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Abstract-In this paper, we consider parameter estimation problems in the first order nearly 
nonstationary autoregression AR(l) model, which is described by formula (2.1). By allowing the 
most general class of innovations, we extend the result of Chan and Wei [1]. Moreover, we discuss a 
sequential procedure for estimating the parameter, extending the result of Lai and Siegmund [2] and 
Greenwood and Shiryaev [3] to the nearly nonstationa.ry model. The results are essentially based on 
the preliminary Theorems 1 and 2, stating the weak convergence, as the sample size grows, of an 
observed nearly nonstationa.ry AR(l) process to a corresponding AR(l) process in continuous time. 

Keywords-Nearly nonstationary, Autoregressive process, Least-squares, Stochastic differential 
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1. INTRODUCTION 

In the first order autoregression AR(l) model the observations Xk at time k are generated ac­
cording to the scheme: 

Xk = (3 Xk-1 +ck, 

Xo = 0, 

k E {l, 2,. .. } 
(1.1) 

where the €k 's are random disturbances ('noise' or 'innovations') and (3 is an unknown parameter. 
The traditional task is to construct an estimator for the parameter (3 based on the random 
variables X 1 , X2, ... , Xn and to characterize its exact or limiting distribution. The least-squares 
estimator (LSE) of /3 is 

a.:= 2::?1 xk ~k-1 (i.2) 
k=l xk-1 

It is well-known that for 1/31 < 1 the standardized LSE of /3 is asymptotically normal in case 
the innovations are independent and identically distributed; (see e.g., [4-9]) indicated that in 
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situations where (3 is close to one, the limiting normal law may not be a satisfactory approxi­
mation of the exact distribution of the standardized LSE of /3, even in the case where the Ek's 

are independent standard normal random variables. In fact they showed that if lf31 = 1, the 
limiting law of the standardized LSE of f3 is a functional of the Wiener process and non-normal. 
This observation led to the study of the so-called nearly nonstationa.ry AR(l) model, where (3 in 

model (1.1) is replaced by /3n = 1- 'Y/n or by f3n = e-1 /n, for some fixed real number 'Y· For ex­
ample, see references [1,10-13], where the asymptotic distribution of the LSE of (3 is characterized 
as a functional of the Ornstein-Uhlenbeck process. Of course 'Y = 0 means f3n = (3 = 1. 

The present paper is also devoted to the nearly nonstationary AR(l) model and generalizes the 
results of Chan and Wei [l] in several directions; see the Examples 1 and 2 in Section 2, where 
our general Theorem 2 is specified in cases of weakly dependent innovations and martingale 
differences, respectively. The conditions on the innovation process will be weakened considerably 
and we will allow the innovations to depend on n, so that we consider a triangular array of 
innovation random variables instead of a sequence. In fact, in Theorem 2a, a functional limit 
theorem is derived for a process generated by the standardized estimator of the parameter 'Y. 

This functional limit theorem is applied fruitfully in order to obtain asymptotic normality of our 
estimator in a sequential procedure, (see Theorem 3), which is a generalization of results of [2,3]. 
Finally, in Theorem 4, the so-called 'small noise' model is studied. It turns out that in this case 
our estimator is also asymptotically normal. 

The results and the discussion of the results together with the applications are formulated in 
the Sections 2 and 3; the proofs a.re given in Section 4. 

2. RESULTS 

For every n = 1, 2, ... , let (nn, P, ]pm) be a probability space equipped with a filtration Fn = 
(:FJ:)k=O, .. .,n' where :FQ = {0,D}. We will consider the model where the Xk,n's are generated 
according to the scheme: 

k E {1,2, ... ,n} 
(2.1) 

Xo,n = 0, 

where 'Y is a fixed real number and €1,n, €2,n, ... , €n,n are random variables adapted to the filtra­
tion Fn. Notice that for k = 1, ... , n 

k k . 

