Ethan Kennerly
Interactive Media
School of Cinematic Arts
University of Southern California
University Park, LUC-310B
Los Angeles, CA 90089-2211

Thief Belief
— Extended Abstract —

Andreas Witzel
ILLC, University of Amsterdam
Science Park 904
1098 XH Amsterdam, Netherlands
and CWI, Science Park 123,
1098XG Amsterdam, Netherlands

Jonathan A. Zvesper
ILLC, University of Amsterdam
Science Park 904
1098 XH Amsterdam, Netherlands
and CWI, Science Park 123,
1098XG Amsterdam, Netherlands

Overview

The video game Thief: The Dark Project™ (Eidos In-
teractive 1998)) is themed as a game of stealth, in which
the player (the thief) avoids being detected by computer-
simulated guards. Essentially, the player exploits the, possi-
bly false, beliefs of the guard regarding the thief’s presence.
Due to the simplicity of the guard’s control program, the
guard’s beliefs are in practice perceived as either believing
that the thief is, or may be, near (having seen him or be-
come suspicious in some other way) and acting accordingly,
or not.

We conjecture that the entertainment value of a typical
Thief scenario would be enhanced by a guard that acts not
only depending on his own beliefs about the facts in the
world, but also depending on what he believes the thief be-
lieves, including what he believes the thief believes he be-
lieves.

Besides making the interaction more realistic, we believe
that dealing with, and possibly exploiting, higher-order be-
liefs is intrinsically enjoyable. This is not news to the logic
community, in fact there exist detailed formalizations of
the epistemic mechanisms involved in real-world games of
knowledge and suspicion such as Cluedo (Ditmarsch 2000)).
However, so far there has not been much focus on the com-
plementary direction of putting such formalizations to work
to support a computer simulation of a virtual game world.

In this paper, we will substantiate our previous discus-
sion (Witzel, Zvesper, and Kennerly 2008) by describing an
actual implementation of the pseudo-code given there and
providing a detailed description of an experiment setup in-
tended to test our conjectures about the increase in entertain-
ment value resulting from exploiting higher-order beliefs.
Before conducting the actual experiment, we are planning
a small pilot study with 6 subjects in the control group and
6 subjects in the experimental group.

Scenario

In the control scenario, when a guard has noticed a thief, the
guard attacks or calls an alarm as per its scripted behavior.
In the experimental scenario, the guard models the beliefs of
the thief based on his own current beliefs and past observa-
tions, and acts accordingly.

In the original game, a common tactic is to shoot an arrow
against a wall, in order to cause a noise which will attract the

guard (who has a behavior rule along the lines of “if I hear
anoise, I go there and look around”). It is questionable how
innocent such a noise is, and an actually reasoning guard
would probably rather conclude that it is high time to ring
the alarm instead of sniffing around in the bushes. While this
was likely a conscious design decision to give the player an
easy and obvious way to outwit that guard, we think that a
belief-based approach can provide a more flexible solution.

Instead of rigidly connecting events to resulting behav-
iors, we therefore introduce beliefs as an abstraction layer.
The behaviors are defined depending on the beliefs, and
these beliefs are modeled independently.

For example, if the guard believes that the thief is present,
but the guard believes that the thief does not believe that the
guard is present, the guard tries to ambush the thief, rather
than attacking him openly or ringing the alarm. This and
a few more behavior rules constitute the guard control pro-
gram in our experimental scenario, shown in We
will specify the events and the semantics of beliefs later on.

This approach removes from the scripter the burden of
having to decide exactly which events cause what, and fa-
cilitates adjustments and more complex dependencies. For
example, in our scenario a more clearly innocent noise such
as breaking a twig will induce the guard to believe that there
is a thief (who accidentally caused that noise), which will
then trigger the behavior rule that says to ambush him.

Experiment design

We stipulate some necessary conditions for entertaining de-
ception:

1. The exploitation of the higher-order belief is intrinsically
enjoyable.

2. The player knows there is a reward for modeling the other

agents’ (higher-order) beliefs.

