
ROX: The Robustness of a Run-time XQuery
Optimizer Against Correlated Data

Riham Abdel Kader #1, Peter Boncz ∗2, Stefan Manegold ∗3, Maurice van Keulen #4

#University of Twente
Enschede, The Netherlands

1r.abdelkader@utwente.nl
4m.vankeulen@utwente.nl

∗CWI
Amsterdam, The Netherlands

2P.Boncz@cwi.nl
3Stefan.Manegold@cwi.nl

Abstract— We demonstrate ROX, a run-time optimizer of
XQueries, that focuses on finding the best execution order of
XPath steps and relational joins in an XQuery. The problem of
join ordering has been extensively researched, but the proposed
techniques are still unsatisfying. These either rely on a cost model
which might result in inaccurate estimations, or explore only
a restrictive number of plans from the search space. ROX is
developed to tackle these problems. ROX does not need any cost
model, and defers query optimization to run-time intertwining
optimization and execution steps. In every optimization step,
sampling techniques are used to estimate the cardinality of
unexecuted steps and joins to make a decision which sequence
of operators to process next. Consequently, each execution step
will provide updated and accurate knowledge about intermediate
results, which will be used during the next optimization round.
This demonstration will focus on: (i) illustrating the steps that
ROX follows and the decisions it makes to choose a good join
order, (ii) showing ROX’s robustness in the face of data with
different degree of correlation, (iii) comparing the performance
of the plan chosen by ROX to different plans picked from the
search space, (iv) proving that the run-time overhead needed by
ROX is restricted to a small fraction of the execution time.

I. MOTIVATION FOR ROX

In their search for a good execution plan, relational compile-
time optimizers rely on pre-collected statistics and an accurate
cost model to estimate the selectivity of operators. The ac-
curacy of these estimations, although satisfying for a single
operator, exponentially degrades through the plan resulting, in
the case of large queries, in the execution of bad plans. Addi-
tionally, to simplify the cardinality estimation problem, some
of these optimizers assume the attribute value independence
heuristic, which does not hold in real-life data, resulting in
wide errors in estimations and rendering optimizers helpless
in the face of correlation. Some databases solve this problem
by creating indices on multiple columns or collecting group
column statistics, however; the challenge remains in knowing
beforehand which columns are correlated and in storing and
maintaining the statistics. In the XML context, query operators
are more complex than relational ones because of the structural
nature and expressiveness of the language, therefore XML cost
models are simply not available or, if present, by far less

accurate than their relational counterparts, turning the field
of cardinality estimation in the context of XQuery into deadly
optimizer quicksand. Moreover XQuery accesses data through
the fn:doc(url), thus potentially with a “table” name that is
computed at runtime. In such cases, static information to guide
a query optimizer cannot be available.

To overcome the shortcomings of compile-time optimizers,
adaptive query processing techniques have been developed.
Some, like [1], first generate a potential good plan and re-
optimizes it when the observed cost exceeds static estimations.
The quality of choices made by these techniques still highly
depend on the quality of collected statistics and cost model,
and therefore can not spot, early enough, opportunities where
the existence of correlations can speed up query evaluation.
To overcome this problem, some approaches monitor the
performance of query execution and feedback the observations
to the optimizer to adjust the cost model and statistics [2],
however such optimizers are very complex modules. Routing-
based techniques [3] optimize a query by routing each tuple
to the most efficient sequence of operators based on observed
statistics. The drawback of such techniques is that they require
the presence of symmetric operators, can only cover a restric-
tive number of alternative plans, and suffer from the overhead
of maintaining query execution states.

The ROX approach does not depend on any collected
statistics or cost model. It defers optimization to run-time,
interleaving sampling-based optimization decisions and exe-
cution steps, gaining at each iteration better knowledge about
intermediate results characteristics and consequently which
execution strategy to follow.

