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In McDiarmid, B. Reed, A. Schrijver, and B. Shepherd (Univ. of Waterloo Tech. 
Rep., 1990) a polynomial-time algorithm is given for the problem of finding a 
minimum cost circuit without chords (induced circuit) traversing two given vertices 
of a planar graph. The algorithm is based on the ellipsoid method. Here we give an 
O(n 2 ) combinatorial algorithm to determine whether two nodes in a planar graph 
lie on an induced circuit. We also give a min-max relation for the problem of 
finding a maximum number of paths connecting two given vertices in a planar 
graph so that each pair of these paths forms an induced circuit. ( 1994 Academic 

Press. Inc. 

Let G = ( V, E) be an undirected graph without loops, and let s, t be 
distinct nonadjacent vertices. We call two s - t paths P', P" separate if 
there is no edge joining an internal vertex of P' and an internal vertex of 
P". We consider the problem of finding a maximum number of pairwise 
separate s - t paths. For general graphs this is an NP-hard problem; this 
follows from Fellows [ l] in which it is shown that it is NP-complete to 
decide if there exists an induced circuit containing s and t. 
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We show that the problem can be solved in polynomial time for planar 
graphs. Moreover, we give a good characterization, based on the following 
concepts. Assume that G is embedded in the two-sphere S2 • Let C be a 
closed curve in S 2 , not traversing s or t. The winding number w( C) of C is, 
roughly speaking, the number of times that C separates s and t. More 
precisely, consider any curve P from s to t, crossing Conly a finite number 
of times. Let ,l be the number of times C crosses P from left to right, and 
let p be the number of times C crosses P from right to left (fixing some 
orientation of C, and orienting P from s tot). Then w(C)=IA-p!. (This 
number can be seen to be independent of the choice of P.) 

We call a closed curve C alternate if C does not traverses or t and there 
exists a sequence 

(where l ~ 0) such that 

(i) F0 , ... , F1 are faces of G, with F0 = F1; 

(ii) w; is a vertex or edge of G (i = 1, ... , m ); 

(iii) C traverses vertices, edges, and faces of G in the order ( 1 ). 

(1) 

Here, by definition, C traverses an edge e if C follows e from one end vertex 
to the other. 

Let l(C) denote the number l in (1 ). Now 

THEOREM A. Let G = ( V, E) be a graph emhedded in the two-sphere 52 

and let s, t be distinct nonadjacent vertices. 

(i) There exist k pairwise separate s - t paths if and only if 
!( C) ~ k · w( C) for each alternate closed curve C. 

(ii) The curves C in (i) can be restricted to those with I( C) <!VI and 

B 

FIGURE I 
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whose intersection with G is contained in a subgraph with maximum degree 
two (i.e., no three w /s of ( 1) are mutually incident). 

(iii) There is an 0(1 V\ 2 ) algorithm which finds a maximum set of 
pairwise separate s - t paths or an appropriate alternate czm1e. 

Before proving the theorem, let us give a small example of a graph where 
an alternate curve with winding number at least two must be used. Note 
that a proof of nonexistence of an· induced circuit containing s, t, by means 
of an alternate curve with winding number one, is equivalent to there 
being a vertex cut set which is a clique of size at most two. It is easily 
verified that the graph of Fig. 1 does not contain any induced s, t circuit 
and yet neither does it have such a clique cut set. Other examples can be 
constructed for k > 2 (see [ 4] ). 

Proof of Theorem A. I. Necessity in (i). Let P 1 , ••• ,Pk be pairwise 
separate s - t paths, and let C be an alternate closed curve. Then C inter­
sects each P; at least w( C) times. It is not hard to see that for each i, at 
least w( C) of the w1 in (1) are incident to a vertex in P; (defining two 
vertices v', v" to be incident if v' = v"). Since distinct P; and P;· are separate. 
there should be at least k · w( C) w/s, i.e., /( C) ): k · w( C ). 

II. Algorithm. We next describe an algorithm finding for any k, either 
k pairwise separate s - t paths or an alternate closed curve C with 
l( C) < k · w( C ). 

First we introduce some notation and terminology. Any s - t path will be 
oriented from s to t. Let O be an open disk whose boundary contains s 
and t. An edge e (of G) contained in the closure 0 of 0, connecting two 
points on the boundary of 0, is called a belt relative to 0, if any curve from 
s to t contained in 0, must cross e. Let P', P" be two edge-disjoint s- t 
paths, without crossings. Then R(P', P") denotes the region encircled by 
the closed curve P' . ( P") · 1 in clockwise orientation. We call the pair 
( P', P") internally separate if R( P', P") is an open disk not containing a 
belt. Note that even if (P', P") is internally separate, P' and P" can have 
a vertex v =f. s, t in common. Note, moreover, that P' and P" are separate 
if and only if both (P', P") and (P", P') are internally separate. 

For k = 1 the algorithm is trivial: either there exists an s - t path, or 
there exists a closed curve C not intersecting G with w( C) = 1 (implying 
I( C) = 0 < 1 · w( C) ). 