3. The player expects the other agents to model the player’s

beliefs.

Based on these assumptions, we will run a small popu-
lation pilot study among volunteers who are randomly as-
signed to a control group or experimental group.

Before play, the player is surveyed for the last video game
that they played and their level of enjoyment on a five-point
Likert scale, and their interest in playing that game again.

if Believes(guard, thief_present):

if Believes (guard, not Believes (thief,

guard.ambush (thief)

elif Believes(guard, not Believes (thief,

guard_present)) :

Believes (guard, thief_ present))):

guard.attack_or_alarm_inconspicuously ()

else:
if not alarm_active:
guard.alarm_quickly ()
else:
guard.attack (thief)

Listing 1: Guard control program in Python style

Text directly informs the player that the agents have a
mental model. Without explanation, a player may fail to
model the mechanisms underlying the behavior of agents in
a video game. In the control scenario, the player is informed
of the guard and that it will respond to noticing the thief.
In the experimental scenario, the player is informed that the
guard will ambush, attack, or call for help depending on how
the thief behaves.

The session of play occurs on a personal computer using
an animated two-dimensional prototype of the scenario. The
graphical depiction and other media are identical. The set-
ting and characters are identical. The player is also informed
about the input and output conventions, which are identical
for both the control group and experimental group. The dif-
ference is isolated to the behavior of the artificial agent.

During play, the player’s facial expressions, vocal re-
sponses, and body language are observed. Signs of (plau-
sibly) spontaneous emotions, such as chuckles, grins, fur-
rowed brows, crossed legs are noted.

We conjecture that our modest belief engine encourages
the original game’s tactics of misleading a guard. It also
encourages pretending in another way: The thief may play
stupid and let himself be seen from behind by the guard, who
then again thinks he can do something sneakier than ringing
the alarm.

We also conjecture that our scenario encourages trepida-
tion. A guard who has actually noticed the thief without be-
ing noticed himself will act inconspicuously while preparing
a counter-attack. The blackjack is the weapon for subduing,
which has a short reach. A guard that pretends to not have
noticed, will swing around and stab with his sword first be-
fore the player’s blackjack is in range.

Overall, we conjecture that the average enjoyment and in-
terest in the experimental group exceed those of the control
group.

To test our conjectures, after play the player is surveyed
for their level of enjoyment on a five-point Likert scale, and
their interest in progressing in this game. The player is also
surveyed on open-ended questions about the tactics they em-
ployed, and what stood out in their experience.

Knowledge module

There are various ways in which relevant beliefs can come
about: by causing or hearing noise, seeing the other one

from behind, or facing each other. When scripting the be-
haviors, the programmer need not worry about how exactly
the beliefs came about, he simply uses the familiar concept
of belief in order to express the rules on a high level.

It is the job of the knowledge module to take care of main-
taining and updating the agents’ knowledge taking into ac-
count whichever events occur in the virtual world. As an
agent’s control script is executed, the knowledge module is
queried and determines the truth value of any given formula.

We assume that the scene starts with thief and guard
present and no events having occurred, and that agents can-
not enter or leave. Put differently, the guard will not leave
the scenario, and if the player leaves, the scenario ends.
Note that this assumption is not inherent to our approach
and serves mostly to avoid unnecessary complications. In
the context of a computer game it is not too unnatural: Game
worlds often are simulated per scene, and a scene starts and
ends whenever the player enters or leaves.

In our experiment, we consider the following kinds of
events:

e b, by: The thief, respectively the guard, sees the other one
from behind.

e n;,ny: The thief, respectively the guard, makes some
noise. We limit this to “relevant” events in the sense that,
e.g., n; can only occur if the thief is present.

e f: Thief and guard see each other face to face.
The epistemic effects of these events are as follows:

e b;: The thief believes that the guard is present; the guard
never assumes this event to occur, so this event does not
change the guard’s beliefs.

e n,: The guard believes a thief is present; the thief believes
that, if a guard is present, that guard believes that the thief
is present.

e f: Thief and guard commonly believe that both are
present.