II. THE RUN-TIME XQUERY OPTIMIZER

A. Join Graph

ROX [4] fully integrates plan optimization with processing
by iteratively switching between optimization and execution
steps. It takes as input a join graph which is a represen-
tation of the joins and XPath steps in the XQuery without
any implication on their order of execution. Therefore, the
application of ROX is preceded by a compilation phase which

root
conference1.xml

root
conference2.xml

root
conference3.xml

root
conference4.xml

author author author author

text() text() text() text()

// // // //

/ / / /

=

=
=

= =

=

Fig. 1. Join Graph of the 4-way join XQuery

consists of XQuery parsing, normalization, compilation, peep-
hole driven optimization and finally join graph extraction. The
first four steps, described in [5], result in a DAG-shaped plan
of relational operators. The join graph isolation process [6]
aims at separating joins from blocking operators by pushing
the latter above the joins creating a plan tail whose execution
ensures XQuery semantics (duplicate free and required order).
This results in a cluster of joins, selections, and projections
forming the to be optimized join graph. Fig. 1 shows the join
graph of the following XQuery:

for $a1 in doc(“conference1.xml”)//author,
$a2 in doc(“conference2.xml”)//author,
$a3 in doc(“conference3.xml”)//author,
$a4 in doc(“conference4.xml”)//author

where $a1/text() = $a2/text() and
$a1/text() = $a3/text() and
$a1/text() = $a4/text()

return $a1
The vertices in a join graph represent index-selectable sets

of element, text, and attribute nodes. The edges specify all
XPath step and join relationships between the nodes. A step
join between two relations s1 and s2 is depicted by an edge
s1◦ax— s2 where the label ax defines the axis of the step. The
circle “◦” denotes the direction of the step, i.e., which of the
two relations represents the context node sequence of the step.
Note that the direction is only a representational issue; the
algorithm may very well decide to execute it in the reverse
direction. A relational join between s1 and s2 is depicted as
s1

=— s2. The dotted edges in Fig. 1 represent join equivalences,
and are added by ROX to broaden the search space of plans
allowing for more flexibility to find a good plan.

B. Operators and Index Structures

As an XML database backend, we use the open-source
system MonetDB/XQuery [7]. In MonetDB, XML documents
are shredded into relational tables using a range-based pre/post
encoding representation. That is, every XML node is stored in
a separate relational tuple, and is referred to using the node
identifier pre. An advantage of the adopted range-encoding is
that XPath axes can be evaluated with only standard relational
operators. It has been proved, however, that performance gain
is possible if a tree aware operator is used [7]. As a con-
sequence, the XQuery module of MonetDB has extended its
relational algebra with the staircase join operator, a structural
join capable of exploiting the tree properties of the pre/post

plane. The staircase join can evaluate with linear complexity
all XPath axes by making at most a single sequential pass
over the document, returning duplicate-free, in document order
results. Note that the ideas in ROX can be used with other
operators and do not require the presence of a staircase join.

In addition, MonetDB/XQuery implements an element in-
dex and a value index that covers all text and attribute values.
All index lookup operations provide a list of node identifiers,
duplicate-free and in document order. Given a qualified name
q, the element index returns the list of all elements in the
document D satisfying q:

Delt

��33 (q) = {pre|pre ∈ Delt ∧ qname(pre) = q}

The value index supports a hash-based index for string
equality lookups on text and attribute nodes. Given a value
v, the text value index returns the list of all candidate text
nodes in the document D having a value v:

Dtext

��33 (v) = {t|t∈Dtext: fn:data(t)=v}

Given a value v, the attribute value index returns the list of
the parent elements with qualified name qelt of all candidate
attributes with qualified name qattr having a value v:

Dattr

��33 (v, qelt, qattr) = {e|e∈Delt: e@qattr=v∧qname(e)=qelt}

All indices are stored in a materialized and physically
clustered (index organized) tables. The complexity of an index
lookup, and consequently the cost of finding the count of nodes
that satisfy an index lookup, is independent of the index result
size, and is logarithmic to the index size.

