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Chapterr 1 

Introduction n 

Thiss thesis concerns two major aspects of applied mathematics. On the OIK1 hand, 
thee modelling process, in which real-life phenomena are rephrased in terms of mathe-
maticall  objects, resulting in a so-called mathematical model. On the other hand, the 
analysiss of such a set of objects, resulting in a number of properties of the model that 
givee more understanding of the underlying phenomena. 

Thee phenomena considered in this thesis, which are from the realm of biology, are 
introducedd in Section 1.1. Section 1.2 gives the basic ideas behind the rephrasement of 
thee biology into mathematical objects. For models with a large degree of complexity, 
thee mathematical analysis wil l for a large part be based on results from the held of 
numericall  mathematics, as is also true for the systems in this thesis. In Section 1.3 
ann overview is given of some issues that wil l be encountered in the numerical analysis 
off  the systems at hand. This introduction wil l then be concluded with an outline of 
thiss thesis in Section 1.4. 

Thiss thesis has grown out of a co-operative project 'Numerical Modelling of the 
Formationn of Neuronal Connections in the Nervous System" between the CYVI and the 
Netherlandss Institute for Brain Research, research group Neurons Lv: Networks, with 
involvedd researchers Jaap van Pelt and Arjen van Ooyen (now at VU). The project 
wass supported by XWO. Programme 'Wiskunde Toegepast'. No. 613.002.048. 

1.11 Biological phenomena 

Thee phenomena that are being modelled in this thesis come from the fields of neu-
robiologyy and/or computational neuroscienee. A great part of the internal signaling 
processs in a large class of living creatures is handled by a nervous system. Such a 
systemm is composed of interconnecting nerve cells, also called neurons, that commu-
nicatee with each other by sending electrical signals through their connections. Such 
connectionss are called axons and the signal sending is called firing. Basically, a cell 
decidess to fire a signal on the basis of' the signals it receives from other cells. The 
signall  originates in the cell body, travels along the axon, and reaches other neurons at 

1 1 



2 2 CHAPTERR 1. INTRODUCTION 

theirr dendrites, i.e.. tree-like structures where the axons are connected to the target 
cells. . 

Theree has been done a lot of research into this firing process as well as into the sig-
nall  transduction along the axon, the underlying mechanisms of the latter being fairly 
well-known.. Models have been proposed that describe the traveling signals and there 
iss simulation software that allows for combining and examining different mechanisms 
concerningg this process. In this thesis the focus will not be on the functioning of such 
aa system, but rather on the development of it. The basic underlying question that is 
consideredd here is: how do nerve cells make connections with other nerve cells? We 
aree interested in the mechanisms underlying the guidance of a growing axon toward 
aa target cell, not in why the system decides to make certain connections. 

Thiss process of guidance of the axon toward its target is often referred to as axon 
guidance.. A basic explanation of it is that the process belongs to the class of chemo-
taxiss processes. This means that the growth direction of the tip of the axon, which 
iss called the growth cone, is determined by concentration levels of certain molecules 
thatt are present in the environment. Such molecules we will refer to by the term 
guidancee molecules. Basically, the growth cone tries to measure the gradients of the 
concentrationn fields of guidance molecules, and will grow toward higher concentration 
off  so-called attractant molecules and away from so-called repellent molecules. 

Itt is known that certain species of molecules influence the growth of axons by 
meanss of chemotaxis, but the precise mechanisms underlying this process are obscure. 
Ass an example serves the combined influence of a group of guidance molecules. Here 
thee question arises how a growth cone does decide on a single growth direction while 
measuringg a number of non-parallel gradients? 

Anotherr example of an unknown mechanism concerns the adjustment of the size 
off  the growth cone. It is observed that a growth cone, which has the form of a hand-
likee structure, can adjust the size of its 'fingers'. If the concentration of guidance 
moleculess in the local environment is low. enlargement of these sensing structures 
wil ll  probably keep the growth cone's measurement of gradients sufficiently reliable. 
Thee precise size regulating mechanisms are unclear, as well as how they effect the 
sensibilityy for the different guidance molecules. 

1.22 Modelling framework 

Onee of the key issues in mathematical modelling is what to incorporate into the model 
andd what to neglect. Choices have to be made on which details will be built in and 
whichh are left out because they make the model unnecessarily complicated. These 
aree hard choices that require knowlegde of the field in which is modelled as well as 
mathematicall  insight. Especially with biological phenomena it is relatively easy to 
buildd models that are so complicated that it is very difficult to gain insight using a 
mathematicall  analysis of the model equations. 

Inn this thesis the starting point is not a single biological setting but rather a 
wholee class. Not a single model has to be developed to give more understanding of its 
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underlyingg phenomena, but it should be possible to build a number of variations of a 
modell  and after analysis select the most appropriate one. The goal of the modelling 
activityy here is to learn which combination of elements can explain the observed 
phenomena. . 

Givenn the need for this kind of flexibilit y a framework has been developed that 
cann be used to model axon guidance. Its basic assumptions are that the systems to be 
modelledd can be regarded as composed of concentration fields of guidance molecules 
andd objects with a certain location that interact with these fields. In the background 
thee environment is modelled by a domain on which the fields are defined and in which 
thee objects are located. A short description will now follow of the domain, fields and 
objects. . 