Suppose now that k > 1, and that we have found k - 1 pairwise separ~te 
s - t paths P 1 , ... , p k .. 1 . In the case that k = 2 we assume that there exist 
two internally disjoint s - t paths P, Q. If no such pair exists, then it is easy 
to find an appropriate alternate curve with the help of Menger's theorem. 
For k = 2 we may furthermore choose P 1 to be P. 
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Without loss of generality the first edges of P 1 , ••. , Pk_ 1 occur in this 
order clockwise at s. Let Pk be a path "parallel" to the left of P 1• That is, 
we add to each edge traversed by P 1 a parallel edge at the left-hand side 
(with respect to the orientation of P 1 ), and Pk follows these new edges. 
(Note that adding parallel edges does not change our problem and in the 
case k=2 we have chosen P 1 so that (P 1 , P 2 ) is internally separate.) Then 
the first edges of P 1 , .• ., Pk occur in this order clockwise at s, and each pair 
(Pi_ 1 , P;) is internally separate (i = 2, ... , k ). 

Now for n = k, k + 1, k + 2, ... we do the following. We have pairwise 
edge-disjoints- t paths P,,_k+ 1, .•• , P,,, without crossings, so that the first 
edges of Pn-k+t> ... ,P,, occur in this order clockwise at s, and each pair 
(P; _ 1, P;) is internally separate (i = n - k + 2, ... , n ). 

If also the pair ( P,,, P,, -k + 1 ) is internally separate, then P,, _ k + 1 , •.• , P n 

are pairwise separate, and hence we have k pairwise separates - t paths as 
required. If (P,,, Pn-k+il is not internally separate, let P,,+ 1 be the path in 
R(Pn-k+ 1, P,,_k+ 2 ) such that (P,,, P,,+ i) is internally separate and such 
that R(P,,+ 1 , Pn-k+ 2 ) is as large as possible. If P,,+ 1 uses an edge in 
P11 _ k + 2 , then as with Pk, we let P,, + 1 use a new parallel edge to the left. 
Then reset n := n + 1, and repeat. 

III. Correctness and running time. Suppose we do I VI iterations and let 
m := k +I VI. Consider the surface U obtained in the following way. First, 
we cut out holes in S2 at sand t. This transforms the sphere into a cylinder 
where the boundaries or holes at the ends are identified with s and t, 
respectively. Now make a cut from one end of the cyclinder to the other to 
obtain a rectangle. We then obtain U by taking an infinite number of 
copies of this rectangle and glueing them together to form an infinitely long 
strip whose two boundaries are again identified with the nodes s and t. 
What we have described is a special instance of what is called the universal 
covering surface of some fixed surface (see [5]). In our situation U is the 
universal covering surface of S2 \ { s, t }. 

Note that there are now many copies on U of each point of S2 . Denote 
by re the projection mapping n: V-+S 2 \{s, t} which maps a point of U 
back to its associated point on S2 • Thus n 1 maps each point of S 2 to an 
infinite set and so rc- 1[G\{s, t}] is an infinite graph on U. 

For any simple s - t path P in G, a l(fiing of P is any copy of P in 
rc- 1(P). If Q is a lifting of P, we denote by Q1 the lifting next to the right 
of Q. That is, Q 1 is to the right of Q (with respect to the lifted orientation 
of P from s to t), and there is no other lifting of P between Q and Q1. 

By our construction, there exist liftings Q 1, ••• , Qm of P 1 , ••• ,Pm, respec­
tively, so that Q,, is to the right of Q,,_ 1 (possibly touching) for n = 2, .. ., m, 
and such that Q,,_k+ 2 , ..• , Q,, are contained in the region enclosed by 
Q11 _k+i and Q~-k+I for n=k, k+ I, ... , m. 
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For each n = k + 1, ... , m, let Vn denote the set of internal vertices of Qn 
which are not vertices of Q!-k· Let Vk be the internal vertices of Qk. Since 
we did keep shifting, each vn # 0. Note that for any v E vn' there is an 
internal vertex v' of Q n _ 1 and a curve C v from v' to v such that either (a) 
Cv traverses a face which contains v' and v or (b) C0 traverses an edge v'v" 
and then traverses a face containing v" and v. For the curve Cv, we call v' 
its starting vertex and v its end vertex. In the case (b ), the vertex v" is a 
middle vertex. A vertex v is active in some iteration if :n:( v) has a lifting 
which is an internal vertex of one of the current paths on this iteration. 
Otherwise it is called inactive. Otherwise it is called inactive. Note that 
if a vertex z is a middle vertex on iteration i, then it becomes inactive in 
iteration i + 1 and will only become active again on an iteration when 
some lifting of :n:( z) occurs as an end vertex. 

We claim next that v' E vn-1 · If this is not the case, then the internal 
vertex v' of Q !-k- 1 is either a vertex of Q !-k or is adjacent to an internal 
vertex of Q !-k. This contradicts the fact that ( P n _ k _ 1 , P n _ k) is internally 
separate when n - 1 > k. 

