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Chapter 1

Introduction

This thesis concerns two major aspects of applied mathematics. On the one hand.
the modelling process. in which real-life phenomena are rephrased in terins of mathe-
matical objects. resulting i a so-called mathematical model. On the other hand. the
analysis of such a set of objects. resulting in a number of properties of the model that
give more understanding of the underlying phenomena.

The phenomena considered in this thesis. which are from the realm of biology, are
introduced in Section 1.1. Section 1.2 gives the basic ideas behind the rephrasement of
the biology into mathematical objects. For models with a large degree of complexity,
the mathematical analysis will for a large part be based on results from the field of
numerical mathematics. as is also true for the systems in this thesis. In Section 1.3
an overview is given of some issues that will be encountered in the nunerical analysis
of the systems at hand. This introduction will then be concluded with an outline of
this thesis in Section 1.4

This thesis has grown out of a co-operative project "Numerical Modelling of the
Formation of Neuronal Connections in the Nervous Svstem” between the CWT and the
Netherlands Iustitute for Brain Rescarch. research group Neurons & Networks. with
involved researchers Jaap van Pelt and Arjen van Qoven (now at VU). The project
was supported by NWO. Programme ~Wiskunde Toegepast™. No. 613.002.048.

1.1 Biological phenomena

The phenomena that are being modelled in this thesis come from the ficlds of neu-
robiology and/or computational neuroscience. A great part of the internal signaling
process in a large class of living creatures is handled by a nervous svstem. Such a
svstem is composed of interconnecting nerve cells. also called neurons. that commu-
nicate with each other by sending electrical signals through their connections. Such
connections are called axons and the signal sending is called firing. Basicallv. a cell
decides to fire a signal on the basis of the signals it receives from other cells. The

signal originates in the cell body. travels along the axon. and reaches other nenrons at
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their dendrites. i.c.. tree-like structures where the axons are connected to the target
cells.

There has been done a lot of research into this firing process as well as into the sig-
nal transduction along the axon. the underlving mechanisms of the latter being fairly
well-known. Models have been proposed that describe the traveling signals and there
is simulation software that allows for combining and examining different mechanisms
concerning this process. In this thesis the focus will not be on the functioning of such
a system. but rather on the development of it. The basic underlying question that is
considered here is: how do nerve cells make connections with other nerve cells? We
are interested in the mechanisms underlying the guidance of a growing axon toward
a target cell. not in why the system decides to make certain connections.

This process of guidance of the axon toward its target is often referred to as axon
guidance. A basic explanation of it is that the process belongs to the class of chemo-
taxis processes. This means that the growth direction of the tip of the axon. which
is called the growth cone. is determined by concentration levels of certain molecules
that are present in the environment. Such molecules we will refer to by the term
guidance molecules. Basically, the growth cone tries to measure the gradients of the
concentration fields of guidance molecules, and will grow toward higher concentration
of so-called attractant molecules and away from so-called repellent molecules.

It is known that certain species of molecules influence the growth of axons by
means of chemotaxis, but the precise mechanisms underlying this process are obscure.
As an example serves the combined influence of a group of guidance molecules. Here
the question arises how a growth cone does decide on a single growth direction while
measuring a number of non-parallel gradients?

Another example of an unknown mechanism concerns the adjustment of the size
of the growth cone. It is observed that a growth cone, which has the form of a hand-
like structure. can adjust the size of its ‘fingers’. If the concentration of guidance
molecules in the local environment is low. enlargement of these sensing structures
will probably keep the growth cone’s measurement of gradients sufficiently reliable.
The precise size regulating mechanisms are unclear. as well as how they effect the
sensibility for the different guidance molecules.

1.2 Modelling framework

One of the key issues in mathematical modelling is what to incorporate into the model
and what to neglect. Choices have to be made on which details will be built in and
which are left out because they make the model unnecessarily complicated. These
are hard choices that require knowlegde of the field in which is modelled as well as
mathematical insight. Especially with biological phenomena it is relatively easy to
build models that are so complicated that it is very difficult to gain insight using a
mathematical analysis of the model equations.

In this thesis the starting point is not a single biological setting but rather a
whole class. Not a single model has to be developed to give more understanding of its
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underlying phenomena. but it should be possible to build a number of variations of a
model and after analysis select the most appropriate one. The goal of the modelling
activity here is to learn which combination of elements can explain the observed
phenomena.

Given the need for this kind of flexibility a framework has been developed that
can be used to model axon guidance. Its basic assumptions are that the systems to be
modelled can be regarded as composed of concentration fields of guidance molecules
and objects with a certain location that interact with these fields. In the background
the environment is modelled by a domain on which the fields are defined and in which
the objects are located. A short description will now follow of the domain, fields and
objects.

It is important to notice that flexibility with respect to domain geometry is re-
quired. Tt should be possible to work with domains that have strange shapes and.
possibly, contain holes. Such holes might represent bone structures or blood ves-
sels that are impenetrable for the guidance molecules. thus forming obstacles around
which the axons have to grow. The basic assumption made on the specification of
the domain is that it is 2-dimensional and specified by piecewise smooth curves in the
plane.

The fields represent the concentration fields of guidance molecules and are non-
negative functions defined on the domain. Their dynamics are governed by diffusion, |
absorption, and excretion. It is assumed that there is no in- or outflow of guidance
molecules across the boundaries. An important characteristic is that the excretion ‘
takes place through highly localized sources, i.e., at the locations of the objects, that
might be moving through the domain. A model choice is to represent the sources by ‘
functions with a small support and not by Dirac delta functions. The main reason
for this choice is that when using the latter, the resulting fields are singular at the
location of the source, possibly leading to ill-defined systems of equations.

The final class of elements in the framework consists of the objects, representing
locations of interaction with the fields. As examples serve target cells and growth
cones excreting guidance molecules or a point where chemicals are injected into the
environment artificially in an experimental setting. In this thesis the objects will
also be referred to with the term ‘states’, because they can be thought of to describe
the internal states of the objects. They are finite-dimensional vectors of which the
first two elements describe the location. Additional elements of the vectors are used
to model the objects further and can contain variables like the sensitivity to certain
guidance molecules, growth speed, excretion rate, etc.

1.3 Numerical mathematics

Using the framework described in Section 1.2 the biological setting is translated into
a mathematical description. This description consists of two sets of functions. the
first set describing the fields by means of real functions of space and time. and the
second set describing the states. being functions that map time to finite-dimensional
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real vectors. While the dvnamics of the fields are given by PDEs (partial differential
equations). the dyvnamics of the states are given by ODEs {(ordinary differential equa-
tions). The two systems are coupled in two ways. The sources in the field equations
depend in their excretion rates and locations on the states. The dynamics of the
states depend on the fields in the local vicinity of the states.

The numerical approximation of the time evolution of the fields and states requires
a spatial discretization of the domain and the fields and a temporal discretization for
the fields and the states. Some properties of the system will now be discussed that
are characteristic from a numerical perspective.

Concerning the spatial discretization of the fields, two features of the framework
are of importance. First. the domain does not need to be a regular shape to which
a grid can be assigned in a straightforward way. Second. the supports of the moving
sources are small compared to the domain size. meaning that certain refinement and
adaptivity techniques have to be applied.

Based on these two features the class of meshfree methods was taken as a starting
point for the selection of a spatial discretization. The underlying idea is that the
discretization of the fields consists of arbitrary sets of nodes in the domain, together
with values defined on the nodes. This allows for easy refincment by selecting many
nodes in the neighborhood of the moving sources. On the other hand it gives the
freedom to align the nodes nicely along the boundaries.

A drawback of such a meshfree approach is that it lacks the straightforward def-
inition of neighboring nodes present in grids and triangulations. For every node a
selection of neighboring nodes is required for building a local approximation in the
vicinity of the node at hand. In practice, some kind of grid structure is often used for
this. In this thesis Voronoi diagrams are used for this purpose as well as for building
global approximations out of local approximations. As a result, the field discretiza-
tion. although being meshfree in its ideas. depends heavily on Voronoi diagrams.

Concerning the temporal discretization, an important feature of the coupled sys-
tems is that the diffusion operator gives rise to stiffness in the discretization of the
PDEs, while the ODEs, which are nonlinearly coupled to the PDEs, are non-stiff.
The stiffness of the discretized PDEs would be a reason to use an implicit time in-
tegration scheme. However, an implicit scheme for the whole coupled system is very
complex due to the typical nature of the coupling. i.e.. evaluation of one dependent
variable (a field) in another dependent variable (a location of a state). In this thesis
Implicit/Explicit (IMEX) schemes are therefore considered for the systems at hand
as well as Rosenbrock methods. using an approximate Jacobian.

1.4 Thesis outline

This thesis is based on three articles, a technical report. and an additional chapter
on Bézier curves.

Chapter 2 considers some analytical aspects of a typical prototype of the class of
systems we are interested in. In this warm-up chapter the main result is the analysis
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of a system feature that is called self-interaction. Due to self-interaction presence the
use of point sources is prohibited and it turns out that scaling down the supports of
the sources will strongly influence the dynamics. The chapter has appeared as:

J.K. Krottje. On the dynamics of a mixed parabolic-gradient system. Com-
munications on Pure and Applied Analysis, 2(4):521-537. December 2003.

In Chapter 3 a specification method for the domains is described. It starts with
domains that are specified by Bézier paths that determine the outer boundary and a
set of internal boundaries. For solving the field equations we will not work with these
Bézier paths, however. Instead we will use approximations that consist of a selection
of points along the boundaries. where neighboring points are connected by straight
line segments. The main part of this chapter is devoted to the selection of nodes by
means of an equidistribution principle that is based on arc-length and curvature.

Chapter 4 continues with the presentation of the spatial discretization of the field
PDEs. It describes a function approximation technique based on local least-squares
approximations and the combination of such approximations into a global approxima-
tion. A Voronoi diagram is being used for the selection of neighbors. for the definition
of the global approximations. and for the selection of nodes in the domain. In this
chapter the discretization is used to solve the steady-state solutions to the field PDEs.
It will appear as:

J.K. Krottje. A variational meshfree method for solving time-discrete diftu-
sion equations. Journal of Computational and Applied Mathematics, 2005,
accepted.

In Chapter 5 the modelling framework is presented and this concerns joint work
with Arjen van Ooyen, department of experimental neurophysiology. Free University
of Amsterdam. It defines the domain, fields and states and their coupling. It also
gives a short overview of the used numerical techniques. A large part of it is devoted
to example models that are implemented in the framework. The chapter is expected
to appear as:

J.K. Krottje and A. van Ooyen. A mathematical framework for modelling axon
guidance. Bulletin of Mathematical Biology. In the process of revision.

Chapter 6 compares our numerical approach used for the equation systems that
arise in the presented framework with another approach. In this context our numerical
approach is referred to as "AGTools’ (Axon Guidance Tools). The software package
Kardos is taken as a representative of the class of Finite Element Methods and its
use for numerically solving the systems at hand is discussed. The chapter presents
a number of examples where both approaches are compared. although to a rather
limited extent due to time constraints and unexpected difficulties in adjusting the
Kardos software for our application. It will appear as a CWTI technical report:

J.K. Krottje. Numerical solution of axon guidance framework systems CW/
Technical Report.






Chapter 2

On the dynamics of a mixed
parabolic-gradient system

2.1 Introduction

In a paper of Hentschel & Van Ooyen [21] a mathematical model is presented on
the growth of neural connections in the nervous system. The model describes the
outgrowth of axons from neurons to targets in a developinental phase for innervation.
It is assumed that the growth toward the targets is partly guided by the gradients of
concentration fields of certain chemicals which are present in the environment. These
concentration fields change in time due to the release of the chemicals by the targets
and the growth cones and the processes of diffusion and absorption.

One of the goals of the model is to better understand the observed effects of
bundling and debundling of the growth cones. The assumption that the growth cones
themselves, besides the targets, also release chewicals that influence the growth of
the cones might explain the bundling and debundling effects.

[n the model two kinds of variables are used to describe this biological system.
First. functions of time r,: R — R?. which denote the positions of the growth cones.
where o ranges over the number of axons Ng.! Second. fields p3: R? x R — R. which
denote the concentration of the chemicals as a function of space and time. where .3
ranges over the number of concentration fields N.. The dyvnamics are described by
gradient equations for the growth cone positions

d

iy
dt

N,
(t) = Z/\r.,_ﬁ/u(l'a(f)-f)~ (2.1)

F=1

W will regard the growth cones as “dynamical sourees’ to which the subseript -d” refers.
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for all a = 1..... Ny and for the concentration fields we have parabolic equations
Ny AW
Beps(r.t) = DaBps(r.t) = rsps(at)+ > 05,8 o)+ D05, 5. (). (2.2)
a=1 4=1
foral 3 =1..... N.. Here r = (21.x2). v ranges over the number of targets N and s,

denotes the position of target ~.%2 The growth cones and targets act as sources for the
concentration fields located at the positions r, and s,. The functions S, : R? — R,
where we left out the argument t. can be considered as source profiles for the growth
cone sources, which translate with r,. The coefficient ¢4  can then be interpreted as
the excretion strength of growth cone o with respect to chemical 3 and this coefficient
can be a function of time and of the fields p;..... pn, evaluated at r,. An analogous
interpretation holds for S, and ¢} _.

In this chapter we want to gain more insight into the dynamics of this mixed
system. Although the ultimate goal is to find a suitable numerical method for the
system. most of the chapter will be analytical work. Verwer and Sommeijer [50] used
the explicit Runge-Kutta-Chebyshev method and found that the system is highly
sensitive in its parameters and source terms with respect to bundling and debundling.
A similar conclusion was reported in a second numerical paper by Lastdrager [32].
Therefore we want to gain understanding on the relative importance of parameters,
the sensitivity of the dynamics with respect to these parameters and the effects that
the choice of used source functions has on the dynamics, where one can think of block,
cone or even d-functions.

Hentschel & Van Ooyen [21] use in their simulations a quasi-steady-state-approx-
imation (QSSA) for the parabolic equations so that the system reduces to a system
of ODEs. By using QSSA. the parabolic equations become clliptic equations that can
be solved explicitly in some cases. The solutions of the elliptic equations then depend
on r, alone and substitution of these solutions in the gradient equations. results in a
closed ODE system. We will discuss to what extend QSSA is profitable by examining
when it can be used and what its benefits are. As an example we define a specific
1-dimensional system of the form (2.1)-(2.2). that we can solve analytically by using
the QSSA assumption. We will compare this solution to numerical solutions of the
full system.

The contents is as follows. We will start with some remarks on the mixed parabolic-
gradient system in Section 2 and the QSSA-approximation in Section 3. In Section 4
we will discuss some possible choices for source functions and in Section 5 we will
examine an effect that we will call self-interaction. Section 6 is devoted to numerical
integration of the system. Here. also, the QSSA solution is compared to the numerical
integration of the full system.

2We will regard the targets as ‘static sources’ to which the subseript s’ refers.
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2.2 Mixed parabolic-gradient systems

The system consists of Ny gradient equations (2.1) and N, parabolic equations (2.2).
For the domain we will take t > 0 and Q = [0,1]?> and we will assume periodic
boundary conditions because the boundary does not play an essential role here and it
is convenient from a numerical point of view. Further we need the initial values for r,
and pg. The coupling between the gradient and parabolic equations occurs through
the source terms S, in the parabolic equations and of course through the gradient
terms in the gradient equations.

2.2.1 Gradient equations

We outline some properties of the gradient equations. With the fields p3 as given
functions of space and time. equation (2.1) is of the form r = f(r.t). If we use the
notation ®, = Y_ ; Ay 3p3. then equation (2.1) becomes

dr,

— (1) = Ve (ra(t).1). (2.3)

If, for all 3. ps is twice continuously differentiable with respect to space and continu-
ous with respect to time, V@, is Lipschitz continuous and existence and uniqueness
of solutions is guaranteed. For a fixed. time independent ®,,, the stationary points are
characterized by V@, (x) = 0. For arbitrary solutions r(t) of (2.3), ®,(r(¢)) is non-
decreasing in time and therefore, the local maxima of @, are stable stationary points
and the minima and saddle points are unstable stationary points of equation (2.3).
The field ®, is the weighted sun of the fields p;....,pn.. Hence, r, tends to grow
in a direction of increasing pg with A, 3 > 0 and decreasing pg with A, 3 < 0. The
former are called fields of attractants whereas the latter are called fields of repellents.

A point that deserves some attention is that the extrema of @, need not be equal
to the maxima and minima (for repellent fields) of the separate p3. This means
that if we have a set of targets all contributing to an attractant field, then the stable
stationary points of equation (2.1) need not be equal to the locations of the targets. In
particular. if two targets are close to each other. there might be one stable stationary
point in between. instead of two stable stationary points near the locations of the
targets.

The existence of the gradients in the points (r,(¢).t) of the functions ®, will
be discussed in Section 2.4. where we examine the use of different kinds of source
functions.

2.2.2 Parameter ranges and the domain

The parameter values are not known exactly. but we will make assumptions on their
orders of magnitude. In Table 2.1 some estimated model related quantities are shown.
Here v is the growth speed of the growing axon. Legnes 1s the diameter of the growth
cone and Liarger 15 the distance which the axons have to grow across. Further on we
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Table 2.1: Parameter orders
Parameter l Approximate order

D 107 mm?/s

v 1075 --107% mm/s
L(‘onos 10~2 min

Liarget 107! 1 mm

will use a parameter ¢ that measures the radius of the (circular) support of the source
functions S, . It secms reasonable to use { = Leones/2.

e

The parameters k3. ag_“. a% . and A,y are not known and can be used for tuning.
However. this does not mean that theyv can be chosen independently. For instance.
the growth speed of axon a at a certain point in time and space is a homogenous
function of the parameters A\, 1..... Aa.n. as well as the parameters afﬁhﬂ and 63 N for
all a. .3 and 5. Therefore. if the o5 . and o7 _ are all multiplied by a certain factor.
then the A\, 3 should all be divided by approximately the same factor to keep the
speed of the axons in the right range.

All parameters and variables will he measured in units of millimeters and seconds.

2.3 Quasi-steady-state approximation

We want to consider the use of a quasi-steady-state approximation instead of the
parabolic equations (2.2). as is doue in {21}. In this approximation. we use in the
gradient equations. not the py from the parabolic equations. but 3 that are at all
times the solutions of the elliptic equations

Ny N
D3Aps() = Ksps(a) + D 0% Sunin () + D058 () =0 (24)
a=1 =1
forall 3=1..... N.. given the values of r,(¢). To solve the p; simultancously from

this system we have to keep in mind that the o*f;'“ and ¢ may depend on the pg
evaluated in the points r, and s..

For instance. the model that is used by Hentschel and Van Ooyen has three ficlds
of chemicals. namely p; (attractant). ps (repellent) and py (target attractant). Chem-
icals p; and pg are produced by the moving sources and py by the static sources and
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their system of parabolic equations is

Na
dipr(x.t) =D1Apy(z,t) — kipr(z.t) + 3 0% S, y(2).
a=1
}V,i
Opa(z.t) =DaApa(x.t) — Kapa(x.t) + Z ad . (P3(ralt). 1)) S, ty(2), (2.5)
a=1
N
Qipa(x.t) =D3Apg(x.t) — kaps(r.t) + ¥ _ 05 S (2).

=1

where the o , and o3, are constants. Its steady state. given the values r, at time t.
can be found by setting dp; /0t = 9py/0t = Jp3 /It = 0 and dropping the arguments
t, which results in system (2.4) for this particular case. The solution of system (2.4),
which we denote by (p1.62.03). is a steady state of system (2.5) with fixed r, and
when the S, and S, are smooth functions or d-functions (in case of point sources)
this state is also globally attracting in the sense that for every set of start functions
{p1.p2.p3) the solution of system (2.5) with fixed r, tends to (py, fo. p3) in the L-
norm. This is intuitively clear because of the fact that the first and last equation
are independent of the equation for py. Therefore, p; and p3 approach p; and ps,
respectively, so that for t — oc. the equation for ps gets constant source terms and
p2 converges to po.

In general, the coupling between the equations of system (2.4) by the functions
crg_ o and oj ., might give problems with respect to the existence of steady-state
solutions as well as the global attraction of such solutions. We will consider a few
different cases illustrating these problems.

Example 1. Concerning the existence of steady-state solutions we look at a simple
I-dimensional example system

Fhpr(x.t) = &ip1(x.t) — pr(x.t) + o1(p1(r1), p2(r1))d(x — 1),

) ; (2.6)
Op2(x.1) = Ozpo(.t) — po(x.t) + a2(p2(ra). pr(r2))d(x — rz).

in which the functions p1. ps are defined on R and the §(-) stand for the Dirac §-
function. If both equations are in steady-state the py, pa have to satisfy

pi(x) = 5o1(pi(ry). pa(ri))e
/)2("') = %0’2([}2(7‘2).f)l(r2))€_|f—r2\‘
for all x € R, which follows from the fact that for arbitrary a > 0.

0? _
ﬁu(.r) —p(x)+ad(r)y=0. VYreR _
or = p{r) = jae
lim p(x)=0.

I—+>x
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Substitution of ry and ro in system (2.7) results in a system of four equations:

pr(r1) = o1 (pr(r). pa(r1)) pr(rz) =
p2(r2) = S02(pa(r2). pr(r2)) pa(r1) =

o1 (p1(r1). pa(ry))e” 17277

2.8
aa(pa(ra). pr(ra))e~ 1"l (28)

1
2
1
2
in four unknowns p;(r;), (i,j = 1,2). A solution of system (2.8) will yield a steady-
state solution of system (2.6). However, whether a solution of (2.8) exists depends
on the functions oy and oo and on the values of r1 and ry. For instance. if o1(x.y) =
ooz, y) = 2y/(1 — x)(1 — y)). then for all choices of r1 and ro the only real solution
of system (2.8) is pi1(ry) = p1(ra) = pa(r1) = p2(r2) = 0 and therefore the only
steady-state of (2.6) will be p; = p2 = 0. a

Even if a steady-state solution exists, it can be non-attracting. so that the system
will never approach this state. It then doesn’t make sense to use the steady-state
approximation for solving the gradient equations. An example of such a system is
described next.

Example 2. The system of equations is given by
Oipr(x.t) = DO*py(2.t) — pr(x.t) + o1 (pal(r1))d(z — r1).
Orpa(x.t) = D2 py(a.t) — palx.t) + d2(p1(r2))d(x — ra).

with py 2 defined on [0,1], periodic boundary conditions, D = 0.1, r; = 0.25, ro = 0.5
and

(2.9)

z? _ (1-2z)*

Using the same technique as in Erample 1. one can show that system (2.9) has a
steady-state solution. However, numerical experiments show that with the initial con-
dition p, .5 = 0 the system will approach a periodic motion with a period that is around
2. Some pictures of this are shown in Figure 2.1. Thus. system (2.9) has a steady-
state solution which doesn't seem to be an attractor in the sense that the solution
is approached for t — >c. Therefore. for this system in combination with certain
gradient equations no quasi-steady-state approximation can be used. |

o(z) =% (2.10)

In general we can say the following. System (2.4) can be solved if there is a ordering
of the fields p; such that the o¢  and 5., do not depend on ps,(ra) and pj (s, ).
for all @ and all 3 < 3;. Solving the system can be done by solving sequentially for
3 =1,...,N,. We call such a system of equations sequentially dependent. Thus, if
the system of parabolic equations is sequentially dependent. then there exists a steady
state. In addition, this steady-state is a global attractor of the system.

If, in a mixed parabolic-gradient system, the parabolic equations are sequentially
dependent we can use the quasi-steady-state approximation. i.e., the solutions jz of
system (2.4) can be used in the gradients equations to give

d e .
T Talt) = ; AoV s(Ta(t)). (2.11)
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Figure 2.1: Periodic motion of system (2.9). p; (—) and p2 (——).
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fora=1...... N4. The basic idea behind this approximation is that the dyvnamics of
the parabolic equations is much faster than the dynamics of the gradient equations.
However. we will see in Section 2.5 that with the parameter ranges given in Section 2.2
this approximation can become verv bad in the sense that the growing speeds r,, can
be significantly different when using the quasi-steady-state approximation.

Another point is what kind of source functions to use. If point sources are being
used. the system of elliptic equations (2.4) can be solved exactly for all arbitrary
combinations of ry..... Tx,. as is done in [21]. We will examine in the next section
the use of point sources and different kinds of source functions.

2.4 Source functions

We want to consider some aspects of the used source functions S, in the parabolic
equations. From a modeling point of view. the use of point sources for making the
model as simple as possible. is appealing. For instance, Hentschel and Van Ooyen [21]
use point sources in their simulations of the model. However. as we will show in the
next subsection. using point sources gives difficulties with respect to the smoothness
and existence of solutions, especially in 2 and 3 dimensions. The alternative is to use
source functions that are spread out in the neighborhood of the source position, as is
discussed in Subsection 2.4.2. Although extra choices have to be made concerning the
form of the source functions. the smoothness and existence of solutions are guaranteed
in this case.

2.4.1 Point sources

We will start with point sources in one dimension. so that we are considering the
solutions of equations of the form

Nag N,
Ops(et) = Dyd2ps(a.t)—raps(x )+ 0% d(a=ra(t)+) 0% 6(r—s,). (2.12)
a=1 ~=1

where & € R. Because this equation is linear. the solution for given functions r(¢) can
be found by solving the same equation for the different sources separately. meaning
that we have to solve equations of the form

dp(x.t) = DPp(a.t) — kplx.t) + ad(x — r(t)). (2.13)

Smoothness

The solution of equation (2.13) can be written as

x| t o gnlt=T) lr—r(m)l*

(TE_Ht * _ € —
rt) = —— C 1Dt df + e ADU=-7T) d7. (214
[)(.T ) m[x P()(E) 6 a o -’171'D(t—7') ( )
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for all t > 0 and pg(x) = p(x.0). which can be easily found by using Fourier analysis.
Given pg € L? (1 < p < x). it can be proven that p is C™> at all points (x.t) with
t > 0 and x # r(t). A proof of this for an analogous equation can be found in [19].
At points (r(t).t), p may not be differentiable with respect to z.

Therefore, equation (2.12) has solutions of pg that are smooth, except in points
(ro(t).t) and {s,.t). where the sources are located. as can also be seen in Figure 2.1.
For the analogous equations in two and three dimensions the same holds, as can be
proven in exactly the same way as in one dimension.

In the complete 1-dimensional mixed parabolic-gradient system, the functions r(t)
satisfy gradient equations (2.1). These equations contain terms A, 30;p5(ro(t).t), so
that there can occur something which we will call self-interaction. This occurs if there
are a and 3 with ag‘a # 0 and A,.3 # 0. meaning that source o produces psz and the
dynamics of r, is influenced by pg. In other words, there are sources sensing fields
which they help produce themselves.

Ill-definedness.

If self-interaction occurs with respect to source o and field 3, then the system is not
well-defined, because the solution ps(-.t) of equation (2.12) is not differentiable at
ro(t), while the term 8,p3(r,(t),t) is used in the gradient equation for rq(¢).

In the 2- and 3-dimensional case the situation is similar. The solution pg is
everywhere C'™, except at the location of the point sources a with g o # 0, where it is
even singular. Again. this will result in ill-definedness of the problem if self-interaction
occurs, in the same way as in the 1-dimensional case. Therefore, if self-interaction
occurs, it is impossible to work with point sources.

By defining a generalized gradient V f(z) = lims o(f(x 4+ h) — f(z — h))/(2R), we
can solve this problem in the 1-dimensional case. because @pg exists at the locations
of the sources. Further, if f is smooth at x then Vf(z) = Vf(z). However, it seems
that there is not a similar possibility in 2 dimensions due to the fact that the ps are
singular at the source locations, which is not the case in 1 dimension. In this case we
would like to define a generalized gradient by means of

Vfr )_th/ f(z)(z —r)dz. (2.15)
By (r)

hlo wh?

with Bp(r) = {z € R? | |x — r| = h}. for which in case of a smooth function f we can
write

Vf(r) =lim — ! /B(){f(r)+Vf(r)-(Jf—r)+(9(h2)}(£r—r)dz

hlo Th3

= lim /hm #{Vf(r) S — r)}(.l‘ ~v)dr + O(h) = Vf(r).

