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Re-expansions are found for the optimal remainder terms in the well-known
asymptotic series solutions of homogeneous linear differential equations of the
second order in the neighbourhood of an irregular singularity of rank one. The
re-expansions are in terms of generalized exponential integrals and have greater
regions of validity than the original expansions, as well being considerably more
accurate and providing a smooth interpretation of the Stokes phenomenon. They
are also of strikingly simple form. In addition, explicit asymptotic expansions for
the higher coefficients of the original asymptotic solutions are obtained.

1. Introduction

The general homogeneous linear differential equation of the second order is given
by

Lw =0, (1.1)
where the operator L is of the form
d? d
L= o f(z)a; +g(2). (1.2)

If, as we shall suppose, the point at infinity is an irregular singularity of rank
one, then the functions f(z) and g(z) can be expanded in power series

oo o8]
=L =%, (19)
=0 z &=0 z

that converge in an unbounded open annulus A centred at the origin. Not all
of the coefficients fy, go and g; vanish, otherwise infinity would be a regular
singularity.

The asymptotic theory of solutions of (1.1) in these circumstances is well known
and will be found, for example, in Olver (1974, ch. 7, §§ 1-2). Following the nota-
tions used in this reference, we shall assume, without loss of generality, that the
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40 A.B. Olde Daalhuis and F.W.J. Olver
roots A; and A, of the characteristic equation
A+ fod+go=0 (1.4)

are distinct.t Then equation (1.1) has unique solutions w; (z) and w,(z) such that

Az, p - @s
wl(z) ~ e Z —;;', (1.5)
5=0

wa(z) ~ ehe® gh Z 9-133, (1.68)

as z — 00 in the sector [ph{(A — A2)z}| < 2x — 6. Here (and elsewhere in this
paper) § denotes an arbitrary small positive constant, and the exponents uy, u,
and the coefficients a,1, a,» may be found by formal substitution in (1.1) (see
§2 below). Any branches may be taken for z** and 22, provided that they are
continuous and used consistently throughout.

In the special case in which L is the confluent hypergeometric differential op-
erator, it is known (Olver 19915, 1993; Paris 1992b) that the remainder terms
associated with the expansions (1.5) and (1.6) can be re-expanded in such a way
that these expansions are ezponentially improved in the sense defined in Olver
(1991a, b); furthermore, the sectors of validity are increased. The purpose of this
paper is to develop a similar theory for the more general case. Earlier work on this
problem includes the formal research of Berry (1990) and the rigorous analysis
of Paris (1992a). The latter applies to certain differential equations that can be
solved exactly in terms of Mellin-Barnes integrals. The investigation whose aims
are closest to those of this paper is that of McLeod (1992); however, McLeod’s
results are neither so general nor so powerful as the ones we shall develop.

As in the earlier references, the re-expansions of the remainder terms will be

expressed in terms of generalized exponential integrals {(or incomplete Gamma
functions), defined by

g% [==] e—zttp-l
Fy(s) = 5 fo ——dt, (1.7
when Rp > 0 and [phz| < {m, and by analytic continuation elsewhere. Relevant
properties of these functions will be found in Olver (1993, §2).

The original intention was to use a direct differential-equation approach as in
the special case treated in Olver (1993). However, significant difficulties appear
in the analysis that are absent from the proofs in that reference. Thus it is
necessary, at first, to match the optimal remainder terms by a double series of F-
functions, rather than a single series; furthermore, the coefficients in the double
series are unavailable in simple explicit form. To prove that the double series
may be reduced to a single series, with explicit coefficients, elaborate indirect
arguments based on limiting forms of the double series have to be used.

The approach in this paper is quite different. By using the connection formu-

t The case A1 = A2 can always be handled by application of a preliminary transformation due to
Fabry (Olver 1974, ch. 7, §1.3).
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Exponentially improved asymptotic solutions. II 41

lae for the solutions and contour integration we construct Stieltjes-type trans-
forms for the remainder terms, from which the desired re-expansions can be
found directly.} Not only is the analysis considerably simpler; it will lend it-
gelf more readily to further developments and extensions. These include higher
re-expansions of remainder terms (hyperasymptotics), and differential equations
of other orders or with other types of singularity.

We should also add that if the theorems of this paper are applied to the conflu-
ent hypergeometric equation, then the results agree with those of Olver (1993).

