
Theory Comput Syst (2009) 45: 724–739

DOI 10.1007/s00224-009-9171-0

Depth as Randomness Deficiency

Luís Antunes ·Armando Matos ·André Souto ·

Paul Vitányi

Published online: 5 February 2009

© Springer Science+Business Media, LLC 2009

Abstract Depth of an object concerns a tradeoff between computation time and ex-

cess of program length over the shortest program length required to obtain the object.

It gives an unconditional lower bound on the computation time from a given program

in absence of auxiliary information. Variants known as logical depth and computa-

tional depth are expressed in Kolmogorov complexity theory.

We derive quantitative relation between logical depth and computational depth and

unify the different depth notions by relating them to A. Kolmogorov and L. Levin’s

fruitful notion of randomness deficiency. Subsequently, we revisit the computational

The authors from University of Porto are partially supported by KCrypt (POSC/EIA/60819/2004)

and funds granted to LIACC through the Programa de Financiamento Plurianual, Fundação para a

Ciência e Tecnologia and Programa POSI.

L. Antunes (B) · A. Matos · A. Souto

Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 1021/1055, 4169007 Porto,

Portugal

e-mail: lfa@ncc.up.pt

url: http://www.ncc.up.pt/~lfa

A. Matos

LIACC, Rua Campo Alegre, 1021, 4169007 Porto, Portugal

e-mail: acm@ncc.up.pt

url: http://www.ncc.up.pt/~acm

L. Antunes · A. Souto

Instituto de Telecomunicações, Rua Campo Alegre, 1021, 4169007 Porto, Portugal

A. Souto

e-mail: andresouto@dcc.fc.up.pt

url: http://www.ncc.up.pt/~andresouto

P. Vitányi

Computer Science Department, University of Amsterdam, Amsterdam, The Netherlands

e-mail: Paul.Vitanyi@cwi.nl

url: http://homepages.cwi.nl/~paulv/

Theory Comput Syst (2009) 45: 724–739 725

depth of infinite strings, study the notion of super deep sequences and relate it with

other approaches.

Keywords Kolmogorov complexity · Computational depth

1 Introduction

The information contained in an individual finite object (a finite binary string) can be

measured by its Kolmogorov complexity—the length of the shortest binary program

that computes the object. Such a shortest program contains no redundancy: every

bit is information; but is it meaningful information? If we flip a fair coin to obtain

a finite binary string, then with overwhelming probability that string constitutes its

own shortest description. However, with overwhelming probability also, all the bits

in the string are apparently meaningless information, just random noise.

The opposite of randomness is regularity; and the effective regularities in an object

can be used to compress it and cause it to have lower Kolmogorov complexity. Regu-

lar objects contain laws that govern their existence and have meaning. This meaning

may be instantly clear, but it is also possible that this meaning becomes intelligible

only as the result of a long computation. For example, let the object in question be a

book on number theory. The book will list a number of difficult theorems. However,

it has very low Kolmogorov complexity since all theorems are derivable from the

initial few definitions. Our estimate of the difficulty of the book is based on the fact

that it takes a long time to reproduce the book from part of the information in it. We

can transmit all the information in the book by just transmitting the theorems. The

receiver will have to spend a long time reconstructing the proofs and the full book.

On the other hand, we can send all of the book. Now the receiver has all the useful

information without literally, and does not have to spend time to extract information.

Hence, there is a tradeoff: in both cases we send the same information in terms of

Kolmogorov complexity, but in the former case it takes a long time to reconstruct it

from a short message, and in the latter case it takes a short time to reconstruct it from

a long message. The existence of such book is itself evidence of some long evolu-

tion preceding it. The computational effort to transform the information into ‘usable’

information is called ‘depth’.

We also use a central notion in Kolmogorov complexity: that of ‘randomness defi-

ciency’. The randomness deficiency of an object in a particular distribution quantifies

the ‘typicality’ or ‘randomness’ of that object for that distribution. A randomness de-

ficiency of 0 tells us that the object is typical (we believe that the object is randomly

drawn from the distribution). A high randomness deficiency tells us that the object is

atypical and not likely to be randomly drawn. Finally, we consider the information in

one object about another one and vice versa, and since these are approximately equal

we call it ‘mutual information.’

Results For finite strings, we derive quantitative relations between the different no-

tions of depth: logical depth and computational depth (Sect. 3). In Sect. 4 we prove

726 Theory Comput Syst (2009) 45: 724–739

that these two notions of depth are instances of a more general measure, namely,

Levin’s randomness deficiency, i.e., computational depth is the randomness defi-

ciency with respect to the time bounded universal semimeasure and logical depth is

the least time for which the randomness deficiency with respect to the time bounded

a priori probability is upper bounded by the significance level.