Itt is important to notice that flexibilit y with respect to domain geometry is re-
quired.. It should be possible to work with domains that have strange shapes and. 
possibly,possibly, contain holes. Such holes might represent bone structures or blood ves-
selss that are impenetrable for the guidance molecules, thus forming obstacles around 
whichh the axons have to grow. The basic assumption made on the specification of 
thee domain is that it is 2-dimensional and specified by piecewise smooth curves in the 
plane. . 

Thee fields represent the concentration fields of guidance molecules and are non-
negativee functions defined on the domain. Their dynamics are governed by diffusion, 
absorption,, and excretion. It is assumed that there is no in- or outflow of guidance 
moleculess across the boundaries. An important characteristic is that the excretion 
takess place through highly localized sources, i.e., at the locations of the objects, that 
mightt be moving through the domain. A model choice is to represent the sources by 
functionss with a small support and not by Dirac delta functions. The main reason 
forr this choice is that when using the latter, the resulting fields are singular at the 
locationn of the source, possibly leading to ill-defined systems of equations. 

Thee final class of elements in the framework consists of the objects, representing 
locationss of interaction with the fields. As examples serve target cells and growth 
coness excreting guidance molecules or a point where chemicals are injected into the 
environmentt artificially in an experimental setting. In this thesis the objects will 
alsoo be referred to with the term 'states', because they can be thought of to describe 
thee internal states of the objects. They are finite-dimensional vectors of which the 
firstfirst two elements describe the location. Additional elements of the vectors are used 
too model the objects further and can contain variables like the sensitivity to certain 
guidancee molecules, growth speed, excretion rate, etc. 

1.33 Numerical mathematics 

Usingg the framework described in Section 1.2 the biological setting is translated into 
aa mathematical description. This description consists of two sets of functions, the 
firstt set describing the fields by means of real functions of space and time, and the 
secondd set describing the states, being functions that map time to finite-dimensional 
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reall  vectors. While the dynamics of the fields are given by PDEs (partial differential 
equations),, the dynamics of the states are given by ODEs (ordinary differential equa-
tions).. The two systems are coupled in two ways. The sources in the field equations 
dependd in their excretion rates and locations on the states. The dynamics of the 
statess depend on the fields in the local vicinity of the states. 

Thee numerical approximation of the time evolution of the fields and states requires 
aa spatial discretization of the domain and the fields and a temporal discretization for 
thee fields and the states. Some properties of the system will now be discussed that 
aree characteristic from a numerical perspective. 

Concerningg the spatial discretization of the fields, two features of the framework 
aree of importance. First, the domain does not need to be a regular shape to which 
aa grid can be assigned in a straightforward way. Second, the supports of the moving 
sourcess are small compared to the domain size, meaning that certain refinement and 
adaptivityy techniques have to be applied. 

Basedd on these two features the class of meshfree methods was taken as a starting 
pointt for the selection of a spatial discretization. The underlying idea is that the 
discretizationn of the fields consists of arbitrary sets of nodes in the domain, together 
withh values defined on the nodes. This allows for easy refinement by selecting many 
nodess in the neighborhood of the moving sources. On the other hand it gives the 
freedomm to align the nodes nicely along the boundaries. 

AA drawback of such a meshfree approach is that it lacks the straightforward def-
initionn of neighboring nodes present in grids and triangulations. For every node a 
selectionn of neighboring nodes is required for building a local approximation in the 
vicinityy of the node at hand. In practice, some kind of grid structure is often used for 
this.. In this thesis Voronoi diagrams are used for this purpose as well as for building 
globall  approximations out of local approximations. As a result, the field discretiza-
tion,, although being meshfree in its ideas, depends heavily on Voronoi diagrams. 

Concerningg the temporal discretization, an important feature of the coupled sys-
temss is that the diffusion operator gives rise to stiffness in the discretization of the 
PDEs,, while the ODEs. which are nonlinearly coupled to the PDEs, are non-stiff. 
Thee stiffness of the discretized PDEs would be a reason to use an implicit time in-
tegrationn scheme. However, an implicit scheme for the whole coupled system is very 
complexx due to the typical nature of the coupling, i.e.. evaluation of one dependent 
variablee (a field) in another dependent variable (a location of a state). In this thesis 
Implicit/Explici tt (IMEX) schemes are therefore considered for the systems at hand 
ass well as Rosenbrock methods, using an approximate Jacobian. 

1.44 Thesis outline 

Thiss thesis is based on three articles, a technical report, and an additional chapter 
onn Bézier curves. 

Chapterr 2 considers some analytical aspects of a typical prototype of the class of 
systemss we are interested in. In this warm-up chapter the main result is the analysis 
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off  a system feature that is called self-interaction. Due to self-interaction presence the 
usee of point sources is prohibited and it turns out that scaling down the supports of 
thee sources will strongly influence the dynamics. The chapter has appeared as: 

J.K.. Krottje. On the dynamics of a mixed parabolic-gradient system. Com-
municationsmunications on Pure and Applied Analysis, 2(4):521 537. December 2003. 

