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ON THE MORPHOLOGY OF y-EXPANSIONS 
WITH DELETED DIGITS 

MIKE KEANE, MEIR SMORODINSKY AND BORIS SOLOMYAK 

ABSTRACT. We investigate the size of the set of reals which can be represented 
in base Y using only the digits 0, 1,3. It is shown that this set has Lebesgue 
measure zero for y ~ 1/3 and equals an interval for y?: 2/5. Our main goal 
is to prove that it has Lebesgue measure zero for a certain countable subset of 
(1/3,2/5). 

0. INTRODUCTION 

In this article we investigate a seemingly simple problem concerning the size 
of certain compact subsets of the real line. Let us call such a set small if it 
has Lebesgue measure zero, large if it contains an interval, and intermediate, 
if it falls between small and large. Palis and Takens (see [PT, p. 151]) have 
asked whether the difference of two affine Cantor sets is either small or large. 
Studying this question, the first two authors were led in a natural manner to the 
following, apparently simpler problem. For each y in the unit interval, let 

Cy := .{LYnY11 : for each n, Yn E {O, 1, 3}}. 
11?: I 

For which y is Cy large? 
We show first that if y $ 1/3, then Cy is small, and if y 2: 2/5, then 

Cy is large. Our principal result is that there is a sequence Yk of algebraic 
integers, all lying between 1/3 and 2/5, such that each Cyk is small (in fact, its 
Hausdorff dimension is less than one). The main tool in the proof is the theory 
of P-expansions. 

These results were obtained in 1990-92 but for a number of reasons their 
publication was delayed. In the meantime remarkable progress has been made 
by Pollicott and Simon [PS] who proved, in particular, that the Hausdorff di­
mension of Cy is equal to one for a.e. y E ( 1/3, !(-J3 - 1 )). In the Ap­
pendix we show how a modification of their proof yields the same result for 
a.e. y E (1/3, 2/5). Though nothing is implied about the Lebesgue measure, 
this certainly sheds new light on the problem. 
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1. ELEMENTARY OBSERVATIONS 

In this section, we show that for y ~ 2/5 the set Cy is large, and for y ~ 1/3 
the set Cy is small. 

Proposition 1. If y ? 2/5, then Cy = [O, ~]. 

Proof For x E [O, ~] define 

and 

Then 

ifO:Sx<y, 

if y:::; x < 3y' 

if 3y:::; x:::; ~· 

1 
T(x) := -(x - n(x)y). 

y 

O:::; T(x):::; max (2, 1 
3! Y) = 1 ~ y, 

since 2 :::; ~ for y ? 2/ 5 . Thus under the hypothesis of the proposition, T 

maps [O, ~] to itself and we are allowed to iterate T . Defining 

Yn := n(rn- 1x), 

one easily shows by induction that 

x = Y1Y + Y2Y2 + · · · + YnYn + ynrn(x) 

for each n ? 1 . Therefore 
00 

X = LYnYn E Cy, 
n=I 

as desired. 

Proposition 2. If y:::; 1/3, then ICrl = 0. 

• 

Proof Splitting into the three possible values for y 1 , we see immediately that 

Cy = yCy u (y + yCy) u (3y + yCy). 

Subadditivity and scaling properties of Lebesgue measure then produces 

ICrl S 3yjCyj; 

thus if y < 1/3, then !Crl must be zero. A slight modification now yields the 
required result for y = 1 /3, as follows. In the representation of c.,, as a union 
of three sets above, the set 3y + yCy is disjoint from the other two sets of the 
union, since 

00 3 2 

r + L: 3yn = r + i ~ r < 3y 
n=2 

for any y < 2 / 5 , hence also for y = 1/3 . Setting 

I:=yCyn(y+yCy) 
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now leads to 

f Cr\ = 3y\Cr\ - [I[, 
which for y = 1/3 implies \/[ = 0. But the set 

y + y2Cr = 3y2 + y2Cr 

is contained in I if y = 1 /3, since then 3y2 == y. Thus 

\y + Y2Crf = Y2 fCr\ = 0 
as required, if y = 1/3 . 

