
JOURNAL OF MULTIVARIATE ANALYSIS 49, 97-109 ( 1994) 

Bootstrapping Multivariate U-Quantiles and 
Related Statistics 

R. HELMERS 

CW!, 1009 AB Amsterdam, The Netherlands 

AND 

M. HusKovA* 

Charles University, Prague, Czech Republic 

The asymptotic consistency of the bootstrap approximation of the vector of the 
marginal generalized quantiles of U-statistic structure (multivariate U-quantiles for 
short) is established. The asymptotic accuracy of the bootstrap approximation is 
also obtained. Extensions to smooth functions of marginal generalized quantiles are 
given and some specific examples, such as the vector of marginal sample quantiles 
and the vector of marginal Hodges-Lehmann location estimators, are discussed. 
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1. INTRODUCTION 

In this paper we investigate Efron's bootstrap approximation for a wide 
class of multivariate generalized quantiles. We also look at the classical 
normal approximation for these multivariate statistics. Our results extend 
previous work by Choudhury and Serfling ( 1988) and Helmers, Janssen, 
and Veraverbeke (1992) for univariate U-quantiles to the multivariate case. 
Let X1 =(Xu ... ., xkl }, ... , x N = (X!N• ... , xkN} be independent k-dimensional 
random vectors defined on a single probability space (Q, d, P) having 
common distribution function (df} F on !Rk. Let h 1(x 1 , ... , xm}, ... , 
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h)x 1, ••• , x 111 ) be kernels of degree m (i.e., real-valued functions symmetric 
in its /11 arguments) and let 

i= I, ... , k.j= I, .. ., C/). I I. I ) 

with y = (y,1, i =I, ... , k,j = !. ... , c/) E !1~'·1 • denote the joint di of the kq 
random variables 

h,(X; 1 •••• , X,,,,), i= I, ... , k,j= I, ... ,£/. ( 1.2) 

In addition, let H 1.: ;, ; denote the marginal dl of h, IX 11 ..... X,,,, l and, for 
0 <p <I, let 

( 1.3) 

denote the corresponding pth marginal quantile. Define the associated 
empirical dl of U-statistic structure 

( N t 

H.v. 1• 1 (,r,1)= ) L"'L /(/i 1 (.\',.,. .•.• .r,.,.,1·-r 11 ) 

'Ill I . 'I . "'" \ 

for real J';, and N;;: m, and for 0 < p < I, let 

~.,Ip)= 11 \ 1, I ( p) 

denote the corresponding pth empirical marginal 4uantik. 

I 1.4 J 

!Ul 

Statistics of the form (I .5) were considered hy l lchners. Jans'icn. and 
Veraverbeke ( 1992) for the univariate case k 0 , c/ -=· I. Asymptotic wn· 
sistency and the asymptotic accuracy of the hootstrap approximation for 
these univariate statistics ( U-quantiles for short l was estahJi..,hed. The 
present paper aims at extending these results to the multivariate cao;c. 
Define multi1•ariate U-quanriles hy 

(1.6) 

where O<p,1 < I, i= I, ... , k,j= I, ... , q. In the special c:1se '' m '"I and 
'1 1 (x) = x, ( 1.6) reduces to the k-vector of ordinary mar~11ut! 4uuntilcs 
studied by G. J. Babu and C. R. Rao ( 1988 ). These authors llhtained 
asymptotic normality for this special case. In Section 2 we extend their 
result to the more general class of multivariate l "quantile' of the form 
( 1.6 ). We also obtain a Berry Esseen hound for these ... tati,tic'>. In Section .1 
we derive the asymptotic consistency and establish the a'>ymptotic accuracy 
of the bootstrap approximation for multi variate ( ·-4uant ilcs of ! ypc 11.61. 
Some useful extensions and specific examples arc briefly disi.;u..,..,ed Ill 

Section 4. 
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2. NORMAL APPROXIMATION 