Inn Chapter 3 a specification method for the domains is described. It starts wTith 
domainss that are specified by Bézier paths that determine the outer boundary and a 
sett of internal boundaries. For solving the field equations we will not work with these 
Bézierr paths, however. Instead we will use approximations that consist of a selection 
off  points along the boundaries, where neighboring points are connected by straight 
linee segments. The main part of this chapter is devoted to the selection of nodes by 
meanss of an equidistribution principle that is based on arc-length and curvature. 

Chapterr 4 continues with the presentation of the spatial discretization of the field 
PDEs.. It describes a function approximation technique based on local least-squares 
approximationss and the combination of such approximations into a global approxima-
tion.. A Voronoi diagram is being used for the selection of neighbors, for the definition 
off  the global approximations, and for the selection of nodes in the domain. In this 
chapterr the discretization is used to solve the steady-state solutions to the field PDEs. 
Itt will appear as: 

J.K.. Krottje. A variational meshfree method for solving time-discrete diffu-
sionn equations. Journal of Computational and Applied Mathematics, 2005, 
accepted. . 

InIn Chapter 5 the modelling framework is presented and this concerns joint work 
withh Arjen van Ooyen, department of experimental neurophysiology. Free University 
off  Amsterdam. It defines the domain, fields and states and their coupling. It also 
givess a short overview of the used numerical techniques. A large part of it is devoted 
too example models that are implemented in the framework. The chapter is expected 
too appear as: 

J.K.. Krottje and A. van Ooyen. A mathematical framewrork for modelling axon 
guidance.. Bulletin of Mathematical Biology. In the process of revision. 

Chapterr 6 compares our numerical approach used for the equation systems that 
arisee in the presented framework with another approach. In this context our numerical 
approachh is referred to as 'AGTools' (Axon Guidance Tools). The software package 
Kardoss is taken as a representative of the class of Finite Element Methods and its 
usee for numerically solving the systems at hand is discussed. The chapter presents 
aa number of examples where both approaches are compared, although to a rather 
limitedd extent due to time constraints and unexpected difficulties in adjusting the 
Kardoss software for our application. It will appear as a CWT technical report: 

J.K.. Krottje. Numerical solution of axon guidance framework systems CWI 
TechnicalTechnical Report. 
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Chapterr 2 

Onn the dynamics of a mixed 
parabolic-gradientt system 

2.11 Introduction 

Inn a paper of Hentschel & Van Ooyen [21] a mathematical model is presented on 
thee growth of neural connections in the nervous system. The model describes the 
outgrowthh of axons from neurons to targets in a developmental phase for innervation. 
Itt is assumed that the growth toward the targets is part ly guided by the gradients of 
concentrationn fields of certain chemicals which are present in the environment. These 
concentrationn fields change in t ime due to the release of the chemicals by the targets 
andd the growth cones and the processes of diffusion and absorption. 

Onee of the goals of the model is to better understand the observed effects of 
bundlingg and debundling of the growth cones. The assumption that the growth cones 
themselves,, besides the targets, also release1 chemicals that influence the growth of 
thee cones might explain the bundling and debundling effects. 

Inn the model two kinds of variables are used to describe this biological system. 
First,, functions of time ra : R —> M2, which denote1 the positions of the growth cones, 
wheree a ranges over the number of axons A7,./.1 Second, fields p$: R2 x R —>  R. which 
denotee the concentration of the chemicals as a function of space and time, where 3 
rangess over the number of concentration fields Nr. The dynamics are described by 
gradientt equations for the growth cone positions 

00 = ^> a . . ,Vp . , ( r a( / ) . 0. (2-1) 

Wee will regard the growth cones as 'dynamical sources' to which the subscript 'd' refers. 

7 7 
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forr all a = 1 N  ̂ and for the concentration fields we have parabolic equations 

A'rff -V, 

ddttpp33(x.(x. t) = D3Ap3(x. t) - K3(>AX. t) + Y, <rl aSrn (t) ) + £ °3.,S  ̂ (x). (2.2) 
aa = l - ) - l 

forr all tf = 1 Ar
c. Here x = (.ri, .i^)- 7 ranges over the number of targets Ns and .s7 

denotess the position of target ~ .2 The growth cones and targets act as sources for the 
concentrationn fields located at the positions ra and .s7. The functions Srit : M.2 — R, 
wheree we left out the argument c. can be considered as source profiles for the growth 
conee sources, which translate with rQ. The coefficient afj n can then be interpreted as 
thee excretion strength of growth cone o with respect to chemical 3 and this coefficient 
cann be a function of time and of the fields p\ p\'t. evaluated at rQ. An analogous 
interpretationn holds for Ss% and am\ „ . 

Inn this chapter we want to gain more insight into the dynamics of this mixed 
system.. Although the ultimate goal is to find a suitable numerical method for the 
system,, most of the chapter will be analytical work. Verwer and Sonimeijer [50] used 
thee explicit Runge-Kutta-Chebyshev method and found that the system is highly 
sensitivee in its parameters and source terms with respect to bundling and debundling. 
AA similar conclusion was reported in a second numerical paper by Lastdrager [32]. 
Thereforee we want to gain understanding on the relative importance of parameters, 
thee sensitivity of the dynamics with respect to these parameters and the effects that 
thee choice of used source functions has on the dynamics, where one can think of block, 
conee or even S-functions. 

