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1 Introduction 

The correctness of many protocols crucially depends on the characteristics of 
data; one can think of the use of natural numbers, modulo calculations, lists, etc. 
Illustrative examples of such protocols are Milner's Scheduler [16], the Bakery 
Protocol [9] and the Sliding Window Protocol [19, 20]. 

However, traditionally process theories do not concentrate on data. For in
stance, Milner's correctness proof of the scheduler [16] relies for a considerable 
part on meta-reasoning about data. The presence of informal meta-reasoning 
obstructs the computer-checked verification of correctness proofs for such pro
tocols. Hence the need arises for a process theory which comprises a formal 
treatment of data types. µCRL (micro CRL) [11, 12, 13], which is process alge
bra [1] combined with data [5], is such a theory. In addition to the usual process 
algebra operations, µCRL contains two important constructs relating processes 
and data: the (- <1 _ 1> -)-operator (then if else) and the E-operator for summa
tion over data. Moreover processes and the corresponding axioms and rules are 
parametrised with data and an induction principle for data is added. 

As a case study, we formalise the correctness proof of Milner's scheduler in 
the proof theory of µCRL. The result of this exercise is twofold. First, a bug was 
detected in Milner's proof, which led to a reformulation of his result: Milner's 
scheduler only works correct if at least two processes are scheduled. (Milner 



162 

claims that his scheduler also works correctly if only one process is scheduled, 
however this is not true in his particular set-up. This may seem a small error, 
but still!) Second, a completely formal and computer-checked proof was obtained. 
As far as we know this is the first (computer-checked) verification of Milner's 
scheduler for every number n ?:: 2 of scheduled processes. This is to be contrasted 
with existing verifications of Milner's scheduler for various instances of n by the 
so-called 'bisimulation tools' (see e.g. [6], where the scheduler is treated for 80 
cyders). 

The actual proof checking is done using the system Coq (see [4]), a proof 
assistant based on type theory. This case study (consisting of giving a formal 
proof and checking it in Coq) is part of a series of such case studies. Protocols that 
have been verified in this way are the Alternating Bit Protocol [2], a Bounded 
Retransmission Protocol [10], both in the setting of ACP and µCRL, and the 
same Bounded Retransmission Protocol in the setting ofI/O automata [14]. 

Among these exercises, the verification of Milner's scheduler stands out, be
cause this protocol has quite a complicated interaction between processes and 
data. This is reflected in the correctness proof; most proofs in this paper consist 
of a combination of induction over data types, ordinary process algebra expan
sions and calculations with sums and conditionals. Hence these proofs are rather 
intricate; and initially some mistakes were made in the proof that were not easy 
to repair, all of which were detected while checking the proofs with Coq. This 
process lasted approximately three months. The complete proof development 
can be found in the file Scheduler. v, which can be obtained by contacting the 
authors. The size of this file is about 140 Kbyte. Of this, 20% is taken up by the 
proofs in section 5, which constitute the core of Milner's proof. Of the remaining 
80%, roughly 30% consists of lemmas concerning the data types. The remaining 
50% is divided equally over the other sections. 

(oq is a proof-assistant based on the formulas as types, proofs as terms 

paradigm (see [7]). In this paradigm, a formula is translated as a type in a typed 
lambda calculus and proofs of this formula are translated as lambda-terms of 
the corresponding type. Coq is an assistant in the sense that the proof is built up 
step by step by the user, while the computer checks the correctness of each step. 
Small proof steps can be done automatically by Coq. The actual construction 
of the lambda-term (the proof) is hidden from the user: the user just enters 
commands which are close to expressions in traditional proofs. Therefore the 
reasoning in Coq is quite close to reasoning in 'every day' mathematics. The 
type theory underlying Coq is an extension of the Calculus of Constructions (see 
[3]) with Inductive Types (see [17]). The presence of inductive types enables the 
user to reason with induction over datatypes. 

Rather than treating the details of the implementation in Coq, this paper 
concentrates on formalising specifications and proofs in such a way that their 
correctness can be verified automatically. The details about implementing pro
cess algebra in Coq are well-covered in [2, 18]. Even, not all the details of the 
µCRL proof itself are given in this paper. For example, in order to formalise 
Milner's proof of Theorem 5.2.2, we had to refine the renaming mechanism of 
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µCRL and add the so-called alphabet axioms. These subtleties are worked out 
in the full version of this paper [15]. 