2. PARAMETER VALUES BETWEEN 1/3 AND 2/5 

For k 2 1 , we denote by Yk the unique solution of 

l = 2y + 2y2 + ... + 2yk 

957 

lying in the unit interval. If k = 1 , then y1 = I /2 and by Proposition I, Cy, 
is large. For k 2 2, Yk E ( 1/3, 2/5) and one sees easily that 

1 I 3 < . . . < Y3 < Y2 < 2 I 5 

with 

lim Yk = 1/3. 
k-HXJ 

Proposition 3. For k 2 3 , \ Crk \ = 0. 

Proof Fix k 2 3 and set y := Yk . We have seen in the proof of Proposition 2 
that 

with 

I= yCy n (y + yCy). 
In this case, however, 3y > 1 , so that we shall need to find several scaled copies 
of Cy in I in order to conclude that \Cr\ = 0. We adopt the simple notation 

Then by definition 

so that 

This shows that 

Furthermore, 

-YI·· ·Yn := Y1Y + · · · + YnYn· 

1=.~, 
ktimes 

.0~=-~· 
k times k+I times 

. 11 ... 1+yk+ 1 cr~1 . ...___., 
k+I times 

.3=.~=l.~2, 
k+I times ktimes 
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so that 
.030 ... 01 = .100 ... 03' 

.030 ... 11 = .100 ... 13' 

.030 ... 31=.100 ... 33 

(each number containing k + 2 'digits'), and hence the sets 

.100 ... 03 + yk+2cr, 
Joo ... 13 + yk+2cr, 
.100 ... 33 + yk+2cr 

are subsets of I. We claim that these four subsets of I are mutually disjoint 
if k ;::: 3, leaving the simple calculations necessary to show this to the reader. 
Therefore 

ICrl = 3y1Crl - III 5 3y1Crl - l+' ICrl - 3yk+21Crl· 

If now ICrl > 0, then it follows that 

1 S 3y - yk+I - 3yk+2. 

But 3y - 1 = 2yk+I , so we obtain finally yk+I ;::: 3yk+2 and y < 1 /3, a 
contradiction. Hence I Cy I = 0 . • 

Proposition 4. ICr2 I = 0. 

Our proof of this proposition is rather long, and in one place mysterious. As 
it is not our intention to lose the reader during the calculations which follow, 
we try to explain what is going to happen first. We must consider all numbers 

00 

·YIY2Y3 · · · = LYn Yn 
n=I 

as above, where Yn E {O, 1, 3} for each n and y = y2 satisfies 

1=2y+2y2 

or, equivalently, 
1 = .22. 

All notations with a point are interpreted 'base gamma'. For any real number 
x, there is a canonical gamma expansion. We shall only be interested in values 
of x between 0 and 1 /y ; in this case we can write 

X = Xo.X1X2 ... 

with Xn E {O, 1, 2} and XnXn+I =f. 22 for each n 2: 0. The advantage of 
this expansion is that it is essentially unique, in the same way that the ordinary 
decimal expansion is unique. Thus, given any sequence y 1 , y2 , · · · E {O, 1, 3}, 
we can find xo , x1 , . . . as above such that 

·YIY2 · · · = Xo.X1X2 ...• 

In principle, given any x it is possible to calculate one by one symbols Yn E 

{ 0, 1 , 3} in order to express x as an expansion in these digits; sometimes this 
calculation branches (i.e., we may be able to use either Yn = 0 or Yn = 1 at 
stage n ), and sometimes it dies, showing that x does not belong to Cy. Just as 
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in the case of the decimal expansion, the gamma expansion is ergodic. That is, 
if we specify some admissible sequence b = b1 ... b1 of zeroes, ones, and twos 
(admissible meaning that bi bi+ I ¥- 22 for each i ), then the set of x whose 
canonical expansion does not contain b has Lebesgue measure zero. Thus in 
order to prove the proposition, it is sufficient to find a fixed admissible block 
b such that for any given y-sequence, the block b does not occur anywhere in 
the canonical expansion of this sequence. The mysterious part of the proof is 
that we have found such a block; it is 

b = 20000200020002. 