2. Main results

If we replace the independent variable z by z/(Ay — A1), then the essential form
(1.2) of the differential operator L is unchanged, but the new characteristic values
satisfy

)\g - >\1 =1. (2.1)
The effect of this transformation is to simplify considerably the notation in subse-

quent analyses; in consequence, throughout the rest of this paper we shall assume
that the condition (2.1) is satisfied.

The branches of the asymptotic solutions are chosen to be

o] a,
wy(2) ~ eMEzh Zo _;i lphz| < &r -6, (2.2)
and
> Qg2
wy(z) ~ €722 S - —ir+6<phz < Ir—§ (2.3)
=0

compare (1.5) and (1.6). The characteristic values A;, A, are the roots of the
quadratic equation (1.4), and the exponents y; and p, are given by

pr=fidi+g1,  p2=—(fire+ 1) (2.4)
The coeficients are determined by ag1 = ag2 = 1 and, when s > 1,

~8051 = (5~ p)(8 = 1 — py)a,-11

+ Z{Alfj+1 + gj+1 — (s—7~ #1)fj}a'a—j,1a (2-5)

i=1

802 = (8 — p2)(8 =1~ pa)a, 1

+ 3 {afivs + 9501 — (8 — 1 — p)fi}aeja. (2.6)

J=1
A direct consequence of (1.3) is that w; (ze™>™) and wa(2ze?™) are also solutions
of (1.1). Note that wq(z) and e*™#14; (2e~%™) are dominant solutions in the sector

} These transforms can be regarded as ‘resurgence relations’ in the terminology of Berry (1991) and
Berry & Howls (1991). Perhaps it should be noted that Stieltjes transforms were used by Olver (1990) and
Boyd (1980), respectively, in deriving exponentially improved asymptotic expansions for the confiuent
hypergeometric function and a modified Bessel function via integral-representation approaches,
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42 A.B. Olde Daalhuis and F.W.J. Olver

—7r +6 < phz < -7r — 6 and have exactly the same asymptomc expansion there.
Slmﬂarly for wg(z) and e 224y, (ze™) in the sector |phz| < 37 — 6. Thus there
are constants C; and C, such that
wy(z) = e*M#1, (2673) + Cruwn(2), (2.7)
wy(z) = e 2" Haqyy (2e*™) + Cowi(2). (2.8)
Formulae (2.7) and (2.8) are called the connection formulae, and we assume the

constants C; and Cj to be known.
The remainder of this paper is devoted to the proof of the following theorems.

Theorem 2.1. Let m be an arbitrary fixed non-negative integer. Then as
58— 00

Be(ﬂ'z"#l)’i
o= () gy
m—1
X {cl S (= Vazal (s + s — 1 — ) + s + pa ~ pir = m)O(l)}, (2.9)
i=0
1 m—1 )
Qg3 = —%{Og Z aj,ll’(s + 1 — po — ]) + I‘(6‘+ M1 — M2 — m)O(l)}(210)
=0

Theorem 2.2. Define Ri!(z) and R(Q)(z) by

— A2 a's 1
wy (z) = etz gﬂ = + RW(2), (2.11)
n—1
Az _u2 aa’z 2
’wz(z) = e ¥ zH ; “;;— + RS‘ )(2), (2.12)
where
n=|z| + o, (2.13)

and o is bounded as |z| — co. Then

Rfll)(z) = (__)n—lz'e(ua—m)'m‘ehzzuz

[0 F (ra, Bzl g )], 2

8=0

BO(z) = (= )riehemene

m~1 -
«{e, S () Tt ET) RL(3)}, (239

zﬂ
3=0
where m is an arbitrary fixed non-negative integer, and for large |z|

R, (2) = O(e7==2m), lphzl (2.16)

RQ).(2) = O(z"™), lpth r—6, (2.17)
Rffi?n(Z) = O(e™"**z™™), 0 < phz < 2m, (2.18)
R (2) = O(z™™), - %71’ +6 < phz < 0 and 27 € phz < I — 6,(2.19)
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Ezponentially improved asymptotic solutions. IT 43

uniformly with respect to phz in each case.
Furthermore if Cy and Cy are both non-zero, then the sectors of validity are
maximal.

Remark (i). The results (2.9) and (2.10) are investigated in Olver (1994) using
elementary analysis based on the recurrence relations (2.5) and (2.6).

Remark (ii). In consequence of (2.9) and (2.10), when C; and C; are non-zero
the condition that a be bounded in equation (2.13) includes the situation in which
the series in (2.11) and (2.12) are truncated at their optimal stages.

