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Abstract. We investigate to what extent finite binary sequences with high 
Kolmogorov complexity are normal (all blocks of equal length occur equally 
frequently), and the maximal length of all-zero or all-one runs which occur 
with certainty. 

1. Introduction 

Each individual infinite sequence generated by a (t, !) Bernoulli process (flipping 
a fair coin) has (with probability 1) the property that the relative frequency of 
zeros in an initial n-length segment goes to ! for n goes to infinity. A related 
statement can be made for finite sequences, in the sense that it can be said that 
the majority of all sequences consists of about fifty percent zeros. However, 
whereas the earlier statement is a property about individual infinite random 
sequences, the classical theory of probability has no machinery to define or deal 
with individual finite random sequences. 

In [7] Kolmogorov established a notion of complexity (self-information) of 
finite objects which is essentially :finitary and combinatorial. Kolmogorov [8] says: 
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"Information theory must precede probability theory, and not be based on it. By 
the very essence of this discipline, the foundations of information theory must have 
a finite combinatorial character." It is the aim of this paper to derive randomness­
related statistical properties of individual (high) complexity finite binary sequences 
by combinatorial arguments. (A previous version of this paper appeared as part 
of Li and Vitanyi, Combinatorics and Kolmogorov complexity, Proceedings 
of the 6th IEEE Structure in Complexity Theory Conference, 1991, pp. 154-163. 
There we also demonstrated the utility of a Kolmogorov complexity method in 
combinatorial theory by proving several combinatorial lower bounds (like the 
"coin-weighing" problem) [11].) 

1.1. Normal Sequences 

E. Borel (1909) has called an infinite sequence of zeros and ones "normal" in the 
scale of two if, for each k, the frequency of occurrences of each block y of length 
k in the initial segment oflength n goes to limit rk for n grows unbounded [6]. 
It is known that normality is not sufficient for randomness, since Champernowne's 
sequence 

123456789101112 ... 

is normal in the scale of ten. On the other hand, it is universally agreed that a 
random infinite sequence must be normal. (If not, then some blocks occur more 
frequently than others, which can be used to obtain better than fair odds for 
prediction.) 

Martin-Lof (1965) [12] succeeded in characterizing the set of individual 
infinite random sequences as precisely those sequences which pass all effective 
tests for randomness: tests of all known and as yet unknown effectively 
verifiable properties of randomness alike. The criterion for randomness is 
that an infinite sequence must survive the "universal Martin-Lof test." The 
set of these sequences has measure 1 with respect to uniform distribution. 
Martin-Lof random sequences are characterized by the fact that all initial pre­
fixes have about maximal Kolmogorov complexity. Thus, each individual infinite 
sequence with this maximal Kolmogorov complexity of all initial segments has, 
by definition, all effective properties which hold, on the average, for sequences 
produced by a {-!, t) Bernoulli process. For example, each Martin-Lof random 
infinite sequence is normal, it satisfies the so-called Law of the Iterated Logarithm, 
the number of ones minus the number of zeros in an initial n-length segment is 
positive for infinitely many n and negative for another infinitely many n, and so 
on. This means that the statistical properties of patterns of zeros and ones in high 
Kolmogorov complexity infinite sequences are well known. With respect to 
normality the known situation [12] is as follows. Consider infinite sequences over 
a fixed finite alphabet (equivalently, real numbers in the unit interval [O, 1) 
represented in a fixed finite base) with respect to the uniform distribution. 

Proposition 1. The set of in.finite sequences which are Martin-Lo! random has 
uniform measure 1. Each such sequence is normal in the sense of Borel in all scales. 
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In the infinite case the distinction between random sequences and nonrandom 
sequences can be sharply drawn, while for finite sequences randomness is necessar­
ily a matter of degree. Namely, in the infinite case one considers limiting values 
of quantitative properties which hold for each individual sequence of a set of 
probability 1. In the finite case randomness is a matter of degree, because it would 
be clearly unreasonable to say that a sequence x of length n is random, and to 
say that a sequence y obtained by flipping the first" l" bit of x is nonrandom. What 
we can do is express the degree of randomness of a finite sequence in the form 
of its Kolmogorov complexity, and then analyse the statistical properties of the 
sequence--for example, the number of zeros and ones in it. As an example of 
normality properties of infinite and finite sequences expressed in terms of Kolmo­
gorov complexity we cite the following [12] (anticipating the definition of C( ·) in 
Section 2 and using 0-notation as in [5]). 