Next, we study the information contained on infinite sequences. Applying the ran-

domness deficiency with respect to M ⊗ M, where M is the universal lower semi-

computable semimeasure over {0,1}∞, Levin [7, 8] defined mutual information for

infinite sequences. We observe that despite the correctness of the definition, it does

not fully achieve the desired characterization of mutual information. For example,

if α = α1α2 . . . and γ = γ 1γ 2 . . . are two Kolmogorov random sequences and we

construct the sequence β = α1γ 1α2γ 2 . . . , then I (α : β) = I (β : α) = ∞. However

intuitively β has more information about α than the other way around since from β

we can fully reconstruct α but from α we can only recover half of β . In order to ful-

fill our intuition we propose some definitions of normalized mutual information for

infinite sequences. We relate this notion with the constructive Hausdorff dimension,

using the result proved by Mayordomo [13]. Namely, we show that the normalized

mutual information of α with respect to β is at least the ratio of the constructive

Hausdorff dimensions of α and β up to an additive factor that measures the diffi-

culty to recover the initial segments of α from the initial segments of the same size

of β . This connection motivates the definition of dimensional mutual information for

infinite sequences. This measure, contrarily to the normalized mutual information, is

symmetric and it is at most the minimum between the normalized mutual information

of α with respect to β and vice versa.

In the last section we revisit the notion of depth for infinite sequences, proposing

a new depth measure called dimensional depth. As the name suggests, this measure

is related to the constructive Hausdorff dimension. We prove that dimensional depth

is at most the difference between time bounded and resource unbounded versions of

constructive Hausdorff dimension and finally we fully characterize super deepness

using our proposed measures in a similar way as done in [5].

Previous Work Bennett [3] introduced the notion of logical depth of an object as

the amount of time required for an algorithm to derive the object from a shorter

description.

Antunes et al. [1] consider logical depth as one instantiation of a more general

theme, computational depth, and propose several other variants based on the differ-

ence between a resource bound Kolmogorov complexity measure and the unbounded

Kolmogorov complexity.

For infinite sequences, Bennett identified the classes of weakly and strongly deep

sequences, and showed that the halting problem is strongly deep. Intuitively a se-

quence is strongly deep if no computable time bound is enough to compress infinitely

many of its prefixes to within a constant number of bits of its smallest representation.

An interpretation of strongly deep objects is given in [6]; a strongly deep sequence

is analogous to a great work of literature for which no number of readings suffices to

exhaust its value. Subsequently Judes, Lathrop, and Lutz [5] extended Bennett’s work

defining the classes of weakly useful sequences. The computational usefulness of a

Theory Comput Syst (2009) 45: 724–739 727

sequence can be measured as the class of computational problems that can be solved

efficiently, given access to that sequence. More formally, for infinite sequences, a

sequence is weakly useful if every element of a non-negligible set of decidable se-

quences is reducible to it in recursively bounded time. Lathrop, and Lutz [5] proved

that every weakly useful sequence is strongly deep in the sense of Bennett. Later,

Fenner et al. [4] proved that there exist sequences that are weakly useful but not

strongly useful. Lathrop and Lutz [6] introduced refinements (named recursive weak

depth and recursive strong depth) of Bennett’s notion of weak and strong depth, and

studied its fundamental properties, showing that recursively weakly (resp. strongly)

deep sequences form a proper subclass of the class of weakly (resp. strongly) deep

sequences, and also that every weakly useful sequences is recursive strongly deep.

Levin [7, 8] showed that the randomness deficiency of x with respect to µ is the

largest, within an additive constant, randomness µ-test for x. So δ(x | µ) is, in a

sense, a universal characterization of “non-randomness”, “useful” or “meaningful”

information in a string x with respect to a probability distribution µ.

2 Preliminaries

We briefly introduce some notions from Kolmogorov complexity, mainly the stan-

dardize notation. We refer to the textbook by Li and Vitányi [9] for more details. Let

U be a fixed universal Turing machine. For technical reasons we choose one with a

separate read-only input tape, that is scanned from left-to-right without backing up, a

separate work tape on which the computation takes place, and a separate output tape.

Upon halting, the initial segment p of the input that has been scanned is called the

input “program” and the contents of the output tape is called the “output”. By con-

struction, the set of halting programs is prefix free. We call U the reference universal

prefix machine. In the rest of this paper we denote the n-length prefix of an infinite

sequence α by αn and the ith bit by αi .

Definition 2.1 (i) The (prefix) Kolmogorov complexity of a finite binary string x is

defined as

K(x) = min
p

{|p| : U(p) = x},

where p is a program, and the Universal a priori probability of x is

QU (x) =
∑

U(p)=x

2−|p|.

