
A Computer-Checked Verification of Milner's
Scheduler

Henri Korver1 and Jan Springintveld2

1 CWI, The Netherlands, henri©cwi .nl.
2 Utrecht University, The Netherlands, j ans©phil. ruu. nl.

Abstract. We present an equational verification of Milner's scheduler,
which we checked by computer. To our knowledge, this is the first time
that the scheduler is proof-checked for a general number n of scheduled
processes.

Addresses: The first author can be reached at CWI, P.O. Box 94079, 1090
GB Amsterdam, The Netherlands. The second author can be reached
at Utrecht University, Dept. of Philosophy, P.O. Box 80126, 3508 TC
Utrecht, The Netherlands.

Support: The work of the first author took place in the context of EC
Basic Research Action 7166 CONCUR 2. The work of the second author
is supported by the Netherlands Computer Science Research Founda
tion (SION) with financial support of the Netherlands Organisation for
Scientific Research (NWO).

1 Introduction

The correctness of many protocols crucially depends on the characteristics of
data; one can think of the use of natural numbers, modulo calculations, lists, etc.
Illustrative examples of such protocols are Milner's Scheduler [16], the Bakery
Protocol [9] and the Sliding Window Protocol [19, 20].

However, traditionally process theories do not concentrate on data. For in
stance, Milner's correctness proof of the scheduler [16] relies for a considerable
part on meta-reasoning about data. The presence of informal meta-reasoning
obstructs the computer-checked verification of correctness proofs for such pro
tocols. Hence the need arises for a process theory which comprises a formal
treatment of data types. µCRL (micro CRL) [11, 12, 13], which is process alge
bra [1] combined with data [5], is such a theory. In addition to the usual process
algebra operations, µCRL contains two important constructs relating processes
and data: the (- <1 _ 1> -)-operator (then if else) and the E-operator for summa
tion over data. Moreover processes and the corresponding axioms and rules are
parametrised with data and an induction principle for data is added.

As a case study, we formalise the correctness proof of Milner's scheduler in
the proof theory of µCRL. The result of this exercise is twofold. First, a bug was
detected in Milner's proof, which led to a reformulation of his result: Milner's
scheduler only works correct if at least two processes are scheduled. (Milner

162

claims that his scheduler also works correctly if only one process is scheduled,
however this is not true in his particular set-up. This may seem a small error,
but still!) Second, a completely formal and computer-checked proof was obtained.
As far as we know this is the first (computer-checked) verification of Milner's
scheduler for every number n ?:: 2 of scheduled processes. This is to be contrasted
with existing verifications of Milner's scheduler for various instances of n by the
so-called 'bisimulation tools' (see e.g. [6], where the scheduler is treated for 80
cyders).

The actual proof checking is done using the system Coq (see [4]), a proof
assistant based on type theory. This case study (consisting of giving a formal
proof and checking it in Coq) is part of a series of such case studies. Protocols that
have been verified in this way are the Alternating Bit Protocol [2], a Bounded
Retransmission Protocol [10], both in the setting of ACP and µCRL, and the
same Bounded Retransmission Protocol in the setting ofI/O automata [14].

Among these exercises, the verification of Milner's scheduler stands out, be
cause this protocol has quite a complicated interaction between processes and
data. This is reflected in the correctness proof; most proofs in this paper consist
of a combination of induction over data types, ordinary process algebra expan
sions and calculations with sums and conditionals. Hence these proofs are rather
intricate; and initially some mistakes were made in the proof that were not easy
to repair, all of which were detected while checking the proofs with Coq. This
process lasted approximately three months. The complete proof development
can be found in the file Scheduler. v, which can be obtained by contacting the
authors. The size of this file is about 140 Kbyte. Of this, 20% is taken up by the
proofs in section 5, which constitute the core of Milner's proof. Of the remaining
80%, roughly 30% consists of lemmas concerning the data types. The remaining
50% is divided equally over the other sections.

(oq is a proof-assistant based on the formulas as types, proofs as terms

paradigm (see [7]). In this paradigm, a formula is translated as a type in a typed
lambda calculus and proofs of this formula are translated as lambda-terms of
the corresponding type. Coq is an assistant in the sense that the proof is built up
step by step by the user, while the computer checks the correctness of each step.
Small proof steps can be done automatically by Coq. The actual construction
of the lambda-term (the proof) is hidden from the user: the user just enters
commands which are close to expressions in traditional proofs. Therefore the
reasoning in Coq is quite close to reasoning in 'every day' mathematics. The
type theory underlying Coq is an extension of the Calculus of Constructions (see
[3]) with Inductive Types (see [17]). The presence of inductive types enables the
user to reason with induction over datatypes.