The paper is organised as follows. In section 2, we present Milner's scheduler 
and specify it in µCRL. A revised correctness criterion (see above) for Milner's 
scheduler is formulated in section 3. In section 4, we formalise in µCRL the 
meta-syntax (the JI-notation) which is the basis of Milner's proof. In section 5, 
we prove Milner's scheduler correct in µCRL. The proof of Milner is followed as 
close as possible such that readers who are familiar with it, can concentrate fully 
on how the proof is made precise in µCRL. A summary of the proof system is 
given in appendix A. The datatypes that are used in the paper are specified in 
appendix B. 

As a final remark we note that, although the results in this paper are all proof
checked, we do not claim that there are no misprints in this paper. Translating 
formulas from the Coq notation to the usual notation is still a human business. 

2 Specifying Milner's scheduler 

The scheduler as described by Milner [16] schedules n processes P(i), 1 :::; i:::; n, 
in succession modulo n, i.e. after process P(n) process P(l) is activated again. 
Furthermore, a process may never be reactivated before it has terminated. The 
process P( i) consists of a request for task initiation a( i) followed by a (here 
unspecified) task Task(i) of which termination is indicated by b(i). 

The scheduler is built from n cyders which are positioned in a ring as depicted 
in Figure 1. Cycler A( 1, n) takes care of process P( 1) and cycler D( i, n), 2 :::; i :::; 

Fig. 1. The scheduler. 

n, takes care of process P(i). The first cycler A(l, n) plays a special role as 
it starts up the system. Cycler A(i, n) initiates process P(i) by performing an 
action a(i), signaling that Task(i) can start. Then, by performing an action s(i), 
it informs the next cycler D(i +n 1, n) that it is P(i +n l)'s turn to be initiated. 
Next, it waits for termination of process P( i), indicated by b( i), and in parallel it 
waits for a signal s( i -n 1) indicating that it is again P( i)'s turn to be initiated. 
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Finally, the cycler returns to its initial state. Cycler D(i, n) first receives a signal 
indicating that it may start. Then it immediately evolves into the initial state 
of A( i, n ). The formal specification is as follows. 

act a,b,a,b,a,b,r,s:nat 
comm ala =a, bib= b 
proc A(i: nat, n: nat) = a(i)s(i)(b(i) II r(i -n l))A(i, n) 

D(i: nat, n: nat) = r(i -n l)A{i, n) 
P(i: nat) = a(i)Task(i)b(i)P(i) 
Task( i : nat) = ... 

Here we take the existence of the data type nat (natural numbers) for granted; 
its specification can be found in appendix B. We also use modulo calculations, 
e.g. above we have introduced the operator -n which is subtraction modulo 
n. Below we shall also use the operator +n which is addition modulo n. The 
specification of -n and +n can be found in appendix B. 

For convenience of reference the following processes are defined. 

proc B(i: nat, n: nat) = b(i)A(i, n) 
E(i: nat, n: nat) = b(i)D(i, n) + r(i -n l)B(i, n) 
C(i: nat, n: nat) = s(i)E(i, n) 

The whole system is obtained by putting the n cyders in parallel. 

act c: nat 
comm rls = c 
proc II2(m: nat, n: nat) = (II2(m - 1, n) II D(m, n)) <l m ~ 2 t> b 

Sched(n: nat) = T{c}(O{r,o}(A(l, n) II II2(n, n))) 

Our specification of the scheduler is completely given within the syntax of µCRL. 
This is in contrast with Milner's CCS specification: 

Sched D~f (A1 I D2 I ... I Dn) \ {ci, ... , Cn}, 

where the dots ( ... ) and the variable n (which plays an important role) are 
informal notation. 

3 A correctness criterion for the scheduler 

The system of n cyders as given above is called Milner's scheduler as the system 
is supposed to work as a scheduler. Below the notion of a scheduler, which is 
taken from [16], is specified in µCRL. 

proc Schedspec(i: nat,X: list,n: nat) = 
Ej:nat(b(j)Schedspec(i, rem(j, X), n) <l test(j, X) e> t5) + 
8 <J test( i, X) 1> a( i) Schedspec( i +n l, in( i, X), n) 
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The process Schedspec(i, X, n) describes a scheduler in the state when any P(j), 
j E X, may terminate, and also P( i) may be initiated provided that i rf. X. 

In the specification above we use the function in for inserting an element in a 
list and the function rem for removing an element from a list. The function test 
checks whether or not a number is in the list. The specification of in, rem and 
test can be found in appendix B. Note that we used lists as parameters instead 
of sets because we found it easier to mechanise the reasoning with lists. 

