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Abstract In this chapter, an accurate method, using a novel immersed-boundary
approach, is presented for numerically solving linear, scalar convection problems.
As is standard in immersed-boundary methods, moving bodies are embedded in a
fixed ‘Cartesian’ grid. The essence of the present method is that specific fluxes in
the vicinity of a moving body are computed in such a way that they accurately ac-
commodate the boundary conditions valid on the moving body. To suppress wiggles,
tailor-made limiters are introduced for these special fluxes. The first results obtained
are very accurate, without requiring much computational overhead. It is anticipated
that the method can readily be extended to real fluid-flow equations.

1 Introduction

The immersed-boundary method – or, synonymously, embedded-boundary method
– is a method in which boundary conditions are indirectly incorporated into the
governing equations. It has undergone numerous modifications, ever since its intro-
duction by Peskin in 1972 [13], and currently many varieties of it exist (see [10] for
a review and the references therein for details).

Immersed-boundary methods are very suitable for simulating flows around flex-
ible, moving and/or complex bodies. Basically, the bodies of interest are just em-
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bedded in non-deforming Cartesian grids that do not conform to the shape of the
body. The governing equations are modified to include the effect(s) of the embed-
ded boundaries. Doing so, mesh (re)generation difficulties associated with body-
fitted grids are obviated, and the underlying regular fixed grid allows us to use a
simple data structure as well as simpler numerical schemes over a majority of the
domain.

Peskin, in his original paper [13], introduced the idea of replacing an object in a
flow by a field of forces. This gave rise to the notion of an ‘immersed body.’ Peskin
described the fluid variables in an Eulerian manner and the object in the Lagrangian
manner and computed, from the boundary configuration, the elastic forces generated
within the object. Since the object is in direct contact with the fluid, these elastic
forces affect the fluid motion. Peskin then transmitted the forces to the fluid in the
immediate vicinity of the boundaries of the object, i.e., to the governing equations
he added a forcing function, which is zero everywhere except near the immersed
boundaries. The forcing term enforces the no-slip condition on the boundaries of
the (immersed) object and thus the flow field indirectly feels the presence of an
object immersed in it. Finally, he discretized the extended equation in the entire
computational domain, including inside the immersed body. He successfully imple-
mented this immersed-boundary method to simulate blood flow in and around heart
valves [14, 15].

In a similar way, but independently, Goldstein et al. [4] employed a forcing term
continuously computed from a feedback loop. They borrowed concepts from linear
control theory and formulated the forcing term depending solely on the velocity of
the boundary-surface points (immersed boundaries). This forcing term is added to
the momentum equation, and recomputed/corrected (using the computed velocity)
at each time step until the relative velocity on the desired boundary-surface points
has been set to zero. This recursive procedure eventually evolves the (desired) vir-
tual surface. The subjective part of this forcing term is that it requires the choice
of two negative constants, α and β , and a problem-dependent parameter k, which
are not defined properly; they are interrelated by a stability criterion and estimated
heuristically. This technique introduces a severe restriction on the time step and it
is unstable for (complex) flow computations that require large time steps. Gold-
stein et al. used a spectral method solver to simulate two-dimensional flow around
stationary cylinders and three-dimensional turbulent channel flow. Saiki and Birin-
gen [16] adopted the same (feedback-forcing-function) method using higher-order
finite-difference methods, and achieved a relatively stable solution with no time-step
restriction. They computed the feedback-forcing function by integrating the rela-
tive flow velocity, with the associated negative constants, on the boundary-surface
points, and showed that the feedback-forcing method of Goldstein et al. is also ca-
pable of handling moving boundary problems. They successfully implemented it
for low-Reynolds number (Re ≤ 400) flows around fixed, rotating and oscillating
cylinders.

Mohd-Yusof [12] proposed a modified method which is called the direct-forcing
method. This method uses a set of points adjacent to the surface and interior to
the body and directly imposes the no-slip boundary conditions on the immersed
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boundary enabling a direct momentum forcing. It is relatively stable, compared to
the method of Goldstein et al., does not impose time-step restrictions and does not
need the choice of (empirical) negative constants for defining the forcing function.
Mohd-Yusof [11] also used the spectral context and simulated three-dimensional
flows for complex geometries. Kim et al. [7] used the direct-forcing method and
simulated flows over a cylinder and a sphere using the finite-volume approach on a
staggered mesh. They introduced external forcing functions to the momentum and
continuity equations, to achieve momentum and mass conservation, respectively.
In this approach, an unbalanced mass flux results across the body boundary and a
source/sink term is added to the continuity equation.

Fadlun et al. [2] extended the direct-forcing method to finite-difference formula-
tion on a staggered grid, and compared the accuracy and efficiency of their method
with those of the feedback forcing method, by simulating three-dimensional flows
in complex geometries. They found their method to be of the same order of accu-
racy, but more efficient. They concluded that the direct-forcing approach is more
efficient and suitable to simulate unsteady three-dimensional incompressible flows
in complex geometries. Most of the feedback and direct-forcing methods are basi-
cally similar except for the way of interpolating the fluid velocity to the immersed
boundary points and extrapolating the body force back into the computational grid
points [2, 17, 19, 20].

More recently, a different class of immersed-boundary methods has started to
emerge. Here, no forcing function and spreading is required. Instead, the velocity
of grid points around the immersed boundary is interpolated taking the boundary
condition (no-slip, for instance) into account. The resulting interpolation equation
is then solved along with the (unmodified) Navier-Stokes equations. The main ad-
vantage, in this case, is that no extra terms are included in the governing equations
and they are solved only in the fluid domain. Ghost-cell [19] and cut-cell [1] meth-
ods are typical examples of this class of methods. Some of the major contemporary
methods have been described and reviewed in [10].

In this chapter, we follow the forcing-function-free approach and start to build
up a new immersed boundary method from scratch, considering for convenience, a
simple model equation. Our approach uses a cell-centered finite-volume discretiza-
tion. The governing partial differential equations are discretized using a standard
finite-volume method away from an embedded boundary (EB). Near the EB, a spe-
cial finite-volume method is derived which takes the prescribed interior boundary
conditions into account.

The outline of the chapter is as follows. In § 2, the problem is described, a stan-
dard finite-volume method is described and some of the associated results are pre-
sented. The special fluxes which take the effects of the embedded boundaries into
account are derived and limiters are introduced in § 3. In § 4, the issues associ-
ated with temporal discretization, which gives rise to fully discrete equations, are
explained. Total-variation diminishing (TVD) regions are defined and tailor-made
limiters, for the special fluxes, are also educed from the fully discrete equations. In
§ 5, some numerical results, based on the present work, are given and a comparison
is made with the standard finite-volume results. In § 6, we give a brief account of
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the possibilities to extend the presented method to more general cases, and finally,
concluding remarks are presented in § 7.

2 Model equation and target problems

Many of the partial differential equations that are derived to model physical situ-
ations cannot be solved analytically, and are too complex to study their numerics
rigorously. It is logical to first develop numerical schemes for appropriate model
equations and then to carry these over to the original partial differential equations for
which precise analysis is not possible. It is common practice to take model equations
that are sufficiently simplified versions of the corresponding physical equations, but
still resemble these equations as much as possible.

Here, we consider the one-dimensional, linear advection equation as the model
equation for the Euler equations:

∂c
∂ t

+
∂ f (c)

∂x
= 0, f (c) = uc. (1)

Equation (1) is a model of scalar quantity c(x,t) that is advected by the velocity u,
which is constant, and which we assume to be positive. f (c) is the flux function,
which is linear. The independent variables x and t represent space and time, respec-
tively. The generic domain of the solution is a one-dimensional rod, of finite length
L, and the time interval, in principle, is infinitely long.

The advection equation (1) is a very simple partial differential equation, but it
is an important one. It models fluid-flow equations and it proves challenging to
solve it numerically. It is hyperbolic with a single set of characteristic lines. These
are straight lines in the (x,t)-plane, which are determined from the solution of the
ordinary differential equation:

dx
dt

= u, (2a)

whose integration yields the equation of the characteristic lines x− ut = constant.
Notice that, along a characteristic line, the dependent variable c(x,t) satisfies:

dc
dt

=
∂c
∂ t

+
∂c
∂x

dx
dt

≡
∂c
∂ t

+ u
∂c
∂x

= 0, (2b)

and thus, it remains constant along these lines.
Therefore, for a given initial solution c(x,0) = c0(x), the exact solution of (1),

at any location x and time t, can be computed by the method of characteristics,
as c(x,t) = c0(x− ut). That is, as time evolves, the initial data simply propagates
unchanged with a velocity u: it propagates to the right if u > 0 and to the left if
u < 0.

