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ABSTRACT 

Ganulometries are defined on function classes over topological vector spaces. The usual 
Euclidean property for scaling compatibility, set scaling in the binary case and graph scaling in 
the gray-scale case, is changed so that it is with respect to spatial (domain) scaling for function 
spaces. As in the binary case, scaling compatible granulometries possess representations as 
double suprema over scaled generating elements. Without further constraint on the generating 
elements, the double supremum involves, for each generating element, all scalings exceeding the 
parameter of the particular granulometric operator. The salient theorem of the present paper 
concerns necessary and sufficient conditions under which there is a reduction of the 
double-supremum representation to a single supremum over singularly scaled generating 
functions. Specifically, and in the context of locally convex topological vector spaces, there is a 
determination of when a domain-scaled function t*f is f-open for all t :2: 1. Key roles are played 
by both topology and local convexity. 

1. INTRODUCTION 

Morphological granulometries were introduced by Matheron [1] to model the sieving of a 
random binary image according to the size and shape of grains within the image. Intuitively, as 
the mesh size of the sieve is increased, more of the image grains will fall through the sieve and 
the residual area of the filtered (sieved} image will decrease monotonically. These residual 
areas form a size distribution that is indicative of image structure. Upon normalization, this 
size distribution becomes an increasing function from O to 1 and is a probability distribution 
function. Both it, and its derivative, which is a probability density, are called the 
granulometric size distribution of the image. Moments of this size distribution serve as image 
features. For instance, they can be employed for texture-based segmentation (Dougherty et al 
[2]). The basic theory of granulometric size distributions is discussed by Serra [3] and 
Dougherty and Giardina (4, 5]. 

Euclidean granulometries merit special attention in Matheron's original theory. These satisfy a 
certain property that makes them compatible (in a certain sense) with Euclidean scaling. A 
fundamental proposition of Matheron [1] is that the Euclidean granulometries possess a 
representation in terms of morphological openings. As it stands, this representation requires a 
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double union that makes it impractical for application. A key question concerns conditions under 
which this double union reduces to a tractable single union, for when it does it provides a 
practical paradigm for the construction of size distributions. A fundamental theorem of 
Matheron [1] gives necessary and sufficient conditions for this reduction. 

As noted by Serra [6], the algebraic theory of granulometries extends at once to complete 
lattices, (and therefore to gray-scale images). Direct extension of the Euclidean theory to the 
gray scale is given by Dougherty [7]. Here we use the terminology "direct extension" in a 
specific manner. The theory of [7] employs a Euclidean scaling condition that is induced from 
the umbra formulation of gray-scale morphology and takes place relative to the image's graph. 
Consequently, whereas a binary Euclidean granulometry must be compatible with scaling, or 
magnification, of an n-dimensional binary image within Euclidean n-space, a gray-scale 
Euclidean granulometry must be compatible with scaling, or magnification, of the image graph 
within Euclidean (n + 1 )-dimensional space. From the geometrical perspective that is relevent 
to the present paper, there must be scaling compatibility in both the domain and range. As in 
the Matheron theory, there is a representation; however, here it involves a double supremum. 
Application requires reduction of this double supremum to a single supremum and 
nonrestrictive suffcient conditions for this reduction are given in terms of umbra convexity. 

But there is another way to consider scaling compatibility: the granulometry must be 
compatible with scaling, or magnification, only in the domain of the image. Whereas the basic 
"shape" of an image is unchanged under graph scaling, it is substantially changed under domain 
scaling. We will define a new type of gray-scale granulometry for which sizing is compatible 
with scaling only in the domain. Again we achieve a Matheron-type granulometric 
representation, and like in the Euclidean approach of [7] this is a double supremum. But the 
key result of the present paper is a significant generalization of Matheron's reduction theorem 
to provide necessary and sufficient conditions for reduction of the double supremum 
representation. Moreover, since basic to our result is an appeal to the Krein-Milman theorem, 
we see that the proper mathematical setting for the analysis of spatial-scaling-compatible 
granulometries is a locally convex topological vector space. 