Now, we can formulate the correctness of Milner's scheduler as follows: 

n 2: 2-+ Sched(n) = Schedspec(l, 0, n) 

One can easily check that the restriction n 2: 2 is essential. However, Milner's 
correctness criterion does not refer to such a restriction, which unavoidably leads 
to the existence of an incorrect step in the corresponding proof. 3 And this is 
the only bug we found in Milner's proof; apart from this small oversight his 
verification is very accurate. 

4 Formalising Milner's II notation 

In his proof Milner often uses the meta-notation niEX pi standing for the parallel 
composition of all processes Pi with i E X <;:::; { 1, ... , n}. In this notation one 
can rewrite the CCS-scheduler given in section 2 as 

Sched = (A1 llljE{2, ... ,n}Dj) \ { C1, · ·., Cn}· 

By using this notation many crucial steps in Milner's proof are lifted to meta
level. For instance the two following meta-identities (given in CCS notation) 

l. i r/:. x -+ (lljEX Dj) ID; = njEXu{i}Dj 

2. i Ex-+ lljEXDj = D; l(lljEX-{i}Dj) 

are often used in Milner's proof. Below we formalise Milner's ll-notation in 
µCRL and prove identities such as given above completely within the proof 
theory (see Lemma 4.1). 

It is straightforward to simulate the set-theoretic operations which are used 
by Milner by operations on lists. Beside the functions already mentioned, we use 
the well-known functions 'empty' (empty), 'head' (hd) and 'tail' (tl). Now we 
define the processes fl D and fl E as follows. 

proc llD(X : list, n: nat) = 
{j <J empty(X) t> (D(hd(X), n) II llD(t/(X), n)) 

lle(X : list, n: nat) = 
{j <J empty(X) t> (E(hd(X), n) II lle(tl(X), n)) 

3 In the first step in Subcase i+ 1 It X (see [16], page 120) the identity II;riXU{i}D; == 
D;+ 1 I II;riXu{i,i+i}D; (where i, i + 1, j E {1, ... n }, X £;:; {1, ... n}) is used. However 
this identity is false in case n < 2. 
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The analogues of the meta-identities mentioned above are given in the following 
lemma. The same can be proved for lIE instead of IID. 

Lemma 4.1. 

1. IIv(in(i,X),n) = D(i,n) 11 IIv(X,n) 
2. test(i,X) ~ IIv(X,n) = D(i,n) II Ilv(rem(i,X),n) 

Proof. 

1. Immediate by definition. 
2. This case is shown with induction on X. The induction follows 0 and in. 

- X = 0 : test( i, 0) = F and the implication follows. 
- X = in(j, Y) : 

D(i, n) 11 llv(rem(i, in(j, Y)), n) 
BJ. I (D(i, n) II IIv(rem(i, in(j, Y)), n)) 

<ieq(i,j) t> (D(i, n) 11 lln(rem(i, in(j, Y)), n)) 

B 4 3,~4.4,B2 (D(j, n) II IIn(Y, n)) 
<ieq(i,j) t> (D(i, n) 11 lln(in(j, rem(i, Y)), n)) 

4.1. l 
lln(in(j, Y), n) 
<ieq(i, j) r:> (D(i, n) II D(j, n) 11 lln(rem(i, Y), n)) 

SC lln(in(j, Y), n) 
<Jeq(i,j) t> (D(j, n) II D(i, n) II IIn(rem(i, Y), n)) 

B.4~1.H. Iln(in(j, Y), n) <J eq(i,j) t> (D(j, n) 11 lln(Y, n)) 

4.1. l IIn(in(j, Y), n) <J eq(i,j) t> IIn(in(j, Y), n) 

B.l.l 
lln(in(j, Y), n) 

0 

As a further example of Milner's II-notation, consider the expression IIu_x Dj, 
which should be read as JJjE{l, .,n}\X Dj. We write this as JI n(Xn, n ). Here, xn 
means fill(l, n)-X, where fill( I, n) is the list of natural numbers from 1 up to 
and including n. For technical convenience, lists are always 'filled' in decreasing 
order, e.g. fill(l,4) = in(4,in(3,in(2,in(l,0)))). X-Y is the analogue of set 
difference and is defined using the function rem. The predicate X ~ Y states 
that every number which occurs in X also occurs in Y. 