Hence, by using the exact solution as a benchmark, numerous numerical schemes
can be developed and tested for the one-dimensional, linear advection equation.
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2.1 Standard finite-volume discretization

In the finite-volume method, the spatial domain of the physical problem is subdi-
vided into non-overlapping cells or control volumes. The cells are considered to be
of uniform size. The domain is taken to be of unit length, L = 1, on the interval
x ∈ [0,1] and is divided into N cells, with the grid size being h = 1

N .
A single node is located at the geometric centroid of the control volume and the

cells are represented with nodal indices: i− 1, i, i + 1, etc. The coordinates of the
nodes are determined as xi = (i− 1

2)h, i = 1,2, ...,N. Analogously, the coordinates of
the cell faces are labeled by indices-with-fractions and are computed as xi+ 1

2
= ih,

i = 1,2, ...,N. Figure 1 shows the spatial domain with cells and cell faces.

i + 1
2i− 1

2

1 i−1 i i +1 N0 1
x

Fig. 1 One-dimensional finite-volume domain

To obtain the finite-volume model, ensuring conservation of c, the model equa-
tion is integrated over the control volumes shown in Figure 1. Integrating (1) over
the volume Ω of cell i yields:

∫

Ωi

∂c
∂ t

dΩi +

∫

Ωi

∂ f (c)
∂x

dΩi = 0. (3)

We denote the discrete solution in cell i and the flux at cell face i+ 1
2 , both at time

level n, as cn
i := c(xi, tn) and f n

i+ 1
2

:= f (c(xi+ 1
2
,tn)), respectively. We assume cn

i to

be constant in space, in that cell. Applying the Gauss integration theorem, (3) can
be rewritten as:

h
dci

dt
+( fi+ 1

2
− fi− 1

2
) = 0. (4)

Semi-discrete equation (4) is exact so far in cell Ωi. It is going to be solved using
the method of lines. That is, the fluxes at the cell faces are first approximated and
then the temporal part is time-stepped with a suitable time-integration method.

2.2 Initial and boundary conditions

Two initial solutions are considered, each with two interior, moving boundaries.
The solution at the left and right of each interior boundary is prescribed. The two
interior boundaries represent two infinitely thin bodies that go with the flow. The
two moving boundaries have different initial locations (x1 and x2, x1 6= x2). The
solution is discontinuous across both interior boundaries. The two initial solutions
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are shown in Figure 2, and, in formulae, read:

c0(x) =

{

0, if x1 ≤ x ≤ x2,

1, elsewhere;
(5a)

c0(x) =

{

0, if x1 ≤ x ≤ x2,
1
2 (1− cos(2πx)) , elsewhere.

(5b)

The cosine function in (5b) exploits the advantage that higher-order accurate nu-
merical schemes have in non-constant, smooth solution regions.

0 1
0

1

x1 x2

c

x

(a) Constant function at peripheries

0 1x1 x2

c

x

(b) Smooth (cosine) function at peripheries

Fig. 2 Initial solutions with two discontinuous interior boundaries.

The model equation is approximated in a periodic domain. That is, the first and
last cell faces are ‘glued together’ and thus the fluxes in the corresponding faces are
readily made equal: f 1

2
= fN+ 1

2
. Apparently, periodicity allows us to time-step for

as long as we want for a finite spatial domain.
Fixed-grid finite-volume methods for advection problems with interior moving

boundaries are underdeveloped. No rigorous studies exist about numerical proper-
ties as accuracy and monotonicity. Here, several finite-volume methods for discon-
tinuous moving interior-boundary problems will be derived, analyzed and tested.
The moving interior-boundary conditions will be embedded in the fluxes in the di-
rect neighborhood. The precise way in which this embedding is done is the main
theme of this chapter.

2.3 Standard finite-volume schemes

Finite-volume methods distinguish themselves in the way the fluxes are computed.
To start, three standard finite-volume methods are considered: first-order accurate
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upwind, second-order accurate central, and second-order accurate fully one-sided
upwind. The latter two can be cast into one general form, the κ-scheme [9].

For positive and constant u, and an equidistant grid, the classical fluxes, at time
level n, are computed as follows. The fluxes are given for cell face i+ 1

2 (Figure 1);
for the other faces, they are computed analogously.

The general flux at cell face i + 1
2 , dropping the time index n, for convenience,

reads:
fi+ 1

2
= uci+ 1

2
, (6a)

where ci+ 1
2

is the cell-face state at i+ 1
2 , which can be approximated in a variety of

ways. For example, for u > 0, the first-order upwind flux involves only one cell and
takes the form:

ci+ 1
2

= ci. (6b)

Equation (6b) shows that the first-order upwind flux is solely based on the informa-
tion from the upstream side of the cell face.

The second-order central and fully one-sided upwind fluxes involve two cells and
they take the form:

ci+ 1
2

= ci +
1
2
(ci+1 − ci), (7a)

ci+ 1
2

= ci +
1
2
(ci − ci−1), (7b)

respectively. Both are written as the first-order upwind cell-face state (6b) plus a cor-
rection term. Equation (7a) is obtained by interpolation, assuming a linear variation
of c between points xi and xi+1. And (7b) is obtained by extrapolation, assuming a
linear variation of c between points xi−1 and xi.

By blending these basic second-order accurate schemes, we can reconstruct a
general higher-order accurate scheme, as:

ci+ 1
2

= θ
(

ci +
1
2

(ci+1 − ci)

)

+(1−θ )

(

ci +
1
2

(ci − ci−1)

)

, θ ∈ [0,1], (8a)

with θ the blending parameter. Formula (8a) can be rewritten as:

ci+ 1
2

= ci +
θ
2

(ci+1 − ci)+
1−θ

2
(ci − ci−1) . (8b)

Introducing, instead of θ , the parameter κ :

κ = 2θ −1, κ ∈ [−1,1] , (9)

equation (8b) turns out to be the well-known Van Leer κ-scheme [9]:

ci+ 1
2

= ci +
1 + κ

4
(ci+1 − ci)+

1−κ
4

(ci − ci−1) . (10)
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For κ = 1, we have the second-order accurate central scheme; and for κ = −1, we
have the second-order accurate fully one-sided upwind scheme. A motivation for
the blending is that for the unique value κ = 1

3 , we have O(h3) net flux accuracy in
each cell.

The simplicity and monotonicity of the first-order upwind scheme are appealing.
However, it has strong numerical diffusion. On the other hand, the solutions of all
κ-schemes, hence also those of the κ = 1

3 scheme, may exhibit wiggles. This recalls
Godunov’s (1959) theorem [3] which states that there is no linear scheme higher
than first-order accurate which is monotone.

We verify this here for the κ-scheme (10), considering the monotonicity re-
quirement:

ci+ 1
2
− ci− 1

2

ci − ci−1
≥ 0. (11)

With the local successive solution-gradient ratios:

ri+ 1
2

=
ci+1 − ci

ci − ci−1
, (12a)

ri− 1
2

=
ci − ci−1

ci−1 − ci−2
, (12b)

and κ-scheme (10), requirement (11) yields:

(1 + κ)ri+ 1
2
−

1−κ
ri− 1

2

≥ 2(κ −2) . (13)

No κ ∈ [−1,1] exists for which (13) is satisfied for all possible combina-
tions of ri− 1

2
and ri+ 1

2
. It can be directly verified that (13) is not satisfied for

ri+ 1
2

< −1 in case of κ = 1, and for 1
r
i− 1

2

> 3 in case of κ = −1. For κ = 1
3 ,

requirement (13) is not satisfied for 1
r
i− 1

2

−2ri+ 1
2

> 5. The corresponding re-

gions of non-monotonicity in the (ri− 1
2
, ri+ 1

2
)-plane are depicted in Figure 3.

Notice that monotonicity requirement (11) is always satisfied for the first-
order upwind scheme (6b).

Several algorithms have been proposed in the literature that yield higher-order
accurate solutions which are free from wiggles. Most of these algorithms exploit
the inherent monotonicity of the first-order upwind scheme. The best known rep-
resentatives of these algorithms are the limited schemes following Sweby’s work
[18]. Let us consider limiters that resemble κ-schemes to the largest possible extent
within Sweby’s TVD domain.

With (12a), the limited form of the cell-face state according to (10) can be written
as:
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1
3

ri+ 1
2

ri− 1
2

(a) κ = −1

K1

ri+ 1
2

ri− 1
2

(b) κ = 1

1
5

K
5
2

ri+ 1
2

ri− 1
2

(c) κ = 1
3

Fig. 3 Non-monotonicity regions for some κ-schemes.

ci+ 1
2

= ci +
1
2

φ(ri+ 1
2
)(ci − ci−1), (14a)

where φ(r) is the limiter function, defined as:

φ(r) =



















0, if r < 0

2r, if 0 ≤ r <
1−κ
3−κ ,

1−κ
2 + 1+κ

2 r, if 1−κ
3−κ ≤ r <

3+κ
1+κ ,

2, if 3+κ
1+κ ≤ r.

(14b)

Here we specifically adopt the limiter proposed in [8] as the standard limiter, which
gives a monotone third-order accurate net flux in a cell, by resembling the κ = 1

3
scheme. This limiter, which is within Sweby’s TVD domain, is depicted in Figure 4.