Let E denote the symmetric (kq x kq )-matrix with elements 

aJi, 1, = cov{P(hi(Xil, ... , X;,,,):::;; i;;;(P;;) I X;i), 

P(h,(X, 1, ... , X,,,,)::::; i;,.1(p,1) I X,. 1 )} 

with i, r = I, ... , k; j, I= I, ... , q. In addition, let 

D HF= diag(hF, 1. 1(i;11(P1 i)), ... , hn. 1(i;k1(Pk 1) ), ... , 

hF. 1,q(~1q(P1q)), ... , h,..,k,q(~kq(Pkq))), 
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(2.1) 

(2.2) 

where hF.i,J den_?tes_the density of HF,i.J· Let ~=(~u(P;;),i=l, ... ,k, 
j= 1, ... , q) and ( = ((;;(P;;), i= 1, ... , k,j= I, ... , q). Clearly ( denotes our 
parameter vector of interest and ~ its empirical counterpart ( cf. ( 1.6) ). 

THEOREM 2.1. (a) Let HF.;,; be continuously differentiable with density 
hF. ;,;((i/(Pu)) > 0. Then, as N-+ OCJ, 

sup IP(N 112 (~ - 0 ~y)- <l>(y; 0, m2D ii} 12 ED fl1-112 )1-+ 0, (2.3) 
y 

where <!>(.; 0, V) is the qk-variate normal distribution with mean vector 0 and 
covariance matrix Vandy = (y 11 , •• ., Yk1• ... , Ytq• .. ., Ykql'· 

(b) In addition, suppose that h F.;,; satisfies a Lipschitz condition of 
order I on a neighhorhood t?f i;;;(Pu), i= 1, ... , k, j= I, ... , q, and I is positive 
definite. Then, as N-+ oo, 

sup I P(N i12( ~ - ():::;; y) - <t>(y; 0, m1 D if }12IDif1-112 )I = O(N- i12 ). (2.4) 
y 

Proof To begin with we remark that 

P(N 112 (~ - 0 :::;;y) = P(N 112(~u(PiJ)- (u(Pu)) :::;;yii, i = 1, ... , k, i = 1, .. ., q) 

= P(H;;,1;.;(Pu):::;; Hf.. :.;(Pu)+ Y;;N- 112 , i = 1, ... , k,j= 1, .. ., q) 

= P(H N. ;,;(HF,~.;(P!i) + Yi;N- 112 )-;;::. Pu• i = 1, ... , k,j= 1, .. ., q) 

= P(N112{ H N. u(HF, L(P;;) + y,,N -112) 

- H ,.., ;,;(HF, :.;<Pu)+ N- 112Yu)} 

~N 112 {pu-HF,;,;(HF,L(Pu) + Y;;N- 112 )}, i= 1, ... , k,j= 1, .. ., q). 
(2.5) 
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The smoothness assumption of HF. u ensures that 

JN {pij- HF. i.j(H;;, L<Pij) + N-- 112yij)}-+ -yijhF. i.j(eij(pij)) (2.6) 

a.s. [P], for i= 1, .. ., k, i= 1, .. ., q. Next note that the random variable (r.v.) 
T N, ;,j(yij) defines as 

JN {HN,;jHF,~)Pii)+ yijN- 112 )-HF, i,j(HF,L(P;) + yiiN- 112 )} (2.7) 

is a normalized U-statistic of degree m with bounded kernel, depending on 
n, of the form 

= I{hj(x 1 , .. ., x,,,) ~ ~ii(pij) + yiiN- 112 } 

-P(hj(X; 1, ••• , X;m) ~ eij(pij) + yijN- 112 ) (2.8) 

with (x 1, ... ,xm)e!Rm, for i= 1, .. ., k,j= 1, .. ., q. At this point we invoke an 
easy modification of the theorem on page 188 of Serfling ( 1980) to find that 
fori=l, .. .,k,j=l, .. .,q 

E { T N, ;jyij)- s~I E(T N, i,j(yij) I X;s) r = O(N- 1 ). (2.9) 