Furthermore, we adopt the convention that we often omit the left hand side 
of boolean equations for easy notation, i.e. we may write test(i, X) as a short 
hand for test(i, X) = T. 
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Some care has to be taken to ensure that the representation of sets by lists is 
well-defined. For instance, lljE{1,l}Dj ::::: [JjE{l}Dj but IID(in(l, in(l, 0)), n)::::: 
D(l, n) II D(l, n) #- D(l, n):::: IID(in(l, 0), n). For ruling this out we only use 
lists where every element occurs at most once in X. The predicate unique(X) 
states that X has this property. Another point is the identity lliE{l,2}Dj ::::: 
IIjE{2,l}Dj. To deal with this, we define the predicate perm(X, Y) as X ~ 
Y and Y ~ X. The following lemma shows how the constructions on lists are 
used for manipulating with the II D construct. 

Lemma 4.2. (ll-permutation). 

1. II D(in(i, in(j, X)), n)::::: IID(in(j, in(i, X)), n) 
2. unique(X) /\ unique(Y) /\ perm(X, Y)-+ 

IID(X,n):::: IID(Y,n) 
3. test(j, X) /\ X ~ fill(l, n) /\ unique(X)--+ 

IID(rem(j, xr, n)::::: IID(in(j, Xn), n) 

Proof. 

1. By 4.1.1 and standard concurrency. 
2. The key step in the proof is 4.2.1. 
3. By 4.2.2 and the fact that perm(rem(j, xr, in(j, xn)), unique(rem(j, xr) 

and unique(in(j, xn)). 
0 

Lemma 4.2.2 states that lists behave like sets when they appear as parameter 
in ll. In the next lemma it is shown how we can expand the II-construct to a 
summation. This is one of the key steps in the main proof. 

Lemma 4.3. (II-Expansion). 

1. unique(X) -+ 
IID(X, n)::::: Ej:nat(r(j -n l)(A(j, n) 11 IID(rem(j, X), n)) <1test(j, X) r> 8) 

2. unique(X) -+ 

IIE(X, n) :::: Ej:nat(b(j)(D(j, n) II IIE(rem(j, X), n)) <I test(j, X) f> 8) + 
Ej:nat(r(j -n l)(B(j, n) 11 IIE(rem(j, X), n)) <I test(j, X) f> 8) 

Proof. 

1. Without proving it here (see [15]), we claim that 
(I) Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, in(i, X)), n)) <1test(j, in(i, X)) r>b) 

::::: Ej:nat(r(j -n l)(A(j, n) 11 IID(rem(j, in(i, X)), n)) <I test(j, X) f> 8) 
+ r(i -n l)(A(i, n) 11 IIn(X, n)). 

We proceed the proof by induction on X. The basis step (X ::::: 0) is trivial. 
The induction step (X::::: in(i, Y)) goes as follows: 
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IID(in(i, Y), n) 
4:b· 1 D(i, n) II IID(Y, n) 

c_~u IID(Y, n) ll_D(i, n) + D(i, n) ll_IIn(Y, n) + D(i, n) I IID(Y, n) 

I.H. ~wice) Ej:nat(r(j -n l)(A(j, n) II IlD(rem(j, Y), n)) <I test(j, Y) !> 8) 
ll D( i, n) 

+ D(i, n) [lIID(Y, n) 
+ Ej:nat ( r(j -n 1 )(A(j, n) 11 II D (rem(j, Y), n)) <I test(j, Y) !> 8) 

ID(i,n) 

A.3 

+ 
4.1. l 

+ 
B.4.3 

+ 

Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, Y), n) II D(i, n)) 
<1test(j, Y) 1> 8) 
D(i, n) ll_IID(Y, n) 

Ej:nat(r(j -n l)(A(j, n) II IID(in(i, rem(j, Y)), n)) 
<1test(j, Y) 1> 8) 
D(i, n) ll_IID(Y, n) 

Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, in(i, Y)), n)) 
<1test(j, Y) I> 8) 
D(i, n) ll_IIv(Y, n) 

the application of B.4.3 hangs on unique(in(i, Y)) /\ test(j, Y)......,. 
-.eq( i, j) 

CM3 

+ 

2. Similar to (1). 

Ej:nat(r(j -n l)(A(j, n) II IID(rem(j, in(i, Y)), n)) 
<1test(j, Y) 1> 8) 
r( i -n l)(A( i, n) II Ilv (Y, n)) 

Ej:nat(r(j -n l)(A(j, n) II Ifv(rem(j, in(i, Y)), n)) 
<1test(j, in(i, Y)) 1> 8) 

