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Abstract

In this paper we study coordinated multipath routing at the flow-level in networks
with routes of length one. As a first step the static case is considered, in which the
number of flows is fixed. A clustering pattern in the rate allocation is identified, and
we describe a finite algorithm to find this rate allocation and the clustering explicitly.
Then we consider the dynamic model, in which there are stochastic arrivals and de-
partures; we do so for models with both streaming and elastic traffic, and where a
peak-rate is imposed on the elastic flows (to be thought of as an access rate). Lack-
ing explicit expressions for the equilibrium distribution of the Markov process under
consideration, we study its fluid and diffusion limits; in particular, we prove unique-
ness of the equilibrium point. We demonstrate through a specific example how the
diffusion limit can be identified; it also reveals structural results about the clustering
pattern when the minimal rate is very small and the network grows large.

1 Introduction

Balancing flows over different routes, commonly referred to as multipath routing, bears
important advantages. First, it makes the network more robust, because in case of a link
failure, the flow can still use bandwidth on its other routes. Also, under multipath routing
the resources of the network are used more efficiently since overcongested flows have
more flexibility to spread their traffic over undercongested parts of the network. In this
paper we want to elaborate on the latter aspect. Questions we are particularly interested
in are: How are the resources shared under multipath routing, what causes congestion,
and how are these congestion phenomena affected by the number of routes that a flow
can use?
Recently, multipath routing has attracted substantial attention from the research commu-
nity. We specifically mention here models that consider the flow-level, i.e., the timescale
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at which the number of flows stochastically changes: flows arrive at the network, use a
set of links for a while, and then leave. Flows can be divided into streaming and elas-
tic flows: streaming flows (voice, real-time video) are essentially characterized by their
duration and the rate they transmit at; on the other hand, elastic flows (predominantly
data) are characterized by their size, while their transmission rate is a function of the
level of congestion in the network. An implicit assumption in flow-level models is that
of separation of time-scales, meaning that the time it takes for the rate to adapt is negligible
compared to changes at the flow-level. A flow-level model for multipath routing, which
integrates elastic and streaming traffic, is due to Key and Massoulié [7]; models in the
context of rate control can be found in the work by Kelly and Voice [5, 13].

In this paper we consider multipath routing at the flow-level in networks with routes of
length one, adopting the model of [7] for coordinated multipath routing. Here coordinated
multipath routing means that rates are allocated so as to maximize the utilities of the
total rates that flows obtain. This is in contrast with uncoordinated multipath routing,
where flows on different routes are treated as different users; then one maximizes the
utilities of the rates that a flow achieves on each route. As pointed out in [7], such an
uncoordinated mechanism generally leads to inferior performance. There a fluid limit for
the model of integrated streaming and elastic traffic was established, and uniqueness of
the equilibrium point was proven. A first contribution of our work is that we consider
a perhaps more realistic model in which the elastic flows have an upper bound they can
transmit at. Imposing such a peak rate has significant advantages when analyzing the
model [1]; in addition it has a natural interpretation, as the constraint on the rate can be
thought of as the rate of the bottleneck link (for instance the access rate). For this model
we establish a fluid limit, and prove existence and uniqueness of an equilibrium point; in
addition we describe a (finite) algorithm that finds this equilibrium point.

One of the difficulties in the analysis of multipath routing, is that the rate allocation can-
not be given explicitly, even when the number of flows is fixed; instead, it follows by
solving an optimization problem. Additionally, this optimization problem contains fur-
ther variables, determining how users split their flow on different routes, for which there
is in general no unique solution. The second contribution of this paper, is that we ease this
analysis by finding generalized cut constraints for the case of routes of length one. These
generalized cut constraints assume there are certain cuts, i.e., subsets of resources, of the
network that give sufficient constraints to determine the feasibility of a flow. Introducing
these reduces the optimization problem to one with the total rates being the only vari-
ables over which we are optimizing. In the rate allocation for a given number of flows,
we identify a clustering of flows and resources. The generalized cut constraints enable us
to construct an algorithm that finds the rate allocation and the clustering explicitly.

Related to the question how flows share resources in a multipath network, a crucial con-
cept is complete resource pooling, which is a state in which the network behaves as if all
resources are pooled together, with every user having access to it. It is clearly desirable
to achieve this state, as then resources can be shared fairly among all flows and, due to
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the concavity of the utility functions we are using, in the most utility-efficient way. (Also,
this implies that if a network is already in complete resource pooling then increasing the
number of routes that a flow can use does not change the rate allocation since the network
already operates in the best possible way. However, increasing the number of routes will
make it more likely for the network to be in a complete resource pooling state.) Complete
resource pooling was already studied by, e.g., Laws [9] and Turner [11] for networks
where users must use one route only but have a set of possible routes to choose from. In
this paper, we give explicit conditions for the equilibrium point of the fluid limit to be of
the complete-resource-pooling type.

Our last contribution relates to the purely symmetric circle network. Each flow is allowed
to use r given routes; we call the network a circle network as the resources can be arranged
in a circle. This setup is reminiscent of the supermarket model by Mitzenmacher [10],
where every flow chooses one of a set of r randomly chosen routes; we believe our model
is the more natural one, as users would naturally choose from a set of routes in their
proximity. We study the effect increasing r, the number of routes that a flow can use, has
on congestion in the network. To this end we define ‘congestion’ as the event that there
is a flow that can transmit at a rate of at most some small value ε. We then investigate in
what kind of cluster this congestion event is most likely to occur. Using diffusion-based
estimates, we derive expressions for the corresponding probabilities, and conclude that,
as the size of the network grows large, the cluster with highest probability of congestion
has size r − 1.

The outline of the paper is as follows. In Section 2 we introduce the model of multipath
routing in general networks. We describe the optimization problem that gives the rate
allocation for a given number of flows. For the case of routes of length one we describe
the clustering in the rate allocation, and introduce notions of connected and strongly con-
nected sets. In this context we also introduce the generalized cut constraints. Section 3
further investigates the rate allocation, for a given number of flows. We develop the al-
gorithm that identifies this allocation, which also gives explicit expressions for the max-
imum and minimum rate (over all flows), as well as a lower bound on the rate allocated
to each of the flows.

In Section 4 we then move to the model that incorporates a flow level, and which involves
streaming and (peak-rate constrained) elastic traffic, as described above. In the scenario
of streaming traffic only, the stationary distribution of the corresponding Markov chain
is given explicitly, but for the other cases this is infeasible. We therefore resort to fluid
limits in Section 5. After briefly reviewing the results of [7], we specifically consider the
fluid limit for peak-rate constraint elastic traffic, and prove the uniqueness of an equi-
librium point. We also introduce the concept of complete resource pooling, and provide
conditions for the equilibrium point of the fluid limit to be in complete resource pooling
for both cases, with integrated streaming and elastic traffic and with peak-rate constraint
elastic traffic.

In Section 6 we turn to the diffusions around the equilibrium point. We explicitly estab-
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lish the diffusion limit for the purely symmetric circle network. We will calculate the
covariance matrix of the stationary distribution that belongs to this diffusion. Relying on
these estimates, we present expressions for the probabilities that congestion occurs (that
is, some transmission rates are below some critical value ε) with a cluster of size k, so as
to identify the most-likely size of the cluster in periods of congestion.

2 Definitions and preliminaries

In this section we first define in our multipath setting, given the number of flows present,
the allocation of rates to these flows. We will make this allocation more explicit in the
next section. In practice, of course, the number of flows will change over time; in Section
4 and further we consider this setting (where we use the results derived in Section 3 for
a given number of flows present). A second goal of this section is to introduce useful
notions such as clusters and (strong) connectivity.

2.1 Rate allocation

We consider networks with multipath routing, i.e., we have a set of resources J with
capacities (Cj)j∈J , users (interchangeably referred to as flow types) I and routes R. User
i can use routes in R(i) ⊆ R, where each route r ∈ R is a set of resources r ⊆ J . As
mentioned above, in this and the following section we still consider the number of flows
to be fixed.
Let ni denote the number of file transfers of type i. Then the vector (xi)i∈I of rates allo-
cated to flow of type i is the unique solution to the concave optimization problem:

Maximize
∑

i∈I niUi(xi)
s.t.

∑
r:j∈r,i:r∈R(i) nix

r
i ≤ Cj ∀j ∈ J,∑

r∈R(i) xr
i = xi ∀i ∈ I,

xr
i ≥ 0 ∀i ∈ I, r ∈ R(i).

(1)

Here xr
i is the rate with which flow of type i is processed on route r. We agree that xi = 0

if ni = 0. Also, we can define variables xr
i = 0 for r ∈ R(i). Following [7], the utility

functions Ui are assumed to be strictly concave, strictly increasing and differentiable. A
utility function that is frequently considered in this context is

Ui(x) = wi
x1−α

1− α
,

for given weights wi; this type of utility curves is usually referred to as weighted α-
fairness. In this paper we will disregard weights and consider Ui(·) = U(·), i.e., each
user has the same utility function.
Considering routes of length one only, the following results are irrespective of the explicit
form of the function U and only require that it is a strictly concave, strictly increasing ,
and differentiable common utility function. Here we leave the notion of route, and let
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J(i) be the set of resources user i can use. Now, xj
i denotes the rate user i receives from

resource j. Then our optimization problem reads:

Maximize
∑

i∈I niU(xi)
s.t.

∑
i:j∈J(i) nix

j
i ≤ Cj ∀j ∈ J,∑

j∈J(i) xj
i = xi ∀i ∈ I,

xj
i ≥ 0 ∀i ∈ I, j ∈ J(i).

(2)

The stationary conditions of the corresponding Lagrangian are

∀i, j ∈ J(i) : xi ≥ (U ′)−1(µj) with equality if xj
i > 0∑

i:j∈J(i) nix
j
i = Cj ∀j s.t. ∃i, j ∈ J(i), ni > 0,

(3)

where µj is the Lagrange multipliers corresponding to resource j. Then we can see that
for any function U as above the optimal solution x is sufficiently characterized by

xi1 > xi2 ⇒ xj
i1

= 0 ∀j ∈ J(i1) ∩ J(i2)∑
i:j∈J(i) nix

j
i = Cj ∀j s.t. ∃i, j ∈ J(i), ni > 0,

(4)

2.2 Clusters, connectivity

With (4) we can discover a unique partition of (I, J) into a collection of clusters of the
form (I ′, J ′) , similarly to Hajek’s notion [2]. This is the same for any strictly concave
differentiable function U .