Remark (iii). At first sight it may seem remarkable that the coefficients a, ; that
appear in the re-expansion (2.14) of the optimal remainder term in the expansion
(2.2) for w;(z) are the same as those in the expansion (2.3) for w,(2). One way
to understand this phenomenon is as follows. If an expansion of the form (2.14)
holds throughout the sector |phz| < 37 — 6, then from (2.17) and Olver (1993,
eqn (2.11)), we see that in the outermost parts of this sector the contribution
of (2.14) is dominant when compared with the finite sum in (2.11) and must
therefore match the expansions for w;(z) in these outer regions obtained by use
of connection formulae typified by (2.7). A similar observation applies to the
coefficients a,, in (2.15).

Remark (iv). Corresponding results for other phase ranges can be derived easily
from the stated results. For example, since wy(ze?") is another solution of (1.1),
on replacing z by ze*™ throughout (2.12), (2.15), (2. 18) and (2.19), we obtain a
similar expansion for a solution in the phase range —Zm + § < phz < 2 37— 6.

Remark (v). If Cy = 0, then equations (2.14), (2. 16? (2. 17) combine into

R,(,f (z) = O(e"’”"“‘z“’“"‘), lphz| < 7

and
RP(2) = O(ed2*z#~™), < |phz| € 2n - §,

for any integer m; compare (2.1). Actually, a stronger result applies in this case
and it can be derived directly as follows.
From (2.7) we see that when C; = 0 we have

wy (2) = e*™Hiw; (267,

Accordingly, the function e™*1%z7#1w; () is single-valued and analytic on A. In
consequence (Olver 1974, ch. 1, §7.5) the expansion

o0
wy(z) = My
s=0

converges on A. Let p be any constant that exceeds the radius of the boundary
of A. Since a,,/p* — 0 as s — o0, it follows that

lasn| < Hp?,
where H is assignable independently of s. Hence if |z| > p we have

(1) ()] = (1% i - s,1 12 0 " |Zl
RO = e Y 2| < e ()

ped |2 —

aa,l
2%
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44 A.B. Olde Daalhuis and F.W.J. Olver

compare (2.13). Furthermore, this estimate applies without restriction on phz.
Similarly, (2.18) and (2.19) may be strengthened when C; = 0.

3. Stieltjes-type transforms for the coefficients and remainder terms

Let us define
vi(z) = e Mz M lw (2), va(2) =€ T un(2), (3.1)
so that for large ||

1 bad Qg1 3

Ul(z) ~ Z ; ) Iphzl < 3T 6, (32)
25 2

o]
y(2) ~ ezt E a_;;;%, —ir+6<phz < § -6 (3.3)

compare (2.1), (2.2) and (2.3).

Lemma 3.1. Let p be any constant such that p — § exceeds the radius of the
boundary of A,f and X any constant in the closed interval [—3m + 6, 31 — ).

Then .
Cl ooe(x-i-w)i. ’2)2 (t) 1 /pe(o\f+1r i ‘UI (t)
= —— —tdt - — dt .
u(2) 2mi /p-e(xw)a t— zd 21t Jpetx-mi t—2 (34)
valid when z lies in the annular sector

|2l > p, X —7<phz<X+m. (3.5)
In (3.4) the path in the first integral is a straight line, and in the second integral
it is an arc of the circle |t| = p described in the positive sense.
Proof. From (2.7) and (3.1) we have
Ciup(t) = vy (t) — w1 (te™2™).

Accordingly, if r is any positive number exceeding p and |z|, it follows that

re(x-{-x)’i re(tf+ﬂ)i re(x-n)i —2ni
(2 vy (B te™"™
01/ —}—(——)dt=/ _.l.(_ldt_/ E-(———-)-dt
pelxtmi T — 2 pelx+mi T — 2 pelX )i t—z
(% +a)i (=)
= n® g, / R GO (3.6)
peX+mi T —z petx-mi L — 2 ‘ '

Ey application of Cauchy’s theorem to the contour indicated in figure 1, we
obtain

1 relXtaH pelX =7 pelX =) pel X Fm)i
T\ J pet@+m)i relX+myi relX—m)i pe(x-myi Jt~2z
Let r — co. Since X — 7 > —%w +6and X+ 7 < %71' - 6, it follows from (3.2)
that v (t) = O(1/r), uniformly on the circular arc of radius 7. Hence the limiting

t Actually, until §4 it would suffice for p to exceed the radius of the boundary of A.
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peUrmi A

reu“‘)f — pe(l’ﬂﬂ)f

relemi

Figure 1. t-plane. Contour for equation (3.7).

value of the integral around this arc is zero. The desired result (3.4) is obtained
by combining (3.6) and (3.7), and then taking the limit.