5 The correctness proof 

D 

In this section we verify that Milner's scheduler indeed satisfies the criterion 
stated in section 3. This is proved as Theorem 5.2.5. The essential step in Milner's 
proof is the introduction of the process 
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proc Sched( i : nat, X : list, n : nat) = 
T{c}(O{r,s}( 

(B(i, n) II llD()<n, n) 11 llE(rem(i, X), n)) 
<Jtest( i, X)e> 

(A(i, n) II llD(in(i, xr' n) II IIE(X, n)))) 

which forms the bridge between the processes Sched(n) and Schedspec(i, X, n). 
We follow Milner's proof very closely. First we show that Sched(i, X, n) satisfies 
the (guarded) defining equation of Schedspec(i, X, n). This is done by distin
guishing two cases: the case where X contains number i and the case where X 
does not. Then by using RSP we have Sched(i, X, n) = Schedspec(i, X, n). Fi
nally, a simple calculation shows that Sched(n) is an instance of Sched(i, X, n), 
i.e. Sched(n) = Schedspec(l,0,n), and we are done. All these calculations can 
be found in Theorem 5.2, the main proof. 

Before embarking on the main proof we need to verify that we can simulate 
the process ll 2 from the specification by the ll D and the .fill-construct. 

Lemma 5.1. m 2'.: 2---+ llD(fil/(2, m), n) = ll2(m, n) 

Proof. Omitted. 0 

Now we have reached the point where we can prove the main theorem. 

Theorem 5.2. We write 'Cond' for 'n 2'.: 2 /\ i 2'.: 1 /\ i:::; n /\ X ~ fi/1(1, n) /\ 
unique(X) '. 

1. test(i, X) /\ Cond---+ 
Sched(i, X, n) = Ej:nat(b(j)Sched(i, rem(j, X), n) <l test(j, X) C> 8) 

2. •test(i, X) /\ Cond---+ 
Sched(i, X, n) = Ej:nat(b(j)Sched(i, rem(j, X), n) <l test(j, X) C> 8) 

+ a(i)Sched(i +n 1, in(i, X), n) 
3. Cond---+ Sched(i, X, n) = Schedspec(i, X, n) 
4. n 2'.: 2---+ Sched(n) = Sched(l, 0, n) 
5. n;::: 2---+ Sched(n) = Schedspec(l,0,n). 

In ( 1) we may replace n 2'.: 2 in Cond by n 2:: 1. 

Proof. 

1. Sched(i, X, n) 
T{c}(O{r,s}(B(i, n) II llD(Xn, n) II llE(rem(i, X), n))) 

b(i)r{c}(O{r,s}(A(i, n) II llD(Xn, n) II llE(rem(i, X), n))) 
+ Ej:nat(b(j) 

T{c}(O{r,s}(B(i,n) II llD(Xn,n) II D(j,n) II 
llE(rem(j, rem(i, X)), n))) <l test(j, rem(i, X)) C> 8) 

by expansion, using ll-Expansion ( 4.3) and Sum Expansion (A.3) 
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4.2.~B.4.7 
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b(i)Sched(i, rem(i, X), n) 
L'j :nat ( b(j) 

T{c}(O{r,s}(B(i, n) II IID(Xn, n) II D(j, n) II 
IIE(rem(j, rem(i, X)), n))) 

<Jtest(j, rem( i, X)) 1> 6) 

b(i)Sched(i, rem(i, X), n) 
L'j:nat(b(j) 

T{c}(O{r,s}(B(i, n) II IIv(in(j,Xn), n) II 
IIE(rem(j, rem(i, X)), n))) 

<Jtest(j,rem(i,X)) 1>6) 

b(i)Sched(i, rem(i, X), n) 

+ L'j:nat(b(j)Sched(i, rem(j, X), n) <Jtest(j, rem(i, X)) 1> 6) 

A.4 L'j:nat(b(j)Sched(i, rem(j, X), n) <J test(j, X) I> 6) 

2. The same idea as in (1) although a bit more complicated. 
3. In 5.2.l we have shown that Sched( i, X, n) is a solution for the (guarded) 

defining equation of Schedspec( i, X, n) when test(i, X). In 5.2.2 we have 
shown that Sched( i, X, n) is a solution of Schedspec(i, X, n) when •test( i, X). 
So by the excluded middle principle we know that Sched(i, X, n) is a solution 
for Schedspec(i, X, n). Then by RSP we may conclude that Sched(i, X, n) 
and Schedspec( i, X, n) are equal. Note that we each time assume that Cond 
holds. 