( 'Y) -· Xk,n = L 1 - ;:;; €i,n· 
i=l 

The functions Yn and Mn with 

Yn(t) := n-1/2X[nt],n' 

[nt] 

Mn(t) = n-1/ 2 L€i,n 
i=l 

tE[O,l], 

t E [O, 1], 

(2.2) 

(2.3) 

(2.4) 

are right-continuous random step functions. Notice that for each fixed n, Yn = (Yn(t), 1-lf) and 
Mn= (Mn(t), 1i'f:), with 1if = ~t]' are semimartingales on [O, 1]. In this paper, we will use the 
following definition of the quadratic variation of a semimartingale X: 

[X](t) := X 2 (t) - X 2 (0) - 2 lot X(s_) dX(s). 

Accordingly, 
[nt] 

[Mn](t) = n-l L:C;,n, t E [0, 1]. (2.5) 
i=l 
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Our underlying estimation process for 'Y is defined for t E [O, 1] as 

{ 
- JJnt]/n Yn(s_) dYn(s) 

if fi0[nt]/n Y;(s) ds > 0 
9[nt],n := O JJnt]/n Y~(s) ds 

elsewhere. 

(2.6) 

Remark that the LSE of "( based on only [nt] observations is given by ::Y[nt],n and of course the 
LSE of'"'( based on all the random variables X1,n,X2,n, ... ,Xn,n equals 

n (2::~=1 Xf-1,n - 2::~=1 Xk,n Xk-1,n) ~ 
~n x2 = 'Yn,n· 
L...ik=l k-1,n 

In order to formulate our theorems we have to introduce some notation. ( D[O, 1], p) indicates 
as usual the Skorokhod space of right-continuous functions on [O, 1] with existing left limits, 
endowed with the Skorokhod metric p. The supremum norm on D[O, 1] is denoted by II II and 
C[O, 1] is the space of continuous functions on [O, l]. For a sequence of processes (Zn):=l and Z 

in (D[O, 1],p), we denote weak convergence of Zn to Z by Zn(t) _!!_., Z(t) and for sequences of 

1- or 2-dimensional random vectors we indicate weak convergence by _!:__, and ..!!..., respectively. 
For M being a continuous semimartingale on [O, 1] let the process Yon [O, 1] be defined as 

Y(t) =lot el'(s-t) dM(s). (2.7) 

Note that Y is the solution of the stochastic differential equation 

dY(t) = -"( Y(t) dt + dM(t), Y(O) = 0. 

Our first theorem gives sufficient conditions for the weak convergence of the process Yn to the 
process Y defined by (2.3) and (2. 7), respectively. 

THEOREM l. Suppose that for some continuous semimartingale M on D[O, 1], with M t 0, we 
have 

Mn(t) _!!_., M(t) 

[[Mn](l) - [M](l)[ ~ 0. 
(2.8) 

Then 
'[) 

Yn(t) ___, Y(t). 

The second theorem gives a functional law for the estimation process together with a vveak 
convergence result of this process for fixed t. 

THEOREM 2. Suppose that for some continuous semimartingale Jvl on D[O, l], with M 'f:. 0, 1ve 

have 
Mn(t) __!!__. M(t) 

[[Mn](t) - [M](t)[ _!:__, 0, for every t E [O, l]. 

Then the following two statements hold: 

(a) 
'[) 

Zn(t) ___, Z(t), 

where 

( 
r[nt]/n ) 

Zn(t) = Jo Y;(s) ds ('Y- 7[ntj,n), 

Z(t) =(lot Y 2 (s)ds) ('Y-9t) 

(2.9) 
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with 

elsewhere; 

(b) for every II II-continuous function 'l/;t : D[O, 1] ---> lR, 

'l/;t(Yn)('Y -9(ntj,n) ~ 'l/;t(Y)('y- 9t), for every t E (0, l]. 

NOTE. We remark that with minor changes the present approach is also applicable in the sta­

tionary case, where it is not presupposed that Xo,n = 0. 

REMARK 1. If the €k,n 's are independent of n and M is a Wiener process, then for every 

fixed t, fnij[Mn](t) is a subsequence of [Mn](l), (see (2.5)), so that (2.9) is equivalent to (2.8). 