In addition, these effects are commonly believed. For now,
we assume that events are not forgotten. Note that a conse-
quence of all this is that after both n, and n; have occurred,
guard and thief commonly believe that both are present.

'In our case beliefs rather than knowledge, but we will stick
with the name ‘knowledge module’.

To model this situation formally, we use a modal logic
model with history-based semantics (Fagin et al. 1995). We
introduce two propositions, p; and p,, with the reading that
the thief, respectively the guard, is present. A valuation is
a function that assigns either true or false to each of these
propositions, and can be denoted as a set V' containing those
propositions that are to be assigned true.

The set of events, as above, is E = {b;, by, 14,1y, f}.
A history H is a sequence of events. For a history H, by
Ag(H) we denote the set of agents involved in the events
in H, i.e. Ag(H) C {t, g}, where naturally both ¢ and ¢
are involved in any of {b;,b,, f}, and only ¢ (resp. g) is
involved in n; (resp. ny). We also write H —e foranye € F
to denote the history obtained by removing all occurrences
of e from H. The empty history is denoted by e.

A pair (V, H) is a state (or possible world) if and only if
Ag(H) C V. So the described initial situation is represented
by the state ({p¢, pg}, €).

We now define accessibility relations --»; and --»,
between states in our history-based model. Intuitively,
(V,H) --»¢ (V', H') means that in state (V, H), ¢ considers
it possible that the state is (V’, H'). According to the intu-
itions described above, we define these relations as follows:

’ ’r _
(V.H) sy (V! 'Y i {t gV'and H —ng =¢

Note that in the first of these two cases, n4 is the only event
which can occur in H’, so the condition boils down to saying
that H’ may be any sequence of n,. The second case cap-
tures the intuition that ¢ does not assume the possibility that
he is being seen from behind. The relation --» is defined
analogously.

We consider the doxastic language consisting of formulas
of the following form:

pu=pilpg |l el AN@leVe|Bp| By .

The semantics is standard relational modal semantics,
see (Blackburn, de Rijke, and Venema 2001)).

If we merge all doxastically equivalent states, that is, all
states that make the same formulas true, our model can be
depicted as in E]

Note that, in contrast to our starting point from history-
based semantics, this representation is static in the sense that
it does not grow (or shrink) over time, as the world evolves
and events occur. It is straightforwardly represented in any
programming language (our implementation uses Python),
and the knowledge module simply needs to keep track of
which one is the current state.

Since in a computer game there is a central place where
the game world is simulated, only one such model needs to
be maintained, even in a scenario with more agents. Rather
than maintaining a separate model inside each agent, this
central model is fed with the events occurring in the game
world, and queried by the agents’ programs. This also means
that the evaluation of formulas can be done efficiently since

2This is the so-called ‘bisimulation contraction’ of our original
model. Note that in our case, if (V, H) and (V', H') are doxasti-
cally equivalent, so are (V, He) and (V’, H'e) for any event e.

ift gV
teV'andH =H—-b, ifteV.

it corresponds to model checking, rather than testing validity
as in a truly distributed setting.

Finally, note that while agents can have false beliefs, there
is no need for elaborate belief revision mechanisms in our
simple scenario, since there is no way for the agents to notice
their false beliefs.

Technical discussion

The knowledge module we presented is a centralized imple-
mentation of the approach described in (Witzel and Zves-
per 2008). The fact that it is centralized together with the
simplicity of our scenario remove the necessity of finding
restrictions of the doxastic language or other optimizations:
About any conceivable model and implementation would be
trivially tractable.