Hentschell  k. Van Ooyen [21] use in their simulations a quasi-steady-state-approx-
imationn (QSSA) for the parabolic equations so that the system reduces to a system 
off  ODEs. By using QSSA, the parabolic equations become elliptic equations that can 
bee solved explicitly in some cases. The solutions of the elliptic equations then depend 
onn rQ alone and substitution of these solutions in the gradient equations, results in a 
closedd ODE system. We will discuss to what extend QSSA is profitable by examining 
whenn it can be used and what its benefits are. As an example we define a specific 
1-dimensionall  system of the form (2.1)-(2.2). that we can solve analytically by using 
thee QSSA assumption. We will compare this solution to numerical solutions of the 
fulll  system. 

Thee contents is as follows. We will start with some remarks on the mixed parabolic-
gradientt system in Section 2 and the QSSA-approximation in Section 3. In Section 4 
wee will discuss some possible choices for source functions and in Section 5 we will 
examinee an effect that we will call self-interaction. Section 6 is devoted to numerical 
integrationn of the system. Here. also, the QSSA solution is compared to the numerical 
integrationn of the full system. 

Wee wil l regard the targets as "static sources" to which the subscript 's" refers. 
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2.22 Mixed parabolic-gradient systems 
Thee system consists of N(j gradient equations (2.1) and Nr parabolic equations (2.2). 
Forr the domain we will take t > 0 and VI — [0, l ] 2 and we will assume periodic 
boundaryy conditions because the boundary does not play an essential role here and it 
iss convenient from a numerical point of view. Further we need the initial values for rft 

andd p3. The coupling between the gradient and parabolic equations occurs through 
thee source terms 5r i i in the parabolic equations and of course through the gradient 
termss in the gradient equations. 

2.2.11 Gradient equations 

Wee outline some properties of the gradient equations. With the fields p3 as given 
functionss of space and time, equation (2.1) is of the form r = f(r,t). If we use the 
notationn $a = Y^,i^a.3P3- then equation (2.1) becomes 

^(t)^(t)  = \?*n(rQ(t).t). (2.3) 

If,, for all 0, p3 is twice continuously differentiable with respect to space and continu-
ouss with respect to time, V<&Q is Lipschitz continuous and existence and uniqueness 
off  solutions is guaranteed. For a fixed, time independent $a, the stationary points are 
characterizedd by V$>a(x) = 0. For arbitrary solutions r(t) of (2.3), $n(r(t)) is non-
decreasingg in time and therefore, the local maxima of <&Q are stable stationary points 
andd the minima and saddle points are unstable stationary points of equation (2.3). 
Thee field $a is the weighted sum of the fields pi,....p r̂. Hence, ra tends to grow 
inn a direction of increasing p3 with Xa,3 > 0 and decreasing p.3 with Xa,3 < 0. The 
formerr are called fields of attractants whereas the latter are called fields of repellents. 

AA point that deserves some attention is that the extrema of <£>a need not be equal 
too the maxima and minima (for repellent fields) of the separate p3. This means 
thatt if we have a set of targets all contributing to an at tract ant field, then the stable 
stationaryy points of equation (2.1) need not be equal to the locations of the targets. In 
particular,, if two targets are close to each other, there might be one stable stationary 
pointt in between, instead of two stable stationary points near the locations of the 
targets. . 

Thee existence of the gradients in the points (ra(t),t) of the functions <ï>f> will 
bee discussed in Section 2.4. where we examine the use of different kinds of source 
functions. . 

2.2.22 Parameter ranges and the domain 

Thee parameter values are not known exactly, but we will make assumptions on their 
orderss of magnitude. In Table 2.1 some estimated model related quantities are shown. 
Heree r is the growth speed of the growing axon. L t,,nes is the diameter of the growth 
conee and LtHrget is the distance which the axons have to grow across. Further on we 
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Tablee 2.1: Parameter orders 
Parameter r 

D D 
v v 

^ t a r g et t 

Approximatee ordel-

i d 44 m m2 / s 
10"BB -1Ü"4 mm/s 
10~22 mm 
100 ' 1 mm 

wil ll  use a parameter I' that measures the radius of the (circular) support of the source 
functionss Srti. It seems reasonable to use / = L c o n, .s/2. 

Thee parameters K^, rr^ a, <7j ^. and A a. j are not known and can be used for tuning. 
However,, this does not mean that they can be chosen independently. For instance, 
thee growth speed of axon a at a certain point in time and space is a homogenous 
functionn of the parameters Aa.i K*.N,. as well as the parameters a  ̂ 0 and <r̂  0 for 
alll  a. .i and ",. Therefore, if the a\ , and a  ̂ _. are all multiplied by a certain factor, 
thenn the Xa,3 should all be divided by approximately the same factor to keep the 
speedd of the axons in the right range. 

Al ll  parameters and variables wil l be measured in units of mill imeters and seconds. 