Example 1. If w = w 1w2 ···in {O, 1} 00 satisfies C(w 1 ,nln) ~ n - 2 log n for all n 
(this includes all Martin-Lof random sequences), then limn~ 00 :D'= 1 w)n = !. If 

x = x1x2 · · · Xn in {O, l}n satisfies C(x) ~ n ± 0(1), then L7= 1 xi = n/2 ± O(Jn). 

1.2. Normality of Finite Sequences 

Classically, in the finite case the expected value of quantities over a set of all 
sequences of a given length was considered. We would like to obtain statements 
that individual random finite sequences have such-and-such quantitative properties 
in terms of their lengths. However, as the result of a sequence of n fair coin flips, 
any sequence of length n can turn up. This raises the question which subset of 
finite sequences can be regarded as genuinely random. In [12] the viewpoint is 
taken that finite sequences which satisfy all effective tests for randomness (known 
and unknown alike) are as random as we will ever be able to verify. This form of 
randomness of individual sequences turns out to be equivalent to such sequences 
having maximal Kolmogorov complexity. 

Since almost all finite sequences have about maximal Kolmogorov complexity, 
each individual maximal complexity sequence must possess approximately the 
expected (average) statistical properties of the overall set. For example, the existing 
body of knowledge tells us that each high complexity finite binary sequence is 
"normal" in the sense that each binary block of length k occurs about equally 
frequently for k relatively small. In particular, this holds for k = 1. In this paper 
we quantify exactly the "about" and the "relatively small" in this statement. We 
quantify the extent of "Borel normality" in relation with the Kolmogorov 
complexity ofa finite sequence. (In the following we use "complexity" in the sense 
of "Kolmogorov complexity.") 

To distinguish individual random sequences obtained by flipping a physical 
coin from random sequences written down by human subjects, psychological tests 
(the correct reference is unknown to the authors) have shown that a consistent 
high classification score is reached by using the criterion that a real random 
sequence of length, say 40, on the average contains a run of zeros or ones of 
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length 6. In contrast, human subjects feel that short random sequences should not 
contain such long uniform runs. 

We determine the maximal length of runs of zeros or ones which are with 
certainty contained in each high complexity finite sequence. We prove that each 
high complexity sequence must contain quite a long run of zeros. 

The properties must be related to the length of the sequence. In a sequence 
of length 1, or odd length, the number of zeros and ones cannot be equal. To 
apply normality properties in mathematical arguments it is often of importance 
that the precise extent to which such properties hold is known. 

2. Kolmogorov Complexity 

To make this paper self-contained we briefly review notions and properties 
needed in what follows. We identify the natural numbers .;V and the finite binary 
sequences as 

(0, e), (1, 0), (2, 1), (3, 00), (4, 01), ... , 

where s is the empty sequence. The length l(x) of a natural number x is the number 
of bits in the corresponding binary sequence. For instance, /(e) = 0. If A is a set, 
then d(A) denotes the cardinality of A. Let ( ·): .;V x .;V --+ .;V denote a standard 
computable bijective "pairing" function. Throughout this paper we assume that 
(x, y) = 11(x>oxy. 

Define (x, y, z) by (x, (y, z) ). 
We need some notions from the theory of algorithms, see [13]. Let T1, T2 , •.• 

be a standard enumeration of Turing machines, each of which has a binary 
one-way input tape, a two-way work tape, and an output tape. At the start the 
input tape contains a binary input delimited by endmarkers. A Turing machine 
T computes the function T: .;V--+ .Al; defined as T(p) = x, with p as the contents 
of the input tape when the machine starts its computation, and x as the contents 
of the output tape when the machine halts, otherwise T(p) is undefined. The input 
is sometimes called a description or program, and the output is called the described 
object. The description of an object x can be facilitated by an object y. The 
complexity of x E .Al; given y, with respect to T is defined as 