In order to show that for a fixed n , 

XnXn+I · · · Xn+l3 ":f:. b 

in the canonical expansion of any y-sequence, we proceed by splitting the y­
sequence into two parts: 

-Y1Y2 · · · = ·YI · · · Yn + .0. · · 0Yn+1Yn+2 · · · · 

First we calculate the effect which the initial part will have on the canonical 
expansion at the places n , n + 1 , . . . . This reduces the problem to finitely 
many cases, which are then examined separately to show that the given block b 
is impossible in each case, using the branching procedure alluded to above. 

We now begin by stating the properties of the canonical expansion, which can 
be found in [P,R,S]. They are all relatively easy to derive in the case 1 = 2y+2y2 

under consideration. 

Property 1. For each x E [O, 1 /y] there exists an admissible sequence x0 , x 1 , 
· · · E {O, 1, 2} (admissible meaning that XnXn+I ¥ 22 for each n ~ 0) such 
that 

X = Xo.X1X2 ·· ·· 

Property 2. Except for countably many x E [O, 1 /y], the admissible sequence 
in Property 1 is unique. The exceptions are exactly those x which have finite 
expansions, and they have exactly two representations (except for x = 0) : 

x = Xo.X1 ... Xk = Xo.X1 ... (xk - 1)212121 .... 

Property 3. If b is any admissible block, the set of x E [O, 1/y] whose admis­
sible sequences do not contain b at any place in their expansions has Lebesgue 
measure zero. 

In the sequel, we call x0.x1x2... the canonical expansion of x, using the 
finite version for the exceptions stated in Property 2. 

Now we fix a positive integer n , and begin to calculate the influence of the 
first n y-values. 

Lemma 1. If y1 , ... , Yn E {O, 1 , 3}, then the canonical expansion of ·YI ... Yn 
is of the form 

Xo.X1 · .. XnXn+IXn+2 
(i.e., xk = 0 for k ~ n + 3). Moreover, the triple XnXn+1Xn+2 belongs to the 
following list: 

L ={OOO, 002, 020, 100, 120, 200, 202}. 
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Proof For n = l there are three possibilities: 

.0 =.OOO, .1 = .100, .3 = 1.002, 

the last one coming from the equality 

.3 = .222 = 1.002. 

(Although one does get better at gamma arithmetic with practice, it remains 

surprisingly difficult to accomplish elementary manipulations in some cases!) 

Now proceed by induction, supposing that the lemma is valid for n - 1 and 

considering the three cases for Yn . The following table gives the new values 

XnXn+1Xn+2 as functions of the old values Xn-1XnXn+1: 

Yn = 0 Yn = 1 Yn = 3 
old new new new 
OOO OOO 100 002 
002 020 120 100 
020 200 002 202 
100 OOO 100 002 
120 200 002 002 or 202 
200 OOO 100 100 
202 020 120 120 

Again, some dexterity in calculation is necessary. The ambiguous case in which 

Yn = 3 and Xn-tXnXn+t = 120 is instructive. • 

Lemma 2. Let Yi, Y2, · · · E {O, 1, 3} and let 

X := ·YtY2 · · · = Xo.X1X2 ... 

be the associated canonical expansion. Let n ;::: 1 be fixed, and denote by 

x := ·Yt ... Yn = .Xo . .Xi ... Xn+2 

the canonical expansion of the first part of y. Suppose furthermore that Xn = 2. 

Then xi = Xi for each 0 s; is; n - 1. 

Proof On the one hand, 

X - X = .0. ·. 0Yn+tYn+2 · · · S .0 ... 033 · · · = yn + 2yn+t. 

On the other hand, if i is the least integer between 0 and n - l for which 

X; # Xi , then x, > x1 and 

x = xo.X1X2 · · · ~ xo.X1 ... x;O ... OxnO •.. 

(where Xn = 2 by hypothesis) and 

x = .Xo . .X1.X2 · · · S xo.x1 .. . xj. 

Therefore x - x ;::: 2yn, leading to 2yn S yn + 2yn+t and 1 s; 2y, a contradic­

tion. • 

Corollary 1. Under the hypotheses and notation of Lemma 2, 

·Yn+tYn+2 ···+a.be= Xn.Xn+tXn+2 ... 

for some abc EL (the list of Lemma 1). 