C. Sampling Operators

The ROX algorithm intertwines optimization and execution
steps where optimization consists of estimating the cost of
operators using sampling techniques. ROX samples a join or
step operator by first randomly picking a small set of tuples
from one of the operator’s input and then feeding the chosen
subset into the operator. As start samples, ROX uses either a
synthetic single-tuple relation containing the document’s root
node, or a set of tuples drawn from element and text indices.

Although sampling an operator joins one of its input tables
with a small set of tuples, the result size might be large in
case of high join hit ratios – the Cartesian product in the
worst case. To eliminate the risk of generating large sampling
results, ROX sets a limit on the number of tuples produced by
a sampling operations. This is done by stopping the sampled
join process when the count of generated results has reached
a certain cutoff. To still ensure an accurate estimate of the
join’s cardinality, the sampling process will keep track of the
fraction f of the sampled tuples that have been processed and
will extrapolate the size of the full result R as |R| = cutoff

f .
In our join graph representation, edges correspond to join

and XPath step operators. We therefore define the sampling
function Sample(e, S, T, cutoff) as the partial execution of the
join or step operator corresponding to the edge e using as input
the sample S and the table T where execution stops as soon
as the size of the generated result reaches the cutoff limit.

Another requirement for efficient sampling is the use of
physical operators that have the “zero-investment” property
with respect to the sampled input. This represents operators
whose cost only depends on the cardinality of the input and do
not require any investment, like sorting, prior to starting result
generation. In our scenario, all operators used for sampling
and executing the join graph, including staircase joins, obey
the zero-investment condition.

D. The ROX Algorithm

We give here a concise explanation of the ROX algorithm
and refer readers to [4] for a detailed description. We first
define the following notation. Given a join graph G = (V,E),
and a vertex v ∈ V :
• T (v) represents a table with all XML nodes that satisfy

the annotated name and range-predicates of v.
• SampleSet(v, τ) represents a table containing a sample

of XML nodes of size τ randomly chosen from T (v).
Unless specified otherwise, we used a default τ of 100.

The main algorithm of the run-time optimizer consists of
two phases. The first phase initializes the Join Graph, and the
second alternates search space exploration and execution of
operators until all operations of all edges are executed.

The join graph initialization estimates the cardinality of
nodes satisfying each vertex in the graph and materializes a
sample of these nodes. This is efficiently provided by an index
look-up. The materialized samples are then used to estimate
the weight of each edge which represents an estimation of the
result cardinality of the step or join operator associated to it.
It is computed by first sampling the associated operator, as
described in Section II-C, and then linearly extrapolating the
result size of the sampling. For e = (v1, v2), we define:

EstimateWeight(e) = |T (v)|
τ
×

|Sample(e, SampleSet(v, τ), T (v′), τ)|

where (v, v′) =

(
(v1, v2) if |T (v1)| < |T (v2)|
(v2, v1) otherwise

The sample is chosen from the vertex of e that has the
smallest size, since picking a sample from a smaller table
provides a more representative set of tuples.

The second phase of the algorithm alternates between join
graph exploration and operator execution. The exploration
searches for a superior path segment (sequence of steps and
joins) by applying chain sampling, a process that efficiently
samples a sequence of operators using the sampling result
of one operator as input to the sampling of the subsequent
one. As soon as a path segment is found to be superior to
others, the sampling stops, the associated steps and joins are
executed, their results are materialized. The newly materialized
intermediate result of each vertex v along the executed path is
used to update the weight of all un-executed edges outgoing
of v. This is accomplished by (re)sampling the edges, using
as input a sample of the new result generated from the
joins’ execution. Then the exploration process searching for
the superior path segment restarts, benefiting from the newly
obtained data and more accurate knowledge. These steps

iterate until all operations in the join graph are executed. Note
that re-sampling the edges after each execution allows ROX
to identify arbitrary correlations between joins.