Ci{xl y) = min{/(p): T((p, y)) = x}, 

or co if such a p does not exist. 
Let Ube a universal Turing machine such that U((n, p)) = T,.(p) for all n and 

p. The invariance theorem (see, for example, [10]) states that for each T there is 
a positive constant cT such that, for all x, y E .Al; 

(1) 

Hence, for each pair of such universal machines U, U', there is a constant cu,u· 
such that, for all x, y, 

ICu(xly) - Cu.(xly)I ~ Cu,u·· 
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Fixing a standard reference U, we drop the subscript and define the Kolmogorov 
complexity of x, given y, as Cu(xl y) = C(xl y). This is the minimal number of bits 
in a description from which x can be effectively reconstructed, given y. The 
unconditional complexity is defined as C(x) = C(xle). 

We also make use of the prefix complexity K(x), which denotes the shortest 
self-delimiting description [4], [9], [l]. To this end, we consider so-called prefix 
Turing machines, where the input tape initially contains an infinite sequence of 
zeros and ones. Thus, the input is not delimited by special endmarker symbols. 
Correspondingly, we define T(p) = x if T started on a program beginning with p 
and halts with output x when it has read all of p but not the next input symbol. 
Since the input tape is one-way, the set of programs A = {p: T(p) < oo} is a 
prefix-code: no program in A is a prefix of another program in A. A program in 
A is called self-delimiting, since T can determine where it ends without reading the 
next symbol of input. We define K(x) and K(xly) precisely as C(x) and C(xly) 
with the enumeration of Turing machines replaced by a standard enumeration of 
prefix Turing machines, with the universal reference machine replaced by a prefix 
universal reference machine, and with C replaced by K. 

A survey is [10]. We need the following properties. Throughout this paper 
"log" denotes log2 . For each x, yEJfl' we have 

C(xly) :"£ l(x) + 0(1). 

For each y E ..1V there is an x E Jf/' of length n such that C(xl y) 2: n. In particular, 
we can set y = e. Such x's may be called random, since they are without regularities 
that can be used to compress the description. Intuitively, the shortest effective 
description of x is x itself. In general, for each n and y, there are at least 
2" - 2" - c + 1 distinct x' s of length n with 

C(xly) 2: n - c. 

In some cases we want to encode x in self-delimiting form x', in order to be 
able to decompose x'y into x and y. Good upper bounds on the prefix complexity 
of x are obtained by iterating the simple rule that a self-delimiting description of 
the length of x followed by x itself is a self-delimiting description of x. For example, 
x' = 11<x>ox and x" = 11<1(x)lOZ(x)x are both self-delimiting descriptions for x, and 
this shows that K(x) :s; 2/(x) + 0(1) and K(x) s l(x) + 2l(/(x)) + 0(1). 

Similarly, we can encode x in a self-delimiting form of a shortest program 
x* (l(x*) = C(x)) in 2C(x) + 1 bits. Iterating this scheme, we can encode x 
as a self-delimiting program of C(x) + 2 log C(x) + 1 bits, which shows that 
K(x) :"£ C(x) + 2 log C(x) + 1. 

3. Number of Zeros and Ones 

Let x have length n. It is known [12] that if C(xln) = n + 0(1), then the number 
of ones it contains is (denoted as =If ones(x)) 

=If ones(x) = ~ + O(Jn). 
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3.1. Fixed Complexity 

We analyse what complexity can say about the number of zeros and ones. Choose 
a large enough benchmark constant c1 which will remain fixed for the remainder 
of this paper. The class of deficiency functions is the set of functions (J: Al ~ Al 
satisfying K(n, o(n)ln - fJ(n)) s: C1 for all n (and hence C(n, fJ(n)ln - fJ(n)) :s; C1). (We 
have chosen c1 so large that each monotone sublinear recursive function that we 

are interested in, such as log n, Jn, log log n, is such a deficiency function. For the 
special case fJ(n) = log log n approximately the result in the proposition below was 
obtained by Vovk in [14].) 

