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Abstract
A proper edge-colouring with the property that every cycle contains edges of at least three
distinct colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph
G, denoted χ′

a(G) is the minimum k such that G admits an acyclic edge-colouring with k
colours. We conjecture that if G is planar and Δ(G) is large enough then χ′

a(G) = Δ(G).
We settle this conjecture for planar graphs with girth at least 5 and outerplanar graphs. We
also show that if G is planar then χ′

a(G) ≤ Δ(G) + 25.
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1 Introduction

A proper edge-colouring with the property that every cycle contains edges of at
least three distinct colours is called an acyclic edge-colouring. The acyclic chro-
matic index of a graph G, denoted χ′

a(G) is the minimum k such that G admits an
acyclic edge-colouring with k colours.

Conjecture 1.1 (Alon et al. [1]) For every graph G, χ′
a(G) ≤ Δ(G) + 2.

This conjecture would be tight as there are cases where more than Δ+1 colours
are needed. However, the only known such graphs G are subgraphs of K2n. There-
fore the following conjecture might even be true:

Conjecture 1.2 (Alon et al. [1]) If G is a Δ-regular graph then χ′
a(G) = Δ(G)+1

unless G = K2n.

Molloy and Reed [4] showed χ′
a(G) ≤ 16Δ(G), which is the best general

upper bound so far. For graph with large girth, better upper bounds are known. For
example, Alon et al. also showed that Conjecture 1.1 is true for graphs with girth
at least CΔ log(Δ) for some fixed constant C.

Muthu et al [5] proved that χ′
a(G) ≤ 2Δ(G) + 29 if G is planar and χ′

a(G) ≤
Δ(G) + 6 if G is planar and triangle-free. In this paper, we improve the first of
these two results.

Theorem 1.3 χ′
a(G) ≤ Δ(G) + 25 for all planar graphs G.

It is known (see [7]) that a planar graph G is Δ(G)-edge-colourable if Δ(G) is
large. We conjecture that the same is true for acyclic edge-colouring.

Conjecture 1.4 There exists Δ0 such that every planar graph with maximum de-
gree Δ ≥ Δ0 has an acyclic edge-colouring with Δ colours.

As evidences to this conjecture, we show that it holds for planar graphs of girth
at least 5. In fact we prove the following more general result regarding graphs with
bounded maximum average degree. Recall that the maximum average degree of G
is Mad(G) = max{2|E(H)|

|V (H)| | H is a subgraph of G}. It is well known that a planar
graph of girth g has maximum average degree less than 2 + 4

g−2
.

Theorem 1.5 For any ε > 0, there exists an integer Δε such that if Δ(G) ≥ Δε

and Mad(G) ≤ 4 − ε then χ′
a(G) = Δ(G).

Moreover, we show that Conjecture 1.4 holds for outerplanar graphs. This im-
prove the upper bound Δ+1 for the acyclic edge-chromatic number of such graphs
obtained by Muthu et al. [5]. Note that sup{Mad(G) | G is outerplanar} = 4.
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The detailed proofs of all these results may be found in [3]. We just give here
sketches of the proofs of Theorem 1.3 and 1.5.

2 Sketch of proofs

The proof of Theorem 1.3 relies heavily on a structural result that can be derived
from a theorem of Borodin et al. [2]. Before stating this structural result we need to
introduce some notation and terminology. Let G be a graph. A vertex v is said to be
good if its degree is at most 5 and it has a neighbour v∗ such that

∑
u∈N(v)\v∗ d(u) ≤

38 and for all u ∈ N(v)\v∗, d(u) ≤ 25. We say that G has a bunch of length m ≥ 3
with poles the vertices p and q ( where p �= q ), if G contains a sequence of paths
(P1, P2, . . . Pm) with the following properties. Each Pi has length 1 or 2 and joins
p with q. Furthermore, for each i = 1, . . . , m − 1, the cycle formed by Pi and Pi+1

is not separating in G (i.e., has no vertex of G inside). If a path Pi in the bunch has
length 2, i.e., Pi = pviq, then the vertex vi will be called a bunch vertex. A path
Pi = pq of length 1 in the bunch will be referred to as a parental edge.

Theorem 2.1 below is a relatively straightforward corollary to a theorem in [2],
and it will play an important role in our proof of Theorem 1.3 below.

Theorem 2.1 For every plane graph at least one of the following holds:

(i) G has a good vertex v;

(ii) G has a vertex v that is a pole for 1 ≤ k ≤ 6 bunches of length at least 6, and
has at most 24 − 4k neighbours that are not part of these bunches.

Proof of Theorem 1.3 (Sketch) For the sake of presentation we sketch the proof that
χ′

a(G) ≤ Δ + 38 for all planar G. The proof of Δ + 25 is very similar but slightly
more involved. We consider a minimal counterexample G. We first show that G
has the following property:
• If (P1, . . . , Pm) is a bunch in G with m ≥ 6 and if for some 2 ≤ i ≤ m − 2

neither of the paths Pi, Pi+1 is a parental edge, then vivi+1 is not an edge.