Rather than treating the details of the implementation in Coq, this paper
concentrates on formalising specifications and proofs in such a way that their
correctness can be verified automatically. The details about implementing pro
cess algebra in Coq are well-covered in [2, 18]. Even, not all the details of the
µCRL proof itself are given in this paper. For example, in order to formalise
Milner's proof of Theorem 5.2.2, we had to refine the renaming mechanism of

163

µCRL and add the so-called alphabet axioms. These subtleties are worked out
in the full version of this paper [15].

The paper is organised as follows. In section 2, we present Milner's scheduler
and specify it in µCRL. A revised correctness criterion (see above) for Milner's
scheduler is formulated in section 3. In section 4, we formalise in µCRL the
meta-syntax (the JI-notation) which is the basis of Milner's proof. In section 5,
we prove Milner's scheduler correct in µCRL. The proof of Milner is followed as
close as possible such that readers who are familiar with it, can concentrate fully
on how the proof is made precise in µCRL. A summary of the proof system is
given in appendix A. The datatypes that are used in the paper are specified in
appendix B.

As a final remark we note that, although the results in this paper are all proof
checked, we do not claim that there are no misprints in this paper. Translating
formulas from the Coq notation to the usual notation is still a human business.

2 Specifying Milner's scheduler

The scheduler as described by Milner [16] schedules n processes P(i), 1 :::; i:::; n,
in succession modulo n, i.e. after process P(n) process P(l) is activated again.
Furthermore, a process may never be reactivated before it has terminated. The
process P(i) consists of a request for task initiation a(i) followed by a (here
unspecified) task Task(i) of which termination is indicated by b(i).

The scheduler is built from n cyders which are positioned in a ring as depicted
in Figure 1. Cycler A(1, n) takes care of process P(1) and cycler D(i, n), 2 :::; i :::;

Fig. 1. The scheduler.

n, takes care of process P(i). The first cycler A(l, n) plays a special role as
it starts up the system. Cycler A(i, n) initiates process P(i) by performing an
action a(i), signaling that Task(i) can start. Then, by performing an action s(i),
it informs the next cycler D(i +n 1, n) that it is P(i +n l)'s turn to be initiated.
Next, it waits for termination of process P(i), indicated by b(i), and in parallel it
waits for a signal s(i -n 1) indicating that it is again P(i)'s turn to be initiated.

164

Finally, the cycler returns to its initial state. Cycler D(i, n) first receives a signal
indicating that it may start. Then it immediately evolves into the initial state
of A(i, n). The formal specification is as follows.

act a,b,a,b,a,b,r,s:nat
comm ala =a, bib= b
proc A(i: nat, n: nat) = a(i)s(i)(b(i) II r(i -n l))A(i, n)

D(i: nat, n: nat) = r(i -n l)A{i, n)
P(i: nat) = a(i)Task(i)b(i)P(i)
Task(i : nat) = ...

Here we take the existence of the data type nat (natural numbers) for granted;
its specification can be found in appendix B. We also use modulo calculations,
e.g. above we have introduced the operator -n which is subtraction modulo
n. Below we shall also use the operator +n which is addition modulo n. The
specification of -n and +n can be found in appendix B.

For convenience of reference the following processes are defined.

proc B(i: nat, n: nat) = b(i)A(i, n)
E(i: nat, n: nat) = b(i)D(i, n) + r(i -n l)B(i, n)
C(i: nat, n: nat) = s(i)E(i, n)

The whole system is obtained by putting the n cyders in parallel.

act c: nat
comm rls = c
proc II2(m: nat, n: nat) = (II2(m - 1, n) II D(m, n)) <l m ~ 2 t> b

Sched(n: nat) = T{c}(O{r,o}(A(l, n) II II2(n, n)))

Our specification of the scheduler is completely given within the syntax of µCRL.
This is in contrast with Milner's CCS specification:

Sched D~f (A1 I D2 I ... I Dn) \ {ci, ... , Cn},

where the dots (...) and the variable n (which plays an important role) are
informal notation.

3 A correctness criterion for the scheduler

The system of n cyders as given above is called Milner's scheduler as the system
is supposed to work as a scheduler. Below the notion of a scheduler, which is
taken from [16], is specified in µCRL.

proc Schedspec(i: nat,X: list,n: nat) =
Ej:nat(b(j)Schedspec(i, rem(j, X), n) <l test(j, X) e> t5) +
8 <J test(i, X) 1> a(i) Schedspec(i +n l, in(i, X), n)

165

The process Schedspec(i, X, n) describes a scheduler in the state when any P(j),
j E X, may terminate, and also P(i) may be initiated provided that i rf. X.

In the specification above we use the function in for inserting an element in a
list and the function rem for removing an element from a list. The function test
checks whether or not a number is in the list. The specification of in, rem and
test can be found in appendix B. Note that we used lists as parameters instead
of sets because we found it easier to mechanise the reasoning with lists.