(ii) A time-constructible function t from natural numbers to natural numbers is

a function with the property that t (n) can be constructed from n by a Turing ma-

chine in time of order O(t(n)). For every time-constructible t , the t-time-bounded

Kolmogorov complexity of x is defined as

K t (x) = min
p

{|p| : U(p) = x in at most t (|x|) steps},

728 Theory Comput Syst (2009) 45: 724–739

and the t-time bounded Universal a priori probability is defined as

Qt
U (x) =

∑

U t (p)=x

2−|p|,

and U t (p) = x means that U computes x in at most t (|x|) steps and halts.

A different universal Turing machine may affect the program size |p| by at most a

constant additive term, and the running time t by at most a logarithmic multiplicative

factor. The same will hold for all other measures we will introduce.

Levin [7] showed that the Kolmogorov complexity of a string x coincides up to

an additive constant term with the logarithm of 1/QU (x). This result is called the

“Coding Theorem” since it shows that the shortest upper semicomputable code is a

Shannon-Fano code of the greatest lower semicomputable probability mass function.

In order to state formally the Coding theorem we need the following theorem on the

existence of a universal lower semicomputable discrete semimeasure (Theorem 4.3.1

in [9]).

Theorem 2.2 There exists a universal lower semicomputable discrete semimeasure

over {0,1}∗, denoted by m.

Theorem 2.3 (Coding theorem) For every x ∈ {0,1}n,

K(x) = − logQU (x) = − logm(x)

with equality up to an additive constant c.

Hence, if x has high probability because it has many long descriptions then it must

have a short description too.

We refer to mutual information of two finite strings as

I (x : y) = K(x) + K(y) − K(x,y).

Notice that the mutual information is symmetric, i.e., I (x : y) = I (y : x).

3 Depth

Bennett [3] defines the b-significant logical depth of an object x as the time required

by the reference universal Turing machine to generate x by a program that is no more

than b bits longer than the shortest descriptions of x. Bennett talks about time as the

number of steps; without loss of generality we consider the number of steps t (|x|),

where t is a time-constructible function.

Definition 3.1 (Logical depth) The logical depth of a string x at a significance level

b is

ldepthb(x) =min

{

t (|x|) :
Qt

U (x)

QU (x)
≥ 2−b

}

,

where the minimum is taken over all time constructible t .

Theory Comput Syst (2009) 45: 724–739 729

Given a significance level b, the logical depth of a string x is the minimal run-

ning time t (|x|), such that programs running in at most t (|x|) steps account for ap-

proximately a 1/2b fraction of x’s universal probability. This is Bennett’s Tentative

Definition 0.3 in [3, p. 240].

In fact, with some probability we can derive the string by simply flipping a coin.

But for long strings this probability is exceedingly small. If the string has a short de-

scription then we can flip that description with higher probability. Bennett’s proposal

tries to express the tradeoff between the probability of flipping a short program and

the shortest computation time from program to object.

Antunes et al. [1] developed the notion of computational depth in order to capture

the tradeoff between the amount of help bits required and the reduced computation

time to compute a string. The concept is simple: they consider the difference of two

versions of Kolmogorov complexity measures.

Definition 3.2 (Basic computational depth) Let t be a time constructible function.

For any finite binary string x we define

deptht (x) = K t (x) − K(x).

In Definition 1 of [3, p. 241] we find

Definition 3.3 A string x is (t (|x|), b)-deep iff t (|x|) is the least number of steps to

compute x from a program of length at most K(x) + b.

Then, it is straightforward that deptht (x) = K t (x) − K(x) iff x is (t (|x|),K t (x) −

K(x))-deep. Bennett remarks, [3, p. 241], “The difference between [Definitions 3.3

and 3.1] is rather subtle philosophically and not very great quantitatively.” This is

followed by [3, Lemma 5, p. 241] which is an informal version of [9, Theorem 7.7.1].

The proof of Item (ii) below uses an idea in the proof of the latter theorem.

Definition 3.4 Let t be a recursive function. DefineK(t) as the (prefix) Kolmogorov

complexity of t byK(t) =mini{i : Ti computes t (·)}, where T1, T2, . . . is the standard

enumeration of all Turing machines.

Theorem 3.5 Let t be a time-constructible function (hence it is recursive and K(t)

is defined in Definition 3.4).

(i) If b is the minimum value such that ldepthb(x) = t (|x|), then deptht (x) ≥ b +

O(1).

(ii) If deptht (x) = b, then ldepthb+min{K(b),K(t)}+O(1)(x) ≥ t (|x|).