Definition 2.1. We define a cluster to be a non-empty pair (I ′, J ′) with I ′ ⊆ I , J ′ ⊆ J such
that if i ∈ I ′ then I ′ consists of all i′ ∈ I such that there exists a path i = i0, i1, i2, ..in =
i′ ∈ I ′, j1, j2...jn ∈ J ′ such that for a feasible allocation x solving (2) xjk

ik−1
and xjk

ik
are strictly

positive for all k = 1, ...n. Similarly, J ′ consists of all j ∈ J for which there exists a path
i = i0, i1, i2, ..in−1 ∈ I ′, j1, j2...jn = j ∈ J ′ such that for a feasible allocation x solving (2) xjk

ik−1

and xjk
ik

are strictly positive for all k = 1, ...n. with xj
i > 0

This gives indeed a unique partition since it can be checked that the existence of a path
between i and j, or respectively between i and j′ or j and j′, is an equivalence relation. It
can be easily deduced from (4) that if i and i′ are in the same cluster then xi′ = xi.
Intuitively, a cluster (I ′, J ′) is such that the optimal rate allocation is as if all resources
of J ′ are pooled together with exactly all flows of I ′ having access to it. Consider Figure
1 which shows a circle network of four resources (described by squares labelled 1, 2, 3,
and 4) of unit capacity and four flow types (described by circles labelled 1, 2, 3, and 4).
Each type i can use resources i and i + 1, which is illustrated by edges (where 4 + 1 is
understood as 1). In this example n1, the number of flows of type 1, is relatively large, ie.
suppose n1 = 4, n2 = n3 = n4 = 1, so that flows of type 1 monopolize resources 1 and
2. Types 2, 3 and 4 are sharing resources 3 and 4 equally. Thus we have two clusters, one
consisting of flows of type 1 and resources 1 and 2, and another consisting of flow types
2, 3, and 4 and resources 3 and 4.
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Figure 1: Possible clustering for a circle network with four resources

As a consequence of the previous definition all flows i in the same cluster will have the
same rate xi. If we have two distinct clusters in which the common rate xi is the same,
then we say that these clusters are at the same cluster level.
For a cluster (I ′, J ′) we then have that the set I(J ′) = {i ∈ I : J(i) ⊆ J ′}, i.e., the set
consisting of all i that have to go through J ′, is a subset of I ′. We will be particularly in-
terested in the event of complete resource pooling, i.e., when (I, J) is just a single cluster.

The following notions of connectivity help us to characterize the structure of the network
and to identify clusters. These notions concern the general structure of (I, J, J(i)) without
taking into account the allocation at state n.

Definition 2.2. A pair (I ′, J ′) with I ′ ⊆ I , J ′ ⊆ J is connected if J ′ cannot be partitioned in
nonempty J1, J2 such that I ′ can be partitioned into I1, I2 with J(i) ∩ J2 = ∅ for i ∈ I1 and
J(i) ∩ J1 = ∅ for i ∈ I2. Equivalently, for all j, j′ ∈ J ′ there is a path i1, i2, ..in ∈ I ′, j0 =
j, j1, j2...jn = j′ ∈ J ′ such that jk, jk+1 ∈ J(ik+1) for all k = 0, ..n− 1

Regarding (I, J, J(i)) as a bipartite graph with nodes I and J and an edge between i ∈ I

and j ∈ J if and only if j ∈ J(i), we see that a pair (I ′, J ′) is connected if and only if the
subgraph (I ′, J ′) is connected. We can also see that for (I ′, J ′) to be a cluster it has to be
connected.

Definition 2.3. A subset J ′ ⊆ J is connected if (I, J ′) is connected. We define C (J) to be
the set of connected subsets of J . A subset J ′ ⊆ J is strongly connected if (I(J ′), J ′) is
connected. Let S C (J) be the set of strongly connected subsets of J .

Figure 2 demonstrates connected sets of the circle network with four resources from Fig-
ure 1. Any set of consecutive resources {1, 2}, {1, 2, 3} and also {1, 2, 3, 4} and {1} are
connected as are the sets isomorphic to these. Here, all of these sets are also strongly
connected since consider eg. I({1, 2, 3}) = {2, 3} and any splitting of {1, 2, 3} into two
non-empty sets would lose either user 2 or 3.
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Figure 2: Connected sets of resources in the circle network with four resources

It is immediate that ‘strongly connected’ implies ‘connected’. However, the reverse is
not true as Figure 3 illustrates. Here the set of resources 1, 2 and 3 is connected, but not
strongly connected, since we can partition it in subsets {1, 2} and {3}. Then I({1, 2, 3}),
which contains flow type 1 only, is the same as I({1, 2}). The notion of strongly connected
sets is so important because it enables us to identify the generalized cut constraints in the
next section, and they are also essential to the rate-allocation algorithm of Section 3.

Figure 3: Network with set of resources {1, 2, 3} being connected but not strongly con-
nected

2.3 Generalized cut constraints

The feasibility constraints from (2) are inconvenient because they involve additional vari-
ables xj

i for which there is no unique solution. However, we can rewrite them in terms of
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the xi as ∑
i∈I(J ′)

nixi ≤
∑
j∈J ′

Cj ∀J ′ ∈ S C (J). (5)

These inequalities are called generalized cut constraints. They will be inevitable in the
next section when proving the validity of the optimal allocation attained by our pro-
posed algorithm. The equivalence of these generalized cut constraints to the feasibility
constraints from (2) is proved in Lemma A.1 in the appendix. Kang et al. [6] have shown
in their Proposition 5.1 that it is possible even for the general multipath network to write
the feasibility constraints in terms of generalized cut constraints as

A(nx) ≤ C

where A is a some non-negative matrix and C is a positive vector; here (nx) refers to the
vector with i-th coordinate equalling nixi. However, no explicit expression for A and C

has been found so far in such a general multipath network.

3 Rate allocation for a given number of flows

So far we characterized the rate allocation (for a given number of flows) as the solution to
an optimization problem; we did not give any explicit expressions. This section gives a (fi-
nite) algorithm that identifies this allocation, and which in addition yields the clustering.
We finally also present explicit expressions for the minimally and maximally achieved
rate (over all classes).
To ease notation we write in the following for J ′ ⊆ J

C(J ′) :=
∑
j∈J ′

Cj .

Also, for I ′ ⊆ I, J ′ ⊆ J , we write

r(I ′, J ′) :=
C(J ′)∑

i∈I′ ni
.

Note that this is the rate in cluster (I ′, J ′) if (I ′, J ′) is a cluster. If (I ′, J ′) is a union of
clusters (Ik, Jk), then

r(I ′, J ′) =
C(J ′)∑

k C(Jk)r(Ik, Jk)−1
,

which means that r(I ′, J ′) is a weighted harmonic mean of the rates r(Ik, Jk) of clusters
(Ik, Jk) with corresponding weights C(Jk). It is important to note that the same still holds
if (Ik, Jk) are not necessarily clusters, i.e., when we only know that (I ′, J ′) is a union of
pairwise disjoint (Ik, Jk). In the sequel we write

Ω (α1, . . . , αn) :=
∑n

`=1 w`∑n
`=1 w`/α`
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to denote a weighted harmonic mean of α1, . . . , αn, with weights w` > 0, ` = 1, . . . , n.
In the cases we deal with, the magnitude of the weights will either be not important or
obvious, e.g., when r(I ′, J ′) = Ω (r(I1, J1), . . . , r(IK , JK)), the corresponding weight for
r(Ik, Jk) is Jk.
Now we are ready to describe the algorithm that finds the optimal allocation x and the
clustering, when the number of flows present is given by the vector n.

Theorem 3.1. For general networks with routes of length one and fixed number of flows n the
optimal x ≡ x(n) can be obtained by the following algorithm:
For k ≥ 1

• Find the minimum
min

J ′∈S C (J)
r(I(J ′), J ′) (6)

• Let Jk be the union of all arguments that achieve the minimum above and Ik := I(Jk)

• For all i ∈ Ik let xi be the minimum of above.

• Now, set I := I\I(Jk), J := J\Jk and J(i) := J(i) ∩ (J\Jk), so that we also have
I(J ′) := I(J ′ ∪ Jk)\I(Jk). Repeat this procedure with the reduced network until we are
left with a network without resources and users.

Moreover, (Ik, Jk) found at the k-th step of the algorithm is the union of all clusters at the k-th
level. The strongly connected sets that are arguments of (6) with their corresponding I(J ′) being
the clusters of the network.

Observe that this algorithm is well defined. For any finite network with set of resources
J 6= ∅ there will be at least one and a finite number of J ′ ∈ S C (J). Thus, the minimum
exists at each step. Also, the algorithm will stop because of the network being finite. In
order to prove Theorem 3.1, we need the following essential properties. The proof of the
lemma is given in the appendix.

Lemma 3.2. At each step k of the algorithm for the corresponding (I, J), we have
1. ∀J ′ ⊆ J : r(I(J ′), J ′) ≥ xk.

2. If r(I(J ′), J ′) = xk for J ′ ⊆ J then J ′ ⊆ Jk.
3. r(I(Jk), Jk) = xk.

4. xk < xk+1, i.e., cluster levels are found in increasing order of their rates.

Proof of Theorem 3.1. We need to check that the allocation x achieved in Theorem 3.1 sat-
isfies the relations (4) with cluster levels Jk. For this we need to show the following.

1. At each step k the allocation within the kth cluster level (Ik, Jk) is feasible, i.e., none
of the constraints of (5) for J ′ ∈ S C (Jk) is violated taking the amended J(i) :=
J(i)\J(

⋃
l<k Jl). By Lemma 3.2.1 we have

r(I(J ′), J ′) ≥ xk
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where xk = xi for all i ∈ I(J ′) ⊆ Ik. So, this implies that we have∑
i∈I(J ′)

nixi ≤ C(J ′),

as desired. Also, xi > 0 and xi < ∞ if ni > 0.