Fig. 4 Standard limiter,
which is obtained from (14b)
for κ = 1

3 .

ri+ 1
2

φ

1
2

1
4

0 1

2

5
2

In the remainder of this chapter, we will derive non-standard finite-volume meth-
ods, methods in which the interior boundary conditions are incorporated in the fixed-
grid flux formulae. Before doing so, for later comparison purposes, we will show
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what the solutions are for the standard finite-volume discretizations described above,
methods in which no embedded-boundary conditions are imposed, pure captur-
ing methods, in fact. For the time integration, the three-stage Runge-Kutta scheme
RK3b from [6] is employed. For both initial solutions given in (5a) and (5b), we
consider the initial locations of the EBs to be at x1 = 1

3 and x2 = 2
3 . Furthermore, we

take u = 1, and we compute the solution at tmax = 1, the time at which the solution
has made a single full-period. For both the first-order upwind and the κ = 1

3 (unlim-
ited and limited) schemes, the computations are performed on a grid with 20 and 40
cells. The solutions are depicted in Figure 5. The time steps have been taken suffi-
ciently small to ensure that in all cases the time-discretization errors are negligible
with respect to the spatial discretization errors.

0  0.2 0.4 0.6 0.8 1

0   

0.5

1

x

c

0  0.2 0.4 0.6 0.8 1  

0   

0.25

0.5

x

c

(a) on 20 cells

0  0.2 0.4 0.6 0.8 1  

0

0.5

1

x

c

0  0.2 0.4 0.6 0.8 1  

0   

0.25

0.5 

x

c

(b) on 40 cells

Fig. 5 Standard finite-volume solutions after one full-period, for the initial solutions (5a) and (5b).
Red: exact discrete, blue: first-order upwind, green: unlimited higher-order upwind-biased, and
black: limited higher-order upwind-biased.
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3 Fluxes with embedded moving-boundary conditions

As mentioned, the sharp discontinuities of the initial solutions (5a) and (5b), shown
in Figure 2, may be considered as infinitely thin bodies going with the flow and
the boundary conditions associated with these may be embedded in some fixed-
grid fluxes. Here, the EB (embedded boundary) conditions are user-specified and
enforced to remain intact to the EB and unchanged at all times. The solution values
on the left and right sides of the EB are designated as cl

EB and cr
EB, respectively (see

Figure 6).

ci− 1
2

ci+ 1
2

ci+ 3
2

i−1 i i+1 i+2

β h

cl
EB cr

EB

x

Fig. 6 EB situated in cell i at time t , its associated solution values, and the affected cell-face states.

As shown in Figure 6, for an EB situated in cell i, with its coordinate xEB = xEB(t)
given, its relative position with respect to x

i− 1
2

(the left face of cell i) is β h, where

β ∈ [0,1] is a (non-dimensional) parameter which is defined as:

β =

xEB − x
i− 1

2

h
. (15)

So, β = 0 when the EB is situated at cell face i− 1
2 , β = 1

2 when the EB is exactly
at the centroid i, and β = 1 when the EB is at cell face i+ 1

2 .
There is no information flow across the EB. Fluxes on one side of the EB, at a

specific time t, are all computed based on the information on the same side of the
EB, at that time, plus the additional interior-boundary condition on the respective
side. In general, when considering three-point upwind-biased interpolation for the
fluxes, three cell-face states (ci− 1

2
, ci+ 1

2
and ci+ 3

2
) are affected by the presence of

a single EB (in cell i) and these are the cell-face states of interest for which tailor-
made formulae will be derived.

In general, for an EB in a cell, the three affected cell-face states are computed
such that the net fluxes in some neighboring cells are as accurate as possible. This
shall be discussed in the next section. So far, it is assumed that two successive EBs
are sufficiently far apart that no cell-face state exists that is affected by both EBs.
Recall that all but the affected cell-face states are computed based on the standard
finite-volume schemes discussed in § 2.3.
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3.1 Higher-order accurate embedded-boundary fluxes

If a three-point upwind-biased interpolation is considered for computing fluxes, the
cell faces i− 1

2 , i + 1
2 and i + 3

2 ‘feel’ the EB situated in cell i (see Figure 6). The
higher-order accurate fluxes at these faces are computed from higher-order accurate
cell-face states. In principle, all the special cell-face states are written in terms of the
blending parameter κ and computed from optimally blended, three-point upwind-
biased interpolation formulae. However, for cell-face state ci+ 1

2
, no upwind-biased

interpolation formula can be derived as we do not draw information across the EB.
Hence, there is no blending parameter in the formula for ci+ 1

2
, only non-equidistant

central interpolation is applied to compute ci+ 1
2
. On the other hand, in the formulae

for ci− 1
2

and ci+ 3
2
, there will be blending parameters, and ci− 1

2
and ci+ 3

2
can be

taken as optimally weighted averages of two-point central interpolation and two-
point fully upwind extrapolation.

Just like away from the EB, also net cell fluxes are optimized for accuracy near
the EB. The net fluxes of cells i−1, i, i+1 and i+2 are affected by the EB. Recalling
that only ci− 1

2
and ci+ 3

2
allow for optimization, only two of the four aforementioned

net cell fluxes can be optimized for accuracy: either the net flux in cell i−1 or cell
i, for ci− 1

2
; and either the net flux in cell i+ 1 or cell i+ 2, for ci+ 3

2
.

For the accuracy optimizations, Taylor series expansions are used. Doing so, the
net flux in cell i cannot be optimized due to the presence of the EB with its discon-
tinuous solution behavior. Hence, the net flux in cell i−1 will be optimized for ci− 1

2
.

Secondly, for ci+ 3
2
, the net flux in cell i+ 2 will be optimized. The reason why the

net flux in cell i + 2 is optimized, instead of that of cell i + 1, becomes clear at the
end of the derivations in § 3.1.2. We start by first deriving the unlimited EB-affected
cell-face states, and after that, EB-sensitive limiters will be derived.

3.1.1 Cell-face states

Here, we derive the unlimited forms of the cell-face states in cells i− 1, i + 1 and
i + 2. These are the EB-affected cell-face states (ci− 1

2
, ci+ 1

2
, ci+ 3

2
) and the corre-

sponding regular cell-face states (ci− 3
2
, ci+ 5

2
).

a. Cell-face states affected by EB

Cell-face state ci− 1
2
: The second-order accurate, non-equidistant, central inter-

polation, and the second-order accurate, equidistant, fully upwind extrapolation
schemes for ci− 1

2
can be written as:

ci− 1
2

= ci−1 +
1

1 + 2β
(cl

EB − ci−1), (16a)

and
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ci− 1
2

= ci−1 +
1
2
(ci−1 − ci−2), (16b)

respectively. The blend of the above two schemes, is:

ci− 1
2

= ci−1 +
1

1 + 2β

1 + κi− 1
2

2
(cl

EB − ci−1)+
1−κi− 1

2

4
(ci−1 − ci−2), (16c)

with κi− 1
2

the blending parameter. Note that we get the exact result ci− 1
2

=

cl
EB, β = 0, only for κi− 1

2
= 1. (The accuracy of cell-face states is not our prime

interest, the accuracy of net fluxes is.)

Cell-face state ci+ 1
2
: As mentioned earlier, there are no sufficient number of

solution points, on the upstream side of cell face i + 1
2 , up to and including the

right face of the EB, to construct a higher-order accurate upwind-biased interpo-
lation scheme. Hence, no κ-scheme is formulated here. Instead, this particular
flux is reconstructed with only a, second-order accurate, non-equidistant central
interpolation scheme, as:

ci+ 1
2

= cr
EB +

2−2β
3−2β

(ci+1 − cr
EB). (17)

Note that we get the expected standard second-order accurate central result for
β = 1

2 , and the exact result for β = 1.

Cell-face state ci+ 3
2
: The second-order accurate central interpolation and the

non-equidistant, second-order accurate, fully upwind extrapolation schemes for
ci+ 3

2
can be written as:

ci+ 3
2

= ci+1 +
1
2

(ci+2 − ci+1) , (18a)

and

ci+ 3
2

= ci+1 +
1

3−2β
(ci+1 − cr

EB) , (18b)

respectively. Blending the above two schemes, we get:

ci+ 3
2

= ci+1 +
1 + κi+ 3

2

4
(ci+2 − ci+1)+

1
3−2β

1−κi+ 3
2

2
(ci+1 − cr

EB) , (18c)

with κi+ 3
2

being the blending parameter.

b. Corresponding regular cell-face states

For cell faces i− 3
2 and i+ 5

2 , the standard κ = 1
3 scheme is applied:
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ci− 3
2

= ci−2 +
1
3

(ci−1 − ci−2)+
1
6

(ci−2 − ci−3) , (19a)

ci+ 5
2

= ci+2 +
1
3

(ci+3 − ci+2)+
1
6

(ci+2 − ci+1) . (19b)

3.1.2 Net cell fluxes

Here, we compute the net cell fluxes and derive the modified equations for cells
i− 1, i + 1 and i + 2, from which the blending parameters κi− 1

2
and κi+ 3

2
will be

optimized. Recall that the net flux in cell i cannot be optimized as the solution is
discontinuous in there.

