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1 INTRODUCTION 

1.1 For scalar valued martingales the strong law of large numbers (SLLN) is 
relatively easily proved: if M is locally square integrable martingale, then (M>1- 1 M 1 

converges a.s. as t-+ oo and the limit equals zero if (M)i-+ oo a.s. (see Liptser and 
Shiryayev, 1989, Section 2.6). But in the multivariate case the matter is different due 
to the possibly complicated dependence structure between the components (see e.g. 
Christopeit (1986), Lai and Wei (1982), Le Breton and Musiela (1987, 1989), Mel'nikov 
(1986) and Novikov (1985)). The SLLN in this case refers to < M),- 1 M1 -+ 0 a.s. as 
t-+ oo, where Mis an !Rd valued locally square integrable martingale and <M> is 
the ~4 x d valued tensor predictable covariation process. The motivation in the above 
mentioned papers for investigating whether a SLLN holds traditionally stems from 
(pseudo) least squares estimation. 

As is shown in this paper, the problem still has a relatively simple solution under 
the restriction that the quadratic variation process of the multivariate margingale in 
question is deterministic. 

The first result in this direction has been proved by Lai, Wei and Robbins (1979) 
in the discrete time setting in a paper on least squares estimation (see also Le Breton 
and Musiela (1986)). Their proofs heavily depend on the fact that all components are 
actually transforms of one and the same real valued rnargingale. Both these limita­
tions are dropped in the present paper. Our approach is much in spirit of Lai, Wei 
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and Robbins (1979), and loosely speaking generalizes all the intermediate steps 
undertaken in it. It turns out that the intermediate results can be presented in a more 
compact and elegant form; see Sections 3 and 4 below. We want to empasize that 
there is a good reason for taking up this older method for analysing the behaviour 
of ( M) - 1 Ml instead of what most recent authors do, which is giving bounds for the 
quadratic form Ml' (Ml) - 1 Ml and then applying Schwarz' inequality which finally 
yields conditions on the growth rates of minimal and maximal eigenvalues of (Ml). 
It appears to us that this approach is not suitable to obtain the sharper results of 
ours in the presence of the restriction that (Ml) is deterministic, whereas the 
dimension reduction technique of Lai, Wei and Robbins (1979) provides a useful tool 
to obtain a criterion under which the SLLN holds in terms of an intuitively appealing 
probabilistic interpretation. 

It should be noticed however that unlike the present paper in Lai, Wei and Robbins 
(1979) the object in question is not necessarily formed by transforming a real valued 
martingale (but actually any so-called convergence system: see e.g. Chen, Lai and 
Wei (1981), Lai and Wei (1984); cf. also Solo (1981)), while in Kaufmann (1987) it is 
a transformation of a real valued martingale which satisfies some moment conditions. 

1.2 In Section 2 the main results of this paper are formulated. The calculations 
presented in Section 3 are then used for proving in Section 5 a key convergence 
theorem formulated in Section 4. The proof of the main theorem 1 is given in Section 
6. Finally, we discuss in Section 7 an application to least squares estimation. 

2 MAIN RESULTS 

2.1 The basic setting is as follows. On a complete filtered probability space (Q, !F, 
IF, P) all our stochastic processes are defined. All martingales are understood as being 
so with respect to the filtration IF. 

Let Ml: 0 x [O, oo) --+ IR4 be a martingale. Let < M): Q x [O, oo) -+ ~4 x d be its 
predictable quadratic variation process. So we assume that for all components m; of 
M we have that E (m:)2 < oo, for all t ~ 0, that is Ml e WlJ. Moreover, we will assume 
throughout this paper that the quadratic variation process (Ml) is deterministic. So 
for its ij-element we have (Ml)ii = E(mim1). 

It may happen that for some (or all) t the matrix (M)1 is singular. Therefore 
we will consider el4 + (Ml) 0 where e > 0 and I the identity matrix, and denote it by 
A,. Let V=(.el4+(M))- 1 =A- 1• (It is also possible to study directly (M)+M, 
where (Ml)+ is the Moore-Penrose generalized inverse. This seems however to lead 
to many. technical co~plications, that are beyond the purpose of this paper; see 
Dzhapandze and Sprey (1992} for a related discussion}. 