Proof (i) Assume, ldepthb(x) = t (|x|). So

Qt
U (x)

QU (x)
≥ 2−b,

730 Theory Comput Syst (2009) 45: 724–739

with t (|x|) least. Assume furthermore that b is the least integer so that the inequality

holds for this t (|x|). We also have

Qt
U (x)

QU (x)
≥
2−K t (x)

QU (x)
= 2−(K t (x)−K(x)−O(1)) = 2−b−1,

where b+1 = K t (x)−K(x)−O(1). The first inequality holds since the sumQt
U (x)

comprises a term 2−K t (x) based on a shortest program of length K t (x) computing

x in at most t (|x|) steps. Since b is the least integer, it follows that 1 ≥ 0. Since

deptht (x) = K t (x) − K(x), we find that deptht (x) ≥ b + O(1).

(ii) Assume that deptht (x) = b, that is, x is (t (|x|), b)-deep. We can enumerate

the set S of all programs computing x in time at most t (|x|) by simulating all pro-

grams of length l ≤ |x| + 2 log |x| for t (|x|) steps. Hence, the shortest such pro-

gram q enumerating S has length |q| ≤ K(x, t) + O(1). But we achieve the same

effect if, given x and b we enumerate all programs of length l as above in order

of increasing running time and stop when the accumulated algorithmic probability

exceeds 2−K(x)+b . The running time of the last program is t (|x|). (This shows that

K(t, x) ≤ K(b,x) + O(1), not K(t) ≤ K(b) + O(1)). The shortest program r doing

this has length |r| ≤ K(x,b)+O(1). Hence,K(S) ≤min{K(x, t),K(x, b)}+O(1).

By definition, Qt
U (x) =

∑

p∈S 2
−|p|. Assume, by way of contradiction, that

Qt
U (x)

QU (x)
< 2−b−min{K(b),K(t)}−O(1)

Since QU (x) = 2−K(x)−O(1), we have

Qt
U (x) < 2−K(x)−b−min{K(b),K(t)}−O(1)

Denote m = K(x) + b + min{K(b),K(t)} + O(1). Therefore,
∑

p∈S 2
−|p| < 2−m.

Now every string in S can be effectively compressed by at least m − K(S) − O(1)

bits. Namely,
∑

p∈S

2−|p|+m < 1

The latter inequality is a Kraft inequality, and hence the elements of S can be coded

by a prefix code with the code word length for p at most |p|−m. In order to make this

coding effective, we use a program of length K(S) to enumerate exactly the strings

of S. This takes an additionalK(S)+O(1) bits in the code for each p ∈ S. This way,

each p ∈ S is effectively compressed bym−K(S)−O(1) bits. Therefore, each p ∈ S

can be compressed by at least K(x)+ b +min{K(b),K(t)}−min{K(x, t),K(x, b)}

bits, up to an additive constant we can set freely, and hence by more than b bits which

is a contradiction. Hence,

Qt
U (x)

QU (x)
≥ 2−b−min{K(t),K(b)}−O(1)

which proves (ii). ¤

Theory Comput Syst (2009) 45: 724–739 731

4 A Unifying Approach

Logical depth and computational depth are all instances of a more general measure,

namely the randomness deficiency of a string x with respect to a probability distrib-

ution, Levin [7, 8]. In the rest of this paper, with some abuse of notation (see [9]), a

function µ : {0,1}∗ → R defines a probability measure, or measure for short, if

µ(ǫ) = 1,

µ(x) =
∑

a∈{0,1}

µ(xa).

Definition 4.1 Let µ be a computable measure. The value

δ(x | µ) =

⌊

log
QU (x)

µ(x)

⌋

is the randomness deficiency1 of x with respect to µ. Here QU is the universal a

priori probability of Definition 2.1.

Note that QU (x) is of exact order of magnitude of 2−K(x) by the Coding Theo-

rem 2.3, i.e., up to multiplicative termsQU (x) and 2−K(x) are equal. (In the literature,

see for example [9], m(x) = 2−K(x) is used instead of QU (x), and it is straightfor-

ward that this is equivalent up to a multiplicative independent constant by the Coding

Theorem.)

We now observe that logical depth and computational depth of a string x equals

the randomness deficiency of x with respect to the measuresQt (x) =
∑

U t (p)=x 2
−|p|

and 2−K t (x) respectively. The proofs follow directly from the definitions.

Lemma 4.2 Let x be a finite binary string and let t be a time-constructible function.

(i) ldepthb(x) =min{t : δ(x | Qt) ≤ b}.

(ii) deptht (x) = δ(x | mt) where mt (z) = 2−K t (z).