Important examples where we can apply the Theorems 1 and 2 and where M is actually a 

Wiener process are the following: 

EXAMPLE 1. Let us assume that the Ek,n 's are independent of n and (Ek) :=l is a so-called 
ef>-mixing sequence, i.e., a strictly stationary sequence which satisfies the following conditions: 

with 1>k = supjP(BIA) - P(B)I and where the supremum is taken over all sets A E a(c1) with 
P(A) > 0 and sets BE a(Ek+l,€k+2, . .. ).Assuming without loss of generality that 1Et:1 = 0, 
Theorem 20.1 in Chapter 4 of [14] yields 

v d 2 Mn(t)-+aW(t) and [Mn](l)-+a , 

where W(t) is a Wiener process and a2 = E e:f + 2 2::%:2 E(t:1ck)· Combining this result with 
Remark 1, we find that the Theorems 1 and 2 are applicable. We note that the conditions for 
weak convergence of so-called p-mixing or a-mixing sequences can be found in Theorem 2 in 

Chapter 5 of [15] and our theorems are applicable in these situations as well. ( cf. [10]) 

EXAMPLE 2. Next let us assume that (Ek,n) is a triangular array of martingale differences with 

lE c1 ,n = 0 and E ctn = a2 E (0, oo) satisfying the following conditions: 

Vt E [O, l], 
[nt] 

; LE (d,n I Fk-1) ~ a2t, 
k=l 

as n ---> oo 

Va > 0, ; t lE (stniiek,nl>n1/2c. I 11'-1) ~ 0, 
k=l 

as n ---> oo. 

(2.10) 

Theorem 7.11 in [15] leads to 
v 

Mn(t)-+M =a W(t), 

where W(t) is a Wiener process, and 

for every t E [O, l]. 

Hence (2.9) is satisfied and we can apply the Theorems 1 and 2. If we add the condition that 
the €k,n's are independent of n, then we can conclude as in Remark 1, that the first condition 
of (2.10) is equivalent to 

as n ---> oo. 
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In this case, assuming that u = 1, Chan and Wei [l] proved that 

(~ x2 ) 1/2 (l-l - r.i ) v fo1 -Mt dW(t) 
~ k-1,n /Jn /Jn ----> 1/2 • 

k=l (t~dt) 
0 ( l+bt) 

(2.11) 

where "f3n - /3n = n- 1(1' - ::Yn,n) and b = e27 - 1. One year later Chan [16] added that the 
distribution of the random variable at the right hand side of (2.11) is equal to the distribution of 

J; Y(t)dW(t) 

(!01Y2(t)dt)1/2. 
(2.12) 

This last result also follows from Theorem 2b with ~(Yn) = (J;Y;(t)dt) 112 , as can be seen 
easily. Note that we wrote the factor n- 112 in (2.3) and (2.4) and the factor l/n in (2.10) 
separately, although we allowed the €k,n 's to depend on n. This is done to facilitate comparison 
of our theorems with the existing literature. 

REMARK 2. Note that '9t is the limiting analogue of9[nt],n and is in fact the maximum likelihood 
estimator of "I in the case where the above-mentioned Mis a Wiener process (see [17]). 

REMARK 3. Note that in the case where M(t) = uW(t), for some positive real number u, we 
have 

Y(t) = u lot e-r(s-t) dW(s) 

and Y(t) satisfies 
dY(t) = -"! Y(t) dt + u dW(t), 

The Fisher information process about "I (see [18]) equals 

~ r1 Y2 (t) dt. a lo 

Y(O) = 0. 

Hence, for the (total) Fisher information J(r, u) about/, we have 

( 1 r1 ) e-27 - 1 + 2"! 
I(r, u) = lE a2 lo y2(t) dt = 4"/2 . 

Remark that, due to the fact that Y(O) = O,J("!,u) is independent of a; (cf. Remark 5 be­
low). Also, we note that the estimator of "I has the drawback to be biased, as follows from 
Theorem 17.3 in [17]. More precisely, we have 

(''° d 
E(9t - "!) = lo d"f ~tb, a) da, (2.13) 

rt rt d2 
E(::Yt -"!) 2 =Jo 'lf;t(J,a)da+ Jo a d"f2 ~t(J,a)da, 

where 

.1. ( ) _ E { y2( ) d _ ( . .\+7/2)t ( 
t ) ( 2>.. ) 1/2 

'f't "f,a - exp -a Jo s s -e (>..+"f)(e27t_l)+ 2>. 

and 
( 2) 1/2 >. = 2a+ "f . 

