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Summary. A surface capturing method is developed for steady water–air flow with
gravity. Second-order accuracy is obtained with flux limiting and turbulence is mod-
eled with Menter’s model. The equations are solved efficiently with a combination
of multigrid and defect correction. Results for two test cases confirm the efficiency
and accuracy of the method.

1 Introduction

Numerical simulation of steady water flow plays a continuously increasing role
in the development of ships and offshore structures. Accurate predictions of a
ship’s wave pattern, for example, can help in reducing the ship’s drag during
the design, and thus minimise operating costs [3].

A key choice in the development of a numerical model for water flow is the
representation of the water surface. The most widely used approach is surface
fitting: the computational mesh is deformed during the computation, such that
it coincides with the water surface. Another approach is the surface capturing
technique (the volume of fluid and level set methods are well-known examples)
where the grid is fixed, but the location of the water surface on the grid can
change. These methods are more flexible than surface fitting methods; they
allow steeper waves and more complex object geometries. A disadvantage is
that, for steady flow problems, the equations resulting from classical surface
capturing methods are hard to solve efficiently. Currently, they are usually
solved by time-marching the unsteady flow equations to convergence, which
is a time-consuming process.

In previous work, we have shown that efficient solution of a surface capturing
model is possible [7]. We developed a volume-of-fluid model based on conserva-
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tion laws only, which is solved with classical multigrid. Very fast convergence
of the solution process was obtained. But it also became clear that the first-
order, laminar flow model was not sufficient to accurately compute realistic
water flow.

Therefore, the method is improved by making it second-order accurate
and by adding a turbulence model. The second-order model is solved with a
defect-correction procedure, that uses the efficiency of the first-order multigrid
method. Turbulence is modeled with Menter’s model [5]: a simple yet accurate
one-equation turbulence model that has already been applied in some ship-
flow solvers.

This paper briefly describes the first-order accurate discretisation and focuses
on the extension to second-order accuracy and on the inclusion of the tur-
bulence model. The flow equations are given in Sect. 2, the discretisation of
the different terms in Sect. 3. Section 4 describes the defect correction and
the special multigrid method that are used to solve the difficult two-fluid flow
equations with turbulence. Finally, the practical application of the method
is illustrated in Sect. 5 with a test case: the water flow in a channel with a
bottom bump.

2 Flow Equations

The flow equations used here are based on the Reynolds–averaged Navier–
Stokes (RANS) equations. The distinction between the water w and air a is
made by adding a mass conservation equation for the water. Turbulence is
modeled with Menter’s model. The resulting system has conservation laws
only, which makes it suitable for multigrid solution.
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where α is the volume fraction of water, ν = µ/% and ν̃T is a scaled version
of νT [5]. P and D are turbulence production and dissipation terms, based on
velocity derivatives.

3 Discretisation

The system (1) is discretised with a cell-centered finite-volume technique
on structured, curvilinear grids. The convective and diffusive fluxes and the
source terms are discretised separately, to independently control the stability
of each part. Both first- and second-order accurate fluxes are used. The deriva-
tion of the first-order fluxes is given in [7]. These fluxes are briefly described
here, together with a description of the second-order accurate fluxes and the
turbulence source terms.

Convective fluxes The convective fluxes are computed by reconstructing
the states q = [u, v, p, α, ν̃T ]T on the left and right side of the cell faces from
the states in the cell centres. These states are then put in a flux function, that
gives the flux over the cell face. For the first-order accurate fluxes, the state
at the cell faces is taken equal to the state in the cell centres. For the second-
order accurate fluxes, the states are reconstructed with a slope limiter. We
use the κ = 1

3 limiter proposed by Koren [4]. The flux function itself is defined
in [7]. It is an approximate Riemann solver, based on artificial compressibility
and comparable to the flux used in [2].

Diffusive fluxes The diffusive fluxes in the momentum equations are mod-
eled with central differences. These are both stable and second-order accu-
rate, therefore they are used for both the first- and the second-order accurate
discretisation. For non-cartesian grids and for the cross-diffusion terms, the
velocity derivatives are computed with a control volume approach.

Source terms Two different source terms appear in the system (1). The
gravity force in the y–momentum equation is discretised as −%ig ∆x∆y. The
production and dissipation terms in the turbulence equation contain both first-
order and second-order derivatives of the state variables, which are computed
with finite differences in a local cartesian coordinate system. When the grid is
smooth and locally (close to) orthogonal, then this approach is second-order
accurate. It is used for both the first-order and the second-order accurate
schemes.

4 Multigrid

For the solution of nonlinear systems, multigrid is one of the most powerful
techniques known today. Its application to fluid flow solutions is mature and
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well studied [6]. The multigrid principle is to apply a simple solution technique
or smoother to the solution on the finest grid and to copies of this solution
on underlying coarser grids, to eliminate high-frequency and low-frequency
errors, respectively.

Choice of smoother When multigrid is used to solve RANS equations, it is
usually combined with time stepping. Either a time step smoother is used, or
multigrid is used to compute the individual steps in an implicit time stepper.
This procedure is robust and stable.

We are not going to use time stepping for two reasons. First, we think that
the fastest solution techniques are obtained when the steady flow equations
are solved directly with multigrid. And second, time stepping is inefficient as a
smoother for flow with gravity waves, because these flows have high Reynolds
numbers and transient waves that damp out very slowly in time. Therefore, we
solve the discretised flow equations (1) with direct multigrid and alternating
line Gauss–Seidel smoothing.

