash equilibrium of (G, v2) where both
players 1 and 2 receive payoff at least 1

2 since otherwise one of these players
could improve her payoff by changing her strategy at v0 or v1. However, it is
easy to see that in any stationary Nash equilibrium of (G, v2) either player 1 or
player 2 receives payoff 0. ut

Proposition 2. There exists an SSMG that has a stationary Nash equilibrium
where player 0 wins almost surely but that has no pure Nash equilibrium where
player 0 wins with positive probability.
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Fig. 1. Two SSMGs with three players

Proof. Consider the game depicted in Fig. 1 (b) played by three players 0, 1
and 2 (with payoffs given in this order). Clearly, the stationary strategy profile
where from vertex v2 player 0 selects both outgoing edges with probability 1

2
each, player 1 plays from v0 to v1 and player 2 plays from v1 to v2 is a Nash
equilibrium where player 0 wins almost surely. However, for any pure strategy
profile where player 0 wins almost surely, either player 1 or player 2 receives
payoff 0 and could improve her payoff by switching her strategy at v0 or v1
respectively. ut

4 Decidable variants of NE

In this section, we show that the problems PosNE and StatNE are decidable and
analyse their complexity.

Theorem 3. PosNE is in NP.

Proof (Sketch). Let (G, v0) be an SSMG. Any positional strategy profile of G can
be identified with a mapping σ :

⋃
i∈Π Vi → V such that (v,⊥, σ(v)) ∈ ∆ for

each non-stochastic vertex v, an object whose size is linear in the size of G. To
prove that PosNE is in NP, it suffices to show that we can check in polynomial
time whether such a mapping σ constitutes a Nash equilibrium whose payoff lies
in between the given thresholds x and y. This can be done by computing, for
each player i, 1. the payoff zi of σ for player i and 2. the maximal payoff ri =
supτ Pr(σ−i,τ)

v0 (Reach(Fi)) that player i can achieve when playing against σ−i,
and then to check whether xi ≤ zi ≤ yi and ri ≤ zi. It follows from results on
Markov chains and Markov decision processes that both these numbers can be
computed in polynomial time (via linear programming). ut

To prove the decidability of StatNE, we appeal to results established for the
Existential Theory of the Reals, ExTh(R), the set of all existential first-order
sentences (over the appropriate signature) that hold in R := (R,+, ·, 0, 1,≤). The
best known upper bound for the complexity of the associated decision problem
is PSpace [3,19], which leads to the following theorem.



Theorem 4. StatNE is in PSpace.

Proof (Sketch). Since PSpace = NPSpace, it suffices to give a nondeterministic
polynomial-space algorithm for StatNE. On input G, v0, x, y, the algorithm starts
by guessing a set S ⊆ V × V and proceeds by computing (in polynomial time),
for each player i, the set Ri of vertices from where the set Fi is reachable in
the graph G = (V, S). Finally, the algorithm evaluates a certain existential first-
order sentence ψ, which can be computed in polynomial time from (G, v0), x,
y, S and (Ri)i∈Π , over R and returns the answer to this query. The sentence ψ
states that there exists a stationary Nash equilibrium σ of (G, v0) with payoff ≥ x
and ≤ y whose support is S, i.e. S = {(v, w) ∈ V × V : σ(w | v) > 0}. ut

Having shown that PosNE and StatNE are in NP and PSpace respectively,
the natural question arises whether there is a polynomial-time algorithm for
PosNE or StatNE. The following theorem implies that this is not the case (unless,
of course, P = NP) since both problems are NP-hard. Moreover, both problems
are already NP-hard for games with only two players.

Theorem 5. PosNE and StatNE are NP-hard, even for games with only two
players (three players for the threshold-free variants).