Now, we can formulate the correctness of Milner's scheduler as follows:

n 2: 2-+ Sched(n) = Schedspec(l, 0, n)

One can easily check that the restriction n 2: 2 is essential. However, Milner's
correctness criterion does not refer to such a restriction, which unavoidably leads
to the existence of an incorrect step in the corresponding proof. 3 And this is
the only bug we found in Milner's proof; apart from this small oversight his
verification is very accurate.

4 Formalising Milner's II notation

In his proof Milner often uses the meta-notation niEX pi standing for the parallel
composition of all processes Pi with i E X <;:::; { 1, ... , n}. In this notation one
can rewrite the CCS-scheduler given in section 2 as

Sched = (A1 llljE{2, ... ,n}Dj) \ { C1, · ·., Cn}·

By using this notation many crucial steps in Milner's proof are lifted to meta
level. For instance the two following meta-identities (given in CCS notation)

l. i r/:. x -+ (lljEX Dj) ID; = njEXu{i}Dj

2. i Ex-+ lljEXDj = D; l(lljEX-{i}Dj)

are often used in Milner's proof. Below we formalise Milner's ll-notation in
µCRL and prove identities such as given above completely within the proof
theory (see Lemma 4.1).

It is straightforward to simulate the set-theoretic operations which are used
by Milner by operations on lists. Beside the functions already mentioned, we use
the well-known functions 'empty' (empty), 'head' (hd) and 'tail' (tl). Now we
define the processes fl D and fl E as follows.

proc llD(X : list, n: nat) =
{j <J empty(X) t> (D(hd(X), n) II llD(t/(X), n))

lle(X : list, n: nat) =
{j <J empty(X) t> (E(hd(X), n) II lle(tl(X), n))

3 In the first step in Subcase i+ 1 It X (see [16], page 120) the identity II;riXU{i}D; ==
D;+ 1 I II;riXu{i,i+i}D; (where i, i + 1, j E {1, ... n }, X £;:; {1, ... n}) is used. However
this identity is false in case n < 2.

166

The analogues of the meta-identities mentioned above are given in the following
lemma. The same can be proved for lIE instead of IID.

Lemma 4.1.

1. IIv(in(i,X),n) = D(i,n) 11 IIv(X,n)
2. test(i,X) ~ IIv(X,n) = D(i,n) II Ilv(rem(i,X),n)

Proof.

1. Immediate by definition.
2. This case is shown with induction on X. The induction follows 0 and in.

- X = 0 : test(i, 0) = F and the implication follows.
- X = in(j, Y) :

D(i, n) 11 llv(rem(i, in(j, Y)), n)
BJ. I (D(i, n) II IIv(rem(i, in(j, Y)), n))

<ieq(i,j) t> (D(i, n) 11 lln(rem(i, in(j, Y)), n))

B 4 3,~4.4,B2 (D(j, n) II IIn(Y, n))
<ieq(i,j) t> (D(i, n) 11 lln(in(j, rem(i, Y)), n))

4.1. l
lln(in(j, Y), n)
<ieq(i, j) r:> (D(i, n) II D(j, n) 11 lln(rem(i, Y), n))

SC lln(in(j, Y), n)
<Jeq(i,j) t> (D(j, n) II D(i, n) II IIn(rem(i, Y), n))

B.4~1.H. Iln(in(j, Y), n) <J eq(i,j) t> (D(j, n) 11 lln(Y, n))

4.1. l IIn(in(j, Y), n) <J eq(i,j) t> IIn(in(j, Y), n)

B.l.l
lln(in(j, Y), n)

0

As a further example of Milner's II-notation, consider the expression IIu_x Dj,
which should be read as JJjE{l, .,n}\X Dj. We write this as JI n(Xn, n). Here, xn
means fill(l, n)-X, where fill(I, n) is the list of natural numbers from 1 up to
and including n. For technical convenience, lists are always 'filled' in decreasing
order, e.g. fill(l,4) = in(4,in(3,in(2,in(l,0)))). X-Y is the analogue of set
difference and is defined using the function rem. The predicate X ~ Y states
that every number which occurs in X also occurs in Y.

Furthermore, we adopt the convention that we often omit the left hand side
of boolean equations for easy notation, i.e. we may write test(i, X) as a short
hand for test(i, X) = T.

167

Some care has to be taken to ensure that the representation of sets by lists is
well-defined. For instance, lljE{1,l}Dj ::::: [JjE{l}Dj but IID(in(l, in(l, 0)), n):::::
D(l, n) II D(l, n) #- D(l, n):::: IID(in(l, 0), n). For ruling this out we only use
lists where every element occurs at most once in X. The predicate unique(X)
states that X has this property. Another point is the identity lliE{l,2}Dj :::::
IIjE{2,l}Dj. To deal with this, we define the predicate perm(X, Y) as X ~
Y and Y ~ X. The following lemma shows how the constructions on lists are
used for manipulating with the II D construct.

Lemma 4.2. (ll-permutation).