2.2 We will be only interested in the limit behaviour of v M as t-+ oo and we will 
show that under suitable assumptions 1 1 
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First we introduce some notations. Let e; be the ith unit vector in ~d and 
c;~ 1 = e;V1e;. Let g: [O, oo)-+ IR be such that the following integral exists 

Joo(g(x))2 
- dx < oo. 

0 x 
(1) 

Let D: [O, oo) -+ !Rd x d be such that D1 is a diagonal matrix for all t :?: 0, with 
diagonal elements Dit = g(ci1). 

2.3 The main result of this paper is the following 

THEOREM 1 Let g, c, V and D be as defined above. Then 

lim D1V 1 M 1 exists and is.finite a.s. 

Moreover if lim1 _. 00 C;1 = oo, then lim1_. 00 ejD1 V1 M1 = 0 a.s. 

The proof of this theorem is presented in Section 5. It involves a series of auxiliary 
results, which we present after some additional computations. 

Remark Suppose one is only interested in a weak law of large numbers, that is 
<M>1- 1M1 -+ 0 in probability as t-+ oo (assume here that (M)1-

1 exists for t large 
enough). A sufficient condition is then 1EM;(M)1- 2 M1 40, which is equivalent to 
tr(M)1- 1 -+ 0 and hence cit-+ oo (i = 1, ... , d). The observation that c;,-+ oo is 
sufficient for a weak law to hold, suggests that a condition on the behaviour of the 
eigenvalues of (M) should be superfluous for the SLLN. One of the aims of this 
paper is to show that this suggestion can be justified. Indeed it follows from Theorem 
1 that <M>1- 1 -+ 0 is a sufficient condition for the SLLN to hold, and also gives some 
information on the rate of convergence in terms of the matrices D,. 

2.4 Assertion (i) of the following corollary is obvious, and assertion (ii) is proved in 
Section 7.2. 

COROLLARY 2 

i) Let <M>, be non singular for t large enough. Then the assertion of Theorem 1 
remains true if we take e = 0. 

ii) Assume lim, .... 00 u'(M)1ufor all u E !Rd is either zero or infinity. Then 

This statement remais valid if V is substituted by a generalized inverse <M) +. 
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3 AUXILIARY ASSERTIONS 

3.1 First we introduce some more notations. Write M = [: J where m E 9:Ri and 

ME?m1_ 1• Surely m = e'1 M and M = J;,M with J;, = [O,Ia_ 1]. Denote A= sld-1 + 
(M) = Jdtud and V = A- 1• 

We repeatedly will use the following identities: 

dAV+A_ dV=dVA + V_ dA =0, dA +A_ dVA =dV- V_ dAV=O 
(2) 

dA+AdVA= -dAV_ilA;c:O, dV+ VdAV= -dVA_~V:::;O. 

We can present W as follows: 

(Here and elsewhere the time index t will often be omitted). This is easily seen by 
using the following representation for A. = el a + < M): 

[1 (m, M) VJ[c OJ[ 1 
A.= 0 Ia- 1 0 A V<M,m) 

(4) 

where c =a - (m, M) V(M, m) with a= e + (rn). Observe that 

A.b = ce 1 and c = det A./det A= b'A.b = b'A 1 with A1 = A.e 1. (5) 

Hence by (3) 

(6) 

and we see that the first component in (6) is equal to c- 1 b'M. Therefore it is easily 
seen that studying of WM is equivalent to studying of quantities like c- 1b'M, since 
any component of WM is of this form after a suitable permutation of M and (M). 

3.2 We need the following multivariate version of Theorem 8 in Liptser and 
Shiryayev (1989), Section 2.2, adapted to the present situation. 

PROPOSITION 3 Let M and M be as above. There exists a predicable d x (d - 1)­
matrix valued process <P with the following properties: 

i) <j)d(M) = d(M, M), 

ii) <j)d(M)<fJ':::; d(M). 

The proof proceeds along the same lines as in the univariate case. 
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Remark Unlike the last case the process 4> here may be not uniquely determined 
as, for instance, in the typical case in which M = v · m with a vector valued function 
v and a sclar valued martingale m, because now d(M)1/d(m), = v,v; is singular for 
each t. However the martingale <P · M does not depend on the particular choice of 
</J. Here and elsewhere below· means stochastic integration. 