RO

However. if we try to use our generalized gradient in two dimensions on a moving
source with a constant speed vector v. yielding equation

dp(x,t) = DAp(x.t) — kp(x.t) + od(x — r(t)). (2.16)




16 CHAPTER 2. A MIXED PARABOLIC-GRADIENT SYSTEM

with r(t) = tv + rg. then for large t the solution approaches

exp (—%v~ (x — J(f))) Ky (—Mbc - 1(#)|> . (217

he ©
Pt =55 2D
This can be found be substituting a moving profile solution p(x.#) = p(x — tv) into
equation (2.16). Here. the function Ky is the modified Bessel function of the second
kind. for which, for small . Ko(x) = —~vg — In(/2) + O (x). where ~g is Euler's
constant. We then can write for p(x.t) in the neighborhood of r(t)

p(r+¢&.1)
o , Tv)2 o
=55 {1 - %v-f%—@(ﬂz)} {—ln ((frh‘%m) +(’)(|£|)}

= A1 In(Az[€]) + As(v - &) In(Az[&]) + O (I€]) .

where A;. Ag and Az are real constants. If this expression is substituted in the
definition of Vp, then this yields

1

Th3

[ st ngde = Ayashy + 0 (10).
B (0)

and therefore the limit in the definition of the generalized gradient does not exist
at the location of the source r(t). In three dimensions the same effect occurs and
again the analogously defined generalized gradient does not exist at the location of
the source.

Making use of some kind of generalized gradient doesn’t seem to make it possible to
combine self-interaction with point sources in the 2- and 3-dimensional case. Because
self-interaction is an important feature of the model, we will disregard the use of point
sources and concentrate in the next section on sources that are spread-out in space.

2.4.2 Spread-out sources

If using spread-out sources, certain choices have to be made regarding the form of
the source function S,: Q — R. In general. we will define the function 5, by
Sy (x) = S(|x — ry]), where S: R™ — R. Further we would like to have in most cases
a compactly supported source function. meaning that supp(S) = [0. ¢] for some ¢ > 0.
We assume also that S is non-increasing, piecewise smooth and ]“ S, (£)Yde =1. In
an analogous way we will define S;_ .

The most simple source function we can think of is the one defined by

ime L <
S(.I‘) = {Cdzm = . C'l = i CQ = 1_,.

This function already shows an important feature of spread-out sources. Namely. the
source functions S, defined using the S above. will have discontinuities at points
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r € Q with |# — r,| = £. This can result in higher order! discontinuities at the same
points in the solutions p3 of the parabolic equations.

Example 3. As an example in one dimension we consider solutions of the equation

Oip(x.t) = DO?p(x.t) — kp(a.t) + oS(|lx — vt

), (2.18)

on R. which describes the dynamics of a concentration field p caused by a moving
source with location r(t) = vt. One of the solutions is a translating profile p(x,t) =
plax—uvt), that is shown fort = 0 in the left picture of Figure 2.2. Att = 0, the source
is located at the origin and moves to the right with speed v. Here. we used v = 0.5,
D=0.1.x=1and { =0.5. In the middle and right picture of the figure O.p and 9%p
are shown. respectively. We can see that the second order derivative is discontinuous

for x| = (. O
07
1 14 8
0.6 |
] 6
05 05 "
0.4 . 5]
-4 3 =2 -1 1.2 3 4
03 4 3 2 4 2773 4
X
0.2 I
-05
{
4
mi
_6}
1 |1
4 3 2 -1 ' 1 2 3 4 | 1
‘ —81
X

Figure 2.2: Moving source profile p in one dimension and its derivatives d,p and 92 p.
In general. solutions of

dp(x,t) = DO?p(x.t) — kp(x,t) + fz, 1), (2.19)

with f(x.t) piecewise smooth and having discontinuities of order r(t) at points x ().

are smooth everywhere. except for the points xx(t). where they have discontinuities

of order ri(t) + 2. Therefore we can choose other source functions to guarantee a
certain smoothness. some of which are shown Table 2.2.

With a discontinuity of order r in x we mean that the r'P-order derivative is discontinuous in
o while the (r — I)'}‘ derivative is continuous. By a discontinuity order of o~c we mean that all
derivatives in r are continuous.



18 CHAPTER 2. A MiXED PARABOLIC-GRADIENT SYSTENM

Table 2.2: Source functions and orders of discontinuity.

. disc. order
dise. order

S(x) ) Cs profile of p
of patr | B(re
Cdim % # x 2

-
3 |
’_\:N
3

PP

Cdim(£ — -l')

Cdim(‘T - [)2('1' - %[)

Cdim COSQ(L;) 1 2L

Another interesting feature of the moving profile of Example 3 is the fact that
its maximum is not attained at the center of the source, although it is very close
to it: namely. the maximum is attained in supp(S,(;)). which consists of all r with
|z —r(t)| < . We can prove that this is true for moving profiles in general, by noticing
that we must have for p, with p(x.t) = p(x ~ tv).

DAp(x) — kp(x) + v - Vp(x) = 0. (2.20)

for all x € Q\supp(Sp), where A is the closure of an arbitrary set A € €. If p would
have a maximum at x € Q\supp(Sp). then Vp(x) = 0 and Ap(x) < 0. because all
eigenvalues of the Hessian matrix of p evaluated in x are negative and Ap(x) is the
sum of these eigenvalues. However, equation (2.20) yields. by p(x) > 0 and Vj(x) = 0.
that Ap(x) > 0, giving a contradiction. Therefore a maximum of p lies in supp(Sp)
and thus for the maximum of p we have that |x,,., — r(t)| < £.

2.5 Self-interaction

It will often occur that the gradient equation of a source contains gradients of one
of the fields py that it produces, which is a property that we called self-interaction
in Subsection 2.4.1. In this section we will see that self-interaction has a diminishing
effect on the speed of a moving source in case that the self-interaction field is an
attractant for the source. If the self-interaction field is a repcllent. then the speed of
the moving source will be greater. Besides this we will examine how the width of the
sources influences the self-interaction.

In Example 3. in case of block source functions, the gradient of the field p that
the source produces. evaluated at the source position. is equal to

12 - .
Doplet) = ——— L exp [~ HIDR ) b (’—z) : (2.21)
(V1?2 + 4Dk 2D 2D
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The gradient d,p(vt) is negative (positive), for positive (negative) v, and is decreasing
(increasing) with . as can be proven by noticing that Vo2 + 4Dk/(2D) is always
greater than |v|/(2D). This means that for decreasing source width £. the source will
sense the fields that it produces in an increasing way. For £ | 0 this will result in

av

2DV1Z + 4Dk’

To get an idea of how big the influence can be on the time derivatives 7 in the gradient
equations, we consider an example.

lélﬁ)l O p(vt) = — (2.22)

Example 4. In this example we consider a moving source (position r) and a static
source (position s) on R, secreting a substance p to which the moving source is at-
tracted, yielding equations

dip(x. 1) = DOZp(z.t) — kp(a.t) + aS(lx —r(t)]) + o S(|x — s)). (2.23)
() = Azp(r(t), t). (2.24)

We can write the solution of equation (2.23) as p{x,t) = ps(x) + pr(x,t), where
ps and p, satisfy

0 = D&2ps(x) — kps(x) + 0S(|z — 3)),
dipr(x,t) = DO2py(x,t) — kpp(x,t) + aS(|lz — r(t)]),

so that for equation (2.24) we have
T‘(t) = /\azps(r(t)) + )‘ampr(r(t)v t)- (225)

In a quasi steady-state approrimation the term O, p-(r(t),t) will vanish, however in
this case it is approrimately equal to the expression in equation (2.21), which yields
after substitution and developing a Taylor series with respect to 7,

iR u 4 &t + O () (2.26)

with v = A0y p,s(7) and

Ao o(u?? + 3ul - 3) K
= #E = “( = -_.
¢ (402 ¢ ) g (96 DY ) F=VD

Solving the approrimate equation (2.26) yields then

. 1 n 3 4

T v+ v+ O (). 2.27
e T aen (%) (2:27)

0-107%, 6 =1.0-1073. £ = 1.0- 1072,

< 50-1077, (1 - €)' = 0.57 and

A ps(r).

By using parameter values D = 1.0-1074. k= 1.
and A = 1.0 - 1072, where we have that O <v
(1 —&)~* =~ 1.0 - 108, this results in 7 =~ (0.57) -
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Without self-interaction. as in the case with QSSA. then ¥ = Ad.ps(r). Hence.
according to this estimation. the self-interaction causes a decrease in source speed of
43%. It has to be noted that the quality of this estimation depends on the acceleration
of the point source. The used equation (2.21) is valid for constant ¢(=r) and t —
> and therefore, if v does not change too rapidly, the convergence of the measured
gradient to equation (2.21) can be faster than the speed with which v changes. d

2.5.1 Self-interaction in two dimensions

We next want to examine the effect of the width of source functions on the self-
interaction in two dimensions. For this. we define $*: R? — R. by S(x) = ,%S(%|x|)
with supp .S = [0.1]. so that

/ s‘(x)dx:/ S(x) dx. (2.28)
B, (0) B(0)

where B (0) = {x € R? | |x| < ¢}. Again we consider the moving profile for a source
moving with a constant speed v. i.e. p(x.t) = p(x — tv). The equation for the field
is given by

dip(x.t) = DAp(x,t) — kp(x,t) + 0S5 (x — tv). (2.29)

for which the moving profile will be determined by the equation
DAp+v-Vi—rp+0S =0. (2.30)
where p and S¢ are functions of x only. We will solve this equation by using a Green's

function p¢. which is the solution of equation (2.30) with a Dirac distribution & instead
of the function SY. For these functions we have the expression

pa(x) = Arel =Y K (A3]x|) (2.31)
VIVE+ 1Dn
A= 0 4=t g, VIVEAADK (2.32)
97D 2D 2D

and the solution of equation (2.30) is then equal to

plx) = / palx—)s(e) e (2.33)

To consider the self-interaction. we have to calenlate Vp(tv.t) = Vp(0). Because of
the fact that S’ has support By(0) and is symmetric at 0. we can write

Vi) = /B | Tiels'(€) de.
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The series expansion of V¢ in the neighbourhood of 0 is equal to

R Aovex) o A: Agvex) e
VpG(x):—{AQAl(’( == *Ix[](A3|x|)}v—{ﬁAle< A )le(Ag}xD}x

:{AlAQ In (€€ A3 /x|) — A1A2(v - x) In (7% Ay|x|) }v

A .
+ {——‘ +.41‘42L-§}x+(9(|x|).

x|? |x!2

so that we have for Vp(0),

V(0) = A As </3 N In (ew+%A3|x|) S(x)dx + 111(5)) v+O0).  (2.34)

With this expression of the gradient at the position of the source of a moving profile
solution we can estimate the effect of self-interaction in case of the general mixed
parabolic-gradient system (2.1) and (2.2). Selecting a moving source r, and a field
ps for which we have self-interaction. we split the field p into two parts; one part p;,
produced by the source itself, and the other part p., produced by other sources. giving
Ve = AVpe(r(t).t). Here we dropped the subscripts a and 3 for convenience. Using
the first term in the equation (2.34). we can write Vp,(r) = Vp(0) = As(¢)v. For
the speed of the source we then have by the gradient equation 7 = AA4(£)7 + v,
yielding 7 ~ (1 — AA4(f))~'v.. With parameter choices of Example 4 we then get
7 (0.76)ve.

Clearly, the effect of self-interaction can become infinitely large for small source
widths . The source width is therefore a critical parameter of the system. Further,
the sign of A determines whether the self-interaction field acts as an attractant or as
a repellent. We have shown an example of an attractant field. For A < 0. hence a
repellent field. the speed of the moving source will be greater instead of smaller.

2.6 Numerical tests

In the previous sections we found by analytic means some properties of the mixed
parabolic-gradient systems. In this section we will do some numerical tests to illustrate
some of these findings. For this. we use a simple numerical method, which is first order
accurate in time and second order accurate in space and serves for showing the effects
of self-interaction.

We will concentrate on a 1-dimensional example system (the system from Example
4). The system is

Oepla.t) = DOp(r.t) — wplr.t) + 0,.S(|r — r(t)]) + 0:5(|r — i) (2.35)
F(t) = A0, p(r(t). ).

which is the most simple system that shows self-interaction. The moving source
(position r(t)) and the static source (position s) both produce p. and the moving
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source is growing to higher concentrations of p. Again. supp S = [0. £]. with S one of
the functions from Table 2.2. Further we will assume that the domain is [0. 1] and we
impose periodic boundary conditions.

2.6.1 Numerical method

For discretization of the parabolic equation (2.35) we will use the backward-time
central-space scheme,

n+1 n n+l _ n+1 B
U = U Dvm+l 2l’m + tn

K E

— ke 4 0, S(|m — )+ 0sS(Jem —8]) (2.37)

on an evenly spaced grid 0 = xg.....xa; = 1. with gridsize h in space and step
size k in time. Because of the periodic boundary conditions we can work with vectors
vi= (o] )7 of length M. such that o7, = p(z,,.t,). If we denote S,,,(r") =
0S| —1™]) + 55|y — 5]). such that S(r") € RY. then we can write this scheme
as

AVl = v L RS(rT). (2.38)

where A is a periodic tridiagonal matrix. If we denote the projection of the exact
solution p(x.t) on the grid by p(t), then substitution of this solution into (2.38) yields

Ap(tai1) = pltn) + ES(r(tn)) + KO (k+h?) (2.30)

and therefore the discretization is first order consistent in time and second order
consistent in space. Further, this scheme is unconditionally stable [46] for a given
function r(t).

The path r(t) of the moving source will be approximated at discrete time points ¢,,
(r™ = r(t,)). For the discretization of the gradient equation (2.36). we need to
approximate the gradient at r". which is not necessarily a grid point r,,. For this. we
need a numerical gradient function Pg: RM x [0.1] — R. such that if an arbitrary.
smooth function f: [0, 1] — R is projected on the grid x € RV, yielding f € R, then
Pg(f.7) =~ 0, f(r). Then we use forward Euler to calculate r"*! from r". giving

P = RAPC (V). (2.40)

If we assume that Py (f.r) = 0. f(r) + O (h?) for arbitrary, smooth f. then we can
substitute the exact solution r(¢) into (2.40) to obtain

r{thsr) = rltn) + kAPe(p(ta). r(tn)) + KO (k + h7). (2.41)

making scheme (2.40) first order accurate in time and p'"-order accurate in space.
Our time stepping process now consists of two stages: equation (2.38) together

with equation (2.40). But we still need to define the numerical gradient function Pg.

The most straightforward way to define a numerical gradient function is to define

Py (f.ri +60h) = 1 (fis1 — fi). (2.42)
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Figure 2.3: Solution of system (2.35)-(2.36) at times ¢t = 300, 900, 2100, 3000.
Sources (---), ps (—-—) and p (—)

with the unique § € [0.1) and z; such that r = x; + 6h. which gives Pg(f.r) =
9:f(r) + O (h), for arbitrary, smooth functions f. However, it is easy to build higher
order gradient functions by using more grid points. For example.

Pg(f.x; + 0h) = %(%( — fic1 +3fi = 3fiy1 + fir2)b?

+ (fi—l . Qfl + fi+1)9 + %( . 2f1'41 — 3.f1 +6fi+1 — fi+1))= (243)

for which Pg(f,r) = 8, f(r) + O (h?) for arbitrary. smooth functions f, which is the
highest order numerical gradient function possible using four grid points. We now

will show some results of an example calculation using equations (2.38), (2.40) and
(2.43)

Example 5. We use the parameter values D = 1.0-10 4. k = 1.0-107%, ¢ = 3.0-1073,
A= 1.0-10"* and the cone-like source functions with £ = 0.1, Further we take s = 3/4
and as initial values r(0) = 1/3 and p(x.0) = 0. for all x € [0.1] and we will integrate
to t = 3000. For a calculation with 2000 grid points. both in the x and t-direction
(h = 0.5-107% and k = 1.5). the results are shown in Figure 2.3. These grid sizes
are sufficiently small to approximate exact solutions up to plotting accuracy.
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It can be seen that the source at position r(t) moves toward the source at position s.
The dash-dotted line shows a p-field that is produced solely by the source at s. which
we called ps in Example 4. This field isn't used in the calculation, but is shown for
illustration purposes. The solid line shows the p-field that is used in the calculation.
It is the sum of the two fields excreted by the sources. The dotted line displays the
scaled source profile functions. They are scaled down by a factor 20 to make them
nicely fit into the picture.

In Section 2.5 we made an estimation of the diminishing effect on the moving
speed of a source in case of block source functions and for p defined on the whole of R.
For our example case, where we have cone source functions and the domain is [0,1]
with periodic boundary conditions, we can do a similar calculation. We then get for
& in equation (2.27),

Ao (1 —¢)sinh(uf) — £sinh(u(1 - ¢))
4D et — 1) (e # —1) '

3

With our choices of parameters, we have £ = —0.511 and equation (2.27) gives 1 =~
(0.66) - ADrps(r). In the left graph of Figure 2.4 the gradients O,ps(r(t)) (dash-dotted
line) and O.p(r(t),t) (solid line) are shown. Clearly, O,p(r(t).t) is much smaller
than O.ps(r(t)) due to the self-interaction. According to our estimation we should
have O.p(r(t).t)/0zps(r(t)) = 0.66. This ratio is depicted in the right graph. We see
that the ratio is a little less than the estimation we made.

Two things might explain this. First, the estimation is based on a moving profile
solution moving with constant speed 1. The fact that r is not constant, but increasing,
might give some differences. Second, from the gradient of the moving profile solution
we only take the first order term in © in our estimation. For higher speeds, higher
order terms can come into play and they then have to be accounted for.

We see that the self-interaction causes a decrease of about 30% — 40% in moving
speed of the source here. If QSSA is used the self-interaction is automatically neglected.
because concentration fields in steady-state do have a vanishing gradient at the location
of the source. Therefore, sources seem to move faster than they really do with QSSA
in this particular problem. In Figure 2.5 the QSSA solution for r(t) (dash-dotted)
is shoun next to the full integration solution of r(t) just calculated. Clearly. in the
QSSA solution the moving source reaches the static source too early.

Using QSSA. we turned the parabolic equation into an elliptic equation by putting
Op = 0. This equation can be solved analytically and its solution, which depends
on r(t) can be used in the gradient equation, resulting in an autonomous ODE. We
solved this equation numerically using the classical Runge- Kutta 4" -order integration
scheme. |

2.7 Conclusions

In this chapter we examined a mixed parabolic-gradient system. which is a prototype
for such svstems arising in neurobiology. where they act as a model for the axonal
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Figure 2.4: (Left) 0,p(r(t),t) (—) and d,ps(r(t)) (— - —) against time. (Right) Ratio

of the gradients against time.
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Figure 2.5: Location of the moving source against time computed with QSSA (- - —)
and with numerical integration of the full parabolic-gradient system (— ).
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growth out of neurons. The long term goal is to develop efficient numerical methods
for solving such equation systems. Here. we tried to get a better understanding of the
equations by analytical and numerical means.

We found that. with the parameters in the estimated ranges. putting the parabolic
equations in steady-state gives very different results. Although some reasons to jus-
tify the guasi-steady-state approximation exist. see [21]. this approximation can give
moving speeds of the sources that are significantly wrong in case self-interaction oc-
curs.

A way to estimate the self-interaction effect is found and by using this. it should be
possible to give an indication of the quality of the quasi-steady-state approximation in
particular cases. In addition, we found as a rule of thunb that decreasing the source
width will give a greater self-interaction effect. In one dimension this cffect seems to
be bounded for decreasing source widths. but in two and three dimensions this cffect
can become unbounded, resulting in source speeds approaching zero or becoming very
large.

This brings us to the use of point sources. With point sources the solutions of the
parabolic equations are smooth everywhere except for the locations of the sources.
If self-interaction occurs. gradients have to be taken at these locations. making the
combination of self-interaction and point sources impossible. In one dimension we
can work around this by redefining the gradients. but in two and three dimensions
this seems not to be possible. As an alternative. sources that are spread out in space
can be used, but then care has to be taken on the smoothness of solutions of the
concentration fields.

In doing the numerical tests we found that the number of grid points needed to
reach good accuracy is very high. even for the simple problem we used. In future
research we will focus on this aspect and search for better ways to discretize these
equations.

Other points of interest are how the model can be extended to make it more real-
istic. For instance. the model relates certain mechanisms {e.g. sensing gradients) to
global hehaviour (e.g. bundling). However. the dynamics can be such that at a cer-
tain moment of timne the mechanisms arc not realistic anyvimore and other mechanisms
should take over.
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Chapter 3

Domain definition with Bézier
curves

In this chapter we will consider the selection of nodes on the boundaries of the domains
of the PDEs. where the boundaries are given as a combination of Bézier curves. Such
a sclection is needed for the spatial discretization. We will start with the definition
of Bézier curves and Bézier paths and discuss some of their properties.

3.1 Bézier curves and paths

Given n + 1 control poiuts p; € R%. i = 0..... n. a Bézier curve (': [0.1] — R? of
degree n is defined by
n n )
c(t) =Y B,(t)p;. with B, (t) = ( _)m T (3.1)
i=0 !

for + € [0.1]. see [3]. If n = 1 this results in a straight line between the points pg
and py. In general ¢ is a curve which has as its end points pg and p, and is entirely
contained in the convex hull of the set of control points py.. ... Pn. see [3]. The first
and second order derivative of a Bézier curve c are given by

n—1

c(t) = Z nBy_1i(t)(pis1 — pi)- (3.2)
=0
n—=2

c’(t) = Z n(n = 1)By 1 i(t)(pis2 = 2Pis1 + Pi). (3.3)
=0

From this follows that. given the end points py and p,,. the derivatives at these end
points are determined by fixing the points py and p,,_;. because ¢'(0) = n(p, — po)

27




28 CHAPTER 3. DOMAIN DEFINITION WITH BEZIER CURVES

and ¢'(1) = n(p, — Pn_1). Similarly, given these four points that specify the end
points and derivatives at the end points. fixing the poiuts p; and p,,—» determines
the second order derivatives at the end points.

For the definition of the domains we work with a set of Bézier curves that together
form a closed continuous path. Such a path we will refer to as a “closed Bézier path’.
It is C™ at its Bézier curves. but might be not even C'! at its connection points.
In the following we will write such Bézier paths as a single function ~: It — R2.
where It = [0.T). and ~ restricted to subintervals of unit length ~[;; ;41 for integers 7
represent the independent Bézier curves.

Given a closed Bézier path. we will assign nodes to it that are being used for
the discretization of the PDEs of which the path specifies a part of the domain’s
boundary. Such a distribution of nodes along the path will depend. as we will see in
Section 3.2, on the arc-length |c/(#)] and the curvature ~. see [43]. defined by

! "

K= —g—|°‘:,‘,c 5 (3.4)
Here. v x w = det[v|w] for some arbitrary vectors v.w € R% To get node dis-
tributions that behave well in the sense that the distances along the nodes change
gradually. we will require that the arc-length and curvature are continuous along the
path. Using (3.2) and (3.3) we see that this can be accomplished by letting control
points p; and q; of two consecutive Bézier curves (of the same degree n) obey the
following equations

Prn —Pn-1=4d1 — 90 (C'-continuity).
Pn — 2Pn—1 + Pn—2 = Q2 —2q1 + Qo (C?-continuity).

at the connection point p, = qg. resulting in a path that is C2.

In the left picture of Figure 3.1 a closed Bézier path is displayed that consists
of three Bézier curves of degree 1. i.e., they all have 5 control points. The rest
of this chapter will be devoted to the assignment of nodes to such Bézier paths or
combinations thereof. as is shown in the right picture of Figure 3.1. Such a distribution
of nodes should represent the (combination of) curve(s) as closely as possible and
should therefore use relatively many nodes where the curves turn and twist most.

3.2 Node choosing on curves

Consider a curve 5 which is given by a certain parametrization 3: Ir = [0.T] — R2.

The path-length s as a function of ¢ is defined by s = F(t) with F: Ir — I, = [0. L]

and
t

s=F(t)= j B(7)] dT. (3.5)
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Figure 3.1: (Left) Domain consisting of three coupled bezier curves of degree 4. The
black dots are the control points (5 for every curve) that specify the curves. (Right) A
selection of nodes on the domain boundary that can be used for discretization.

refers to the derivative %:,(f). Here, the curve’s total length L is given by

L = F(T). The parametrization based on the path length is often called the ‘natural
parametrization’ of the curve, see [45]. and is given by

where 7/

y=%0 F1; I, - R?,
In addition we will define a transformation of the path-length parameter s, denoted
by G: I, — I = [0.1], that defines the node distribution along the curve. To this
end we will assume that there is a monitor function M: Iy, — Ry U {0} that yields a
relative node density along the curve. Using M the transformation G we define then
by

](JLA[(g)(lg_
Jo M(€)de

In the left picture of Figure 3.3 a possible monitor function M is shown for the Bézier
path of Figure 3.1. The right picture shows the accompanying transformation G.
Choosing a suitable monitor function for a given path will be the subject of Section 3.3.

Given a monitor function. which has as its domain I,. we can also define a repara-
metrization based on the original domain I7 of 4 by

=G(s) = (3.6)

0

M=MoF:Ip — R, U{0}.

It is often the case that we have. instead of function M. the function M available in
explicit form, making that we can use M only in the form Mo F~1. Figure 3.2 shows
a schematic overview of the function we defined so far.

Using this setting. we will choose a uniform grid in the unit interval 7. which

we denote by {z;}. with z; = {/N for i = 0.....] N. The grid then defines a node
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R, U {0}

Figure 3.2: Schematic overview of the used functions.

set {x;} € R? by

% = (e G Had (3.7)
foralli=1,....] N. The right picture of Figure 3.3 shows how the transformation ¢

determines the node distribution. The uniform grid {z;} in the unit interval I is
mapped by G~1 onto a nonuniform grid {s;} in [0, L], which in turn is mapped by ~
to the nodes in R?, as shown in the right picture of Figure 3.1.

0.02
1
0.015 0.8
<§ zZ;
10.64<"
0.01 y
0.4 G(s)
0.005
0.2
Si
o 2

Figure 3.3: (Left) The monitor function M (s). (Right) The transformation G(s)
together with the grids {z;} and {s;}.

Using 57 and M The definition of the node set in equation (3.7) uses the functions
~ and G. Because often we have been given the curve and an appropriate monitor

function not in terms of the natural parametrization 5 and M, but in the form 4
and M. we will define the transformation G = G o F' and express it in 5 and M. For
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the integrals in (3.6) we have

s B - Fﬁ](‘”) -
/ M(€)de = / (M o F~1)(€)de ‘5“:‘”’/ N(7)F'(r)dr
0 4]

S0

FMs)
= / M(T) |3 (7)] dr.
0

resulting for G in the expression

_ () () dr

2 =G(t) = (Go F)(t .
(H =1 1 [T NI(r) |3 (7)] dr

(3.8)

Given the parametrization 5 and the monitor A the nodes can now be determined
by N
Xi=(yoG )z)=(roFoF oG ) (z)=(50G ") (z). (3.9)

Because the integrals in (3.8) can not be calculated analytically. we need for de-
termination of the nodes numerical procedures for integral evaluation and function
inversion.

3.3 Choosing the monitor function M

We will now focus on choosing a suitable monitor function for a given ~. A possible
choice for the monitor function could be to set

M{s)y=1 = ::=G(s)=s/L (3.10)

or any other coustant. all resulting in the same transformation G. Given a uniform
node distribution in I this will result in a uniform node distribution in I,. Therefore
the resulting transformation only takes into account the distance between the nodes
along the curve. making them all equal. In the left picture of Figure 3.4 a node
distribution is shown that is the result of this monitor.

As a curve may be more or less straight at some regions, whereas it twists and
turns elsewhere. it might be preferable to have relatively more nodes in these latter
regions. Consider the more advanced curvature monitor function

_ G(s) = o rO
Jo #(&)de

A resulting node distribution is displayed in the right picture of Figure 3.4. There
are two main reasons why also this one is not such a good monitor function:

(3.11)

~

e In situations where part of the curve consists of straight lines the curvature s
vanishes. This leads to G being constant at the corresponding paraneter ranges.
while G should be a globally invertible function.




32 CHAPTER 3. DOMAIN DEFINITION WITH BEZIER CURVES

800 800
7501 750
7001 700
650t 650
50 100 150 200 50 100 150 200

Figure 3.4: (Left) Node distribution according to the arc-length monitor (3.10).
(Right) Node distribution according to the curvature monitor (3.11).

e The curvature monitor tends to assign too few nodes to the relatively straight
parts of the curve. and too many to the more curving parts. This leads to rather
abrupt changes in node distances, which in twrn can result in ill-conditioned
matrices when being used for discretization.

It seems favourable to have a combination of the two methods. where the curvature
is used to select the parts of the curve where relatively many nodes are needed, while
at the other hand we have some mechanism smearing out nodes over the relatively
straight parts.

In general. we might assume that the monitor function M is a convex combination
of a set of normalized monitor functions M.