4. Without proving it here, we claim that 

(I) A(i, n) II 6 = A(i, n). 

We proceed as follows: 

Sched(l, 0, n) 
= r{c}(O{r,s}(A(l,n) II llv(in(1,0r,n) II IIE(0,n))) 

B.4. 2 T{c}(O{r,s} (A(l, n) II llv(fil/(2, n), n) II 6)) 

S.l T{c}(O{r,s}(A(l,n) II II2(n,n) 116)) 
SC 

= 

T°{c}(O{r,s}((A(l, n) 116) II II2(n, n))) 

T°{c}(O{r,s}(A(l,n) II II2(n,n))) 
Sched(n). 

5. Sched(n) 5J,4 Sched(l, 0, n) 5 J:·3 Schedspec(l, 0, n). 
0 
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6 Concluding remarks 

The experiment can be considered successful: we have brought down Milner's 
proof to a completely formal level and checked it by computer. Yet we also have 
to admit that formalising and checking Milner's proof was not a bed of roses. 

First, identities that are simple at meta-level are not easy to prove in a for
malised setting, e.g. the .IT-Expansion lemma. Generally speaking, the identities 
that were most difficult to prove were those that involve processes which heavily 
interact with data. 

Second, we had to write out and check a large amount of small proof steps. 
This is not only hard work, but, again, identities that are trivial at meta-level 
(and therefore mostly omitted) can sometimes be quite tedious at formal level. 

Although the verification was not an easy task, we are confident that by 
doing more of such protocol verifications we obtain more skill and experience in 
doing calculations such as given in the paper. Moreover, we believe that proof
checkers can be improved in generating more proof steps by themselves, e.g. by 
using more advanced tactics. This will lead to a situation where proof-checked 
verification of distributed systems becomes feasible. 
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A An overview of the proof theory for µCRL 

A.1 The proof system 

In [12] a proof system has been given which allows to prove identities about 
processes with data. Table 1 lists the axioms of ACP in µCRL, followed by 
the axioms for hiding TI, standard concurrency SC and branching bisimulation 
B. For an explanation of the axioms we refer to [12], except for the following 
points. We distinguish between actions (e.g. r(i) is an action) and gates, which 
are 'incomplete' actions (e.g. r is a gate). The function label extracts the gate 
from an action. The communication axioms, denoted by CF, make use of the 
function /· It is defined as follows: r(a, b) = c if label( a) I label(b) = label(c) is 
declared in comm and otherwise 1(a, b) is undefined. 

Table 2 lists the typical µCRL axioms and rules for interaction between data 
and processes. The axioms for summation are denoted by SUM, the axioms for 
the conditional by COND and the rules for the booleans by BOOL. 

Beside the axioms and rules mentioned above, µCRL incorporates two other 
important proof principles. First, it supports an principle for induction not only 
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on data but also on data in processes. The second principle is RSP (Recursive 
Specification Principle) taken from [l] extended to processes with data. Infor
mally, it says that each guarded recursive specification has at most one solution. 

Al x+y=y+x CFl n1 ln2 = n3 if -y(n1, n2) = n3 

A2 x + (y + z) = (x + y) + z 
A3 x+x=x CFl' n1(ti, ... ,tm)ln2(t1, ... ,tm) = 
A4 (x + y) · z = x · z + y · z na(t1, ... ,tm) if-y(n1,n2)=n3 

A5 (x · y) · z = x · (y · z) 
A6 x+8=x CF2 alb = 6 
A7 8. x = 6 if -y( label( a), label ( b)) is undefined 

CF2' -i( t; = tD -+ 

CM 1 x II y = x lL y + y IL x + x I y n1 (t1, ... , tm) I n2 (t~, ... , t:r,) = 8 
CM2 a !Lx =a· x for some 1 :5 i :5 m 

CM3 a· x ILY =a· (x II y) CF211 n1 ( ti, ... , tm) I n2 ( t;, . .. , t;,.,) = 6 
CM4 ( x + y) lL z = x lL z + y [!_ z if m ;:f. m' 

CM5 a · x I b = (a I b) · x 
CM6alb·x=(alb)·x DI 8H(a) =a if label( a) <f. H 
CM7 a · x I b · y = (a I b) · ( x ilY) D2 8H(a) = 8 if label(a) EH 
CMB (x+y)lz=xlz+ylz D3 aH(x + y) = aH(x) + &H(Y) 
CM9 x I (y + z) = xly + x lz D4 aH(X. y) = OH(x). 8H(Y) 