It follows from Theorems 3 and 5 that PosNE is NP-complete. For StatNE,
we have provided an NP lower bound and a PSpace upper bound, but the ex-
act complexity of the problem remains unclear. Towards gaining more insight
into the problem StatNE, we relate its complexity to the complexity of the
Square Root Sum Problem (SqrtSum), the problem of deciding, given numbers
d1, . . . , dn, k ∈ N, whether

∑n
i=1

√
di ≥ k. Recently, it was shown that SqrtSum

belongs to the 4th level of the counting hierarchy [1], which is a slight improve-
ment over the previously known PSpace upper bound. However, it is an open
question since the 1970s whether SqrtSum falls into the polynomial hierarchy
[16,14]. We identify a polynomial-time reduction from SqrtSum to StatNE.3

Hence, StatNE is at least as hard as SqrtSum, and showing that StatNE resides
inside the polynomial hierarchy would imply a major breakthrough in under-
standing the complexity of numerical computation.

Theorem 6. SqrtSum is polynomial-time reducible to StatNE.

5 Undecidable variants of NE

In this section, we argue that the problems PureNE and FinNE are undecid-
able by exhibiting reductions from two undecidable problems about two-counter
machines. Our construction is inspired by a construction used by Brázdil & al.
[2] to prove the undecidability of stochastic games with branching-time winning
conditions.

A two-counter machine M is given by a list of instructions ι1, . . . , ιm where
each instruction is one of the following:
3 Some authors define SqrtSum with ≤ instead of ≥. With this definition, we would

reduce from the complement of SqrtSum instead.



– “inc(j); goto k” (increment counter j by 1 and go to instruction number k);
– “zero(j) ? goto k : dec(j); goto l” (if the value of counter j is zero, go to

instruction number k; otherwise, decrement counter j by one and go to
instruction number l);

– “halt” (stop the computation).

Here j ranges over 1, 2 (the two counters), and k 6= l range over 1, . . . ,m. A
configuration of M is a triple C = (i, c1, c2) ∈ {1, . . . ,m} × N × N, where i
denotes the number of the current instruction and cj denotes the current value
of counter j. A configuration C ′ is the successor of configuration C, denoted
by C ` C ′, if it results from C by executing instruction ιi; a configuration
C = (i, c1, c2) with ιi = “halt” has no successor configuration. Finally, the
computation of M is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that
ρ(0) ` ρ(1) ` . . . and ρ(0) = (1, 0, 0) (the initial configuration). Note that ρ is
either infinite, or it ends in a configuration C = (i, c1, c2) such that ιi = “halt”.

The halting problem is to decide, given a machine M, whether the com-
putation of M is finite. It is well-known that two-counter machines are Turing
powerful, which makes the halting problem and its dual, the non-halting problem,
undecidable.

Theorem 7. PureNE is undecidable.

Proof (Sketch). The proof is by a reduction from the non-halting problem to
PureNE: we show that one can compute from a two-counter machine M an
SSMG (G, v0) with nine players such that the computation of M is infinite iff
(G, v0) has a pure Nash equilibrium where player 0 wins almost surely.

Any pure strategy profile σ of (G, v0) where player 0 wins almost surely
determines an infinite sequence ρ of pseudo configurations of M (where the
counters may take the value ω). Of course, in general, ρ is not the computation
of M. However, the game G is constructed in such a way that σ is a Nash
equilibrium iff ρ is the computation of M. Since ρ is infinite, this equivalence
implies that G has a pure Nash equilibrium where player 0 wins almost surely
iff M does not halt.

To get a flavour of the full proof, let us consider a machineM that contains
the instruction “inc(1); goto k”. An abstraction of the corresponding part of
the game G is depicted in Fig. 2: the game is restricted to three players 0, A
and B (with payoffs given in this order), and some irrelevant vertices have been
removed.

In the following, let σ be a pure strategy profile of (G, v) where player 0 wins
almost surely. At both vertices u and u′, player 0 can play to either a grey or
a white vertex; if she plays to a grey vertex, then with probability 1

2 the play
returns to u or u′ respectively; if she plays to the white vertex, the play never
returns to u or u′. Let c and c′ denote the maximal number of visits to the grey
vertex connected to u and u′ respectively (the number being ω if player 0 always
plays to the grey vertex): these two ordinal numbers represent the counter value
before and after executing the instruction.
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Fig. 2. Incrementing a counter.