REMARK 4. The following example show~ why it is useful to consider Min Theorem 1 and 2 as 
semimartingales instead of restricting ourselves to martingales, as in Examples 1 and 2. Let the 
€k,n's be i.i.d. random variables and let the X's be generated by 

Xk,n = (1- -y/n) Xk-1,n + ek,n, Xo,n = 0, 

where ek,n = €k,n - n-1/ 2 cLi,n· Then M(t) = W(t) - t, where W(t) is a Wiener process and M 
is a semimartingale, but not a martingale. 
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3. PROCEDURES LEADING TO ASYMPTOTICALLY 
NORMAL ESTIMATORS 

In Remark 3 we have seen that the considered estimator of 'Y has the drawback to be biased. 
The following theorem presents a sequential procedure in order to obtain asymptotic normality 
of our estimator, and hence, to achieve unbiasedness. Comparing (2.9) with (3.1) below, we see 
that Theorem 3 is applicable in the case where M = W 

THEOREM 3. Let W(t) be a Wiener process. Suppose that we have 

Mn(t) ~ W(t) 

[Mn](t) ~ t, for every t E [O, 1]. 

Fix 6 > 0 and define the stopping times Tn and r by 

Tn := { ~nf{t: J;Y;(s)ds;?: 62} 

7 := { ~nf{t : J; Y 2(s) ds 2 82} 

Then the two following statements hold: 

(a) 

(b) 

where 

d Hn(rn)-+H(r), 

H(r)~N(O, 1), 

Zn(t) 
Hn(t) := i/2' 

( JJnt]/n Y,:( s) ds) 

with the processes Zn and Z defined in Theorem 2. 

iff01 Y,;(s)ds;:::: 62 

elsewhere, 

i£f01 Y 2 (s) ds;:::: 82 

elsewhere. 

as n-+ oo; 

as 6-+ 0, 

Z(t) 
H(t) := i/2' 

(J; y2 ( s) ds) 

(3.1) 

REMARK 5. Suppose that f0
1 Y2(s) ds 2 82 , then we can replace the above-mentioned state­

ment (b) by H(r),g,N(O, 1). 

Another possibility to obtain an asymptotically normal estimator is to consider the so-called 
'small noise' model where we have a different condition on the i::k,n's. Cf. (3.1) with (3.3) below. 

THEOREM 4. Let W(t) be a Wiener process, a E (0, oo) and Xo,n = c, for some real constant c. 
Let 

U(t) = U(O) e--yt +a lot e-y(s-t) dW(s). 

Suppose that we have 

n 112 Mn(t)-!:.. aW(t), 

n[Mn](t) ~ a 2t, for every t E [O, l]. 

Then, with the same notation as in Theorems 2 and 3, the two following statements hold: 

(a) 
n1/2 ( d J; U(s) dW(s) 
--Hn t)-+ 1/2, 

a (J;u2(s)ds) 
(b) If c =fa 0, then 

J; U(s) dW(~) 2 -~ N(O, l), 

(J; u2 ( s) ds) 1 

as n-+ oo, for every t E (0, l], 

as a-+ 0, for every t E (0, l]. 

(3.2) 

(3.3) 
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REMARK 6. In the present 'small noise' model, the (total) Fisher information 1(1,a) about 'Y is 

I( ) - JE (2- 11 u2( ) d) - c2(1- c2"Y) e-2"Y - 1+2, 
'Y' a - 2 t t - 22 + 4 2 ' ao a1 'Y 

which clearly reduces to the information formula in Remark 3 as c = 0. If c ¥- 0, as in assertion (b) 
above, then I(!, a) tends to infinity as a goes to 0. 

REMARK 7. We get the desired asymptotic normality of the (normalized) estimator 'Y[nt],n in 
Theorem 4 by letting n to infinity first and a-+ 0 later. We can find this result in a similar way 
if we replace (3.3) by 

In that case, 

nMn(t) -E.+ W(t), 

n 2 [Mn](t) ~ t, for every t E [O, 1]. 

nHn(t) ~ N(O, 1), as n-+ oo, for every t E (0, l]. 

4. PROOFS 
To simplify notations, we introduce on [O, 1] the continuous function h"Y, defined by 

h"Y(t) := e-Yt. 

