Acyclic edge-colouring of planar graphs. Extended abstract

Nathann Cohen, Frédéric Havet ${ }^{1,3,2}$

Projet Mascotte
I3S(CNRS, UNSA) and INRIA
Sophia-Antipolis, France

Tobias Müller ${ }^{4,2}$
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University Tel Aviv, Israel

Abstract

A proper edge-colouring with the property that every cycle contains edges of at least three distinct colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph G, denoted $\chi_{a}^{\prime}(G)$ is the minimum k such that G admits an acyclic edge-colouring with k colours. We conjecture that if G is planar and $\Delta(G)$ is large enough then $\chi_{a}^{\prime}(G)=\Delta(G)$. We settle this conjecture for planar graphs with girth at least 5 and outerplanar graphs. We also show that if G is planar then $\chi_{a}^{\prime}(G) \leq \Delta(G)+25$.

Keywords: edge-colouring, graphs of bounded density, planar graph, outerplanar graph

[^0]
1 Introduction

A proper edge-colouring with the property that every cycle contains edges of at least three distinct colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph G, denoted $\chi_{a}^{\prime}(G)$ is the minimum k such that G admits an acyclic edge-colouring with k colours.
Conjecture 1.1 (Alon et al. [1]) For every graph $G, \chi_{a}^{\prime}(G) \leq \Delta(G)+2$.
This conjecture would be tight as there are cases where more than $\Delta+1$ colours are needed. However, the only known such graphs G are subgraphs of $K_{2 n}$. Therefore the following conjecture might even be true:
Conjecture 1.2 (Alon et al. [1]) If G is a Δ-regular graph then $\chi_{a}^{\prime}(G)=\Delta(G)+1$ unless $G=K_{2 n}$.

Molloy and Reed [4] showed $\chi_{a}^{\prime}(G) \leq 16 \Delta(G)$, which is the best general upper bound so far. For graph with large girth, better upper bounds are known. For example, Alon et al. also showed that Conjecture 1.1 is true for graphs with girth at least $C \Delta \log (\Delta)$ for some fixed constant C.

Muthu et al [5] proved that $\chi_{a}^{\prime}(G) \leq 2 \Delta(G)+29$ if G is planar and $\chi_{a}^{\prime}(G) \leq$ $\Delta(G)+6$ if G is planar and triangle-free. In this paper, we improve the first of these two results.

Theorem $1.3 \quad \chi_{a}^{\prime}(G) \leq \Delta(G)+25$ for all planar graphs G.
It is known (see [7]) that a planar graph G is $\Delta(G)$-edge-colourable if $\Delta(G)$ is large. We conjecture that the same is true for acyclic edge-colouring.

Conjecture 1.4 There exists Δ_{0} such that every planar graph with maximum degree $\Delta \geq \Delta_{0}$ has an acyclic edge-colouring with Δ colours.

As evidences to this conjecture, we show that it holds for planar graphs of girth at least 5 . In fact we prove the following more general result regarding graphs with bounded maximum average degree. Recall that the maximum average degree of G is $\operatorname{Mad}(G)=\max \left\{\left.\frac{2|E(H)|}{|V(H)|} \right\rvert\, H\right.$ is a subgraph of $\left.G\right\}$. It is well known that a planar graph of girth g has maximum average degree less than $2+\frac{4}{g-2}$.
Theorem 1.5 For any $\epsilon>0$, there exists an integer Δ_{ϵ} such that if $\Delta(G) \geq \Delta_{\epsilon}$ and $\operatorname{Mad}(G) \leq 4-\epsilon$ then $\chi_{a}^{\prime}(G)=\Delta(G)$.

Moreover, we show that Conjecture 1.4 holds for outerplanar graphs. This improve the upper bound $\Delta+1$ for the acyclic edge-chromatic number of such graphs obtained by Muthu et al. [5]. Note that $\sup \{\operatorname{Mad}(G) \mid G$ is outerplanar $\}=4$.

The detailed proofs of all these results may be found in [3]. We just give here sketches of the proofs of Theorem 1.3 and 1.5 .

2 Sketch of proofs

The proof of Theorem 1.3 relies heavily on a structural result that can be derived from a theorem of Borodin et al. [2]. Before stating this structural result we need to introduce some notation and terminology. Let G be a graph. A vertex v is said to be good if its degree is at most 5 and it has a neighbour v^{*} such that $\sum_{u \in N(v) \backslash v^{*}} d(u) \leq$ 38 and for all $u \in N(v) \backslash v^{*}, d(u) \leq 25$. We say that G has a bunch of length $m \geq 3$ with poles the vertices p and q (where $p \neq q$), if G contains a sequence of paths $\left(P_{1}, P_{2}, \ldots P_{m}\right)$ with the following properties. Each P_{i} has length 1 or 2 and joins p with q. Furthermore, for each $i=1, \ldots, m-1$, the cycle formed by P_{i} and P_{i+1} is not separating in G (i.e., has no vertex of G inside). If a path P_{i} in the bunch has length 2, i.e., $P_{i}=p v_{i} q$, then the vertex v_{i} will be called a bunch vertex. A path $P_{i}=p q$ of length 1 in the bunch will be referred to as a parental edge.