In view of (2.5)-(2.9) and Chebychev's inequality it now clearly suffices to 
check that the kq-vector given by 

N 

L E(TN,;jyij)IX;s), i = 1, .. ., k,j = 1, .. ., q (2.10) 
s= I 

converges in distribution to et>(·; 0, I), as n-+ oo, with I as in (2.1 ). But 
this is an easy matter, because the random vector (2.10) is a normalized 
sum of i.i.d. random summands, with zero mean and covariance matrix V N· 

Clearly 

m N 

= /,::; I {P(hj(X;s> X;V2' ... , X;vJ ~ eu(Pu) + yijN- 112 I X;s) 
....;Ns=I 

- P(h;(Xil, .. ., X;m) ~ eu(Pu) + y ijN- 112 ) }, i = 1, .. ., k,j = 1, .. ., q, 

(2.11) 

where l ~ v2 < .. · < v111 ~ N can be chosen arbitrary, provided v, # s, 
I= 2, .. ., m. The (kq x kq )-matrix V N is precisely the covariance matrix of 
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the kq-vector (2.11 ). It remains to show that V N approaches .E, as N--+ 00 . 

The simple relation 

(J
2 t~1 E((TN.i,J(Yu)-TN.;, 1 (0))JX;s)} 

~ m 2(J 2 { P(h1(X;1, ... , X;m) E (~u(Pu), ~u(P;;) + YuN- 112 )1 X; 1)} 

= O(N 1 ), as N--+ w, (2.12) 

can be used. Here we have employed the mean value theorem (applied to 
HF, ;, 1 on a neighborhood of ~u (Pu)) and a well-known property of condi
tional moments. Since the kq-vector given by 

N 

L E( T N, i,j(O) J X;s), i=l, ... ,k,j=l, .. .,q (2.13) 
s~ 1 

has covariance matrix I: (cf. (2.1 )) our proof of relation (2.3) is now 
completed. 

It remains to establish the Berry-Esseen bound (2.4). To do this we 
apply Theorem 1.16 of Gotze (1987) to the kq-vector (cf. (2.7)) of 
U-statistic type 

i= 1, ... , k,j= 1, ... , q. (2.14) 

The conditions of Gotze's theorem are easily verified, since by assumption 

E is positive definite and the kernel functions h N, i,J ( cf. (2.8)) are all 
hounded by 1. In addition, relation (2.6) is now replaced by the stronger 
assertion that 

fa ( P;i-- H1-. ;,1(H1-. :. 1(P;;) + Y;1N 112 )} + Y;1h1-, ;, 1 (~u(Pu)) = O(N- 112 ) 

(2.15) 

as N-+ oo. For this we use the Lipschitz condition on hF, i,J· This completes 
the proof of (2.4) and the theorem is proved. I 

Relation (2.3) extends related results of Choudhury and Serfling ( 1988) 
and Babu and Rao ( 1988) for the univariate case k = q = 1, respectively the 
case of ordinary marginal quantiles (q=m= I, h 1(x)=x), to a con
siderably more general class of statistics. Relation (2.4) supplements all this 
with a Berry-Esseen bound. We note in passing that the strong consistency 
of multivariate U-quantiles t in estimating the parameter of interest ~ 
follows directly from Corollary 3.2 of Helmers, Janssen, and Serfling 

( 1988 ), provided ~ is uniquely determined. 
In applications one often wishes to establish a confidence region for ~ 

and a studentized version of (2.3) is required; i.e., a consistent estimator of 
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the covariance matrix in (2.3) is needed. An alternative approach is to 
employ bootstrap methods for the construction of a confidence region for ~
In Section 3 we establish a bootstrap analog of (2.3) under a slightly more 
stringent smoothness condition on HF· With the aid of this result various 
bootstrap based confidence regions for ~ can easily be constructed. 