3.3 The behaviour of b'M will be studied by representing it as 

b'M = b' · M + M'_ · b (7) 

PROPOSITION 4 Let N = b' ·Ml and n = b' <f:i · M with (the integration variable is usually 
omitted) 

(N), = j b'd(M)b and (n), = j b'</J d(M)<f/b. 
J[0,1] J[O,t] 

Then 

i) M'_ · b, = - fro.ii M'_ V_ d(M)rj;'b. 

ii) (N - n, M) = 0. 

iii) (N)1 - (n), = c, + Jro. 11 b'<jJA dVA<f/b. 

iv) (n), ~ (N)1 ~ c0 t ~ 0, and moreover d(n)/dc ~ 1 and d(N)/dc ~ 1. 

v) dV1 ~ dc- 1 where V1 = We 1 . 

Proof 

i) By (2) 

db = = [ 0 J [ 0 J - V_ d(M)<f/b - Vd(M)</J'_b_ . 

Indeed, the second and third equality, for instance, are easily verified as follows: 

d(V(M, m)) = V_(d(M, m) - d(M) V(M, m)) 

= V_ [d(M, m) d(M) Jb = V_ d(M, M)b = V_ d(M)rj;'b. 

Now, (i) follows from (8). 

(8) 

ii) As is easily seen by definition of <P in Proposition 3, the martingales N - n 
and Mare orthogonal: 

(N - n, M) = b'·(M, M) - b'rj;'(M) = 0. 

iii) By (5) de= d(b'A)e 1 = b'_d(M)e 1 + db'Ae 1 , hence 

de= b'_ d(M)b (9) 
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and 

(N)1 - C1 = L L\b'L\(M)b = L [O - b'L\(M, M)V_]b.(M)b 
[0,t] [O,t] 

= - L b'L\(M, M)V_Ll(M, M)b = - L b'<f;L\(M)V_L\(M)q/b. 
[0,t] [O, r] 

This gives (iii), since by (2) we have 

<n>i+ r b'</>AdVA<f>'b= I b'<f>t1(M)l.VhP'b 
J[O,r] [O,r] 

= - L b'<f;t1(M) V_ L\(M)<f;'b. 
[O,t] 

iv) Surely, (iii) implies (iv), since the second term on the right hand side of (iii) 

gives a nonnegative contribution. 

v) Observe that c- 1 is non increasing because c- 1 = e'1 'We 1 with V non increasing, 

since (M) is non decreasing. The equality V1 = c- 1b follows from the first relation 

in (5). 

For any non negative (measurable) function q we have 

by (2), so that if q = 0 de - 1 a.e., then 

This means that 

J q dA. Vi = - f q!'L dV1 = 0, as A. > 0 
[0, ro) J [O, oo) 

(see (2)). Hence qA. _ is dVi a.e. zero on (0, co) and so q is a.e. zero on (0, oo) with 
respect to dV1• 

4 A CONVERGENCE THEOREM 

4.1 Theorem 5 formulated in this section is crucial for studying the behaviour of 
M'_ ·b. 

Let A: [O, co)-+ fY'd where fYJd is the set of non negative definite (d x d)-matrices. 

Assume that A0 > 0 and that A is non decreasing, so A1 2 As for t 2 s. Since all the 
A, are invertible, v; = A,- 1 is well defined for all t 2 0, and for t > 0 we have 
dV = - V dA V_ (see (2)). 
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For h: [O, oo)--+ IR' we use the following notation h E L2([0, oo), dA) if the following 
integral is well defined and finite: 

I h' dAh. 
Jo.oo) 

Define similarly L2((0, co), dV); observe that dV, s 0. 

THEOREM 5 Let M be an !Rd-valued martingale with <M )1 = E (M,M;) < oo for all 
t 2: 0. Let A = Bf + < M ), W = A - 1 and lln: (0, oo)--+ !Rd, lln EL 2((0, oo ), dW). Then 

lim j lln' dWM _ exists and is finite a.s. 
r~oo J[O,t] 

4.2 The proof of this theorem is given in Section 5. It is based on a series of technical 
lemmas which are presented below. 