From a geometric and application perspective, the main theorem presented here is a limiting 
theorem, because it shows that if we desire granulometric compatibility with domain 
magnification, then we must pay a price: put simply, and with details to follow, gray-scale 
granulometries compatible with spatial scaling possess single-sumpremum representations 
only if they are generated by flat structuring elements. This constraint greatly restricts the 
kind of granulometric information that can be extracted if we insist upon sizing compatibility 
with domain magnification instead of graph magnification. 

The present paper is a shortened version of a more complete analysis presented in [8], which 
provides further extensions of the granulometric concept, along with corresponding reduction 
conditions. There are differences, however. Herein we concentrate on the most basic form of the 
reduction theorem. Furthermore, we present an alternative derivation of the basic theorem, 
one that pays particular attention to geometry. Lastly, whereas in [8] the general development 
stays in the Euclidean setting, with concluding commentary pointing out the manner in which it 
is adapted to locally convex topological vector spaces, here we adhere closely to the 
topological-vector-space structure and pay careful attention to the manners in which topology 
and local convexity determine the main results. 
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2. THE CLASSICAL MATHERON THEORY 

A one-parameter family. of operators '¥t: P --> P, where t > o and p is the power set in An, is 

called a granulometry 1f '¥t is increasing, '¥t is antiextensive, and 'Pt '*'s.,, '¥,. qi 1 .. 

'I' max{t,s}. For any t > 0, the operator 'Pt is an algebraic opening. The granu!ometry P¥t} is 

called a ~-granu/ometry, or T -granulometry, it each 'l't is translation invariant as an operator 

on P. To be consistent with [8] we employ the "T" terminology. {'Pt} is called a 

granulometry if it is a T-granulometry for which 'l't(S) = t 'I' 1 (Sit) for all t > o. 

If {'¥ t} is a T-granulometry, then it is a Euclidean granulometry if and only if lnv['I'iJ ,,,, 

t·lnv['l'1], where lnv['l't] is the invariant class of the algebraic opening '*'t· A collection of sets 

G is called a generator for a Euclidean granulometry if lnv['l' 1 ] is the class closed under 

arbitrary union, translation, and scalar multiplication by t ~ 1 generated by G. Letting O(S, 

denote the elementary morphological opening of S by B, the basic Matheron representation 

concerning Euclidean granulometries states that a family {'l't}, t > o, of operators on P is a 

Euclidean granulometry if and only if there exists a class G such that 

'¥t{S) == u {u {O(S, rB): B E G}: r 2: t} ( 1 ) 

G is a generator of { 'Pt}. 

Because the representation is necessary and sufficient, it provides a paradigm for constructing 

Euclidean granulometries. However, as it stands, evaluation of '¥1 via the representation 

requires an infinite union over r ~ t. This outer union is redundant if and only if O(S, 

O(S, tB) for all r ~ t and B E G, and this is equivalent to tB being B-open for al! t 2: 1. 

[1] has shown that, for compact sets, tB is B-open for all t 2: 1 if and only if B is convex. This 

proposition is inherently topological becasue the compactness assumption cannot be dropped. 

Given this proposition (and given G is composed of compact sets), the representation (1) 

reduces to the single union 

'¥t(S) == u {O(S, tB): B E G} ( 2) 

if and only if all elements of G are convex. 

3. UMBRA-INDUCED GRANULOMETRIES FOR GRAY-LEVEL IMAGES 

As recognized by Serra [6], the definition of a binary granulometry appli~s at on~e for a 

of operators { '¥t} on a complete lattice. Thus, letting s denote function ordenng, the three 

basic granulometric axioms (antiextensivity, increasing, and 'l't 'I' r = '¥ r '¥1"" 'I' 

apply at once to the gray scale, where here 'l't: Fun(V) --> Fun(V), the cl~ss of functions on 

the underlying Euclidean space V. Equivalently, a gray-scale granulometry is a one-parameter 

family {'¥t} of gray-scale openings on Fun(V) such that 'l't s 'I' r if r ~ t. {'¥1} is called a 

T-granulometry if every 'l't is translation invariant in the usual gray-scale sense. 