2.33 Quasi-steady-stat e approximation 

Wee want to consider the use of a quasi-steady-state approximation instead of the 
parabolicc equations (2.2). as is done in [21], In this approximation, we use in the 
gradientt equations, not the p3 from the parabolic equations, but p3 that are at all 
timess the solutions of the elliptic equations 

DD33ApAp33(x)(x) - K3p3(x) + X > l a S , t ( 0 ( . r ) + £ > l . S , . , ( . r) = 0. (2.4) 
aa = l > = ! 

forr all Ó = 1 Nc. given the values of ra(t). To solve the p3 simultaneously from 
thiss system we have to keep in mind that the a  ̂ a and <7; 7̂ may depend on the p!3 

evaluatedd in the points ra and s-r 

Forr instance, the model that is used by Hentschel and Van Ooyen has three fields 
off  chemicals, namely p\ (at t ractant). p2 (repellent) and p:i (target at t ractant). Chem-
icalss p\ and p2 a r e produced by the moving sources and p.\ by the static sources and 
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theirr system of parabolic equations is 

A'rf f 

dtpi(x.t)dtpi(x.t) =D1Ap1{x,t) -Kipi{x,t) + ^2<riQSrn(t){x). 
aa = l 

JVrf f 

ddtP2tP2(x.t)(x.t) =D2Ap2(x.t) -K2P2(x,t) + J2 4a(P3(ra(t),t))Sro i t ) (x), (2.5) 
a = l l 

Ar.s s 

ddttp-p-AA(xA)(xA) =D3Ap3(x.t) - K3p3{x.t) + J2a3-iS*^xï-
77 = 1 

wheree the erf  Q and a3r) are constants. Its steady state, given the values rQ at time t. 
cann be found by setting dpi/dt = dp2/dt = dp3/dt = 0 and dropping the arguments 
t,t, which results in system (2.4) for this particular case. The solution of system (2.4), 
whichh we denote by (px.pz.fa). is a steady state of system (2.5) with fixed ra and 
whenn the Srn and Sŝ  are smooth functions or ^-functions (in case of point sources) 
thiss state is also globally attracting in the sense that for every set of start functions 
(p\.p(p\.p22*Pz)*Pz) the solution of system (2.5) with fixed rQ tends to (px.p2.p3,) in the Loo-
norm.. This is intuitively clear because of the fact that the first and last equation 
aree independent of the equation for p2. Therefore, px and p3 approach p\ and p3, 
respectively,, so that for t — oc, the equation for p2 gets constant source terms and 
pp22 converges to p2. 

Inn general, the coupling between the equations of system (2.4) by the functions 
<TQ<TQ Q and cr|_7, might give problems with respect to the existence of steady-state 
solutionss as well as the global attraction of such solutions. We will consider a few 
differentt cases illustrating these problems. 

Examplee 1. Concerning the existence of steady-state solutions we look at a simple 
I-dimensionalI-dimensional example system 

ddttpi(x.t)pi(x.t) = d*pi(x,t)-pi(xJ,) + (Ti(pl(ri),p2(r1))6(x-rl), 

ddttpp22(xA)(xA) = djp2(x.t) - p2(x.t) + a2(p2(r2).px(r2))8(x - r2). 

inin which the functions px, p2 are defined on E and the S(-) stand for the Dirac S-
function.function. If both equations are in steady-state the px, p2 have to satisfy 

Pi(^)) = è ^ ( P i ( n ) , ^ ( r i ) ) e -| l - r i 1 , 

fa{x)fa{x) = è<72(P2(r2).pi(r2))e-'T-r2l . 

forfor all x £ R. which follows from the fact that for arbitrary a > 0. 

ti(x)ti(x) =dx dx 22 p(x) - p(x) + aS(x) = 0. Var € 

linii  p{x) — 0. 

http://px.p2.p3
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SubstitutionSubstitution of n and r2 in system (2.7) results in a system of four equations: 

(2.8) ) 
P i (n)) = 5<7i(pi(r-i).p2(r-i)) /5i(r2) = |a i (p i (n ) .p2(n ) )e" 

p2(r2)) = ^2(p2(r2) .p i ( r2) ) p2(n) = \a2{p2{r2). pi{r2))e
 k l r2 

mm /our unknowns Pi{rj),  (i,j — 1,2). 4̂ solution of system (2.8) tm// yzeM a steady-
statestate solution of system (2.6). However, whether a solution of (2.8) exists depends 
onon the functions o\ and a2 and on the values ofr\ andr-2- For instance, ifo~\{x.y) — 
aa22{x,y){x,y) = xyj{{\ — x){\ — y)), then for all choices of n and r2 the only real solution 
ofof system (2.8) is p\{r{)  = pi{r2) = p2(n) = h{T'2) = 0 and therefore the only 
steady-statesteady-state of (2.6) will  be p\ = p2 = 0. Ü 

Evenn if a steady-state solution exists, it can be non-attracting, so that the system 
wil ll  never approach this state. It then doesn't make sense to use the steady-state 
approximationn for solving the gradient equations. An example of such a system is 
describedd next. 