2. The first line of (4) holds: Consider any i1, i2, not at the same level, and j ∈ J(i1) ∩
J(i2). Assume xi1 < xi2 , which implies (by Lemma 3.2.4) that i1 is at an earlier
cluster level than i2, say (Ik, Jk). Then since i1 ∈ I(

⋃
l≤k Jl) = {i ∈ I : J(i) ⊆⋃

l≤k Jl} and j ∈ J(i1), we know that j ∈
⋃

l≤k Jl.

So, j is at a cluster level before i2 and xj
i2

= 0.

3. No capacity is wasted. At each cluster level (Ik, Jk) where Ik 6= ∅ the total load is∑
i∈Ik

nixk =
∑
i∈Ik

nir(Ik, Jk) = C(Jk)

where the first equality follows from Lemma 3.2.3. Since we know that none of the
capacity constraints is violated, we conclude that each link is fully used.

Note, when Ik = ∅, we have xk = ∞, so this must be at the last level. The union of
the earlier clusters then has the form (I(J\Jk), J\Jk) with I(J\Jk) = I , so {i ∈ I :
J(i) ∩ Jk 6= ∅} = ∅ and the links in J ′ were redundant.

This completes the proof.

With the rate-allocation algorithm of Theorem 3.1 at our disposal, we can give an expres-
sion for the minimal and maximal rates.

Theorem 3.3. For general networks with routes of length one the minimal and maximal rates are

min
i∈I

xi = min
J ′∈S C (J)

C(J ′)∑
i∈I(J ′) ni

(7)

max
i∈I

xi = max
J ′∈C (J)

C(J ′)∑
i:J(i)∩J ′ 6=∅ ni

. (8)

Proof. The proof for the minimal rate follows immediately from Theorem 3.1. For the
maximal rate we know from Theorem 3.1 that at the last step we are left with clusters of
the form (I ′, J ′) such that I ′ = {i ∈ I : J(i) ∩ J ′ 6= ∅}, so the maximum of (8) gives an
upper bound for the maximal rate. To see that this maximum is actually attained, let J ′

be the argument for the maximum in (8). Then I ′ = {i ∈ I : J(i) ∩ J ′ 6= ∅} is the set of all
flows that can possibly use resources in J ′. So, a weighted harmonic mean of the rates of
flows i ∈ I(J ′) is at least

C(J ′)∑
i∈I′ ni

.

Hence there must be at least one flow having a rate greater than or equal to this and so
the maximal rate follows.
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Also with Theorem 3.1 we can give a lower bound on the rates of any flow.

Theorem 3.4. For each i ∈ I we have

xi ≥ min
J ′⊆J :i∈I(J ′)

C(J ′)∑
i′∈I(J ′) ni

.

Proof. We know i has to be in some cluster, say (Ic, Jc) where c is the order it appears in
(3.1). Consider the union of (Ik, Jk) for k ≤ c. This will be of the form (I(J ′), J ′). Since
r(I(J ′), J ′) is a weighted harmonic mean of the rates of clusters (Ik, Jk) for k ≤ c, and
since among those the cluster of i has the highest rate, we find the lower bound on xi.

Remark 3.5. In the minimizations and maximizations above we could always look at
general subsets instead of connected ones, and the proofs would work in exactly the
same way. However, restricting to connected or even strongly connected sets is sufficient,
and has the important advantage of decreasing the number of sets over which we are
minimizing.

4 Models at the flow-level

Where the previous section considered the rate allocation for a given number of flows, we
now add a dynamic component: we let flows arrive (according to a Poisson process), use
a set of links for a while, and then leave again. Given that, at some point in time t, there
are (ni(t))i∈I flows present, then the rates are allocated as in (1). Under the appropriate
exponentiality assumption regarding the flow size distribution, (n(t))t≥0 is a continuous-
time Markov chain.
We distinguish between two different kinds of traffic: streaming and elastic traffic. Stream-
ing flows have a random but fixed duration that is independent of the current level of
congestion; think of voice or streaming video. Elastic flows have a random but fixed size
(say, in Mbit s). In the sequel we consider three cases, one with purely streaming traffic,
one with integrated streaming and elastic traffic, and one with elastic traffic only in which
we impose a peak rate.

4.1 Purely streaming traffic

If only streaming traffic is present, then the transition rates do not depend on the resource
allocation x. Assume that flows of type i arrive according to a Poisson process with
rate κi, and that their duration is exponentially distributed with mean 1/ηi. With mi(t)
denoting the number of streaming traffic of type i at time t, it is evident that the transition
rates are those of a multidimensional M/G/∞ queue:{

mi → mi + 1 : κi

mi → mi − 1 : ηimi
(9)
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It follows immediately that in steady-state the (mi(t)) are independent Poisson vari-
ables with mean κi/ηi =: ρi. It is natural to assume that streaming flows are blocked
if the allocated rate falls under a certain threshold. Denoting the set of feasible states by
A, we obtain [4] that the corresponding equilibrium distribution is proportional to the
multivariate-Poisson distribution given above. In particular,

P(flow of type i is blocked) =

∑
k∈Ai

∏
i∈I

ρ
ki
i

ki!∑
k∈A

∏
i∈I

ρ
ki
i

ki!

,

where Ai is the set of vectors n ∈ A such that n + ei 6∈ A, with ei representing the i-th
unit vector. We end with the obvious remark that since the equilibrium distribution is of
product form, it is the same for any duration distribution with means 1/ηi; the blocking
probability is insensitive to the service time distribution.

4.2 Integrated streaming and elastic traffic

Here we review the model of integrated streaming and elastic traffic that was consid-
ered by Key and Massoulié [7]. Importantly, in this model streaming and elastic traffic
are treated the same, in the following sense. The rate allocation is computed, for both
streaming and elastic flows through (1). Streaming flows terminate ‘autonomically’, that
is, with a rate that does not depend on the current congestion level (and hence also not
on their current transmission rates). Elastic flows, however, terminate with a rate that
is proportional to their momentary transmission rate. With n(t) corresponding to elastic
flows and m(t) to streaming flows, this leads, in self-evident notation, to a Markov chain
with transition rates: 

(n, m) → (n + ei,m) : λi

(n, m) → (n− ei,m) : µinixi(n(t))
(n, m) → (n, m + ei) : κi

(n, m) → (n, m− ei) : ηimi

In [7] it was shown that in this model the addition of streaming traffic brings some sort
of a ‘stabilization effect’ to the network; as a result, the model has a non-trivial fluid limit
(that is, a fluid limit with an equilibrium point that does not equal 0). They claim that a
sufficient and necessary condition for stability that the ρi := λi/µi have to satisfy is

∀ i ∈ I, j ∈ J(i) : ∃ ρij ≥ 0 :

{ ∑
j∈J(i) ρij = ρi ∀i ∈ I;∑
i∈J−1(j) ρij < Cj ∀j ∈ J.

(10)

With the generalized cut constraints (5) we can rewrite this condition as∑
i∈I(J ′)

ρi < C(J ′) ∀J ′ ∈ S C (J). (11)

Note that the stability constraints do not involve the streaming flows; as their rate can be
pushed down arbitrarily low, their presence has no impact on the stability of the network
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(which may be considered a less realistic feature of this setup). An important observation
is that no closed-form expression of the equilibrium distribution of this Markov chain is
available.

4.3 Elastic traffic with peak-rate constraints

Finally, we consider a network with elastic traffic only. We impose a peak rate on the
flows’ transmission rates. As argued in [1], this is convenient as it facilitates the analysis of
the corresponding fluid limit (see Section 5 of the present paper); in fact, the introduction
of peak rates has again a ‘stabilization effect’ (cf. the previous subsection), in that it leads
to non-trivial fluid limits. In addition, it is remarked that imposing peak rates is quite
natural: it is not realistic that flows can transmit at link speed; in fact the peak rates can
be interpreted as the access rates of the users. We denote the peak rate of type i by ri. In
self-evident notation, this leads to a Markov chain with transition rates{

n → n + ei : λi

n → n− ei : µini min{xi(n(t)), ri}.

Here we want the loads ρi := λi/µi to be such that the stability condition (10) for the
integrated streaming and elastic traffic case of [7] holds, which again translates to (11). It
is conceivable that this is the stability condition for this case. It is noted that, again, no
closed-form expression of the equilibrium distribution of this Markov chain is available.

5 Results under the fluid limit

As mentioned above, the Markov chains presented in the previous section do not lead to
a closed-form steady-state distribution (except for the purely streaming case). This moti-
vates why we now explore these systems under a fluid scaling. Loosely speaking, a fluid
scaling for the process n(t) is the sped-up process nL(t) that we obtain when we scale up
arrival rates and capacities by the same factor L. The fluid limit is then the rescaled pro-
cess nL(t)

L , in the limit as L →∞, which then gives a reasonable approximation of the real
system when arrival rates and capacities are large. In our work we will not treat in detail
the convergence issues that play a role here; see for instance [8] for more background.
In the previous section, we mentioned that either adding streaming traffic or imposing
peak rates has the effect that we obtain a non-trivial fluid limit. To explain what goes
wrong otherwise, consider the following argument. In case of elastic traffic only, without
a peak rate, the dynamics of the fluid limit are given through

n′i(t) = λi − µini(t) xi(n(t)),

so that the equilibrium point should satisfy ni(t) xi(n(t)) = λi/µi = ρi. But with the stabil-
ity condition (11) this contradicts the capacity constraints being tight at the optimal x, so
no equilibrium point other than 0 can exist in this case, where 0 is a point of discontinuity
of the gradient of the fluid limit.
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If, however, the case of integrated streaming and elastic traffic, or the case of peak-rate
constrained elastic traffic is considered, we do get a non-trivial fluid limit. We show this
for the peak-rate constraint case later in this section; moreover, we give an algorithm how
to find this equilibrium point. For integrated streaming and elastic traffic, the existence of
a unique equilibrium point was already shown in [7], but we give a quick review of their
result. We end this section by introducing the notion of complete resource pooling, and
give conditions that tell us when the equilibrium point corresponds to complete resource
pooling.

5.1 Fluid limit for integrated streaming and elastic traffic

From [7], we know that under integrated streaming and elastic traffic the fluid limit be-
comes

n′i(t) = λi − µini(t)xi(n(t),m(t));
m′

i(t) = κi − ηimi(t).