5 On the Information of Infinite Strings

Based on the unification of depth concepts for finite strings, in this section we extend

those ideas for infinite sequences. In order to motivate our approach we start by intro-

ducing Levin’s notion of randomness deficiency for infinite sequences. LetM be the

universal lower semicomputable (continuous) semimeasure over {0,1}∞ as defined,

and proved to exist, by [8] (see also [9]). If α ∈ {0,1}∞, then with α = α1α2 . . .

with αi ∈ {0,1}, we write αn = α1α2 . . . αn. Finally, we write ‘M(x)’ and ‘µ(x)’

as notational shorthand for ‘M(Ŵx)’ and ‘µ(Ŵx)’, with x ∈ {0,1}∗ and Ŵx is the

cylinder {ω : ω ∈ {x}{0,1}∞}. Strictly speaking, M(x) is not over {0,1}∞ but over

{0,1}∞ ∪ {0,1}∗, see also [9], andM(x) is the probability concentrated on the set of

finite and infinite sequences starting with x.

1⌊r⌋ denotes the integer part of r and ⌈α⌉ denotes the smallest integer bigger than α.

732 Theory Comput Syst (2009) 45: 724–739

Definition 5.1 (Levin) The value D(α | µ) = ⌊log(supn
M(αn)
µ(αn)

)⌋ is called the ran-

domness deficiency of α with respect to the semimeasure µ. HereM(αn) is the prob-

ability density function ofM(αn).

Let α and β be two sequences and M ⊗ M be defined by M ⊗ M(α,β) =

M(α)M(β).

Definition 5.2 (Levin) The value I (α : β) = D((α,β) | M⊗M) is called the amount

of information in α about β or the deficiency of their independence.

This definition is equivalent to the mutual information I (α : β) = supn I (αn : βn).

Example 5.3 Let α and γ be two random infinite and independent strings (in the

sense that their prefixes are independent). Consider the following sequence

β = α1γ 1α2γ 2 . . .

By Definition 5.2 we have

I (α : β) = sup
n

I (αn : βn)

= sup
n

(K(αn) + K(βn) − K(αn, βn))

≥ sup
n

(

n + n −
(

n +
n

2

))

= ∞.

As I (β : α) = I (α : β) then I (β : α) = ∞.

However, intuitively β contains more information about α than the other way

around, since from the sequence β we can totally reconstruct α but from α we can

only recover half of β , namely, the bits with odd indexes.

This seems to be a lacuna in Definition 5.2. The definition says more when the

information is finite but that is precisely when we do not need an accurate result.

Notice that if the sequences are finite we can argue that they are independent. In the

infinite case, one should be able to classify the cases where the mutual information is

infinite. Two infinite sequences may have infinite mutual information and yet infinite

information may be still lacking to reconstruct one of them out of the other one. In

the previous example α fails to provide all the information of β related to γ , which

has infinite information. In this section we will present two approaches to reformulate

the definition of “mutual information” in order to fulfill our intuition. In order to have

a proportion of information as the prefixes grow we need to do some normalization

in the process.

5.1 The Mutual Information Point of View

We are looking for a normalized mutual information measure Im that applied to Ex-

ample 5.3 gives

Im(α : α) = 1

Theory Comput Syst (2009) 45: 724–739 733

Im(α : β) = 1/2

Im(β : α) = 1

Im(β : β) = 1

Contrarily to Levin’s definition of mutual information for infinite sequences, and ac-

cordingly to our intuition, the above conditions imply that the normalized version

must be non-symmetric.

Definition 5.4 (First attempt) Given two infinite sequences α and β the normalized

mutual information that β has about α is defined as

Im(β : α) = lim
n→∞

lim
m→∞

I (βm : αn)

I (αn : αn)

The major drawback of this definition is the fact that the limit does not always

exist.2 However, it does exist for the Example 5.3 with the desired properties. Fur-

thermore, we obtain for the same α and β

Im(α : α) = 1;

Im(β : β) = 1;

Im(α : β) = lim
n→∞

lim
m→∞

m + n − (m + n − n/2)

n
=
1

2
;

Im(β : α) = lim
n→∞

lim
m→∞

m + n − m

n
= 1.

Definition 5.5 (Normalized mutual information for infinite sequences) Given two

infinite sequences α and β we define the lower normalized mutual information that

β has about α as

Im∗(β : α) = lim inf
n→∞

lim
m→∞

I (βm : αn)

I (αn : αn)

and the upper normalized mutual information that β has about α as

I ∗
m(β : α) = lim sup

n→∞
lim

m→∞

I (βm : αn)

I (αn : αn)

Notice that these definitions also fulfill the requirements presented in the begin-

ning of this section with respect to Example 5.3.

We now can define independence with respect to normalized mutual information:

Definition 5.6 Two sequences, α and β , are independent if I ∗
m(α : β) = I ∗

m(β :

α) = 0.

In [11, 12], the author developed a constructive version of Hausdorff dimension.