Lemma 3.2. Assume the conditions of Lemma 3.1, and let n be an arbitrary
non-negative integer. Then

x4 pelX+mi

1 -— o8 LEATE] s
s = 5 {(_)a 10, f,, L mlenre /,, o, dt}, (3.8)
and

pe()c' +x)i

Mz p1 ooe’? LEAWE % n
RO () = - S22 {(-)"c1 / e 4y / ”—l-@t—dt}. (3.9)
p p

2mwizn—l e X1 t+z o(x-mi t— 2

Proof. To prove this result, we substitute into (3.4) by means of the expansion

1 =t i
t—z ”‘sz:: P 2(t—z)’
and subsequently replace t by te™ in the integrals along the straight-line paths.
We obtain

w,(2) = eMFzM nz:l %;—1 + RV (2), (3.10)
where =
1 ooe™i ) pelX w1
Bay = %{(“)a-lcl /P L, wmerdt /p ey e dt}, (3.11)
and
~ ALz pp1 coe”* riym (X +m)d n
R(P(2) =~;M;_1{(—)“01 /,,e N Pli%—}-dt-;— /,, :x_«)« %‘%dt}. (3.12)
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46 A.B. Olde Daalhuis and F.W.J. Olver

Obviously, Lemma 3.2 will follow if we can show that &,; = a,; and R{)(z) =
RM)(2). For this purpose we assume temporarily that n is fixed and z is large
with phz = 0. With the aid of (3.3) we easily deduce from (3.12) that in these
circumstances we have

RN (2) = eM* 2 0(z™™). (3.13)
On comparing (3.10) and (3.13) with (2.2) and recalling that asymptotic expan-
sions of Poincaré type are unique, we dgduce that 4,1 =as1,5=0,1,...,n =1,
and hence from (2.11) and (3.10) that R{M(2) = R{(2), (if phz = 0 or not).

4. Proof of Theorem 2.1

Lemma 4.1. Let m be an arbitrary fixed non-negative integer, and t lie in
the annular sector

ltl>p—6, |pht|<3r—6 (4.1)
Then
m-—1
wi\ _ o (pa—pa)mi g —typa— g —1 %2 9n()
e i P
where
[P ()] £ P, (4.3)

and &,, is assignable independently of {.

This result is an immediate consequence of (3.3) and the fact that v,(te™) is
analytic on the annular sector (4.1).
To prove Theorem 2.1 we set X = 0 in (3.8). We obtain

Gy = (_)a—-l_g_l_ /w ('teﬂ)t" dt + *L/Peﬁ v (t)t" dt 4.4
a1 = 274 0 v 27t pe—Ti ! ) ( ' )

In the second integral, v;(t) is bounded on the path of integration; accordingly

wi

/ v ()t dt = O(p*), s — co.
pe—i

In the first integral, we may substitute in the integrand by means of Lemma 4.1.
This yields

0 . n mol o
/ va(te™)t* dt = -e(“z"'“)’"{Z(—)ja,-‘z / eI gy
2]

14 =0

+/ e—tts+u2~#x*m‘1¢m(t)dt}, (4.5)
P
Now,
o0 .
/ ety tHamm—i-1gs — Dls+pg— 1 —3)~v(s+ 2 — 11 — 3,0)
p

=T(s+ pig — s — j) +8720(p°), 8 — o0.
Proc. R. Soc. Lond. A (1994)
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(This step follows from the well-known power-series expansion for the incomplete
Gamma function, given for example in Olver (1974, ch. 2, §5.1).) For the other
integral in (4.5) we have

/oo e‘tt””"—“‘—m”lcbm(t) dtl £ P, /00 et TRIa—Ru—m-1 gy
P P

< &,I(s + Rpz — Ry —m),

provided that s > Ry — Rpua + m.
On combining the foregoing results we arrive at

e(uz pa)m )
o = (1 E 05 Yl =) e,
7=0
where, for large s,
€m,s = O(p*) + C1I'(s + Rpg ~ Ry ~ m)O(1) € I'(s + pa — i — m)O(1)
This establishes (2.9). The proof of (2.10) is similar.}