3. BOOTSTRAP APPROXIMATION 

Let ft N denote the k-variate empirical df based on X 1 , •.• , X N· Define 

Ht. ( \' )= (N) 1 L ... L l(h.;(X~I' ... , X~J ~Y;;) ,l,/ .I/ m 
1 ~ l't < · · · <VA~ N 

(3.1 ) 

with Yue~. the marginal empirical df of U-statistic structure based on the 
(marginal) bootstrap sample X;"1 , ••• , X"'/N, i.e., the ith component of 
Xf, ... , X~. Here and elsewhere Xf, ... , X~ denotes a random sample drawn 
with replacement from ft N• conditionally given X 1 , .•• , X N· Define 
~11(p)=H'N:/;(p), O<p<l, with Ht.;.; as in (3.1). Let P'/: denote 
probability corresponding to FN. · 

THEOREM 3.1. (a) Let HF. ;,1 be continuously differentiable (with den
sity hF, ;, 1) on a neighborhood of ~p,, with hF, ;, 1 (~u(Pii)) > 0. Then, for almost 
every sample sequence X 1 , X 2 , •. ., 

sup IP~(_jN (~* - 0 ~y)- <P(y; 0, m 2D lf} 12 ED !f} 12 )1 
y 

-+ 0, as N-+ oo. (3.2) 

(b) In addition, if h 1.: ;. ; sati.~fies a Lipschit:::: condition of order 1 on 
a neighborhood of ~;;(P;;). i= 1, ... , k,j= 1, ... , q, and L' is positive definite, 
then 

sup IP~( fa(~* - ~) ~y)- P(fa (~ - ~) ~y)I = O(N 114(ln N) 314 ) (3.3) 
y 

a.s. [P], as N-+ oo. 

Proof Similarly as in the proof of Theorem 2.1 of Helmers, Janssen, 
and Veraverbeke (1992) we write 

P,t;(fa (~* - ~) ~y) = P~( w~.;. 1 (Y;;l ~ -D N. i.j• i= 1, ... , k,J = 1, ... , q), 

(3.4) 
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where 

wi --( v -J = IN { H * __ ( H 1 _ ( P ) + 1. v 1 2 ) 
, l,J .. If "\} l'I 1. N.t,.J lV',1.1 U ., ij'-

-ff - -(H- 1 ( -) ·N 1_2 I 
N.1.1 N.i.j P;, +J,i )), (3.5) 

and 

with 

N N 

HN - -(v-)=N- m" 
, I.) ., y L.. I l(h;(X;,,, ... , X;,J~yii) (3.7) 

v1 =I vm= l 

for i = 1, ... , k, j = 1, ... , q. As in Helmers, Janssen, and Veraverbeke( 1992) 

we obtain 

D N. i.i--> YuhF. u(~;;(P;;)) a.s. [P] (3.8) 

as N--> oo, i= 1, ... , k,j= 1, ... , q. 

To proceed we deal with the random variables W~. i.i ( y ii) defined in 

( 3.5 ). Note that 

S] Sm 

1 1_·2 \ 
~ H N. u(Pul + YuN J ), i= I, ... , k,j= I, ... , q 

is of U-statistic structure, with kernel 

- ~m L .. · L J{hj(X;, 1 , ••• , X;,,,,) 
si Sm 

~ H i ( ) + , N i_,2 \ 
" N, i,j p i1 J ii I 

(3.9) 

( 3.10) 

for all (x 1 , •• ., xm) E !Rm. The next step is to check that an order bound 

similar to (2.11) holds true here too. Because the g~_ i. /s are bounded 

by I in absolute value we indeed have that, for each r?:: 2, 

N 

E~(ri.i.j(Yul- I E~(ri_;_ 1 (Y;illX,nl"'=O(N ') (3.lll 
s=l 



104 HELMERS AND HUSKOY A 

a.s. [P], as N--. oo. Here T'N,;.j(Yu) is defined by (2.7) with Xu replaced by 

XJ, HF.i,J by HN,i,J• and HN.i.J by H'N.i.J· 
Similarly as in the proof of Theorem 2.1, relation (2.3 ), our problem 

reduces to one of proving the result 

Pt (I ~ (PJ:,(hj(X;t, x~I' ... , Xtm-1) 
s=t ...;N 

~ HN. 1;, 1(Pul + YuN- 112 I X;'t)- PJ:,(h1(Xfi, ... , Xt,,) 