LEMMA 6 For a given h E L2((0, oo ), dV), the function h: [O, CXJ) --+ !Rd given by 

h1 = j dVh 
Jr. oo) 

(10) 

is well defined, and moreover ii E L2([0, oo ), dA). 

Proof We prove the following three facts: 

i) h;A 1h1 is finite for all t 2: 0 and tends to zero as t-+ oo, which also shows that 
h, is well defined for all t 2: 0. 

ii) Vh EL 2((0, oo ), dA) 

iii) h = h - Vh EL 2((0, 00 ), dA) and Seo, oo) h' dAh = - Seo. co) h' dVh - ho Ao ho. 

Observe that the last fact means that h E L 2{[0, oo ), dA), since 

j h' dAh = J h' dAh + h0A 0 h0 with the convention A0 _ = 0. 
J~.oo) ~.oo) 

i) Denote by R the matrix such that A = R2 and R = R'. Taking into considera­
tion that lim v; = V00 exists and is positive semi-definite, we get (i) due to the following 
consequence of Schwartz' inequality: 

ii;A,h, = :[(e;R,h,)2 =I[ [ e;Rt dV.h.]
2 s L e;R, r dV,R,ei [ h' dVh 

i i J(t, oo) i J(t,oo) J(t,oo) 

= L e;R,(Voo - v;)R,e; J h' dVh s - L e;R, V,R,e; r h' dVh 
i (r. oo) i J(r, oo) 

= -d I h' dVh, 
(t, oo) 
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ii) On (0, ro) the identities (2) are valid, so that (ii) is implied by d V + V dA V :5: 0. 

iii) Along with the identities (2), we have dh = dVh on (0, oo ). Now, by 

h - h_ = - v_ h and h'd(Aii) = ii'A_ dVh +ii' dAh = h' dAii - ii' dAVh =ii' dAh 

we get 

h' dAh-d(ii'Ah) = (h'-h') dAh- h' dVA_ji_ = h'V dA(L - h) = -h' dVh. 

Hence 

d(h'Ah) = h' dAh + h' dVh and - r h' dAh = ( h' dVh + ii~Aoiio, J [0, oo) J [0, oo) 

where we have used (i). 

LEMMA 7 Let m be a real valued square integrable martingale. Let A be an increasing 
function with A 0 > 0 such that (m) ~A and d(m)/dA is bounded. Assume hE L 2(dV) 
where V = l/A. Then 

lim r hm_ dV exists and is finite a.s. 
t-+oo J[O,t] 

Proof Integrating by parts we get f [O,rJ hm_ dV = h1m, - f [O,rJ ii dm where h is 
given by (10). Then hEL2([0, ro),dA) in view of Lemma 5. Let now 

m = h dm with Em~ = h2d(m) = h --- dA, J - 1 - 1 -2 d(m) 
[O,tJ [O.tJ [O, rJ dA 

which is bounded in t. Hence lim1 ... 00 m1 exists and is finite a.s. Surely also f [o. 11 k dm 
has a limit a.s. where k1 = -f<r.oo)\h\ dV. Then Kronecker's lemma for martingales 
(see Lipster and Shiryayev (1989), Section 2.6) applies, since I h1 \ decreases to zero, 
which yields I fi1 I mi -+ 0 a.s. and hence I h1 m1 I -+ 0 a.s. 

4.3 We want to emphasize here that in this lemma it is important that hand V are 
deterministic, because now ii is also deterministic and therefore m in Section 4.2 is 
a convergent martingale. If we would have started with predictable processes h and 
V, it would be not have been possible to define, as we did above, a martingale like m. 

It is indeed Lemma 7, and its generalization Theorem 5, that has no counterpart 
if one wants to treat only predictable quadratic variation processes. Therefore we 
want to stress that it is at this point that we obtain sharper results then, for instance, 
in Christopeit (1986), Lai and Wei (1982), Le Breton and Musiela (1987, 1989), 
Mel'nikov (1986) or Novikov (1985). 