Optimal accuracy in cell i − 1: With (16c) and (19a), we get as semi-discrete
equation for cell i−1:

dci−1

dt
+

u
h

(

1
1 + 2β

1 + κi− 1
2

2
(cl

EB − ci−1) +

11−3κi− 1
2

12
(ci−1 − ci−2)−

1
6
(ci−2 − ci−3)

)

= 0. (20a)

Substituting Taylor-series expansions of cl
EB, ci−2 and ci−3 around the point i−1

into (20a), we get as modified equation for cell i−1, ignoring the index i−1:

∂c
∂ t

+ u
∂c
∂x

+
6β −7 +(9 + 6β )κi− 1

2

48
uh

∂ 2c
∂x2 +

(3 + 2β )(2β −1)(1 + κi− 1
2
)

96
uh2 ∂ 3c

∂x3 = O(h3). (20b)

Equating the leading term of the truncation error to zero, we get:

κi− 1
2

=
7−6β
9 + 6β

, κi− 1
2
∈

[

1
15

,
7
9

]

. (21)

This is the κi− 1
2

that yields the most accurate net flux in cell i−1. It is well within

the standard κ-range [−1,1]. Its variation for any position of the EB within cell i is
depicted in Figure 7(a).

Substituting the optimal value of κi− 1
2

according to (21) into the modified equa-

tion (20b), we get:

∂c
∂ t

+ u
∂c
∂x

+
2β −1

18
uh2 ∂ 3c

∂x3 = O(h3). (22)

Therefore, in general, we get a second-order (spatial) accuracy in cell i− 1, with
a maximum leading-term truncation-error coefficient of ± 1

18 uh2. Evidently, this
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dispersive term diminishes as the EB is in the immediate vicinity of the center of
cell i, β ≈ 1

2 . For β = 1
2 , κi− 1

2
is restored as κi− 1

2
= 1

3 (Figure 7(a)), and then we get
third-order spatial accuracy.

Optimal accuracy in cell i + 1: With (17) and (18c), we get as the semi-discrete
equation for cell i+ 1:

dci+1

dt
+

u
h

(

3−κi+ 3
2

6−4β
(ci+1 − cr

EB) +
1 + κi+ 3

2

4
(ci+2 − ci+1)

)

= 0. (23a)

Introducing Taylor-series expansions of cr
EB and ci+2 around the point i + 1, into

(23a), we get as modified equation for cell i+ 1, ignoring the index i+ 1:

∂c
∂ t

+ u
∂c
∂x

+
(6β −7)+ (5−2β )κi+ 3

2

16
uh

∂ 2c
∂x2 +

(12β 2 −36β + 31) − (4β 2 −12β + 5)κi+ 3
2

96
uh2 ∂ 3c

∂x3 = O(h3). (23b)

Then equating the leading term of the truncation error to zero, we get:

κi+ 3
2

=
7−6β
5−2β

, κi+ 3
2
∈

[

1
3
,

7
5

]

. (24)

This is the κi+ 3
2

that yields the most accurate net flux in cell i+ 1. This κi+ 3
2

is not

within the standard κ-range [−1,1].
Substituting (24) into (23b), we get as modified equation for cell i+ 1, ignoring

the index i+ 1:
∂c
∂ t

+ u
∂c
∂x

+
3−2β

12
uh2 ∂ 3c

∂x3 = O(h3). (25)

Note that the leading order error-term in cell i+ 1 is second-order for all β ; it does
not vanish for β = 1

2 .
Moreover, with (18c), (19b) and (24), we get as semi-discrete equation for cell

i+ 2:

dci+2

dt
+

u
h

(

1−2β
(3−2β )(5−2β )

(ci+1 − cr
EB) +

17−2β
30−12β

(ci+2 − ci+1) +
1
3
(ci+3 − ci+2)

)

= 0. (26a)

Introducing Taylor-series expansions for cr
EB, ci+1 and ci+3 around the point i + 2

into (26a), we get as modified equation for cell i+ 2, ignoring the index i+ 2:

∂c
∂ t

+ u
∂c
∂x

+
6β −7

24
uh

∂ 2c
∂x2 = O(h2). (26b)
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Note that the leading order error-term in cell i+ 2 is first-order for all β .

Optimal accuracy in cell i + 2: With (18c) and (19b), we get as semi-discrete
equation for cell i+ 2:

dci+2

dt
+

u
h

(

κi+ 3
2
−1

6−4β
(ci+1 − cr

EB) +

11−3κi+ 3
2

12
(ci+2 − ci+1) +

1
3
(ci+3 − ci+2)

)

= 0. (27a)

Introducing Taylor-series expansions of cr
EB, ci+1 and ci+3 around the point i + 2

into (27a), we get as modified equation for cell i+ 2, ignoring the index i+ 2:

∂c
∂ t

+ u
∂c
∂x

+
(6β −15)κi+ 3

2
+(7−6β )

48
uh

∂ 2c
∂x2 +

(4β 2 −24β + 35)κi+ 3
2
− (4β 2 −24β + 19)

96
uh2 ∂ 3c

∂x3 = O(h3). (27b)

Equating the leading term of the truncation error to zero, now we get:

κi+ 3
2

=
7−6β

15−6β
, κi+ 3

2
∈

[

1
9
,

7
15

]

. (28)

This is the value of κi+ 3
2

that yields the most accurate net flux in cell i+ 2. As

opposed to κi+ 3
2

according to (24), this κi+ 3
2

is well within the standard κ-range

[−1,1]. Its variation for any position of the EB within cell i is depicted in Fig-
ure 7(b).

0 1
2

1
0

1
3

0.8

β

(a) κi− 1
2

0 1
2

1
0.1

1
3

0.5

β

(b) κi+ 3
2

Fig. 7 Variation of the optimal κ values for any position of the EB within cell i.
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Substituting the optimal κi+ 3
2

according to (28) into (27b), we get as modified

equation for cell i+ 2:

∂c
∂ t

+ u
∂c
∂x

+
2β −1

36
uh2 ∂ 3c

∂x3 = O(h3). (29)

In contrast to the dispersive error in (25), the dispersive term in (29) does vanish as
the EB gets in the vicinity of the center of cell i, β ≈ 1

2 . We, thereby, get third-order
spatial accuracy, and κi+ 3

2
according to (28) becomes κ = 1

3 (see Figure 7(b), and
the Appendix for a more detailed comparison).

With (17), (18c) and (28), we get as semi-discrete equation for cell i+ 1:

dci+1

dt
+

u
h

(

19−6β
(9−6β )(5−2β )

(ci+1 − cr
EB) +

11−6β
30−12β

(ci+2 − ci+1)

)

= 0. (30a)

And, substituting Taylor-series expansions for cr
EB, and ci+2 around the point i+ 1,

into (30a), we get as modified equation for cell i+ 1, ignoring the index i+ 1:

∂c
∂ t

+ u
∂c
∂x

+
6β −7

24
uh

∂ 2c
∂x2 = O(h2). (30b)

Equation (30b) shows that we get a first-order spatial accuracy in cell i + 1 with a
maximum leading-term truncation-error coefficient of − 7

24 uh. Coincidentally, (30b)
is the same as (26b); the leading-order error terms in both equations are identical.
The accuracy loss in the net flux of a neighboring cell is unavoidable. If the cell-face
states were to be first-order accurate, i.e. ci+ 1

2
= cr

EB and ci+ 3
2

= ci+1, the modified

equation for cell i+ 1, ignoring the index i+ 1, would become:

∂c
∂ t

+
3−2β

2
u

∂c
∂x

−
(3−2β )2

8
uh

∂ 2c
∂x2 = O(h2), (31)

which, for all β , except β = 1
2 , is even zeroth-order accurate.

As the optimal κi+ 3
2

we choose (28), the one that gives the highest accuracy
in cell i + 2. In summary, the reasons why we choose this κi+ 3

2
, instead of the one

yielding the highest accuracy in cell i+1 (κi+ 3
2

according to (24)), are the following:

• For β = 1
2 , we get a third-order (spatial) accuracy in cell i + 2 with (28) (see

(29)). But with (24) we do not get this in cell i+ 1 for any β (see (25)).
The truncation error with (28) is much less than that with (24), for any β (see
Appendix).

• Noting that the solution is discontinuous across an EB, with (28) we have a dis-
sipative leading-error term in cell i+1, which is the cell adjacent to cell i (where
the EB is situated), and this makes the solution near the EB less prone to numer-
ical oscillations.
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With (24) however, we get the leading-error term in the same cell to be disper-
sive and this makes the solution near the EB to be more susceptible to numerical
oscillations, numerical oscillations which may be hard to suppress because con-
struction of a limiter for cell-face state ci+ 1

2
is hard.

• With (28), the accuracy deterioration due to the presence of an EB in cell i is
more confined to the vicinity of the EB. (We get first-order (spatial) accuracy
in cell i + 1, and second-order accuracy in cell i + 2; whereas with (24), we get
second-order accuracy in cell i+ 1, and first-order accuracy in cell i+ 2.)

• κi+ 3
2

according to (28) is well within the standard κ-range [−1,1], but with (24)

we get κi+ 3
2
∈
[ 1

3 ,
7
5

]

.