~ HN_ 1;jPul + YuN- 112 ) ~ zu, i= 1, ... , k,J = 1, .. ., q) 

- <P(z; 0, N varJ:,{EJ:,(T~(y) I Xi*J)}) ~ 0 ( 3.12) 

a.s. [ P], as N--. oo, where we have used the fact that 

N 

I E~(T'N.;, 1 (YullX;t) 
s=l 

N ( (N) -l 

=,~1 JN m v~·-.·~rn 

E~ ( ( /{ h1(X~1' .. ., X~rn) ~ H;.;,1;,1(Pu) + YuN- i;2} 

- N- m L .. ·I f{h1(X;s 1, .. ., X;sJ ~ H/V, 1;,j(Pu) + YuN- 112 }) I X;t) 
s1 sm 

N 

=-11~ "[, (P'N(h1 (X;t,X~2 ,. .. ,XtJ~HN,~(Pu)+yuN ! 12 IX;~) 
,A,=i 

- P~(hi(Xjl> .. ., X'!;,,)~HN,i.J(Pu)+ YuN-i 12 1Xit')), (3.13) 

where s ~ : \'2, .. ., vm} and V2 < ... < vm in the next to last line. To proceed 
we note that (3.13) in turn is equal to 

_'_!_!__;., m+l" "({ * -. L N L., ... L., I h1(X;,, xisp .. ., X;Sm-1) 
'\ .\ \-=I S{ Sm- l 

1 N 

~HN.\.1(Pu)+ YuN-l 12 }-N L I{(h1(Xil, xis1• .. ., Xism-1) 
1=1 

~HN-i .. (p .. )+y .. N-112}). (3.14) 
'l,J lj u 
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Also, note that the expression withing curly brackets appearing in the Var.~ 
matrix in (3.12) is nothing but the kq-vector. 

EZ( TJ(y) I Xi*) = (EZ( T:t. i. 1(yij) I X[i), i = 1, ... , k, j = 1, ... , q). 

Clearly (3.12) is true, since £*( T J( y) I x_n is a sum of i.i.d. random vectors 
(conditionally given X 1 , ... , XN). It remains, however, to investigate the 
covariance matrix of E Z( T J(y) I Xi* ), conditionally given X 1, .. ., X N· To do 
this, we first check that 

N var,t{ EZ(T;t, i.J(Yu) IX,*) 

-EZ(T:t. i,j((H;.,\jPu)-HN.\1(P;1)) jN) I xn} (3.15) 

is sufficiently small. In fact, we have 

N var,t{ EZ( Tt, i,J (yu)- Tt. u(fa (H~:. '.. 1(PiJ) 

- H N.\j(Pi,))) I xin ~ m 2E.~(P~(h,(Xi1' ... , x~.) 

E (H"N,\)Pu), H N,\1(Pu) + YuN- Jil) I xi;) )2 

( 3.16) 

At this point we use the almost sure bound ( cf. Corollary 2.1 of Helmers, 
Janssen, and Serfling, 1988, p. 78) 

( 
N )112 

limsup -- suplHr.u(x)-HN,i,J(x)l~Cm 
N~ 00 log N x 

(3.17) 

a.s. [P], as N--. w, with Cm as in the corollary, as well as the fact that 

P,t(h1(X[1 , .. ., Xt,,) E (H/V.1u(Pu), HN. 1i.J(Pul + YiiN- 112 ) I X71) 

+ yiiN-112)} + O(N-1) 

a.s. [P], as N--> w. Also, we have 

E [N-m + 1 I, .. ·I, (I{ h1(x, Xivi' .. ., XivJ 
v2 < · · · < Vm 

(3.18) 

E (HN-1. (Pu), H/V \ 1 (p;) + J';iN · 112)} - P(h1(x, Xiv1 , .• ., X;vJ 
•I,) , • , . . 