M,
M = E (1,/_[— with E a; = 1. (3.12)
‘M
i Jo i i

Each weight «; represents the relative contribution of the monitor ¢ to the total
monitor M. For the total tmn%fommti()n G this results in

fy 3 i/ J( ] .
z =G (5) = = = = ;G (5). (3.13)
e, v;// Z i, Z

Applying this te(‘hniqu(\ and taking a combination of the curvature monitor and
the arc-length monitor gives

':G(.s):(lfa)M+n; (3.14)

M Jo wleyde L
which with respect to the original parameter space I has the form
& - ot 1y
i (1) |7 1 AT dr
= (oY) = (1 — o) pEAT N | T o7
Jo RO (m)| dr [5 17 (7)] dr

JO

T
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The node distribution in the right picture of Figure 3.1 is the result of this monitor
function with a = 0.5.

3.4 Number of nodes based on maximal distances

In the previous sections a method is used that translates a uniform grid on the unit
interval in a set of nodes along the boundaries. In this section we will consider a
criterium for choosing the total number of nodes. N, being used for representing
the boundary. It is based on the arc-length and, essentially, it specifies a maximal
distance (As)max along the boundary between two consecutive nodes.

Let us assume that we work with a monitor function that is a convex combination
of monitors, as in (3.12). for which the first monitor equals the arc-length moni-
tor (3.10). To achieve that the maximal distance between two consecutive nodes is
bounded by (As),.ax, we can choose for the number of nodes

= I—L/((Il(As)max)—I- (316)

which is the smallest integer greater or equal than L/(c;(AS)max)-
That this will result in a node set of which every node distance is bounded
by (As)max, can be seen as follows. Writing transformation (3.13) as

s i
e=G(s) =g + > a;G(s). (3.17) |
3#1
we see that for two consecutive nodes, denoted by z; and z;;;, we have
5
- +1 L+ ai(Gylsin) = Gy(si). (3.18)
J#1

Because the functions G; are increasing. this gives for the distance (s;1; — s;) along
the boundary between the two consecutive nodes

L
(31'+1 - Si) S b—(zi—kl - Zi) S N(As)max : N_l - (As)mam (319)

1

because L/a; < N(As)pax and z;41 — 2, = N7

3.5 Combining multiple curves

In Section 3.3 we considered the combination of different monitor functions. Here.
we will consider the combination of different curves. each curve coming with its own
monitor function. We want to use the same methodology to distribute a number of

nodes on this set of curves. where we have to take into account the following issues.
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e The distances between the nodes should be comparable for all the curves. Hav-
ing a domain with a number of holes, we would like to have the nodes distributed
on the hole boundaries in a similar fashion as on the outer boundary.

e If a curve has a point where the curve does not have a continuous derivative,
like a sharp angle. we would like to be able to force a node on this point. This
can be accomplished by splitting the curve at the point, resulting in two curves.
When doing this. one still wants the nodes to be distributed in a similar fashion
on both sides of the point.

To incorporate both issues we will use the approach of splitting the path at points
where they are not C! and glueing all resulting parainetrizations together, while
keeping track of the connection points.

Let us assume that after such a splitting step, we have for j = 1....,n. at our
disposal natural parametrizations v;: IJ - R2. monitor functions A;: I7 — R, U
{0} and corresponding transformations G;: I — I. Then we define the overall
parametrization by

v1(s), 0 <s < s7,
vY2(s — s7). 51 <s < s3.

v(s) = . _ (3.20)
Yn(s—sh_1). S <s < 8.

and the overall monitor M similarly. Here. the s} denote the connections points along
the curve, given by s7 = Ly, s5 = L1+ Lo, ..., 87, = Z;’:] L;. Using these overall v,
Al and G. results in a single-curve problem instead of the multi-curve problem that
we started with.

However, there is a significant difference with the single-curve problems used in
Section 3.2. The nodes should be chosen such that the corresponding grid {s;}
contains the set of connection points {s7}. Using the technique from Section 3.2,
one would choose a uniform grid {z;} in the unit interval I. which is mapped on
{si} = G 1({z:}). The resulting grid {s;} will then in general not obey this require-
ment. To solve the problem we do not start with a uniform grid in I. but with a grid
that contains the nodes z7 = G(sj). for all j = 1.....n, and is as close as possible to
a uniform grid. In the next section we will examine the construction of such needed

semi-uniform grids {z;}.

In the left picture of Figure 3.5 we see an example of a domain with holes and a
boundary that is not C'. At the right the total transformation is shown. It consists
of four parts, which are separated by the horizontal and vertical lines. The first two
parts represent the outer boundary and the latter two represent the two holes. The
nodes on the vertical axis represent the "almost” uniform grid {z;} which is mapped
on the non-uniform grid {s;}.
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Figure 3.5: (Left) Node set selection for a domain with two holes and outer boundary
that is not C''. (Right) Used transformation G with grids {z;} and {s;}.

3.6 Semi-uniform grids

In this section we consider two approaches for finding the semi-uniform grids in 7.
one using maximal distances between the nodes and another using fixed number of
nodes.

Maximal distance principle If we want to base the node choice on the maxi-
mal distance principle of Section 3.4, we can treat every part of the transformation
separately. assigning

L
(. L 3.2
.\‘I ’VAJ(H(AS)maX—‘ (‘ 1)

nodes to it. Here. a; is again the scalar multiplving the arc-length monitor in the
convex combination of monitors. L is the total length Z’/’:I L; of the curve and A; =
z; —zj_y, where we set z5 = 0. The the A; can be expressed in the monitor functions
giving

Jo M(€)de [ pp(e) de

Boyes —1 = . (3.22)
Jo M) dé€ Jo M (&) d€

Fixed number of nodes Given that we want to distribute N nodes over the

boundary. we have to find n integers N;. with N = 3"""_ | N;. such that
‘ ot

N
T{ ~ A,
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To formulate this more precisely we consider the problem of finding the N; € N that

n
minimize E f(
j=1

N

) . with constraint: Z N, =N (3.24)
j=1

where

e f: R, U{0} — R is a monotonically increasing. convex function.
o A; € (0.1 with -7 | Aj=Tand N e N.

According to Theorem 1 below. the solution must have N; € {[A;N].|A;N]}. so
that for small numbers n we can consider all 2" possibilities. ([.r] is the smallest
integer greater than or equal to x and |r] is the largest integer smaller than or equal
to .r.) This would be the case when we have for exaniple a C! outer boundary with a
small number of holes with C'! boundaries, giving that n equals the number of holes
plus one. On the other hand. for boundaries with a lot of C!-discontinuities. like
complex polvgonal domains. this approach could become unfeasible.

The semi-uniform grid {z;} in Figure 3.5 is based on a fixed number of nodes and
the minimization problem above. It contains the nodes z7 = 0.1097. z5 = z7 +0.3886.
z3 = z3 -+ (0.2658 and z] = z3 4 0.2359 = 1. In total it has 50 nodes. distributed over
the four parts with node numbers 6. 19. 13 and 12. respectively. in cach part giving a
uniform distribution, with node distances equal to 0.0183, 0.0205, 0.0204 and 0.0194,
respectively. The node numbers are calculated using a function f(xr) = |z| in the
minimization problem. The function G is (3.14) with a = 0.7.

We will end this chapter with a theorem on the minimization problem (3.24).

Theorem 1. If {N;} is a solution of the minimization problem (3.24). then for

every j. N; € {[A;N].|A;N |}

Proof. We consider an equivalent minimization problem. Find disjoint index sets
T . Tg. T, withT_UZoUZy = {1..... n}. and sets of numbers and n; € NU {0}.

that
n Z€j+71J:Z€j+77J.
minimize Z f (%) . with constraints: JET_ JET. (3.25)
=1 ny=0. forall jeIT.
where

AN — [A;N]. jeT .
€5 =40, 7 €Iy,
[A;N]-A;N. jeT,.
The two minimization problems are equivalent with respect to the map
AN —¢;—ny. jel_.
(I-.Tp.Is. () — (N)). Nj=¢AN, J € Do.
A;NA4ej+n;. jel..
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which is bijective if we take the constraints into account.

We will prove the theorem by showing that for the minimizer of the latter problem
all n; = 0. In the following the term ‘cost function’ refers to the function to be
minimized. To proceed let us consider some choice of (Z_.Zy.Z4. (n;)). with for some
of the i. n; > 0. We will search for choices that have a smaller cost function value.

If we have j € 7_. with n; > 1 and k € Z, with n > 1, then we can substract 1
from both n; and ng. The change in cost function will be

FIER=2) + F(2532) = (F(554) + f(25)) <.

while the constraint in (3.25) continues to be satisfied. This we can repeat several
times until for one of the index sets all n; = 0. Let us assume that this index set
is Z_. We can then continu in the following way.

Select arbitrary i € Z_ (has n; = 0) and j € T, with ngy > 1. we can substract 1
from ny and move j from Z_ to Z,, while replacing €; with 1 —¢;. The change in the
cost function will be

FOF2) + F(255=1) = (F(R) + F(=25)
<f(F) + f(EELM_TMll) - (f(%) + f(=5))  (f increasing)
< (f(max(lgej.e))) _f(max(ljgej.ej) _ |1-135J|>> _ (f(fk';;,"k) _f(ek-ztlnk _ Ilflgejl)>

<0 (f convex)

This process can be repeated until all n; = 0. For if there is only one element left
in Z_, all n; = 0 because of the constraint. We now have constructed a new choice
of (I_.Zy,I.(n;)), with a cost function value that is lower than the cost function
value of the original choice.

If after the first step the index set with all n; = 0 is Z, instead of Z_. we can
interchange the roles of both index sets in the second step, arriving also at a state for
which all n; vanish. g







Chapter 4

Spatial discretization of the
field equations

4.1 Introduction

In the present chapter a meshfree method is presented for solving time-discrete diffu-
sion equations. This method is meant to be used for the simulation of certain models
used in brain rescarch. Such models describe mechanising behind the development of
the nervous system and in particular the formation of the connections hetween the
nerve cells [21]. The resulting equations are constituted by two systems. One of the
svstems is a set of diffusion equations for certain chemicals {attractants and repel-
lents) that is coupled to the other svstem which consists of nonlinear ODEs describing
the growth of the connection forming structures. i.e.. axons. The diffusion equations
contain moving sources which are small compared to the domain and their strength
and movement may depend on the solution of the ODEs. The nonlinear ODEs de-
pend on the solutions of the diffusion equations. and gradients thereof. evaluated
along solution paths in the space domain.

For the sake of clarity. we consider an example consisting of one diffusion equation

and one ODE (]28]. Chapter 2).

Z0(x.) = (dA = F)p(x.) + S(x — ra) + S(x = (1)),
L etry = Vplett. ).
dt

where p is some concentration. S is a source profile with compact support. and ry
and r(t) are two source locations of which r(f) moves in the direction of higher cou-
centrations of p. A first-order discretization in time of this model. where the ODE is

39
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handled explicitly and the diffusion equation implicitly. is

(1 _ SHdA — H))p"“ (x) = p"(x) + 51‘(S(x — 1) + S(x — r"“)).
"t =" ot (Vp”(r”)),

where the superscripts n and n + 1 denote different time levels and 8t is the size of a
time step. Clearly, we have to solve in every time step an elliptic equation and this
step will comprise the majority of the work. Time discretizations of Runge-Kutta
type will require the calculation of several of such equations per time step.

This chapter is focused on the numerical solution of these elliptic equations. The
combined challenges of small. moving sources and flexible domain geometry suggests
the use of a meshfree approach. The basic idea behind meshfree methods is to work
with an arbitrary set of nodes instead of a grid. While this makes it casy to handle
refinement and flexible domain geometries, function approximation and solvability of
resulting systems become more complicated.

In most meshfree methods solving elliptic equations starts with the definition of
an approximation space in which a best approximation of the solution is sought. This
space is defined by selecting a set of basis functions, which in all cases forms a partition
of unity to guarantee at least first-order approximation. Wahile in finite element
methods the basis functions are chosen with respect to a partition of the domain,
meshfree methods form a basis by assigning functions with compact supports to each
node of an arbitrary node set. Here the function’s supports have to cover the whole
domain, while the overlap has to be minimal so that the resulting linear equation
systems become as sparse as possible. More on meshfree methods can be found in the
overview articles [4, 12, 33].

In the method developed in this chapter the approximation space is not defined
through a set of basis functions but as the image of a linear map. This map assigns
to every combination of function values on the nodes a piecewise smooth function on
the domain by using a least squares approximation locally. In this way the function
values on the nodes parametrize the approximation space that will be used in a
Galerkin procedure. Because the approximating functions are piecewise multinomials
the integrals in the resulting matrices can be evaluated exactly. This is in contrast to
methods like DEM [36] and EFG [5] or variants thereof, where a quadrature rule is
needed because of the use of moving least squares interpolants.

A Voronoi diagram [7. 11] based on the nodes is used for finding neighboring
nodes and for glueing local approximations together to form a global approximation.
Some other meshfree methods that use Voronoi diagrams (or the related Delaunay
triangulations) are the Natural Element Method [47] and the Meshless Finite Element
Method [27]. Both methods. however. use an approximation space constructed by
choosing a set of basis functions.

For the construction of suitable node sets different techniques are available, sce for
example [34. 6]. Here an algorithm is presented that makes use of Voronoi diagrams
and shifting nodes to regularize’ node sets.



The contents of the chapter is as follows. We start in Section 1.2 with meshfree
function approximation based on a local least squares approximation. This is followed
by a description of the discretization of the equation in Section 4.3. In Section 4.4
more practical considerations concerning the computation of the discretization are
discussed. A way for dealing with different domains and refinement in a meshfree
context is examined in Section 1.5. followed by Section 4.6 with a numerical test
exanmple. Finally, Section 4.7 summarizes the chapter.

4.2 Meshfree function approximation

This section deals with the meshfree function approximation used in the discretization
of the equation. We will start with a description of local least squares approximation,
examine its convergence and use it for a global approximation.

4.2.1 Local least squares approximation

Given a function f: R? — R and some node set {xo+hxy..... X + hx, }. we want
to approximate the function in the disc with center x¢ and radius A > 0, using the
values {f(xp + hxy)..... f(xo + hx,,)}. We choose the approximant to be a linear
combination of multinomials which are maximal of second order. i.e..

P'(x)=a-b(x) with bx)=(1 = y 2% =y yZ)T. (4.1)
where x = (x,y) and a € RS is determined by minimizing
n ) 2
Z P/ (x0 + hx;) — f(x0 + hx;)|

i=1
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(4.2) ‘

From now on we will assume that xy = 0. A particular choice of xq will not influ-
ence any approximation properties. because a translation in the domain of the least
squares problem can be viewed as a linear change of basis functions. meaning that
the approximation is in the same function space.

If we define

f(hxy)

B(h) = <b(hx1)

\b(hx,,)) and F(h) = :
flhxy)
substitution of (4.1) into (4.2). will result in

o’ (B(h)B(h)")a — 2a" B(h)F(h) - F(h)"F(h). (4.3)

which has to be minimized over a. The 6 x 6 matrix B(h)B(h)" is positive semi-
definite and positive definite if det (B(h)B(h)’) % 0. In the latter case a unique
mininnum exists that is determined by

(BIB(h)"ya = B(h)F(h). (4.4)
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The entries of the matrix B(h)B(h)” can be written as

(B(I))B(h)T)i_j = Zb,(hx,\.)bj(hxk). (4.5)
k=1

Ill-conditioning

For finding the local approximation we have to solve equation (4.4). It turns out
that for small A the matrix B(h)B(R)! is ill-conditioned for all sets {x;..... X }. To
obtain a rough lower bound for the condition number we can use the fact that the
diagonal elements of a symmetric matrix are bounded by the smallest and largest
eigenvalue. which can be easily deduced using the interlacing cigenvalues theorem for
bordered matrices [24).

The (1. 1)-entry of B(h)B(h)" is equal to 37,1 = n. while we also have. by
using (4.5) and considering the diagonal elements (B(h)B{h)"); ;. i = 4.5.6.

4 < Alll?l)(

Rrmax; |x; 4 = Apin

n
Nin < b Z \le4 < nh' max |xj|4 — (4.6)
J

=1

Therefore cond(B(k)B(h)T) > O (h~*) and direct calculation of the approximation
could be an error-prone procedure. A more stable way of calculating the approxima-
tion is to use scaled basis functions b;(x) = bi(3x). i =1..... 6. Then the matrices
in equation (4.4) become independent of h and the ill-conditioning for small & will
disappear.

4.2.2 Convergence properties

To examine the convergence order of such an approximation. we will assume from now
on that all points {x;..... X, } are situated in the unit circle. that at least for one
point ||x;|lz = 1, and that the resulting matrix B(1)B(1)7 is invertible. An example
configuration of points is shown in Figure 1.1. For an arbitrary point x in the unit
circle we will examine now |p"(hx) — f(hx)|.

First we define S(h) = diag (1. h. h. h?. hZ. /12) and B = B(1). so that we can write
b(hx) = S(h)b(x) and B(h) = S(h)B. Using this we have from (4.4)

S(h)(BBT)S(a(h) = S(h)BF(h) = S(h)a(h) = (BB"‘)’IBF(h)
and the approximation p” (hx) can be written as
p(hx) = a(h)-b(hx) = b(x)T S(h)a(h) = b(x)T(BBT)“BF(h).

For the difference p"(hx) — f(hx) a Taylor series expansion can be written down by
making Tavlor series of F(h) and f(hx). It turns out that the lower order coefficients



4.2. MESHFREE FUNCTION APPROXIMATION

Figure 4.1: Example configuration of points and the related circle.

cancel out due to the following equalities.

Df(0)(x1)
: = Df(0)(x).
Df(0)(xn)

= D?f(0)(x.x).

sz( J(Xn . Xn)

where v is defined by vI' = b(x)?T(BBT)~!B. Here we used the m-th order Fréchet
derivative D™ (f)(0): (R?)™ — R of f at 0 which is a multi-linear operator and
defined by

[Imio + néf)z)) f(z)

i=1

z=0
Each of these equations can be associated with a least squares approximation prob-
lem that has an exact solution because the approximated function is a low order
multinomial.
It follows that
pl(hx) = f(hx) + $Ch* + O (h*)

with L
Dif(O)(Xl X, X])

C =b(x)"(BBT)"'B ; — D3£(0)(x.x.x).
D3 f(0)(x,.%,.X,)
For arbitrary z € R? with |z| < 1. we have |b(z)|» < V6|/b(z)[|x < v6 and

D*f(0)(z.2.2) = (2101 + 2200 f(21.22)
<8 wmax [0,0,0,f(0)].
bjk=1.2
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which. because |x]. |x1]..... |x,,| < 1. vield together

C1 < (8n[(BBT) "l +8)  max 10,000 f(0)].

For a real square rn x m-matrix A we have the inequality of Hadamard [51] which states
that |det(4)| < (m 4+ 1){m+1/2/2m  Applying the general expression for matrix
inverses using cofactors on BBT gives

1

(BED)™Ds = SaimBT)

(=1)"" det(BBT[j.i}).

where BBT[i.j] is a matrix BBT with row i and column j deleted. One can now

estimate
81

BBy Y, € ——
I )7 e < 2ndet(LBBT)

which by denoting D(0: h) = {|x| < 1}. results finally in

sup () — fx)] < (

324 .
+ —i) “max [9;0;0 f(0)| b7, (4.9)
x€ D(0:h) ) ) dgk=1.2

det(:BBT

for h small enough.

Therefore we can state that for node sets in the domain of which the subsets
used for local approximation can be enclosed in circles of radius h and for which all
det(%B BT) are bounded from below by some constant, the approximation is of third
order. These used subsets we will call the local node sets.

On the other hand, for arbitrary local node sets, det(r—llBBT) can be arbitrary
close to zero, making the third order constant larger, possibly resuiting in a bad
approximation. Because the idea of meshfree methods is to start with arbitrary node
sets. we will after choosing subsets of the global node set. test their approximation
ability by evaluating det(%BBT). For determinant values too small we will add more
points from the global node set. repeating this procedure until the determinant is
above the required constant.

Derivative approximation

For the approximation of derivatives we expect similar behavior with one order lower
accuracy. i.e.. second order. To examine how well the derivatives are approximated.
we define the matrices D, Dy, € R6%% by

00000 0 00000 0
100000 000000
000000 10000 0
Di=1g 2000 0of 2 D2=14 400 0 0
00100 0 01000 0
00000 0 002000
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These represent the actions of the partial derivatives with respect to the basis func-
tions by..... b in such a way that for functions g: R? — R that are arbitrary linear
combinations of the basis functions g(x) = a - b(x) we have

0ig(x) = a - D;b(x) (i=1.2).

With respect to the matrix S(h) these matrices obey D;S(h) = %S(h)Di. This is a
direct consequence of the fact that for arbitrary functions f: R — R with f(hx) =
I? f(x) for some constant p. it follows that D f(he) = hP~IDf(r).

For the approximation of the i-th partial derivative we can write now

Ot (hx) = a(h) - D;b(hx) = DTb(x)T LS(h)a(h) = DI'b(x)T (BBT) ' BLF(h).

Differentiating the equations (4.7) gives

1 5 Df(0)(x1) o

phv | = aIi1:o. DT.T ; = aJ.I_Df(o)(x) = 0, f(0).
1 Df(0)(xy)
D?£(0)(x1.x;) 5

Dt : = ——D?f(0)(x.x) = 2D(8; f)(0)(x).

9 : o a.lfl'
D2 f(0)(x,,. xn)

which again leads to vanishing coefficients in the Taylor series expansion of
9;p" (hx) — 9 f(hx). resulting in
" (hx) = 0, f(hx) + LC'h* + O (1®)
with
D?f(0)(x1.%1.%1)
¢! =DI'b(x)T(BBT)'B : —D3f(0)(x,x.x).  (4.10)
Daf(O)(X,,. Xy X, )

A similar estimation as in the non-derivative case vields for h small enough

sup |9p" (x) — 9, f(x)] < (

648 .
+ —§> max [0;0;0cf(0)] h?.  (4.11)
xED(0:h) ) V) djk=12

det(IBBT

4.2.3 Quality of local node sets

Above it was stated that we use (Iet(%BBT) of a local node set as a measure of the
approximation quality. In this paragraph we want to investigate this further.

In the calculation of the determinant a circle of radius h was used which contains
all nodes of the local node set with the restriction that at least one of the nodes is
on the circle. The convergence results (4.9) and (4.11) then hold for arbitrary points
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in the circle. In most cases the area in which we use the approximation is actually
much smaller than the circle (e.g. a Voronoi tile containing the central node, See
Figure 4.2) and probably somewhere in the middle of it. This means that there are
many possibilities for choosing such a circle, as is illustrated in Figure 4.2. Here. a
local node set is shown together with a polygonal area in which we are interested.
The three circles. having radii 0.97 (solid circle). 1.00 and 1.10. respectively. are all
suitable choices.

Figure 4.2: Three possible choices for the circle

Because the approximation is independent of the choice of the circle. we want the
quality measure of the local node set to be also independent of this choice, which
means that we have to make a particular choice. Before showing what a good choice
is we will examine how dot(%BBT) responds to translations, rotations and scaling of
the local node set. For this we introduce a translation vector v € R2, an orthogonal
rotation matrix @ € R?>*? and some real scaling constant » > 0. If we compare now
det(%BBT) for a node set {x;}.i=1..... n with dot(%BBT). where B is made out
of vectors b(rQx; + v) instead of vectors b(x;) as with B. then it can be shown that

(1(‘t(71—11 BTy =16 d(‘t(%BBT).

This means that the measurement is invariant with respect to rotation and translation,
but that the radius of the chosen circle strongly affects the value of the determinant.
For example. choosing a circle which is twice as large. means that the distances
between the nodes in the local node set measured relative to the circle radius h

will be twice as small. yielding r = 0.5. This will result in a determinant which
is (0.5)'0 = 1.5 - 107" times as large. The determinants in Figure 4.2 are in ratio

1:0.61:0.13.

A good circle choice is the smallest enclosing circle of the given local node set, so
that the determinant is maximal. From now on. we will use this choice and assume
that the area in which we will use our approximation is inside the smallest enclosing
circle. Actually. the solid circle in Figure 4.2 is the smallest enclosing circle.

An algorithm for calculation of the smallest enclosing circle is described in [7].
which is a randomized incremental algorithm with an expected time complexity of
linear order in the number of nodes in the local node set and hence is very efficient.
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4.2.4 Global approximation

In the previous subsections a method for local function approximation is discussed.
Here we will use it for making a global approximation of a function. given an arbitrary
set of nodes in our global domain. The basic idea is to divide the domain into disjoint
sub-domains in which we use then the local approximation.

Such a division can be made out of our set of nodes by calculating the related
Voronoi diagram [7]. In such a diagram every node has its own Voronoi tile. which
consists of all points of the domain which are closer to the node associated with the
tile than to every other node of the node set. This will make all the tiles disjoint
and their union equal to R? except for a set of which the points are equally close to
two or more nodes. This set is called the Voronoi diagram. In the left picture of
Figure 4.3 the Voronoi diagram of a particular node set is shown. We will use the
unbounded Voronoi diagram to make a division for our bounded domain by connecting
all nodes which are on the boundary of the domain by straight lines. This gives us an
approximation of our domain which is of second order (with respect to integrals) in
the distance between the nodes on the boundaries in case the boundaries are curved.
The right picture of Figure 4.3 shows the division of the domain.

Figure 4.3: Voronoi diagram of the node set and the domain decomposition based on
it.

Now for all the Voronoi tiles we have a local approximation giving us a global
approximation in our domain except for the Voronoi diagram. which is of measure zero
and therefore irrelevant. because we will use the global approximation for evaluating
integrals.

Finding neighboring nodes

For finding the local approximation in a Voronoi tile a local set of nodes has to be
found. Using the diagram. we can define nodes to be neighbors if and only if their
Voronoi tiles have a common Voronoi edge of the diagram. In this way we can find
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a ring of neighbors of a node and also a second ring of neighbors of neighbors of a
node. Proceeding until we have at least the numnber of neighbors we need. which is
minimally six nodes in case of six basis functions. and the determinant (let(%BBT)
is above some threshold. will result in the local node set.

Global approximation mapping

We are now ready to define a mapping which will map a function defined on the set
of nodes A into the space L'(2). where  is our domain. This mapping will be used
in the subsequent section on the discretization of the PDE. We define the mapping
Fa: RY — LY(Q) such that for a given node function £ € RV, a tile €; and its local
approximation pq,. we have Fa-(f) = po, in tile ©,. This defines Fo-(f) in every tile
of the domain. What is left is the Voronoi diagram. which is a set with measure zero
and because functions that differ on a set of zero measurce are identical in L. the
definition is complete.

If we define also a restriction map Ga-: CH(2) — RY by Ga-(u) = ul\ (pointwise
restriction). we can write for an arbitrary function u € C3(2). and h defined as the
maximal radius of all circles used in the local approximation.

llu — Far o Gar(u)]|~ < Kh?. (4.12)

for I small enough and where K is some positive constant. In a similar way we have
for i = 1.2.

i ~ 0i(Fa- 0 Gar(u))||» < K'h2. (4.13)

4.3 Discretization of the PDE

To discretize the PDE problem we will formulate it as a minimization problem and
use the approximation technique from the previous section to end up with a discrete
minimization problem. We then consider the solvability of the linear system that has
to be solved for finding the minimum.

4.3.1 Minimization problem

We will consider the elliptic problem

(dA — K)u+ f=0. xe.

, (4.14)
Vu-n=0. xe¢&df.
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with d.x > 0 and f € L?(Q). This boundary value problem can be written as the
variational problem

Klw] = A(w.w) — L(f.w).

vaw) = l 1 - v L eow
Kfu) = min Kw]. with Alv.w) 5dVe-Vuw + rowdr.

4.15
in, (4.15)

Q
L(f.w) = /Q fwdr.

which can be found in textbooks on elliptic PDEs, for example [14].

To find a numerical solution of the minimization problem we will calculate first
an approximation of the integral for a given node function w € RY. We do this by
plugging Fix[w] and Fa[f] into integrals A(w.w) and L{f.w) of (4.15). where we
define f = Gar(f). yielding

A(Fwl]. Flw]) = / LAV(F[w]) - V(F[w]) + 3 Flw]? dx.
2 (4.16)
L(FIE]. Flw]) :/QF[f]F[w] dx.

where we have dropped the subsecript A for convenience. In order to write
1 - .
§wTAw = A(F[w]. Flw]) and f7Lw = L(F[f]. F[w]).

for certain matrices A and L. we define linear operators P;: RY — R™ . such that for
an arbitrary node function w € RV, P;w € R™ equals the node function restricted
to N; (with the ordering inherited from N).