However, our scenario still shows the advantages of the
modular approach which consists in introducing beliefs as
an abstraction layer and separating the belief model from
the agent’s control program. The knowledge module can
be refined independently to cope with new events or exten-
sions, such as probabilistic beliefs, with no need to change
the behavior scripts. While one could implement some ad-
hoc tracking of events in the agent control program, this is
error-prone and difficult to maintain, as already in our small
test scenario the exact dependencies on events are getting
confusing: What does “if n; or b, have occurred, but neither
ng nor f have, then...” mean?

Of course a knowledge module may also need debugging,
but this can be done separately from the rest of the program.
To this end, it would be interesting to define a Why/() func-
tion, which should give a (useful) explanation of why a given
belief formula holds in a given state.

One extension that is easy to incorporate into our knowl-
edge module are decaying events, or unstable states: If the
guard makes some noise, like whistling (which he obviously
would only do if he does not believe a thief is present), he
might have forgotten about that when he 10 minutes later
sees the thief from behind, and therefore not conclude that
the thief believes the guard is present. This could be mod-
eled by a spontaneous transition from state 5 to 2 after some
time.

The advantages of our finite-state-machine-like represen-
tation is that it is straightforwardly represented using a very
simple data structure, and that it is a static, pre-computed
model, so there is no expense at run-time and no surprises
from uncontrolled growth. However, for bigger scenarios, it
may not be feasible to keep the whole model in memory all
the time. Mechanisms to generate the model only locally as
needed, and strategies for expanding, shrinking, or swapping
out unused parts of the model may be necessary.

A very promising alternative is Dynamic Epistemic Logic
(DEL). Instead of using one model to represent all possi-
ble ways in which the world may evolve, one starts with a
model representing only the initial situation. Events are rep-
resented as so-called ‘update models’, which are applied to
the current model as the events occur, changing the model to
reflect the resulting situation.

It is then desirable to ensure that the model will not grow
indefinitely. In our scenario, this can be achieved by show-

Figure 1: Representation of our doxastic model. The numbered nodes represent states and are annotated with one of the
equivalent possibilities of what events have (optionally) taken place. Boxed states have V' = {p;, p,}, a missing left corner
means p, ¢ V, and a missing right corner means p; ¢ V. State O represents the initial situation. Solid arrows with black
labels show event transitions, dashed arrows and edges (the latter corresponding to bidirectional arrows) with gray labels
show accessibility relations. The following are omitted for clarity: reflexive transitions for each optional event at each state;
f-transitions from each boxed state to 8; and reflexive accessibilities, except for g in states 2 and 6 and for ¢ in states 1 and 7.

ing that the events are commutative and idempotent in an
adequate sense, and that the update mechanism preserves
minimality with respect to bisimulation. It would be inter-
esting to look at such properties of DEL models and events
in a more general way.

Besides this ‘online’ use, DEL could also be used sim-
ply as a description language for initial situation and events,
from which a static model similar to ours could be pre-
computed ‘offline’. Again, considerations about the size of
the resulting model, or language restrictions to ensure cer-
tain complexity bounds, would be relevant.

An interesting suggestion that would also simplify reason-
ing is to consider so-called ‘interaction axioms’ between the
belief modalities of the players. For example, in (Lomus-
c1o and Ryan 1998) the authors show that (2WD) is valid on
two-player ‘hypercubes’, i.e., models that are based on the
Cartesian product of an interpreted system’s state space:

O102p = Oa01p. (2WD)

In a different context (Ditmarsch and Labuschagne 2007)
consider interaction axioms that characterise different The-
ories of Mind, including ‘autistic’ and ‘deranged’. It is an
interesting question whether interaction axioms that capture
agents that are fun to interact with might exist.

Another point worth noting is that we do not distinguish
between knowledge and true belief. There are many philo-
sophical discussions concerning differences between these
two notions, and formally they are generally taken to be dif-
ferent as well. Beliefs should really be revisable for ex-
ample, which is something we have not considered here.