We now show how to construct an alternate curve. Choose v m E V m and 
for each n = m -1, m- 2, .. ., k, let vn be the starting vertex of Cvn+i · Since 
m = k +I VI, there exist n', n" with m;:;.: n" > n';:;.: k such that :n:(vn") = n(vn' ). 
Let D be the curve 

CV,J'+I. CVn'+2. • ... Cvn~' (2) 

and let C be the projection :n: a D of D to S 2 . So C is an alternate closed 
curve with /( C) = n" - n'. Next we show that k · w( C) > n" - n', proving 
sufficiency in (i). 

For any lifting Q of any simple s- t path P and any i;:;.: 0, let Qu> be the 
ith lifting to the right of Q. That is, Q<01 =Q and QU+ll= (Q'il) 1• 

Let u:=L(n"-n')/kj. We must show w(C)>u. If u=O, then w(C)> 
u=O since v11.:;i!=v,, .. If u>O, then vn" is strictly to the right of Q!"-k and 
Q l . h . h f Q(u) ( • Q . h . h f Q(u-l) n" _ k 1S to t e ng t 0 n' smce n" _ k IS to t e ng t 0 n' , as 
n" - k;:;.: n' + (u - 1 )k ). So v,,,, is strictly to the right of Q:,~>. Therefore, 
w(C) > u. 

We now analyze the running time of the algorithm and show that (ii) 
holds. For each i = 1, 2, ... the algorithm applies a shifting procedure. This 
procedure either returns i separate paths or an alternative curve. Each 
step of the shifting procedure is characterized by a path Q,, _ 1 which is 
"too" close to a previous path. More precisely, there are internal vertices 
I of Q,, _ 1 which are adjacent to or contained in the set of internal vertices 
of Q,,_;. Hence we must shift from the vertices of/. It is easily checked 
(and standard) that the time needed to shift from a single vertex is 

j82b/60/2-2 
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proportional to the size of the faces incident to the vertex. Thus since for 
a planar graph, 

L IVFI 
Fa face of G 

is 0( IV al), the shifting procedure sweeps across a single copy of G (i.e., 
rectangle of the universal covering surface) in linear time. The point is then 
how many rectangles must we shift across before we find an alternate 
curve? 

Let K be the maximum number of separated paths. Then any alternate 
curve with length less than I VI has winding number less than I Vl/K by 
necessity in (i), and so this is an upper bound on the number of rectangles. 
The time bound of 0( I VI 2 ) now follows. Note that after n iterations we 
may construct a curve C as in (2) which has length n say and suppose that 
C crosses r liftings of P;-- 1 • Each time it crosses such a lifting it touches a 
vertex v contained in a partial curve in which it is either a start, middle, or 
end vertex. But as we have seen, if two vertices v', v" occur respectively as 
start and end vertices on C such that n(v') = n(v") and v' is to the left of 
v", then the portion of C between v' and v" determines an alternate curve. 
This implies that if we have not found an alternate curve after r crossings, 
then each internal vertex of P;_ 1 has at most one lifting which occurs as 
a start vertex of C and similarly at most one occurs as an end vertex. In 
fact it is straightforward to see that there is at most one lifting which occurs 
as a middle vertex; this can be seen by considering the curve C being built 
in the other direction. This now easily implies (ii). 

The algorithm given in the proof of the theorem can be extended for any 
fixed surface S and any fixed k, to find k pairwise separate s - t paths in 
any graph embedded on S. It can also be shown [ 4] that the problem of 
finding a minimum-weight induced circuit traversing two given vertices s 
and t in a planar graph, is solvable in polynomial time. Moreover, finding 
a set of k pairwise separate s - t paths of minimum total weight, is solvable 
in polynomial time for planar graphs. 

The proof of the theorem can also be extended to solve a directed ver­
sion of the problem for planar diagraphs D = ( V, A). A collection of s- t 

dipaths is pairwise separate if there is no arc connecting internal vertices of 
distinct dipaths in the collection. We call a closed curve C (with clockwise 
orientation relative to s) di-alternate if C does not traverses or t, and there 
exist a sequence 

(3) 

such that 

(i) a; is an arc of D\{s, t} with endpoints s;, t; (i= 1, ... , /); 
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(ii) C; is a (noncrossing) curve of positive length from t;_ 1 to s; and 
these are the only vertices of D that C; intersects (i = 1, ... ,land C0 = C1); 

(iii) C traverses the paths and curves given in (3) in the described 
order; 

(iv) each C; may cross arcs only from right to left (relative to the 
orientation derived from C) and may not cross any a;. 

Informally, condition (iv) requires that any arcs crossed by C; must be 
directed towards s. 

THEOREM B. For a plane digraph D = ( V, A): 

(i) There exist k pairwise separate s- t dipaths if and only if 
/( C) ~ k · w( C) for each di-alternate closed curve C. 

(ii) A maximum number of pairwise separate s - t dipaths can be 
found in polynomial time. 

(iii) The curves C in (i) can be restricted to those with l(C) <I VI. 

We note that in the directed case we do not require the paths in the 
collection to be induced, i.e., they may have backwards arcs. In fact, 
Fellows et al. [2] have shown that the problem of determining whether 
there is a single induced s - t di path in a planar digraph is NP-complete. 
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