If we denote N; = {x}..... x}, }. and define the matrix B; = (b(x})|...|b(x;,)).
we can write the least squares approximation pq, [w] on §; as

pa,[w](x) = [(B:B])"' B;Piw] - b(x). (4.17)

Let us write B; = (B,BT)"'B,. so that we have pg, [w)(x) = B;Pw - b(x). Taking
the gradient of such a function will result in an expression like

TR.Pw-
V(pa, (W) (x) = (gTﬁiw : Eg) '

where D, 5 are the 6 x 6-matrices defined in Section 4.2. yielding
A(F[w]. Flwl]) = Z/ IV (po, [W)1? + Fr(pe, [w))? dx
—Ja,
=> /52 {%(lePiTBiT (le(x)b(x)TD? + ng(x)b(x)TDQT)B,-P,-w

+ %HwTP,.TB}'b(x)b(x)TB,-PIW} dx.
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v defining Ig, = fp b(x)b(x)7 dx. this can be written as
A(F[w].F{w])

N
w? (Z PIBT(d(DyIg, DI + Dyl D)) + HJQ,)BIPI) w (18,

i=1
N
T T A
iw (ZP AM; Pi> w.
i=1

where we Lave written A = BT (d(Dy1Ig, DT + Dolo, DY) + klg,) B;. which is an
n; X ny-matrix. Therefore A = Zf\;l PTMAP;. The N x N-matrix PTAMAP; is a
large sparse matrix with the entries of matrix 1{;* put at locations dependent on the
location of the nodes V; in the ordering of A/

In a similar way we have that

N N
L(F[f]. Flw]) = T (Z RTBITIQ,B,P,) w=fT (Z Pﬁ\[,-"]%) w.  (1.19)
=1

i=1

implying L= Zf\;l BiTIQI B; so that L has the same sparsity structure as A. Further.
I, 1s a symmetric matrix for every node ¢ and therefore A and L are also symietric.
Our continuous minimization problem (4.15) has now heen translated into a discrete
minimization problem

Klu] = m%Rn Klw]. with K[w] = %WTAW —fTLw. {4.20)
weRN

4.3.2 Solving the discrete problem

If we assume that A is invertible, then we can rewrite A [w] as

RKiw] = Y(w - A~1if) A(w - A7Lf) — £7L7F. (4.21)

2

The matrix A is positive semi-definite because v Av = 2A(F[v]. F[v]) > 0. Being
also invertible would give positive-definiteness. which means that A'[w] is minimal for
w = u, withu=A"TLf and K[u] = fTL%f.

Invertibility of A

If the linear function F: RY — L1(Q) is injective, meaning that dim(Im(F)) = N.
then A must be invertible. If so we can define a norm on RN by ||v|| = |[F|v]||.:. In
finite dimension this norm is equivalent to the standard norm ||-||2. meaning that there
must be a constant Ca- > 0. such that for arbitrary v € RY. |[F[v]ii, > Cy-|v]|2.
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This vields

vIAv = 2A(F[v]. F[v]) = 22 /ﬂ dVF[V]|? + v Fv)* dx

=1

N . .
> 2k Z/ Fv]*dr > ‘21{/ dr||[F[V]|i, > (QHC_i—/ dr)v'v.
Q, 0 9

i=1

Therefore all eigenvalues of A are greater than zero and A is invertible.

In this chapter we will take a practical approach and assume from now on that
F is injective (and do not examine under which conditions this is true.) If. given
a certain set of nodes. the choice of the local nodes sets is such that A; consists of
precisely 6 points and det(%BlBT) # 0. then every local approximation multinomial
is the unique interpolation multinomial of the six nodes and their function values. In
this case F will be certainly injective. In the cases we will consider. the munber of
nodes used in the local nodes sets will be slightly over 6 and we didn't encounter any
non-invertible A.

Meshfree-ness

At this point one could wonder whether we should call the mmethod meshfree as the
discretization involves Voronoi diagrams. Here we persist in classifyving the method
as such, because the basic idea of the method is to build a discretization on an arbi-
trary set of nodes. which is taken as starting point because it will facilitate refinement
around the localized sources. Also, despite the use of Voronoi diagrams for the se-
lection of neighboring nodes. building local approximations around nodes does not
need a mesh in itself. There are other ways to define neighboring nodes of a certain
node. But having used the diagram for this purpose. it also perfectly serves to glue
the local approximations together to formm a global approximation which is used to
build the discrete operators. Clearly this last step makes that the method cannot be
characterized as truly meshfree, although its main ideas are of meshfree nature.

4.4 Practical considerations

In this section we will treat some practical issues encountered in calculating and
solving the discrete minimization problem.

4.4.1 Calculation and storage of Voronoi diagrams

For calculation of the Voronoi diagram we use the sweep algorithin of Fortune [11].
which has a complexity of O (N log N). Some code is available for this. but because
we need to store the result in some other way than just a list of edges. a new code
has been written. which uses the sweep-line algorithin but stores the diagram in a
suitable data structure which is called the “doublyv-connected edge list'.
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In such a data structure it is easy to find all neighboring edges. vertices and faces
of a face. Because in our case a face is just a Voronoi tile and every tile represents
exactly one node. we can find neighboring nodes in this wav and also a list of vertices.
making up the polvgon which describes the Voronoi tile of a node. The algorithms
involved in finding these neighboring elements are of complexity O (‘\"“). More on
doubly-connected edge lists can be found in the book [7].

4.4.2 Integrals of multinomials on polygons

When for a given node i the neighboring nodes are found we have to caleulate the
matrices (B, BI')~!B; in equation (4.17). To find the matrices MA and A} also the
calculation of I, is required.

To see how this can be done we asswe that we want to integrate a function
f:R? — R.with f(a.y) ="y, on a polvgon given by the points r;.j=1....] N.
describing in counter clockwise order the polygon ;. (Here the N is different from
the one used earlier. which denoted the total nunber of nodes.) If we define

1‘”*11['”
Flr.y) = ( ”6‘ > V- F(r.y)= flr.y)

then. by using Gauss™ divergence theorem.

N
F(x)-n(x)dx =) [m) F(x) - n; dx.

Jj=1

/fdx: V- -Fdx =
Ja, Ja,

J I8

where 9§ is the line scgment r;r;; for j <N, 0(2;\' =ryr;. and n; is the normal
vector pointing outward. When using the parameterizations ~;: [0.1] — R?. with

7;(t) = r; + tAr;. where Ar; = r;; —r;. we have [|55(#)] = [Ar,| and n; =

1 T s -
m[AyJ. —Ax;]". implving

L (" ) ,
J
/ F(x) -njdx = / ntl : ( Ay{ ) dt.
0 Jo 0 A,
Consequently.

n 1'71 Ay n m
/ dx—zu +J1/ 2+ AT gy + tAY;)

All entries of I, have this form and they differ only in the choice of n and m.

4.4.3 Solving the linear system

Once we have built the matrices A and L. using a sparse matrix structure. we have
to solve the svstem

Au = Lf.
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Although the matrices A and L are sparse. they do not have a band structure in
general. Due to the use of arbitrary nodes. the non-zero entries are actually scattered
throughout the whole matrix. For solving the system by using an LU-decomposition.
it would be advantageous to have a band structure. because then the nunber of
non-zeros in the L and U matrices is also limited [16].

Fortunately. the sweep-line algorithm for calculation of the Voronoi diagram makes
use of an ordering of the nodes that can be used here. because it renders our matrices
into band structured matrices. The ordering is a lexicographical ordering. where the
nodes are ordered on the basis of their coordinates such that

(rr.y) < (r2.y2) = y1 <y or  rp <rpand yp = yo.

Because nodes used in a local approximation are close to each other. the matrices will |
have the desired band structure after applving this ordering. In Figure 4.4 we see

the sparsity structure of the matrix A for the node set of the left picture, using the

original ordering (middle picture) and the ordering used by the sweep-line algorithm

(right picture). In the original ordering the interior points are chosen randomly. while

the boundary nodes are ordered along the boundary. This gives the pattern in the

matrix as can be seen in the middle picture.

1 ‘ 0
i 50t
05 1
‘ 100
0
150!
-05 _—
-1 250

Figure 4.4: (Left) Node set A consisting of 257 nodes. (Middle) Spar\‘it\‘ structure
of A and L with original ordering of A”. (Right) Sparsity structure of A and L with
ordering of A" used by the Voronoi diagram calculation. The number of non-zero
entries equals 5409.

4.5 Choosing nodes in the domain

I this section we will discuss an algorithin for choosing nodes in the domain. As
said in the introduction we will work with very diverse domain geometries. Starting
with a domain of which the boundary is piecewise smooth and which could have some
holes. we need to put nodes in its interior and on the boundary.

Putting nodes on the boundary is relatively easy if we assume that the boundary

is given by some parametrization. Given a munber of nodes. we can distribute them
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over the boundary. possibly taking into account the curvature, so that to regions with
high curvature comparatively many nodes are being assigned.

To put nodes in the interior is harder because testing whether a node is inside
or outside a certain domain can be expensive in case of complicated geometries. For
example. the method decribed in [15] requires that for every node an integral over the
boundary has to be calculated. This seems to be expensive if some kind of adaptation
is involved and for every time step a new set of nodes is needed. Aside from this
problem. there is also the problem of making a distribution of nodes that suits well
function approximation and solving PDEs. As it turns out. the set of nodes one gets
by randowmly distributing points into a domain will show a lot of clustering. which
is not optimal for function approximation and which will give also ill-conditioning
problems when used for solving PDEs. Another issue is that we want to be able
to impose some variation in the local node density. so that sufficiently many nodes
are used in the neighborhoods of sources and on the boundaries and fewer at some
distance of them.

4.5.1 Lloyd’s method

We will now discuss an algorithm to put nodes into the interior. assuming that there
are nodes placed on the boundary already. The boundary nodes are connected by
straight lines, transforming our domain into one which has a polygonal boundary.
The first step is to find a rectangular region which lies entirely in the interior of the
domain. The user of the algorithm has to find it by inspection of the domain.

In this rectangular region nodes are assigned in an arbitrary way. The rest of the
algorithm consists of an alternating sequence of the following two steps.

Step 1. Cualculation of the Voronoi diagram. Given the set of nodes, calculate the
Voronoi diagram. The tiles ), at the boundaries are cut off by the straight lines
connecting the boundary nodes. This results in a tessellation of the polygonal domain.
in which every tile has one node in it. An example has been shown in Figure 4.3. O

Step 2. Node replacement using mass centroids. Given the tessellation of the domain,
shift every node to the mass centroid of the tile it is in. except for the nodes on the
boundary. The mass centroid of a tile €2; is defined as

("omroxd _ fﬂi xdx

z = )
fm dx 0

While alternating these steps the boundary nodes stay on the boundary and the
interior nodes stay in the interior. The boundary nodes are fixed and thus also the
polygonal boundary.

This algorithm is called Lloyd’s method and more about it can be found in [10].
The basic idea behind it is that it tries to make all tiles equally large and spreads out
all nodes into the domain while avoiding clustering. One might wonder whether the
iteration converges or if the possibility exists that it will will run into some cvcle. To
make this somewhat clearer. we have the following theorem.
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Theorem 2. Suppose we are given an arbitrary disjoint node set {x;, i =1.....] N}
which is bounded by a piecewise linear boundary. consisting of a part of {x;} connected
by straight lines. Then any step in the alternating sequence of calculation of Voronoi
diagrams and node replacernent using mass centroids minimizes the functional

N
F({x;}.{%}) = Z/Q lIx; — x||? dx. (4.22)

i=1

where {Q;.1 = 1..... N} is a tiling, such that x; € Q; for alli =1..... N. Step 1
chooses Q; to minimize (4.22) for fized x; and step 2 chooses x; to minimize (4.22)
for fixed ;.

Proof. Denote the set bounded by the piecewise linear boundary by D. resulting in
D =U,Q,.

Step 1: to prove the assertion for the Voronoi diagram calculation step. we consider
an arbitrary x € D. Clearly, the contribution of the area around this point to the
functional is determined by the value ||x —x;||?. where x; is some node of N'. The fact
that ||x — x;|| is minimal over all i = 1..... N by definition of the Voronoi diagram,
makes that ||x — x,{|? is also minimal. Because this can be done for arbitrary x € D,
the functional is minimal over all possible tessellations of D.

Step 2: the assertion can be proved by considering fﬂ, |z — x||? dx for a tile Q;

and some arbitrary z € R%2. To minimize the integral we can set the gradient with
respect to z equal to zero. This results in

/ (z—x)dx =0 —> Jo, xdx (4.23)
Q;

le dx

which is exactly the definition of the mass centroid. ]
According to the theorem both steps minimize F({x;}.{Q;}) and therefore during
the alternating procedure F({x;}.{Q;}) will be non-increasing. Also, the functional
is bounded from below. making the sequence of F({x;}.{Q;}) convergent. As a result
no cycling can occur but on the other hand convergence of the node set {x;} itself
is not guaranteed and the found minimal value of F does not need to he a global
minimizer. In Figure 4.5 some iterations are shown of a node choosing process which
resulted after 200 iterations in the node set shown in the first picture of Figure 4.4.

4.5.2 Adjusting local node density

When using the method of the previous subsection we can get node distributions
where neighboring nodes are on a more or less constant distance from each other. To
impose some variation in local node density we can use a more general version of the
algorithm which makes use of a density function in the evaluation of the centroids [10].
We take a different approach where after replacement of the nodes by the calculated
centroids in step 2. we shift them a little, This shift is in the direction where a higher
concentration of nodes is needed.
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Figure 4.5: A node set at the start. after 10 iterations. and after 100 iterations.

This procedure takes into account that variations in node density should be smooth
rather than abrupt. The size of the shift is taken proportional to the size of the tile
with respect to the direction of the shift. vielding that the node stays inside the tile.
The direction of the shift is determined by attracting neighboring nodes. Given node
i and attracting neighboring nodes j. the direction will be close to Z](x‘, —x;). The
calculation of the shift follows the step of the replacement of the nodes to their mass
centroids. To make it more precise we will now give a detailed description of the
shifting step.

Step 3. Node replacement by applying the shift. Given the tile €2;, a set of vertices
{y;} and a set of attracting neighbors {x;, }. first calculate the attracting direction
v =3 (X, —x;). Second, determine the minimal and maximal vertices with respect
to this direction. i.e.. ymin minimizes and y,,a.x maximizes y; - v. Third. transform
the tile using a transformation (£.7) — (x.y).

U1 _I'2> {V ! (Ymin + ,l 1()g<€)(ynmx - ymin)> ) (424)
Ui

a1

where ¢ > 0 is some constant determining the shift size with respect to the tile size.
Finally. for the transformed tile the mass centroid is calculated and the result is
transformed back. using the inverse transformation. to give the new location of the
node. O

Figure 4.6 illustrates the process of calculating the shift for an example tile. in-
cluding the transformation involved. Here ¢ = 2 and the direction of v is given by the
arrow in the second picture. The first picture shows the tile and its mass centroid.
The second picture adds the coordinate frame of the transformation. while the third
picture displays the tile in the transformed coordinate system and its mass centroid
with respect to this system. The last picture shows the tile with the original mass
centroid and the shifted point.
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Figure 4.6: Shift calculation by transformation of the tile

Attracting neighboring nodes

To determine how the nodes attract each other all nodes are classified by some integer
value. Attraction can than be implemented by defining the attracting neighboring
nodes of a node as the neighbors that have a integer value which is higher than their
own integer value.

Figure 4.7: Example of refinement near the boundary

Lets us for example assume that we would like to have refinement near the bound-
ary. Then all boundary nodes could be classified by 2. all neighbors of boundary
nodes by 1, and the rest by 0. By cycling through the steps: 1. calculation of the
Voronoi diagram. 2. giving every node a type. 3. calculation of mass centroids. 4.
calculation of shifts, the global nodes would gradually change in a node set which
has some refinement near the boundary. The parameter ¢ specifies the maximal spa-
tially decay in the distances between the nodes in a refinement area. The number of
different types specifies the size of a refinement area.

In Figure 4.7 a refinement near the boundary is achieved by classifying boundary
nodes as 3. their neighbors as 2 and their neighbors™ neighbors as 1.
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Standard meshing algorithms

One might wonder how the node choosing algorithm described here compares to
standard FEM meshing algorithms. like for example the algorithms implemented in
Shewchuk’s software package Triangle [41]. There. Delaunay triangulation algorithms
are being used together with rules on how to deal with holes and how to ensure certain
angle and area properties of the produced triangles. Our method seems conceptually
simpler than such a method, especially when also some kind of adaptivity is involved.
Although we could use software like Triangle with a standard FEM approach for
our problems, we are scarching for a method that is focussed on the presence of
moving sources. which requires a well-defined forin of adaptivity. The combination of
the described meshfree method and node choosing algorithm results in a method that
gives refinement around the sources in a relatively straightforward way and provides
adaptivity at the same time. While meshing algorithms need besides their refinement
techniques also rules that specify how coarsening takes place in case of adaptivity, this
method moves the nodes along with the moving sources ensuring refinement around
each of them during the process. How our method compares to standard meshing
algorithms from the perspective of efficiency is an object of current research.

4.6 Numerical tests

In this section we will carry out two numerical tests. We will start with a convergence
test on the unit circle where we use a uniform distribution of nodes. ILe.. after inserting
the nodes randomly in the domain we use the iteration procedure from Section 4.5
with a constant node density. We calculate the solution of the elliptic problem (4.14)
for the source function

27 1

fir.0) = YT cos(im')<(772 + Ur COS(%TFT) + WSiIl(%ﬂ'l‘)).

with 7 and 6 polar coordinates. With D =1 and x = 1 the exact solution is

u(r.0) =

= — (2 cos*(3mr) + 7T2).
Figure 4.8 shows both the source function (left) and the solution (right).

For the test the solution is calculated thirty times. The number of nodes is in-
creased every time. such that the maximal distance between two neighboring nodes A,
will vary gradually between 0.2 and .02, The maximal local radius h. used in the
convergence analysis. will be around twice this distance and will therefore also change
with a factor 10. The number of nodes used varies between 106 and 9226.

For each 11}111101“'1(?31 solution we computed the error € = Ugum — Wexaer- 1S L2-norm
lell.2 = (eTLe)'/2, and its maximum error |le]|~. Figure 4.9 shows the results of
the test and both errors display a second order convergence.

In the second test we calculate the solution of equation (4.14). where the domain
is the unit circle with a hole in it. The source function is formed by two narrow peaks
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Figure 4.8: source function and solution of equation (4.14)
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somewhere in the domain. The peaks are circle symmetric with a circular support of
radius of £ = 0.02. inside of which they are given by

27

flr.o)= EIEE )

c()sz(zi,m').
with (r.©) being polar coordinates centered at the location of the peak. Again we
take D =1 and » = 1.

The refinement strategy is used to put a high concentration of nodes in the neigh-
borhood of the peaks and near the boundaries. With 1890 nodes in total this yields
the left picture in Figure 4.10. The right picture shows a magnification around the
support of one of the peaks. In such a circular support 70 nodes are being used.
To determine the nodes. first the nodes for the peaks and the boundary nodes are
determined, after which they are fixed. Then the other nodes are added and the
node shifting iterations are done. Here the nodes for the peaks are surrounded with
eight rings of attracting nodes. while for the boundaries three and five rings are used,
respectively. In Figure 4.11 the numerical solution is shown. For the integral of the

N

pL T . ~0.1 -0.05 0 0.05 0.1

Figure 4.10: (Left) Node distribution. (Right) Refinement around one of the peaks.

solution we have

/‘ u(x)dx = / f(x)dx = 2.
Jo JO

A second order approximation of this integral is 17 Lu = 1.9875. where 1 is a vector
whose entries are all equal to 1. To fill the domain with nodes such that the node
density would be equal to the node density as it is in the peak support. would require
over 100.000 nodes. We did a similar experiment with peak widths ten times as small
as in the test under consideration. but with the same number of nodes. With the

number of rings of attracting nodes changed from 8 to 13. the result was 17 Lu = 1.96.
In that case a node distribution with a uniform node density would require over 10
million nodes.
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Figure 4.11: Numerically computed peaks

4.7 Summary

In this chapter we developed a meshfree method for solving time-discrete diffusion
equations that arise in equation systems used in models from brain rescarch. Impor-
tant criteria for a suitable method are flexibility with respect to domain geometry and
easy refinement possibilities. Both criteria are met when using a meshfree method.
The two main results of this chapter are a meshfree discretization of the modified
Helhmholtz operator and a node choosing algorithim that allows for easv placement of
nodes into a given domain while varving node density. Both the discretization and
the node choosing algorithm use a Voronoi diagram based on the given node set.

The meshfree discretization uses a Voronoi diagram for finding neighboring nodes
of a node and for approximation of an integral on the domain. It is based on a local
least squares approximation and the minimization problem in H' that is related to
the modified Helmmholtz equation in combination with the boundary conditions. The
minimization problem is discretized by using node functions instead of elements of
H'. The node choosing algorithm uses a Voronoi diagram for shifting nodes in the
right direction. Here the final node distribution tends to be optimal in a certain sense.
During the algorithm the nodes repel each other. thereby resulting in some kind of
uniformity.

The local least squares approximation underlying the discretization uses a finite
number of nodes. called the local node set. to determine a local approximation of a
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function. Its convergence in the maximum norm is of second order in the diameter of
the local node set, provided that the quality of this set is sufficient. Here the quality
is being measured by a determinant based on the set. Numerical experiments show
that, when using the node choosing algorithm, the numerical solution of the diffusion
equation converges in second order in the maximal diameter of all used local node
sets.

An example has been given to show the domain flexibility and refinement possi-
bilities of the node choosing algorithm. Here the method is applied to the modified
Helmholtz equation on a circular domain with a hole in it and a source function with
very small support compared to the domain.




Chapter 5

A mathematical framework
for modelling axon guidance

5.1 Introduction

The proper functioning of the nervous system relies on the formation of correct neu-
ronal connections. During development. neurons project long. thin extensions, called
axons, which grow out. often over long distances. to form synaptic connections with
appropriate target cells. Axons can find their target cells with remarkable precision
by using molecular cues in the extracellular space (for reviews, see Tessier-Lavigne
and Goodman [48]: Dickson [8]: Yamamoto et al. [53]). They steer axons by regu-
lating cytoskeletal dynamies in the growth cone (Huber et al. [25]). a highly motile
and sensitive structure at the tip of a growing axon. Extracellular cues can either
attract or repel growth cones. and can either be relatively fixed or diffuse freely
through the extracellular space. Target cells secrete diffusible attractants and create
a gradient of increasing concentration. which the growth cone can sense and follow
{Goodhill [17]). Cells that the axons have to avoid or grow away from produce re-
pellents. By integrating different molecular cues in their environment. growth cones
guide axons along the appropriate pathways and via intermediate targets to their final
destination. where they stop growing and form axonal arbors to establish synaptic
connections. The responsiveness of growth cones to guidance cues is not static but
can change dyvnamically during navigation. Growth cones can undergo consecutive
phases of desensitization and resensitization (Ming et al. [35]}, and can respond to
the same cue in different wayvs at different points along their journey (Shirasaki et
al. [42]: Zou et al. [56]: Shewan et al. [40]). Through modulation of the internal state
of the growth cone. attraction can he converted to repulsion and vice versa (Song et
al. [43]: Song and Poo [44]).

Axon guidance is a very active field of research. Several families of molecules
have been identified and a few general mechanisms can account for many guidance
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phenomena. The major challenge is now to understand. not only qualitatively but
also quantitatively, how these molecules and mechanisms act in concert to generate
the complex patterns of neuronal connections in the nervous system.

To address this challenge, experimental work needs to be complemented by mod-
elling studies. Unlike for the study of electrical activity in neurons and neuronal
networks (e.g., NEURON: Hines and Carnevale [22]). however. there are currently no
general simulation tools available for axon guidance.

In Hentschel and Van Ooyen [21] a model is presented in which growing axons
on a plain are modelled by means of differential equations for the locations of the
growth cones. These equations are coupled to diffusion equations that describe the
concentration fields of diffusible chemoattractants and chemorcpellents (henceforth
referred to as guidance molecules). The system is simplified by using quasi-steady-
state approximations for the concentration fields. This approach turns the problem
of solving a system comnsisting of PDEs (partial differential equations) plus ODEs
(ordinary differential equations) into a much simpler problem where only ODEs have
to be solved. This works fine if the whole plain is used as a domain for the diffusion
equations, but we also want to be able to consider more general domains with, for
example, areas where diffusion cannot take place ("holes”) or with boundaries. Also,
Krottje ([28], Chapter 2) showed that in Hentschel and Van Ooyen’s approach moving
growth cones that secrete diffusible guidance molecules upon which they respond
themselves causes the speed of growth to be strongly dependent on the diameter of
the growth cone (a phenomenon that was called self-interaction). Using a quasi-steady
state approximation will then result in heavily distorted dynamics.

Here we present a general framework for the simulation of axon guidance together
with novel numerical methods for carrying out the simulations. The two major in-
gredients of the modelling framework are the concentration fields of the guidance
molecules and the finite-dimensional state vectors representing the growth cones and
target neurons. For the latter two, ODEs must be constructed that describe the in-
teraction with the concentration fields. The dynamics of the fields is described by
diffusion equations, where we allow for domains with holes or internal boundaries.

Numerical difficulties arise from small, moving sources for the diffusion equations
(see Krottje [28], Chapter 2) and from the time integration of a system that is a
combination of highly nonlinear, non-stiff ODEs and stiff diffusion equations (see
Verwer and Sommeijer [50]). To circumvent this last difficulty we consider the use of
quasi-steady-state approximations, and we will discuss some criteria on the validity
of such approximations.

The organization of the chapter is as follows. We start with a description of the
simulation framework in Section 2. In Section 3 we will discuss some features of the
underlying mathematical model and in Section 4 the numerical methods are discussed.
Some simulation examples are given in Section 5. We will finish with a discussion in
Section 6.
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5.2 Simulation framework

In this section we will describe a modelling framework that can be used to model
axon guidance. In the models that can be defined within this framework one can
incorporate different biological processes and mechanisms. some of which are displaved
in Figure 5.1. From a mathematical perspective the framework consists of states.
fields and their coupling. We will now discuss these components and their biological
interpretation. as well as show how they are related through the model equations.

P / neurons with
- \ / \
Y / - e S 3
4 . / outgrowing axons
/ . growth cone / 5 e ¢

i A
\ reacting to ' /

guidance molecules,

\ non-diffusive

" field of membrane-
e

target neurons excreting bound molecules
niidance e impenetrable
guidance molecules 1 erowth cone

hole el .
excreting molecules

Figure 5.1: Examples of biological concepts that can be incorporated in a model.

States We define states to be finite-dimensional state vectors that represent objects
that interact with the concentration fields of guidance molecules. These objects can
be. for example. growth cones that move in response to the concentration fields.
target neurons that act as sources of guidance molecules. or locations where artificial
injection of guidance molecules takes place.

We will assume that the first two variables of the state vector will always represent
its 2-dimensional location. which we will denote by r. Whercas in the model of
Hentschel and Van Ooyven a growth cone is completely characterized by its location r.
our description allows for a more general approach in which the state can be extended
with a vector s that further describes the characteristics of the growth cone. Possible
characteristics of growth cones and targets that can be modelled with s are:
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Sensitivity Growth cones can respond to different guidance molecules. Their sensi-
tivity to a particular molecule may vary over time (Shewan et al. [40]) and can
be influenced by the concentration levels of other guidance molecules as well as
by the level of signaling molecules inside the growth cone (Song and Poo [44)).

Growth cone geometry It is known that growth cones can change their size while
moving through the environment (Rehder and Kater [38]). The vector s could
model how this process depends on the concentration fields, or it could model the
way in which changes in growth cone size change the growth cone’s sensitivity
or behavior.

Internal state of growth cone Inside a growth cone biochemical reactions take
place that determine the growth cone’s dynamics (Song et al. [43]; Song and
Poo [44]). With s, the concentrations of the different rcactants and their effect
on growth cone dynamics and axon guidance can be modelled.

Production rates The rate at which target cells produce guidance molecules may
depend on the concentration fields measured at the locations of the targets.
The vector s can be used to describe such dependencies. Alternatively, s can
describe production rates that are given explicitly as functions of time.

For the dynamics of the states we allow for two possibilities. In the first one, the
state (r,s) is given explicitly as a function of time ¢ and the different concentration
levels of guidance molecules p; and their gradients Vp; evaluated at position r,

r Gr(t)
( ) (.. RNCRY
s G (t,pl(r.t), Vpi(re,t), ... pn(r, t),VpM(r,t))
In the second possibility an ODE describes the dynamics of the states.
d(r = G(t.s.pl(r.t).Vpl(r.t).....pw(r.t).Vm[(r.t)). (5.2)
g \s 8, o) ] ]

The functions G”, G* and G are used to model the different biological processes and
mechanisms. We will now discuss the fields p; (7 =1..... M.