5. Proof of Theorem 2.2 for w,;(z) when |phz| <76
From (3.9) with & = 0 we obtain

;n 1{ -Gy / ”ﬁ(tem ndt+ /p,,em ”;(t) dt} (5.1)

g7 -

Rm(z) = —

valid when |z| > p and |phz| < 7. For the second integral we note that |t — z| >
|z| — p and that |v;(t)| is bounded on the integration path. In consequence, when
|z| — oo with ||z] — n| bounded (compare (2.13)), we derive

pet vl() 1 n
[ 5= o), 6:2)

uniformly for all values of phz.
In the first integral in (5.1) we may substitute by means of Lemma 4.1. From
(1.7) we see that when n > R(u; — p2) +m—1

—tgntpa—pr—~j—1 .
| dt = g R (2), fphal <7 (53)

Accordingly,

® gy (te™ )" Y nbpg =1 Fotpa—ps—3(2)
/; o dt = #z p)wi) 9az yntpa = Z( )Ja] _______]1___

- S.(2) + SE(2) ), (64

t Alternatively, we can interchange the roles of w1 (z) and wq(z) as indicated in §7 below.
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48 A.B. Olde Daalhuis and F.W.J. Olver

where
8 p—tntuz—ia -j=1

3(1)1;(2)“2( Yaj / — %

j=0

and
00 e—-ttn-i-,u.a — g —mn-1

(2) -
e = [ s
In ST(,%,).,,'(Z) we have ‘t + z| P lz] — p. Hence

$m () dt.

S0P (69)

IS,(,})R(Z)I Z |as, 2|¥(n + Rz — Ry — 3, p) =

lzl

as |z| — oo with ||z| —n| bounded, uniformly for all values of phz; compare (4.6).
For S (z) we restrict |phz| < r — §(< 7). Then |¢ + z| 2 |2|siné on the
integration path. Usmg also the bound (4.3), we find that whenn > R(puy—po)+m
S I'(n 4+ Ry —~ Ry —m)
|2|sin & '

[5(2) z)l <

—ttn+§2p2—%u1—m-l dt
lzl sin§ /

On combining the foregoing results and referring to (2.1) and (2.14), we perceive
that

RO,(2) = ez {O(p) + Dln + Rep — R = m)O(1)}.

Applying Stirling’s formula and recalling again that |z| and n are related by
(2.13), with « bounded, we see that when |phz| < 7 — § we have

RD) () = e~2g~mtatmgnpnifue—Ru-m-3 (1) C e~*-klO(z~m- 1) (5.6)

This result agrees with (2.16); indeed, in the present circumstances it is stronger
by a factor O(z~%).

6. Proof of Theorem 2.2 for w;(z) when |phz| < ir - 36
Lemma 6.1. Let A, and A, denote the closed annular sectors
Ay ={r: |l 2p — 37 + 26 < phr < im — 26},
Ay={r:|7|2p+6 —3ir+36<phr < ir—36}.
Then

Pm(t) = pm(2e™™)
t+ 2

where ¢,,(t) is defined as in Lemma 4.1 and ¥, is assignable independently of ¢
and z, provided that t € A, and ze™™ € A,.

€ U, (6.1)

Proof. This result can be proved in various ways. We shall proceed as follows.
Write { = ze™™, so that

¢m(t) - qu(ze—ﬁ) — ¢m(t) - qsm(C)
t+z t—¢ )

(6.2)
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l=~{l=20

N

p-0

Figure 2. 7-plane. 84, is the boundary of Ay, etc.

Also define

Ao={r:|r|Z2p—6 -in+6<phr < jm -6}
Because p — 6§ exceeds the radius of the boundary of A (Lemma 3.1), we have
ADA;D A DA,
From figure 2 it is clear that we can find a positive constant o such that if
¢ € A,, then the closed disc |7 —¢| < ¢ lies in A; and the closed disc |7 —(| < 20
lies in Ag.t Accordingly, if { € 45 and 0 < |t — (| < o, then

¢m(t) - ¢m(<) _ '1_ ¢m(7)
t-¢  2mi /1r~§|=2a (r—t)(r - C)dT'
With the aid of Lemma 4.1 we then derive
¢m(t) - ¢m(C) P — ?ﬁ
e N (6.3)

On the other hand, if { € 4, and t € A; with [t — {| > o, then we have directly

¢m(t) - ¢m(g)
t-¢

Combination of (6.2), (6.3) and (6.4) establishes (6.1) (with ¥, = 2&,/0),
provided that t # ze™™. The last condition is removed on replacing the left-
hand side of (6.1) by its limiting value.