Tll r1(a) =a if label( a) <f. I Tl3 r1(x + y) = r1(x) + TJ(Y) 
Tl2 T1(a) = T if label( a) EI Tl4 TJ(X · y) = TJ(X) · TJ(y) 

SCl (x lJ..y) [Lz = x IL(Y II z) SC4 (xly)lz=xl(ylz) 
SC6 x II 6 = xh SC5 xl(y[Lz)=(xly)!Lz 
SC3 xly=ylx scs x I (yl z) = 8 
SC7 xlh = 6 

Bl XT = X B2 z(T(x + y) + x) = z(x + y) 

Table 1. ACP-like axioms and rules in µCRL. 
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SUMI Ed:D(p) = p 
SUM2 Ed:D(P) = Ee:n(p[e/d]) 
SUM3 Ed:D(P) = Ed:D(P) + p 
SUM4 Ed:D(P1 + P2) = Ed:D(P1) + Ed:D(P2) 
SUMS Ed:D(P1 · P2) = Ed:D(P1) · P2 
SUM6 Ed:D(P1 ll_p2) = Ea:n(pi) ll_p2 
SUM7 Ed:D(P1 lp2) = Ed:D(P1)lp2 
SUM8 Ed:D(8H(P)) = 8H(Ed:D(P)) 
SUM9 Ed:D( r1(p)) = rr(Ed:n(p)) 

v 
SUMll P1 = P2 

Ed:D(P1) = Ed:D(P2) 

CONDI x <lTt> y = x 
COND2x<JFt>y=y 

BOOLl -.(T = F) 
BOOL2 -.(b = T) ..... b = F 

if d not free in p 
if e not free in p 

if d not free in p2 
if d not free in p2 
if d not free in p2 

provided d not free in 
the assumptions of V 

Table 2. Axioms for summation and conditionals. 

A.2 Basic lemmas for µCRL 

In this section, we present a number of elementary lemmas (see [9]) which are 
derived from the proof system given above. These lemmas are used in the veri
fication of the scheduler, but are also interesting in their own right as it is very 
likely that they are needed in every µCRL verification. The first lemma shows 
that for applying an induction on a boolean variable b (see appendix B), one 
only has to check the cases b = T and b = F. 

Lemma A.1. (Specialised induction rule for Bool). 

(p = q)[T/b] /\ (p = q)[F/b] - p = q. 

The following lemma presents a rule which is derived from the SUM axioms. 
This rule appears to be a powerful tool to eliminate sum expressions in µCRL 
calculations. 

Lemma A.2. (Sum Elimination). Let D be a given sort that is equipped with 
an equality function eq : D x D - Bool with the obvious property eq(d, d) = T. 
Then, we have 

Ed:D (p <J eq(d, t) r> 8) = p[t/d]. 
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The next lemma is used for expanding sums in parallel compositions. 

Lemma A.3. (Sum Expansion). If the variable d : D does not occur free in term 
q, then we have 

1. Ed:n(a · p <1 et> c5) l1_ q = Ed:n(a · (p 11 q) <1 et> c5). 
2. Ed:D (a( d) · p <1 c t> 8) I b( e) · q = Ed:D ((a( d) I b( e)) · (p II q) <l c t> c5) 

The last proposition is used in Theorem 5.2.1. 

Proposition A.4. Let p be a process. 

test( i, X) ..-
b( i)p+Ej :nat ( b(j)p<1test(j, rem( i, X))t>8) = Ej:nat( b(j)p<1test(j, X)t>8) 

Proof. 

Ej:nat(b(j)p <l test(j, X) t> 8) 
B:_!.l Ej:nat(b(j)p <l eq(j, i) or test(j, rem(i, X)) t> 8) 

Ej:nat(b(j)p <l eq(j, i) t> c5) 
+ Ei :nat ( b(j)p <l test(j, rem( i, X)) t> 8) 

A.2 
b(i)p + Ej:nat(b(j)p <l test(j, rem(i, X)) I> 8) 

D 

B Elementary data types 

Below, we present the data identities we needed in the scheduler verification. 
Although all these results have been proof-checked we do not present the proofs 
here, since they are standard. 

B.1 About booleans 

sort Bool 
func T, F :-+ Bool 

not : Bool -+ Bool 
and : Bool x Bool -+ Bool 
or : Bool x Bool -+ Bool 

var b, b1, b2 : Bool 
rew not(T) = F 

not(F) = T 
T and b = b 
F and b = F 
Tor b = T 
For b = b 
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LemmaB.l. 