Then for an equilibrium point (m̂, n̂) of the fluid limit we have

m̂i =
κi

ηi
and n̂ix̂i = ρi

where x̂i is the rate allocation at the equilibrium point xi(n̂, m̂). In [7] it is shown that x̂i

is the unique solution to the optimization problem

Maximize
∑

i∈I m̂iUi(xi)
s.t.

∑
r:j∈r,i:r∈R(i) (m̂i + ρi

xi
)xr

i ≤ Cj ∀j ∈ J,∑
r∈R(i) xr

i = xi ∀i ∈ I,

xr
i ≥ 0 ∀i ∈ I, r ∈ R(i)

Then x̂ and m̂ determine n̂ uniquely, hence the equilibrium point is unique.
On the other hand, with our generalized cut constraints (5) from Section 2, this optimiza-
tion problem translates to

Maximize
∑

i∈I m̂iUi(xi)
s.t.

∑
i∈I(J ′) m̂ixi ≤ C(J ′)−

∑
i∈I(J ′) ρi ∀J ′ ∈ C (J),

xi ≥ 0 ∀i ∈ I.

Here the strict concavity of the optimization problem is immediate which implies the
uniqueness of the optimum and of the equilibrium point. Since our optimization problem
is now exactly of the form (2), the equilibrium point can be found by the algorithm in
Section 3.

5.2 Fluid limit for peak-rate constraint elastic traffic

By introducing peak rates ri, we will always have an equilibrium point for any network
with routes of length one. The fluid limit becomes

n′i(t) = λi − µini(t) min{xi(n(t)), ri},
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so that an equilibrium point satisfies n̂i = λi/µi min{xi(n̂), ri)}. It is instructive to see, as
an example, what happens in the symmetric case, i.e., ri = r for all i. Then the unique
equilibrium is n̂ with n̂i = λi/(rµi). This equilibrium point exists if xi(n̂) > r for all i, i.e.,

min
J ′∈S C (J)

C(J ′)∑
i∈I(J ′) ρi/r

> r

which reduces to the stability condition∑
i∈I(J ′)

ρi < C(J ′) ∀J ′ ∈ S C (J).

No other equilibrium point can exist, which can be seen as follows. Suppose there would
be another equilibrium point, i.e., there are certain i that are peak-rate constrained, say all
i ∈ I∗, and others that are not. Then i ∈ I∗ if and only if r < xi(n̂). So, for the cluster level
(I(J ′), J ′) with minimal rate under the usual allocation x(n̂), we must have I(J ′) ⊆ (I∗)c.
Then for i ∈ I(J ′), we have that n̂ixi(n̂) = ρi. We know from (4) that flows i of I(J ′) will
take up all the resources in J ′: ∑

i∈I(J ′)

n̂ixi(n̂) =
∑
j∈J ′

Cj

However, at our equilibrium point the left hand side equals
∑

i∈I(J ′) ρi, and hence the
former equality would violate the stability condition.

Now, for general peak rates we introduce the following theorem that claims the existence
of a unique equilibrium point under some condition and also determines an algorithm
that finds this equilibrium point.

Theorem 5.1. Consider a network (I, J, C) with routes of length one, traffic intensities ρi satis-
fying the stability condition (11), and∑

i∈I′

ρi 6= C(J ′) ∀J ′ ∈ C (J), I(J ′) ⊂ I ′ ⊆ J−1(J ′). (12)

Let the peak rates be ordered: r1 ≤ r2 ≤ ... ≤ r|I|. Then there is always a unique equilibrium
point n̂ for the fluid limit. It can be determined by the following algorithm:
For k ≥ 1,

• Find the minimum

x̂k = min
i∗=1,..|I|,J ′∈S C (J)

C(J ′)−
∑

i∈I(J ′):i>i∗ ρi∑
i∈I(J ′):i≤i∗ ρi/ri

(13)

• Let Jk be the union of all strongly connected sets that achieve the minimum above, Ik :=
I(Jk)

• Let i∗k be the unique value of i∗ such that x̂k ∈ (ri∗k
, ri∗k+1].
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• For all i ∈ Ik set x̂i = x̂k.

• For i ∈ Ik, i ≤ i∗k set n̂i = ρi/ri, for i ∈ Ik, i > i∗k set n̂i = ρi/xk.

• Now, set I := I\Ik, J := J\Jk and J(i) := J(i) ∩ (J\Jk), so that we also set I(J ′) :=
I(J ′ ∪ Jk)\I(Jk). Repeat this procedure with the reduced network until we are left with a
network without resources and users.

Moreover, the (Ik, Jk) achieved at each step of the algorithm gives the k-th cluster level at the
equilibrium point n̂. Exactly flows in I∗ =

⋃
k{i ∈ Ik : i ≤ i∗k} are peak-rate constrained.

Remark 5.2. We need the condition
∑

i∈I′ ρi 6= C(J ′) because otherwise we could have
a range of equilibrium points. Consider, for example, the circle network with N = 3,
ρ2 + ρ3 = C3 and

r1 <
C1 + C2

ρ1/r1
< r2 ≤ r3

Then for all x ∈ (C1+C2
ρ1/r1

, r2] we have an equilibrium point:

n̂1 =
ρ1

r1
, n̂2 =

ρ2

x
, n̂3 =

ρ3

x

Our algorithm would not recognize the full range of equilibrium points but would asso-
ciate I ′, J ′ to the smallest cluster level k such that J(I ′) ⊆ I(

⋃
l≤k Jl), and as such give it

the same rate.

If the conditions
∑

i∈I′ ρi 6= C(J ′) hold, then at an equilibrium point n̂ we must have at
least one peak-rate constraint flow in every cluster. This is because otherwise

C(J ′) =
∑
i∈I′

n̂ix̂i =
∑
i∈I′

n̂i min{x̂i, ri} =
∑
i∈I′

ρi 6= C(J ′).

Then, given a cluster (I ′, J ′) of some equilibrium point, the following lemma tells us that
we can uniquely determine the rate within this cluster and thus also which flows of I ′ are
peak-rate constrained.

Lemma 5.3. For (I ′, J ′), r1 ≤ r2 ≤ . . . ≤ r|I| and ρ, C such that
∑

i∈I′ ρi < C(J ′), the
following holds:

1. There is a unique i∗ ∈ {1, . . . , |I|} such that

ri∗ <
C(J ′)−

∑
i∈I′:i>i∗ ρi∑

i∈I′:i≤i∗ ρi/ri
≤ ri∗+1

For this i∗ any I∗ ⊆ I with I∗ ∩ I ′ = {i ∈ I ′ : i ≤ i∗} minimizes

C(J ′)−
∑

i∈I′∩(I∗)c ρi∑
i∈I′∩I∗ ρi/ri

(14)
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2. For i′ < i∗ we have
C(J ′)−

∑
i∈I′:i>i′ ρi∑

i∈I′:i≤i′ ρi/ri
> ri′+1

and for i′ > i∗

ri∗ <
C(J ′)−

∑
i∈I′:i>i′ ρi∑

i∈I′:i≤i′ ρi/ri
≤ ri′

Here the fraction
C(J ′)−

∑
i∈I′∩(I∗)c ρi∑

i∈I′∩I∗ ρi/ri

is the rate x̂ for a cluster (I ′, J ′) at an equilibrium point if exactly flows i ∈ I∗ are peak-rate
constrained. This follows from the fact that we know that flows i that are not peak-rate
constrained will take up capacity n̂ix̂ = ρi of the cluster. Then the remaining flows in the
cluster share the remaining capacity among each other. For n̂ with

n̂i =
ρi

ri
for i ∈ I∗ ∩ I ′, n̂i =

ρi

x̂
for i ∈ (I∗)c ∩ I ′

to be a feasible equilibrium point, we need x̂ > ri for i ∈ I∗∩I ′ and x̂ ≤ ri for i ∈ (I∗)c∩I ′.
The lemma says that if there is an equilibrium point with cluster (I ′, J ′), then there is a
unique i∗ such that i ∈ I ′ are peak-rate constraint exactly if i ≤ i∗. In particular the lemma
already implies that only one equilibrium point in complete resource pooling can exist.
For a proof of this lemma we refer to the appendix.
To ease notation we write in the following

Π(J ′, I ′, I∗) :=
C(J ′)−

∑
i∈I′∩(I∗)c ρi∑

i∈I′∩I∗ ρi/ri
; Π(J ′, I ′, i∗) :=

C(J ′)−
∑

i∈I′:i>i∗ ρi∑
i∈I′:i≤i∗ ρi/ri

.

Proof of Theorem 5.1. We separate the proof in different parts:

(i) The algorithm is well-defined;

(ii) The algorithm gives us a feasible equilibrium point;

(iii) If we have an equilibrium point n̂, then this n̂ is found by the algorithm.

Here (ii) gives us the existence of an equilibrium point whereas (iii) proves uniqueness.
We will proof the parts of the theorem one by one:

(i) Observe that if the stability conditions (11) hold, the numerator of (13) is positive
for all J ′, i∗. Then the minimum is well-defined and positive and attained for some
J ′ and i∗ ≥ minI(J ′) i. Hence by Lemma 5.3 the minimum is greater than rminI(J′) i

and there exists a unique i∗k ≥ minIk
i such that the minimum is in (ri∗k

, ri∗k+1]

Also if the stability conditions hold, by Lemma 5.3 a unique i∗ corresponding to a
specific J ′ is well-defined and if J ′, i∗ and J ′′, i∗∗ achieve the same minimum then
i∗ = i∗∗ = i∗k since the fractions are by Lemma 5.3 in (ri∗ , ri∗+1] and (ri∗∗ , ri∗∗+1]
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respectively. We only need to check that the stability conditions hold at each step
of the algorithm. We know the stability conditions hold initially, and therefore, by
Lemma 5.3.1 and Lemma A.2.1, A.2.2, and A.2.3, we have for any J ′ ⊆ J\J1

Π(J ′ ∪ J1, I(J ′ ∪ J1), I(J ′) ∩ {i ≤ i∗1}) > Π(J1, I(J1), i∗1).

We thus have ∑
i∈I(J1∪J ′)\I(J1)

ρi < C(J ′),

so that the stability conditions hold at the second step of the algorithm. It follows
that x̂2 > 0, J2 and i∗2 are well defined. Then we can use Lemma 5.3.1 and Lemma
A.2 again, and conclude by induction that the stability conditions hold at any step
k.