1. II D(in(i, in(j, X)), n)::::: IID(in(j, in(i, X)), n)
2. unique(X) /\ unique(Y) /\ perm(X, Y)-+

IID(X,n):::: IID(Y,n)
3. test(j, X) /\ X ~ fill(l, n) /\ unique(X)--+

IID(rem(j, xr, n)::::: IID(in(j, Xn), n)

Proof.

1. By 4.1.1 and standard concurrency.
2. The key step in the proof is 4.2.1.
3. By 4.2.2 and the fact that perm(rem(j, xr, in(j, xn)), unique(rem(j, xr)

and unique(in(j, xn)).
0

Lemma 4.2.2 states that lists behave like sets when they appear as parameter
in ll. In the next lemma it is shown how we can expand the II-construct to a
summation. This is one of the key steps in the main proof.

Lemma 4.3. (II-Expansion).

1. unique(X) -+
IID(X, n)::::: Ej:nat(r(j -n l)(A(j, n) 11 IID(rem(j, X), n)) <1test(j, X) r> 8)

2. unique(X) -+

IIE(X, n) :::: Ej:nat(b(j)(D(j, n) II IIE(rem(j, X), n)) <I test(j, X) f> 8) +
Ej:nat(r(j -n l)(B(j, n) 11 IIE(rem(j, X), n)) <I test(j, X) f> 8)

Proof.

1. Without proving it here (see [15]), we claim that
(I) Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, in(i, X)), n)) <1test(j, in(i, X)) r>b)

::::: Ej:nat(r(j -n l)(A(j, n) 11 IID(rem(j, in(i, X)), n)) <I test(j, X) f> 8)
+ r(i -n l)(A(i, n) 11 IIn(X, n)).

We proceed the proof by induction on X. The basis step (X ::::: 0) is trivial.
The induction step (X::::: in(i, Y)) goes as follows:

168

IID(in(i, Y), n)
4:b· 1 D(i, n) II IID(Y, n)

c_~u IID(Y, n) ll_D(i, n) + D(i, n) ll_IIn(Y, n) + D(i, n) I IID(Y, n)

I.H. ~wice) Ej:nat(r(j -n l)(A(j, n) II IlD(rem(j, Y), n)) <I test(j, Y) !> 8)
ll D(i, n)

+ D(i, n) [lIID(Y, n)
+ Ej:nat (r(j -n 1)(A(j, n) 11 II D (rem(j, Y), n)) <I test(j, Y) !> 8)

ID(i,n)

A.3

+
4.1. l

+
B.4.3

+

Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, Y), n) II D(i, n))
<1test(j, Y) 1> 8)
D(i, n) ll_IID(Y, n)

Ej:nat(r(j -n l)(A(j, n) II IID(in(i, rem(j, Y)), n))
<1test(j, Y) 1> 8)
D(i, n) ll_IID(Y, n)

Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, in(i, Y)), n))
<1test(j, Y) I> 8)
D(i, n) ll_IIv(Y, n)

the application of B.4.3 hangs on unique(in(i, Y)) /\ test(j, Y)......,.
-.eq(i, j)

CM3

+

2. Similar to (1).

Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, in(i, Y)), n))
<1test(j, Y) 1> 8)
r(i -n l)(A(i, n) II Ilv (Y, n))

Ej:nat(r(j -n l)(A(j, n) II Ifv(rem(j, in(i, Y)), n))
<1test(j, in(i, Y)) 1> 8)

5 The correctness proof

D

In this section we verify that Milner's scheduler indeed satisfies the criterion
stated in section 3. This is proved as Theorem 5.2.5. The essential step in Milner's
proof is the introduction of the process

169

proc Sched(i : nat, X : list, n : nat) =
T{c}(O{r,s}(

(B(i, n) II llD()<n, n) 11 llE(rem(i, X), n))
<Jtest(i, X)e>

(A(i, n) II llD(in(i, xr' n) II IIE(X, n))))

which forms the bridge between the processes Sched(n) and Schedspec(i, X, n).
We follow Milner's proof very closely. First we show that Sched(i, X, n) satisfies
the (guarded) defining equation of Schedspec(i, X, n). This is done by distin
guishing two cases: the case where X contains number i and the case where X
does not. Then by using RSP we have Sched(i, X, n) = Schedspec(i, X, n). Fi
nally, a simple calculation shows that Sched(n) is an instance of Sched(i, X, n),
i.e. Sched(n) = Schedspec(l,0,n), and we are done. All these calculations can
be found in Theorem 5.2, the main proof.

Before embarking on the main proof we need to verify that we can simulate
the process ll 2 from the specification by the ll D and the .fill-construct.

Lemma 5.1. m 2'.: 2---+ llD(fil/(2, m), n) = ll2(m, n)

Proof. Omitted. 0

Now we have reached the point where we can prove the main theorem.