Linear multigrid The usual multigrid technique for nonlinear systems is
nonlinear multigrid. Here, discretised flow equations are constructed on the
coarser grids in exactly the same way as on the finest grid. Then these flow
equations are smoothed, using the residual in the solution on the finer grids
as a source term.

For the two-fluid RANS equations, this approach gives two problems. One,
the two-fluid flow equations cannot handle large arbitrary source terms [7].
And two, for nonlinear multigrid to work well, the flow equations on the
coarser grids must resemble the flow equations on the finest grid. Here, this is
not the case, because the volume fraction α is discontinuous and because the
Menter source terms are sensitive to the grid resolution.

We overcome these problems by switching to linear multigrid. The flow
equations on the finest grid are linearised around the current solution and
this linearised operator is copied directly to the coarser grids. These linear
coarse grid operators can be solved for any source term and they always
resemble the fine grid operator reasonably well. Thus, on the coarse grids, we
do not compute full solutions q but (small) corrections. We have chosen this
unusual combination of linear multigrid on the coarser grids with nonlinear
line smoothing on the finest grids, because the nonlinear smoother is very
robust. It can correct small unphysical solutions (ν̃T < 0 etc.) that arise from
the linear coarse grid corrections.

A disadvantage of the method is that it requires much computer memory.
Also, Galerkin operators can reduce the convergence rate of multigrid for
convective flows ([6], Sect. 5.4). However, in practice this effect was observed
but it caused no problems.

On the other hand, the method can solve flows whose features cannot
be resolved accurately on coarse grids. Another advantage is that the coarse
grid corrections are cheap. The linear line smoothing is less expensive than
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nonlinear line smoothing and the computation of the linear operator takes
little extra work, as the linearisation is already needed for the line smoothing
on the finest grid.

Full multigrid As initial condition, we choose ν̃T very close to zero. Then,
when the solution process is started, the turbulence intensity has to grow.
Typically, we see the residual in the turbulence equation increase at first,
because the turbulence intensity increases. Then, when the boundary layers
have more or less developed, it starts to decrease. Experiments show that
multigrid relaxation is of little use in the first stage.

Therefore, full multigrid (FMG) is essential to our method: we find the
initial condition on the finest grid by computing solutions on the coarser grids,
from coarse to fine. Thus, all but the first computations start at the second
stage, with developed boundary layers. The time-consuming development of
turbulence only occurs on the coarsest grid.

Defect correction To compute second-order accurate solutions, we use de-
fect correction. In an iterative process, the residual of the second-order accu-
rate discretisation is computed and used as a source term in the first-order
multigrid smoother. Theoretically, this process converges to the second-order
solution. In practice, defect correction does not always converge. But when
the process is started from the first-order solution, a great improvement is ob-
tained in the first iterations and the solution is usually second-order accurate
after a few steps.

For efficiency, we perform the multigrid step in the defect correction with
the linearised operators, even on the finest grid. These operators are not up-
dated during the process, since they are stable and close enough to the con-
verged solution to give good smoothing.

5 Results

As a test case, the flow in a channel with a bottom bump is computed. Exper-
imental results for this test are given by Cahouet [1]. The flow has a Froude
number Fr = 2.05 and a Reynolds number Re = 1.9 × 105 (based on inflow
water height). The top wall is modeled as a slip wall, the bottom is a no-slip
wall. The bump has a thickness of 44% of the water height. The curvilinear
grid has 128 × 512 cells and is compressed near the boundary layer and the
water surface.

In the velocity plot (Fig. 1a), we see low-velocity regions near the leading
and trailing edge of the bump and high-velocity regions above the bump and
in the air region near the top wall. The turbulent viscosity (Fig. 1b) shows
the boundary layer. Figure 1c gives a comparison of the second-order solution
with Cahouet’s measurements. Overall, the agreement is very good. The slight
difference at the back of the wave may be caused by the more developed
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Fig. 1. Cahouet test case, Fr = 2.05. Speed (a), turbulent viscosity ν̃T (b), and a
comparison (c) of the second-order α = 0.5 isolines (—) with Cahouet’s experiment
(averaged wave height, - -).
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Fig. 2. Cahouet test case, convergence of the sum of the residual for multigrid
(FMG on four grids, left) and line Gauss–Seidel smoothing on a single grid (right).

boundary layer in Cahouet’s experiment, as Cahouet’s tunnel has a longer
inflow length than our domain.

The bottom bump solution is computed on four grids, the multigrid con-
vergence is given in Fig. 2. We see bad convergence on the first two grids.
Apparently the boundary layer on the second grid is so different from the first
grid that boundary layer development is needed on the second grid too. The
convergence on the last two grids is acceptable.

Compared with a solution on a single grid, the number of (expensive)
fine-grid iterations is reduced by a factor 12. The total computation time is
reduced by a factor 8. The current method does not converge so fast in difficult
locations, like stagnation points, but we believe this can be solved by simple
fixes: therefore, the convergence can likely be improved even further.

6 Conclusion

The computational results for the flow in a channel with a bottom bump, show
that the method is efficient. Comparison with experimental results indicates
that it is also accurate.

Acknowledgement. This research was supported by the Dutch government
through ICT project BRICKS (http://www.bsik-bricks.nl).



Solution of Steady Water Flows with Waves and Turbulence 661

References

1. Cahouet, J.: Etude numérique et expérimentale du problème bidimensionnel
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