Remark 5.4. To see why the stability conditions are important here, assume for the mo-
ment that they do not hold and that we have some J ′, I ′ = I(J ′) with

∑
i∈I′ ρi ≥ C(J ′).

Then for i∗ < minI′ i, the numerator would be 0 or negative (depending on whether the
inequality holds strictly) and the sum in the denominator would be empty. Then the
fraction could be made −∞ or 0

0 respectively and the minimization would not give us a
feasible rate.

(ii) We want to show that the n̂, x̂, I∗ found by the algorithm do indeed correspond to
an equilibrium point: (A) the x̂ is in line with the allocation x(n̂) from Theorem 3.1,
and (B) it holds that

n̂i =
ρi

ri
>

ρi

x̂i
iff i ∈ I∗ and n̂i =

ρi

x̂i
≥ ρi

ri
iff i 6∈ I∗.

The latter equations follow immediately from the construction of n̂ and I∗, in con-
junction with Lemma 5.3.1. To see that x̂ = x(n̂), we have to show that J1 is the
union of strongly connected J ′ minimizing (6), which reads

C(J ′)∑
i∈I(J ′) n̂i

=
C(J ′)∑

i∈I(J ′)∩I∗ ρi/ri +
∑

i∈I(J ′)∩(I∗)c ρi/x̂i
. (15)

By the choice of J1 and i∗1, and invoking Lemma A.2.3, we know

min
i∗

Π(J ′, I(J ′), i∗) ≥ Π(J1, I(J1), i∗1) = x̂1 =
C(J1)∑
i∈I(J1) n̂i

. (16)

By Lemma 5.3.1 the left-hand side is smaller than or equal to Π(J ′, I(J ′), I∗), which
implies

Π(J ′, I(J ′), I∗) =
C(J ′)−

∑
i∈I(J ′)∩(I∗)c ρi∑

i∈I(J ′)∩I∗ ρi/ri
≥ x̂1,

which is equivalent to

C(J ′)∑
i∈I(J ′)∩I∗

ρi

ri
+
∑

i∈I(J ′)∩(I∗)c ρi/x̂1
≥ x̂1.
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Now, by Lemma A.2.4 x̂k ≥ x̂1, so that the right-hand side of (15) is greater than or
equal to the left-hand side of the previous equation. We thus have that the right-
hand side of (15) is greater than or equal to x̂1, and therefore by the last equality in
(16) J1 does indeed minimize (15). To see that J1 is the union of all J ′ minimizing
this fraction, observe that equality holds in the above argument if and only if J ′ ⊆
J1, i∗ = i∗1 and

min
i∗

Π(J ′, I(J ′), i∗) = Π(J ′, I(J ′), i∗1) = x̂1

The latter equation is equivalent to

C(J ′)∑
i∈I(J ′) n̂i

= x̂1

so J1 is indeed the union of all J ′ minimizing above.

Since we have shown in (i) that the stability conditions still hold for the reduced
network, it follows in the same way that Jk is the solution to the k-th step of the al-
gorithm in the algorithm of Thm. 3.1, and so this allocation algorithm for x̂ is indeed
in line with Thm. 3.1. Hence, the n̂ constructed by the algorithm is an equilibrium
point.

(iii) Suppose we have an equilibrium point n̂ with

n̂i = max
{

ρi

ri
,

ρi

xi(n̂)

}
,

cluster levels (Ik, Jk) corresponding to rates x̂k determined by (3.1) and I∗ =
⋃

k{i ∈
Ik : i ≤ i∗k}. With conditions (12) in force, we have that

∑
i∈Ik

ρi 6= C(Jk), and as
a consequence we know there must be at least one flow in each cluster which is
peak-rate constrained. Hence by Lemma 5.3.1, we have that i∗k is the unique value
such that ri∗k

< x̂k ≤ ri∗k+1. We can easily see that i∗k must be non-decreasing in k

since the rate x̂k is increasing with increasing level, and so flows are more likely to
be peak-rate constrained. We want to show that J1 is the union of all J ′ minimizing
(13), that is,

Π(J ′, I(J ′), i∗).

By Lemma 5.3.1 it is enough to show that each Jk is the solutions of the k-th step of
the algorithm of Thm. 5.1. Take any J ′ ∈ S C (J) and partition it into

J ′1 ∪ J ′2 ∪ ...J ′K such that J ′k ⊆ Jk ∀k

Let I ′k be I(
⋃

l<k Jl ∪ J ′k)\I(
⋃

l<k Jl). Due to Lemma 3.2.1 and 3.2.3 we know

x̂k ≤
C(J ′k)∑

i∈I′k
n̂i

=
C(J ′k)∑

i∈I′k:i≤i∗k
ρi/ri +

∑
i∈I′k:i>i∗k

ρi/x̂k
⇔ x̂k ≤ Π(J ′k, I

′
k, i

∗
k).

Now, by Lemma 5.3.1, it holds that x̂k = Π(Jk, Ik, i
∗
k) = mini∗ Π(Jk, Ik, i

∗), and
therefore by Lemmas A.3 and A.4 we find

x̂k ≤ min
i∗

Π(J ′k, I
′
k, i

∗)
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Then
Π(J ′, I(J ′), i∗) = Ω

(
Π(J ′k, I

′
k, i

∗) : k
)
≥ Ω (x̂k : k) ≥ x̂1

for all J ′, i∗, so that J1 and i∗1 minimize (13) and the corresponding minimum is x̂1.
Now equality holds in the last inequality only if J ′ ⊆ J1, so all strongly connected
J ′ minimizing (13) are subsets of J1. Conversely, if we partition J1 in strongly con-
nected sets Ji, then

Π(J1, I(J1), i∗1) = Ω (Π(Ji, I(Ji), i∗1)) ≥ x̂1

Since we know equality holds, we must have Π(Ji, I(Ji), i∗1) = x̂1 for all such Ji.

Hence, J1, the first cluster level of an equilibrium point, must be the union of all
strongly connected sets achieving the minimum in (13). Since by Lemma A.3 the
stability conditions still hold for the reduced network, as does condition (12), we
can show in the same way that Jk is the solution of the k-th step of the algorithm in
Thm. 5.1. Hence, any equilibrium point can be found by the algorithm.

Thus, the algorithm determines the unique equilibrium point.

5.3 Complete resource pooling

The first goal of this section is to formally define what we mean by complete resource pool-
ing. We remark that Laws [9] and Turner [11], among others, used this notion for networks
where users choose one of a possible set of paths.

Definition 5.5. We say that in a network (I, J, C) the state (ni)i∈I describing the number of
flows is in complete resource pooling if there exists a neighborhood of n such that for each n′ in
this neighborhood the optimal x(n′) determined by (1) satisfies

xi(n′) =

∑
j∈J Cj∑
i∈I ni′

∀i ∈ I.

This means that if n is in complete resource pooling, then the system behaves as if the
total capacity is pooled in one resource with every flow having access to it. It is desirable
that the equilibrium point of the fluid limit is in complete resource pooling, as then the
capacities are used efficiently in that resources are shared equally over all flows. It is seen
that, for a given total sum of capacities and total number of flows, the utility is maximized
in a complete resource pooling state. Also, a nice advantage is that when we know a state
n is already in complete resource pooling, then increasing the number of routes that a
flow can use will not change the optimal allocation x(n). In particular this implies that
the diffusion will be unchanged, as we will see in the next section. However, we note
that increasing the number of possible routes for one flow will increase the set of states n

that are in complete resource pooling. For these reasons we want to investigate when the
equilibrium point is in complete resource pooling.
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5.3.1 Complete resource pooling for integrated streaming and elastic traffic

In the case of integrated streaming and elastic traffic we can determine more explicitly
when the equilibrium point is in complete resource pooling.

Theorem 5.6. In the integrated streaming and elastic traffic case, a sufficient and necessary con-
dition for the equilibrium point being in complete resource pooling is

∑
i∈I(J ′)c

ρi − C(J ′c) > −
∑

i∈I(J ′)c κi/ηi∑
i∈I(J ′) κi/ηi

C(J ′)−
∑

i∈I(J ′)

ρi

 .

Proof. Consider ni = ρi/x, mi = κi/ηi for all i ∈ I where

x =
C(J)−

∑
i∈I ρi∑

i∈I κi/ηi

Then x satisfies

x =
C(J)∑

i∈I ni + mi

So it is the common rate if we have complete resource pooling at (n, m) and if so, (n, m)
will be an equilibrium point. In order for x to be the rate xi(n, m) for all i determined by
(4), we require for all J ′ ∈ S C (J) that

x <
C(J ′)∑

i∈I(J ′) ni + mi
=

C(J ′)∑
i∈I(J ′) ρi/x + κi/ηi

.

Substituting for x, this is equivalent to

∑
i∈I(J ′)c

ρi − C(J ′c) > −
∑

i∈I(J ′)c κi/ηi∑
i∈I(J ′) κi/ηi

C(J ′)−
∑

i∈I(J ′)

ρi



Since by stability the right-hand side is strictly negative, the inequality is satisfied if the
left-hand side is non-negative. Thus, the condition in (5.8) is also sufficient for complete
resource pooling in this case.

Corollary 5.7. In the integrated streaming and elastic traffic case, a sufficient condition for the
equilibrium point being in complete resource pooling is∑

i∈I(J ′c)c

ρi > C(J ′) for all J ′ with (J ′)c ∈ S C (J)

We will use these results about the equilibrium point being in complete resource pooling
in the next section when we study the diffusion approximation of the processes.
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5.3.2 Complete resource pooling for peak-rate constrained elastic traffic

The following theorem determines a sufficient condition for complete resource pooling
depending only on the traffic intensities ρi of elastic traffic and not on the peak rates.

Theorem 5.8. In the peak-rate constrained case, a sufficient condition for the existence of an
equilibrium point in complete resource pooling is∑

i∈I(J ′c)c

ρi > C(J ′) ∀J ′ ∈ C (J)

Proof. If the equilibrium point is in complete resource pooling the common rate must be

x =
C(J)−

∑
i>i∗ ρi∑

i≤i∗ ρi/ri
.

We want to show that at n̂ with n̂i = ρi/ri for i ≤ i∗ and n̂i = ρi/x for i > i∗, we indeed
have complete resource pooling under our condition. Suppose not, then say J ′ is the
cluster with maximal rate xmax ≥ x, then by (3.1)

C(J ′) =
∑

i∈I(J ′c)c

n̂ixmax ≥
∑

i∈I(J ′c)c

n̂i min(x, ri) =
∑

i∈I(J ′c)c

ρi

contradicting the sufficient condition.

