
Sequential Bidding in the Bailey-Cavallo
Mechanism

Krzysztof R. Apt1,2 and Evangelos Markakis2

1 CWI, Science Park 123, 1098 XG Amsterdam
2 Institute of Logic, Language and Computation, University of Amsterdam

The Netherlands
3 Athens University of Economics and Business

Department of Informatics, Athens, Greece

Abstract. We are interested in mechanisms that maximize social wel-
fare. In [2] this problem was studied for multi-unit auctions and for public
project problems, and in each case social welfare undominated mecha-
nisms were identified. One way to improve upon these optimality re-
sults is by allowing the players to move sequentially. With this in mind,
we study here a sequential version of the Bailey-Cavallo mechanism, a
natural mechanism that was proved to be welfare undominated in the
simultaneous setting by [2]. Because of the absence of dominant strate-
gies in the sequential setting, we focus on a weaker concept of an optimal
strategy. We proceed by introducing natural optimal strategies and show
that among all optimal strategies, the one we introduce generates max-
imal social welfare. Finally, we show that the proposed strategies form
a safety level equilibrium and within the class of optimal strategies they
also form a Pareto optimal ex-post equilibrium4.

1 Introduction

In many resource allocation problems a group of agents would like to determine
who among them values a given object the most. A natural way to approach this
problem is by viewing it as a single unit auction. Such an auction is traditionally
used as a means of determining by a seller to which bidder and for which price the
object is to be sold. The absence of a seller however changes the perspective and
leads to different considerations since in our setting, the payments that the agents
need to make flow out of the system (are ”burned”). Instead of maximizing the
revenue of the seller we are thus interested in maximizing the final social welfare.

This has led to the problem of finding mechanisms that are optimal in the
sense that no other feasible, efficient and incentive compatible mechanism gen-
erates a larger social welfare. Recently, in [2] this problem was studied for two
domains: multi-unit auctions with unit demand bidders and the public project
problem of [8]. For the first domain a class of optimal mechanisms (which in-
cludes the Bailey-Cavallo mechanism) was identified, while for the second one
4 A full version of this work along with all the missing proofs is available at http:

//pages.cs.aueb.gr/∼markakis/research/pubs.html.



it was proved that the pivotal mechanism is optimal. Other related aspects and
objectives have also been recently studied in a series of works on redistribution
and money-burning mechanisms, see among others [9, 12, 10, 13, 16, 7].

We continue this line of research by relaxing the assumption of simultaneity
and allowing the players to move sequentially. This set up has been recently
studied in [3] for the public project problem and here we consider such a modified
setting for the case of single unit auctions. We call it sequential bidding as the
concept of a “sequential auction” usually refers to a sequence of auctions, see,
e.g. [14, chapter 15].

Hence we assume that there is a single object for sale and the players an-
nounce their bids sequentially in a fixed order. In contrast to the open cry
auctions each player announces his bid exactly once. Once all bids have been
announced, a mechanism is used to allocate the object to the highest bidder and
determine the payments. Such a sequential setting can be very natural in many
decision making or coordination problems without a central authority.

1.1 Results

We study here a sequential version of the Bailey-Cavallo mechanism of [5] and
[6], as being a simplest, natural and most intuitive mechanism in the class of
OEL mechanisms [11]. Our main results start in Section 4, where we first show
that in a large class of sequential Groves auctions no dominant strategies exist.
Therefore we settle on a weaker concept, that of an optimal strategy. An optimal
strategy is a natural relaxation of the notion of dominant strategy, which also
captures precisely the way a “prudent” player would play (see Lemma 1).

We proceed in Section 5 with proposing optimal strategies that differ from
truth telling in the Bailey-Cavallo mechanism. We show that the proposed strate-
gies yield maximal social welfare among all possible vectors of optimal strategies.
Finally in Section 6 we further clarify the nature of the proposed strategies by
studying what type of equilibrium they form. First we point that they do not
form an ex-post equilibrium, a concept criticized in [4] and [1], where an al-
ternative notion of a safety-level equilibrium was introduced for pre-Bayesian
games. This concept captures the idea of an equilibrium in the case when each
player is “prudent”. We prove that the proposed strategies form a safety-level
equilibrium. We also show that our strategies form a Pareto optimal ex-post
equilibrium within the class of optimal strategies.