Fields The fields in our framework represent the concentration fields of the guid-
ance molecules. The dynamics of these fields are determined by diffusion, absorption
and some highly localized sources. With p the concentration field, d the diffusion
coefficient, k the absorption coefficient, and Sio¢ a source term, this results in the
diffusion equation

Op=dAp —kp+ Sior.  on Q2 C R n-Vp=0. ond (5.3)

where the domain {2 may contain several holes (i.e., areas that are impenetrable for
guidance molecules) with piecewise smooth boundaries. Thus on the boundary of the

o
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<t

domain we will assume that there is no in- or outflow of guidance molecules. A domain
is defined by specifying an outer boundary and possibly several internal boundaries.
In our framework all boundaries must be given by parameterizations v, : [0.1) — €.

A number of states is linked to a field. These states determine the total source
function Sier. which is the sum of source functions S;. each of them belonging to a
single state (r.s),;. To further specify the form of the S;. we make use of a translation
operator Ty, which can by applied to arbitrary functions 7: 2 — R and is defined for
y € Qby (Tyn)(x) = n(x —y) for all x € Q. For the source functions S;: Q — R. we
make the assumption that S; = o,(s;)71:,S. Here, S is some general function profile
and o,(s;) € R denotes the production rate.

We also allow for the possibility of having fields in steady-state. A reason to
incorporate such fields is that the field dynamics might by significantly faster than
the dynamics of the growth cones or targets. In this case the fields equation will be

dAp —kp+ Sioe =0. on Q C R2. n-Vp=0, ondQ. (5.4)

We will refer to them as quasi-steady-state equations because the source term S
may depend on time due to time dependent s; and r;.

v

State 1 State 2 State 3

L4

Field A :l Field B [

Figure 5.2: Example setting with three dynamic states and two fields.

Coupling The coupling between the states and the fields occurs through the argu-
ments p;(r;) and Vp,(r;) in G and the functions o(s;) in Si,. An example of the
coupling is depicted in Figure 5.2, where we have three states and two concentration
fields. Here an arrow from one object to another means that the dynamics of the lat-

ter object depend on the former. For example the dynamics of state 1 is determined
by itself and the fields A and B. whereas the dynamics of field A depend on the state
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1 and 2. The system of equations in this case might be

d (r1> =G (t.sl.pA(rl.f).V/)A(rl.t).pB(rl.t).VpB(rl.f)).

E S
G3(t)

(Z) = (G; (t.pB(rg.t).VpB(rg.t)>>
() == ().

Opa=dApa —kpa+0a1(s1)T, S+ 042(s2)T1, 5.

0=dApp — kpp + op.3(s3)Tr, S.

We see that only the dynamics of state 1 depends on the state itself. which is reflected
in having an ODE for its dynamics, while the dvnamics of the other two states are
given in a more explicit form.

5.3 Underlying mathematical model

In the framework, the complete simulation model consists of a number of state vectors
u; = (r/'s!)’. i =1,..., N, with their dynamics determined by (5.1) or (5.2). to-
gether with concentration fields p;, j = 1,.... M, defined by diffusion equations (5.3)
or quasi-steady-state equations (5.4). We assume that for the first A4, fields the
dynamics are given by the full diffusion equations and that for the other fields the
dynamics are given by quasi-steady-state equations. This results in our system of
field equations of the form

N

Ot/)j = LJ'/)J‘ -+ Z O']'i(Si>T,-iS. on £, Jg=1..... My (56)
=1
1\1’

0="Lp;+ Y 0ji(si)Te,S. on €. J=My+1.... A (5.7)
i=1

n-Vp; =0. on €. j=1..... AL (5.8)

where L; = d;A — k;. Here we assume that S: Q@ — R is an Ly—function with
compact support with the property that [, S(x)dx = 1. This means that we can
interpret the ¢;; as the production rate of the source attached to state (r.s); with
respect to field p;.

We assume that the dynamics of the first N, state vectors are given by ODEs.
i.e.. equations of the form (5.2). and that the dynamics of the other vectors are given
explicitly as a function of time and the fields. When we make use of the vector
notations p(r;). dyp(r;). and Oy p(r;). that are defined by

p(ri); = p;(ri).  Oeplri); = Oepj(ri).  Oyplri); = Jyp;(ri).
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this results in

8tui = Gi(t. uz-,p(ri).arp(ri).ayp(ri)). 1=1..... NO (59)
i\ _ Gi(t) _
<) - (Gf(up(rn.,al.p(ri).ayp(ri))) ANt Lo N (310)

In the functions G; we have to implement the different mechanisms that are involved
with the behavior of the growth cones and targets when they measure the levels of
particular concentration fields and their gradients. To complete the system we have
to add initial conditions for the states u; and the fields p;.

Typical parameter ranges Goodhill [18] gives some estimates for the ranges of
some relevant parameters. Table 5.1 shows a list with parameter ranges. The ratio of

Table 5.1: Parameter ranges

quantity symbol order of magnitude units

- diffusion constant d; 107°-1071 mm? /s

- production rate o 1077 nMol/s

- minimal concentration Pmin  1072-1071 nMol/l
for gradient detection

- maximal concentration Pmax 100 nMol/1
for gradient detection

- minimal relative LeonelVpjl/p;  0.01-0.02
detectable gradient

- growth cone diameter Leone 1072-2.1072 mm

- growth speed v 107%-107? mm/s

- growth range Lpatn  1071-1 mm

the maximal and minimal concentration for gradient detection pyax/pmin can be used
together with the diffusion constant d to find an upper bound on the possible values
of the absorption parameter k;. Assume that the ratio pmax/fmin is 100/1072 = 10*
and that we have a point source located at the origin that produces the steady-state
field ps(r). Then using the assumptions that the maximal distance over which a cone
can be guided Ly, is 1 mm and the growth cone radius equals 0.005 mm, we find

p5(0005) ]fj . k]' 4 k;
— =K 0054/ —= K 1= = _fj < 60. 11

Here we used an expression for p, that is derived in the Appendix. We can derive a
lower bound for the absorption constant k; by considering the ratio Legne|Orps(7)]/ps(r)
which decreases with r and increases with k;. If we assume it to be greater than 0.01,

for all r < 1. this yields a bound /k;/d; > 0.60.
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Moving sources Our framework also allows for the possibility that guidance mole-
cules are released by the growth cones themselves, i.e. we allow for moving sources.
Although the biological evidence for this is less strong than for the release of guidance
molecules by target cells, it is certainly not implausible. Growth cones secrete various
chemicals that may operate as chemoattractants and chemorepellents. For example,
migrating axons are capable of secreting neurotransmitters [54]. which have been
implicated as chemoattractants [55]. The treatment of moving sources that respond
to guidance molecules they themselves secrete is mathematically challenging and will
be dealt with in the Appendix.

Quasi-steady-state approximation When we run a simulation using the whole
system (5.6)-(5.10), we should use a time integration technique that is suitable for the
stiff diffusion equations in combination with the non-stiff ODEs. If the dynamics of
all the diffusion equations are fast compared to the state-dynamics, then it is possible
to approximate the p;, j=1...., M, with solutions of the steady-state equations

N
0=Ljp; + Z(Iﬂ(si)Tr,S onQ, j=1....,] AMy. (5.6")
i=1

The original dynamical system, which had as its dependent variables the states u;
and the fields p;, is now replaced by a dynamical system that has the u; as its
dependent variables only. Although the system at hand is therefore reduced from
an infinite-dimensional to a finite-dimensional system, evaluation of the right hand
side still involves solving a infinite-dimensional system. Determination of the values
p;(r;) requires solving the equations (5.6')—(5.7). From a numerical perspective the
advantage is that we do not need a time integrator that can handle the combination
of stiff PDEs and non-stiff ODEs, but we can simply make use of a standard explicit
time integrator.

To investigate the validity of such an approximation we will consider a diffusion
equation (5.12) and its steady-state approximation (5.13)

Op=dAp—kp+ 8. ‘

WAL TEPT S R (5.12)
p(0.x) = po(x)

0=dAp—kp+S. onR% (5.13)

Some implications of using an approximation like (5.13) for (5.12) are discussed
in ([28], Chapter 2). There the case of self-interaction is considered. meaning that
for a particular field a source is attached to a state and the dynamics of the state is
determined by the same field. Here we want to consider some more general criteria on
when such a quasi-steady-state approximation might be valid for different parameter
values of the diffusion rate d. the absorption rate k. and the speed a source moves
through the domain v.

Hentschel and Van Qoyen [21] used the approximation on the basis of comparing
the time scales of growth and diffusion. Here. however. the absorption parameter
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plays also a role. To determine criteria that take also & into account we will follow
two approaches. In the first approach we consider the time needed for setting-up
a concentration field. In the second approach we compare the concentration profile
produced by a point source moving with constant speed with its quasi-steady-state
approximation.

Field set-up time To examine how the time for setting up the concentration field
depends on d and k. we consider the solution of (5.12) with S being a point source
at the origin, S(x,t) = d(x). and an initial field p = 0 at time t = 0. The solution is
rotation symmetric. making it dependent on the distance to the source r and the time
t only, p(r.t). In the Appendix it is shown that it approaches a steady-state solution
p(r. ). To see how fast the field approaches the steady state field. we consider

gy P30 = o)
(r.t) e

which represents how close the field is to its limit value. For example. a value c(r.t) =
0.01, means that at time t the field is for 99% set up, at location r. In the Appendix
we derive

1 ekt

. kt
21\0 (T’ g)

where Kj is a modified Bessel function of the Second Kind [1]. This can be used to get
an indication of the time scale of the field dynamics. Such an indicator is important
if we want to work with fields of which the sources do not move through the domain.
In case of moving sources, one might wonder how the speed of a source influences the
produced field. To this end we examine the solution of (5.12) with a point source
that moves with constant speed.

c(r t) ~ (5.14)

Field produced by moving source Consider equation (5.12) with a point source
that moves with constant speed v along the r-axis in positive direction. i.e.. S{x.t) =
d(x —wvt). with v = (v.0)T. In the Appendix it is shown that we get a stable constant
profile solution that moves also with constant speed v.

Here we want to compare how close the quasi steady-state-approximation solution
ps 1s to this moving profile solution p,. It turns out that in the vicinity of the source
the moving profile is sinaller than the steady-state-approximation. and on approaching
the location of the source they tend to become equal. In the Appendix it is derived
that

1

d ,L,‘Z 27 -1) 7
<2 vEL 1+ — — 2< ., 5.15
rx2e \/:( + 4(“;) PR ( )

If we choose 7 = (1.99. we get an indication of the size of the region around the source.
where the difference between the moving profile and the quasi-steady-state solution
is less than 1%. given the values of the diffusion rate d. absorption rate k and moving
speed v,
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5.4 Numerical methods

In this section we will consider the numerical methods we use for solving the equation
systems (5.6) (5.10). We will start with the spatial discretization for solving the field
equations. This will be followed by a description of the time integration techniques.

For solving the field equations we usc an unstructured spatial discretization based
on an arbitrary set of nodes situated in the domain. This approach facilitates dealing
with complex domains, refinement and adaptivity; the latter is needed in cases where
we have moving sources with small support. A thorough description of the method
can be found in ([29], Chapter 4); we will briefly outline it here.

Function approximation Given function values on the nodes. we use a local least-
squares approximation technique to determine for every node a second-order multino-
mial that is a local approximation of the function around that node. For this we use
the function values on a number of neighboring nodes. Because every second-order
multinomial can be written as the linear combination of six basis functions. we must
choose at least five neighbors for every node to determine such an approximating
multinomial.

With this procedure a set of function values is mapped onto a set of local ap-
proximations around every node. If we assign to every node a part of the domain for
which we assume the local approximation to be valid. such that the whole domain is
covered, this results in a global approximation. For a given set of function values in a
vector w € RV, we denote the global approximation by F(w) € L,(Q). where L;(2)
is the space of integrable real functions defined on Q2 C R2.

Voronoi diagrams For choosing neighboring nodes of nodes. as well as for assigning
parts of the domain to the nodes. we use the Voronoi diagram [11]. It assigns to every
node a Voronoi cell, which is the set of points closer to the node than to every other
node, hence dividing the domain and at the same time creating neighbors in a natural
way.

Because a Voronoi diagram extends to all of R?, we will truncate it by connecting
the nodes on the boundary by straight lines. resulting in a bounded diagram. From
now on all our diagrams will be truncated ones. but we here will still refer to them
as Voronoi diagrams. Determination of such a diagram can be done in O (N log(N))
operations. where N is the number of nodes [7]. We store the diagram in a totally
disconnected edge list [7]. so that searching neighboring nodes for every node becomes
a process of O (N) operations.
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Variational problem Solving equations of the form (5.7) can be done by solving
the variational problem of minimizing A(w. w) — L(S. w) over w € H! [2. 29]. where

Alv.w) = / 3dVe - Vu + Ykowdr. (5.16)
Q

L(S.w)= [ Swdxr. (5.17)
9)

A direct discretization of this problem is to minimize A(F(w).F(w)) — L(S. F(w)),
for all w € RV, It can be shown ([29], Chapter 4) that sparse matrices A and L
exist such that %WTAW = A(F(w).F(w)) and STLw = L(F(S). F(w)). If A is non-
singular the discrete problem has a unique solution w = A~!'S. With the algorithm
for finding the Voronoi diagram comes a lexicographical ordering of the nodes that
will give the sparse matrices a band structure. which is advantageous when solving
the system directly using an LU-decomposition.

Convergence tests show that the solution is 2"d-order convergent in the L?-norm.
with respect to the maximum distance between neighboring nodes ([29], Chapter 4).

Choosing nodes To distribute nodes appropriately over a domain we make use of
Lloyd's algorithm [10]. This algorithm is based upon the determination of Voronoi
diagrams and the process of shifting nodes to centroids of Voronoi cells. An alternating
sequence of these two operations distributes the nodes equally over the domain, in
the sense that distances between neighbors will tend to become equal throughout the
diagram.

To achieve refinement at certain points, we use a variation of Lloyd’s algorithm.
Here, after shifting the nodes to their centroids, an extra shift in the direction of
neighboring nodes is added. To determine for a particular node which of its neighbors
are attracting this node. all nodes are given an integer type. Nodes will then be
attracted to the neighbors with higher type than their own type.

To get refinement around a certain point in the domain. a node is fixed at that
point and several rings of decreasing node type are defined around it. The extended
Lloyd’s algorithm then moves nodes around, which results in a refinement around the
fixed node.

In contrast to methods where refinement is based on local error estimation. here
refinement takes place around the source locations. This is done because we know
in advance that only at those locations. and possibly at the boundary. refinement is
required for optimal accuracy. Doing it this way instead of using an error estimation
process will then speed up the refinement process.

Having discussed the spatial discretization method we will now focus on the time
integration. We will consider three different cases that can be distinguished by the
field dynamics in the model.
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Time integration with static fields We first consider the case with static fields
only. In this case we only have ODEs which need the solutions of the fields for the
evaluation of their right hand sides. These fields are determined at the start of the
simulation by solving the elliptic equations. giving the approximations to the field
solutions pq..... par. After this the growth cone dynamics can be solved using a
standard explicit ODE solver.

For the fields to be static we need a munber of static states that make up the
sources of the fields. Let us assume that of all the states only the last N, are static,
i.e., (r;.s;) = constant. and that the rest of the states do not influence the field
dynamics. Thus. we must have

Jj=1.... AL (all fields)
o;; = 0. forall ) . {5.18)
i=1..... N — N, (all dynamic states).
Then given the N static positions r;. i > N — N,. we have to solve
s, = G?(p(ri).E)Ip(r,;),f)yp(r,-,)). i=N-N,+1.....N. (519
N
Lip; + o;i(si)Iy,S =0. on {2,
i3 I_:NZNM si(s:) G=1,.... AL (5.20)

n-Vp; =0. on 0.

This system can be solved by solving first the field equations (5.20). Using the
inverse operators of L; with respect to the boundary conditions, we get

pi=— Y ouls)L]'Te, S, on (5.21)
i=N-N.+1

When combined with equation (5.19). evaluation of these field solutions and their
gradients in the given r;. results in a closed algebraic system with respect to s;,
pi(ri). Ozp;(r;) and Jdyp;(r;). We will assume that this nonlinear system can be
solved. although the solvability depends on the r; and the functions oj;.

Therefore. to solve numerically the fields p; we first have to solve numerically
the fields LJ_IT,,S. using the spatial discretization above. After evaluation of these
fields (i.e.. their numerical approximations) and their derivatives in all locations r,
the algebraic syvstem can be huilt hy substituting (5.21) into (5.19). We can solve
this system by using. for example, Newton iterations and use the s; to determine the
solutions pj.

Once the fields and static states (i > N — N;) are solved we can start solving the
non-static states from the equations

I
—_
=
=
—
[
o
[
=

Otui = G,’(f. ui.p(r,-).OIp(ri).(‘)yp(r;)). 7

Ir; _ G:.(f) o oar A -
()= (0o SO0 ) =St 1¥ v G
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For solving the ODEs we choose an explicit integration scheme because the ODEs are
non-stiff (and nonlinear). We will use the classical 4th-order RK (see for example [26])
for this. Note that for the function evaluations in the scheme we have to determine
local approximations of the fields and their gradients. A slight difficulty arises here
because the local least-squares approximations are discontinuous from one Voronoi
cell to another. Therefore. if the integration process crosses the edge of a cell during
a time step, there will be loss of order with respect to the size of the time step. To
prevent this we make sure that during a time step we use for every state only one
local field approximation for all function evaluations used in the scheme. Because the
local field approximation is a multinomial the order of the scheme will be retained.

Quasi-steady-state approximation When using quasi-steady-state approxima-
tions for the fields. the system we have to solve is

drw; = Gi(toug. p(r;). 8,p(ry). d,p(r)). i=1..... N, (5.24)
ry G;‘(t) : AT r
()~ (omen S 0 Y emrnx
N
Lip; + i(8:)T, 8 =0, Q.
ihs ;Uf (8:)Tx, on =1.... .M (5.26)

n-Vp; = 0. on 992,

Here we use. as in the previous case. an explicit time integrator for the ODEs in (5.24).
To evaluate the right hand side of the equations we need to solve the fields p; for given
values of (r;.s;),.71=1,..., N,, and t,,, where n denotes the time level. To find these
we have to determine the fields again by solving a non-linear algebraic system as is
done in the case with static fields. Here, the system will have as its unknowns the
p;(ri). Orpi(r;) and Oyp;(r;) for all combinations of fields p; and states r;. together
with all s;. for i > N,.

In contrast to the case with static fields, every function evaluation in the right
hand side of (5.24) requires solving equations (5.26) and evaluations of the resulting
solution fields and their gradients. Also. because the source terms in (5.26) depend
on the states u;. it may be necessary to redefine the nodes used to solve the field
equations. Therefore solving such a system is computationally much more expensive
than solving a system with static fields only.

Full system Solving the full system. i.e.. equations (5.6)- (5.10) requires a numerical
method that can deal with both the nonlinear. non-stifft ODEs and the stiff diffusion
equations. Verwer and Sommeijer [50] use for a system similar to the combination
of (5.6) and (5.9) the RKC method. which is explicit and can deal with moderately
stiff systems due to a long narrow stability region around the negative real axis.
Lastdrager [32] used a Rosenbrock method with approximate Jacobians for the same
svstem so that effectively the field equations are integrated implicitly and the state
equations explicitly. as with INNJEX (INplicit-EXplicit) methods [26).
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We use a Runge-Kutta INEX scheme. in particular an an INEX-midpoint scheme.
which can be seen to be a combination of an implicit and an explicit midpoint step.
For a svstem x = fi(t.x) + fo(t.x) it is given hy

Xs = Xy, + %Tfl(tn + %T.Xs) + %T,fQ(fn-xn)-
1 (5.27)
Xn41 = 2xs —Xn + T(f'z(fn + §T- XS) - .f?(fzi-xn))‘

where the s in x, refers to the intermediate stage. For our system the part f). which
is treated implicitly. contains the linear operators L; from equation (5.6). while the
explicit part fy contains the source terms of equation (5.6) and the functions G; from
equation (5.9). This is a second-order time integration method and the implicit part.
i.e.. the implicit midpoint method. is A-stable. Also. using this scheme for the sys-
tems at hand never revealed any stability problens.

In the next section we will show some example models. Although our framework
can deal with non-static fields (as discussed earlier). in these examples we will only
consider cases in which the fields are static.

5.5 Simulation examples

In this section we will discuss simulations of some example models. We want to
stress that the models used here are still simple and only serve to show the different
possibilities of our framework. To model the growth cones and the sources of the
guidance molecules. such as target cells. we have to choose state vectors (r;.s;) that
characterize these objects and accompanying functions G that describe the dynamics
through equations (5.1) and (5.2).

Growth cone model As a first example of a growth cone model we consider growth
cones characterized by three-dimensional state vectors. To the position r, = {@. y) we
add a variable representing the orientation angle s; = o € [0. 27) of the growth cone.
This gives our model growth cone a growth direction. which it has to adjust in order
to steer. It gives the opportunity to build in some kind of “stiffuess’. the inability to
undergo instant changes in growth direction

In order to describe the dynamics of the growth direction we need to define a
differential equation. We will assume that the growth speed is constant. given as v.
and that the cone grows with this speed in the direction given by the orientation
angle ¢, i.e.. &; = (vcos(o).vsin(¢)). For the dynamics of ¢, we assune that it is
continuously compared with some ideal direction o4. which we will assume to be a
linear combination of the sensed gradients of the fields p; evaluated at location r;.

—
L
(3]
0]

R

M
Og = arg Z /\j(p(ri))vﬂj(ri)
i=1
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with "arg’ the function that returns the angle between the argument and the positive
r-axis. Here the real functions A; determine the sensitivity to each of the fields. A
positive A; will cause the cone to be attracted by the field p;. while a negative A;
causes repulsion.

To formulate an ODE for ¢ that depends on
the value of 04. we use the mapping © — (sin{o). cos(0))
to view the growth directions as two-dimensional
unit vectors. z. and z,. respectively. The ideal
direction z,4 can be split in a part parallel to the
growth direction z and a part that is perpendicu-
lar to it. z; = z; + z1. An illustration of this is
shown in Figure 5.3. We assume that z = (¢/€)z .
Returning to angles © and o4 this results in o=
v/lsin(oy — 0).

Here. the parameter ¢ is a measure for the
smallest circle the growth cone can make while
turning. This latter fact can be understood by re-
alizing that the maximal value of ¢ is v/ 1f we
consider a solution where ¢ is maximal we get. with r = (2. y).

2 ()= (o) = ()= (i)

meaning that the solution path of (z(t).y(t)) is part of the circle with radius ¢ and
center (x9.yp). Using the framework the dynamics of state (r;.s;) are described by

Figure 5.3: An example configu-
ration of the vectors z and z4

d (r; o o | | |
ar (Si> = Gi(t.r;.8;.p(r;). 0,p(r;).9,p(r;))

v cos(s;) (5.29)
)

rsin(s

oftsin (arg (S0, 4 (p En))wj-(ri)) =)

Field sources In the examples we will assume that the fields are produced by
sources that are not moving and not changing their behavior in time. Therefore it
will serve to include in their state vectors only their positions r; € R? and keep them
constant in time r; = GT(t) = r?.

For every source we take a bell shape function S that is translated with r; to give
the function 75 S.
cos? (F[x—r;l). [x—r] <w. (5.30)

0. otherwise.

__or
(Tr,S)(X) = {(71'2 Hu?

were u* denotes the radius of the source. The o;; are constants describing the pro-
duction rate of the source i. with respect to field j. This is reflected in the fact that
./Q O'j,‘(T,-,S)(X) dx = Tji-
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Example 1: Axon guidance in a simple concentration field We will now
consider an example simulation. with a single concentration field and a single growth
cone. For the domain € we take the unit circle and put a source at (0.5.0). This
source produces at a production rate oy, = 1.0-10~* a field p; with diffusion coefficient
dy = 1.0- 107" and absorption parameter A, = 1.0-107*. For the width of the source
we take « = 0.02.

The growth cone is modelled by using system (5.29) with the functions A; set

1 = 1. which means that ¢, = arg Vp;. Further we use the parameter values
v =1.0-10"" and ¢ = 0.02. Thus the total system we have to solve becomes:

0=d1Apy(x) = k1p1(x) + 0111y, S(x). Vx €.
0=n(x) Vp(x). Vxe .

r; = (0.5.0) (5.31)
‘(5) et (20 - (i
S = 1S1(So ] =1 Y9
dt \s2 v/Csin (arg (Vpy(ra)) — s2) 52(0) 00

In the simulation we solved the diffusion profile using 1514 nodes with six at-
tracting rings and 2 non-attracting rings around the source location. This gives a
refinement such that the node density inside the source support is about 100 times
higher than far away from the source. Using the field solution we solved the paths
of 50 growth cones. where we chose the start positions of the cones (xq.yp) randomly
inside an initial area. For this we took a circle with radius 0.1 centered at (—0.5.0).
The initial growth directions oy were chosen randomly from [0.27). With the inte-
gration done from t = 0 to t = 1.0 - 10°, we obtained the set of axon paths shown in
Figure 5.4.

Figure 5.4: Axon paths growing toward target

If we compare this result with pictures of similar experiments with real axon
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growth (Dodd and Jessell. [9]). we see that real axons often start to grow away from
the initial area before they seem to react to the attracting field. This could mean
that real axons have a higher stiffness than the stiffness we used in Figure 5.4. We
therefore increased the stiffness by setting £ = 0.1. This results in the paths shown in
the left panel of Figure 5.5. While this gives a somewhat better result. it seems not
realistic to increase the stiffness this far, because one would expect growing axons to
make quicker turns.

Another option would be to assume that the neurons in the initial area excrete a
repellent. To implement this we define a new field p,. with a source located at the
location of the initial area rj, = (—0.5.0). The definition of ¢, has to be extended
with an extra repellent term: we choose ¢4 = arg(Vp, — Vo). The resulting system
now is

+onTy, S(x). Vx e
+ 0237, 5(x).  Vx €.
) - Vpa(x).  Vx € €.

)
)

X

0= doApa(x) — kapal

0=dApi(x) — kip1(x
0 =n(x)  Vp(x)=n(

ri = (0.5.0) (5.32)

i ~ I‘,(?S((sg) 8(0) o
2 \so) = v sin(sy) R 55(0) = | yo

v/Csin (arg (Vpi(ra) — Vpa(ra)) —s2) o
r3 = (—0.5,0)
with v = 1.0 - 107? and ¢ = 0.02. The paths of the growth cones are shown in the

right panel of Figure 5.5. This gives paths more similar to the ones observed in the
experiments.

Figure 5.5: Compared with Figure 5.4. axons have a higher stiffness (left) or sense a
reppellent field secreted in the initial area (right).
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Example 2: Axon guidance in a complex concentration field We will now
consider a variation of the previous example where the domain has been changed from
a siimple circular domain to a more complex domain with four holes in it. These holes
might represent blood vessels or cells where the axons have to grow around and that
are also impenetrable to the diffusive guidance molecules.

In this simulation we again use system (5.31) to model 50 growth cones with
randomly chosen initial state vectors (. yo. 0g) € [—0.4. —0.2] x [=0.5.0.5] x [0. 27].
For the field. 2502 nodes were used with refinement around the outer as well as the
inner boundaries and around the source location. The results of the simulation are
shown in Figure 5.0.

Although in this case the axons grow nicely around the holes. there is actually
no mechanical force in the model that prevents the growth cones from entering the
holes. Here the growth cone dyvnamics alone was sufficient to keep the erowth cones
outside the holes. However. if £ is bigger. the growth cones will need more space to
turn. and might enter the holes if not stopped by a hard boundary.

Figure 5.6: (Left) Field on a domain with holes. (Right) Axon paths produced by
system (5.31).

Example 3: Axon guidance with internal growth cone dynamics In this
example we will extend our cone dynamics by adding another variable. In the previous
examples the ideal direction. based on the sensed gradients. is directly translated in
a change of direction. In real growth cones. however. signaling pathwavs inside the
growth cone are responsible for this translation. We now incorporate such signaling
pathwayvs and represent it by a single variable a € [—1.1]. where a < 0 means
steering to the left and a > 0 steering to the right. The growth cone translates the
ideal direction into the signaling pathway dynamics in a way that is similar to the
way that the ideal direction is translated into the direction dynamics in the previous
examples.
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. 2 4 . . .
The state consists now of (r.y.0.a) € R* and its dynamics are given by

x vcos(o)
d lyl| _ vsin(o) = e
dt o | —va/l ' (6.58)
a c(sin(o, — 0) — «)

with ¢4 again defined as in (5.28). Here. parameters are as in the previous example
and ¢ is a parameter that determines how fast the steering dynamics is. If the dy-
namics is fast. i.e.. ¢ is big. we have a = sin(¢, — ). resulting in the previous model.
But if ¢ is small. a kind of zig-zag behavior emerges (Figure 5.7, ¢ = 0.1) that is also
observed in some experiments (Ming et al. [35]). In Ming et al. [35]. this behavior
was thought to occur as a result of alternating phases of receptor sensitization and
desensitization. Our simulation. without such receptor adaptation. shows that oscil-
latory growth cones paths can already arise as a result of an inertia of the steering
dynamics.