Proof. Use Lemmas 1 and 2, and multiply by y-n. • 

This concludes the calculation of the effect the initial part has on the canonical 

expansion at place n , and we can now begin with the examination of cases. 
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Lemma 3. If YI, Yz. · · · E {0, 1, 3} with 

X = ·Y!Y2 · · · = Xo.X1X2 •.. 

being its canonical expansion, then for any n 2: 0, 

XnXn+I ... Xn+l3 ::/= 20000200020002. 
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Proof Suppose that the remarkable block did appear at place n . Then by using 
Corollary 1 and changing the indices, there must exist y 1 , y2 , ••• and abc EL 
such that 

-Y1Y2 · · · +a.be = 2.0000200020002 .... 
We now show this to be impossible separately for each element of L. In order 
to determine which values for the Yi are possible, note first that corresponding 
to the three possible values 0, 1 , and 3 of y 1 , the point ·YIYz... must lie in 
the respective intervals 

lo= [O, .12], Ii= [.l, 1.0], h = [1.002, 1.2]. 

This shows immediately that the values OOO and 002 for abc are impossible, 
since then the left-hand side would be too small, while also abc = 202 is seen 
to be too large. There remain four possible values for abc . 

Case 1. Suppose abc = 100 . This leads to 

-Y1Y2 · · · = 1.0000200020002 ... 

by subtraction, but the right-hand side falls between the intervals / 1 and h . 
Hence this case is impossible. 

Case 2. Suppose abc = 200. Then we must have 

·Y1Y2 · · · = 0.0000200020002 .... 

Examining the possible intervals above and shifting (i.e., multiplying by 1 / y ) 
successively, we conclude that Yt = Y2 = y3 = Y4 = 0, Ys = 1 , and 

·Y6Y7 · · · = 1.00020002 ... , 

which is impossible, again falling between /I and / 3 . 

Case 3. Suppose abc = 120 . Then 

·YIY2 · · · = 2.0000200020002 · · · - 1.2 = .0200200020002 ... , 

and successively we obtain y 1 = 0, Y2 = 1, Y3 = 3, Y4 = Ys = Y6 = Y7 = Y& = 
0 , y9 = 1 , with 

·YIOYI I · · · = 1.0002 · · · , 
again between / 1 and h, hence impossible. 

In the remaining case, some branching will occur, as both 0 and 1 will be 
possible at some point. 

Case 4. Suppose abc = 020 . Then 

·YIY2 · · · = 2.0000200020002 · · · - 0.2 = 1.0200200020002 .... 

This first implies that YI = 3 and 

-Y2Y3 · · · = .110000020002 .... 

Now either y 2 = 0 (first branch) or y 2 = 1 (second branch) are possible. 



962 MIKE KEANE, MEIR SMORODINSKY AND BORIS SOLOMYAK 

First branch: 
.y3y4 ... = 1.10000020002 ... ' 

so that y3 = 3, y4 = 1 , and .y5y6 • · · = 1.000020002 ... , which is impossible. 
Second branch: 

.y3y4 ... = 0.1000020002 ... 

leads to branching again, both y3 = 0 and y3 = 1 being possible. But y3 = 0 
leads immediately to 

.y4y5 ... = 1.000020002 ... ' 

which is impossible, and y3 produces Y4 = Ys = Y6 = Y7 = 0, Ys = l, and 

.y9y 10 · · · = 1.0002, 

which again falls into the forbidden gap. • 
Proof of Proposition 4. This now follows immediately from Lemma 3 and the 
ergodic Property 3. • 

3. CONCLUDING REMARKS, GENERALIZATIONS, OPEN QUESTIONS 

In §2 it is demonstrated that for a sequence Yk , k ?: 2 , converging to 1 / 3, 
the set Cyk is small. Two different methods were used. For k ?: 3 we used 
what can be called the method of common blocks which led to estimates of 
IYCy n (y + yCy)\ from below. For k = 2 we used the method of forbidden 
blocks which involved finding a block admissible for a general y-representation, 
but forbidden in representations of the elements of Cy. 