Moreover, for a stochastic process Z on [O, 1] and k = 1, 2, ... , n, let 

Observe that the difference operator Lln has the following properties for k = 1, 2, ... , n 

Lln Yn ( ~) = Lln Mn ( ~) - ; Yn ( k : l) , 
Llnh"Y(~) =(e"Y/n_l)h-y(k:l)· 

LEMMA 4.1. For n EN and/ E lR we have (with [Mn](l) := ~ 2:~=1 er,n) 

l\Ynll S el'Yl nl/2 ([Mn](l))l/2, (4.1) 

n312 kE{~,~;. .. ,n} IL'ln (h"YMn - h"Y Yn) ( ~) - Mn ( k : l) Lln h"Y ( ~) I 
~ 'Y2e4hl ([Mn](l))l/2, (4.2) 

sup lh"Y ( [ns]) Yn(s) + [" Mn(t) dh"Y(t) - Mn(s) h"Y(s)\ 
sE[O,l] n Jo 

S 12e4h\ ([Mn](l))1;2n-1/2. (4.3) 

PROOF. Fork E {1, ... , n}, we have 

IXk,nl = lt{3~-i€i,nl 
i=l 

k 1/2 k 1/2 

~ (I: (1-1/n) 2(k-i)) (~er,n) 
i=l i-1 

n 1/2 ) 
1/2 

~ ehl Vn (8ef,n = ehl n([Mn](l)) 
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so that 

llYnll = ma.x Yn -I (k)I 
kE{l, ... ,n} n 

= ma.x ~IX1c,nl $ el'l'I n112 ([Mn](1)) 112 , 
lcE{l, ... ,n} vn 

which proves (4.1). The proof of (4.2) follows from the fact that simple algebra shows that 

n312 sup Ian (h,.Mn - h,.Yn) (~) - Mn (k ~ 1) an h-y (~)I 
lcE{l,2, ... ,n} 

=I~ e'l'fn - e-Y/n + 11 n312 sup lh-y (k: 1) Yn (k: 1) I 
kE{l,2,. . .,n} 

$ I~ e-y/n - e-yfn + 11 n3/ 2 llh,. Ynll 

$ n1/ 2 e21'l'l l'Y - ( e-~;/: 1) I llYnll 

$ nl/2 'Y2 e31-YI n-1 llYnll 
$; 'Y2 e41'l'I ([Mn](l)) 1/2. 

Finally we prove (4.3) by using (4.1) and (4.2). Indeed we have for s E [O, 1] 

( [ns]) [ns] (k-1)( (k) (k-1)) sup (h,.Mn - h-yYn) - - I: Mn -- h,. - - h,. --
sE[0,1] n k=l n n n 

We will need the following lemma, which is in fact a direct consequence of the continuous 
mapping theorem and the Skorokhod-construction. 

LEMMA 4.2. Suppose that Q} : D[O, 1] -+ D[O, 1] is a II II-continuous function and Zn -E..+ Z in 
(D[O, 1], p), where Z is a continuous function. Then 

in (D[O, 1], p). 

PROOF. Due to the Skorokhod-construction, we can find processes Zn and a process Z, such 
- T> -r> - -that Zn = Zn, Z =Zand p(Zn, Z) is a random variable with 

p(Zn, Z) -+ 0 a.s. 

Using the fact that Z E C[O, 1] a.s., we conclude that 
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Since ~ is a II II-continuous function, we have 

a.nd hence 
in (D[O, lj, p). 

The last relation implies the desired result. I 

PROOF OF THEOREM 1. Let ill : D!O, l] -+ D!O, lj be a. II II-continuous function defined by 

~(X)(s) := X(s) h .. i(s) -1" X(t) dh.y(t). 

Then by assertion (4.3) of Lemma 4.1, we have 

sup lh-r (Ins]) Yn(s) - (>(Mn)(s)! ~ 0, 
sE!O,lJ n 

as n-+ oo. 

On the other hand Lemma 4.2, applied to Zn = Mn a.nd Z = M gives 

in (D[O, l], p). 

Hence, 

h-y ( [:]) Yn(s)~M(s) h-y(s) - fos M(t) dh-y(t) 

By partial integration the last relation yields the desired result: 

in (D[O, lj, p). 