Theorem 2.1 below is a relatively straightforward corollary to a theorem in [2], and it will play an important role in our proof of Theorem 1.3 below.

Theorem 2.1 For every plane graph at least one of the following holds:
(i) G has a good vertex v;
(ii) G has a vertex v that is a pole for $1 \leq k \leq 6$ bunches of length at least 6 , and has at most $24-4 k$ neighbours that are not part of these bunches.

Proof of Theorem 1.3 (Sketch) For the sake of presentation we sketch the proof that $\chi_{a}^{\prime}(G) \leq \Delta+38$ for all planar G. The proof of $\Delta+25$ is very similar but slightly more involved. We consider a minimal counterexample G. We first show that G has the following property:

- If $\left(P_{1}, \ldots, P_{m}\right)$ is a bunch in G with $m \geq 6$ and if for some $2 \leq i \leq m-2$ neither of the paths P_{i}, P_{i+1} is a parental edge, then $v_{i} v_{i+1}$ is not an edge.
This is shown by extending an acyclic edge colouring of $G \backslash v_{i} v_{i+1}$ with $\Delta+38$ colours (which exists by minimality), as follows. If $3 \leq i \leq m-3$ then we can find a colour for $v_{i} v_{i+1}$ that is distinct from the colours used on edges incident with either $p, v_{i-1}, v_{i}, v_{i+1}$ or v_{i+2} (there are at most $\Delta+8$ such edges) to obtain an acyclic edge colouring of G. Now consider $i=2$. As $v_{3} v_{4}$ is not an edge, if $v_{1} v_{2}$ has a colour different from those of $p v_{3}, q v_{3}$ any colour different from the colours of edges indicent with p, v_{2} or v_{3} (and there are at most $\Delta+3$ of those) will result in an acyclic edge colouring of G with $\Delta+38$ colours. If $v_{1} v_{2}$ has the same colour as $p v_{3}$ we also pick a colour for $v_{2} v_{3}$ that differs from the colours of edges indicent
with p, v_{2} or v_{3}, and if $v_{1} v_{2}$ has the same colour as $q v_{3}$ then we pick a colour for $v_{2} v_{3}$ that differs from the colours of edges indicent with q, v_{2} or v_{3}. The case $i=m-2$ is analogous to the case $i=2$.

Next, we show:

- G does not have a good vertex.

To prove this, suppose v is a good vertex. We extend an acyclic edge colouring of $G \backslash v$ with $\Delta+38$ colours as follows. Assume $d(v)=5$ (the case when $d(v)<5$ is similar) and write $N(v)=\left\{v^{*}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ where $d\left(v^{*}\right) \geq d\left(u_{i}\right)$ for $i=$ $1, \ldots, 4$. We colour $v v^{*}$ with a colour different from those of edges incident with $v^{*}, u_{1}, \ldots, u_{4}$ (there are at most $\Delta-1+38-4$ such edges in $G \backslash v$ by definition of a good vertex), and we colour the $v u_{i}$ with colours different from those of edges incident with u_{1}, \ldots, u_{4}.

Since there is no good vertex, by Theorem 2.1, there exists a vertex p that is a pole for $1 \leq k \leq 6$ bunches of length at least 6 and has at most $24-4 k$ neighbours not in those bunches. Let us denote those bunches by $B_{1}=\left(P_{1}^{1}, \ldots, P_{m_{1}}^{1}\right), \ldots, B_{k}=$ $\left(P_{1}^{k}, \ldots, P_{m_{k}}^{k}\right)$. Let us denote the other pole of B_{i} by q_{i} and we will denote the middle vertex of P_{j}^{i} by v_{j}^{i} if it exists. We have $d\left(v_{j}^{i}\right)=2$ for all $3 \leq j \leq m_{i}-2$ and $1 \leq i \leq k$. We can assume (w.l.o.g.) that P_{3}^{1} is not a parental edge. By minimality of G there is an acyclic edge colouring of $G \backslash v_{3}^{1}$ with $\Delta+38$ colours. We extend it as follows. For $p v_{3}^{1}$ we choose a colour different from those used on the edges $v_{1}^{i} v_{2}^{i}, v_{m_{i}-1}^{i} v_{m_{i}}^{i}$ and the edges incident with p (there are at most $\Delta-1+12$ such edges). Next we colour $q_{1} v_{3}^{1}$ with a colour different from those used on $p v_{3}^{1}$, the edges incident with q_{1}, the edges $p v_{1}^{i}, p v_{m_{i}}^{i}, p q_{i}$, the edges incident with p that do not belong to the bunches and those edges $p v_{j}^{i}$ for which $q_{i} v_{j}^{i}$ has the same colour as $p v_{3}^{1}$ (there are at most $1+\Delta-1+2 k+24-4 k+k+k=\Delta+24$ such edges). It can be checked that this indeed gives an acyclic edge colouring of G with at most $\Delta+38$ colours.