Proposition 2. There is a constant c such that for all deficiency functions fJ, for 
each n and x E { 0, 1 }n, if C(x) > n - fJ(n), then 

I =!l=ones(x) - ~I < j(fJ(n) + c)n In 2. (2) 

Proof A general estimate of the tail probability of the binomial distribution, 
with s. the number of successful outcomes in n experiments with probability of 
success 0 < p < 1 and q = 1 - p, is given by Chernoff's bounds [3], [2]: 

(3) 

Let sn be the number of ones in the outcome of n fair coin flips, which means 
that p = q = l Defining A = {x E {O, 1 Y: I :jj:ones(x) - n/21 ;?: m}, and applying (3): 

d(A) :s; 2n+le-m2/n. 

Let m = j(b(n) + c)n In 2 where c is a constant to be determined later. We can 
compress each x EA in the following way: 

1. Let s be a self-delimiting program to retrieve n and fJ(n) from n - b(n), of 
length at most c 1• 

2. Given n and fJ(n), we can effectively enumerate A. Let i be the index of x 
in such an effective enumeration of A. The length of the (not necessarily 
self-delimiting) description of i satisfies 

l(i) :s; log d(A) = n + 1 +log e-m2/n 

:s; n + 1 - fJ(n) - c. 

The string si is padded to length n + 1 - b(n) - c + c1. From si we can 
reconstruct x by first using l(si) to compute n - fJ(n), then compute n and fJ(n) from 
sand n - b(n), and subsequently enumerate A to obtain the ith element. Let T be 
the Turing machine embodying the procedure for reconstructing x. Then, by (1), 

C(x) :s; Cr(x) + CT :s; n + 1 - fJ(n) - c + C1 + Cy. 

Choosing c = 1 + c 1 + cr we find C(x) :s; n - fJ(n), which contradicts the condition 
of the theorem. Hence, I =#=ones(x) - n/21 < m. D 
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3.2. Fixed Number of Ones 

It may be surprising at first glance, but there are no maximally complex sequences 
with about an equal number of zeros and ones. An equal number of zeros and 
ones is a form of regularity, and therefore a lack of complexity. That is, for 
xe{o,1y, if l=ll=ones(x)-n/21=0(1), then the randomness deficiency o(n)= 
n - C(x) is nonconstant (order log n). We prove this fact in the following 
proposition. 

Proposition 3. There is a constant c such that, for all n and all x E {O, 1 }n, if 

I =ll=ones(x) - ~I~ 2-lJ<n>-cJn, 

then C(x) ~ n - o(n). 

Proof Let m = r!J<n>-cJn, with c a constant to be determined later. Let 
A = {x e {O, 1}":I9l=ones(x) - n/21 ~ m}. There is a constant c2 such that there are 
only 

( n) 2"m d(A) ~ (2m + 1) ~ c2 r:. 
n/2 vn 

(4) 

elements in A (use Stirling's approximation). Thus, for each x e A, we can encode 
x by its index in an enumeration of A. We can find A from n and o(n). We can 
find n and o(n) from n - o(n) by a self-delimiting program of size at most c1• 

Altogether, this description takes log d(A) + c1 = n - b(n) - c + c1 +log c2 bits. 
Let this process of reconstructing x be executed by Turing machine T. Choosing 
c = c1 +log c2 +er we obtain, by (1), 

C(x) ~ Cr(x) + Cr ~ n - o(n). 0 

Example 2. As examples, we consider some particular values of o(n). Set 
o(n) =!log n - log log n. If I =ll=ones(x) - n/21 = O(log n), then 

C(x) ~ n - ! log n +log log n + 0(1). 

Set b(n) =!log n. If I #ones(x) - n/21 = 0(1), then C(x) ~ n - ! log n + 0(1). That 
is, if the number of ones is too close to the number of zeros, then the complexity 
of the string drops significantly below its maximum. 

A random string of length n cannot have precisely or almost n/2 ones by 
Proposition 3. Then how many ones should a random string contain? The next 
proposition shows that, for a random x havingj + n/2 ones, K(j In) must be at least 
about O(log n). 
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Proposition 4. There is a constant c such that, for all n and all x E { 0, 1 }n, if 

l#ones(x)- ~I= j, 
then C(xln):::; n - ! log n + K(jln) +c. 