2 Preliminaries

Assume that there is a finite set of possible outcomes or decisions D, a set
{1, . . ., n} of players where n ≥ 2, and for each player i a set of types Θi and an
(initial) utility function vi : D×Θi → R. Let Θ := Θ1×· · ·×Θn. A decision
rule is a function f : Θ→D. A mechanism is given by a pair of functions (f, t),
where f is the decision rule and t = (t1, ..., tn) is the tax function that determines
the players’ payments. We assume that the (final) utility function for player



i is a function ui defined by ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti. Thus, when the
true type of player i is θi and his announced type is θ′i, his final utility under
the mechanism (f, t) is:

ui((f, t)(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi) + ti(θ′i, θ−i),

Given a sequence a := (a1, . . ., aj) of reals we denote the least l such that
al = maxk∈{1,...,j} ak by argsmax a. A single item sealed bid auction , is
modelled by choosing D = {1, . . . , n}, each Θi to be the set of non-negative
reals and f(θ) := argsmax θ. Hence the object is sold to the highest bidder and
in the case of a tie we allocate the object to the player with the lowest index.5

By a Groves auction we mean a Groves mechanism for an auction setting
(for details on Groves mechanisms see [15]). Below, given a sequence θ of reals we
denote by θ∗ its reordering in descending order. Then θ∗k is the kth largest element
in θ. For example, for θ = (1, 5, 0, 3, 2) we have (θ−2)

∗
2 = 2 since θ−2 = (1, 0, 3, 2).

The Vickrey auction is the pivotal mechanism for an auction (also referred to
as the VCG mechanism). In it the winner pays the second highest bid.

The Bailey-Cavallo mechanism, in short BC auction , was originally pro-
posed in [5] and [6]. To define it note that each Groves mechanism is uniquely
determined by its redistribution function r := (r1, . . ., rn). Given the redis-
tribution function r, the tax for player i is defined by ti(θ) := tpi (θ) + ri(θ−i),
where tpi is the tax of player i in the Vickrey auction. So we can think of a
Groves auction as first running the pivotal mechanism and then redistributing
some amount of the pivotal taxes.

The BC auction is a Groves mechanism defined by using the following redis-
tribution function r := (r1, . . ., rn) (assuming that n ≥ 3):

ri(θ−i) :=
(θ−i)

∗
2

n

It can be seen that the BC auction always yields at least as high social welfare
as the pivotal mechanism. Note also that the aggregate tax is 0 when the second
and third highest bids coincide.

3 Sequential mechanisms

We are interested in sequential mechanisms, where players announce their types
according to a fixed order, say, 1, 2, ..., n. Each player i observes the actions an-
nounced by players 1, . . ., i−1 and uses this information to decide which action to
select. Thus a strategy of player i is now a function si : Θ1×. . .×Θi−1×Θi →Θi.
Then if the vector of types that the players have is θ and the vector of strategies
that they decide to follow is s(·) := (s1(·), . . ., sn(·)), the resulting vector of the
selected actions will be denoted by [s(·), θ], where [s(·), θ] is defined inductively
by [s(·), θ]1 := s1(θ1) and [s(·), θ]i+1 := si+1([s(·), θ]1, . . ., [s(·), θ]i, θi+1).
5 If we make a different assumption on breaking ties, some of our proofs need to be

adjusted, but similar results hold.



Given θ ∈ Θ and i ∈ {1, . . ., n} we denote the sequence θi+1, . . ., θn by θ>i

and the sequence Θi+1, . . ., Θn by Θ>i, and similarly with θ≤i and Θ≤i.
A strategy si(·) of player i is called dominant if for all θ ∈ Θ, all strategies

s′i(·) of player i and all vectors s−i(·) of strategies of players j 6= i

ui((f, t)([(si(·), s−i(·)), θ]), θi) ≥ ui((f, t)([(s′i(·), s−i(·)), θ]), θi),

We call a joint strategy s(·) = (s1(·), . . ., sn(·))

– an ex-post equilibrium if for all i ∈ {1, . . ., n}, all strategies s′i(·) of player
i and all joint types θ ∈ Θ

ui((f, t)([(si(·), s−i(·)), θ]), θi) ≥ ui((f, t)([(s′i(·), s−i(·)), θ]), θi),

– a safety-level equilibrium if for all i ∈ {1, . . ., n}, all strategies s′i(·) of
player i and all θ≤i ∈ Θ≤i

min
θ>i∈Θ>i

ui((f, t)([(si(·), s−i(·)), θ]), θi) ≥ min
θ>i∈Θ>i

ui((f, t)([(s′i(·), s−i(·)), θ]), θi).

Intuitively, given the types θ≤i ∈ Θ≤i of players 1, . . ., i and the vector s(·) of
strategies used by the players, the quantity minθ>i∈Θ>i

ui((f, t)([s(·), θ]), θi) is
the minimum payoff that player i can guarantee to himself.