/

Figure 5.7: Wiggly axon paths produced by system (5.34).

For completeness. the total system in this case is

0=diAp1(x) — k1p1(x) + 0111y, S(x), Vx €,
0=n(x)-Vp(x). Vxe .

r1 = (0.5,0) 0
v cos((s2 ro
d (rs\ vsin (( r2(0)\ | wo
('(sin(;\r;_’;(V/)l( )) ( )1) — (sz)g> g

with © = 1.0-107" and ¢ = 0.02
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Example 4: Axon guidance with membrane-bound guidance molecules in
topographic map formation In our last example we consider a more complicated
model of a phenomenon that is called topographic mapping [49]. Many neuronal
connections are made so as to form a topographic map of one structure onto another.
In other words, neighboring cells in one structure make connections to neighboring
cells in the other structure. An example of a topographic map is the direct projection
of the retina onto the optic tectum in the brain of non-mammalian vertebrates [13].
One explanation for the formation of topographic maps that has received strong
experimental support is that it is based on the matching of gradients of receptors and
their ligands {37, 52]. For the retinotectal projection, there is a gradient across the
retina in the number of Eph receptors on the growth cones of the retinal neurons. A
similar but opposite gradient is found across the tectum in the number of membrane-
bound ephrin molecules (the ligands for Eph receptors) on the tectal neurons. Axons
grow out so that growth cones with a low number of receptors come to connect to
tectal cells with a high number of ligand molecules. and vice-versa.

A simple model for this phenomenon is the following (see also [23]). We use
essentially model (5.29). but we extend it with two extra variables. 3, and 3, that
represent the levels of two kinds of receptors. These /3, and /3, remain constant during
growth and vary with respect to the initial location ryo = (x¢.yo). We take for these

Br = exp(1.39z9 + 1.18) and 3, = exp(1.39y, + 0.35). (5.35)

We will assume that there are five fields of which three are diffusive fields and two are
the fields of membrane bound ligands. Fields p,. p2 and p3 are produced by guidance
cells located at r; = (—0.1,0), ro = (0.85,0) and ry = (0.3,0.85). respectively. We
use the same diffusion rate d = 1.0 - 10~* and the absorption rate k = 1.0 - 10~* as
in the previous examples. The two fields of membrane bound ligauds py and pg are
described by explicit functions that are given by

pa(r,y) = exp(=1.392 + 0.21) and ps(r,y) = exp(—1.39y + 0.14). (5.36)

We will assume that the dynamics of the growth cones occurs in two phases. In
the first phase the growth cones are attracted by field p; aud they grow toward the
guidance cell located at rg. Once they have reached the guidance cell. which we will
formalize by (T, S)(r) > 0, they switch their behavior and phase two will start. The
dynamics of the growth cones during the first phase are given by

x v cos(o)
J 1y vsin(e)
— o | =|v/tsinfog—o)|. with o, =arg (Vpl(r)). (5.37)
dt |, :

3 0

3, 0

For the dynamics of the growth cones in phase two we need assumptions on the
influence of the receptors and ligands on the growth. The basic assumption is the
following. For each direction. i.e.. x- or y-direction, we have a couple of receptor and
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tion of the ligand in the neighborhood of the cone is above a certain level. which is
determined by the receptor density on the growth cone. We will assume that growth

in r-direction is determined by the product ¢, = 3;p4(r) (and similar ¢, = 3,ps(r) |
for the y-direction.}) A ¢, < 1 means strong inhibition of growth in r-direction and
¢y > 1 means no inhibition. The dynamics is the same as in the first phase. but now
with

ligand pairs. For growth in either of these directions it is needed that the concentra- ‘
|

@y = arg (ngm(('_,)Vpg(r) + ngm((:y)Vpg(r)). (5.38)

Here the function Sgm,, is defined by Sgm,, (z) = 2" /(1 +z™). Finally we will assume
that the growth is completely inhibited if both ¢, < 0.8 and ¢, < 0.8.
To summarize. the total system is given by

0=d;jApj(x) = kjp;(x) + 0;; Ty, S(x). VxeQ. j=1.... 3
0=n(x) Vp;(x), ¥xed. j=1..... 3

pi(x) = exp(—1.39x + 0.21). Vx € {2,

ps(x) = exp(—1.39y + 0.14), V¥Vx € Q.

ry, = (—010)
ry = (0.85,0) (5.39)
r3 = (0.3,0.85)
veos((sy)1) Zo
d vsin((sy)1) Yo
pr <:i) = | v/€sin(arg (dg) — (sa)1) | , (:igg;) = ( %o : |
0 exp(1.39x9 + 1.18
0 exp(1.39yo + 0.35) |

with v = 1.0 - 10~ and ¢ = 0.02. |

phase 1: ¢, = arg (Vpl(m)). if (T, S(r) > 0) goto phase 2.

if (3:pa(ry) < 0.8 or 3 ps(ry) < 0.8) ready.

In Figure 5.8 we see the fields in a simulation of the topographic mapping model.
The three upper panels show the three diffusive fields p;. p2 and ps. In Figure 5.9
the axons paths are shown. The left panel shows the paths of 200 growth cones
that started at the left with randomly chosen initial positions (zg.yg) and orienta-
tions ¢gy. Clearly all growth cones are attracted by the guidance cell in the middle.
Having reached this cell they change their behavior and gain attractivity to the fields
p2 and pz. This attractivity is steered by the fields p; and p;. which also determine '
when growth is completely inhibited.

|
phase 2: ¢, = arg (Sg1n20 (3:pa(rs))Vpa(rs) + Sgmyg (ﬂyp_;(r4))Vp3(r4)).
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1 P2 3

‘/‘ﬁ)ig

> .l 1 ~ o 1
< — 0 iy

Figure 5.8: Fields in the example of topographic mapping. The three fields in the top
row are diffusive fields. and the ones in the bottom row are fields of membrane bound

ligands.
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To visualize the conservation of spatial order we have color coded the initial lo-
cations and end locations of the paths. i.e.. begin and end points of a path have the
same color. The result of this is displaved in the left panel and it clearly shows that |
the "A’ is transferred from the initial arca (at the left) to the final area (at the right).

The combination of the membrane bound ligand fields py and p; with the receptor
densities 7, and 3, determines what the topographic mapping will look like. Using a
model like this for exploring different possibilities for the concentration fields can give
us more insight into the forms of the fields and mechanisms involved in topographic
map formation.

o®®

Figure 5.9: Axon paths in the example of topographic mapping. (Left) Resulting
axon paths. starting at the left and ending at the right. (Right) Visualization of the
conservation of spatial order between the final axon targets and the initial neuron
locations.

5.6 Discussion

In this chapter we have presented a framework for the modelling of axon guidance.
In contrast to the modelling of electrical activity in neurons and neuronal networks.
such a general framework did not exist. Our framework allows for the relatively
straightforward and fast modelling and simulation of axon guidance and its under-
lving mechanisms. For example. mechanisms that “translate’ concentration levels of
guidance molecules (or gradients thercof) measured at the growth cone’s location
into growth speed. sensitivity for certain fields. and growth direction. can easily be
incorporated. A major challenge in the study of axon guidance is to understand
quantitatively how the many molecules and mechanisms involved in axon guidance
act in concert to generate complex patterns of neuronal connections. The framework
we developed contributes to this challenge by providing a general simulation tool in

which a wide range of models can be implemented and explored.
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Our framework has three basic ingredients. which are the domain. the concentra-
tion fields and the states. The domain models the physical environment where the
neurons, axons, and fields live in: the domain can have a complicated geometry with
piecewise smooth boundaries and holes. The fields are defined on the domain and
represent the time varying concentration fields of guidance molecules that are subject
to diffusion and absorption. The states model the growth cones and targets cells and
consist of finite dimensional vectors for which the dynamics are given in the form of
ODEs that model the mechanisms involved in axon guidance.

Specific numerical methods have been developed that are suitable for solving the
svstems of equations that typically arise in models of axon guidance. With respect to
time integration for the full system a method is needed that can handle the combi-
nation of stiff diffusion equations (describing the concentration fields) and non-stiff.
nonlinear differential equations (describing the states). For this a 2nd-order Runge-
Kutta IMEX scheme is used. In case of static fields or a quasi-steady-state approxi-
mation an explicit time integrator will suffice, for which we use the classical 4th-order
Runge-Kutta method.

The spatial discretizations needed for solving the elliptic field equations that arise
after discretization in time. are based on arbitrary node sets. Voronoi diagrams
are used for the selection of suitable node sets as well as for the discretization of
the equations. Refinement and adaptivity of the discretization are based upon the
location of the highly localized sources only, to speed up the node selection process.

We have implemented the framework and the numerical algorithms in a set of
Matlab programs. In these programs one can simulate a wide range of models by
defining appropriate Matlab data-structures and solve them by applying the spatial
and temporal numerical solvers. At the moment. the code is typical research code
without extensive documentation. but we are working on a more user-friendly version.

Possible extensions of our framework include the incorporation of randomness in
the guidance of the axons and the possibility that boundaries (of impenetrable holes.
for example) can produce guidance molecules. The latter extension would make it
possible to model also tissues. rather than individual cells. that attract or repel axons.

Appendix
Field set-up time To examine how the time for setting up the field depends on d
and k, we consider the solution of (5.3) with a point source at the origin, S(x,t) =

4(x). and an initial field p = 0 at time t = 0. The field will be radially syvnunetric.
and the concentration, which depends only on the radius r and the time ¢, is

o (bsrim) 1 \ﬁ
)= —— ds == —Kylr/=]. 5.40
plr-f) /0 inds 2d U \"V (5-40)

where the limit of the solution is the steady state solution. which satisfies (5.7). and
K is a modified Bessel function of the Second Kind [1]. To see how fast the field
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approaches the steady state field, we will investigate

O ) e

which represents how close the field is to its limit value. For example. a value ¢(r.t) =
0.01. means that at time t the field is for 99% set up. at location r. Using an
asymptotic expansion for large ¢ for the integral, we find that

1 Cvkt

oo (5)

This can be used to get an indication of the time scale of the field dynamiecs. Such
an indicator is important if we want to work with fields of which the sources do not
move through the domain. In case of moving sources, one might wonder how the
speed of a source influences the produced field. To this end we examine the solution
of (5.3) with a point source that moves with constant speed.

clr.t) ~ (5.41)

Field produced by moving source Consider equation (5.3) with a point source
that moves with constant speed v along the z-axis in positive direction, i.e., S(x,t) =
8(x — vt), with v = (v,0)7. If we make the "ansatz’ that the solution p(x,t) is the
sum of a solution profile p that moves with constant speed with the source and a
‘residual’ solution 7,

p{x.t) = p(x — vt) + n(x, ).

we can rewrite (5.12) to

(x.t) = dAp(x—vt)+v-Vp(x—vit) ~kp(x—vi)+d(x—vt) +dAn(x.t) —kn(x.t).

E’?

If p satisfies the equation
dApP(x) + v - Vi(x) — kp(x) + 6(x) = 0. (5.

we see that equation (5.12) will turn into a equation for n with only diffusion and
absorption. Therefore.  will damp out for long times. resulting in p(x.t) = p(x —vt).
The solution of (5.43) in polar coordinates (r.0): x = rcos(@). y = rsin{e@). is given
by

1 k ' : . 2
plr.o) = — XD (—\/; <2\;m> rcos(o)) Ky - (ﬁ) +1)r

(5.14)
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This solution we will compare to the steady state solution of (5.13)

1 k
ps(r) = %Ko (r E) . (5.45)

where the subscript s refers to the steady state. So we will consider the quotient
function q(r, @) = p(r, ©)/ps(r) and we want to investigate the geometry of the region
where this quotient is close to 1. For example. given a value v > 1. and slightly bigger
than one, we could consider the region {(r,0) | v~! < p/ps < ~}. Using a rescaling

of s = r\/k/d and a = v/(2Vdk), we get

— e—ascos(o) K’U(( V1+ 02)8) )

1= Ro(s)

2|

To analyze g we use the asymptotic expansions of Ky and K. both modified Bessel
functions of the Second kind,

Ko(r) =In(2) —In(z) =y + O (z%). Ki(z) = % +0(x) (z10) (5.46)
Ko(z) ~ % — Ki(z) ~ \/21:6*1 (x — o), (5.47)

where vg is Euler’s constant [1].

Close to the source, g is close to 1 as follows from limg g ¢(s.#) = 1. which can
be seen by using the expansion Kj around 0. To find the behavior around 0, we will
examine the derivative of ¢ with respect to s,

5 v Y25
95q =q { 259; —V1+ QQ%IO({—)(——) - a(tOS(@)} :

This is equal to ¢ times some factor that is increasing with s and has limit values —x
at s=0and 1 — V1 + a? —«acos(o) at s = >. For ¢ = 0 this limit is negative, while
for ¢ = 7 this limit is positive. Therefore, there is an interval [—¢;. ¢¢] with @, € [0, 7]
of possible choices of ¢ for which ¢ decreases with s while keeping ¢ constant.

For ¢ outside this interval. i.e.. ¢ € (—7.~¢¢) U (¢;. 7]. there is an s, > 0, with
09sq(s4. @) = 0. such that g as a function of s decreases for s € (0. s,) and increases for
5 € ($p.0¢). The function ¢ — s, itself is decreasing on (¢, 7| with limg 4, 54 = oc.
To find ¢, € [0.7], we solve

1-+v1 2
1—-V1+a?—acos(o) =0. = cos(ey) = loviter < 0.

[ed

where the last inequality follows from the fact that o« > . Therefore. ¢ € (%w. ).
which is increasing with « and has limits ¢, = %77 with o | 0 and ¢; = © for o — x.
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We can now conclude that close to the origin there is some region where we have
g < 1. To find an estimate of the size of this region we will use the asymptotic
expansion of g for small s,

3 In(1 + a?)
In(s) — In(2) + vg

g=1+ + O (s).

Neglecting the higher-order terms and setting this equal to v gives

1

2 o
s=2e "E(1+ a2)2<v1—1> = r= 26_75\/§ 1+ 2 o . {5.48)
k 4dk

If we choose v = 0.99, we get an indication for the region around the source, where the
difference between the moving profile and the quasi-steady-state solution is smaller
than 1%, given the values of the diffusion rate d, absorption rate k and moving speed v.







Chapter 6

Numerical solution of the
framework’s equation systems

6.1 Introduction

The current chapter considers different methods for numerically solving special sys-
tems of coupled PDEs and ODEs/DAEs. The PDEs describe diffusion processes of
concentration fields and are nounlinearly coupled to the ODEs/DAEs. that describe
the motion of particle-like objects that interact with these fields.

The starting point for our research on such systems is an article of Hentschel and
Van Ooyen [21]. where they model the outgrowth of axons out of neurons. The growing
axons react to different concentration fields of so-called attractants™ and ‘repellents’
that are subject to diffusion and absorption processes. The movement of the axon
heads. i.e.. when growth occurs. is determined by local values and gradients of the
fields. At the same time these so called growth cones act as sources for the fields
as do the target neurons and messenger cells. In [21] growth cones were modelled
by their location. for which ODEs were proposed and point sources were used in the
diffusion equations for the fields. The equations were solved by using quasi-steady-
state approximation for the fields on an infinite 2-dimensional domain, effectively
reducing the system to a finite dimensional system of ODEs. that was solved using
standard explicit RK-methods.

To facilitate the research on this so called axon guidance Krottje and Van Qoven
([30]. Chapter 5) developed a simulation framework for a certain class of such systems.
The more general approach of this framework allows for the definition of a number of
fields and states that are linked to each other. The fields can be defined on domains
with piecewise smooth boundaries on which no in- and outflow is asswned. Sources
are described by continuous bell-shaped functions with local support instead of point
sources which may result in ill-defined svstems ({29]. Chapter 4). States are defined
as objects that interact with the fields having a certain position and are modelled in

91
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a finite-dimensional way. resulting in ODEs/DAEs for their dynamics. They can act
as sources for the fields and their movement is determined by local field values and
gradients. From a modelling perspective they can be growth cones, target neurons or
artificial sources in an experimental setting.

It has turned out that the developed framework has some features which make it
numerically challenging. First. there are the small moving sources for the diffusion
equations. Efficiently finding a solution approximation of the field equations may
need some kind of refinement and adaptivity in the setting of geometrically complex
domains with possibly a munber of holes. Second. the system consists of diffusion
equations giving rise to stiffness and ODEs/DAEs that are non-stiff and nonlinear.
This makes that choosing a suitable time integration method is not a trivial task.

We wrote a set of Matlab functions for carryving out simulations of models defined
in the framework. To address the first challenge we used a spatial discretization that
can handle complex domains as well as refinement and works with a set of independent
nodes instead of a grid ([29]. Chapter 4). It uses a Voronoi diagram. both for building
local approximations and proper placement of nodes. For the time integration we used
a second order Runge-Kutta INEX method based on a combination of the implicit
and explicit midpoint rule.

However, the question arises whether instead we could use a standard FE package
for solving such systems and. if possible. how it would compare to using our set of
Matlab functions if one considers efficiency. To get some insight into these issues,
we will therefore examine in this chapter simulation of models in the framework
using both our set of Matlab functions as well as a typical FE solver developed for
parabolic PDEs. We will pick as a representative solver the program Kardos [31].
Kardos includes an adaptive multilevel finite element package and uses Rosenbrock
methods for time integration.

The organization of the chapter is as follows. We start with a description of
our simulation framework in Section 2. We will give a short introduction to our
own developed Matlab package. AGTools {Axon Guidance Tools) in Section 3 and
to Kardos in Section 4. Section 5 is devoted to the application of Rosenbrock time-
integration methods within our own framework. In Section 6 we will compare the
efficiency of both implementations and we finish with a conclusion in Section 7.

6.2 Simulation framework

From the mathematical point of view the framework consists of a number of diffusion
equations. the PDEs. which contain besides the diffusion terms. absorption and source
terms. These equation are strongly coupled to nonlinear ODEs/DAEs. of which the
righthandsides contain field values and gradients of the fields evaluated at certain
locations. We will not go into the biological interpretation here. which can be found
in ([30]. Chapter 5). but we want to stress that the ODEs/DAEs describe particie-like
moving objects that interact with the fields. This interaction occurs by means of field
sources associated to the objects as well as by movement of the objects guided by
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locally measured field values and gradients.

Model state The models in the framework are from the mathematical perspective
infinite-dimensional dynamical syvstems of which the model state is a combination of
fields and finite-dimensional particle states.

The fields are defined on a 2-dimensional domain 2 with a piecewise smooth
boundary and are denoted by p;: Q@ — R. j = 1..... M, where Al denotes the
number of fields. They will be assumed to be elements of H'(£2). the space of square
integrable functions defined on 2 of which also the first-order derivatives are square
integrable.

The particle states are finite-dimensional vectors u; € R™ of which the first two
components denote a location r; €  and the rest of the variables is gathered in a
vector s; € R™ ™2 and in the following referred to as the s-part of the state. This part
may be obsolete and therefore the particle states are at least 2-dimensional. We will
denote the number of particle states by N.

Concluding. the model state. which we denote by x. is of the form

x=(p1..... pAr-ug..... uy) € (H' Q)M x Rt tn, (6.1)

Model dynamics To complete the definition of a dynamical system we will add
to the model state x the dynamics in the form of the PDEs, ODEs and algebraic
equations. We start with the dynamics of the M fields. For all fields we assume
that there is no inflow or outflow across the boundary 9 of €, giving the boundary
condition

n-Vp;, =0 ondd. j=1.... M, (6.2)

where n is the outward normal vector. We assume that for the first M, fields the
dyvnamics is given by full diffusion equations.

N
Bipj=Lip; + Y 0ji(si)Tr,S. on Q. j=1.... M. (6.3)

i=1

where L; = d;A —k; for all j = 1..... Ay, In each diffusion equation there is a
source term o;;(s;)1y, S associated with every particle state u; = (r;.s;). Here the
function oj;: R™ — R denotes an excretion rate of the source term and the function
T+, 5: Q — R denotes a continuous source profile. The latter is defined by applying
a translation operator T;, to a general source profile S: Q — R. where the operator
is defined by (T, S)(x) = S(x —r;) for all x. x —r; € Q. When the s-part of the
particle-state is absent we will assume the o;; to be constants.

For the rest of the fields we will assume that they are in quasi-steady-state and
use for their dvnamics the equations

N
0= LJ‘/)J‘ + Zgji(si)Tr,S- on . J = 1‘[(1 +1.....! M. (64)

i=1
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being defined similarly as in (6.3). Note that we can still talk about their “dynamics’
because the source terms contain the time-dependent particle states.

For the particle states we assume in the same way a division in states governed
by real dynamics in the form of ODEs and states determined by quasi-static laws in
the form of algebraic equations. For the first Ny particle states we assume that there
are functions G; such that their dynamics are given by

da; = Gi(t.ul-.p(ri).BIp(ri).(')yp(r,-}). i=1..... Ny. (6.5)

Here we use the vector notation p(r;}. meaning p(r;); = p,(r;) for all j, and 9, p(r,),
meaning 9, p(r;); = Ozp;(r;) for all j. For the remaining particle states we assume
the dynamics to be of the form

0=Gi(t.u. p(r;).d,p(r;).d,p(r:)). i=Ng+1.... N. (6.6)

We will assume that the function G; in equation (6.6). i.e.. only for i = Ny +
1,.... N, can be decomposed in a function for the position. G¥, and a function for

the s-part. G$. of the form

)= < Gr(.r.) .
a G?(t'si-P(r,).arp(ri),(?yp(ri)) ot =dNg = e

in such a way that. using these. the r; and s; are uniquely solvable from equation (6.6)
if the time ¢t and fields p; are given.

Gi(z‘.u,-....

Abstract formulation Let us, before proceeding, for convenience first define the
index sets of the dynamic fields, Jy; = {1,.... My}, static (dynamic) fields, J, =

{Mg+1..... M}, dynamic states, Iy = {1.....Ny}. and static (dynamic) states,
I, = {Ng+1....,N} The equations (6.2)-(6.6) together constitute the dynamical
svstem behind the model that can be written in the form
z = f(t.z, z(0) =1z
f(t.z.y) with © 0 (6.8)
0=g(t.z.y) y(0) = yo.

Here, the z is composed of the dynamic fields and states. i.e.. the fields p; for j € Jy
and the states u; for i € I;, and therefore consists of a selection of components of the
total model state x in (6.1). Likewise. the vector y is composed of the static fields and
states. i.e.. the fields p; for j € J, and the states u; for 7 € [, forming the remaining
part of the model state x. The initial condition consisting of the vectors zg and yg
has to be chosen in such a way that it obeyvs g(0.2y.yg) = 0.

The dynamical system (6.8) can be turned into a ‘lower-dimeunsional” system for
z only. if we assume that for given values of z and t we can solve y uniquely from
g(t.z.y) = 0. This yields y as a function of t and z. y = h(t.z). resulting in the
system

z= f(t.z.h(t.z)) with =z(0)=z. (6.9)
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We will now examine equation g(¢t.z.y) = 0 in more detail. Here. the vector z is
composed of the dynamic fields and states, i.e., p; with j € J; and u,; with ¢ € I,.
Assuming that these and the time t are given. solving y from g¢(¢.z.y) = 0 comes
down to solving the static fields and states from

OZLj/)j"l'- Z sz(Si)TrlS. 7€ Js.
iel=14ul. (6.10)
0=G,(t.u;.p(r:). 0,p(xe).0,p(x)). i€ 1.

In the case where we use the general functions GG; we have to solve this full system,
which is nonlinear and infinite-dimensional. Using Newton iteration is a possibility,
but one that requires solving elliptic equations every iteration step. An appealing
alternative exists if we use the extra assumption that the functions G; are of the
special form (6.7). We can then turn the system into a finite-dimensional system for
which we do not have to solve elliptic equations for every iteration step, but we have
to do it only once.

To this end we first eliminate the elliptic equations from the system (6.10). Using
these, the fields p; can be expressed in the s; and r; by writing

pi=— 3 ou(s)L;' TS, jed, = plr;) = —diag ((e@)S(F.r.)).
kel Ul
{(6.11)

Here, the operators Lj_l, that commute with the scalars o;;. denote the inverse op-
erators of L; with respect to the boundary conditions (6.2). The § and T denote
the vector (sT,.... si)T and (r7...., r1)7T. respectively, while the matrices o and S
are defined by [o(8)];x = ojk(sk) and [S(F.r;)]k; = (Lj_lTrkS)(ri), respectively. The
function diag(-) is defined to return the diagonal vector of its argument. Defining the
matrix Sg by [Sz(F.ri)|k; = ax(leTrkS)(ri) yields a similar expression for d,p(r;)
with S replaced with S;. while a similar definition of S, results in a similar expression
for Oyp(r;).

The second equation in system (6.10) can now be written as

0=0G; (t, (ri,s;), —diag ([o(8)][S(F, )]}, — diag ([o(s)][S:(F,r;)]),

—diag([a(é)][sy(f‘,ri)])), iel, (6.12)

where we wrote the state u; as (r;,s;). In doing this we have replaced the infinite-
dimensional system (6.10) with the finite-dimensional system (6.12), where the § and
the ¥ are composed of all the s; and r;, respectively (i € Iy U ). but only the
static s;. r; are the unknowns. Although the resulting svstem (6.12) is essentially
finite-dimensional. applying Newton iteration requires solving elliptic equations each
iteration step. needed for evaluation of the matrices S, S, and S,,. However, if the G;
are of the form (6.7). the system decouples. It is then possible to solve the static r;
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first using the functions G{. Afterwards. all r; are known and elliptic equations have
to be solved to find the 8. S, and S,. Finally. Newton iteration is used to solve

0=03 (r.s,.. — diag (|o(8)][S]). - diag ([(8)][S,]). - diag ([a(é)][Sy])). el

for the static s;. where we left out the arguments of the matrices 8. S, and §,,.

6.3 Numerical methods in AGTools

In this section we will go into the numerical machinery implemented in AGTools for
approximating solutions of the systems (6.2) -(6.6). We will start with making some
general remarks on the adopted approach for discretizing the model equations.

In general there are two approaches for writing down full discretizations of time
dependent PDE systems. The most used one is called the Method of Lines (MOL)
approach and starts with a spatial discretization of the dependent fields and their dif-
feretial equations. turning the system in a large. but finite-dimensional ODE-system.
called the semi-discrete system. Then a suitable time integrator is selected for the
temporal discretization to vield the fully discrete solution.

An advantage of the MOL approach is that one can choose a suitable method
from a large collection of time integration methods for ODEs that are available. The
downside is that the semi-discrete systems might becomne very complicated due to
the presence of certain discretization- or interpolation operators. Direct application
of. for example Rosenbrock methods. which involve the evaluation of Jacobians. can
become cumbersome or even impossible.

The second approach is the so-called Rothe approach [39]. Instead of first choosing
a spatial discretization it starts by selecting a time integration method. This will
result in a sequence of PDEs in time containing only spatial derivatives (boundary
value problems). In this approach the PDEs are often stated as an abstract ODE in a
certain Banach space making that the analysis of the used time integration methods
moves to the realm of functional analysis and therefore becomes much more difficult

The harder analysis however is accompanied by a munber of advantages. First. the
approach seeis to have a cleaner appearance. not having to deal with difficult ODEs
with discontinuities that are the result of spatial discretizations. but instead with
elliptic equations coupled to algebraic equations. where everyvthing is still smooth
from spatial perspective. Second. it allows for nice error estimators. as is clearly
described and illustrated by Lang [31].

We will adopt here the Rothe approach and not consider any functional analytic
aspects. but take the practical approach in which we assume that our time integration
methods work well for our cases, i.e.. do not display any instability behavior.

Time integration

With respect to the time integration it is of importance that system (6.2) (6.6) con-
sists of stiff and non-stiff parts. The diffusion in the field equations gives rise to
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stiffness. while the nonlinear state equations are not necessarily stiff. For the time
integration of stiff equations we would like to use an implicit method. but using such
a method becomes very complicated for the system at hand and is not really suitable
for the non-stiff part as well.

IMEX scheme A class of schemes that seems to be appropriate here. is the class
of IMEX (IMplicit/EXplicit) schemes. Such schemnes can be applied to dynamical
svstems of the form z = Fi(t.z) + F3(t.z). One part of the vectorfield F} + Fb,
say F7. is treated implicitly by the scheme. while the other. i.e.. Fy. is treated ex-
plicitly. Different INMEX schemes have been developed, under which there are the
popular IMEX-BDF schemes that are of multistep type [26]. We, however, will use a
Runge-Kutta INEX scheme. because we prefer to work with one-step methods. Es-
pecially when working with spatial adaptivity, implementation of multistep methods
can become very complicated due to the fact that every time level has its own spatial
discretization.