I 
For the proof of Theorem 2, we need the following two lemmas. The assertion of the first 

lemma. is obvious; for completeness, however, we give a. detailed proof. The second lemma is 
purely technical. 

LEMMA 4.3. We have [Y] = [M] a.s. 

PROOF. Note that from the definition of Y in (2.7) it follows that fort E [O, l] 

so tha.t 

[h-yY](t) =lot h;(s)d!M](s). 

On the other hand by using Ito's formula we have for t E !O, lj 

which by partial integration means that 
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Hence, 

from which the result follows. 

LEMMA 4.4. For n EN, I E lR and t E (0, 1], we have 

( 
r[nt]/n ) 

2(1 - 1/n) lo Y;(s) ds (-y- ::Y[ntJ,n) 

( 2) r[nt)/n 
= Y;(t) + 2-y- : lo Y;(s) ds - [Mn](t). 

PROOF. Note first that by (2.1) 

xi,n = (1 - I /n) 2 Xf_ 1,n + e:%_n + 2(1 - "Y /n) Xk-1,n E:k,n, 

which implies 

l [nt] 

n L2(1 - I /n) Xk-1,n ek,n 
k=l 

l [nt] l (nt] l [nt) 

= n L:x~.n - n L (l -1/n) 2 Xf-1,n - n Ee:%.n 
k=l k==l k=l 

[nt] (k) [nt) (k l) 
=f;Y; n -(l-1/n)2 f;Y; : -[Mn](t) 

[nt] 

= Y; c~]) + (1- (l-1/n)2) Ly; (k: 1 )- [Mn](t) 
k=l 

( 2) r(nt]/n 
= Y;(t) + 21 - : Jo Y;(s) ds - [Mn](t). 

Next, we remark that for Jtt]/n Y;(s) ds > 0, we have by definition (2.6) that 

( "(nt] x2 "[nt] x x ) 
~ n L,..,k=l k-1,n - L,..,k=l k,n k-1,n 

I - "Y[nt],n = I - "[nt] 2 
L,..,k=lxk-1,n 

1 ( I "Intl x2 "Intl x2 "[ntJ x x ) _ n I n L,..,k=l k-1,n - L,..,k=l k-1,n + L,..,k=l k,n k-1,n 

- 1 "[nt] x2 
ii2" L,..,k=l k-1,n 

1 "[nt] X n L,..,k=l k-1,n ek,n 

= JJnt]/n Y;(s) ds . 

Combining this identity with (4.4), we obtain 

2(1 - 1/n) (1[nt]/n Y;(s) ds) (I -::Y[nt],n) 

l [nt] 

= 2(1-1/n);;: Exk-1,nek,n 
k=l 

= Y;(t) + ( 2-y - ~) 1[nt}/n Y;(s) ds - [Mn](t). 

I 

(4.4) 
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For JJnt]/n Y,;(s) ds = 0, we clearly have 

( 2) r[nt]/n 
Y;(t) + 21 - : lo Y;(s) ds - [Mn](t) = 0. I 

PROOF OF THEOREM 2a. Observe that from (2.9) and Problem 2 in Chapter 5 of [15] it follows 
that 

IJ[Mn] - [MJll~O. 

By Lemma 4.4 and Theorem 1, we have 

( 
[[nt]/n ) 1 r 1 

Jo Y,;ds ('y- ::Y[ntJ,n) ~ 2 Y2 (t) + 'Y lo Y2(s) ds - 2[M)(t). 

Using the definition of ::Yt and Lemma 4.3, we see that the righthand side of the last expression 
can be rewritten as follows: 

1 1t 1 - Y2 (t) + 'Y Y2 (s) ds - -[Y](t) 
2 0 2 

= 1t Y(s) dY(s) + 'Y 1t Y2 (s) ds 

= (1t Y2 (s) ds) (r - ::Yt)· I 

PROOF OF THEOREM 2b. Notice that J; Y2 (s) ds > 0 a.s., so 

in JR.2 , from which the result follows in virtue of the continuous mapping theorem. I 
Now we introduce two lemmas and some notation which will be applied in the course of proving 

Theorem 3. For X(t) E D[O, l], we define 

( 
t ) 1/2 

(LX)(t) := 1 X 2 (s) ds (4.5) 

LEMMA 4.5. With r, Y, and W as defined in Theorem 3, we have 

(a) 

as 8-+ O; 

(b) 

~ L' Y(t) dW(t)~N(O, 1), as 8-+ 0. 