That dimension assigns to every binary sequence α a real number dim(α) in the

interval [0,1]. Lutz claims that the dimension of a sequence is a measure of its in-

2Notice that there are sequences α for which limn
n

K(αn)
does not exist.

734 Theory Comput Syst (2009) 45: 724–739

formation density. The idea is to differentiate sequences by non-randomness degrees,

namely by their dimension. Our approach is precisely to introduce a measure of den-

sity of information that one sequence has about the other, in the total amount of the

other’s information. So we differentiate non-independent sequences, by their normal-

ized mutual information.

Mayordomo [13] redefined constructive Hausdorff dimension in terms of Kol-

mogorov complexity.

Theorem 5.7 (Mayordomo) For every sequence α,

dim(α) = lim inf
n→∞

K(αn)

n

So, now the connection between constructive dimension and normalized informa-

tion measure introduced here is clear. It is only natural to accomplish results about the

Hausdorff constructive dimension of a sequence, knowing the dimension of another,

and their normalized information.

Lemma 5.8 Let α and β be two infinite sequences. Then

I ∗
m(α : β) · dim(β) ≥ dim(α) + lim inf

n→∞
−

K(αn|βn)

n

Proof

I ∗
m(α : β) · dim(β) = lim sup

n
lim
m

I (αm : βn)

I (βn : βn)
· lim inf

n

K(βn)

n

≥ lim inf
n

lim inf
m

I (αm : βn)

n

≥ lim inf
n

lim inf
m

I (αm : βn)

m

≥ lim inf
n

lim inf
m

K(αm) − K(αm|βm)

m

≥ lim inf
m

K(αm)

m
+ lim inf

m

−K(αm|βm)

m

= dim(α) + lim inf
m

−
K(αm|βm)

m ¤

Note that, in the previous lemma the (unexpected) additive term lim infm −K(αm|βm)
m

is necessary to expresses the hardness of recover α given β .

We present now the time bounded version of dim(α). This definition will be im-

portant later on this paper.

Definition 5.9 Let t be a time-constructible function. The t-bounded dimension of

an infinite sequence α is defined as

dimt (α) = lim inf
n→∞

K t (αn)

n

Theory Comput Syst (2009) 45: 724–739 735

5.2 The Hausdorff Constructive Dimension Point of View

In this subsection we define a version of mutual information between two sequences

based on Hausdorff constructive dimension and establish a connection to it.

Definition 5.10 The dimensional mutual information of the sequences α and β is

defined as

Idim(α : β) = dim(α) + dim(β) − 2dim〈α,β〉

This measure of mutual information is symmetric. The definition considers twice

dim〈α,β〉 because when encoding the prefixes αn and βn the result is a 2n-length

string. Notice that,

Idim(α : β) = dim(α) + dim(β) − 2dim〈α,β〉

= lim inf
n→∞

K(αn/2)

n/2
+ lim inf

n→∞

K(βn/2)

n/2
− 2 lim inf

n→∞

K(〈α,β〉n)

n

≤ lim inf
n→∞

K(αn/2) + K(βn/2) − K(αn/2, βn/2)

n/2

= lim inf
n→∞

I (αn : βn)

n

≤ lim inf
n→∞

I (αn : βn)

K(βn)

≤ lim inf
n→∞

lim
m→∞

I (αm : βn)

K(βn)

= Im∗(α : β)

The third inequality is true due to the following fact:

I (βn : αm) = K(βn) − K(βn|αm) ≥ K(βn) − K(βn|αn) = I (βn : αn).

By the symmetry of the definition we also have that Idim(α : β) ≤ Im∗(β : α).

These two facts prove the following lemma:

Lemma 5.11 Let α and β be two sequences. Then

Idim(α : β) ≤min(Im∗(α : β), Im∗(β : α))

One can easily modify the definitions introduced in this section by considering the

limits when n goes to the length of the string, or the maximum length of the strings

being considered. One should also notice that when x and y are finite strings and

K(y) ≥ K(x), Im∗(x : y) is 1− d(x, y), where d(x, y) is the normalized information

distance studied in [10].

736 Theory Comput Syst (2009) 45: 724–739

6 Depth of Infinite Strings

In this section we revisit depth for infinite sequences. We introduce a new depth mea-

sure, prove that it is closely related with constructive Hausdorff dimension and use it

to characterize super deepness. To motivate our definitions we recall the definitions

of the classes of weakly (vs. strongly deep) sequences and weakly useful (vs. strongly

useful) sequences.

Definition 6.1 [3] An infinite binary sequence α is defined as

• weakly deep if it is not computable in recursively bounded time from any algorith-
mically random infinite sequence.