Theorem 5.2. We write 'Cond' for 'n 2'.: 2 /\ i 2'.: 1 /\ i:::; n /\ X ~ fi/1(1, n) /\
unique(X) '.

1. test(i, X) /\ Cond---+
Sched(i, X, n) = Ej:nat(b(j)Sched(i, rem(j, X), n) <l test(j, X) C> 8)

2. •test(i, X) /\ Cond---+
Sched(i, X, n) = Ej:nat(b(j)Sched(i, rem(j, X), n) <l test(j, X) C> 8)

+ a(i)Sched(i +n 1, in(i, X), n)
3. Cond---+ Sched(i, X, n) = Schedspec(i, X, n)
4. n 2'.: 2---+ Sched(n) = Sched(l, 0, n)
5. n;::: 2---+ Sched(n) = Schedspec(l,0,n).

In (1) we may replace n 2'.: 2 in Cond by n 2:: 1.

Proof.

1. Sched(i, X, n)
T{c}(O{r,s}(B(i, n) II llD(Xn, n) II llE(rem(i, X), n)))

b(i)r{c}(O{r,s}(A(i, n) II llD(Xn, n) II llE(rem(i, X), n)))
+ Ej:nat(b(j)

T{c}(O{r,s}(B(i,n) II llD(Xn,n) II D(j,n) II
llE(rem(j, rem(i, X)), n))) <l test(j, rem(i, X)) C> 8)

by expansion, using ll-Expansion (4.3) and Sum Expansion (A.3)

B.4.5

+

4.1.1

+

4.2.~B.4.7

170

b(i)Sched(i, rem(i, X), n)
L'j :nat (b(j)

T{c}(O{r,s}(B(i, n) II IID(Xn, n) II D(j, n) II
IIE(rem(j, rem(i, X)), n)))

<Jtest(j, rem(i, X)) 1> 6)

b(i)Sched(i, rem(i, X), n)
L'j:nat(b(j)

T{c}(O{r,s}(B(i, n) II IIv(in(j,Xn), n) II
IIE(rem(j, rem(i, X)), n)))

<Jtest(j,rem(i,X)) 1>6)

b(i)Sched(i, rem(i, X), n)

+ L'j:nat(b(j)Sched(i, rem(j, X), n) <Jtest(j, rem(i, X)) 1> 6)

A.4 L'j:nat(b(j)Sched(i, rem(j, X), n) <J test(j, X) I> 6)

2. The same idea as in (1) although a bit more complicated.
3. In 5.2.l we have shown that Sched(i, X, n) is a solution for the (guarded)

defining equation of Schedspec(i, X, n) when test(i, X). In 5.2.2 we have
shown that Sched(i, X, n) is a solution of Schedspec(i, X, n) when •test(i, X).
So by the excluded middle principle we know that Sched(i, X, n) is a solution
for Schedspec(i, X, n). Then by RSP we may conclude that Sched(i, X, n)
and Schedspec(i, X, n) are equal. Note that we each time assume that Cond
holds.

4. Without proving it here, we claim that

(I) A(i, n) II 6 = A(i, n).

We proceed as follows:

Sched(l, 0, n)
= r{c}(O{r,s}(A(l,n) II llv(in(1,0r,n) II IIE(0,n)))

B.4. 2 T{c}(O{r,s} (A(l, n) II llv(fil/(2, n), n) II 6))

S.l T{c}(O{r,s}(A(l,n) II II2(n,n) 116))
SC

=

T°{c}(O{r,s}((A(l, n) 116) II II2(n, n)))

T°{c}(O{r,s}(A(l,n) II II2(n,n)))
Sched(n).

5. Sched(n) 5J,4 Sched(l, 0, n) 5 J:·3 Schedspec(l, 0, n).
0

171

6 Concluding remarks

The experiment can be considered successful: we have brought down Milner's
proof to a completely formal level and checked it by computer. Yet we also have
to admit that formalising and checking Milner's proof was not a bed of roses.

First, identities that are simple at meta-level are not easy to prove in a for
malised setting, e.g. the .IT-Expansion lemma. Generally speaking, the identities
that were most difficult to prove were those that involve processes which heavily
interact with data.

Second, we had to write out and check a large amount of small proof steps.
This is not only hard work, but, again, identities that are trivial at meta-level
(and therefore mostly omitted) can sometimes be quite tedious at formal level.

Although the verification was not an easy task, we are confident that by
doing more of such protocol verifications we obtain more skill and experience in
doing calculations such as given in the paper. Moreover, we believe that proof
checkers can be improved in generating more proof steps by themselves, e.g. by
using more advanced tactics. This will lead to a situation where proof-checked
verification of distributed systems becomes feasible.