Proof Let A= {xE {O, l}n: I #ones(x) - n/21 = j}. There is a constant c3 such 
that there are 

( n) 2n 
d(A):::; n/2 :::; C3 Jn (5) 

elements in A (use Stirling's approximation). In order to enumerate elements in 
A, we only need to describe j and n. Thus, for any x EA, we can encode x by its 
index i (in log d(A) bits) in an enumeration of A. With n given, we can recover x 
from an encoding of j in K(jl n) bits, followed by i. This description of x, given n, 
takes log d(A) + K(jln):::; n - ! log n +log c3 + K(jln) bits. Let T be the Turing 
machine embodying this procedure to recover x given n. Choosing c = log c3 + cT, 
we have 

C(xln):::; CT(xln) + cT:::; n - ! log n + K(jln) +c. D 

Example 3. For j = 0(1) we have C(xln):::; n - ! log n + 0(1) which is slightly 
stronger than the statement about the unconditional C(x) in Example 2. For 
j =Jn and j random (K(jln);;:: ! log n), we have C(xln):::; n - 0(1). Only for 
such f s is it possible that a number x is incompressible. 

4. Number of Blocks 

An infinite binary sequence is called normal if each block of length k occurs with 
a limiting frequency of 2-k. This justifies our intuition that a random infinite 
binary sequence contains about as many zeros as ones. Moreover, blocks 00, 01, 
10, and 11 should also appear about equally often. In general we expect that 
each block of length k occurs with about the same frequency. Can we find an 
analogue for finite binary sequences? We analyse these properties for high 
complexity finite binary sequences to obtain a quantification of a similar statement 
in terms of the length of the sequence and its complexity. 

4.1. Fixed Complexity 

Let x = x1 · · · x. be a binary sequence of length n, and let y be a much smaller 
string of length I. Let p = 2- 1 and let =IF y(x) be the number of (possibly overlapping) 
distinct occurrences of yin x. For convenience, we assume that x "wraps around" 
so that an occurrence of y starting at the end of x and continuing at the start 
also counts. 
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Theorem 1. Let l = l(y), p = 21• There is a constant c such that, for all n and 
x E {O, 1 }n, if C(x) > n - o(n), then 

l#y{x)- npl < ~, 

with a= [K(yin) +log l + o(n) + c](l - p)/4 ln 2. 

Proof. We prove by contradiction. Assume that n is divisible by I. (If it is not, 
then we can put x on a Procrustus bed to make its length divisible by l at the 
cost of having the above frequency estimate #y(x) plus or minus an error term 
of at most l/2.) There are I ways of dividing (the ring) x into N = n/l contiguous 
equal-sized blocks, each oflength I. For each such division i E {O, 1, ... , I - 1 }, let 
# y(x, i) be the number of (now nonoverlapping) occurrences of block y. We apply 
the Chernoff bound, (3), again: with A = { x e { 0, 1 }": I # y(x, i) - Np I ~ m} this 
gives d(A)::;; 2n+ 1e-m2f4 Np(l-pl. We choose m, such that, for some constant c to be 
determined later, 

m2 loge 
--- = K(<y, i)ln) + o(n) +c. 
4Np(l - p) 

To describe an element x in A, we now need only to enumerate A and indicate 
the index of x in such an enumeration. The description contains the following 
items: 

l. A description used to enumerate A. Given n - l>(n), we can retrieve n and 
o(n), using a self-delimiting description of at most c1 bits. To enumerate A, 
we also need to know i and y. Therefore, given n - o(n), the required 
number of bits to enumerate A is at most 

K((y, i, o(n), n)ln - o(n))::;; K(<y, i)ln) + C1. 

2. A description of the index of x. The number of bits to code the index j of 
x in A is 

logd(A)::;; log(2n+le-m2/4 Np(l-pl) 

m2 loge 
=n+l-----

4Np(l - p) 

= n + 1 - K(<y, i)ln) - b(n) - c. 

This total description takes at most n + 1 - o(n) - c + c1 bits. Let T be a Turing 
machine reconstructing x from these items. According to (1), therefore, 

C(x) _::;; Cr(x) + CT _::;; n + 1 - o(n) - C + C1 + CT. 