3.1.3 Formulae for cell-face states affected by EB

Here, the formulae for all the special cell-face states that are affected by the
EB, in cell i, viz. ci− 1

2
, ci+ 1

2
and ci+ 3

2
, are summarized.

With (16c) and (21), ci− 1
2

can be rewritten as:

ci− 1
2

= ci−1 +
8

(3 + 6β )(3 + 2β )
(cl

EB − ci−1) +

1 + 6β
18 + 12β

(ci−1 − ci−2). (32a)

Further, we have:

ci+ 1
2

= cr
EB +

2−2β
3−2β

(ci+1 − cr
EB). (32b)

And, with (18c) and (28), ci+ 3
2

can be rewritten as:

ci+ 3
2

= ci+1 +
11−6β
30−12β

(ci+2 − ci+1) +

4
(9−6β )(5−2β )

(ci+1 − cr
EB). (32c)

Verify that, in (32a) and (32c), for β = 1
2 , we get exactly the same coefficients

as in the the standard κ = 1
3 scheme (see (19a) and (19b)).
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3.2 Spatial monotonicity domains and limiters

Recalling Godunov’s (1959) theorem, all the linear higher-order accurate fluxes,
constructed earlier, may yield wiggles. One negative aspect of wiggles is that they
may cause the solution c to be negative. If c is a physical quantity that should not
become negative (say, density or temperature), this may be highly undesirable. Wig-
gles can be avoided by carefully constraining or ‘limiting’ the advective fluxes cal-
culated by the scheme. By limiting the fluxes, they may become first-order accurate
in some solution regions.

A limiter is a nonlinear function that acts like a continuous control between the
higher-order and first-order schemes. Obviously, limiters may reduce the overall
accuracy of the scheme to some extent, albeit in non-smooth flow regions only.
Limited schemes are called ‘monotonicity-preserving.’

For the cell-face states that are computed by the standard κ = 1
3 scheme (§ 2.3),

the standard κ = 1
3 limiter (14b) will be used. In this section, special limiters will be

introduced for the EB-affected cell-face states ci− 1
2

and ci+ 3
2

according to formulae

(32a) and (32c). The cell-face state ci+ 1
2
, however, will not be limited. This shall be

explained later on.

3.2.1 Spatial monotonicity domain and limiter for cell-face state ci− 1
2

Referring to Figure 6, for cell face i− 1
2 , we define the non-equidistant local succes-

sive solution-gradient ratio r̃i− 1
2
, as:

r̃i− 1
2

=
cl

EB − ci−1
1+2β

2 h
/

ci−1 − ci−2

h
≡

2
1 + 2β

cl
EB − ci−1

ci−1 − ci−2
. (33)

Notice that for β = 1
2 , EB in the center of cell i, r̃i− 1

2
reduces to the standard equidis-

tant solution-gradient ratio known from the theory of standard limiters.
We proceed by rewriting (16c) as:

ci− 1
2

= ci−1 +
1
2

φ̃(r̃i− 1
2
)(ci−1 − ci−2), (34a)

with

φ̃ (r̃i− 1
2
) =

1−κi− 1
2

2
+

1 + κi− 1
2

2
r̃i− 1

2
. (34b)

Substituting the optimal κi− 1
2

according to (21) into (34b), we get:

φ̃(r̃i− 1
2
) =

1 + 6β
9 + 6β

+
8

9 + 6β
r̃i− 1

2
. (34c)
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The family of possible φ̃(r̃i− 1
2
) schemes, depending on the position of the EB within

cell i (0 ≤ β ≤ 1), is represented in Figure 8. The function φ̃ (r̃i− 1
2
) will be con-

strained to yield a monotonicity-preserving scheme and to define the appropriate
limiter for the special cell-face state ci− 1

2
. The argument r̃i− 1

2
measures the local

monotonicity of the solution.

Fig. 8 Family of possible β -
schemes according to (34c):
the blue line is for β = 1, the
red line is for β = 0, and the
enclosed (colored) region is
for all other β ∈ (0,1).

1

1

φ̃

r̃i−1
2

The local solution-gradient ratio for cell face i− 3
2 is defined as:

ri− 3
2

=
ci−1 − ci−2

ci−2 − ci−3
. (35a)

And, the limited form of cell-face state ci− 3
2

is:

ci− 3
2

= ci−2 +
1
2

φ(ri− 3
2
)(ci−2 − ci−3), (35b)

where φ(r) is standard limiter (14b) with κ = 1
3 .

The following monotonicity requirement is enforced, to constrain the function
φ̃ (r̃i− 1

2
):

ci− 1
2
− ci− 3

2

ci−1 − ci−2
≥ 0. (36a)

Substituting (34a) and (35b) into (36a), using (35a), we get as constraint relation:

1 +
1
2

φ̃ (r̃i− 1
2
) −

1
2

φ(ri− 3
2
)

ri− 3
2

≥ 0. (36b)

The standard limiter already satisfies 1− 1
2

φ(r
i− 3

2
)

r
i− 3

2

≥ 0, ∀ri− 3
2
; therefore, the (in)equality

(36b) holds good if:

248



Finite-Volume Discretizations and Immersed Boundaries

φ̃(r̃i− 1
2
) ≥ 0, ∀r̃i− 1

2
. (36c)

Moreover, enforcing the additional monotonicity requirement:

cl
EB − ci− 1

2

cl
EB − ci−1

≥ 0, (37a)

and substituting (34a) into (37a), using (34c) and (33), we get:

φ̃(r̃i− 1
2
)

r̃i− 1
2

≤ 1 + 2β , ∀r̃i− 1
2
. (37b)

The (in)equalities (36c) and (37b) define the spatial monotonicity domain for the
special limiter function φ̃(r̃i− 1

2
). They delineate the left and lower bounds of the

domain. The upper bound is still to be derived in § 4 from the fully discrete equa-
tion. Once we also have defined this upper bound, the respective limiter will be
introduced, in § 4.1.

3.2.2 Limiter for cell-face state ci+ 1
2

Regarding cell-face state ci+ 1
2
, a regular monotonicity argument ri+ 1

2
can not be

defined here. A regular monitor uses two solution values upstream of cell faces. In
this case, since we do not want to use solution values from the other side of the EB,
and therefore not ci, we have only one upstream solution, cr

EB, too little to introduce
the regular smoothness monitor. Therefore, ci+ 1

2
is not limited.

3.2.3 Spatial monotonicity domain and limiter for cell-face state ci+ 3
2

Referring to Figure 6, the monotonicity argument r̃i+ 3
2

is defined, as:

r̃i+ 3
2

=
ci+2 − ci+1

h
/

ci+1 − cr
EB

3−2β
2 h

≡
3−2β

2
ci+2 − ci+1

ci+1 − cr
EB

. (38)

As expected, for β = 1
2 , r̃i+ 3

2
according to (38) reduces to the known equidistant-

grid ratio. Similar to the rewriting of expression (16c) for ci− 1
2
, here we rewrite

(18c) for ci+ 3
2
, as:

ci+ 3
2

= ci+1 +
1

3−2β
φ̃(r̃i+ 3

2
)(ci+1 − cr

EB), (39a)

with
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φ̃ (r̃i+ 3
2
) =

1−κi+ 3
2

2
+

1 + κi+ 3
2

2
r̃i+ 3

2
. (39b)

Substituting the optimal κi+ 3
2

according to (28) into (39b), we get:

φ̃(r̃i+ 3
2
) =

4
15−6β

+
11−6β
15−6β

r̃i+ 3
2
. (39c)

The family of possible φ̃ (r̃i+ 3
2
) schemes is given in Figure 9. Just as φ̃ (r̃i− 1

2
), in

§ 3.2.1, the function φ̃ (r̃i+ 3
2
) will be constrained to yield a monotonicity-preserving

scheme and to define the appropriate limiter for the special cell-face state ci+ 3
2
.

Fig. 9 Family of possible β -
schemes according to (39c):
the blue line is for β = 1, the
red line is for β = 0, and the
enclosed (colored) region is
for all other β ∈ (0,1).

1

1

φ̃

r̃i+3
2

The monotonicity argument ri+ 5
2

is defined as:

ri+ 5
2

=
ci+3 − ci+2

ci+2 − ci+1
. (40a)

And, the limited form of ci+ 5
2

is:

ci+ 5
2

= ci+2 +
1
2

φ(ri+ 5
2
)(ci+2 − ci+1), (40b)

where φ(ri+ 5
2
) is limiter (14b) with κ = 1

3 .