4 Sequential Groves auctions

In Groves auctions truth telling is a dominant strategy. In the case of sequen-
tial Groves auctions the situation changes as for a wide class, which includes
sequential BC auctions no dominant strategies exist (except for the last player).

Theorem 1. Consider a sequential Groves auction. Suppose that for player i ∈
{1, . . ., n− 1}, the redistribution function ri is such that there exists z > 0 such
that ri(0, 0, . . ., z, 0, . . ., 0) 6= ri(0, . . ., 0) + z (in the first term z is in the ith
argument of ri). Then no dominant strategy exists for player i.

In light of this negative result, we would like to identify strategies that players
could choose. We therefore focus on a concept that formalizes the idea that
the players are “prudent” in the sense that they want to avoid the winner’s
curse by winning the item at a too high price. Such a player i could argue as
follows: if his actual type is no more than the currently highest bid among players
1, . . ., i− 1, then he can safely bid up to the currently highest bid. On the other
hand, if his actual type is higher than the currently highest bid among players
1, ..., i − 1, then he should bid truthfully (overbidding can result in a winner’s
curse and underbidding can result in losing). Lemma 1 below shows that the
above intuition is captured by the following definition.

Definition 1. We call a strategy si(·) of player i optimal if for all θ ∈ Θ and
all θ′i ∈ Θi

ui((f, t)(si(θ1, . . ., θi), θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).



By choosing truth telling as the strategies of players j 6= i we see that each
dominant strategy is optimal. For player n the concepts of dominant and optimal
strategies coincide.

Definition 1 is a natural relaxation of the notion of dominant strategy as it
calls for optimality w.r.t. a restricted subset of the other players’ strategies. Call
a strategy of player j memoryless if it does not depend on the types of players
1, . . ., j − 1. Then a strategy si(·) of player i is optimal if for all θ ∈ Θ it yields
a best response to all joint strategies of players j 6= i in which the strategies of
players i + 1, . . ., n are memoryless. In particular, an optimal strategy is a best
response to the truth telling by players j 6= i.

The following lemma provides the announced characterization of optimal
strategies. For any i, define θ̄i := maxj∈{1,...,i−1} θj . We stipulate here and else-
where that for i = 1 we have θ̄1 = −1 so that for i = 1 we have θi > θ̄i.

Lemma 1. In each sequential Groves auction a strategy si(·) is optimal for
player i if and only if the following holds for all θ1, . . ., θi:

(i) Suppose θi > θ̄i and i < n. Then si(θ1, . . ., θi) = θi.
(ii) Suppose θi > θ̄i and i = n. Then si(θ1, . . ., θi) > θ̄i.
(iii) Suppose θi ≤ θ̄i and i < n. Then si(θ1, . . ., θi) ≤ θ̄i.
(iv) Suppose θi < θ̄i and i = n. Then si(θ1, . . ., θi) ≤ θ̄i.

Note that no conclusion is drawn when θn = maxj∈{1,...,n−1} θj . Player n can
place then an arbitrary bid.

The following simple observation, see [3], provides us with a sufficient condi-
tion for checking whether a strategy is optimal in a sequential Groves mechanism.

Lemma 2. Consider a Groves mechanism (f, t). Suppose that si(·) is a strategy
for player i such that for all θ ∈ Θ, f(si(θ1, . . ., θi), θ−i) = f(θ). Then si(·) is
optimal in the sequential version of (f, t).

In particular, truth telling is an optimal strategy.

5 Sequential BC auctions

As explained in the Introduction the BC mechanism cannot be improved upon in
the simultaneous case, as shown in [2]. As we shall see here, the final social welfare
can be improved in the sequential setting by appropriate optimal strategies that
deviate from truth telling.

Theorem 1 applies for the BC auction, therefore no dominant strategies exist.
We will thus focus on the notion of an optimal strategy. As implied by Lemma 2
many natural optimal strategies exist. In the sequel we will focus on the following
optimal strategy which is tailored towards welfare maximization as we exhibit
later on:

si(θ1, . . . , θi) :=


θi if θi > maxj∈{1,...,i−1} θj

(θ1, . . . , θi−1)
∗
1 if θi ≤ maxj∈{1,...,i−1} θj

and i ≤ n− 1
(θ1, . . . , θi−1)

∗
2 otherwise

(1)



According to strategy si(·) if player i cannot be a winner when bidding
truthfully he submits a bid that equals the highest current bid if i < n or the
second highest current bid if i = n. Note that si(·) is indeed optimal in the
sequential BC auction, since Lemma 2 applies.