Examplee 2. The system, of equations is given by 

dtpi(x,t)dtpi(x,t) = Dd?p1(x.t)-p1{x.t)+cT1{p2{ri))6{x-r l). 

ddttp2{x,p2{x, t) = Dd\p2{x. t) - p2(x, t) + (T2(pi{r 2))6{x - r2). 

withwith pi.2 defined on [0,1], periodic boundary conditions, D — 0.1, r\ — 0.25, r2 = 0.5 
and and 

UsingUsing the same technique as in Example 1, one can show that system (2.9) has a 
steady-statesteady-state solution. However, numerical experiments show that with the initial con-
ditiondition p\_2 = 0 the system will  approach a periodic motion with a period that is around 
2.2. Some pictures of this are shown in Figure 2.1. Thus, system (2.9) has a steady-
statestate solution which doesn't seem, to be an attractor in the sense that the solution 
isis approached for t —> oc. Therefore, for this system in combination with certain 
gradientgradient equations no quasi-steady-state approximation can be used.

InIn general we can say the following. System (2.4) can be solved if there is a ordering 
off  the fields pj such that the 0% a and <r§0 do not depend on p,j,{rn) and pj^s-). 
forr all a and all 3 < Q{. Solving the system can be done by solving sequentially for 
88 = 1 , . . ., Nc. We call such a system of equations sequentially dependent. Thus, if 
thee system of parabolic equations is sequentially dependent, then there exists a steady 
state.. In addition, this steady-state is a global attractor of the system. 

If,, in a mixed parabolic-gradient system, the parabolic equations are sequentially 
dependentt we can use the quasi-steady-state approximation, i.e.. the solutions pg of 
systemm (2.4) can be used in the gradients equations to give 

dd N' : 

- r Q( t )) = ^A a. .3VA 3M0)< (2-11) 
3=3= 1 
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Figuree 2.1: Periodic motion of system (2.9). pi (—) and p2 ( ). 
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forr a = 1 N(j. The basic idea behind this approximation is that the dynamics of 
thee parabolic equations is much faster than the dynamics of the gradient equations. 
However,, we will see in Section 2.5 that with the parameter ranges given in Section 2.2 
thiss approximation can become very bad in the sense that the growing speeds rn can 
bee significantly different when using the quasi-steady-state approximation. 

Anotherr point is what kind of source functions to use. If point sources are being 
used,, the system of elliptic equations (2.4) can be solved exactly for all arbitrary 
combinationss of rj r\r as is done in [21]. We will examine in the next section 
thee use of point sources and different kinds of source functions. 

2.44 Source functions 

Wee want to consider some aspects of the used source functions Sr(t in the parabolic 
equations.. From a modeling point of view, the use of point sources for making the 
modell  as simple as possible, is appealing. For instance. Hentschel and Van Ooyen [21] 
usee point sources in their simulations of the model. However, as we will show in the 
nextt subsection, using point sources gives difficulties with respect to the smoothness 
andd existence of solutions, especially in 2 and 3 dimensions. The alternative is to use 
sourcee functions that are spread out in the neighborhood of the source position, as is 
discussedd in Subsection 2.4.2. Although extra choices have to be made concerning the 
formm of the source functions, the smoothness and existence of solutions are guaranteed 
inn this case. 

2.4.11 Point sources 

Wee will start with point sources in one dimension, so that we are considering the 
solutionss of equations of the form 

A'rff  A ' s 

ddttpp33(xJ)=D^p^-t)-K,(xJ)=D^p^-t)-K,iippJJ(xJ)(xJ) + Y,^iaH<r-r n(t)) + Y/^l1H-r-s,). (2.12) 
r»» = l - ) - l 

wheree x G 1R. Because this equation is linear, the solution for given functions ra(t) can 
bee found by solving the same equation for the different sources separately, meaning 
thatt we have to solve equations of the form 

ddttp(x.p(x. t) = Dd2
xP(x. t) - KP(X. t) + aö{x - r(t)). (2.13) 

Smoothness s 

Thee solution of equation (2.13) can be written as 
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forr silt > 0 and po(x) = p(x.O). which can be easily found by using Fourier analysis. 
Givenn po E Lp (1 < p < oc), it can be proven that p is Cx at all points (x, t) with 
tt > 0 and j " T̂  r(t). A proof of this for an analogous equation can be found in [19]. 
Att points (r(t).t), p may not be di f ferent iate with respect to x. 

Therefore,, equation (2.12) has solutions of p$ that are smooth, except in points 
(r(r aa(t),t)(t),t) and {s^.t). where the sources are located, as can also be seen in Figure 2.1. 
Forr the analogous equations in two and three dimensions the same holds, as can be 
provenn in exactly the same way as in one dimension. 

Inn the complete 1-dimensional mixed parabolic-gradient system, the functions r(t) 
satisfyy gradient equations (2.1). These equations contain terms Xa.i3dxpp(ra(t),t), so 
thatt there can occur something which we wil l call self-interaction. This occurs if there 
aree a and j3 with ad

3 Q  ̂ 0 and Xn_s / 0. meaning that source a produces p0 and the 
dynamicss of r a is influenced by pp. In other words, there are sources sensing fields 
whichh they help produce themselves. 

I l l -def inedness. . 