E (HN,\jPu), H/V,1i,J(Pul + YuN' 112))T' = O(N-') (3-19 ) 



106 HELMERS AND HUSKOV A 

for any integer r ;;o: 2 ( cf. Serfling, 1980, p. 185 ), and the easily verified fact 
that 

P(hj(x, X;,. 2, ••• , X;v.) 

E (H ;.\.;(Pu), H,~. 1;, 1 (Pul+ YuN- 112 )) - 0, as N - co. (3.20) 

We can conclude that 

NvarME~(Tt,;,j(Yul- Tt,;,;((H;;,:.;(Pul- HN, i,J(Pull JN) I x;n -o 
(3.21) 

a.s. [P], as N - co. In other words: the quantity (3.15) is indeed small 
enough for our purposes. 

To complete our proof of (3.2) we must still show that 
, m-, -m+I'\ '\ {l(X 1 }2 JiL...N L... ... L.../ z; ; .. 1, ••• ,X; .. ,,,)~HF.;.;(P;;) 

\'] \'2 Vm 

- m2E(P(h;(X; 1 • ••• , X;111) ~Hr. :.;(P;;) I X; 1 ))2 (3.22) 

a.s. [P], as N - co. But this follows from the fact that 

\'2 Vm 

(3.23) 

A similar argument gives the desired convergences for the other elements of 
the covariance matrix in (3.12). This completes the proof of (3.2). 

Next we establish the a.s. rate of convergence asserted in (3.3 ). Our argu
ment follows the pattern of proof given in Theorem 3.1 of Helmers, 
Janssen, and Veraverbeke (1992). Quite similarly, we write 

3 

sup IPt(N 112(t*-O~y)-P(N 112(t-O~y)I ~I f;N• (3.24) 
y i= 1 

where, for some suitable constant K> 0, 

I1N = sup , I Pt(N 112 ( t* - tl ~ y) - <P (y; 0, m2 D H,' 12 ID Hf112 ) I 
llYll.;; K(log NIL. 

(3.25) 

l2N= sup jPt(N 112(t*-t)~y)-<P(y;O,m2DH,' 12 LDHf112)1 
llYll > K(log N) 112 

(3.26) 
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and 

13N= s~p I P(N112(~ - ~) ~y)- et> (.v; 0, m2D H,12 ID H,1 i )I (3.27) 

where II· II denotes the euclidean norm in JR''I. Because of Theorem 2.1, 
relation (2.4), we know that l 3N=O(N- 12 ). To treat 12.v we apply exactly 
the same argument as that employed in Helmers, Janssen, and Veraverbeke 
( 1992 ), at a similar point, to establish that J2N = O(N- 1,2 ), a.s. [P], as 
N-+ oo. To show, finally, that 

l1N = O(N-112(1og N)3i4) 

a.s. [P], as N-+ oo we combine the fact that 

sup lfa (pu- Hu_;(HF.~.;(P;,) + Y;;N 12 )) + _l';;hF.i. ;(~;;(P;;))i 
ly,11.;; K(log N) 11 

a.s. [P], as N-+ oo, for i= 1, .. ., k,j= 1, ... , q, together with Theorem 1.16 
of Gotze (1987) with (3.21) and (3.22). I 
Theorem 3.1 extends results of Singh (1981) and Helmers, Janssen, and 
Veraverbeke (1992) to a wide class of multivariate generalized quantiles, 
i.e., to multivariate U-quantiles. 