To constrain φ̃ (ri+ 3
2
), the following monotonicity requirements are enforced:

ci+ 3
2
− ci+ 1

2

ci+1 − cr
EB

≥ 0, (41a)

ci+ 5
2
− ci+ 3

2

ci+2 − ci+1
≥ 0. (41b)
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Substituting (17) and (39a) into (41a), we get as restriction for φ̃ (r̃i+ 3
2
):

φ̃ (r̃i+ 3
2
) ≥−1, ∀r̃i+ 3

2
. (42a)

And, substituting (39a) and (40b) into (41b), we get:

φ̃ (r̃i+ 3
2
)

r̃i+ 3
2

−φ(ri+ 5
2
) ≤ 2. (42b)

Since the standard limiter satisfies φ(ri+ 5
2
) ≥ 0, ∀ri+ 5

2
, the (in)equality (42b) holds

good if:
φ̃(r̃i+ 3

2
)

r̃i+ 3
2

≤ 2, ∀r̃i+ 3
2
. (42c)

The (in)equalities (42a) and (42c) define the spatial monotonicity domain for the
special limiter function φ̃(r̃i+ 3

2
). They delineate the left and lower bounds of the

domain. Once again, after defining the upper bound of the domain in § 4.1, the
respective limiter for the special cell-face state ci+ 3

2
will be introduced. Note that

as opposed to the spatial monotonicity domain for ci− 1
2

(see (36c) and (37b)), the

monotonicity domain for ci+ 3
2

is independent of β .

4 Temporal discretization

The semi-discrete equation (4), after substituting the appropriate discretizations for
the spatial operator, is discrete in space but still continuous in time. It can be com-
pactly written as:

dci

dt
= −

u
h
(ci+ 1

2
− ci− 1

2
) ≡ F(c), (43)

which is an ordinary differential equation that can be discretized in time using a va-
riety of explicit and implicit time integration methods, to get a fully discrete system
of equations. Here, only two explicit schemes are considered: the Forward Euler
method and the three-stage Runge-Kutta, RK3b, scheme [6]. The latter gives third-
order accuracy in time.

For the Forward Euler method, (43) becomes:

cn+1
i = cn

i + τF(cn) ≡ cn
i − ν(cn

i+ 1
2
− cn

i− 1
2
), (44)

where ν = uτ/h is the CFL number, and τ the time step. Similarly, for the RK3b
scheme, we have:

cn+1
i = cn

i +
1
6
(R1 + R2 + 4R3), (45a)

where the R j’s ( j = 1,2,3) are internal vectors that are computed as:
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R1 = τF(cn),

R2 = τF(cn + R1), (45b)

R3 = τF(cn +
1
4

R1 +
1
4

R2).

4.1 TVD conditions and time step

The limited numerical flux conditions, as derived in § 3.2, are still insufficient to
guarantee monotonicity during time integration. Harten’s theorem [5] provides ad-
ditional conditions that are necessary for the convergence of the fully discrete so-
lutions to the exact, monotone solutions. These conditions define the upper bounds
for the limiter functions φ̃ (r̃i− 1

2
) and φ̃(r̃i+ 3

2
), and consequently result into more

stringent restrictions on the CFL number, than the condition for stability.
The theorem in [5] states that any consistent scheme for a conservation law, writ-

ten in the conservative form:

cn+1
i = cn

i − D−
i− 1

2
(cn

i − cn
i−1) + D+

i+ 1
2
(cn

i+1 − cn
i ), (46a)

where the D’s are solution-dependent coefficients, is total-variation diminishing
(TVD) if, for all i:

D±
i+ 1

2
≥ 0, (46b)

D−
i+ 1

2
+ D+

i+ 1
2
≤ 1. (46c)

The total variation (TV) at time level n is defined, in discrete form, by:

TV(cn) = ∑
i
|cn

i+1 − cn
i |, (47)

and, any scheme is said to be TVD if TV(cn+1) ≤ TV(cn).

Both conditions, (46b) and (46c), can be interpreted as positive coefficient
requirements. To do so, we rewrite (46a) as

cn+1
i = D−

i− 1
2
cn

i−1 +(1−D−
i− 1

2
−D+

i+ 1
2
)cn

i + D+
i+ 1

2
cn

i+1. (48)

The positive coefficient requirements for (48) are:
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D−
i− 1

2
≥ 0, (49a)

1−D−
i− 1

2
−D+

i+ 1
2
≥ 0, (49b)

D+
i+ 1

2
≥ 0. (49c)

Equation (48) holds for any i, so also for i+ 1:

cn+1
i+1 = D−

i+ 1
2
cn

i +(1−D−
i+ 1

2
−D+

i+ 3
2
)cn

i+1 + D+
i+ 3

2
cn

i+2. (50)

The positive coefficient requirements applied to (50) yield, among others,

D−
i+ 1

2
≥ 0. (51)

So, with (49c) and (51) we have already interpreted (46b) as a positive coeffi-
cient requirement. From (49b) it follows

D−
i− 1

2
+ D+

i+ 1
2
≤ 1. (52)

Combining (52), (49a) and (49c), it may be written:

0 ≤ D−
i− 1

2
≤ 1− γ, (53a)

0 ≤ D+
i+ 1

2
≤ γ, (53b)

with γ some constant in the range [0,1]. We assume that the upper bound 1−γ
holds for all i, hence also for D−

i+ 1
2
:

0 ≤ D−
i+ 1

2
≤ 1− γ. (54)

Summation of (53b) and (54) gives

0 ≤ D−
i+ 1

2
+ D+

i+ 1
2
≤ 1. (55)

Combined with (49c) and (51) this may be reduced to

D−
i+ 1

2
+ D+

i+ 1
2
≤ 1, (56)

which is TVD requirement (46c).
With this we have shown that TVD requirements (46b) and (46c) are

positive coefficient requirements.
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It can also be verified that condition (46b) is identical to the monotonicity re-
quirements that we have already considered in § 3.2 (the conditions of which (36a),
(37a), (41a) and (41b) are examples). Condition (46c) though has not been con-
sidered yet. It will yield the sought upper bounds for our specific limiters under
construction. These bounds will be ν-dependent. Here, we will impose TVD re-
quirement (46c) to φ̃(r̃i− 1

2
) and φ̃ (r̃i+ 3

2
).

We consider the Forward Euler scheme and write the fully discrete equations,
in the form (46a). Referring to Figure 6, cell i− 1 is considered for φ̃(r̃i− 1

2
), and

cells i + 1 and i + 2 are analyzed for φ̃ (r̃i+ 3
2
). Recall that the EB is situated in cell

i and, as in all preceding sections, we will not consider this particular cell for any
analysis.

4.1.1 TVD conditions for limiter function φ̃ (r̃i− 1
2
)

Using (34a) and (35b) and writing the fully discrete equation for cell i− 1 in the
conservative form, we get:

cn+1
i−1 = cn

i−1 −
ν
2

(

2 + φ̃ (r̃i− 1
2
) −

φ(ri− 3
2
)

ri− 3
2

)

(cn
i−1 − cn

i−2). (57a)

Thus from (57a), we have as the corresponding coefficients:

D−

i− 3
2

=
ν
2

(

2 + φ̃(r̃i− 1
2
) −

φ(ri− 3
2
)

ri− 3
2

)

, (57b)

D+

i− 1
2

= 0. (57c)

Enforcing condition (46c), we get:

φ̃(r̃i− 1
2
) −

φ(ri− 3
2
)

ri− 3
2

≤
2
ν
−2. (58a)

Because the standard limiter satisfies 0 ≤
φ(r

i− 3
2
)

r
i− 3

2

≤ 2, ∀ri− 3
2
, the above inequality

reduces to:

φ̃(r̃i− 1
2
) ≤

2
ν
−2, ∀r̃i− 1

2
. (58b)

Taking the (in)equalities (36c), (37b) and (58b) into account, the TVD domain of
the special limiter for cell-face state ci− 1

2
is graphically illustrated in Figure 10.

(In)equality (58b) confirms that the upper bound of the special limiter func-
tion φ̃(r̃i− 1

2
) depends on the CFL number ν . The upper bound increases when

lowering ν . Note that the choice ν = 1, the stability bound for Forward Euler,
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φ̃

r̃i−1
2

β =0β = 1
2β =1

2
ν−2

0 1

1

2

2

Fig. 10 TVD domain for cell-face state ci− 1
2
, for some characteristic values of β . Note that ν ≤ 1

2 .

yields φ̃(r̃i− 1
2
) = 0. Hence, with ν = 1, the second-order accuracy requirement

φ̃ (r̃i− 1
2

= 1) = 1 cannot be satisfied for this limiter. ν ≤ 2
3 allows to meet this ac-

curacy requirement. ν <
2
3 even allows for third-order accuracy in space. We take

ν = 1
2 as the upper bound; it gives sufficient room for good spatial accuracy and

does not bound the time step too much. Moreover, it will appear to be the hard
upper bound for ν in using limiter φ̃(r̃i+ 3

2
).

When we impose this bound for ν on φ̃(r̃i− 1
2
), the ν-dependence of the upper

bound in (58b) is avoided; the (in)equality (58b) can then be simplified, ∀r̃i− 1
2
, to

the more practical inequality:

φ̃(r̃i− 1
2
) ≤ 2, for ν ≤

1
2
. (58c)

With this, the TVD domain in Figure 10 simplifies to that given in Figure 11.
We now strive for a practical limiter φ̃(r̃i− 1

2
) which coincides with the target

scheme (34) to the maximal possible extent. An algorithm for computing this limiter
φ̃ (r̃i− 1

2
) reads:

1. Compute β according to (15).
2. Compute the actual value of the monotonicity argument r̃i− 1

2
according to (33).