In general, by (5.1) the equilibrium point is in complete resource pooling if and only if

C(J)−
∑

i>i∗ ρi∑
i≤i∗ ρi/ri

<
C(J ′)−

∑
i>i∗,i∈I(J ′) ρi∑

i≤i∗,i∈I(J ′) ρi/ri

for all J ′ ∈ S C (J), where i∗ minimizes the left-hand side over i ∈ {1, . . . , |I|}. However,
unlike the previous sufficient condition, these inequalities do not have a clear interpreta-
tion.

6 Symmetric circle network: diffusion results

In this section we study the diffusion limit of our processes around the equilibrium point
n̂ of the fluid limit that we identified in the previous section. We do so for a special type
of network, namely the symmetric circle network which we introduce in detail below; the
setting we consider is that of integrated streaming and elastic traffic. Our most important
contribution is that we explicitly determine the stationary distribution to which the diffu-
sion limit converges as t tends to infinity. In particular we calculate the covariances of the
numbers of flows of different types, and we prove that these are positive. The last part
of the section will be devoted to obtaining insight in the state of the network conditional
on congestion, where we define congestion as the event that at least one of the user types
gets a transmission rate that is less than a certain critical value ε. Based on this stationary
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distribution we develop an estimate for the probability that, given congestion, the flow
type with this minimal rate is in a cluster of size k and compare these probabilities for dif-
ferent values of k. We find that in the limiting regime where N , the size of the network,
goes to infinity the most likely value for k is r − 1 where r is the number of routes that
each flow is allowed to use.

6.1 Diffusion limit

We consider the fluid limit for a process of |I| type of flows, determined by the (coupled)
differential equations n′i(t) = λi − Φi(n(t)), which have a unique equilibrium point, say
n̂. Then the diffusion limit is the process

nL(t)− Ln̂√
L

in the limit as L goes to infinity. This process, call it Yt, satisfies approximately the follow-
ing stochastic differential equation

d~Yt = −P ~Ytdt + d ~Wt

where

• the matrix P is obtained from the linearization around the equilibrium point n′i(t) ≈
−P (n(t)− n̂), that is

Pij = −dΦi(n)
dnj

∣∣∣∣
n̂

.

• ~Wt is D ~Bt where ~Wt is an |I|-dimensional vector of independent standard Brownian
motions and D the diagonal matrix with entries Dii =

√
λi + Φi(t).

As t tends to infinity, this diffusion limit process converges to a multivariate normal dis-
tribution with mean zero and a covariance matrix that can be determined via

E(Y Y T ) =
∫ ∞

0
e−PtAAT e−P T tdt, (17)

see e.g. [3] for more background on this approach.
In general calculating e−Pt, as well as the covariance matrix, in closed-form is not possi-
ble. However, if we assume the equilibrium point is in complete resource pooling, all of
the rates are of the form

∑
j Cj/(

∑
i(ni + mi)), and a small perturbation of the number

of flows of any type will not affect that we are in complete resource pooling. This means
that dxi/dnj , evaluated in n̂, is the same for all i, j, and the matrix P will be of the form

Pij = µin̂i

∑
j Cj

(
∑

i(ni + mi))2
+ δijµi

∑
j Cj∑

i(ni + mi)
i ≤ N, j ≤ 2N,

Pij = δijηi−N N < i ≤ 2N, j ≤ 2N,
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where the first N indices correspond to the elastic user types, and the last N indices to
the streaming user types.
An obvious model to ease the calculation is one in which the equilibrium point is in
complete resource pooling because then the derivative dxi(n,m)

dn̂j
|n̂,m̂ is the same for all i ≤

N . Also if this happens, the equilibrium point is the same if we increase the number of
routes that a flow can use and thus, the diffusion will be the same.
We now show how to compute the corresponding covariance matrix explicitly in the case
of a purely symmetric circle network.

6.2 The purely symmetric circle network

We consider a network consisting of N resources of certain capacities, where each re-
source is a route of length one. There are N different flow types that are each shar-
ing over r consecutive routes, where r is some integer greater than 1, that is J(i) =
{i, i + 1, . . . , i + r − 1} (where these numbers should be taken modulo N , to make sure
that we obtain route numbers in the set {1, . . . , N}).
Here a strongly connected set J ′ is such that J ′ = {i, i + 1, . . . , i + k − 1} for some i =
1, . . . , N , k = r, . . . , N and the corresponding I(J ′) is the arc {i, . . . , i + k − r} for k < N

or {1, ...N} for k = N . Then the generalized cut constraints of (5) read

i+k−1∑
j=i

njxj ≤
i+k+r−2∑

j=i

Cj

for i = 1, . . . , N and k = 1, ...N − r, and

N∑
j=1

njxj ≤
N∑

j=1

Cj .

It turns out that the minimal rate can be evaluated by Theorem 3.3 as:

min
i∈I

xi = min
i=1,...N,k=1,...N−r

{∑i+k+r−2
j=i Cj∑i+k−1

j=i nj

,

∑N
j=1 Cj∑N
j=1 nj

}
.

In the sequel we analyze this circle network in the purely symmetric case: The arrival
rate, capacities and mean flow sizes are assumed to be uniform across all user types, i.e.,
λi = λ, µi = µ, κi = κ, ηi = η for all i and Cj = C for all j; as before, we write ρ = λ/µ.
Recall the dynamics of the fluid limit for integrated streaming and elastic traffic from
Section 5.2. For our purely symmetric case the equilibrium point can easily be seen to be

m̂i = m̂ =
κ

η
, x̂i = x̂ =

C − ρ

m̂
, n̂i = n̂ =

ρm̂

C − ρ
.

We note that this is independent of r, the number of routes that a flow can use. In the next
subsection we will explicitly determine the covariance matrix using (17).
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6.3 Calculation of the covariance matrix

Recalling the dynamics of the fluid limit from Section 5.2 we see that for our case P is of
the form

P =

(
A B

0 C

)
where A,B, C are all N ×N matrices. Here A is given by (with i 6= j)

Aii = µ
C − ρ

κ/η

(
1− ρ

NC

)
, Aij = −µ

ρ(C − ρ)
NCκ/η

.

All entries of B are equal and given by

Bij = −µ
ρ(C − ρ)
NCκ/η

.

Finally C is a diagonal matrix, with all diagonal elements equalling η.

Our first goal is to compute e−Pt. Due to the structure of P this is of the form(
e−At e−Pt

[1,N ]×[N+1,2N ]

0 e−Ct

)
;

here M[1,N ]×[N+1,2N ] denotes the submatrix consisting of the first N rows and the last
N columns of a 2n × 2N matrix M . Note that A is of the form −Q + dI where Q is a
generator matrix with all off-diagonal entries equalling q, I the identity matrix and q and
d are positive reals given by

q = µ
ρ(C − ρ)
NCκ/η

, d =
µ(C − ρ)2

Cκ/eta
.

It follows that e−At = e−dteQt where eQt is a stochastic matrix. To calculate eQt explicitly,
observe that because of the symmetry all diagonal entries must be equal, as well as all
off-diagonal entries. Merging states 2 to N we can see that eQt

11 is the same as eQ′t
11 for

Q′ =

(
−(N − 1)q (N − 1)q

q −q

)

Calculating eigenvalues gives us eQ′t
11 = 1

N (1 + (N − 1)e−Nqt). Thus we have determined
the matrix e−At: For i 6= j,

(e−At)ii = e−dt 1
N

(1 + (N − 1)e−Nqt), (e−At)ij = e−dt 1
N

(1− e−Nqt).

With C = ηI , we immediately have that e−Ct = e−ηtI .
It is left to compute (e−Pt)[1,N ]×[N+1,2N ]. We use that B is a completely symmetric matrix
with all entries equalling −q. Observe

P k
[1,N ]×[N+1,2N ] =

k−1∑
i=0

Ck−1−iBAi
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With A = −Q + d we get

Ai =
i∑

j=0

(
i

j

)
(−Q)jdi−j

Lemma 6.1. −(−Q)j is a completely symmetric generator matrix, i.e., a generator with all diag-
onal entries equal, as well as all off-diagonal entries equal.

Proof. Proof by induction. Say −(−Q)j−1 is a generator matrix with off-diagonal entries
b and diagonal ones −(N − 1)b. Then

−(−Q)j
ii = −((N − 1)2bq + (N − 1)bq) = −N(N − 1)bq < 0

−(−Q)j
ii′ = −(−2(N − 1)bq + (N − 2)bq) = Nbq > 0 for i 6= i′

and ∑
k

(−Q)j
ik = 0

Since scaling and adding up completely symmetric generator matrices preserves the sym-
metry and generator property, we have that Ai = −Q̃+diI for some completely symmet-
ric generator matrix Q̃. It follows that

P k
[1,N ]×[N+1,2N ] =

k−1∑
i=0

Ck−1−iB(−Q̃ + diI).

Now note that BQ̃ = 0 since B has all entries equal and since columns of Q̃ sum up to 0.
We therefore have that

P k
[1,N ]×[N+1,2N ] = B

k−1∑
i=0

ηk−1−idi = Bηk−1 1− (d/η)k

1− d/η
= B

ηk − dk

η − d
,

which implies that

e−Pt
[1,N ]×[N+1,2N ] =

∑
k≥0

B
ηk − dk

η − d

(−t)k

k!
= B

e−tη − e−td

η − d
.

Now, we can calculate the covariance matrix, corresponding to the steady-state of the
diffusion, as in (17), with D the diagonal matrix with entries

Dii =

{ √
2λ if i = 1, ...N ,√
2κ if i = N + 1, ...2N .

This finally gives us the covariance matrix: for i 6= j we have

Cov(ni, nj) =
1
N

κ

η

(
ρ2

(C − ρ)2
+

λρ

µ(C − ρ)2 + Cκ

)
, Var(ni) =

κ

η

ρ

C − ρ
+ Cov(ni, nj),
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and

Cov(mi,mj) = 0, Cov(ni,mj) =
1
N

κ

η

λ(C − ρ)
(µ(C − ρ)2 + Cκ)

, Var(mi) =
κ

η
.