7 Acknowledgements

We are very grateful to Jos Baeten, Jan Friso Groote, Tenny Hurkens, Alban
Pense and Freek Wiedijk for their comments on previous versions of this paper.
Furthermore, we are indebted to Willem Jan Fokkink for teaching us modulo
arithmetic. At last, we are very thankful to Marc Bezem, Jan Friso Groote
(again), Jaco van de Pol and Alex Sellink for supporting us with the Coq system.

A An overview of the proof theory for µCRL

A.1 The proof system

In [12] a proof system has been given which allows to prove identities about
processes with data. Table 1 lists the axioms of ACP in µCRL, followed by
the axioms for hiding TI, standard concurrency SC and branching bisimulation
B. For an explanation of the axioms we refer to [12], except for the following
points. We distinguish between actions (e.g. r(i) is an action) and gates, which
are 'incomplete' actions (e.g. r is a gate). The function label extracts the gate
from an action. The communication axioms, denoted by CF, make use of the
function /· It is defined as follows: r(a, b) = c if label(a) I label(b) = label(c) is
declared in comm and otherwise 1(a, b) is undefined.

Table 2 lists the typical µCRL axioms and rules for interaction between data
and processes. The axioms for summation are denoted by SUM, the axioms for
the conditional by COND and the rules for the booleans by BOOL.

Beside the axioms and rules mentioned above, µCRL incorporates two other
important proof principles. First, it supports an principle for induction not only

172

on data but also on data in processes. The second principle is RSP (Recursive
Specification Principle) taken from [l] extended to processes with data. Infor
mally, it says that each guarded recursive specification has at most one solution.

Al x+y=y+x CFl n1 ln2 = n3 if -y(n1, n2) = n3

A2 x + (y + z) = (x + y) + z
A3 x+x=x CFl' n1(ti, ... ,tm)ln2(t1, ... ,tm) =
A4 (x + y) · z = x · z + y · z na(t1, ... ,tm) if-y(n1,n2)=n3

A5 (x · y) · z = x · (y · z)
A6 x+8=x CF2 alb = 6
A7 8. x = 6 if -y(label(a), label (b)) is undefined

CF2' -i(t; = tD -+

CM 1 x II y = x lL y + y IL x + x I y n1 (t1, ... , tm) I n2 (t~, ... , t:r,) = 8
CM2 a !Lx =a· x for some 1 :5 i :5 m

CM3 a· x ILY =a· (x II y) CF211 n1 (ti, ... , tm) I n2 (t;, . .. , t;,.,) = 6
CM4 (x + y) lL z = x lL z + y [!_ z if m ;:f. m'

CM5 a · x I b = (a I b) · x
CM6alb·x=(alb)·x DI 8H(a) =a if label(a) <f. H
CM7 a · x I b · y = (a I b) · (x ilY) D2 8H(a) = 8 if label(a) EH
CMB (x+y)lz=xlz+ylz D3 aH(x + y) = aH(x) + &H(Y)
CM9 x I (y + z) = xly + x lz D4 aH(X. y) = OH(x). 8H(Y)

Tll r1(a) =a if label(a) <f. I Tl3 r1(x + y) = r1(x) + TJ(Y)
Tl2 T1(a) = T if label(a) EI Tl4 TJ(X · y) = TJ(X) · TJ(y)

SCl (x lJ..y) [Lz = x IL(Y II z) SC4 (xly)lz=xl(ylz)
SC6 x II 6 = xh SC5 xl(y[Lz)=(xly)!Lz
SC3 xly=ylx scs x I (yl z) = 8
SC7 xlh = 6

Bl XT = X B2 z(T(x + y) + x) = z(x + y)

Table 1. ACP-like axioms and rules in µCRL.

173

SUMI Ed:D(p) = p
SUM2 Ed:D(P) = Ee:n(p[e/d])
SUM3 Ed:D(P) = Ed:D(P) + p
SUM4 Ed:D(P1 + P2) = Ed:D(P1) + Ed:D(P2)
SUMS Ed:D(P1 · P2) = Ed:D(P1) · P2
SUM6 Ed:D(P1 ll_p2) = Ea:n(pi) ll_p2
SUM7 Ed:D(P1 lp2) = Ed:D(P1)lp2
SUM8 Ed:D(8H(P)) = 8H(Ed:D(P))
SUM9 Ed:D(r1(p)) = rr(Ed:n(p))

v
SUMll P1 = P2

Ed:D(P1) = Ed:D(P2)

CONDI x <lTt> y = x
COND2x<JFt>y=y

BOOLl -.(T = F)
BOOL2 -.(b = T) b = F

if d not free in p
if e not free in p

if d not free in p2
if d not free in p2
if d not free in p2

provided d not free in
the assumptions of V

Table 2. Axioms for summation and conditionals.

A.2 Basic lemmas for µCRL

In this section, we present a number of elementary lemmas (see [9]) which are
derived from the proof system given above. These lemmas are used in the veri
fication of the scheduler, but are also interesting in their own right as it is very
likely that they are needed in every µCRL verification. The first lemma shows
that for applying an induction on a boolean variable b (see appendix B), one
only has to check the cases b = T and b = F.