The superiority criterion used by ROX for picking the next
edge to execute is based on a heuristic that opts for the operator
that generates the smallest intermediate result, in other words
the edge e with the smallest weight. Since this choice might
be a local minimum, ROX adopts a chain sampling strategy to
climb the hill and investigate the presence of a better execution
path which produces a result with a smaller size. Therefore the
paths that branch from the edge e are explored and sampled
ahead. Obviously, chain sampling is only performed if one of
the vertices of e is branching. Otherwise, e is simply executed
since it has no neighboring un-executed edges to explore.
In the former case, the branching vertex with the smallest
cardinality will be the starting point of exploration.

Chain sampling explores the branches in a breadth first
manner, defining path segments in the join graph. Each it-
eration samples the next edge in every branch, extending each
path segment with an extra edge. In some iterations, when
branching vertices are encountered, new path segments are
created. For each path segment p, we note:
• cost(p) as the estimated cumulative cardinality of all

intermediate results of p. Each time an edge e is sampled
and added to p, the cost of p is incremented with the
cardinality estimated from the sampling of e.

• sf(p) as the scale factor of p. It represents the join hit
ratio (output size

input size) resulting from executing p.

After each sampling iteration, the optimizer compares all
pairwise combinations of path segments to find a superior one
using the following stopping condition:

cost(pi)| {z }
1©

+ sf(pi) ∗ cost(pj)| {z }
2©

≤ cost(pj)| {z }
3©

1© : cost of executing pi
2© : cost of executing pj using the new data

returned from the execution of pi
3© : cost of executing pj

The idea behind the equation is, given two paths pi and pj ,
if pi’s execution followed by pj’s execution is cheaper than
executing pj alone, we can safely execute pi. For example, if
cost(pj) was estimated to be equal to 1000 and the execution
of pi will reduce the intermediate result by half (i.e. sf(pi) =
0.5), then the cost of executing pj after pi will be equal to
500. If pi happens to cost less than 500 satisfying the above
condition, it is guaranteed that pipjpk is cheaper to execute
than pjpkpi for any extension pk of the path segment pj . Once
the superior path segment pi is found, chain sampling is halted
and all operators along pi are executed.

If after each sampling round, the stopping condition is never
satisfied, chain sampling will progress until all branches are
fully explored. In this case, the path segment pi that satisfies
the following equation is chosen for execution:

cost(pi) + sf(pi) ∗ cost(pj) ≤ cost(pj) + sf(pj) ∗ cost(pi)

v1 v2 v3 v4

v5

v6

v7

v8

p1 p2

p3

Paths = {p1, p2, p3}
[cost, sf](p1) = [1500, 1.5]
[cost, sf](p2) = [1000, 1]
[cost, sf](p3) = [1200, 1.2]

2.1 The first round of chain sampling

v1 v2 v3 v4

v5

v6

v7

v8

p1 p2 p2

p3, p4

p3

p4

Paths = {p1, p2, p3, p4}
[cost, sf](p1) = [1500, 1.5]
[cost, sf](p2) = [2000, 1]
[cost, sf](p3) = [1300, 0.1]
[cost, sf](p4) = [3200, 2]

2.2 The second round of chain sampling

Fig. 2. Illustration of Chain Sampling

Applying the cutoff limit during each sampling round, as
we have described in Section II-C, might result in degrading
the quality of the sample set, making it less representative
of the original data. To avoid this problem, we increment the
sampling cutoff with τ after each round.
Example. We illustrate chain sampling with the join graph in
Fig. 2.1. Suppose that the edge with the smallest weight is
(v2, v3), and that the cardinality of v2 is smaller than v3 (so
v2 is the starting point of chain sampling). Sampled edges are
indicated by arrows and are labeled with the path segment they
belong to. In Figure 2.2, the stopping condition holds for i = 3
and j = [1, 2, 4], then chain sampling is stopped although the
edge (v6, v8) can still be sampled. In this case, a selective
correlation between the elements v2, v5 and v6 is detected,
and as a result the edges in p3 will be executed instead of the
edge (v2, v3) which was found earlier to be the best.