The results on the mi are of course in line with the fact that the numbers of streaming
flows correspond to independent Poisson distributions.
We see that the all covariances are strictly positive. This could be expected, since an in-
crease in streaming or elastic flows of one type results in less capacity for the other flows,
and therefore an increase in the number of elastic flows of other types. Since the equilib-
rium distribution is in complete resource pooling it does not make a difference whether
these flows are close to the increasing flows or not. Also the decay of these covariances in
N is plausible because, given that the equilibrium point is in complete resource pooling,
the impact of the increase in flows of another type should decrease in the number of dif-
ferent flow types. Assuming this stationary distribution, (ni + mi)i∈I is also distributed
multivariate normal with mean

E(ni + mi) = n̂ + m̂ =
κ

η

C

C − ρ

and covariance matrix

V := Var(ni + mi) = Var(ni) + Var(mi) + 2 Cov(ni,mi) =
κ

η

C

C − ρ
+ Cov(ni, nj),

C := Cov(ni + mi, nj + mj) = Cov(ni, nj) + 2 Cov(ni,mj).

6.4 State of the network given congestion

We now want to use the above results to estimate the probabilities of the flow of minimal
rate being in a cluster of size k, given there is congestion. We define the event of conges-
tion by requiring that there is at least one user type for which the rate allocated to a single
flow, xi, is below a critical threshold ε. We know from (7) in Section 3 that

P(∃xi < ε) = P

 ⋃
i=1,...,N, k=1,...,N−r

{
ni + ..ni+k−1 >

k + r − 1
ε

}
∪
{

n1 + ... + nN >
N

ε

} .

We want to find the value of k that maximizes this probability. An evident approximation,
which makes sense for ε very small, is, with Eik the event that user type i is in a cluster of
size k,

P(∃xi < ε, Eik) ≈

{
N · P(n1 + ..nk > (k + r − 1)/ε) for k ≤ N − r,
P(n1 + ..nN > N/ε) for k = N .

Using the multivariate Normal approximation, we write this as
N

(
1− Φ

(
(k+r−1)/ε−k(n̂+m̂)√

kV +k(k−1)C

))
for k ≤ N − r,

1− Φ
(

N/ε−N(n̂+m̂)√
NV +N(N−1)C

)
for k = N.

(18)

27



Observe here that for a fixed k smaller than N this probability is decreasing in r, indicat-
ing that (as expected) the minimal rate is increasing in r. This observation confirms that
the greater the number of routes a flow can use, the more efficient the network operates.
For fixed r the value for k with highest probability (among all values smaller than N ) is
the one where

(k + r − 1)/ε− k(n̂ + m̂)√
k2C + k(V − C )

is minimal. For ε small the dominating term is

k + r − 1√
k2C + V − C k

1
ε
. (19)

By differentiating one can check that if V − (2(r − 1) + 1)C > 0, the minimal value will
be at

k0 =
(r − 1)(V − C )

V − (2(r − 1) + 1)C

Now, recall from the expressions for V and C that we can write for some C ′ that does not
depend on N :

V =
κ

η

C

C − ρ
+

1
N

C ′, C =
1
N

C ′.

Then when N grows large, C tends to zero, which implies that V − (2(r − 1) + 1)C > 0
tends to

V ′ =
κ

η

C

C − ρ
,

which is larger than zero and thus the most likely k is k0, which tends to r− 1 as N →∞.
We want to compare the value of (19) for k = r − 1 with the corresponding argument of
Φ in (18) for k = N . For k = r − 1 we find

2
√

r − 1√
r−1
N C ′ + V ′

→ 2
√

r − 1√
V ′

for r = o(N),

whereas for k = N √
N√

C ′ + V ′ →∞.

Thus, when N is sufficiently large, and if r is o(N), k = r − 1 indeed maximizes the
probability of a flow with a very small rate being in a cluster of size k.
The above computations indicate that for the minimal rate to be very small, we need r−1
flow types to be congested. Thus, in the case where we split flow over two routes only,
the minimal rate can become very small as the result of the number of flows of one type
growing very large. In the case r = 3, however, when each flow can use three routes, we
need two consecutive flow types to be congested in order for the minimal rate becoming
very small. This seems to be a much rarer event and it suggests that increasing the num-
ber of routes that a flow can use from 2 to 3 brings substantial performance improvements
in the circle model. This is in line with results by Turner [12], where the circle network
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is considered in a slightly different setting: there customers cannot split their traffic on
different routes but choose the least loaded of a set of r neighboring routes. Turner’s sim-
ulations show that for the circle network there is a considerable quantative difference in
the probabilities that a queue becomes very large for r = 2 and r = 3.

Acknowledgements: The authors of this paper are indebted to Frank Kelly for many in-
valuable remarks and suggestions.
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A Appendix

A.1 Proofs related to Section 3

Lemma A.1. 1. A resource allocation (Λi)i∈I = (nixi)i∈I ≥ 0 for a network as in section 2 with routes
of length one is feasible if and only if the following generalized cut constraints hold:

∀J ′ ∈ S C (J) :
∑

i∈I(J′)

Λi ≤
∑
j∈J′

Cj (20)

2. None of the constraints above are redundant, that is excluding any one constraint will not guarantee
feasibility.

Note that if (20) holds, then the same constraints hold for any subset J ′ of J since we can partition
J ′ in a finite number of strongly connected components J1, J2... Jm, each satisfying the constraints.
Then I(J ′) = I(J1) ∪ ... ∪ I(Jm) with all the I(Jk) pairwise disjoint and the inequality follows.

Proof. 1. The first part is an immediate consequence of the max-flow/min-cut theorem, which is
seen as follows. Consider the bipartite graph of nodes I, J where ij is an edge if and only if
j ∈ J(i). Further, connect a source s with all i ∈ I and all j ∈ J with the sink t. Denote the
capacity of edge e by C(e). Let the capacity of edge si equal Λi and the capacity of jt be Cj . The
remaining capacities are infinitely large. Now, there exists an allocation Λi in our problem if and
only if there exists a total flow

∑
i∈I Λi in the network. Now, by the max-flow min-cut theorem

there exists a flow
∑

i∈I Λi if and only if
∑

i∈I Λi ≤
∑

e∈(S,T ) C(e) for all cuts (S, T ). If there is
e ∈ (S, T ) such that C(e) = ∞, the corresponding constraint is certainly satisfied, so we only want
to consider cuts of the form

S = I ′ ∪ J ′ ∪ {s}, T = I ′c ∪ J ′c ∪ {t} where I ′ ⊆ I, J(I ′) ⊆ J ′ ⊆ J

Then the constraints are ∑
i∈I

Λi ≤
∑
i∈I′c

Λi +
∑
j∈J′

Cj ;

we only need ∑
i∈I

Λi ≤
∑
i∈I′c

Λi +
∑

j∈J(I′)

Cj ⇔
∑
i∈I′

Λi ≤
∑

j∈J(I′)

Cj ,

which shows that the given constraints are necessary and sufficient for a feasible allocation.

2. We now need to prove that none of the constraints of (20) are redundant. To show this, fix a
J̃ ∈ S C (J). We aim to find a Λ ≥ 0 for which the constraint corresponding to J̃ is violated while
all other constraints in (20) still hold.
For each j ∈ J̃ let kj be the number of i ∈ I(J̃) such that j ∈ J(i). Let ε be smaller than both
minj∈J Cj and minj∈J̃ Cj/kj . Now, for i ∈ I(J̃), let

Λi =
∑

j∈J(i)

Cj

kj
+

ε

|I(J̃)|

Otherwise let Λi be 0. For J̃ , the left-hand side of the constraint reads
∑

j∈J̃ Cj + ε. Hence the con-
straint is violated by ε, as desired. Consider J ′ ∈ S C (J) such that J ′ ( J̃ . By strong connectivity
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of J̃ there exists i∗ ∈ I(J̃) such that J(i∗) ∩ J ′ 6= ∅ but i∗ 6∈ I(J ′). So∑
i∈I(J′)

Λi ≤
∑

i∈I(J̃)\{i∗}

Λi <
∑
j∈J′

Cj + ε−min
j∈J′

Cj

kj
<
∑
j∈J′

Cj

For J ′ 6⊆ J̃ we can find a j∗ ∈ J ′ such that j∗ 6∈ J̃ . Then∑
i∈I(J′)

Λi ≤
∑

j∈J′∩J̃

Cj + ε <
∑

j∈J′∩J̃

Cj + Cj∗ ≤
∑
j∈J′

Cj

This shows that, indeed, we need every constraint in (20) for sufficiency in the theorem. This
holds even if we restrict to Λi > 0 for all i since all of the non-violating constraints are not tight
here.

Proof of Lemma 3.2. 1. This follows immediately from the fact that each J ′ ⊆ J can be parti-
tioned into strongly connected sets Ji. Then

r(I(J ′), J ′) = Ω (r(I(Ji), Ji) : i) ≥ xk

since r(I(Ji), Ji) ≥ xk for all i by minimality of xk.

2. For equality to hold in part 1 of this lemma, we need

r(I(Ji), Ji) = xk ∀Ji

for all strongly connected sets Ji in the partition of J ′. So Ji ⊆ Jk for all i and so J ′ ⊆ Jk.

3. Assume there are J ′, J ′′ ⊆ J such that

r(I(J ′′), J ′′) = r(I(J ′), J ′) = xk

Consider the union J ′ ∪ J ′′. With

C(J ′) + C(J ′′)− C(J ′ ∩ J ′′) = C(J ′ ∪ J ′′)

and
I(J ′) + I(J ′′)− I(J ′ ∩ J ′′) ⊆ I(J ′ ∪ J ′′)

we have

r(I(J ′ ∪ J ′′), J ′ ∪ J ′′)

≤ C(J ′ ∪ J ′′)
C(J ′)/r(I(J ′), J ′) + C(J ′′)/r(I(J ′′), J ′′)

− C(J ′ ∩ J ′′)/r(I(J ′ ∩ J ′′), J ′ ∩ J ′′)

=
C(J ′) + C(J ′′)− C(J ′ ∩ J ′′)

(C(J ′) + C(J ′′))/xk − C(J ′ ∩ J ′′)/r(I(J ′ ∩ J ′′), J ′ ∩ J ′′)

If the intersection J ′ ∩ J ′′ is empty, then the result follows easily. Otherwise we know from
part 1 of this lemma that the rate for the intersection (I(J ′ ∩ J ′′), J ′ ∩ J ′′) must be greater
than or equal to xk. Hence

r(I(J ′ ∪ J ′′), J ′ ∪ J ′′) ≤ xk

Since this being strictly smaller contradicts part 1, we have equality above, and thus con-
clude by induction for the union Jk of all such J ′ that

r(I(Jk), Jk) = xk
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Note that for the inequalities above to hold tight we require

r(I(J ′ ∩ J ′′), J ′ ∩ J ′′) = xk

and
I(J ′ ∪ J ′′) = I(J ′) ∪ I(J ′′).