To see why c′ = 1 + c if σ is a Nash equilibrium, consider the probabilities
a := Prσv (Reach(FA)) and b := Prσv (Reach(FB)). We have a ≥ 1

3 and b ≥ 1
6 since

otherwise player A or B could improve by changing her strategy at vertex v or w
respectively. In fact, the construction of G ensures that a+ b = 1

2 ; hence, a = 1
3 .

Moreover, the same argumentation proves that a′ := Prσv′(Reach(FA)) = 1
3 .

Let p := Prσv (Reach(FA) | V ω\v . . . v′·V ω) be the conditional probability that
player A wins given that v′ is not reached; then a = p+ 1

4 · a
′ and consequently

p = 1
4 . But p can also be written as the following sum of two binary numbers:

0.00 1 . . . 1︸ ︷︷ ︸
c times

111 + 0.000 0 . . . 0︸ ︷︷ ︸
c′ times

100 .

Obviously, this sum is equal to 1
4 iff c′ = 1 + c. ut

It follows from the proof of Theorem 7 that Nash equilibria may require
infinite memory (even if we are only interested in whether a player wins with
probability 0 or 1). More precisely, we have the following proposition.

Proposition 8. There exists an SSMG that has a pure Nash equilibrium where
player 0 wins almost surely but that has no finite-state Nash equilibrium where
player 0 wins with positive probability.

Proof. Consider the game (G, v0) constructed in the proof of Theorem 7 for the
machineM consisting of the single instruction “inc(1); goto 1”. We modify this
game by adding a new initial vertex v1 which is controlled by a new player,
player 1, and from where she can either move to v0 or to a new terminal vertex
where she receives payoff 1 and every other player receives payoff 0. Additionally,



player 1 wins at every terminal vertex of the game G that is winning for player 0.
Let us denote the modified game by G′.

Since the computation of M is infinite, the game (G, v0) has a pure Nash
equilibrium where player 0 wins almost surely. This equilibrium induces a pure
Nash equilibrium of (G′, v1) where player 0 wins almost surely. However, it is easy
to see that there is no finite-state Nash equilibrium of (G, v0) where player 0 (or
player 1) wins almost surely. Consequently, in any finite-state Nash equilibrium
of (G′, v1) player 1 will play from v1 to the new terminal vertex, giving player 0
a payoff of 0. ut

It follows from Proposition 8 that the problems FinNE and PureNE are
distinct. Nevertheless, we can show that FinNE is undecidable, too. Note however
that FinNE is recursively enumerable: To decide whether an SSMG (G, v0) has
a finite-state Nash equilibrium with payoff ≥ x and ≤ y, one can just enumerate
all possible finite-state profiles and check for each of them whether the profile is
a Nash equilibrium with the desired properties (by analysing the finite Markov
chain that is generated by this profile).

Theorem 9. FinNE is undecidable.

Proof (Sketch). The proof is by a reduction from the halting problem for two-
counter machines and similar to the proof of Theorem 7. ut

6 Conclusion

We have analysed the complexity of deciding whether a simple stochastic mul-
tiplayer game has a Nash equilibrium whose payoff falls into a certain interval.
Our results demonstrate that the presence of both stochastic vertices and more
than two players makes the problem much more complicated than when one of
these factors is absent. In particular, the problem of deciding the existence of a
pure-strategy Nash equilibrium where player 0 wins almost surely is undecidable
for simple stochastic multiplayer games, whereas it is contained in NP∩co-NP for
two-player, zero-sum simple stochastic games [8] and even in P for non-stochastic
infinite multiplayer games with, e.g., Büchi winning conditions [22].

Apart from settling the complexity of NE when arbitrary mixed strategies
are considered, future research may, for example, investigate restrictions of NE
to games with a small number of players. In particular, we conjecture that the
problem is decidable for two-player games, even if these are not zero-sum.
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