'¥tCfx + y) = '¥t(f)x + y, where fx + y is defined by (fx + y)(z) = f(z - x) + Y· 

Our main concern is with the Euclidean property. Assuming {'Pt} is a T-granulometry 
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on Rn, Dougherty [7] has extended the Euclidean notion in a manner compatible with the umbra 
transform. For t > o and function f, define t*f by (t* f)(x) = tf(x/t). The scalar multiplication 
is based on scaling the graph of f as a subset of Rn+ 1 and is umbra capatible in the sense that 
U[t*ij = tU[f], where U[f] is the umbra of f. Given this definition of t*f, in [7] a Euclidean 
gray-scale granulometry is a T-granulometry for which 

( 3 ) 

for t > o. From this definition, it is immediate that the invariant classes of a Euclidean 
granulometry {'Pt} are determined by Inv[ '¥1], just as in the binary setting. Moreover, it is 
shown that {'Pt}. t > o, is a Euclidean granulometry if and only if there exists a class G, called 
the generator of {'Pt}, such that 

'Pt(f} = v {v {O(f, r*g): g E G}: r 2:: t} ( 4) 

where the openings in the representation are gray-scale openings. inv['P 1] is the closure of G 
under translations, suprema, and products t*f, t 2:: 1. As in the binary case, elimination of the 
outer supremum relating to r ;::: t is crucial for application. This occurs if, for any g E G, r*g is 
t*g-open for all r;::: t. If the graphs of the generator elements are concave-down, which makes 
their umbrae convex in Rn+1, then r*g is t*g-open for r 2:: t. 

4. GRANULOMETRIES ON TOPOLOGICAL VECTOR SPACES 

The present paper concerns a different gray-scale approach to the Euclidean property than the 
one taken in [7]; rather than define scaling in the domain space and range space relative to 
spatial scaling of the graph, and thereby have an umbra-based definition, herein we consider 
the problem of scaling only spatially. Regarding the domain space, four aspects are of concern: 
linear translation, scaling, topology, and convexity. We are also concerned with topology in the 
range space. While we could proceed by considering the domain space to be finite-dimensional 
Euclidean space and the range to be the extended real line, this would not do full justice to the 
full power of our main result. The fundamental point is that, relative to the kind of 
granulometric theory we now introduce, an appropriate setting is a topological vector space. 
Such a space carries the necessary mathematical structure for development of both translation­
invariant granulometries and compatibility with spatial magnification. In addition, the main 
result of the present paper rquires the topological vector space to be locally convex. Those not 
wishing to concern themselves with the abstract theory of topological vector spaces can, 
whenever we mention such a space, simply substitute Euclidean space. 

A vector space V endowed with a topology is a topological vector space if every point of V is a 
closed set and the vector space operations are continuous with respect to the topology. V is 
called a locally convex topological vector space (lctvs) if there exists a local base at O whose 
members are all convex. As we have defined it, the topology of a topological vector space is 
Hausdorff. Continuity of the vector space operations means that the mappings (x, y) --> x + Y 
and (t, x) --> tx are continuous. In fact, for any point a E V and scalar t, the mappings x --> a 
+ x and x --> tx are homeomorphisms from V --> V. Hence, the topology is translation 
invariant, so the topology is fully determined by any local base at o. Herein we only consider 
real topological vector spaces. (See Rudin [9] for the basic theory of topological vector spaces.) 
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Given the structure of a lctvs V, gray-scale morphology is at once defined on Fun(V) by means 
of t~e usual gray-scale definitions. Indeed, the definition of a gray-scale T-granulometry 
c~mes over at once. Yet one need not necessarily extend the Euclidean condition in accordance 
~1th umbra ~graph) scaling; a second way to proceed is to consider compatibility with scaling 
m the domain onl~. Here there is spatial scaling (corresponding to spatial magnification) but 
not gray-level scaling. The appropriate definition of the domain scaling t*f is given by (t*f)(x) 
= f(x/t). Henceforth we employ only this definition of scaling {so there should be no confusion 

with the notation * ). A T-granulometry { 'flt} on a lctvs is said to be compatible with spatial 

scaling if, rel_ative to ~patial magnification scaling *, equation (3) is satisfied for any f e 
Fun(V). As discussed in [8], { 'flt} on Fun{V) is a T-granulometry compatible with spatial 

scaling if and only if it possesses a representation of the form given in equation (4). Again G is 
a generator, and G generates Inv( '¥1] by means of supref!1a, translations, and scalings t*g, t ~ 

1, where, now, * denotes spatial scaling. 