3. Compute the values r̃∗
i− 1

2
and r̃∗∗

i− 1
2

for which the target function φ̃ (r̃i− 1
2
) accord-

ing to (34c) intersects the simplified TVD domain’s bounds, (1+2β )r̃i− 1
2

and 2,

respectively.

255



Yunus Hassen and Barry Koren

φ̃

r̃i−1
2

β =0β = 1
2β =1

0 1

1

2

2

Fig. 11 Simplified TVD domain for cell-face state ci− 1
2
, for some characteristic values of β .

r̃∗
i− 1

2
=

1 + 6β
1 + 24β + 12β 2 , (59a)

r̃∗∗
i− 1

2
=

17 + 6β
8

. (59b)

4. Then, the special limiter for the cell-face state ci− 1
2

reads:

φ̃ (r̃i− 1
2
) =



























0, if r̃i− 1
2

< 0,

(1 + 2β )r̃i− 1
2
, if 0 ≤ r̃i− 1

2
< r̃∗

i− 1
2
,

1+6β
9+6β + 8

9+6β r̃i− 1
2
, if r̃∗

i− 1
2
≤ r̃i− 1

2
< r̃∗∗

i− 1
2
,

2, if r̃i− 1
2
≥ r̃∗∗

i− 1
2
.

(60)

The EB-sensitive limiter (60) is depicted in Figure 12 for the two extreme values
of β , β = 0 and β = 1, together with the corresponding TVD domains.

4.1.2 TVD conditions for limiter function φ̃ (r̃i+ 3
2
)

Similarly, to fully constrain the limiter function φ̃ (r̃i+ 3
2
), the fully discrete equations

for cells i+ 1 and i+ 2 are analyzed. Substituting (32b), (39a) and (40b) into (46a),
rewritten for cn+1

i+1 and cn+1
i+2 , the fully discrete equations can be written as:
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φ̃

r̃i−1
20 1

1

2

17
8

(a) β = 0

2

φ̃

r̃i−1
20 7

37
23
8

21
37

(b) β = 1

Fig. 12 Special EB-sensitive limiters (in red) for the cell-face state ci− 1
2

and the corresponding

TVD domains for the two extreme values of β .

cn+1
i+1 = cn

i+1 −
ν

3−2β

(

1 + φ̃(r̃i+ 3
2
)
)

(cn
i+1 − cr

EB), (61a)

cn+1
i+2 = cn

i+2 −
ν
2

(

2 + φ(ri+ 5
2
)−

φ̃(r̃i+ 3
2
)

r̃i+ 3
2

)

(cn
i+2 − cn

i+1). (61b)

Thus from (61a) and (61b), we have as the corresponding Harten coefficients, for
cells i+ 1 and i+ 2:
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D−

i+ 1
2

=
ν

3−2β

(

1 + φ̃(r̃i+ 3
2
)
)

, (62a)

D+

i+ 3
2

= 0, (62b)

and

D−

i+ 3
2

=
ν
2

(

2 + φ(ri+ 5
2
) −

φ̃ (r̃i+ 3
2
)

r̃i+ 3
2

)

, (62c)

D+

i+ 5
2

= 0, (62d)

respectively. Enforcing condition (46c), we get:

φ̃(r̃i+ 3
2
) ≤

3−2β
ν

−1, ∀r̃i+ 3
2
, (63a)

and

φ(ri+ 5
2
) −

φ̃ (r̃i+ 3
2
)

r̃i+ 3
2

≤
2
ν
−2. (63b)

The standard limiter satisfies 0 ≤ φ(ri+ 5
2
) ≤ 2, ∀ri+ 5

2
, and therefore (in)equality

(63b) reduces to:
φ̃(r̃i+ 3

2
)

r̃i+ 3
2

≥ 4−
2
ν

, ∀r̃i+ 3
2
. (63c)

Taking the (in)equalities (42a), (42c), (63a) and (63c) into account, the TVD
domain of the special limiter for cell-face state ci+ 3

2
is depicted in Figure 13.

Concerning the just derived ν-dependent bounds, 3−2β
ν −1 and 4− 2

ν , we notice
that here ν = 1

2 is the maximum value that still allows to meet the second-order ac-
curacy requirement φ̃ (r̃i+ 3

2
= 1) = 1, for β = 1. Hence, ν ≤ 1

2 is the CFL restriction

for the fully discrete systems (61a) and (61b) to be TVD and second-order accurate.
For ν ≤ 1

2 , the (in)equalities (63a) and (63c) can be simplified to:

φ̃ (r̃i+ 3
2
) ≤ 5−4β , ∀r̃i+ 3

2
, (63d)

and
φ̃(r̃i+ 3

2
)

r̃i+ 3
2

≥ 0, ∀r̃i+ 3
2
. (63e)

Doing so, the TVD domain in Figure 13 simplifies to the one shown in Figure 14.
In analogy to the algorithm for φ̃(r̃i− 1

2
) given in § 4.1.1, here an algorithm is also

given for limiter φ̃(r̃i+ 3
2
):

1. Compute β according to (15).
2. Compute the actual value of the monotonicity argument r̃i+ 3

2
according to (38).
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φ̃ = (4− 2
ν)r̃i+3

2
φ̃ =2r̃i+3

2

φ̃

r̃i+3
2

β =0

β = 1
2

β =1

3
ν−1

2
ν−1

1
ν−1

−2

−1

2−4−6 4

Fig. 13 TVD domain (drawn into scale for ν = 0.4) for cell-face state ci+ 3
2
, for some characteristic

values of β .

Fig. 14 Simplified TVD
domain for cell-face state
ci+ 3

2
, for some characteristic

values of β .

φ̃ =2r̃i+3
2

φ̃

r̃i+3
2

β =0

β = 1
2

β =11

−1

2−2

3

4

5
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3. Compute the values r̃∗
i+ 3

2
, r̃∗∗

i+ 3
2
, r̃∗∗∗

i+ 3
2

and r̃∗∗∗∗
i+ 3

2
for which the target function

φ̃(r̃i+ 3
2
) according to (39c) equals −1 and 0, and intersects the bounds 2r̃i+ 3

2

and 5−4β of the simplified TVD domain (Figure 14), respectively:

r̃∗
i+ 3

2
= −

19−6β
11−6β

, (64a)

r̃∗∗
i+ 3

2
= −

4
11−6β

, (64b)

r̃∗∗∗
i+ 3

2
=

4
19−6β

, (64c)

r̃∗∗∗∗
i+ 3

2
=

71−90β + 24β 2

11−6β
. (64d)

4. Then, the special limiter for the cell-face state ci+ 3
2

reads:

φ̃ (r̃i+ 3
2
) =



















































−1, if r̃i+ 3
2

< r̃∗
i+ 3

2
,

4
15−6β + 11−6β

15−6β r̃i+ 3
2
, if r̃∗

i+ 3
2
≤ r̃i+ 3

2
< r̃∗∗

i+ 3
2
,

0, if r̃∗∗
i+ 3

2
≤ r̃i+ 3

2
< 0,

2r̃i+ 3
2
, if 0 ≤ r̃i+ 3

2
< r̃∗∗∗

i+ 3
2
,

4
15−6β + 11−6β

15−6β r̃i+ 3
2
, if r̃∗∗∗

i+ 3
2
≤ r̃i+ 3

2
< r̃∗∗∗∗

i+ 3
2

,

5−4β , if r̃i+ 3
2
≥ r̃∗∗∗∗

i+ 3
2

.

(65)

In Figure 15, we give the limiter (65) for the two extreme values of β , β = 0 and
β = 1, with the corresponding TVD domains.

4.2 Local adaptivity in time

Consider the stencil in the (x, t)-plane in Figure 16. The EB is situated in cell i at tn

in such a way that it migrates to the next cell i + 1 at some time in between tn and
tn+1. Apparently, the solutions cn

i and cn
i+1 are updated, in Forward Euler, using the

modified cell-face states cn
i− 1

2
, cn

i+ 1
2

and cn
i+ 3

2
. However, as the EB crosses the cell

face at x
i+ 1

2
, there is an abrupt change in the state at this face. Before the crossing,

the state at this cell face must be computed based on the data to the right of the
EB; whereas, after the crossing, it must be computed based on the (different) data to
the left of the EB. The two solutions cn+1

i and cn+1
i+1 , which are affected by the flux

across this particular cell face, need to ‘feel’ this reversal, i.e., the abrupt change in
ci+ 1

2
.
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φ̃

r̃i+ 3
2

8
19

− 19
11 − 4

11
4
19

71
11

−1

5

(a) β = 0

Fig. 15 Special EB-sensitive
limiters (in red) for the cell-
face state ci+ 3

2
and the corre-

sponding TVD domains for
the two extreme values of β .