4. EXTENSIONS AND EXAMPLES 

It is well known (see, e.g., Bickel and Freedman, 1981) that "the 
bootstrap commutes with smooth functions." In view of this the following 
useful result is not very suprising: 

COROLLARY 4.1. Suppose that g: !Rkq-+ !Rk is continuously differentiable 
in a neighborhood of~= (~u(Pii), i= 1, ... , k,j= 1, .. ., q) with ~u(P;;) as in 
( 1.3 ). Jn addition, suppose that the derivative of g at the point ~ is non-zero 
and that the assumptions of Theorem 3.la are satisfied. Then, for almost 
every sample sequence X 1, X 2 , ... 

x 

-+O, as N-+ oo ( 4.1) 

Proof Following the pattern of the proof given by Bickel and Freed
man (1981), (4.1) is easily verified using (3.2), (2.3), a Taylor expansion 
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argument, and the fact that e--+ e, a.s. [P], as N--+ oo (cf. Corollary 3.2 of 
Helmers, Janssen, and Serfling ( 1988)) as well as 

in P*-probability (4.2) 

a.s. [P], as N--+ oo. To verify (4.2) we need the requirement that e be 
uniquely determined. But this is an easy consequence of the local smooth
ness assumption on HF· I 

The a.s. rate at which the sup in (4.1) approaches zero is easily checked to 
be O(N- 114 (1n N) 314 ), under somewhat more stringent smoothness assump
tions on g and HF· Because all of this is fairly straightforward in view of 
Theorem 3.1 (b) and Corollary 4.1 we omit further details. 

A second extension is obtained by allowing the kernels hj, j = 1, ... , q, to 
have possibly different degrees m 1 , ••• , mq. More generally, we may even let 
the degree m of hj(X;1, ••• , X;m), i= 1, ... , k,j= 1, ... , q (cf. (1.2)) not only 
depend on j, but also on i. It is easily verified that all the results of this 
paper remain valid, without any further changes. Clearly, in this way the 
range of applications is considerably enhanced. 

Next we discuss a few specific examples of multivariate U-quantiles. In 
the first of these we take q = 1, m = 1, and h 1 (x) = x and obtain the 
k-vector of ordinary marginal pth sample quantiles. Similarly, by taking 
q=l, m=2, h1(x 1,x2 )=(x1 +x2)/2 we obtain the k-vector of marginal 
Hodges-Lehmann location estimators, whereas the choice q = 1, m = 2, 
h1(x 1,x2 )=lx1-x2 1 gives us the k-vector of estimators of spread 
proposed by Bickel and Lehmann ( 1979 ). In each of these cases 
Theorem 3.1 tells us that the bootstrap works. 

A second type of examples is obtained by taking q = 2. For example, let 
us take all pij's equal to !. m=2, h 1(x 1 , x 2 )= (x 1 +x2 )/2, and 
h1(X1, X2)= lx1-X2I· In this setup e becomes a vector which consists of k 
pairs of (marginal) estimators; the first component is the Hodges-Lehmann 
location estimator and the second one the Bickel-Lehmann estimator of 
spread. Again, Theorem 3.1 can be employed to find that the bootstrap 
approximation is asymptotically valid in this case too. 

Our third example gives an application of Corollary 4.1. We take q·= 3, 
m=l, hj(x)=x,}=1,2,3, andpil=!, p;2 =~, p;3 =~, i=l, ... ,k, and let 
g: IR 3k--+ IRk be the map which sends the ith marginal (~; 1 , e;2 , ei3) of~ into 
~; 1 /( ~ i3 - ~ ; 2 ), i = 1, ... , k. The resulting estimator is the k-vector of 
marginal sample medians divided by the marginal sample interquartile 
ranges. Corollary 4.1 asserts that the bootstrap also works here. Of course 
one can easily supplement this example with many others: e.g., one may 
consider a linear combination of a fixed number of marginal ordinary 
sample quantiles in each component or-to give another example-
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consider the quotient of the Bickel-Lehmann estimator of spread and the 
Hodges-Lehmann location estimator in each component (i.e., a generalized 
"coefficient of variation"). 
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