Lemma A.1. (Specialised induction rule for Bool).

(p = q)[T/b] /\ (p = q)[F/b] - p = q.

The following lemma presents a rule which is derived from the SUM axioms.
This rule appears to be a powerful tool to eliminate sum expressions in µCRL
calculations.

Lemma A.2. (Sum Elimination). Let D be a given sort that is equipped with
an equality function eq : D x D - Bool with the obvious property eq(d, d) = T.
Then, we have

Ed:D (p <J eq(d, t) r> 8) = p[t/d].

174

The next lemma is used for expanding sums in parallel compositions.

Lemma A.3. (Sum Expansion). If the variable d : D does not occur free in term
q, then we have

1. Ed:n(a · p <1 et> c5) l1_ q = Ed:n(a · (p 11 q) <1 et> c5).
2. Ed:D (a(d) · p <1 c t> 8) I b(e) · q = Ed:D ((a(d) I b(e)) · (p II q) <l c t> c5)

The last proposition is used in Theorem 5.2.1.

Proposition A.4. Let p be a process.

test(i, X) ..-
b(i)p+Ej :nat (b(j)p<1test(j, rem(i, X))t>8) = Ej:nat(b(j)p<1test(j, X)t>8)

Proof.

Ej:nat(b(j)p <l test(j, X) t> 8)
B:_!.l Ej:nat(b(j)p <l eq(j, i) or test(j, rem(i, X)) t> 8)

Ej:nat(b(j)p <l eq(j, i) t> c5)
+ Ei :nat (b(j)p <l test(j, rem(i, X)) t> 8)

A.2
b(i)p + Ej:nat(b(j)p <l test(j, rem(i, X)) I> 8)

D

B Elementary data types

Below, we present the data identities we needed in the scheduler verification.
Although all these results have been proof-checked we do not present the proofs
here, since they are standard.

B.1 About booleans

sort Bool
func T, F :-+ Bool

not : Bool -+ Bool
and : Bool x Bool -+ Bool
or : Bool x Bool -+ Bool

var b, b1, b2 : Bool
rew not(T) = F

not(F) = T
T and b = b
F and b = F
Tor b = T
For b = b

175

LemmaB.l.

1. x<lbt>x=x,

2. x <l bi or b2 t> 6 = x <l b1 t> 6 + x <l b2 t> 6.

Proof. Easy via Lemma A.l.

B.2 About natural numbers

sort nat
func 0 :-+ nat

S, P : nat -+ nat
+, -, : nat x nat-+ nat
eq, :;::, :s;, <, >: nat x nat-+ Bool
if : Bool x nat x nat -+ nat

var n, rn, z : nat
rew P(O) = 0

P(S(n)) = n
n+O=n
n+S(m)=S(n+m)
n -0 = n
n - S(m) = P(n - m)
eq(O, 0) = T
eq(O, S(n)) = F
eq(S(n), 0) = F
eq(S(n), S(m)) = eq(n, m)
n 2 0 = T
0 2 S(n) = F
S(n) 2 S(m) = n 2 m
ns;m=m2n
n > m = n 2 S(m)
n < m = S(n) s; m
if (T, n, m) = n
if(F, n, m) = m

0

We write n s; m for n s; m = T. Idem for :;::, > and <. We write eq(n, m) for
eq(n, m) = T. We write 1 for S(O) and 2 for S(S(O)). We write i - 1 for P(i)
and i - 2 for P(P(i)). We write n s; m form;::: n and n > m for n;::: S(m) and
n < m for S(n) s; m.

Lemma B.2. eq(n, m) = T +-+ n = m

B.3 About modulo arithmetic

The following definition is due to Willem Jan Fokkink.

176

func mod : nat x nat -+ nat

+ : nat x nat x nat -+ nat
var i, j, n : nat

rew i mod 0 = i
i mod n = if(eq(i, 0), n, if(i > n, (i- n) mod n, i))
i +n j = (i + j) mod n
i-nj=(i-j)modn

Note that we defined a slightly non-standard modulo function to follow Milner's
proof as close as possible. In particular, we need our functions to have values in
the positive natural numbers. The usual definition of the modulo function yields
for instance 2 mod 2 = 0, but our (and Milner's) definition yields 2 mod 2 = 2.

Lemma B.3.