• strongly deep if at every significance level b, and for every recursive function t , all

but finitely many initial segments αn have logical depth exceeding t (n).

Definition 6.2 [4] An infinite binary sequence α is defined as

• weakly useful if there is a computable time bound within which all the sequences
in a non-measure 0 subset of the set of decidable sequences are Turing reducible

to α.

• strongly useful if there is a computable time bound within which every decidable
sequence is Turing reducible to α.

The relation between logical depth and usefulness was studied by Juedes, Lathrop

and Lutz [5] who defined the conditions for weak and strong usefulness and showed

that every weakly useful sequence is strongly deep. This result generalizes Bennett’s

remark that the diagonal halting problem is strongly deep, strengthening the rela-

tion between depth and usefulness. Latter Fenner et al. [4] proved the existence of

sequences that are weakly useful but not strongly useful.

The Hausdorff constructive dimension has a close connection with the information

theories for infinite strings studied before, see for example [4, 11, 12] and [13]. There-

fore, in this section we define the dimensional computational depth of a sequence in

order to study the nonrandom information on a infinite sequence.

Definition 6.3 The dimensional depth of a sequence α is defined as

depthtdim(α) = lim inf
n→∞

δ(αn | 2−K t (αn))

n
.

Lemma 6.4

depthtdim(α) ≤ dimt (α) − dim(α)

Proof

depthtdim(α) = lim inf
n→∞

δ(αn | 2−K t (αn))

n

= lim inf
n→∞

K t (αn) − K(αn)

n

≤ dimt (α) − dim(α).

Theory Comput Syst (2009) 45: 724–739 737

The last inequality holds since the sequence of values K(αn)/n is non negative and

then lim infn −K(αn)/n ≤ − lim infn K(αn)/n. ¤

Now, in the definition of strongly deep sequences, instead of considering a fixed

significance level s we consider a significance level function s : N → N. Naturally,

we want s(n) to grow very slowly so we assume for example that s = o(n). With this

replacement we obtain a tighter definition as deepness decreases with the increase of

the significance level.

Definition 6.5 A sequence is called super deep if for every significance level function

s : N → N, such that s = o(n), and for every recursive function t : N → N, all but

finitely many initial segments αn have logical depth exceeding t (n).

We have already characterized super deep sequences using their dimensional depth

in Theorem 3.5. In fact we have

ldepthb(x) = t (|x|), with b minimal⇒ deptht (x) ≥ b + O(1)

Theorem 6.6 A sequence α is super deep if and only if depthtdim(α) > 0 for all re-

cursive time bound t .

Proof Let α be a super deep sequence. Then for every significance level function

s, such that s = o(n) and every recursive function t we have that for almost all n,

ldepths(n)(αn) > t(n). Then

deptht (n)(αn) > s(n).

Now if for some time bound g, depth
g

dim(α) = 0 then there exists a bound S, such

that S = o(n), and, infinitely often

depthg(n)(αn) < S(n).

This is absurd and therefore for all recursive time bound t , depthtdim(α) > 0.

Conversely if depthtdim(α) > 0 then there is some ǫ > 0 such that for almost all n,

depth
t (n)
dim (αn) > ǫn. This implies that

ldepths(n)(αn) > ldepthǫn(αn) > t(n)

for all significance function s = o(n) and almost all n. So α is super deep. ¤

In the next theorem we express other equivalent ways to define super deepness.

Theorem 6.7 For every sequence α the following conditions are equivalent.

1. α is super deep;

2. For every recursive time bound t : N → N and every significance function g =

o(n), deptht (αn) > g(n) for all except finitely many n;

738 Theory Comput Syst (2009) 45: 724–739

3. For every recursive time bound t : N → N and every significance function g =

o(n), Q(αn) ≥ 2g(n)Qt (αn) for all except finitely many n.

Proof [Sketch] The equivalence (1⇔ 2) was proved in Theorem 6.6. To show that

(2⇔ 3) consider the following sets:

Dt
g = {α ∈ {0,1}∞ : deptht (αn) ≥ g(n) a.e.}

D̃t
g = {α ∈ {0,1}∞ : Q(αn) ≥ 2g(n)Qt (αn) a.e.}

The proof nows is an immediate consequence of the following lemma:

Lemma 6.8 (Lemma 3.5 in [5]) If t is a recursive time bound then there exists

constants c1 and c2 and a recursive time bound t1 such that D
t1
g+c1

⊂ D̃t
g and

D̃t
g+c2

⊂ Dt
g .

¤

Following the ideas in [5] to prove that every weakly useful sequence is strongly

deep we can prove that every weakly useful sequence is super deep.

Theorem 6.9 Every weakly useful sequence is super deep.