This is shown by extending an acyclic edge colouring of G \ vivi+1 with Δ + 38
colours (which exists by minimality), as follows. If 3 ≤ i ≤ m − 3 then we can
find a colour for vivi+1 that is distinct from the colours used on edges incident with
either p, vi−1, vi, vi+1 or vi+2 (there are at most Δ + 8 such edges) to obtain an
acyclic edge colouring of G. Now consider i = 2. As v3v4 is not an edge, if v1v2

has a colour different from those of pv3, qv3 any colour different from the colours
of edges indicent with p, v2 or v3 (and there are at most Δ + 3 of those) will result
in an acyclic edge colouring of G with Δ + 38 colours. If v1v2 has the same colour
as pv3 we also pick a colour for v2v3 that differs from the colours of edges indicent
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with p, v2 or v3, and if v1v2 has the same colour as qv3 then we pick a colour for v2v3

that differs from the colours of edges indicent with q, v2 or v3. The case i = m− 2
is analogous to the case i = 2.

Next, we show:
• G does not have a good vertex.

To prove this, suppose v is a good vertex. We extend an acyclic edge colouring
of G\v with Δ+38 colours as follows. Assume d(v) = 5 (the case when d(v) < 5
is similar) and write N(v) = {v∗, u1, u2, u3, u4} where d(v∗) ≥ d(ui) for i =
1, . . . , 4. We colour vv∗ with a colour different from those of edges incident with
v∗, u1, . . . , u4 (there are at most Δ − 1 + 38 − 4 such edges in G \ v by definition
of a good vertex), and we colour the vui with colours different from those of edges
incident with u1, . . . , u4.

Since there is no good vertex, by Theorem 2.1, there exists a vertex p that is a
pole for 1 ≤ k ≤ 6 bunches of length at least 6 and has at most 24− 4k neighbours
not in those bunches. Let us denote those bunches by B1 = (P 1

1 , . . . , P 1
m1

), . . . , Bk =
(P k

1 , . . . , P k
mk

). Let us denote the other pole of Bi by qi and we will denote the mid-
dle vertex of P i

j by vi
j if it exists. We have d(vi

j) = 2 for all 3 ≤ j ≤ mi − 2 and
1 ≤ i ≤ k. We can assume (w.l.o.g.) that P 1

3 is not a parental edge. By minimality
of G there is an acyclic edge colouring of G \ v1

3 with Δ + 38 colours. We extend
it as follows. For pv1

3 we choose a colour different from those used on the edges
vi

1v
i
2, v

i
mi−1v

i
mi

and the edges incident with p (there are at most Δ − 1 + 12 such
edges). Next we colour q1v

1
3 with a colour different from those used on pv1

3 , the
edges incident with q1, the edges pvi

1, pv
i
mi

, pqi, the edges incident with p that do
not belong to the bunches and those edges pvi

j for which qiv
i
j has the same colour

as pv1
3 (there are at most 1+Δ−1+2k+24−4k+k+k = Δ+24 such edges). It

can be checked that this indeed gives an acyclic edge colouring of G with at most
Δ + 38 colours. �

Proof of Theorem 1.5 (Sketch) By considering a minimal counterexample G.
A thread is a path of length two whose internal vertex has degree 2. We first

show that G has the following properties:
• G is 2-connected. In particular, δ(G) ≥ 2.
• For every vertex v ∈ V (G),

∑
u∈N(v) d(u) ≥ Δ + 1.

• A Δ-vertex is the end of at most k threads whose other endvertex has degree at
most k.

• A (Δ − l)-vertex is the end of at most k − 1 − l threads whose other endvertex
has degree at most k.
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We then use the discharging method. We assign an initial charge of d(v) to each
vertex v and discharge according to the following rules where dε =

⌈
8
ε
− 2

⌉
.

R1: for 4 ≤ d < dε, every d-vertex sends a(d) = 1 − 4−ε
d

to each neighbour.

R2: for dε ≤ d ≤ Δ + 1 − dε then every d-vertex sends 1 − ε
2

to each neighbour.

R3: for Δ + 2 − dε ≤ d ≤ Δ then every d-vertex sends
- 1 − ε to each 3-neighbour;
- 2 − ε to each 2-neighbour whose second neighbour has degree 2 or 3;
- b(d) = 2 − ε − a(d) to each 2-neighbour whose second neighbour has degree

d with 4 ≤ d < dε;
- 1 − ε

2
to each 2-neighbour whose second neighbour has degree d ≥ dε.

We then check that every vertex v has final charge f(v) at least 4 − ε if Δ ≥ Δε =⌈
2
ε

([
dε − 2 + 3(2 − ε) +

∑dε−1
d=4 b(d) − (1 − ε

2
)(dε − 1)

]
+ 4 − ε

)⌉
. Hence G has

average degree at least 4 − ε, which is a contradiction. �
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