29
< == .
S (6.4)

t In fact, it suffices that o be bounded by 6 and (1p + 56)sin26.
Proc. R. Soc. Lond. A (1994)
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[ pe(-}u-‘ZG)l

. ze~-\7|:i

L 4

o P
Figure 3. t-plane.

To continue the proof of Theorem 2.2 we set X = im — 26 in (3.9). We obtain

(%x-ié){

Ti\4n (§m~26)i n
) z“l{ ney f vo(te™)t dt pe v ()"
Ry (z) 27rzz"— ( ) (g=-26)i t+z + pel-dm-26X t — 2 dt o,
(6.5)

valid when |z| > p and —i7m ~ 26 < phz < $m —26. As in (5.2) it follows that

pe(g-r—-ﬂé)t

l(t)tn 1 7
/,,J-;,w-m 24t = -0 (6.6)

as |z| — oo with |]2| — n| bounded.
Next, by substitution of (4.2) we obtain

cool 328 mi)gn
/ V2 (te ) dt

pe(%"—zs)'. t'i" z
m-1 coel BT i1
_ . R A B2 1=7
— e[S gy, [T T
& b0 Th7

oce(i"“'""”’)i e-—tt-n.+,u.a—y.1-m-1

+ pald =28 itz ¢m(t) dt}. (6.7)

Bearing in mind that |ze™™| > p and —3r-26 < ph(ze“’”) < gm— 26 we
may deform the path for the integrals under the summation sign, as mdxca.ted in
figure 3. Thus we have

oae('i"'"”“ e*itﬂ+lf‘2‘#l_j—1
—— df
_/;e(%w—lﬁ))' t+ 2

ooe(én'—-25)i e
A -/P

Proc. R. Soc. Lond. A (1994)
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By analytic continuation of (5.3) it follows that
coeld™2 o pyntpamp—j-1
L e

And as in the derivation of (5 2) and (5.5) we see that the contributions of
the second and third integrals in the right member of (6.8) are z~*O(p") and
(zn)~1O(p) respectively. Hence we have

dt = 2me*p AT R L i (2).

m~1 ; coe BT pintpy -1 g
jzzo(“) @52 /Pe(.i,r..zs)t t+ 2z ¢
m—1
Fotpoep-i(z) 1
= et pttHra—m—1 i n+pz 2 ZO00™). (6.9
ettt 3 (g el 4 S0(p). (69

To estimate the remaining integral in (6.7) we decompose it as follows:

ooe(i‘"“)" e—ttn+y5—p1—m—1
R e R TG N (5
pe
where
(1) ocoelFm=36)1 e~ tnthz—m —m—1
T, (2) = fm(ze™) / o, (6.11)
002(2”'26)"‘ ¢m(t) ¢m(ze 1”‘)
T®) (2) = / T dat,  (612)
pet3IT + 2z
and until the final paragraph of this section we restrict

|zl 2 p+8, —im+36<phz< ir-~ 34 (6.13)

or, equivalently, ze™™ € A,. .
From Lemma 4.1 we know that |¢,(ze"™)| < &, when conditions (6.13) are
satisfied. Hence we have

1
TO,() = 2P R L ()00 +-0(%);  (814)

compare (6.8) and (6.9).
For T(2 ) (z) we observe that the integrand in (6.12) is analytic at t = ze™
Therefore we may deform the integration path in the following way:

Lw—26)i pe({,w-zs)x

coel T
_/;e(iw-na)i / f

again see figure 3. By application of Lemma 6.1 we have

/50 e-ttn+p.2—u1-—m—-l ¢m(t) B ¢m(ze—"i) dt
p t+z

P

< Unl(n+ Ry — Ry —m),
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and

(Fw~26)i o
pe e—itn+p3—ul—m~l ¢m(t) - ¢m(ze 1“) dt

o t+ z

pe
<srfm/
P

On combining the foregoing results we obtain
T (2) = T(n+ pa ~ 1 — m)O(1) + O(p™). (6.15)

If we substitute into (6.10) by means of (6.14) and (6.15) and then combine
the O-terms, we derive

(ivr—26)1‘.
,e—ttn-ﬂ-ta—m-m—ldtl — 0(,0"').