φ̃

r̃i+ 3
2

8
13

− 13
5 − 4

5
4
13

1

1

−1

(b) β = 1

Referring to Figure 16, the time adaptivity or splitting is carried out in the fol-
lowing manner:

1. Compute β at tn according to (15) and next the cell-face state cn
i+ 1

2
according to

(32b).
2. Calculate the time fraction α at which the EB crosses the cell face at xi+ 1

2
, i.e:

α =
xi+ 1

2
+ ε − xn

EB

uτ
, α ∈ (0,1), (66)

where xn
EB is the location of the EB at time level n. Note that the EB is placed at

infinitesimal distance ε off xi+ 1
2
, in the direction of the flow.
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x
i−1 i i+1 i+2

t

n

n+α

n+1

Fig. 16 Stencil for local adaptivity in time. The standard, modified and the intermediate cell-face
states are designated in green, blue, and red, respectively.

3. Update the solution values cn
i−1 and cn

i to time level n + α, i.e., compute cn+α
i−1

and cn+α
i .

4. Compute the intermediate cell-face state cn+α
i+ 1

2
according to (32a), with all indices

in (32a) increased with 1, using β = 0 (formally β = ε/h), cn+α
i−1 and cn+α

i .
5. Take the weighted average of cn

i+ 1
2

and cn+α
i+ 1

2
, and recompute the time-adapted

cell-face state at xi+ 1
2
, as:

cn
i+ 1

2
:= αcn

i+ 1
2

+ (1−α)cn+α
i+ 1

2
. (67)

6. Use the time-adapted cell-face state cn
i+ 1

2
and continue updating the solution ev-

erywhere with the regular time step τ .

Besides the above approach, in which only the jumping cell-face state ci+ 1
2

is re-

computed at tn+α , spatially more elaborate ways of doing the time adaptivity might
be investigated. For instance, all cell-face states that stop or start to be affected by
the EB, viz. ci− 1

2
, ci+ 1

2
, ci+ 3

2
and ci+ 5

2
, might be recomputed at tn+α . Or even, the

cell-face states of all cells that start or stop to feel the EB might be recomputed, i.e.,
ci− 3

2
, ci− 1

2
, ci+ 1

2
, ci+ 3

2
, ci+ 5

2
and ci+ 7

2
. However, the gain we achieve in accuracy, as

we consider more intermediate cell-face states than only ci+ 1
2
, is marginal for the

given cost increase. As expected, recomputation of only the jumping cell-face state
ci+ 1

2
is necessary and sufficient for significantly improving the solution accuracy.

For RK3b, we do not yet resort to the temporal local-adaptivity procedure de-
vised, for Forward Euler, above. We instead split the regular time step τ into smaller
time steps, depending on the number of EBs crossing cell faces, and update the in-
termediate solutions everywhere. For instance, for a single EB crossing a cell face,
we divide τ into two smaller time steps ατ and (1−α)τ .
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5 Numerical examples

Numerical results are given to validate the immersed-boundary approach presented
in this work. We take the same data as in § 2, i.e., the initial solutions (5); initial EB
locations x1 = 1

3 and x2 = 2
3 ; flow speed u = 1; and final time tmax = 1. Further, we

consider again a grid of 20 and 40 cells.
The results obtained, shown in Figure 17, are remarkably accurate. The results

show a significant improvement in resolution, without much computational over-
head, over those computed using the standard methods, Figure 5. For the more dis-
criminating initial solution (5b) (the cosine with cavity), the numerical results of
the limited higher-order upwind-biased schemes are slightly deficient at the periph-
eries. This is due to the property of standard limiters that they clip physically correct
extrema. Apparently, the deficiency becomes smaller with decreasing mesh width.
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0 0.2 0.4 0.6 0.8 1
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(a) On a 20-cell grid
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c

0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

 

 

x

c

(b) On a 40-cell grid

Fig. 17 Immersed-boundary solutions after one full-period, for the initial solutions (5). ◦: ex-
act discrete, �: unlimited higher-order upwind-biased with Forward Euler, ∗: limited higher-order
upwind-biased with Forward Euler, ⋄: unlimited higher-order upwind-biased with RK3b, ×: lim-
ited higher-order upwind-biased with RK3b.
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In Figure 18, we show the error E , which is computed as the difference between
the exact and numerical solutions, for the solutions given in Figure 17. As can be
seen, there is relatively more discrepancy near the EBs. This near-EB discrepancy is
of the same order for both test cases. However, as mentioned earlier, the discrepancy
is significantly larger, about five times more, in the cosine-with-cavity case at and
near the extrema, due to the limiters. In the former case, the results obtained with
the RK3b scheme are superior to those obtained with the Forward Euler scheme, for
the obvious reason. In the latter case, both schemes, limited and/or unlimited, yield
almost the same accuracy.
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−1

−0.5

0

0.5

1
x 10

−3

 

 

x

E
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Fig. 18 Errors after one full-period, for the initial solutions (5). �-blue: unlimited higher-order
upwind-biased with Forward Euler,∗-red: limited higher-order upwind-biased with Forward Euler,
⋄-green: unlimited higher-order upwind-biased with RK3b, ×-black: limited higher-order upwind-
biased with RK3b.

6 Extension to more general cases

First extensions to the method presented so far, which must and will be made, are:
(i) to higher dimensions and (ii) to higher-order accuracy in time. We already per-
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formed some work into this direction. Here follows a brief account of the ideas we
are currently pursuing.

6.1 Extension to higher dimensions

Extension to 2D and 3D of the current 1D space discretization is done by dimen-
sional splitting. For this purpose, a multi-D embedded boundary is to be projected
first on each of its separate coordinate directions (Figure 19). The details of the pro-
jection step are crucial. Dimensional splitting has been applied with success to the
standard κ-scheme and, as such, is widely spread in CFD. We presume that it will
be successful here as well.

y

x
(a) control volume with EB (in red)

y

x
(b) 1D projections of the EB

Fig. 19 Example of 1D projections of a 2D embedded boundary.

6.2 Higher-order accuracy in time

Forward Euler can readily be made second-order accurate by following the Modified
Euler approach. Given (43), Modified Euler reads:

ĉn+1
i = cn

i + τF(cn), (68a)

cn+1
i = cn

i + 1
2 τ
(

F(ĉn+1)+ F(cn)
)

. (68b)

Forward Euler step (68a) is the predictor and (68b) the corrector step. Modified
Euler is still explicit. Extension of the local adaptivity in time, introduced in § 4.2,
from Forward Euler to Modified Euler is rather straightforward, given the close
similarity of the two schemes. Details about our local time adaptivity method and
Modified Euler will be given in future work.
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7 Conclusion

A novel immersed-boundary approach, for solving advection problems, has been
introduced. The essence of the approach is that moving bodies are embedded in a
regular fixed grid and specific fluxes in the vicinity of the embedded boundary (EB)
are computed in such a way that they accurately and monotonously accommodate
the boundary conditions valid on the moving body. To suppress the wiggles that
exhibit near discontinuities, tailor-made limiters are introduced for the fluxes that
are especially modified. Then, over the majority of the domain, where we do not
have influence of the embedded boundaries, we can readily use standard methods
on the underlying regular fixed grid. Excellent results are achieved, without much
computational overhead.

In summary:

• A generalized κ-scheme that uses EB information (EB location and EB solu-
tion values), and which is an optimally accurate upwind-biased finite-volume
discretization, has been proposed. This near-EB spatial discretization is a gen-
eralization of a well-proven finite-volume discretization, which allows us to ac-
commodate EBs.

• Generalized limiters that use EB information have been proposed. These limiters
satisfy the spatial monotonicity requirement and Harten’s TVD requirement. To
be consistent with standard limiters, the generalized limiters are made indepen-
dent of the CFL number.

• Locally adaptive splitting of the time step, near EBs, has been proposed; a two-
stage approach which requires the least computational time and memory for a
given gain in accuracy.

We foresee that the numerical methods, developed so far and still to be developed,
can readily be extended to realistic flow problems.

Acknowledgements The first author’s research is funded by the Delft Centre for Computational
Science and Engineering (DCSE).

Appendix

Referring to (25) and (29), the local truncation error terms e in cells i+ 1 and i+ 2,
when the net fluxes in cells i+ 1 and i+ 2 are considered to optimize κi+ 3

2
, respec-

tively, are:

ei+1 =
3−2β

12
uh2 ∂ 3c

∂x3 , (69a)

and

ei+2 =
2β −1

36
uh2 ∂ 3c

∂x3 . (69b)
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For a given grid size h, (69) can be rewritten, as a function of β ∈ [0,1], as:

ei+1

b
= 9−6β , (70a)

and ei+2

b
= 2β −1, (70b)

where

b =
uh2

36
∂ 3c
∂x3 . (70c)

The scaled error terms (70a) and (70b) are plotted in the (e/b, β )-diagram given in
Figure 20. We see that | ei+1 | ≥ 3 | ei+2 |, ∀β . Also notice that ei+2 = 0 for β = 1

2 ;
i.e., we get a third-order accurate net flux in cell i+2 when the EB is situated at the
center of cell i.

Fig. 20 Variation of the
scaled, leading local trunca-
tion error terms in cells i + 1
and i +2 with β .
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