SLLN FOR MARTINGALES 61 

5 PROOF OF THEOREM 5 

5.1 We use induction with respect to the dimension d of the space where M takes 
its values. Clearly for d = 1 the theorem reduces to Lemma 6. So assume the theorem 

holds for d - 1. As in Section 3 we write IW!I = [: J preserving all the notations 

introduced there. Using (6) and the relation dW = - 'Vd(M)W _ (cf. (2)) we split the 
integral in question in two terms 

r Iii' dWIW!I_ = l 1(t) + 12(t) 
Jro.c1 

where 

l1(t)=r lli''Vd(M>[ 0 ]=I lln'Wd(IW!l,M)V_M_=r h'dVM_ (11) 
Jco.ti v_ M - Jro.c1 Jro.c1 

with h = Aq/Wlln and rjJ defined by d(IW!I, M) = rjJd(M) as in Proposition 3, and 

l 2(t)= ( c= 11ln''Vd(IW!l)llo_flo'_IW!I_=-( lln'dV11ln'_fwL (12) 
J[O,t] J[O,t] 

(see Proposition 4 (v)), since dV1 = -W d(IW!I) V1 _ by (2). 

5.2 We will show that h E L 2(dV) as lln E L2(d'V) by assumption, and this will imply 
that l 1(t) has a limit a.s. as t-+ oo, that is 

- r h' dVh < 00 =>I r h' dVM - I < 00 a.s. 
Jro.oo) Jro.ooJ 

since by the induction hypothesis we have assumed that the assertion of the theorem 
holds for d - 1. In fact, by (2) and Proposition 3 (ii) 

- r h' dVh s - r lli''Vef>A dV Aq/'Vlli 
J~.ro) J~.oo) 

s r lli'W <P dAcp'Wlln s - r lln' d'Vlli. J [0, ro) J (0, oo) 

5.3 Next we direct our attention towards I 2(t). We write l 2(t) = J 3(t) + I 4(t) with 

13(t)= ( lln'dV1N_= ( lln'dViN_dy and / 4(t)= ( lln'dV1(M'_·b)_ 
Jro,11 Jro,cJ dy Jro.tJ 

where y = - c- 1 (see Proposition 4 (v)). 
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Since d(N)/dy s 1 by Proposition 4 (iv), l 3(t) converges by Lemma 7, since 

r (l)n' dV1)2 dy s - r \hi' dw \hi de= - r \hi' d'Vl)n < 00 
J[O,oo) dy J[O,oo) de J[O,oo) 

with e = tr W (so that dW is dominated by de). We have the second inequality by 
assumption, and the first by the following consequence of Schwartz' inequality: 

(dy)2 (\hi' dV1 )
2 = (\hi' dVi)2 s - IID' ~~ l)n ~~. 

dr dy de de dr 

5.4 The next term that we have to consider is / 4 (t). Introduce 

Pt= f \hi' dVi. 
(t,oo) 

Integrating by parts we get 

l4(t) =Pt I b'<PA dVM - - I pb'</JA dVM -
J[O,t] J[O,t] 

(13) 

by (2) and Proposition 4 (i). Again, we will show by the induction hypothesis that. 
the second term on the left hand side of (13) has a limit as t -> oo a.s., that is by 
checking that 

- l p2b'cpA dV Acp'b s i p2 de < oo. 
J[O,co) [O,ro) 

The first inequality follows from Proposition 4 (iii), and second from the fact that 
p E L2(dy) with y = -1/c, which is verified as follows: in view of Proposition 4 (v), 
write 

-f [\./ dVi d Pt- uu - y 
(t,oo) dy 

and then apply Lemma 6 (scalar case). Hence, the second term in (13) converges a.s. 
as t-> oo. Of course, if in this term we replace Pt by 

\hi'-1 dy f I dV I 
(t, oo) dy ' 

then we still have that the a.s. limit exists as t-> oo. Using Kronecker's lemma again, 
we get from (13) that / 4(t) converges a.s. as t-> oo. This concludes the proof of 
Theorem 5. 
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6 PROOF OF THEOREM 1 

6.1 It is sufficient to look at the first component of DWM which, in the notations 
of Sections 2 and 3, can be written as follows: 

(14) 

If c is bounded, so is (N) (see Proposition 4 (iv)) and then both lim1_ 00 ct- i g(c1) and 
lim1_ro N 1 are finite a.s. If c, ....... ro, then c1-

1g(c,)N, still has a finite limit which equals 
zero as 

by (1) and Proposition 4 (iv). 