Remarks. (1) Let y = (3-'15)/2 = .381966 .... The canonical }'-expansion of 1 
is .2111..., and in this base we have .3= 1.01. We have proved that Cy is small 
by showing that the block 20020020112002 is forbidden. This is the largest 
y E ( 1/3, 2/5) for which we know the answer. The argument is similar to the 
one in Proposition 4, but quite a bit longer. 

(2) The method of common blocks can be used to show that Cy is small in 
many other cases, when y is sufficiently close to 1 /3. We have the following: 

Proposition 5. Let y E ( l /3, 2/5) be such that the canonical y-expansion of 1 
is: 

I.= .d1d2d3 . .. , where d1 = · · · = dk = 2 

(it may be finite or infinite). Suppose that the number of "digit changes" dJ -
d1+1 =f. 0 is finite and equal to m (in particular, this implies that d1 are even­
tually fixed). If m S: k - 2, then the set Cy is small. 

This proposition implies Proposition 3 (where m = l) and gives many other 
examples: for instance, y corresponding to 

l.=.2222~, k=l,2,. .. ,oo. 
ktimes 

The set of y covered by Proposition 5 has a countable set of limit points. 

Sketch of the proof It follows from the canonical representation of 1 that 

3. = 2.d1d2 ... = IO.(d1 - d2)(d2 - d3) ... 



MORPHOLOGY OF y-EXPANSIONS WITH DELETED DIGITS 

(using that d1 = 2 ). Consider the set 

where 

2 = {x = 3 + f b1r1 = r- 1 + fcd1 -d1+1 + b1)y1 }, 
J=I }=I 

if dj - d1+1 = l ' 

if d1 - d1+1 = -1 or 2, 

if d1 - d1+1 = -2, 
if dj - d)+I = 0. 

The choice of b1 implies that y22 c yCr n (y + yCy) =: /. 
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Let us estimate 121 from below. Observe that the sum :L~ 1 b1yJ in the 
definition of 2 is an arbitrary element of Cr , with m fixed di~its (for j such 
that d1 =f. d1+1 ). Clearly, making a different choice of these m digits results in 
a set which is a translation of 2. Thus, Cy is a union of 3m translated copies 
of 2 , and therefore 

121;::: 3-mlCrl· 
As in the proof of Propositions 2 and 3, we can write 

Thus, 
y(3 - y- 1 - rmr)ICrl;::: o. 

However, y s; Yk (where Yk satisfies l = 2yk + · · · + 2y~ ), so 

3 - y-1 s; 3 - ykl = 2yf. 

Working in base Yk we obtain 

1. = ·~> .o~> ... > .~c2.3k-I) = 2· 3k-1yz. 

k times k-1 times k-1 times 

Using this and keeping in mind that y > 1/3 , we get for m s k - 2 : 

3 _ y-1 _ 3-my < 3-k+I _ 3-m-I s; 0. 

We conclude that ICrl = 0, as desired. • 
Hausdorff dimension. Let h ( y) be the Hausdorff dimension of the set Cy. What 
can be said about the behavior of h(y) as a function of y? Obviously h(y) = 1 
for y ~ 2/5, and it is easy to see that h(y) = log3/log ~ for y s 1/4. 

In a recent paper by Pollicott and Simon [PS] it is proved that 

h(y)=log3/log~ fora.e. yE(l/4, 1/3), 

but 
h ( y) < log 3 / log ~ for y E g' , 

where g' is dense in ( 1/4, 1/3). Moreover, Pollicott and Simon show that 

h(y) = l for a.e. y E (1/3, Y2) == (1/3, !CV3- 1)). 

In fact, it is possible to modify the argument of [PS] to demonstrate that h(y) = 
1 for a.e. y E (1/3, 2/5) (see Appendix). 
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The proofs of Propositions 3, 4 and 5 can be easily adapted to show that 
h(y) < 1 for the values of y involved. This is done by considering the s­
dimensional Hausdorff measure for s < 1 instead of the Lebesgue measure. 

We conclude with some problems which we have not been able to settle. 

Problem 1. Is it true that ICyl > 0 for a.e. y E (1/3, 2/5) ?1 

Problem 2. Is there y such that Cy is intermediate? 

Problem 3. Investigate the "exceptional set" of y E (1/3, 2/5) such that h(y) < 
1. Is it dense? 