Again, application requires elimination of the outer supremum. In analogy to the former cases, 
this means that for each g in the generator G, we must have O(f, r*g) ~ O(f, t*g) for all r ;:::. t, 

which means that t*g is g-open for all t ;:::. 1. The main purpose of the present paper is to 
characterize this relation for an important subclass of Fun(V). In doing so, we will generalize 
the original Matheron theorem regarding convexity to the gray-scale lctvs setting. 

6. CHARACTERIZATION OF THE FUNDAMENTAL REDUCTION PROPERTY 

In the context of spatial scaling, reduction of the double supremum representation for 
scaling-compatible T-granulometries depends on the fundamental reduction property: O(t*f, f) 

= t*f for all t ~ 1. We characterize this property for the class of upper semicontinuous 
functions on the real lctvs V that possess convex, compact domains. The salient result is that 
such functions possess the basic reduction property if and only if they are constant on their 
domains. While much theory relating to mathematical morphology is algebraic in nature (viz. 
lattice theory), this result, as was Matheron's original theorem, is deeply topological. For 
instance, upper semicontinuity and compactness cannot be dropped from the hypothesis. 

We approach the main result by means of a proposition, lemma, and theorem , all of which hold 

on topological vector spaces that are not necessarily locally convex. Only for the final theorem, 
the main one, do we employ local convexity. We consider an upper semicontinuous function f 

with compact, convex domain D. Owing to compactness, f attains its maximum m on D, and we 
let M = {x E D: f(x) = m}. Upper semicontinuity assures us that M is closed. 

Point b in convex set D is called an extreme point of D if no line segment in D contains b in its 
interior. Geometric intuition suggests that under magnification of a convex set D in a topological 
vector space there is only one way to translate D to fit wit~in tD, t > 1 '. so .that the f~tting covers 
a given extreme point tb of tD (see Figure 1 ). The desired translation 1s determined by the 
global translation T that moves b to tb, namely, T(x) = x + (t - 1 )b. This observation is 

formalized in the following proposition. 

Proposition. For an extreme point b of a convex set D and for each_ t > 1, D + (t - 1 )b is t~e 
only translate of D contained in tD and containing tb. [Because D 1s convex, D + (t - 1 )b is 

always such a translate.] 

Proof. If b is an extreme point of D, then tb is an extreme point of tD. Suppose D + z is a 
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translate of D containing tb and D + z is a subset of tD. Write tb == z + v, v E D. The point v is 

an extreme point of D, for if it were not it would be contained in the interior of a line L[a, b] 

contained in D, but this would imply that L[a, b] + z is a line in tD containing z + v = tb in its 

interior, which would contradict the fact that tb is an extreme point. If v = b, we are done; if 

not, consider the line L[b, v], which lies in D by convexity. Note that L[a, b] + z and tl[a, b] 

are lines in tD that contain tb. In fact, these lines lie in the 1-dimenisional closed affine 

subspace H of tV given by tb + s(v - b), where s ranges over the real line. We see that s = O 

yields tb e Hands= t yields tv e H. Finally, for s = -1, 

fu-~-~=V+Z-V+b=Z+b ( 5 ) 

Hence, tb lies in the interior of the line L[z + b, tv]. Since the endpoints of this line lie in tD, 

so does the line, which contradicts the fact that tb is an extreme point. Thus, v = b and z must 

equal (t - 1 )b. 

It is of interest to note that the converse of the proposition is true. For a proof of the converse 

and an alterative proof of the proposition, see [8]. The following lemma proves useful in the 

characterization of functions f for which t*f is f-open. 

Lemma. Suppose the following five conditions hold: 

i ) Dis compact and convex in V. 
i i ) f is upper semicontinuous on D. 
iii) b is an extreme point of D. 
iv) w EM. 
v) O(t*f, f) = M on tD for all t 2 1. 

Then the line L[b, w], from b to w, lies in M; that is, f is maximized at every point of L[b, w]. 