6.2 Next we look at the second term in (14). Consider first 

l c- 1g(c)M' db = - l c- 1g(c)M'_ V_d(M)ef/b = j c- 1g(c)M'_ dVAq/b 
Jro.rJ Jro.rJ Jro,tJ 

(see (2) and Proposition 4 (i)). According to Theorem 5 this expression converges since 

- j (c- 1g(c))2b'</>A dVA</>'b ~ j (c- 1g(c))2 de< ro 
J [O, co) J [O, co) 

by (1) and Proposition 4 (iii) and (iv). 
If c, converges to a finite limit, then it is seen, in a similar manner as above, that 

(M'_ · b)t has a finite limit a.s. as t---+ ro. If c1 ....... ct:J, then Kronecker's lemma gives 
that the second term in (14) tends to zero. Theorem 1 is proved. 

7 ADDITIONAL REMARKS. APPLICATION TO LEAST SQUARES 
ESTIMATION 

7.1 It may happen that limt-co WtM, = 0 a.s. even if the functions C;t remain 
bounded. Consider for instance the following example. 

Example Let w be a standard Brownian motion, and v E !Rd. Let Mt = vwt with 
(M\ = vv't. Consider 

We see that c;~ 1 = c:- 1(e + v'vt)- 1(v'v - vf)t, where v; is the i-th component of v, tends 
to e- 1(v'v - vf)/v'v which is in general larger than zero. However 

r-oc.i t-+co 
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Observe that in this example (M)1 is singular for all t. Careful inspection of this 
example leads to assertion (ii) of Corollary 2. 

7.2 This assertion will be proved here. Notice first that rank (M ), is increasing. 
Assume limt-c:o rank (M\ = k <d. Then there is tk > 0 such that rank(M\ = k for 
t:;;::: tk. Assume below that t:;;::: tk. Write (M)t = r1r;, with rank r1 = k. Then 

Since there exist a constant matrix K and a martingale r; with values in !Rk such that 
M1 = Ky;, and an invertible matrix p, such that r, = Kp1 and p,p; = < Y)1 (this claim is 
proved below), we have 

Use now r(e/4 + r'r)- 1p' = (Jd - eW)(K+)' where K+ is a left inverse of K. Since the 
limit of W, exists as t-+ oo and < Y\- 1 I; tends to zero by Corollary 2 (i), we have 
lim,_ 00 \/1M 1 = 0 a.s. 

In conclusion we prove the above claim in italics as follows. In view of the fact 
that not only rank(M\ remains constant but also Im(M), =Im rl' take now k 
vectors K 1, .•• , Kk E !Rd such that Im r, =Im K with K = [K1, ... , K,J. Then there exists 
an invertible matrix Pr such that r 1 = Kp1• Define now r; = K+M,. Then Mt= Ky; 
a.s. for all t. Indeed it is easily verified that (M - KY) = 0, and this proves the claim. 

Observe that p1p; = < Y), and < Y\-+ oo. Indeed for a v E !Rk, v ¥- 0 there exists 
u E !Rd such that v = K'u, since K' has a full row rank. Then v' < Y) 1v = u' <M \ u. If 
this remains zero, then u E Ker(M), for all t:;;::: tk. Hence u E Ker K', but this 
contradicts v #- 0. Hence v' < Y) t v -+ oo. 

7.3 As an application we treat least squares estimation for linear models. In 
many instances it is possible to transform the observations in such a way that we may 
assume that we observe x. = (m).e + m. on 0:::;; s:::;; t, where m is an !Rd valued 
square integrable martingale and e an unknown d-dimensional parameter. (For 
example in case of the familiar model Ys = a~e +e., s = 1, ... , t one may define 
x, = a 1y 1 + · · · + a.y.). 

The least squares estimator for e by definition then minimizes 

where (m),+ is a generalized inverse of (m\. The set of least square estimators e1 is 
given by { <m),+ Xr + KIK E Ker(m)1}. If (m), eventually becomes non singular, then 
e, - 8 = (m)r- 1m1 and Corollary 2 (i) applies. Otherwise let K be as in Section 7.2. 
Preserving then the notations used there we have 

whenever <Y>i- 1 -+ 0. So we obtain that if u'<m)tu either tends to infinity fort ..... oo 
or remains zero for all t, then a.s. Jim,~"' et - 8 belongs to limr~<XJ Ker(m\. 
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