APPENDIX 

Proposition 6. For a.e. y E (1/3, 2/5) with respect to the Lebesgu.e measure, 
we have h(y) = 1. 

This result for y E (1/3, !h/3- 1)) = (1/3, Y2) was obtained by Pollicott 
and Simon [PS, 4(1)]. We are using their scheme with some modifications to 
get this for y E (y2 , 2/5). Therefore we will refer to [PS] extensively, indi­
cating only the changes that have to be made. Here we only deal with the 
(0, l, 3)-case, however, similar ideas can be applied to a more general situa­
tion of expansions with deleted digits considered in [PS]. 

Proof Let :r. = { O, 1 , 3 }N be the one-sided full shift on the symbols 0, 1,3, and 
set 

00 

IP(s1sz ... ) := LSnYn, for s = (s1Sz ... ) E !.. 
n=I 

Clearly, DY maps :r. onto Cy. Next consider the one-sided shift of finite type 

!/ = {s E !. : SiSi+I '/= 33}, 

and let c; =DY(!.') c Cy. We are going to prove that the Hausdorff dimension 
h'(y) of c; is equal to one, for a.e. y E (y2 , 2/5). 

First we remark that the topological entropy of!.' is exactly log(l/y2). This 
follows by a straightforward calculation: the matrix associated with !.' has the 
largest eigenvalue 1 + V3 = l/y2• Another way to see this is to note that !.' 
is isomorphic to the P-shift for P = 1/y2 , and it it is well-known (see [W]) 
that the P-shift has topological entropy logp. (Recall that 1. = .22 in·base 
y2 , and so this P-shift consists of (0, 1, 2)-sequences with the only forbidden 
block 22.) 

By the definition of topological entropy, the number of n-blocks in I:.' has 
the order of Yz 11 • This makes it plausible that y2 is the critical parameter for 
h'(y). In fact, one can prove that h'(y) = log(y2)/log(y) for a.e. y < y2• 

In order to realize the scheme of [PS, Theorem l and 4(1)], we need to find 
a measure vy on c; such that for any E > 0 , 

12/511 dvy(x)dvy(Y) dy < oo. 
C' C' Jx-yJl-i: Yz+B 1 1 

1 Added in proof. It was recently shown that the answer is "yes", see B. Solomyak, On the random 
series 2:: ±.i.n (an Erdos problem), to appear in Ann. of Math. 
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Then Fubini's theorem and the potential-theoretic characterization of the Haus­
dorff dimension imply the desired result. 

Let µ be the measure of maximal entropy on E' (see [W]). All we need is 
that the measure of a cylinder set µ[s 1s2 ••• sk] has the order of y~. Then set 
Vy to be the projection of µ: Vy:= (IlY)* µ. The key ingredient of the proof is 
the following lemma which is the analog of [PS, Lemma l]. Let 

00 

f(y, s, t) := flY(s) - flY(t) = I)si - ti)yi. 
n=I 

Lemma 4. There exists '5 > 0 such that for all s, t EE' with s1 =f:. t 1 , and all 
y E ( Y2 , 2 I 5) ' 

iflf(y,s,t)i<c5, then 1:Yf(y,s,t)l>o. 

Proof of Lemma 4. Following [PS, Lemma l ], we can write 

12f(y/, t) -f'(y,s, t)I 

? ls1 - ti I -l~(n -2)(sn - tn)Yn-l I ? 1 - lg(y)I, 

where g(y) := I;:,3(n - 2)(sn - tn)Yn- 1• Here we used that s1 =f:. t1. Without 
loss of generality, one can assume that g(y) ;::: 0. Then the maximum of g(y) 
is clearly attained when s3s4s5 ••• = 3131 ... and t3 t4 t 5 ••• =OOO ... A direct 
computation yields 

00 00 00 

lg(y)I ~ I:(n - 2)SnYn-I ~ 2:(2k - 1)3y2k + L 2ky2k+l 

n=3 k=l k=I 

y2(3 + 2y + 3y2) 
= (1 - y2)2 

The last expression is increasing in y and equals 428/441 < 1 for y = 2/5. 
The lemma follows. • 

The rest of the proof proceeds exactly as in [PS, Theorem 1 and 4( 1 )]. 
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