I ff  self-interaction occurs with respect to source a and field j3, then the system is not 
well-defined,, because the solution prj(-.t) of equation (2.12) is not differentiable at 
rr aa(t),(t), while the term dxpQ{ra{t),t) is used in the gradient equation for ra(t). 

Inn the 2- and 3-dimensional case the situation is similar. The solution p@ is 
everywheree C°°, except at the location of the point sources a with 073 ,a ^ 0, where it is 
evenn singular. Again, this wil l result in ill-definedness of the problem if self-interaction 
occurs,, in the same way as in the 1-dimensional case. Therefore, if self-interaction 
occurs,, it is impossible to work with point sources. 

Byy defining a generalized gradient V / ( x ) = l i m ^ o C /^ + h) — f(x — h))/(2h), we 
cann solve this problem in the 1-dimensional case, because V'p$ exists at the locations 
off  the sources. Further, if ƒ is smooth at x then V / ( x ) = V/ ( . r ) . However, it seems 
thatt there is not a similar possibility in 2 dimensions due to the fact that the pg are 
singularr at the source locations, which is not the case in 1 dimension. In this case we 
wouldd like to define a generalized gradient by means of 

V / ( r )) = hm -j-T f f(x)(x - r) dx. (2.15) 
ftiOftiO  TthA JBh{r) 

withh Bh{r) — {x £ M.2 \ \x — r\ — h], for which in case of a smooth function ƒ we can 
wTrite e 

V / ( r )) = lim - ! - f ff(r) + V / ( r )  (x - r) + O (h2) )(x - r) dx 
MOO -Kh6 JBh{r) I J 

MOO JBh ( r ) 7r/rU J 

However,, if we try to use our generalized gradient in two dimensions on a moving 
sourcee with a constant speed vector v. yielding equation 

ddttp(x,p(x, t) = DAp(x. t) - Kp(x. t) + ad (x - r(t)). (2.16) 
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withh r(t) — tv + f'o- then for large / the solution approaches 

Thiss can be found be substituting a moving profile solution p(x.,t) = p(x — £v) into 
equationn (2.16). Here, the function A'o is the modified Bessel function of the second 
kind,, for which, for small x. KQ(X) — —'/.; — ln(j,'/2) + O(x). where  is Eider's 
constant.. We then can write for p(x.f) in the neighborhood of r(t) 

P(rP(r + S,t) 

—— l-—v-£ + OE*) > I - i n [e'E V l ' 2 ^rr 2D' — - , , , - . - 4 D Kl +Od€l 

== A! lll(A 2K|) + A3(V  0 lll(^2^|) + o (K|). 

wheree / I j . /I2 and A-s are real constants. If this expression is substituted in the 
definitionn of Vp, then this yields 

- ^^ [ P(r + Z,md{ = A:i\n(A2h)v + O {h°) , 
** hh JBfl(0) 

andd therefore the limit in the definition of the generalized gradient does not exist 
att the location of the source r(t). In three dimensions the same effect occurs and 
againn the analogously defined generalized gradient does not exist at the location of 
thee source. 

Makingg use of some kind of generalized gradient doesn't seem to make it possible to 
combinee self-interaction with point sources in the 2- and 3-dimensional case. Because 
self-interactionn is an important feature of the model, we will disregard the use of point 
sourcess and concentrate in the next section on sources that are spread-out in space. 

2.4.22 Spread-out sources 

Iff  using spread-out sources, certain choices have to be made regarding the form of 
thee source function Sr: Q — R. In general, we will define the function S,-n by 
SSrnrn (x) = S(\x — ra\), where S: R+ —> R. Further we would like to have in most cases 
aa compactly supported source function, meaning that supp(S') = [0. f]  for some I > 0. 
Wee assume also that S is non-increasing, piecewise smooth and j n Sr<i (^)d£ = 1. In 
ann analogous way wre will define Ss_ . 

Thee most simple source function we can think of is the one defined by 

b[x)b[x) = s  C1 — 07. C2 — zr^-
KK } \0. x>t 2( n(' 

Thiss function already shows an important feature of spread-out sources. Namely, the 
sourcee functions Sr<>  defined using the S above, will have discontinuities at points 
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xx € V. with | j- — ra\ =  This can result in higher order1 discontinuities at the same 
pointss in the solutions pp of the parabolic equations. 

E x a m p l ee 3. As an example in one dimension we consider solutions of the equation 

0,p(x.0,p(x. t) = Dd2.p(x. t) - Kp(x, t) + aS{\x - vt\), (2.18) 

onon R. which describes the dynamics of a concentration field p caused by a moving 
sourcesource with location r(t) = vt. One of the solutions is a translating profile p(x.t) = 
p(xp(x — vt), that is shown for t = 0 in the left picture of Figure 2.2. At t = 0. the source 
isis located at the origin and moves to the right with speed v. Here, we 'used v = 0.5. 
DD = 0.1, K = 1 and ( — (J.5. In the middle and right picture of the figure dxp and d2

l:p 
areare shown, respectively. We can see that the second order derivative is discontinuous 
forfor \x\ =L • 

0.4 4 

- 44 -3 - 2 -1 1 22 3 4 

-4-4 -3 -2 -1 1 22 3 4 

8--
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4-- I 

2--

l l 
- 4 - 3 - 2 - 11 1 2 3 4 

JJ N x 

- 6 6 

-S S 

Figuree 2.2: Moving source profile p in one dimension and its derivatives dxp and dj.p 

Inn general, solutions of 

ddttp(x,t)p(x,t) = Ddip(x.t) - Kp(x.t) + f(x.t). (2.19) ) 

withh f(x, t) piecewise smooth and having discontinuities of order fk{t) at points Xk(t). 
aree smooth everywhere, except for the points x^(t). where they have discontinuities 
off order a ( f ) + 2. Therefore we can choose other source functions to guarantee a 
certainn smoothness, some of which are shown Table 2.2. 