III. DEMONSTRATION OUTLINE

To test and demonstrate our approach, a prototype of
ROX has been implemented in Java. Pathfinder, the XQuery
processor implemented on top of MonetDB [7], generates the
isolated join graph for a given XQuery and provides it as input
to ROX. The demonstration will show the following items:

(i) The demo GUI is a Java applet that depicts the join
graph of a given XQuery. Documents from the XMark bench-
mark1 and the DBLP XML dataset2 will be shredded into
MonetDB. Users can then enter their own queries and examine
the optimization process as conducted by ROX (join graph
initialization, chain sampling, execution), or opt for running
one of our prepared scenarios. We have set up two different

1http://monetdb.cwi.nl/xml/
2http://dblp.uni-trier.de/xml/

Fig. 3. A snapshot of the demonstration of the DBLP scenario. Blue edges
denote executed operators while other colored edges represent chain sampling

scenarios that clearly show the potentials of ROX in which
queries are already defined for each of the datasets.

(ii) For the DBLP scenario (Fig. 3), the used XQuery and
join graph are the ones presented in Section II-A. The queried
documents are extracted from the DBLP dataset which was
split into multiple XML documents, one for each conference,
after being scaled to ∼45 GB (i.e. 100 times bigger). By
replacing the 4 documents in the XQuery with 4 conferences
chosen from one or multiple research areas, the degree of
correlation in the query is varied: it is in general more
likely that authors publish in one research area, than that an
author publishes in multiple different research areas. Users will
choose the research area from which each of the 4 documents
will be picked, hence creating different degrees of correlations,
and then watch a step-by-step execution of ROX.

(iii) In addition to displaying the steps taken by ROX to
optimize a query in the DBLP scenario, the quality of the
selected plan will be assessed. For comparison, we consider
three plans each denoting a different order of joins. The first
two plans represent the order that generates respectively the
smallest and largest cumulative intermediate result size. The
third plan is the one that would be generated by a “classi-
cal” compile time optimizer, which is capable of accurately
estimating the cardinality of operations carried on a single
document but lacks the ability of estimating the correlations
existing among several documents. This results in an order of
joins that reflects a “smallest-input-first” heuristic where the
two smallest inputs are joined first, which is then joined with
the third largest input, and so on. The execution time of ROX’s
plan will be compared to that of the three considered plans.
Experiments in [4] show that ROX can be, up to a factor of
10, faster than the classical optimizer.

(iv) In ROX, deferring optimization to run-time comes with
the risk of adding the sampling overhead to the plan’s execu-
tion time. The demo will show that ROX is able to restrict the
overhead to a small fraction of the query’s execution time.

REFERENCES

[1] S. Babu, P. Bizarro, and D. DeWitt, “Proactive Re-Optimization,” in
SIGMOD, 2005.

[2] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO - DB2’s
LEarning Optimizer,” in VLDB, 2001.

[3] R. Avnur and J. Hellerstein, “Eddies: continuously adaptive query pro-
cessing,” SIGMOD, 2000.

[4] R. Abdel Kader, P. Boncz, S. Manegold, and M. van Keulen, “ROX:
Run-Time Optimization of XQueries,” in SIGMOD, 2009.

[5] T. Grust, “Purely Relational FLWORs,” in <XIME-P/>, 2005.
[6] T. Grust, M. Mayr, and J. Rittinger, “XQuery Join Graph Isolation,” in

ICDE, 2009.
[7] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and

J. Teubner, “MonetDB/XQuery: A Fast XQuery Processor Powered by
a Relational Engine,” in SIGMOD, 2006.