With c = 1 + c1 + cT we have C(x)::;; n - o(n), which contradicts the assumption 
of the theorem. 
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Therefore, I *y(x, i) - Npl < m, which in its turn implies 

l*y(x, i) - Npl < JK{<y, i)ln) + b(n) + c 4Np(l - p). 
loge 

The theorem now follows by noting that I #y(x) - npl = IJ:i1 #y(x, i) - Npl and 
K(il l) slog i. 0 

4.2. Fixed Number of Blocks 

Similar to the analysis of blocks oflength 1, the complexity of a string drops below 
its maximum in case some block y of length I occurs in one of the l block divisions, 
say i, with frequency exactly pN (p = 1/21). Then we can point out x by giving n, 
y, i and its index in a set of cardinality 

( N )(21 - l)N-pN = o( 2N1 )· 
pN jNp(l - p) 

Therefore, 

C(xl<n, y)) s n - t log n + t(l + 3 log l) + 0(1). 

5. Length of Runs 

It is known from probability theory that in a randomly generated finite sequence 
the expectancy of the length of the longest run of zeros or ones is pretty high. For 
each individual finite sequence with high Kolmogorov complexity we are certain 
that it contains each block (say, a run of zeros) up to a certain length. 

Theorem 2. Let x of length n satisfy C(x) ~ n - b(n). Then, for sufficiently large 
n, x contains all blocks y of length 

I= log n - log log n - log(b(n) +log n) - 0(1). 

Proof We are sure that y occurs at least once in x, if .j~~p in Theorem 1 is at 
most np. This is the case if a s np, that is, 

K(yln) +log I+ b(n) + 0(1) 
--------- 41 < np. 

loge -

Substitute K(yln) s I+ 2 log l + 0(1) (since K(yln) s K(y) + 0(1)), and p = 2- 1 

with I set at 

l = log n - log(36(n) log n + 3 log2 n) 
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(which equals l in the statement of the theorem up to an additive constant). The 
result is 

l + 3 log l + b(n) + 0(1) 
··-- 41 s 3(c5(n) log n + log2 n), 

loge 

and it is easy to see that this holds for sufficiently large n. D 

Corollary 1. If b(n) = O(log n), then each block of length log n - 2 log log n - 0(1) 
is contained in x. 

Analysing the proof of Theorem 2 we can improve this in case K(yJn) is low. 

Corollary 2. If b(n) = O(log log n), then, for each e > 0 and n large enough, 
x contains an all-zero run y (for which K(yJn) = O(log 0) of length l = 

log n - (1 + e) log log n + 0(1). 

Remark. Since there are 2n(l - 0(1/log n)) strings x of length n with C(x);;::: 
n - log log n + 0(1), the expected length of the longest run of consecutive zeros if 
we flip a fair coin n times, is at least l as in Corollary 2. (This improves a lower 
bound of log n - 2 log log n, obtained as an example of elementary methods in 
[2], by a log log n additive term.) 

We show in what sense Theorem 2 is sharp. Let x = uvw, l(x) = n, and 
C(x) 2:: n - b(n). We can describe x by giving: 

1. A description of v in K(v) bits. 
2. The literal representation of uw. 
3. A description of l(u) in log n + log log n + 2 log log log n + 0(1) bits. 

Then, since we can find n by n = l(v) + l(uw), 

C(x) s n - l(v) + K(v) + log n + (1 + o(l)) log log n + 0(1). (6) 

Substitute C(x) = n - o(n) and K(v) = o(log log n) (choose v to be very regular) 
in (6) to obtain 

l(v) s b(n) +log n + (1 + o(l)) log log n. 

This means that, for instance, for each e > 0, no maximally complex string x with 
C(x) = n + 0(1) contains a run of zeros (or the initial binary digits of n) of length 
log n + (1 + e) log log n for n large enough and regular enough. By Corollary 2, 
on the other hand, such a string x must contain a run of zeros of length 
log n - (1 + e) log log n + 0(1). 

We end this paper with an interesting question raised by one of the referees: 
if x is known to be Kolmogorov random with respect to some superpolynomial 
(say n10g") time-bounded Turing machines, what can we say about their statistical 
properties? 
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