1. i mod 1 = 1
2. n ~ 2 /\ i ~ n /\ i ~ 1--+ (i +n 1) -n l = i
3. n ~ 2 /\ i ~ n /\ i 2: 1 --+ (i -n 1) +n 1 = i

B.4 About lists of naturals

sort list
func 0 :-+ list

in, rem, n : nat x list --+ list
test : nat x list --+ Bool
hd : list -+ nat
tl : list -+ list
if : Bool x list x list -+ list
empty, unique : list --+ Bool
fill : nat x nat -+ list
- : list x list --. list
~,perm : list x list --+ Bool

var i, j, k 1 n, m : nat
X, Y: list

rew test(j, 0) = F
test(j, in(k, X)) = if(eq(j, k), T, test(j, X))
rem(j, 0) = 0
rem(j, in(k, X)) = if(eq(j, k), X, in(k, rem(j, X)))
hd(0) = 0
hd(in(j, X)) = j
tl(0) = 0
tl(in(j, X)) = X
empty(0) = T
empty(in(j, X)) = F
X-0=X
X - in(j, Y) = rem(j, X - Y)

LemmaB.4.

177

0<;;.X=T
in(j, X) <;;. Y = test(j, Y) and X <;;. Y
unique(0) = T
unique(in(j, X)) = if(test(j, X), F, unique(X))
perm(X, Y) = X <;;. Y and Y <;;. X
fill(m, n) = if(n < m, 0, if(eq(n, 0), in(O, 0), in(n,fill(m, P(n)))))
xn = fi//(1, n) - x

1. test(i, X) __, (test(j, X) = eq(i, j) or test(j, rem(i, X))),
2. in(l, 0r = fil/(2, n),
3. -.eq(i, j) __, rem(j, in(i, Y)) = in(i, rem(j, Y)),
4. eq(i,j) __, rem(i, in(j, Y)) = Y,
5. test(i, X) __, in(i, rem(i, X))n = xn,
6. (test(i, X) /\ X = in(j, Y) /\ --.eq(i,j)) __, test(i, Y).
7. rem(i, rem(j, X)) = rem(j, rem(i, X)),

References

1. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo
retical Computer Science 18. Cambridge University Press, 1990.

2. M. Bezem and J.F. Groote. A formal verification of the alternating bit protocol in
the calculus of constructions. Technical Report Logic Group Preprint Series No.
88, Utrecht University, 1993.

3. T. Coquand and G. Huet. The calculus of constructions. Information and Control,
76:95-120, 1988.

4. G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin
Mohring, and B. Werner. The Coq proof assistant user's guide. Version 5.8. Tech
nical report, INRIA - Rocquencourt, May 1993.

5. H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

6. J.-C. Fernandez, A. Kerbrat and L. Monnier. Symbolic Equivalence Checking. In
C. Courcoubetis, editor, Proceedings of the 5th International Conference, CAV '93,

. Elounda, Greece, volume 697 of Lecture Notes in Computer Science, pages 85-97.
Springer-Verlag, 1993.

7. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
tracts in theoretical computer science. Cambridge University Press, Cambridge,
1989.

8. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu
lation semantics (extended abstract). In G.X. Ritter, editor, Information Process
ing 89, pages 613-618. North-Holland, 1989.

9. J.F. Groote and H. Korver. A correctness proof of the bakery protocol in µCRL.
Technical Report Logic Group Preprint Series No. 80, Utrecht University, 1992.

10. J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large data
packets. A case study in computer checked verification. Technical Report 100, Logic
Group Preprint Series, Utrecht University, October 1993.

178

11. J.F. Groote and A. Ponse. The syntax and semantics of µCRL. Technical Re
port CS-R9076, CWI, Amsterdam, 1990.

12. J.F. Groote and A. Ponse. Proof theory for µCRL. Technical Report CS-R9138,
CWI, Amsterdam, 1991.

13. J.F. Groote and A. Ponse. µCRL: A base for analysing processes with data.
In E. Best and G. Rozenberg, editors, Proceedings 3rd Workshop on Concurrency
and Compositionality, Goslar, GMD-Studien Nr. 191, pages 125-130. Universitiit
Hildesheim, 1991.

14. L. Helmink, M.P.A. Sellink, and F. Vaandrager. Proof-checking a data link proto
col. 1993. To appear.

15. H. Korver and J. Springintveld. A Computer-Checked Verification of Milner's
Scheduler. Technical Report Logic Group Preprint Series No. 101, Utrecht Uni
versity, November, 1993. Full version.

16. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle
wood Cliffs, 1989.

17. C. Paulin-Mohring. Inductive definitions in the system Coq. Rules and proper
ties. In M. Bezem and J.F. Groote, editors, Proceedings of the 1•t International
Conference on Typed Lambda Calculi and Applications, TLCA '93, Utrecht, The
Netherlands, volume 664 of Lecture Notes in Computer Science, pages 328-345.
Springer-Verlag, 1993.

18. M.P.A. Sellink. Verifying process algebra proofs in type theory. Technical Report
Logic Group Preprint Series No. 87, Utrecht University, 1993.

19. N.V. Stenning. A data transfer protocol. Computer Networks. 1:99-110, 1976.
20. A.S. Tanenbaum. Computer networks. Prentice-Hall International, Englewood

Cliffs, 1989.