/ e B0 gtntpa -yt b (f) dt = e*zmHi=m=m=1p (2)0(1)
polE-20)1 t+z " Tk
+I'(n+ pe — py —m)O(1). (6.16)
The results (6.9) and (6.16) enable us to evaluate the right-hand side of (6.7).
Thus we have

Vg ( teﬂ) A

ooel 3T —26)i
] . e dt = _zwe(lla—m)wiezzn+ua—m—1
(F=—-26)i VA
pe

3=0

z] zm

+I(n+ p2 — p —m)O(1). (6.17)

‘We now return to (6.5). On substituting by means of (6.6) and (6.17) we see
that equation (2.14) applies with the estimate

Rg?n(z) = C127" Fog iy ~m (2)O(1)
+ Cre ™zt (g g — py — mM)O(1) + &7 27T O(p™). (6.18)
From equations (2.9) and (2.11) of Olver (1993), we have

o (9= { QT S o <
g~ — = O(Z—m), 7 < phz < %’ﬂ' - 36.

Furthermore, from Stirling’s formula we deduce that
e *z Mt (n 4y -y —m) = O{evz_mzi—m};

compare (5.6). And the remaining term in (6.18) is absorbable in these estimates.
Accordingly, we arrive at

RO () = O(e~*Hzt-m), ~lr 436 phz < m,
" O(z5~™), m € phz < 7 - 36
These results agree with (2.16) and (2.17) in the corresponding phase ranges, ex-
cept that z~™ is replaced by z2~™. To strengthen the estimates into the required
Proc. R. Soc. Lond. A (1994)
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form we re-expand the remainder term in the usual manner; thus

R, (2) = (-)" o, tizenlZ) L g, (o),

This completes the proof of Theorem 2.2 for the solution w;(z) in the phase
range —3T+ 36 < phz < &r — 36. The corresponding extension to the range
——7r + 36 < phz € 37 — 36 may be carried out in an analogous manner: for
example the integration paths everywhere are replaced by their conjugates, and
®m(ze™™) is replaced by ¢, (2€™). Alternatively, we can appeal to symmetry.

7. Completion of the proof of Theorem 2.2

On replacing 36 by § in the results of § 6, we see that equations (2.11), (2.14),
(2.16) and (2.17) are estabhshed except that the region of validity in (2.17) is
restricted to 7 < |phz| < 37 - 6.

The corresponding results for the solution wsy(2) can be arrived at by replacing
the independent variable in the original equations (1.1) and (1.2) with { = ze™™.
Thus we have

dw . dw

T HIOF Q=0
where

() ==f(=0, ¢ =9(=¢).
Hence

Q)= }:( y-id o 9(0)= Z( pZ, e a
=0 C =0 C

compare (1.3). In the expansions that correspond to (2.2) and (2.3) the character-
istic values are A} and A3, where A} = —)g, A3 = =), Accordingly, /\2 - Al =1
compare (2.1). Slmﬂarly, the exponents are found to be pi = pa, p3 = 1. If we
apply the part of Theorem 2.2 that we have established so far and then restore
the variable z = (e™, we arrive at (2.12), (2.15), (2.18) and (2. 19) except, again,
the region of validity of (2.19) is restrlcted in this case to the union of the sectors
—3m+6 < phz < 0 and 27 < phz < < 27 — 6. The analysis is straightforward and
there is no need to record the details.”

The remaining task is to attain the full regions of validity of (2.17) and (2.19).
As in the case of the confluent hypergeometric function (Olver 19915, 1993) we
shall achieve this by use of connection formulae.

First, we consider the solution w;(z). From (2.5) of Olver (1993), with k = —
and p =n + pg — Yy — 8, we obtain

Frot e —s (267 2M) = (—)nms=Vjglbammdmi g a-pidmipy 0y (7.1)

Hence from (2.14) we have

m-1
eZ}J,\'m’R%l) (Ze—Q-n--i) — (_)n—lie(p,g~u;)7ric¢le>\gzng Z (”__)san,2 Fn"l‘liz"l;l "8(2)
z
5=0
m—1 a )
— Gz Y _;’j% — (=)rielmralmighaz gia RID (2072, (7.2)
=0
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On substituting into (2.7) by means of (2.11) and (2.12) then referring to (2.14)
and (7.2), we find that on reduction

R, (2) = X #ImRY) (2e7) + RO (2) + AP (2), (7.3)

where

RO (7) = (=gl Z &s,2

M7 Zs ]
s=m

Rﬁf’) (2) = (—)"ie(”"“"')"i Cre 277+ Rff) (2).