PROOF OF (a). Let Y(t) := i x(t :::; r) Y(t) and A0 = { J; Y 2 (t) dt < 62 }. We have (L°Y)(l) :::; 1 

and 1 - (LY)(l) $ IA 6 by definition of T. Since IA,~O as 8-+ 0, we have (LY)(l)~ 1 as 
8->0. 

PROOF OF (b). Define 

). ER. 
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Observe that by the inequality 

exp(~,\2 fotY2(s)ds) :=:; exp(~,\2 fo 1 v2(s)ds) :=;e1/ 2 .x2
, 

Proposition 5.12 on page 198 of [19] is applicable here, so we have 

E V.x(l) = 1. 

- d Since (LY)(l) - 1--+ O, we have 

( r1 _ 1 ) d V.x(l) - exp i,\ lo Y(s) dW(s) + 2,\2 -+ 0, 

and hence, 

E V.x(l) - Eexp (i,\ fo 1 Y(s) dW(s) + ~,\2) -+ 0, 

and it follows from ( 4.6) that, as 8 -+ 0, 

which establishes the lemma. 

LEMMA 4.6. For fixed 8 E (0, oo), let <P: (D[O, 1], p)-+ (R, I I) be defined by 

{ 
inf{t: x(t) ;::: 8} 

<P(x) := 
1 

if llxll 2:: 8 

elsewhere. 

(4.6) 

I 

Then <P is continuous on A, where A= {x E D(O, 1] : x is continuous and strictly increasing}. 

PROOF. Let x E A and Xn a sequence in D(O, 1] with p(xn, x) -+ 0, as n -+ oo. Then also 
llxn -xii-+ 0. If x(l) < 8 then llxnll < 8 for n sufficiently large, so lef>(xn)-ef>(x)I ~ 0. If x(l) > 8 
then llxn II > 8 for n sufficiently large and 

ef>(xn) :5 inf{ t : x(t) - llxn - xii 2:: 8} = inf{ t : x(t) 2:: 8 + llxn - xii} = x-1 ( 8 + llxn - xii). 

In the same way, we find that 

<P(xn) 2:: inf{ t : x(t) 2:: 8 - llxn - xii} = x- 1 (8 - llxn - xii). 

Since x- 1 is continuous, we conclude that l<P(xn) - ef>(x)I -+ 0. If x(l) = 8 then 

Hence, we conclude that l<P(xn) - ef>(x)I -+ 0. 

PROOF OF THEOREM 3. Clearly 

l (nt] 

Zn(t) = - "'""Xk-lnekn· n~ , , 
k=l 

Hence, from (4.4), we see that 

Zn(t) = G(Yn, [Mnl)(t) + Rn(t), 

I 
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where G: (D2 [0, l], p2 ) ~ (D[O, l], p) is a continuous mapping defined by 

i rt i 
G(a, b)(t) := 2a2 (t) + 1' Jo a2 (s) ds - 2' b(t), 

and Rn is defined by 

Rn(t) := - Hn(t) - 'Y Y;(s) ds - ']_ Y;(s) ds, 
")' 1t 2 l[nt]/n 

n [nt]/n 2n 0 

so that 
d llRnll--+ o. 

From the definition of Y, we conclude that LY is a.s. a continuous and strictly increasing function. 
Observe that Tn = </J(LYn) and r = </>(LY) with </> defined in Lemma 4.6. Using Lemma 4.6, the 
continuous mapping theorem and the remarks on page 145 of [14], we find 

Hn(Tn) = _Z_n....,(_rn-')--,- d Z(r) 
LYn (~) --+ (LY)(r)' 

as n ~ oo. 

Due to Lemma 4.5, we see that 

Z(r) d 
(LY)(r) --+ N(O, 1), as b ~ 0. I 

PROOF OF THEOREM 4a. The proof is analogous to that of Theorem 2b. I 
PROOF OF THEOREM 4b. Since a ~ 0, it follows from (3.2) that U(t) converges to ce-1 t and 
the result follows. I 
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