Proof. Generally, 

( 6 ) 

Since b is an extreme point, the preceding proposition shows that the opening at tb reduces to 

O(t*f, f)(tb) = sup {f(t-1 )b(tb) + y: f(t- 1 )b + y $ t*f} 

=sup {f(b) + y: f(t-1)b + y $ t*f} ( 7) 

But, according to condition (v), O(t*f, f)(tb) = (t*f}(tb) = f(b), so that the last supremum is 
f(b). Hence, f(t-i)b $Mand 

(t*f}(w + (t - 1 }b) 2 f(t-1 )b(W + (t - 1 )b) = f(w) = m 

Since the range of M is the same as the range of f, 

m = (t* f)(w + (t - 1 )b) = f(wlt + (t - 1 )bit) ( 8 ) 

For t 21, the points w/t + (t - i )bit form the line L[b, w], exclusive of b, and each point is in 
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M. Since M is closed and bis a limit point of these points in M, b E Mand the lemma is proved. 

Corollary. If b is an extreme point and the hypothesized f is maximized at every point of a 
subset S, then f is maximized at every point of the cone C(b, S). 

The next theorem extends the points at which f is maximized to the closed convex hull of the 
extreme points of D. 

Theorem 1 . Let f be an upper semicontinuous function defined on the compact, convex set D in a 
topological vector space V, let B be the set of extreme points for D, and suppose O(t*f, f) = f for 
all t ;::: i. Then f is maximized at every point of K(B), the closed convex hull of B. 

Proof. Every totally ordered (by inclusion) chain {Ki} of convex subsets of M, the set of points 
at which f is maximized, possesses an upper bound U that is convex and is a subset of M. In fact, 
U = u Ki. By Zorn's lemma there exists a maximal convex subset S of D that is also a subset of 
M. Suppose there exists b E B - S. According to the corollary, the convex cone C(b, S) is a 
subset of M. But this contradicts the maximality of S, so that B must be a subset of S. Thus, 
H(B), the convex hull of 8, is contained in S, so that f is maximized at each point of H(B). 
Finally, since M is closed, K(B) = Closure[H(B)] < Closure[S] < M. 

Up to this point the results of the present section have not required local convexity of the 
topological vector space V. Our final theorem does assume local convexity, for it is on a lctvs 
that the Krein-Milman theorem applies. 

Theorem 2. Let f be an upper semicontinous function defined on a compact, convex subset D of a 
locally convex topological vector space V, and suppose O(t*f, f) = t*f on tD for all t ~ 1. Then f 
is constant on D. 

Proof. By Theorem i, f is maximized on K(B), the closed convex hull of the extreme points of 
D. The Krein-Milman theorem [1 O] says that a convex, compact subset in a lctvs is equal to the 
closed convex hull of its extreme points. Hence, K(B) = D, and the theorem is proved. 

We close with some remarks that are further developed in [8]: 

1. In fact, under the conditions of Theorem 2, f being constant is necessary and sufficient for 
having t*f be f-open for all t ~ 1. We have proven necessity; sufficiency is straigtforward. 

2. We have assumed that the domain of D is convex. In [8] it is shown that, in Rn, under the 
weaker assumptions of upper semicontinuity and compact domain, t*f is f-open for t > 1 if and 
only if f is constant and its domain is convex. The proof in [8] employs the original Matheron 
binary convexity theorem proven in Rn, and to this point it is an open question as to whether 
this stronger result holds in an abritrary lctvs. 

3. In the present paper we have confined ourselves to T-granulometries, where 
translation-invariance is relative to both domain and range. In [8], we also consider 
translation invariance only in the spatial domain. Extensions of Theorem 2 apply. 
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1. CONCLUSION 

The present paper has considered granulometries as one-parameter families of mappings on 
locally convex topological vector spaces and in this context has introduced a new class of 
gray-level granulometries compatible with domain scaling. For such granulometries there is a 
double-supremum representation of the kind discovered by Matheron in the binary setting. 
Most important, the Matheron theorem regarding convexity and binary scaling has been 
extended to a gray-scale theorem regarding spatial scaling and relative openness, the upshot 
being a characterization of those types of spatial-scaling-compatible granulometries that can be 
expressed as a single supremum over a family of parameterized openings by spatially scaled 
structuring elements. Specifically, under the assumption that the generating function 
primitives are upper semicontinuous and possess compact convex domains, these primitives 
must be flat. 
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Fig. 1 
Unique fitting at an extreme point for 
(a) smooth convex set such as a circle 
(b) a convex polygon such as a hexagon 
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