1. x<lbt>x=x, 

2. x <l bi or b2 t> 6 = x <l b1 t> 6 + x <l b2 t> 6. 

Proof. Easy via Lemma A.l. 

B.2 About natural numbers 

sort nat 
func 0 :-+ nat 

S, P : nat -+ nat 
+, -, : nat x nat-+ nat 
eq, :;::, :s;, <, >: nat x nat-+ Bool 
if : Bool x nat x nat -+ nat 

var n, rn, z : nat 
rew P(O) = 0 

P(S(n)) = n 
n+O=n 
n+S(m)=S(n+m) 
n -0 = n 
n - S(m) = P(n - m) 
eq(O, 0) = T 
eq(O, S(n)) = F 
eq(S(n), 0) = F 
eq(S(n), S(m)) = eq(n, m) 
n 2 0 = T 
0 2 S(n) = F 
S(n) 2 S(m) = n 2 m 
ns;m=m2n 
n > m = n 2 S(m) 
n < m = S( n) s; m 
if (T, n, m) = n 
if(F, n, m) = m 

0 

We write n s; m for n s; m = T. Idem for :;::, > and <. We write eq(n, m) for 
eq(n, m) = T. We write 1 for S(O) and 2 for S(S(O)). We write i - 1 for P(i) 
and i - 2 for P(P(i)). We write n s; m form;::: n and n > m for n;::: S(m) and 
n < m for S(n) s; m. 

Lemma B.2. eq(n, m) = T +-+ n = m 

B.3 About modulo arithmetic 

The following definition is due to Willem Jan Fokkink. 
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func mod : nat x nat -+ nat 

+ : nat x nat x nat -+ nat 
var i, j, n : nat 

rew i mod 0 = i 
i mod n = if(eq(i, 0), n, if(i > n, (i- n) mod n, i)) 
i +n j = ( i + j) mod n 
i-nj=(i-j)modn 

Note that we defined a slightly non-standard modulo function to follow Milner's 
proof as close as possible. In particular, we need our functions to have values in 
the positive natural numbers. The usual definition of the modulo function yields 
for instance 2 mod 2 = 0, but our (and Milner's) definition yields 2 mod 2 = 2. 

Lemma B.3. 

1. i mod 1 = 1 
2. n ~ 2 /\ i ~ n /\ i ~ 1--+ (i +n 1) -n l = i 
3. n ~ 2 /\ i ~ n /\ i 2: 1 --+ ( i -n 1) +n 1 = i 

B.4 About lists of naturals 

sort list 
func 0 :-+ list 

in, rem, n : nat x list --+ list 
test : nat x list --+ Bool 
hd : list -+ nat 
tl : list -+ list 
if : Bool x list x list -+ list 
empty, unique : list --+ Bool 
fill : nat x nat -+ list 
- : list x list --. list 
~,perm : list x list --+ Bool 

var i, j, k 1 n, m : nat 
X, Y: list 

rew test(j, 0) = F 
test(j, in(k, X)) = if(eq(j, k), T, test(j, X)) 
rem(j, 0) = 0 
rem(j, in(k, X)) = if(eq(j, k), X, in(k, rem(j, X))) 
hd(0) = 0 
hd(in(j, X)) = j 
tl(0) = 0 
tl(in(j, X)) = X 
empty(0) = T 
empty(in(j, X)) = F 
X-0=X 
X - in(j, Y) = rem(j, X - Y) 
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0<;;.X=T 
in(j, X) <;;. Y = test(j, Y) and X <;;. Y 
unique(0) = T 
unique(in(j, X)) = if(test(j, X), F, unique(X)) 
perm(X, Y) = X <;;. Y and Y <;;. X 
fill(m, n) = if(n < m, 0, if(eq(n, 0), in(O, 0), in(n,fill(m, P(n))))) 
xn = fi//(1, n) - x 

1. test( i, X) __, (test(j, X) = eq( i, j) or test(j, rem( i, X))), 
2. in(l, 0r = fil/(2, n), 
3. -.eq(i, j) __, rem(j, in(i, Y)) = in(i, rem(j, Y)), 
4. eq(i,j) __, rem(i, in(j, Y)) = Y, 
5. test(i, X) __, in(i, rem(i, X))n = xn, 
6. (test(i, X) /\ X = in(j, Y) /\ --.eq(i,j)) __, test(i, Y). 
7. rem(i, rem(j, X)) = rem(j, rem(i, X)), 
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