We will use an INEX-midpoint scheme. which can be seen to be a combination of
an implicit and an explicit midpoint step, and is given by

Z; =2, + %TFI (tn + %T- Zs) + %TF2(tn-Zn)-

) (6.13)
zn+1 = QZs — Zy + T(FQ(tn + §Ta Zs) - F2(tn-z'n))~,

where the s in z; refers to the intermediate stage. This is a second order time
integration method and the implicit part. i.e., the implicit midpoint method, is A-
stable. Also, using this scheme for the systems at hand never revealed any stability
problems.

Application of (6.13) In the application of this method to the system (6.2)-(6.6),
we use the representation (6.8) and choose the implicit and explicit parts as shown in

N
at[)j = Lj/)j + Zﬂji(si)Tr,S- je Jg,
i=1
du; = 0 -+ Gi(f. ulp(rl)(?rp(r,)f)yp(r,)) i €1y,
M~
F Fs

where these systems only represents the first equation of (6.8). Application of the
IMEX-midpoint scheme leads then to the following solution process.

Starting at the beginning of a time step with values p? for all j and u} for all i.
the first equation of (6.13) for our system reads

N

(I-37L)ps =p) + 573 05(s)) T S. j € Ja (6.14)
i=1

uf =u' + 117G i€l (6.15)

'
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where G} = G?(f,,.u?.p”(r;’).(‘)Ip"(rg’).ayp"(r?)). Equations (6.14) and (6.15)
are used to determine the dynamic ficlds p; and states uj. for j € Jg and i € Iy,
respectively. For evaluation of the static fields p; and states u,. for j € J; and i € I,
the second equation of (6.8), which takes the form of {6.10), will be used and reads

0=Lips+ > o0u(s)Te:S. jeJs. (6.16)
tel=1,U1.
0= G, (rn +ir uf.ps(rf).()Ips(rf).ayps(r?)). i€ L. (6.17)

Therefore. to determine the intermediate stage values. elliptic equations for the fields
have to be solved for every field. For the dynamic fields these are equations (6.14)
and for the static fields these are (6.16) and thus part of a larger system that can be
solved using the method described at the end of Section 6.2.

Having all fields and states of the intermediate stage determined this way. we turn
to the second equation of (6.13). which reads for our system

N

PJ’-H_l = 2/)3: - /);-l + TZ (O’ji(S?)TrTS — Uji(S;-l)Tr;' S) . J € Ja. (()18)
i=1

u'tl =u? + 7G3. i €I, (6.19)

where G¢ is defined similarly as G? and the upper index s refers to the intermediate
stage. After using equations (6.18) and (6.19) for solving the dynamic fields p;-‘“
and states u’*! we once more have to solve a system similar to (6.16) and (6.17).
Therefore, the whole time stepping procedure amounts to solving one system of linear

elliptic equations (6.14) and two systems of the form (6.16) and (6.17).

Spatial discretization

For solving the field equations we use an unstructured (meshfree like) approach based
on an arbitrary set of nodes in the domain. This approach facilitates dealing with
complex domains. refinement and adaptivity: the latter is needed in cases where we
have moving sources with small support. A thorough description of the method can
be found in ({29]. Chapter 4). We will briefly outline it here.

Function approximation Given function values on the nodes, we use a local least-
squares approximation technique to determine for every node a second-order multi-
nomial as a local approximation of the function around that node. For this we use
the function values on a number of neighboring nodes. Because every second-order
multinomial can be written as the linear combination of six basis functions, we must
choose at least five neighbors for every node to determine such an approximating
multinomial.

With this procedure a set of function values is mapped onte a set of local approxi-
mations around every node. If we assign to every node a part of the domain for which
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we assume the local approximation to be valid. such that the whole domain is covered.,
this results in a global approximation. Let N, denote the number of nodes, then for a
given set of function values in a vector w € RV we denote the global approximation
by Fapp(W) € L1(82). where L; () is the space of integrable real functions defined on
0 c R2

Voronoi diagrams For choosing neighboring nodes of nodes, as well as for assigning
parts of the domain to the nodes, we use the Voronoi diagram [11]. It assigns to every
node a Voronoi cell, which is the set of points closer to the node than to every other
node, hence dividing the domain and at the same time creating neighbors in a natural
way. Because a Voronoi diagram extends to all of R?, we will truncate it by connecting
the nodes on the boundary by straight lines. resulting in a bounded diagram. From
now on all our diagrams will be truncated ones, but we will still refer to them as
Voronoi diagrams. Determination of such a diagram can be done in O (N, log(Ny,))
operations. where N, is the number of nodes [7]. We store the diagram in a totally
disconnected edge list [7], so that searching neighboring nodes for every node becomes
a process of O (N, ) operations.

Variational problem The stage equations (6.14) are of the form (@A —/3)p+ fihs =
0, with o = %de >0,.08=1+ %Tk'j > 0, fhs given by the right hand side of (6.14),
and the unkown pf replaced with p. Solving such equations can be done by solving
the variational problem of minimizing Ayar (w, w) — Lyar (S, w) over w € H(Q) [2, 29],
where

Avar(v, w) = / %aV’u -Vuw + %ﬁfuw dzx, Lyar(frns, w) = / fensw dx.
0 Q

A direct discretization of this problem is to minimize

A\'ar(Fapp(w)-, Fapp(w)) - Lyar (frhs~ Fapp (W))

for all w € R™. After replacement of fi,s with an approximation Fpp,(frns). where
fins is the vector ofAnode values of frh. it can be shown ([29], Chapter 4) that sparse
matrices Ay, and L., exist such that

1 A
§WTAvarW = Avar (Fapp(w)- Fapp(w)) )

f;llf‘,sl:varw = Lvar(Fapp(frhs)- Fapp (W)) .
If Ais non-singular the discrete problem has a unique solution w = A‘Ta]rﬁva,frhs.
With the algorithm for finding the Voronoi diagram comes a lexicographical ordering
of the nodes that will give the sparse matrices a band structure. which is advantageous
when solving the system directly using an LU-decomposition.
Convergence tests show that the numerical solution is 2nd-order convergent in the

L?-norm. with respect to the maximum distance between neighboring nodes ([29].
Chapter 4).
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Choosing nodes To distribute nodes appropriately over a domain we make use of
Lloyd's algorithin [10]. This algorithm is based upon the determination of Voronoi
diagrams and the process of shifting nodes to centroids of Voronoi cells. An alternating
sequence of these two operations distributes the nodes equally over the domain. in
the sense that distances between neighbors will tend to become equal throughout
the diagram. To achieve refinement at certain points. we use a variation of Llovd's
algorithm. Here. after shifting the nodes to their centroids. an extra shift in the
direction of neighboring nodes is added. To determine for a particular node which of
its neighbors are attracting it. all nodes are given an integer type. Nodes will then be
attracted to the neighbors with higher type than their own type. To get refinement
around a certain point in the domain. a node is fixed at that point and several rings
of decreasing node tvpe are defined around it. The extended Llovd’s algorithm then
moves nodes around. which results in a refinement around the fixed node.

6.4 Introduction to Kardos

In short. Kardos [31] is a software package that can be used to approximate solutions
of systems of nonlinear parabolic equations. Its main features are that it follows the
Rothe approach using Rosenbrock-tvpe time integration methods and multilevel finite
element methods. It makes use of a posteriori error estimates for local refinement and
adaptivity in space and time. We will now consider both the used Rosenbrock methods
and finite elements methods in some detail.

Rosenbrock-type time integration

We first consider Rosenbrock schemes in general for a system z = F(t.z) in R™.
see [20. 31. 26]. The scheme determines from z,, given at time level £, z,,; at time
level t,,.1 = t, + 7. To accomplish this it uses s stage vectors k. i = 1.... . 5. and
coupled to that the arguments z,,. used for function evaluation. To write down the
scheme we use the following notation. which results in a compact wayv of writing the
Rosenbrock formulas (different from [20. 31. 26]):

. T
]\s = [kl o kq] . Zns = [an .- -zns] ot = {fnl cee fn,s] € R°.
,]. .
F”S: [F(f,I].Z,,l)A..F(f"_g.Z,,SH. 1= [11} c R®.
Note that K. Z,, and F,, are matrices in R™*%. The Rosenbrock method is com-
pletelv defined by the s x s coefficient matrices A (strictly lower triangular) and

I (lower triangular). here the latter having every diagonal entry equal to ~. and the
s-dimensional coefficient vector b. The scheme reads then

K's =1Ius+ T[DZF]}(SI‘T + T[(‘)I‘F](rﬂ)y- an = ”n]lT + 7_1[\’;‘47‘-
Zpey = Z, + THb. t,, =t,1+7AL.
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where [D,F| denotes the Jacobian matrix at (t,.z,). Likewise, [3;F] denotes the
partial derivative at (t,,z,) with respect to time t. Because of the fact that the
matrix I' is lower triangular we can solve successively for the columns of K, i.e.. the
stages k;.

However, it has turned out that we can avoid a number of matrix—vector multi-
plications if we work with stages defined by the columns of the matrix Z, = 7K,I'7,
as is well-known. The resulting system is then

L2071 = Fus + [D,FZs + 70 FITN)T,  Zps = u, 17 + Z,(AT 1T, (6.20)
Zny1 = 2n + Zs(I'" Th), tns = tnl + TAL, '

in which we will denote the columns of the new stage matrix Z, by zs. Again the
columns can be solved successively after rewriting the equation for the matrix Z, as

(%1 - [DZF}) Z,=F,.-1z, (r*l - %I)T + [0, F|(rL)T,

where (I'! — 11) and (AI'"!) are strictly lower triangular matrices. Therefore,
with e; the vector with the ith component equal to one and zero otherwise, we have
for all the stages zs; = Zse; the system

Zni = Zp, + Zs(e;frAF‘l)T, tni = tn + T(e?Al), (6.21)

LI —[D,F]) z5i = F(tni-zn:) — 17, el (T 11y ’ + T[OF) (eiTl"]l)T.
(6.22)

In Kardos actually a more sophisticated Rosenbrock method is being used, which
can handle more general systems H(t,z)z = F(t,z). However, the resulting method
will be equivalent to (6.20) for our system z = F(t,z). Therefore we do not describe
this method here.

Example: ROS2 As an example consider the 2"%-order method ROS2 [26] defined

by
oo _[1 0 [
N
which is L-stable for v = 1+ %\/2_ It is also a so-called W-method, meaning it is still
of 2".order when using arbitrary approximations of the Jacobians [D,F] and {3, F)].
We will apply (6.23) as a W-method in Section 6.5. The stage equations from (6.21)
and (6.22) combined with the time step equation for z, . in (6.20) yield the scheme

Znl = Zn, thy = Ly,
(57 = [D4F)) 201 = Fltn1.z1) + 73[0F).
Zpo = Zn + %zsll trl? = tn + 7.

(:—ﬂyl - [DZF}) Ze2 = Ftno.Zpo) — T%zsl — 13 [OF).

— 3 1
Znyl = Zn + ﬁzsl + 5~ Zs2:
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Multilevel finite elements

To solve the system of linear elliptic boundary problems (6.22) Kardos utilizes a
multilevel finite element method. Its main idea is to replace the solution space by
a sequence of discrete spaces that have successively increasing dimensions yielding
improving approximations of the solution.

Assume there exist an admissible finite element mesh T, at t = ¢,, and an asso-
ciated finite dimensional space S), consisting of all continuous functions ¢ that are
polynomials of order ¢ when restricted to an arbitrary element T € T},. The standard
Galerkin finite element approximation satisfies the equation

(Lnz", 0) = (1pi, @) for all ¢ € Sy, (6.24)

s1°
Here 1:4,1 is the weak representation of the differential operator #I — [D4F] on the
left-hand-side in (6.22) and r,; stands for the entire right-hand-side in (6.22). Since

the operator L, is independent of the stages ¢ its calculation is required only once
within each time step.

Stabilization To overcome the well-known inconvenience that the solutions zs; may
suffer from numerical oscillations caused by dominating convective terms, Kardos uses
a stabilized discretization by adding locally weighted residuals, resulting in

(Lol 0) + Y (L2l w(d))r = (ri.0) + D (xhiw(¢))T (6.25)

TeTy TeTy

for all ¢ € S,. Here w(¢) is defined with respect to the operator L,. Two impor-
tant classes of stabilized methods are the streamline diffusion and the more general
Galerkin/least-squares finite element method, both of which can be chosen in Kardos.

A posteriori error estimates A posteriori error estimates provide the appropriate
framework to determine where a mesh refinement is necessary and where degrees of
freedom are no longer needed.

After computing the approximate intermediate values z” a posteriori error esti-
mates can be used to provide specific assessment, of the error distribution. Considering
a hierarchical decomposition

Syt =5t Zit (6.26)

where ZZH is the subspace that corresponds to the span of all additional basis func-
tions needed to extend the space S to higher order, an attractive idea of an efficient
error estimation is to bound the spatial error by evaluating its components in the
space ZZ+1 only. This technique, which is known as hierarchical error estimation,
has been carried over to time-dependent nonlinear problems in [31]. Defining an a
posteriori error estimator El',, € Z!™! by

El ., =El+> mEl (6.27)
i=1
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with E* | approximating the projection error of the initial value u, in Z,‘f“ and E”,
estimating the spatial error of the intermediate value 27;. the local spatial error for a
finite element T € Ty, can be estimated by nr = |[E"_,|7. The error estimator E¥_ |
is computed by linear svstems which can be derived from (6.25).

For practical computations the spatially global calculation of EZH is normally
approximated by a small element-by-element calculation. This leads to an efficient
algorithm for computing a posteriori error estimates which can be used to determine
an adaptive strategy to improve the accuracy of the numerical approximation where
needed. A rigorous a posteriori error analysis for a Rosenbrock-Galerkin finite element
method applied to nonlinear parabolic systems is given in [31].

Refinement In order to produce a nearly optimal mesh. those finite elements T
having an error 57 larger than a certain threshold are refined. After the refinement
improved finite element solutions z" defined by (6.25) are computed. The whole
procedure solve-estimate-refine is applied several times until a prescribed spatial tol-
erance ||E?, || < TOL, is reached. To maintain the nesting property of the finite
element subspaces coarsening takes place only after an accepted time step before
starting the multilevel process at a new time. Regions of small errors are identified
by their #-values.

Linear systems The lincar systems that arise in the Galerkin procedure Kardos
can be solved by direct or iterative methods. The user can choose from a collection of
methods, like for example the direct solver MA28 and the iterative solver BiCGStab
with ILU-preconditioning.

6.5 Application of Rosenbrock methods

Because Kardos works with Rosenbrock-type time integration methods, we want to
examine whether we can easily apply such methods to the system (6.8). Here. we will
assuine that Dyg(t.z.y) is invertible and that therefore we can consider the reduced
system (6.9) instead of (6.8). The Rosenbrock methods are directly applicable to this
reduced system.

Setting F(t.z) = f(t.2. h(t.z)) and differentiating the function F" and the equation
0 = g(t.z.h(t.z)) with respect to z and t gives the expressions

D,F =D,f - Dyf(Dyg)ilng- WF =0 f - Dyf(Dyfl)_lat.(1~

Direct application of the Rosenbrock scheme (6.20) gives therefore for the stage ma-
trix Z, the equation

L2 = Fuut [Duf = Dyf(Dyg) ™ Dag| Zs + 7[0cf = Dy f(Dyg)™ 0rg](T1)T

In a finite-dimensional setting solving this equation every stage could be done be-
cause the matrix (Dyg)’] can be calculated exactly. Here. in the infinite-dimensional
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setting we do not have an explicit form of this inverse and we therefore introduce an
additional stage matrix Y, and replace the system by the equivalent system

12077 = Fos + (Do f)Z, + [Dy f]Ys + 70 f)(TD)T
[DyglYs = —[D,g)Z, — 7[dg)(T1)",

which does not involve the inverse operator (Dyg) ™! explicitly. *Column-wise” solving
requires that we rewrite this as

(51 -1D2f]) Zo = Dy fIYs = Fuy = 12, (T - gz)T +r[of)r)T,
=[D29]Zs — [DyglYs = T[OtQ](F]l)T-

For a single time step the following has to be done. At the beginning of a step the
linear operators D, f. Dy f. D,g. Dyg. 0, f and dyg. at time level n have to be solved.
During every stage first the vectors z,; and y,; from

tni = fn + T(eITA]l) Zp; = Un + Z.s‘(eITAF_l)T' 0= g(fﬂi‘z"i‘y"j)' (628)

have to be solved. The stage is completed by solving the vectors z,; = Z,e; and
Ysi = Z.€; from

%I - Dz.f _Dyfjl <zsi> — <f(tni-zni-yni) - %ZSCTei + T’Yi[atf]> (6 29)
—D,g —Dyg Ysi TYi [atg] ’ ’

where we defined C =T"1 — %I and v; = (F'1)7e;. After the last stage the values on
time level n + 1 are obtained by solving

thy1 =th + 7. Zn+l = Zn + ZS(F_Tb). 0=g(th+1-Znt1-Yn+1)- (6.30)

We will now focus on solving the stage system (6.29). This system contains lin-
ear operators like D, f which are represented by Jacobian matrices in the finite-
dimensional case, but here we have to consider them as the more general Fréchet
derivatives. For example, the Fréchet derivative of f with respect to z denoted
by [D,f(t.z.y)] is defined through

Do f(t2.y)v = S f(tz+ev.y)
de =0

for all variation vectors v that live in the same space as z.

Example system To prevent from immediately getting lost in complex formulae
when applying this definition to the functions f and g in our general system (6.8). we
will first consider an example system that is relatively simple. This system contains
only a dynamic part z, with the dynamics given by f, and lacks the static part y and
accompanying algebraic equations. given by the function g. Further it consists of one
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field p and one state u = (r7.s7)7 only and is not explicitly time dependent. The
abstract ODE is then given by

d (p\ _ B Lp+o(s)T.S
d‘t(u)‘F (pw). F (”‘“)‘(G(r.s.p(r).axp(r).ayp(r»)' (6:31)

The Fréchet derivative applied to a variation vector (77.v). with v = (p7.q")7. is
defined by %f (p+enu+ ev)L:U and reads for the first component

d

EFl( ) =Ln—o(s) [0, .S 9,T.S]p+ ([Do(s)|a)T:S
=0

= Ly+ [—a(s)a,:r,s —U(s)(?yT,S] [([Da(s)]):r,s] v.

(6.32)

and for the second component

GP 0 =106 D6l (B) +(D,6) (1Darlp + uir)
+ (D, G) (1Dx(@20)lp + (Dem)i(x))
+(D,,0) (ID<(0,0)p + (2,1)(x))
( (D,G) P. + (D,,G) Pedy + (D,,G) Pr(')y)n +

[D:G) + (D,G) [Dsp] + (D, G) D (D)

+(D,,6) [Dx0,0))]  [DsC]|v

(6.33)
Note that F} and F; denote here the vectorial components of F while in the IMEX
scheme (6.13) they denote terms that sum up to F. The linear operator P. used
in the second component is the “point evaluation’-operator defined by Py = 5)(r)
for arbitrary fields . We use it here because it enables us to write down the linear
systems that arise during the Rosenbrock stages (6.29) in a form that is analogous to
the matrix notation of finite-dimensional linear equation systems.
For our example function the linear stage system (6.29) lacks the static compo-
nents y and the second equation. and is therefore of the form

{%1— [DF(/).U)}] (3) Flpuiw,) =13 ¢, (”“_). (6.34)

.SI
j<i

with (7. v) denoting (p,;.u,;) and ¢;; the entries of C. This can be written as

Lr-1 ~S 1(n\ _[a
~aP, —a’Pd, —a'Bd, L1-4A|\v) T \w/"
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where the matrices S and A and the vectors a, a® and a¥ are implicitly defined by
equations (6.32) and (6.33). and (o, w) is given by the right hand side of (6.34).

For convenience we will define L = L — ;1;1 and A = A~ ;1;]. The linear
system (6.35) can be solved by first expressing the field as a linear combination of the
state components, resulting in

|
&
e~
|

n=—(L'a)=[L7'Slv = { dn(r) = — (L 'a)(r

)
<
=
e ]
NI
il
|
QD 5
<
—
t~
1
-
=
—

Here. S is a (1 x n)-matrix (n = dim(u)) of fields and the notation L~'S stands for
[[:_15'11 ﬂ*lSm]. Evaluation of this vector in r is defined to be component-
wise evaluation in r. Using these equations we can derive the following finite-dimen-
sional system for the vector (n(r). O,1(r). dyn(r).v).

1L 0o 0 [(L7'S)(r)] n(r) L~ a(r)

0 1 0 (@S| | )| __ [ oL a)) (637
0 0 1 [9(L7IS)(m)]} | dynlr) dy(L~ra)(r) | '
a a* a¥ A v w

The solution of this system gives the solutions of the fields through (6.36).

General case This procedure can be generalized to the general case where the
linear equation (6.29) takes the form

[ . A

L S
ViPy, Vit P, VP, =~ . (6.38)
. + : . 8y A v W

: : 0o+
L \VnPey Vi Fey

VP,
Equation (6.38) contains the following elements

e The diagonal operator L = diag (() Ly, ..., Lar), with L; = L; for the static

fields j € J, and L; = L; — 1. for the dynamic fields j € Ja.

e The diagonal matrix A = diag (O Ay..... Ay) with A; = A, for the static
states 1 € I, and A; = A; — %I, for the dynamic fields i € I, and

Ai:

(DGl D] + (Do, pGill Dx(0:9)] + (Do, Gl [Dx(9,0)] [DS,GZ}] .
(6.39)
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e The full matrix S composed of Al x N blocks Sj;. with dimensions (1 x dim(u;)).
defined by

Sji= | =0T, 0:8) = 0,i(s:)(T2,0,) [Doyuls (T2, S)].  (6.40)

o The vector [a. w]T given by the right hand side of (6.29). where the compornents
have been reordered such that the ficlds are on top.

e The matrices V;. V¥ and V¥ are given by

V, = [DpG,} . V;-I = [D(')J_pGi] . ‘/Iy = [DaypG,'] . (641)
The unknown dynamic components z,; (fields and states) and the unknown static
components yg; (fields and states) are denoted by the fields 7; and states v,. Com-
pared with equation (6.29) the components are reordered. putting the fields before
the states as in the original ordering in the model state x of (6.1).

System (6.38) can be solved in a way completely analogous to solving system (6.35).
Expressing the n; in the v;. using the first A/ equations results in

L7'Sjilvi = n= ~(L7'a) - [L7'S]v. (6.42)

'MZ

n; = L a]

such that for all k
n(re) = — (L7 a)(ry) = [L7'S(rx)]v,
On(ry) = — O:(L ™ a)(ry) = [0 (L7'S)(xs)]v. (6.43)
Aym(re) = — 9y(L ™ a)(rg) — [0, (L' S)(ry)]v.

We now define the vectors

n(r1) dem(r1) h yn r)
a=| o |.oa.=| | a-= (6.44)
n(ry) dem(ry) y'n(rw
all elements of R*~and the (AN x dim(v))-matrices
[L'S(ry)] [0:(L7"8)(ry)] r&c r1))
S= : .S, = : . §, = . (6.45)
[L='S(rw)) [0 (L18)(rn)) (O (L™ g )rw))
the M N-dimensional vectors
L™ a(ry)] [0:(L " a)(ry)] [0: (L7 a)(r1)]
a= : L= : . @y = :
(L a(ry)] [0:(L7 a)(r )] [0y(L~ ar)(r )]

(6.46)
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and the block-diagonal matrices V = diag ({() V7..... V) V0 =diag (O V] ... .. Vi)

.
and V¥ = diag (O V..., 1Y), Using these definitions. the analog of system (6.37)
for the general case. is

[ Iy~ s 7 a
I MN SJ' /f’_r d.r
Iy S, ny Gy )
:11 Vi - Wi ' (64 ! }
| V Ve Vv
L A A A AW LW AN

Concluding, every time step s linear stage systems (6.29). which are of the form (6.38).
have to be solved. all of which have the same linear operator. Solving such a systemn
requires a reformulation (6.42) and (6.47). As the matrix in the lincar system (6.47)
consists only of clements of the original operator (6.38). its construction is also needed
once per time step only.

The nwost expensive part of the construction of the matrix in (6.38) is evaluation
of the matrices 8. S, and S, through equations (6.45). For these. clliptic equations
have to be solved. whereas evaluation of the matrices V. V. V¥, and fil. . fl;\v
doesn’t require the solution of PDEs. From the perspective of efficiency it would by
advantageous if the evaluation of S. S, and S, could be omitted.

When using a member of a subclass of Rosenbrock methods. called the W-mneth-
ods {26]. we can retain order of consistency. while using approximations of the Jacobian
operators instead of the exact Jacobian operators. In our case we could ignore S,
S, and S, and replace these operators by the zero operator. This is equivalent to
replacing the operator S with the zero operator in the stage sytem (6.38). This will
greatly reduce the amount of work to be done. When applving the ROS2 method.
which is also a W-method. in the next section. we will take this even an step further
and also replace the matrices Vi, Vi, V¥ and A with zero matrices.

6.6 Comparison between Kardos and AGTools
In this section we will examine how Kardos and AGTools can be used on a set of test

problems. We will start with some general aspects of using Kardos for simulation of
the systems at hand.

Domain definition For the definiton of the domains of the equations (6.3) and (6.4)
AGTools uses a set of closed paths of cubic Bézier curves [51]. A single path describes
the boundary and additional others can he used to specify holes. Using this technique
one can specify rather complex domains with relatively little points. while ensuring
that the total boundary is C''.

An example is shown in the left picture of Figure 6.1. The numbers along the
axes do not have any physical meaning here and only provide a frame of reference.
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The control points that specify the Bézier curves are shown in Figure 6.2
paths consist out of 4. 3 and 5 points. respectively.

. The three

750+ e
700} RN
650 - "y
600 f ' \
550 { |
500 oo A
100 200 300 400 i
Figure 6.1: Domain and nodes assigned to the boundary
Outer boundary: Boundary of hole 2:
(130, 550)—(074, 481)—(208, 545)—(279, 485) (261, 548)—(251, 559)—(237, 574)—(251, 588)
(279, 485)—(350, 425)—(412, 545)—(365, 647) (251, 588)—(265, 602)—(286, 600)—(302, 588)
(365, 647)—(317, 749)—(303, 779)—(211,729) (302, 588)—(318, 576)—(318, 563)—(319, 553)
(211, 729)—(119, 679)—(185, 618)—(130, 550) (319, 553)—(320, 544)—(317, 522)—(306, 517)
Boundzu‘,\ hole 1 (306, 517)—(295, 511)—(271, 537)—(261, 548)
(273, 658)—(257, 653)—(228, 666)—(230, 694)
(230, 694)—(232, 722)—(262, 728)—(280, 713)
(280, 713)—(299, 698)—(289, 663)—(273, 658)

Figure 6.2: The three Bézier paths making up the boundary.

We cannot directly work with Bézier curves for the domain specification in Kardos.
The domain has to be specified as a set of boundary nodes. Kardos then uses the
software package Triangle [41] to produce a Delaunay triangulation based on these ‘
given nodes.

To produce a set of boundary nodes based on the Bézier curves we use the algo- |
rithim from Chapter 3 that takes into account the arc-length as well as the curvature ‘
along a curve and use an equidistribution principle for the assignment of the nodes.

Taking 100 nodes and using the transformation (3.14) with a = 0.5.
produces the node set given in the right picture of Figure 6.1

1 AGTools.

the algorithm
. This set is used in both
Kardos anc

Triangulation
mairn.

Kardos uses Triangle to produce an initial triangulation of the do-
It gives the possibility to specify the minimal angle that can occur inside a
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triangle or the maximal area of certain triangles. Further. one can add nodes in the
interior to force the presence of certain vertices in the triangulation. More details
about the algorithm can be found in [41]. For the given domain and node set of
Figure 6.1 the resulting triangulation, produced by setting the minimal angle to 34°,
is shown in Figure 6.3. It consists of 384 points. 1038 edges and 653 triangles.

Figure 6.3: Triangulation determined by Kardos with minimal angle 34°.

Due to the very small support of the sources the discretization based on such a
triangulation will in general not see’ the sources. For example, in the left picture of
Figure 6.4 a part of a triangulation is shown. The black dots are the actual points
that are used in the FE discretization for calculation of integrals. The gray circle
denotes the support of a source. which cannot be seen by the discretization. In such a
situation. starting with a problem where the initial fields are zero. Kardos will never
sense the sources and. as a result. the fields will stay zero. If a source support contains
integration points, Kardos will start refinement routines to resolve the source profile
properly.