We now let z — co in the sector 2w — 6 < phz < §7 — § with ||z| — n| bounded.
From (2.16) we immediately derive

32(“‘"“2)”"R£,1,3n(ze“2"i) = O(e Fl=7 =™y C O(z™™). (7.4)

Next, consider R, (2). If we write & = supa, then we have |z| > n - &; see
(2.13). From Theorem 2.1 we know that

G52 = O{I‘(s+ B — y,g)}, § — 00.

Let M be the least positive integer that satisfies M 2 m and M 2 &. Applying
Stirling’s formula, we see that there is an assignable constant A such that

jas,2| < Ae"’s”m“"‘“)‘ s> M.
Therefore when n > M we have

]Z Zed ‘as,zl A T emegrtRUn-p)~4
=m s—m ’Zl lle =M ('n - &)""M

o e“ass'{'m(.ul —p2)~ %

la‘s 2‘
Z || }le (3 +1—a)M

s=m

The infinite sum converges; hence we see that

RO (z) = O(="). (7.5)

Lastly, in the second paragraph of thxs section we showed that the region of
validity of (2.18) includes the sector im — § < phz < 2, and that of (2.19)

includes 2r < phz < 2w — 4. Substxtutmg into (2.15) by means of these estimates

and using also Olver (1993, eqns (2.9) and (2.11)) with z replaced by ze™™ and
p=mn-+p — Uy — 8, we arrive at

RP(z) = O(eM*ze* 1), ir -6 < phe < 2m,
B®(2) = O(e**2™), 27 < phz € 37 - 4.
Correspondingly,
RP(z) = O(e"Mz#17#2),  4xr— 6 < phz < 2m,
RO (2) = O(e™72 Th),  2r <phz L $n -4
Thus in both cases we may assert that
BO(z) = O™, (1.6)
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On substituting into (7.3) by means of (7.4), (7.5) and (7.6), we obtain the
required result

RY) (z)=0(z"™), ir-6<phzg in~-6 (7.7)

The extension of the region of validity of (2.17) to the sector —37+6 < phz
-—*7r + 6 may be carried out by similar analysm And the extensmn of (2 19) to
the sectors —$r+6 < phz < - ir+6and $r—6 < phz < < Im—6is then achieved
by the procedure outlined in the second paragraph of this sectmn

Another extension of the foregomg analysis shows that if C;C; # 0, then (7.7)
breaks down when phz crosses 2. This is because (7.4) and (7.5) continue to
hold, but in the vicinity of phz = $m we have

R,(,?)(Z) = —e2(ra—p)mighiz {02 + O(Z—l)};
compare again (2.15), (2.19) and Olver (1993, eqn (2.11)). Hence
RO (2) = (=) Mela—mImiCie™* 2742 {Cy + Oz 1)},

and this is exponentially large When phz exceeds 3. A similar observation a.pphes
to the other bounda.ry phz = —27 +6, and also to the boundaries phz = — 37 +§
and phz = Ir —§ in (2.19).

The proo% of Theorem 2.2 is complete.

8. Conclusions

In this paper we have considered the asymptotic expansions of solutions of
the general homogeneous linear differential equation of the second order in the
neighbourhood of an irregular singularity of rank one. We have shown that if these
expansions are truncated at (or near) their optimal stage, then the remainder term
can be re-expanded as a series of F-functions (generalized exponential integrals),
divided by rising powers of —z, z being the independent variable. Furthermore,
the coefficients are the same as those in the original asymptotic expansion of the
complementary solution.

The total sector of validity of each of the new expansions has an angle of 57 —26,
compared with 37 — 26 for the original Poincaré forms, § being an arbitrary small
positive constant. Moreover, the new expansions are consxderably more accurate
and also provide a smooth interpretation of the Stokes phenomenon.

We have also shown how to construct explicit asymptotic expansions for the
higher coefficients in the original asymptotic solutions of the differential equation
in terms of inverse factorials. Again, the coefficients are the lower coefficients of
the complementary solution.

Our method of proof is to construct Stieltjes-type transforms for the remainder
terms from the standard connection formulae for the solutions, and then to de-
rive the required results by appropriate expansions of the integrands. Necessary
extensions of the regions of validity are found by use, again, of the connection
formulae. The method appears to be fairly general, and could be applied, for
example, to linear differential equations of other orders or with other types of
singularity.

We are indebted to the referees for several improvements in the presentation of the results. The

Proc. R. Soc. Lond. A (1994)



56 A.B. Olde Daalhuis and F.W.J. Olver

earch of . W, J. (). s heen supported by the U.S. National Science Foundation under
grants DMS 8723039 sud DMS 92-08690.
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