A possible future direction of research would be to use
models and languages that take both belief and knowledge
into account, for example along the lines of (Shoham and
Leyton-Brown 2009, Chapter 13). Some actions would then
generate knowledge, while some would (only) generate be-
lief. This corresponds to the distinction van Benthem (2007))
draws between ‘hard’ and ‘soft’ information. For example,
if you see something then you might be said to know it, but if
somebody you don’t entirely trust tells you something then
you might only believe it.

Finally, it may be desirable to get rid of manually de-
signed behavior rules altogether, and let the agents act purely
based on their beliefs and some abstractly defined goals.
In order to accomplish this, a very promising approach is
to combine a game world that uses deductive planning,
e.g. (Magnusson and Doherty 2008), with a belief model
such as the one we discussed. In this way, the planning
agents would be enabled to reason about the epistemic pre-
conditions and consequences of their actions and the epis-
temic parts of their goals.

A very long-term vision is then to have an artificial guard
that by himself adopts behaviors similar to the ones we de-
scribed, or to the tactics we conjectured for the human thief.

Acknowledgements

We thank Martin Magnusson, Cédric Dégremont and three
anonymous referees for discussion and helpful sugges-
tions. The second and third authors were supported by a
GLoRiClass fellowship funded by the European Commis-
sion (Early Stage Research Training Mono-Host Fellowship

MEST-CT-2005-020841).

References

[Benthem 2007] Benthem, J. v. 2007. Dynamic logic for
belief revision. Journal of Applied Non-Classical Logics
17(2):129-155.

[Blackburn, de Rijke, and Venema 2001] Blackburn, P;
de Rijke, M.; and Venema, Y. 2001. Modal Logic.
Cambridge University Press.

[Ditmarsch and Labuschagne 2007] Ditmarsch, H. P. v,
and Labuschagne, W. A. 2007. My beliefs about your
beliefs: a case study in theory of mind and epistemic logic.
Synthese 155(2):191-209.

[Ditmarsch 2000] Ditmarsch, H. P. v. 2000. Knowledge
games. Ph.D. Dissertation, Groningen University. ILLC
Dissertation Series 2000-06.

[Eidos Interactive 1998] Eidos Interactive. 1998. Thief:
The Dark Project.
http://www.eidosinteractive.com/games/
info.html?gmid=34|.

[Fagin et al. 1995] Fagin, R.; Halpern, J. Y.; Vardi, M. Y.;
and Moses, Y. 1995. Reasoning about knowledge. MIT
Press.

[Lomuscio and Ryan 1998] Lomuscio, A., and Ryan, M.
1998. Ideal agents sharing (some!) knowledge. In Pro-
ceedings of Proceedings of the 13th European Conference
on Artificial Intelligence, 557-561. John Wiley & sons.

[Magnusson and Doherty 2008] Magnusson, M., and Do-
herty, P. 2008. Logical agents for language and action.
In Proceedings of the Fourth Artificial Intelligence and In-
teractive Digital Entertainment Conference (AIIDE-08).

[Shoham and Leyton-Brown 2009] Shoham, Y, and
Leyton-Brown, K. 2009. Multiagent Systems: Al-
gorithmic, Game-Theoretic, and Logical Foundations.
Cambridge University Press.

[Witzel and Zvesper 2008] Witzel, A., and Zvesper, J. A.
2008. Epistemic logic and explicit knowledge in dis-
tributed programming (short paper). In Proceedings of the
7th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008).

[Witzel, Zvesper, and Kennerly 2008] Witzel, A.; Zvesper,
J. A.; and Kennerly, E. 2008. Explicit knowledge program-
ming for computer games. In Proceedings of the Fourth Ar-
tificial Intelligence and Interactive Digital Entertainment
Conference (AIIDE-08).

http://www.eidosinteractive.com/games/info.html?gmid=34
http://www.eidosinteractive.com/games/info.html?gmid=34

	Overview
	Scenario
	Experiment design
	Knowledge module
	Technical discussion