Using the fact that Triangle can incorporate specific vertices, the source locations
may be incorporated. as in the middle picture of Figure 6.4. Still. this will not solve
the problem for very small supports. By adjusting also the cubature rules used by
Kardos to evaluate integrals. integration points can be forced to coincide with source
locations. See the right picture of Figure 6.4. A disadvantage is that in general
this will result in less efficient cubature rules. For example, both cubature rules in
Figure 6.4 are of 5-th order of accuracy. while the old rule uses 7 points and the new
rule needs 10 points.

Problem 1: steady-state solutions

Our first test problem is the most simple one and it will serve for the comparison of
the refinement capabilities of both methods. We will consider steady-state solutions
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Figure 6.4: (Left) Independent triangulation and source location. (Middle) Trian-
gulation based on source locations. (Right) Cubature rule that that includes vertices
of triangles.

of a field, thus no time integration issues are involved. Let us first define the problem.

Definition We take the domain of Figure 6.1 and set a single source at loca-
tion (207.568) without internal behaviour modelled by the s-part. We consider a
single field p; with diffusion coefficient d; = 1.0, absorption coefficient k1 = 1.0e — 4
and a constant production rate o1 = 1.0. In this setting, the field solution approaches
a steady-state solution for t — oc, which we will approximate using Kardos as well
as AGTools. The system we consider is simply

():L1ﬂ1+(711TrlS. on €,
0=n-Vp;, on J9Q,

207
Q= (50‘8) — I

with L; = d;A — ky. Although we deal here with a single field and a single state we
persist in using the subscript notations to stay as closely as possible to the notation
of Equations (6.3)-(6.6). The source profile function S is defined by

{F%('osz (Zx)). x| <¢

(6.48)

S(x) = (6.49)

0. otherwise,
where we take the radius of the source support £ = 1.
Solution by Kardos As Kardos only handles time-dependent. parabolic equations,

we need to take some special actions to solve the steady-state equations. Because the
steady-state equations are essentially of linear nature (ignoring for the moment the
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noulinearity incorporated through the coupling with the states). we can use the ROSI
time-integration scheme [26]. Using this in combination with a single fixed time step.
while adjusting diffusion and absorption coefficients with respect to the step size. will
eive the solution.

To find the appropriate coefficients we consider first the linear ODE. w = Aw +s.
where A is an arbitrary linear operator that is invertible. The steady-state solution
is equal to w. = —A's. Applving ROSI to an equation that has an adjusted
operator A. gives

Wnt1 = Wp + (I —y7A) ' (Aw, +8).
Setting n = 0. wy = 0. this gives w ((1/7)1 —~A)~ s, and also requiring w, = w
leads to the condition

In the infinite-dimensional analog we have . dA — k1. resulting in

or instead of d and & we have to work with d = d/~ and k= k/~—1/(17).

Figure 6.5: (Left) Triangulation used by Kardos for representing the approximation
of solution. It consists of 2539 points. 7396 edges and 4856 triangles. (Right) Solution
represented by 20 concentration level lines.

Now. for solving the system we start with the initial triangulation from Figure 6.3.
Setting the relative tolerance to le—3. Kardos will produce a triangulation that is
shown in the left picture of Figure 6.5 and a solution of which a representation in
level lines is shown in the right picture of the same figure.

To reach this solution Kardos uses 4 steps of refinement. It subsequently deter-
mines solutions based on triangulations with a munber of points and an estimated
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error. as given in the following table.

#Points: 384 196 679 1149 3¢
Estimated error: 1.373e—2 6.725e—3  2.940e—3 1.244e—3 5.030e—4

Solution by AGTools For the solution by AGTools we use the same domain. given
by the 100 boundary points. We use 3 rings of attraction at the boundary and 11
around the source location and 2539 nodes in total. In Figure 6.6 the resulting node
set and the solution are displayved. Figure 6.7 shows in the left picture the underlying
Voronoi diagram with the used refinement rings at the boundary. In the right picture
the refinement rings around the source location are shown.

5501

SOOL

100 150 200 250 300 350 400

Figure 6.6: (Left) Node set used for the solution of Problem 1. (Right) The solution
of Problem 1.

Comparison One of the main differences between the two approaches of Kardos
and AGTools is that in Kardos the selection of a discretization and the actual solving
of the equation are coupled. while in AGTools this is not so. To retrieve a solution from
Kardos the required input is a certain error level. The program will then automatically
oenerate a suitable discretization and solution by repeatedly solving the equation.
estimating the error and adapting the discretization. until the solution falls below the
prescribed error level.

Using such an approach. the resulting triangulation will have a strong refinement
around the location of the sources and will be relatively coarse everywhere else. This
is due to the fact that the diffusion processes tend to give smooth solutions. which
possess their largest gradients near the locations of the sources. AGTools uses this
information to produce. a priori. node sets that are suitable for the equations.
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750+

100 150 200 250 300 350 400 200 205 210 215

Figure 6.7: (Left) Rings of attraction at the boundaries. (Right) Rings of attraction
around the source location.

A comparison of the triangulation used by Kardos. Figure 6.5. and the node
set used by AGTools, Figure 6.7, shows that the refinement area of the node set
seems to be more regular than the one of the triangulation. In the latter a kind of
irregularity seems to be the result of the refinement technique used by Kardos. which
splits triangles using ‘Red’ and ‘Green’ refinement. See [31].

For a precise comparison of the errors of both solutions an exact solution or an
approximation with higher accuracy is needed. However. an easier. less accurate.
way is to evaluate the AGTools solution in the vertices of the Kardos triangulation
and compare the result with the Kardos solution. Such an approach shows that the
pointwise difference of the two solutions away from the source location is about 0.1%,
while the maximum. which is reached near the source location. is around 1%.

Problem 2: static sources

The second problem we consider is a problem where the sources still do not move
through the environment. but where. in contrast to the first problem. the fields are
dynamic and the sources possess extra behavior modelled by s; and s;. With this
problem we want to examine how to implement a combination of field equations and
ODEs (DAEs) in Kardos. which is developed to deal with a system of PDEs only.

Definition The system consists of two fields and three states. Two of the states
represent the two non-moving sources. one for cach field. The third state models an
object that moves according to the gradients it senses. For both sources the excretion
rate depends on the other field's concentration at the source its location. The domain
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and the diffusion and absorption coefficients are the same as in Problem 1. The
equations are

o1 = Lipy +011(81)1%, 5. on €, p1{0,x) =0, ¥xeN
Btpg = Lops + 0'22(32)T,-25. on (1. pQ(O.X) =0. v¥xe
0=n-Vp,=n-Vpy. on .

207
e
o- (568)
107°
105 + (pa(rr)* (6.50)
350 \
(600> T
0=
(02(1‘1))4 _s
105+ (pa(ry))*
. Vpi(rs) + Vpa(rs) (257
5 = M 01 (rs) + Voalrs)l r3(0) = (618) :

with o11(81) = s; and o22(s2) = so. The O represents the three-dimensional vector
with all components equal to 0. Note that s; and s, are scalars, despite being typeset
in boldface.

Simulation with AGTools The results of a simulation with AGTools are shown in
Figure 6.8 and Figure 6.9. This simulation ran for a time T" = 12e+4 and used 400 time
steps with the IMEX-midpoint scheme. The node set used for the discretization
consists of 3261 nodes and is shown in the right picture of Figure 6.9. In this case
the two fields share the same node set for simplicity. However. AGTools allows for
the fields to have their own node sets, which would be more efficient here.

In the top panel of Figure 6.8 the evolution of the variables s; and sy is shown.
These variables represent the excretion rates of the two fields. The middle panel shows
the field values at the location of the sources. It can be clearly seen that these values
are driven by the values of s; and s;, because they follow a similar pattern. In turn,
the values of s; and s, are driven by the values of p2{r,) and p; (r3). respectively, the
latter being shown in the bottom panel of the figure.

An intuitive description of the oscillation goes like this. At ¢ = 0 both fields
are zero. Therefore source 1 its excretion rate equals 1, while the excretion rate of
source 2 is zero. As a consequence only field p; starts to develop.

1. (Around t = 1.0e+4) The rising value p;(r2) triggers source 2. resulting in a
rising s2. As a consequence field po starts to develop.

2. (Around t = 2.5e+4) A rising field value pa(r;) will inhibit the production for
field p;. Therefore field p; starts to decay. because of the absorption.
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Figure 6.8: Problem 2: State variables and field values against time.

Figure 6.9: Problem 2: (Left) Locations of the initial states (dots) and the path
of ry. (Right) Used node set for the discretization of the fields.
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3. (Around t = 4.0e+4) A declining field value p;(rz) will inhibit the production
for field pa. Therefore field po starts to decay. because of the absorption.

4. (Around ¢ = 5.0e+4) A declining field value po(r;) will trigger the production
for field p;. Therefore field p; starts to develop again.

From here, the process continues at step 1 again, resulting in an oscillating pattern.
We didn't consider the stability of this pattern. It might be very well the case that
the oscillations damp out or that they tend to increase over time.

During this process rz moves with constant speed through the domain in the
direction of a linear combination of the gradients of the two fields. As a result of the
oscillating fields the path of r3 displays two sharp turns, as can be clearly seen in
Figure 6.9.

Implementation in Kardos Kardos is designed for systems of nonlinear parabolic
equations. The systems that we consider in this chapter include besides a number
of field equations also a number of ODEs and/or algebraic equations. In Section 6.5
it was shown how these systems can be solved using Rosenbrock time integration
methods, as are used by Kardos. It turns out that adjusting Kardos for making it
possible to solve these hybrid systems in general is a very complex and time consuming
task. This seems not to be the best direction to take, because the underlying idea of
trying to use Kardos for system (6.2)—(6.6), is that it might be, as an existing software
package, easily extensible as to incorporate the simulations of our hybrid systems.

A far more simpler option is to restrict our use of Kardos to using only the imple-
mented W-methods. Such methods do allow for replacement of the exact Jacobian
matrix by an approximation of it, while retaining the order of accuracy of the method.
The earlier given example of a Rosenbrock method, ROS2, is a representative of this
class of W-methods. If we use this method and an approximation of the Jacobian
in which we only incorporate the stiff parts, i.e., those parts that are related to the
diffusion operators, then we can implement our systems with a relatively little amount
of work.

To show the basic principles behind this approach, consider a simple system con-
sisting of two components p, u, of which the dynamics are determined by

p=filp,u), = fop.u), (6.51)

where the Jacobian operator D, fi gives rise to stiffness and the other Jacobian op-
erators Dy, fi. D, fa and Dy fa do not. When using a W-method, replacement of the
three non-stiff Jacobian operators. by zero-operators, will retain the order of accu-
racy and will in general not harm so much the stability of the method. We will now
compare the application of this approach, using ROS2, to this system as well as to
the first equation of this system only (containing only the p component).

We start with the system consisting of the p-component only. The variable u is
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then considered as a parameter of the system. Application of ROS2 yields

(£ - Doilpn-wl) m = filp,w)
(% - [Dpfl(pn-,U)]) £=filp,+1inu) - Zq (6.52)
pn+1 :pn +%n+ %

Application of ROS2 to the complete system, with the use of the approximation of
the Jacobian, yields

(; — [Dpfr(p,-un) ) fi(pn.un)
,YL = f2(p,,-un)

( — [Dpfi(pn-un }) filpn+ 5ma, +5v) = n (6.53)
—w folp, + nun+ v)—iv

Pry1 = pn Z’r] + E

Upt1 = Up + 3 V+ 3, W-

Comparing the systems (6.52) and (6.53), we see that the application of ROS2 to a stiff
system (6.52) can be extended to the application of ROS2 to a larger system (6.53),
by inserting a number of actions between the stages. In the following scheme the
actions performed by Kardos and the actions that are to be inserted are displayed.

Kardos extra implemented
u=u,

J = [Dpfi(p,,0)]
(7_17 - J> n = filp,, )

(6.54)

(%T - J) §=filp, +5mu) — 20

']_'W— fQ(pn+ TT’U)—‘—V

YT
3 1
Pryy =pn+ﬂn+ﬂ

3 1
Upy1 = Uy + —27‘( + ﬂw

Implementation of this approach can be done by using the built-in event mechanism
of Kardos. It requires the definition of new events before and between the different
stages of a time step. They trigger the calls for the suitable subroutines for performing
the actions at the right side of (6.54).
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Simulation with Kardos Using the technique described above, Kardos was used
to approximate the solution to system (6.50). With error tolerances for time set
to 0.01 and for space to 0.001. the resulting solutions of the states and the fields
evaluated in the states’ locations is within 1% of the AGTools solutions shown in
Figure 6.8 and Figure 6.9.

An initial triangulation. similar to the one of Figure 6.3. was used, which has
1402 vertices and was forced to contain nodes with locations r; and ro. During the
simulation Kardos uses a refined triangulation. where refinement takes place around
these two points. The maximum number of vertices reached during the triangulation
is 4904. The triangulation at the end of the simulation is shown in Figure 6.10. which
has 1540 vertices.

Figure 6.10: The triangulation used by Kardos at time T = 12e+4.

Figure 6.11 displays the time step size and the number of vertices in the triangu-
lation against the time step index. The number of time steps equals 175, where the
time step size is very small in the beginning of the simulation as the fields have to be
developed and time derivatives are relatively large. Especially in the beginning of the

simulation several time steps are rejected and smaller time steps are taken instead.
For example. while the initial time step size is set to 1000. the first accepted time
step. after three reductions. is equal to 0.182. For every reduction 4 to 6 refinement
iterations are carried out. each with their own linear systems to be solved. After the

initial phase. time step reductions do occur in smaller numbers. while the time step
size increases gradually to around 1300. At time level 80. at more or less half of the
computational work. only 10% of the total time interval is reached.

We want to conclude the treatment of this problem by making a few remarks.
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Figure 6.11: Problem 2: The time step size (top) and the number of vertices in the

triangulation (bottom) against the time level used by Kardos.
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First, due to the fact that the handling of the ODEs is "hacked’ into Kardos by
means of the event mechanism. the adaptivity routines completely ignore the ODEs.
Therefore. sharp gradients in the dynamics of the states will not enforce smaller
time steps. Second. the solution is not flexible with respect to the implementation
of different ODEs. As a result. changing the dimensions as well as changing the
dynamics of the states can be very error-prone.

Problem 3: moving sources

Our final test problem concerns a system where we have two fields, both produced
by their own sources that are moving through the domain. For both sources applies
that their movement is determined by the field that they do not produce for.

Definition The system is defined by

Opr =Lipy +o011 1, S. on Q. p{(0.x)=0. ¥xeQ
Oip2 = Lops + 0227, S, on L. p2(0.x)=0. ¥xeQ
0=n-Vp; =n-Vpy. on o,
(6.55)
F = A Vpa(ry) £ (0) = (307)
1V p2(ry)]] 568
. Vpi(rs) (350)
rp = A—r— = ro(0) = [
2 V()] 2000 = { 600

with Ly = Lo =dA — k. 011 = 1 and 0,2 = 1. The domain €. diffusion coefficient d
and the absorption coefficient k are taken the same as in Problem 1 and 2 and A =
8.0e—4. In the resulting dynamics the two sources move toward each other.

Simulation with AGTools Simulation of a problem like Problem 3 is computa-
tionally more expensive because of the moving sources. Every time step a new node
set has to be generated and by using interpolation the solution has to be transferred
to it.

Figure 6.12 shows the result of a simulation with AGTools for ¢ € [0. 1e+5]. where
300 time steps with the IMEX-midpoint scheme were used. The left picture of the
figure displays the paths of ry and ra. Clearly can be seen that the sources move
toward each other. while growing around the hole in the domain. In the right picture
of the figure the used node set at t = 7.de+4 is shown.

Implementation in Kardos The implementation in Kardos of this problem was
done in a way similar to Problem 2. We used the same sinmilation parameters as there
and the solution gave paths that were close to the paths of Figure 6.12. The maxi-
mal euclidian distance between the two solutions over the whole integration interval
was 9.3. in the units of Figure 6.1.
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Figure 6.12: Problem 3: (Left) Locations of the initial states (dots) and the paths of
r; and ry. (Right) Used node set for the discretization of the fields halfway during
the simulation.

In Figure 6.13 the time step size and the number of vertices in the triangulation
are shown against the time level. One of the differences with Problem 2 is that the
sources are moving here. Due to these moving sources the maximal number of vertices
in the used triangulations is here almost twice as high as in Problem 2. The maximal
time step size however, is larger as in Problem 2. This can be probably explained by
the fact that the fields are not produced by constant sources but that their excretion
rates depend on field values.

We want to conclude Problem 3 by mentioning that we did not carry out a com-
parison between the use of AGTools and Kardos with respect to efficiency. This we
did not do because of the great differences between the two approaches and because of
the advanced error control routines present in Kardos, while not available in AGTools.

6.7 Summary

This chapter concerns the numnerical approximation of the behavior of the dynamical
systems that are present in the AGTools framework. These systems are composed
of parabolic and elliptic PDEs that are strongly coupled to a system of ODEs and
algebraic equations. A presentation of the used numerical methods in AGTools is
combined with a discussion of the possibility of using an existing software package for
the solution of the systems at hand. that is designed for solving systems of PDEs. As
a representative was taken the software package Kardos.

The chapter starts with an overview of the AGTools framework: giving both an
abstract formulation of the equation systems. as well as a presentation of the used
numerical methods for approximating these systems numerically. This is followed by
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Figure 6.13: Problem 3: The time step size (top) and the number of vertices in the
triangulation (bottom) against the time level used by Kardos.
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a description of Kardos and its main features.

In Section 6.5 the application of Rosenbrock time integration methods to the
framework's equation svstems is discussed. Due to the nature of these systems this
is not straightforward. It is shown that the emerging linear stage systems in the
Rosenbrock methods contain point evaluation operators. A method for solving such
linear systems is described.

As the use of general Rosenbrock methods for the systems at hand is rather com-
plex and because of the way that Kardos builds its discretizations for solving PDEs.
a general adjustment of Kardos for incorporating these systems seems not practical.
A simpler alternative is to restrict our use of Kardos to the use of W-methods. These
time integration methods allow for simplifying the solution process by approximating
the Jacobian operators. It is shown that the use of the built-in event mechanisms in
Kardos can be used to implement the solution of certain systems in a more ad-hoc
approach.

Kardos uses an initial coarse triangulation that is adaptively refined on the basis
of a posteriori error estimators. It is shown that because of the small supports of
the sources this initial triangulation has to be based on the initial locations of the
sources and that (at least for the first time step) a special cubature rule is used for
the numerical approximation of integrals needed for the discretizations of the finite
element method.

Three example problems are discussed. together with the issues that are encoun-
tered when implementing the problems in Kardos. An advantage of using Kardos
over AGTools is that it has a sophisticated adaptation scheme in space and in time
and can produce solutions within a predetermined error range. On the other hand.
AGTools makes better use of the a priori knowledge that the refinement areas are
around the source locations. This leads to an efficient discretization of the PDEs and
no iterative solving and error estimation is needed.

A direct comparison with respect to efficiency was not performed due to the great
differences in the two approaches. Concerning the question whether Kardos might
be used for the equation systems of the framework. we can say that a structural
adjustment to incorporate such models into Kardos is very difficult and requires a lot
of programming activity. An easy. more ad-hoc. approach is possible. but requires
still some serious amount of error-prone coding. Also. if using this latter approach.
error control routines do not take into account the ODE dynaimics.

Acknowlegdement The author wants to thank Prof. Dr. J. Lang of Darmstadt
University of Technology for his help on using the software package Kardos. He
delivered valuable background information on the architecture of the software and for
the implementation of described problems.




Summary

This thesis is a treatiment on the simulation of growing nerve cells during the de-
velopment of the nervous svstem. While there is a basic understanding of how the
connection forming axons find their target neurons by means of chemotaxis. the un-
derlving precise mechanisins are far from clear. To complement the experimental
rescarch by the use of computational models. a framework for modelling these growth
processes mathematically is presented. together with numerical methods for use in
simulation. A basic assumption is that it should be possible to set up a model and
carry out the simulations without extensive programming activity.

The framework consists of a set of finite-dimensional vectors and a two-dimensional
domain with fields defined on it. The vectors are referred to as states. and can
be interpreted as objects that move through the domain. The fields are subject to
diffusion. absorption, and excretion processes, the latter being the result of highly
localized source terms that are situated at the locations of the states.

As a start an examination of a representative equation system is given. It serves
to get acquainted with some specific features of the syvstems at hand. in particular
the occurrence of a feature called self-interaction. When present. the use of point
sources is prohibited and the resulting dyvnamics are very sensitive to the width of the
source supports. Also. the use of quasi steady-state approximations for fields with
fast diffusion may cause large changes in the dynamics.

What follows is an exposition on the domains of models in the framework can
be specified. To make the definition of complex domains easv. the boundaries of the
domains are specified by means of Bézier paths. However. the numerical methods for
solving the field equations work with boundaries that are specified as sets of points
connected by straight lines. It is shown how point sets on the Bézier pathis that
represent the boundaries well can be selected. making use of the arc-length and the
curvature of the paths.

After that. the spatial discretization of the field equations is discussed. Two prop-
erties of the svstems at hand are of importance. First. the sources for the diffusion
equations are made up of highly localized source terms of which the locations may
change over time. Second. the domains can be rather complex. making the use of
regular grids difficult. To address these two issues. an unstructured discretization
is presented in which the fields are diseretized on the basis of arbitrary node sets.
This approach is flexible with respect to domain geometries and allows for easy re-
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finement and adaptation needed for the moving sources. It uses Voronoi diagrams for
discretizing the operators as well as for choosing the underlying set of nodes.

The thesis continues with a description of the modelling framework. After an
introduction to its basic concepts the underlying mathematical model is presented.
Both the field and state dynamics can occur in two forms that are referred to as dy-
namic and static, respectively. Dynamic fields give rise to parabolic partial differential
equations (PDEs). while static fields produce elliptic PDEs. Likewise, dynamic states
give ordinary differential equations (ODEs) and static states give algebraic equations.
In total. the model can be a system of coupled parabolic PDEs, elliptic PDEs, ODEs,
and algebraic equations.

A description is given of different regimes that are based on the combination of
types of equations that make up the models. As a result. these regimes are connected
to the numerical methods needed for the simulations. Included is a presentation of
example models that show how the framework can be used to test different mech-
anisms. As the focus lies on the modelling aspect, the discussed models all fall in
a regime for which the simplest set of numerical methods is needed. Those models
merely encompass static fields that are in their steady-states.

The final chapter concerns the simulation of models in which all types of equations
are present. It discusses the numerical methods used by AGTools; a set of Matlab
scripts written especially for use with the framework. Its most important characteris-
tics are the use of a Runge-Kutta IMEX-method for time integration and the earlier
presented spatial discretization technique based on Voronoi diagrams. In addition,
the use of a standard finite element package is considered, where the package Kardos
was taken as a representative. It is examined how Kardos can be used for the simula-
tion of the framework models. In particular. the use of Rosenbrock time integration
for the models is discussed. For three example models the use of AGTools and the
use of Kardos are compared.




Samenvatting

Dit proefschrift handelt over de simulatie van groeiende zenuwcellen tijdens de ont-
wikkeling van het zenuwstelsel. Het betreft het modelleren van groeiende axonen
en de mechanismen die ervoor zorgen dat ze groeien in de richting van de neuronen
waarmee ze verbinding maken. Ondanks dat de principes die hieraan ten grond-
slag liggen duidelijk zijn. zijn de onderliggende. precieze mechanismen onbekend.
Om het experimentele onderzoek te complementeren met het gebruik van compu-
tationele modellen. is een framework ontwikkeld voor het wiskundig modelleren van
deze groeiprocessen. Dit framework wordt gepresenteerd samen met numerieke me-
thoden die gebruikt worden voor de simulaties. Een uitgangspunt bij de ontwikkeling
hiervan was dat het mogelijk moet zijn om een model te implementeren en simulaties
uit te voeren zonder daar uitvoerig programmeerwerk voor te verrichten.

Het framework bestaat uit een collectie van eindig-dimensionale vectoren en een
twee-dimensionaal domein met daarop velden gedefinieerd. Deze vectoren worden
‘states’ genoemd en kunnen worden beschouwd als objecten die door het domein
bewegen. De velden zijn onderhevig aan diffusie, absorptie en uitscheiding door bron-
nen. Deze bronnen hebben een kleine afmeting en zijn gesitueerd op de locaties van
de states.

Het proefschrift begint met de beschrijving van een representatief systeem van
vergelijkingen. Hiermee wordt een introductie gegeven tot een paar specifieke eigen-
schappen van de systemen die in het framework voorkomen. In het bijzonder wordt
ingegaan op een specifieke eigenschap. Als deze eigenschap. genoemd self-interaction,
aanwezig is in het systeem, dan is het gebruik van puntbronnen niet mogelijk en de
dynamica van het systeem zeer gevoelig voor de wijdte van de bronnen. QOok het
gebruik van quasi steady-state benaderingen voor velden met een snelle diffusie kan
tot een dynamica leiden die zeer verschilt van de originele dynamica.

Wat volgt is een uiteenzetting van de domeinspecificatie voor modellen in het
framework. Om een makkelijke definitie van complexe domeinen mogelijk te maken,
worden de randen van de domeinen vastgelegd door middel van Bézierpaden. Echter.
de numericke methoden voor het oplossen van de veldvergelijkingen werken met ran-
den die gespecificeerd zijn als verzamelingen van punten. onderling verbonden door
middel van rechte lijnen. Er wordt getoond hoe punten op de Bézierpaden kunnen
worden geselecteerd. zodanig dat de randen goed gerepresenteerd zijn. Hierbij is
gebruik gemaakt van de ~arc-length’ en de "curvature’ van de Bézierpaden.
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Het daarop volgende hoofdstuk gaat over de ruimtelijke discretisatie van de veld-
vergelijkingen. Twee eigenschappen van de systemen zijn belangrijk. Ten eerste
worden de bronnen van de diffusievergelijkingen gevormd door brontermen die allen
een zeer klein support hebben en kunnen bewegen door het domein. Ten tweede kun-
nen de domeinen een complexe geometrie hebben, waardoor het gebruik van reguliere
grids moeilijk is. Met deze twee eigenschappen in het achterhoofd is een discretisatie
ontwikkeld, waarbij de velden worden gediscretiseerd op basis van een verzameling
van willekeurige punten in het domein. Deze benadering is flexibel met betrekking
tot de vorm van het domein en staat daarnaast een makkelijke vorm van verfijning
en adaptatie toe, nodig vanwege de bewegende bronnen. Voor de discretisatie van de
diffusieoperatoren en voor het kiezen van de onderliggende puntverzamelingen wordt
gebruikt gemaakt van Voronoi diagrammen.

Het proefschrift gaat verder met een uitgebreide beschrijving van het framework.
Na een inleiding tot de gebruikte concepten wordt het onderliggende wiskundige model
besproken. Zowel de velden als de states kunnen voorkomen in twee vormen, te
weten dynamisch en statisch. Dynamische velden resulteren in parabolische partiéle
differentiaalvergelijkingen (pdv's). terwijl statische velden leiden tot elliptische pdv’s.
Op dezelfde wijze geven dynamische states gewone differentiaalvergelijkingen (gdv's)
en statische states, algebraische vergelijkingen. Het totale model bestaat dan uit
een systeem van gekoppelde parabolische en elliptische pdv’s, gdv’s en algebraische
vergelijkingen.

Er wordt tevens een onderscheid gemaakt in regimes van modellen, waarbij een
regime bestaat uit modellen waarin overeenkomstige typen vergelijkingen voorkomen.
Hierdoor heeft ieder regime zijn eigen numerieke methoden, nodig voor het uitvoeren
van de simulaties van de modellen in het desbetreffende regime. Inbegrepen is een
presentatie van voorbeeldmodellen die laat zien hoe het framework kan worden ge-
bruikt voor het testen van verschillende mechanismen. Omdat de focus ligt op het
modelleeraspect. vallen deze modellen in het regime met de minst uitgebreide nu-
merieke methoden. Deze modellen bevatten alleen statische velden die tevens in hun
steady-state verkeren.

Het laatste hoofdstuk gaat over de simulatie van de regimes waarin alle soorten
vergelijkingen aanwezig zijn. Het behandelt de numerieke methoden die worden ge-
bruikt bij AGTools. een verzameling van Matlab scripts speciaal geschreven voor ge-
bruik van het framework. De belangrijkste karakteristieken zijn de toepassing van een
Runge-Kutta IMEX methode voor tijdsintegratie en de eerder besproken ruimtelijke
discretisatiemethode gebaseerd op Voronoi diagrammen. Tevens wordt het gebruik
van een standaard eindige-elementen pakket overwogen, waarbij Kardos als represen-
tatief pakket is gebruikt voor de simulatie van de modellen in het framework. In het
bijzonder wordt het gebruik van de Rosenbrock tijdsintegratiemethoden besproken.
Voor drie voorbeeldmodellen is het gebruik van AGTools en het gebruik van Kardos
vergeleken.
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