Proof of Theorem 1.5 (Sketch) By considering a minimal counterexample G.
A thread is a path of length two whose internal vertex has degree 2. We first show that G has the following properties:

- G is 2-connected. In particular, $\delta(G) \geq 2$.
- For every vertex $v \in V(G), \sum_{u \in N(v)} d(u) \geq \Delta+1$.
- A Δ-vertex is the end of at most k threads whose other endvertex has degree at most k.
- A $(\Delta-l)$-vertex is the end of at most $k-1-l$ threads whose other endvertex has degree at most k.

We then use the discharging method. We assign an initial charge of $d(v)$ to each vertex v and discharge according to the following rules where $d_{\epsilon}=\left\lceil\frac{8}{\epsilon}-2\right\rceil$.
R1: for $4 \leq d<d_{\epsilon}$, every d-vertex sends $a(d)=1-\frac{4-\epsilon}{d}$ to each neighbour.
R2: for $d_{\epsilon} \leq d \leq \Delta+1-d_{\epsilon}$ then every d-vertex sends $1-\frac{\epsilon}{2}$ to each neighbour.
R3: for $\Delta+2-d_{\epsilon} \leq d \leq \Delta$ then every d-vertex sends

- $1-\epsilon$ to each 3-neighbour;
- $2-\epsilon$ to each 2-neighbour whose second neighbour has degree 2 or 3;
$-b(d)=2-\epsilon-a(d)$ to each 2-neighbour whose second neighbour has degree d with $4 \leq d<d_{\epsilon}$;
- $1-\frac{\epsilon}{2}$ to each 2 -neighbour whose second neighbour has degree $d \geq d_{\epsilon}$.

We then check that every vertex v has final charge $f(v)$ at least $4-\epsilon$ if $\Delta \geq \Delta_{\epsilon}=$ $\left[\frac{2}{\epsilon}\left(\left[d_{\epsilon}-2+3(2-\epsilon)+\sum_{d=4}^{d_{\epsilon}-1} b(d)-\left(1-\frac{\epsilon}{2}\right)\left(d_{\epsilon}-1\right)\right]+4-\epsilon\right)\right]$. Hence G has average degree at least $4-\epsilon$, which is a contradiction.

References

[1] N. Alon, B. Sudakov and A. Zaks. Acyclic edge-colorings of graphs. J. Graph Theory 37:157-167, 2001.
[2] O.V. Borodin, H.J. Broersma, A. Glebov, and J. van den Heuvel. Minimal degrees and chromatic numbers of squares of planar graphs. (in Russian). Diskretnyi Analiz i Issledovanie Operatsii. Seriya 1 :8(4), 9-33, 2001.
[3] N. Cohen, F. Havet and T. Müller. Acyclic edge-colouring of planar graphs. INRIA Research Report, RR-6876, 2009.
[4] M. Molloy and B. Reed. Further algorithmic aspects of Lovasz Local Lemma. In The 30th Annual ACM Symposium on Theory of Computing, pp. 524-529, 1998.
[5] R. Muthu, N. Narayanan and C. R. Subramanian. Acyclic edge colouring of outerplanar graphs. Lecture Notes in Computer Science 4508:144-152, 2008.
[6] R. Muthu, N. Narayanan and C. R. Subramanian. Acyclic edge colouring of planar graphs. Preprint IMSc Eprint 14.
[7] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are class I. J. Combin. Theory Ser. B 83(2):201-212, 2001.

[^0]: ${ }^{1}$ Partially suported by the eurpean project FET-AEOLUS
 ${ }^{2}$ The authors would like to thank Jan van den Heuvel for helpful discussions.
 ${ }^{3}$ Emails: nathann.cohen@sophia.inria.fr, fhavet@sophia.inria.fr
 ${ }^{4}$ Email: tobias@post.tau.ac.il