For the proof of this result we need the following lemmas:

Lemma 6.10 (Lemma 5.5 in [5]) Let s : N → N be strictly increasing and time-

constructible with the constant cs as witness. For each s-time-bounded Turing ma-

chine M, there is a constant cM that satisfies the following. Given non-decreasing

functions t, g : N → N we define s∗, τ, t̂ , ĝ : N → N by

s∗(n) = 2s(⌈logn⌉)+1,

τ (n) = t (s∗(n + 1) + 4s∗(n + 1) + 2(n + 1)css(|w|) + 2ns∗(n + 1)s(|w|)),

t̂ = cM(1+ τ(n) ⌈log τ(n)⌉),

ĝ = g(s∗(n + 1)) + cM ,

where w is the binary representation of n. For all sequences α, β , if β is Turing

reducible to α in time s by M and β ∈ D t̂
ĝ

then α ∈ Dt
g .

Lemma 6.11 (Corollary 5.9 in [5]) For every recursive function t : N → N and every

0< γ < 1, the set Dt
γ n has measure 1 in the set of recursive sequences.

Proof of Theorem 6.9 Let α by a weakly useful sequence. To prove that α is super

deep we show that for every recursive time bound t and every any significance level

g = o(n), α ∈ Dt
g , where Dt

g is the set defined in proof of Theorem 6.7.

Since α is weakly useful then there exists a recursive time bound s (that without

lose of generality we can assume increasing) such that the set DTIMEα(s) of all

Theory Comput Syst (2009) 45: 724–739 739

sequences that are Turing reducible to α has positive measure in the set of recursive

sequences. Using Lemma 6.10, to conclude that α ∈ Dt
g all that is necessary is to

prove that there exists β ∈ D t̂
ĝ

∩ DTIMEα(s), where t̂ and ĝ are described in same

lemma.

Fix γ ∈]0,1[and consider t̃ (n) = n(1+ γ (n)⌈logn⌉) where γ is obtained from

t and s as in Lemma 6.10. Since t̃ is recursive, by Lemma 6.11, D t̃
γ n has measure 1

in the set of all recursive sequences. Thus D t̃
γ n ∩ DTIMEα(s) has measure 1 and in

particular is non empty. As t̃ (n) > t̂(n) a.e. and γ n > o(n) = g a.e. it follows, directly

from the definitions, that D t̃
γ n ⊂ D t̂

ĝ
and then D t̃

γ n 6= ∅, as we wanted to show. ¤

Corollary 6.12 The characteristic sequences of the halting problem and the diagonal

halting problem are super deep.

Proof In [3], the author proved that the characteristic sequences of the halting prob-

lem and the diagonal halting problem are weakly useful. Then, it follows from Theo-

rem 6.9 that these two sequences are super deep. ¤

Acknowledgements We thank Harry Buhrman, Lance Fortnow and Ming Li for comments and sug-

gestions. This work follows the work started in [2], we thank Armindo Costa for some useful comments,

suggestions and ideas.

References

1. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.: Computational depth: concept and

applications. Theor. Comput. Sci. 354(3), 391–404 (2006)

2. Antunes, L., Costa, A., Matos, A., Vitányi, P.: Computational depth of infinite strings revisited. In:

Proc. CiE 2007, Computation and Logic in the Real World (2007)

3. Bennett, C.: Logical depth and physical complexity. In: The Universal Turing Machine: A Half-

Century Survey, pp. 227–257. Oxford University Press, London (1988)

4. Fenner, S., Lutz, J., Mayordomo, E., Reardon, P.: Weakly useful sequences. Inf. Comput. 197, 41–54

(2005)

5. Juedes, D., Lathrop, J., Lutz, J.: Computational depth and reducibility. Theor. Comput. Sci. 132, 37–

70 (1994)

6. Lathrop, J., Lutz, J.: Recursive computational depth. Inf. Comput. 153, 139–172 (1999)

7. Levin, L.: Laws of information conservation (nongrowth) and aspects of the foundation of probability

theory. Probl. Inf. Transm. 10, 206–210 (1974)

8. Levin, L.: Randomness conservation inequalities: information and independence in mathematical the-

ories. Inf. Control 61, 15–37 (1984)

9. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn.

Springer, Berlin (1997)

10. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.: The similarity metric. IEEE Trans. Inf. Theory 50(12),

3250–3264 (2004)

11. Lutz, J.: Dimension in complexity classes. In: Proceedings of the 15th IEEE Conference of Compu-

tational Complexity. IEEE Comput. Soc., Los Alamitos (2000)

12. Lutz, J.: The dimensions of individual strings and sequences. Technical Report cs.CC/0203017, ACM

Computing Research Repository (2002)

13. Mayordromo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension.

Inf. Process. Lett. 84, 1–3 (2002)