We now exhibit that within the universe of optimal strategies, if all play-
ers follow si(·), maximal social welfare is generated. Given θ and a vector of
strategies s(·), define the final social welfare of a sequential mechanism (f, t) as:

SW (θ, s(·)) =
n∑

i=1

ui((f, t)([s(·), θ]), θi) =
n∑

i=1

vi(f([s(·), θ]), θi) +
n∑

i=1

ti([s(·), θ]).

Theorem 2. In the sequential BC auction for all θ ∈ Θ and all vectors s′(·) of
optimal players’ strategies,

SW (θ, s(·)) ≥ SW (θ, s′(·))

where s(·) is the vector of strategies si(·) defined in (1).

The maximal final social welfare of the sequential BC auction under s(·) is
always greater than or equal to the final social welfare achieved in a BC auction
when players bid truthfully.

6 Implementation in Safety-level equilibrium

In this section we clarify the status of the strategies studied in Section 5 by ana-
lyzing what type of equilibrium they form. The notion of an ex-post equilibrium
is somewhat problematic, since in pre-Bayesian games (the games we study here
are a special class of such games) it has a different status than Nash equilibrium
in strategic games. Indeed, as explained in [1], there exist pre-Bayesian games
with finite sets of types and actions in which no ex-post equilibrium in mixed
strategies exists.

The vector of strategies si(·) defined in (1) is not an ex-post equilibrium in
the sequential BC auction. Indeed, take three players and θ = (1, 2, 5). Then for
player 1 it is advantageous to deviate from s1(·) strategy and submit, say 4. This
way player 2 submits 4 and player’s 1 final utility becomes 4/3 instead of 2/3.

We believe that an appropriate equilibrium concept for the (sequential) pre-
Bayesian games is the safety-level equilibrium introduced by [4] and [1] and
defined in Section 3. In the case of sequential mechanisms it captures a cautious
approach by focusing on each player’s guaranteed payoff in view of his lack of
any information about the types of the players who bid after him. We have the
following result.

Theorem 3. The vector of strategies si(·) defined in (1) is a safety-level equi-
librium in the sequential BC auction.



One natural question is whether one can extend our Theorem 2 to show
that our proposed vector of strategies in (1) generates maximal social welfare
among all safety-level equilibria. The answer to this turns out to be negative as
illustrated by the next example:

Example 1. Consider truth telling as the strategy for players 1, ..., n − 2 and
n. For any i, define θ̂i := maxj∈{1,...,i−1} [s(·), θ]j . For player n − 1 define the
strategy:

s′n−1(θ1, ..., θn−1) =
{

θ̂n−1 + ε if θn−1 > θ̂n−1,
θn−1 otherwise.

where ε is a positive number in the interval (θ̂n−1, θn−1). This vector of strategies
forms a safety-level equilibrium (we omit the proof here due to lack of space).
Consider now the vector θ = (0, 0, ...1, 15, 16). The sum of taxes under the set of
strategies we have defined will be 2ε

n . On the other hand, under the vector s(·)
defined in (1), the sum of the taxes is 2

n (15− 1). 2

The set of safety-level equilibria is quite large. The above example illustrates
that we can construct many other safety-level equilibria, by slight deviations
from the truth telling strategy. In fact, there are even equilibria in which some
players overbid and yet for some type vectors they generate higher social welfare
than our proposed strategies. These equilibria, however, may be unlikely to form
by prudent players and Theorem 2 guarantees that among equilibria where all
players are prudent our proposed strategies generate maximal welfare.

Finally, if we assume that players select only optimal strategies, then we
could consider an ex-post equilibrium in the universe of optimal strategies. We
have then the following positive result.

Theorem 4. If we allow only deviations to optimal strategies, then in the se-
quential BC auction, the vector of strategies si(·) defined in (1) is an ex-post
equilibrium that is also Pareto optimal.

7 Final remarks

This paper and our previous recent work, [3], forms part of a larger research en-
devour in which we seek to improve the social welfare by considering sequential
versions of commonly used incentive compatible mechanisms. The main con-
clusion of [3] and of this work is that in the sequential version of single-item
auctions and public project problems there exist optimal strategies that devi-
ate from truth telling and can increase the social welfare. Further, the vector
of these strategies generates the maximal social welfare among the vectors of
all optimal strategies. Here, we also showed that the vector of the introduced
strategies forms a safety-level equilibrium.

We would like to undertake a similar study of the sequential version of the
incentive compatible mechanism proposed in [17], concerned with purchasing a
shortest path in a network.
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