Hence we also have that

I(Jk) =
⋃

J′∈S C (J):r(I(J′),J ′)=xk

I(J ′)

4. Suppose xk ≥ xk+1. Then for Jk ∪ Jk+1

r(I(Jk ∪ Jk+1), Jk ∪ Jk+1) = r(Ik ∪ Ik+1, Jk ∪ Jk+1) = Ω (xk, xk+1) ≤ xk

which by Lemma 3.2.1 and 3.2.2 implies Jk+1 = ∅. So either there is no (k + 1)-th cluster
level so no xk+1 exists, or xk < xk+1.

A.2 Proofs related to Section 5

Proof of Lemma 5.3. Observe that by the stability condition

rminI′ i < Π(J ′, I ′,min
I′

i)

Now, for i′ ≥ minI′ i

ri′+1 < Π(J ′, I ′, i′)

is equivalent to
ri′+1 < Π(J ′, I ′, i′ + 1)

by simple transformation of the inequality. Also,

Π(J ′, I ′, i′ + 1) ≤ Π(J ′, I ′, i′),

where strictly holds for i′+1 ∈ I ′, because the fraction on the left-hand side arises by adding ρi′+1

to the numerator, and ρi′+1/ri′+1 to the denominator of the fraction on the right-hand side. Here
we are using

A + C

B + D
<

A

B
⇔ C

D
<

A

B
(21)

for positive A,B, C, D. So, we have a decreasing sequence of fractions for i′ = 1, 2, . . . greater than
ri′+1 until for i′ = i∗

ri∗ < Π(J ′, I ′, i∗) ≤ ri∗+1

where i∗ could be |I| with r|I|+1 = ∞. This proves that there is a unique i∗ such that the corre-
sponding fraction is in (ri∗ , ri∗+1]. For i′ > i∗ we deduce similarly to above that the fractions are
non-decreasing and also in the same way as above it follows

Π(J ′, I ′, i′) ≤ ri′ (22)
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It holds that if Π(J ′, I ′, i′) ≤ ri′+1, then Π(J ′, I ′, i′+1) ≤ ri′+1, and therefore Π(J ′, I ′, i′+1) ≤ ri′+2

so that Π(J ′, I ′, i′) ≤ ri′ for all i′ > i∗. This proves part 2 of the lemma. Now, we want to show
that I∗ = {i ≤ i∗} achieves the minimum. Suppose there is i ∈ I ′, i ≤ i∗ such that i 6∈ I∗. Then

C(J ′)−
∑

i∈I′∩((I∗)c\{i}) ρi∑
i∈I′∩(I∗∪{i}) ρi/ri

<
C(J ′)−

∑
i∈I′∩(I∗)c ρi∑

i∈I′∩I∗ ρi/ri
.

This follows because the fraction on the left hand side arises by adding ρi to the numerator and
ρi/ri to the denominator of the expression on the right-hand side which we assumed was greater
than ri. Here we are using (21) again. So for minimality we need i′ ∈ I∗ for all i′ ≤ I∗. Conversely,
suppose there is i ∈ I ′, i > i∗ such that i ∈ I∗. Then in the same way

C(J ′)−
∑

i∈I′∩((I∗)c∪{i}) ρi∑
i∈I′∩(I∗\{i}) ρi/ri

≤
C(J ′)−

∑
i∈I′∩(I∗)c ρi∑

i∈I′∩I∗ ρi/ri

where equality only holds if i = i∗ + 1 and x̂ = ri∗+1 so in the case where we could let i be both
peak-rate constraint and not. So I∗{i ≤ i∗} is indeed minimizing the fraction, and we have proved
the lemma.
Alternatively, for a more intuitive explanation for why the lemma should hold, observe that at an
equilibrium point n̂i = max(ρi/x̂i, ρi/ri), so for the rate in a cluster (I ′, J ′) we have

x̂′ =
C(J ′)∑
i∈I′ n̂i

≤ C(J ′)∑
i∈I∗∗∩I′ ρi/ri +

∑
i∈(I∗∗)c∩I′ ρi/x̂i

for any I∗∗ ⊆ I . Since we assume (I ′, J ′) is a cluster, x̂i = x̂′ for all i ∈ I ′, so the inequality is
equivalent to

x̂′ =
C(J ′)−

∑
i∈I′∩(I∗)c ρi∑

i∈I′∩I∗ ρi/ri
≤

C(J ′)−
∑

i∈I∗∗∩I′ ρi∑
i∈(I∗∗)c∩I′ ρi/ri

.

where I∗ is the set of peak-rate constraint flows corresponding to n̂. So x̂′ can indeed be evaluated
as the minimum of (14) over all I∗ ⊆ I . Now, we can find i∗ ∈ I such that

ri∗ < x̂′ ≤ ri∗+1

where we can argue that i∗ ≥ minI′ i by the stability condition. Then we can argue in a similar
way to above that I∗ = {i ∈ I ′ : i ≤ i∗} achieves this minimum x̂′.

The following lemma is the analogue of Lemma 3.2 for the algorithm in Theorem 5.1

Lemma A.2. At each step of the algorithm in Theorem 5.1 for the corresponding I, J the following holds:
1. ∀J ′ ⊆ J : mini∗ Π(J ′, I(J ′), i∗) ≥ x̂k;
2. If for J ′ ⊆ J it holds that mini∗ Π(J ′, I(J ′), i∗) = x̂k, then J ′ ⊆ Jk;
3. mini∗ Π(Jk, Ik, i∗) = x̂k, so Jk corresponds to the same i∗k;
4. x̂k < x̂k+1.

Proof. 1. By the stability condition and Lemma 5.3 again

min
i∗

Π(J ′, I(J ′), i∗) ≥ rminI(J′) i,

i.e., the minimum is achieved for some i∗ ≥ minI(J′) i. Then if J ′ can be partitioned in strongly
connected Ji

Π(J ′, I(J ′), i∗) = Ω (Π(Ji, I(Ji), i∗)) ≥ Ω
(
min
i∗∗

Π(Ji, I(Ji), i∗∗)
)
≥ x̂k.
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2. For the inequality in part 1 (of this lemma) to hold tight we need mini∗ Π(Ji, I(Ji), i∗) = x̂k to
hold for all strongly connected sets Ji in the partition of J ′. Thus, J ′ ⊆ Jk.
3. We know by Lemma 5.3(1) that if J ′ achieves the minimum x̂k in (13) for some i∗, then we have
that Π(J ′, I(J ′), i∗k) = x̂k. Also ⋃

I(J ′) ⊆ I(Jk)

and so
Π(Jk, Ik, i∗k) ≤ Ω (Π(J ′, I(J ′), i∗k)) = x̂k;

with part 1 of this lemma we conclude equality and that i∗k minimizes Π(Jk, Ik, i∗). Also, we get
I(Jk) =

⋃
I(J ′) and mini∗ Π(Jk, Ik, i∗) = Ω (mini∗ Π(J ′, I ′, i∗))

4. Suppose not and x̂k ≥ x̂k+1, then for the union Jk ∪ Jk+1:

C(Jk ∪ Jk+1)−
∑

i∈I(Jk∪Jk+1)∩(I∗)c ρi∑
i∈I(Jk∪Jk+1)∩I∗ ρi/ri

= Ω(x̂k, x̂k+1) ≤ x̂k.

By Lemma 5.3(1) this implies

min
i∗

Π(Jk ∪ Jk+1, I(Jk ∪ Jk+1), i∗) ≤ x̂k

and by Lemma A.2.1 and A.2.2 we deduce Jk+1 = ∅. So either there is no (k + 1)-th cluster or
x̂k < x̂k+1.

Lemma A.3. For an equilibrium point n̂, as given in part 3 of the proof of Theorem 5.1, we have for all k,
J ′

k ⊆ Jk and I ′k = I(
⋃

l<k Jl ∪ J ′
k)\I(

⋃
l<k Jl):∑

i∈I′k

ρi < C(J ′
k)

Proof. Since the cluster levels are given and x̂ is a feasible allocation, we know that∑
i∈I′k

n̂ix̂i ≤ C(J ′
k)

Since n̂ is an equilibrium point, the left-hand side is greater than or equal to
∑

i∈I′k
ρi. With condi-

tion (12) we conclude ∑
i∈I′k

ρi < C(J ′
k)

Lemma A.4. For given I ′, I ′′ ⊆ I and J ′, J ′′ ⊆ J with∑
i∈I′

ρi < C(J ′) and
∑
i∈I′′

ρi < C(J ′′), (23)

suppose that
min

i∗
Π(J ′, I ′, i∗) ≤ Π(J ′′, I ′′, i∗) (24)

for i∗ minimizing the left-hand side. Then

min
i∗

Π(J ′, I ′, i∗) ≤ min
i∗∗

Π(J ′′, I ′′, i∗∗) (25)
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Proof. Conditions (11) allow us to use Lemma 5.3. Lemma 5.3.1 tells us that mini∗ Π(J ′, I ′, i∗) ∈
(ri∗ ; ri∗+1] so

Π(J ′′, I ′′, i∗) ≥ ri∗ .

Then by Lemma 5.3.2 we have that apparently i∗ ≤ i∗∗, where i∗∗ is the unique value from Lemma
5.3.1 such that

min
i∗

Π(J ′′, I ′′, i∗) ∈ (ri∗∗ , ri∗∗+1]

and which minimizes the fraction. Now (i) either i∗ < i∗∗, and hence

min
i∗

Π(J ′, I ′, i∗) ≤ min
i∗∗

Π(J ′′, I ′′, i∗∗),

or i∗ = i∗∗, so that (25) follows from (24).
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