'Withh a discontinuity of order r in x we mean that the r t h-order derivative is discontinuous in 
,rr while the (r — l) '1 ' derivative is continuous. By a discontinuity order of oc we mean that all 
derivativess in x are continuous. 
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Tablee 2.2: Source functions and orders of discontinuity. 

S(x) S(x) 

L d i m m 
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1 1 
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Anotherr interesting feature of the moving profile of Example 3 is the fact that 
itss maximum is not attained at the center of the source, although it is very close 
too it: namely, the maximum is attained in supp(5r(f)). which consists of all x with 
\x\x — r{t)\  < L We can prove that this is true for moving profiles in general, by noticing 
thatt we must have for p. with p(x. t) — /5(x — fv). 

DAp(x)) - rep(x) + v • Vp(x) - 0. (2.20) 

forr all x G fi\supp(5o), where A is the closure of an arbitrary set A e Q. If p would 
havee a maximum at x G f]\supp(5o), then Vp(x) = 0 and A/5(x) < 0, because all 
eigenvaluess of the Hessian matrix of p evaluated in x are negative and A/3(x) is the 
summ of these eigenvalues. However, equation (2.20) yields, by /5(x) > 0 and V/3(x) = 0. 
thatt A/5(x) > 0, giving a contradiction. Therefore a maximum of p lies in supp(So) 
andd thus for the maximum of p we have that |x„mj. — r(t)\ < L 

2.55 Self-interaction 

Itt will often occur that the gradient equation of a source contains gradients of one 
off the fields p$ that it produces, which is a property that we called self-interaction 
inn Subsection 2.4.1. In this section we will see that self-interaction has a diminishing 
effectt on the speed of a moving source in case that the self-interaction field is an 
attractantt for the source. If the self-interaction field is a repellent, then the speed of 
thee moving source will be greater. Besides this we will examine how the width of the 
sourcess influences the self-interaction. 

Inn Example 3, in case of block source functions, the gradient of the field p that 
thee source produces, evaluated at the source position, is equal to 
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Thee gradient dxp{vt) is negative (positive), for positive (negative) t\ and is decreasing 
(increasing)) with L as can be proven by noticing that y/v2 + 4DK/(2D) is always 
greaterr than \v\/(2D). This means that for decreasing source width L the source will 
sensee the fields that it produces in an increasing way. For I \ 0 this will result in 

X\mdX\mdxxp(yt)p(yt) = , °V (2.22) 
nono xfX } 2DVV2+4DK 

Too get an idea of how big the influence can be on the time derivatives r in the gradient 
equations,, we consider an example. 

Examplee 4. In this example we consider a moving source (position r) and a static 
sourcesource (position s) on R, secreting a substance p to which the moving source is at-
tracted,tracted, yielding equations 

ddttp(x,p(x, t) = Dd2
xP(x, t) - KP(X. t) + aS(\x - r(t)|) + aS{\x - s\). (2.23) 

f(t)f(t) = \dxP(r(t)J). (2.24) 

WeWe caii write the solution of equation (2.23) as p(x,t) = ps(x) ps(x) + Pr{x,t), where 
ppss and pr satisfy 

00 = Ddxps(x) - Kpa{x) + oS{\x - s\), 

ddttpprr{x,t){x,t) = Ddxpr(x,t) - Kpr(x,t) + aS(\x - r(t)\), 

soso that for equation (2.24) we have 

f(t)f(t) = \dxPs(r(t)) + \dxPr(r(t),t). (2.25) 

InIn a quasi steady-state approximation the term dxpr(r(t),t) will  vanish, however in 
thisthis case it is approximately equal to the expression in equation (2.21), which yields 
afterafter substitution and developing a Taylor series with respect to r, 

f^vf^v + tf + T]r3 + 0 (r4) . (2.26) 

withwith v = Xdxps(r) and 

tt  „  / ^ ( M 2 < 2 + 3 ^ - 3) A 
5 "" \4D*ii e ) ' V~ ( 96 £>V3 >' *~ 

SolvingSolving the approximate equation (2.26) yields then 

-- l -v+j-l-rit  + Oiv*). (2.27) 

ByBy using parameter values D = 1.0 -lO"4. K = 1.0-lO"4, a = 1.0-10-3. £= 1.0-10"2, 
andand A = 1.0 • 10 5 . where we have that 0 < v < 5.0 • l ( r 5 . (1 - O^ 1 ~ 0-57 and 
7/(11 - O" 4 ~ 1-0 • !0G, this results in r « (0.57) • Xdxp!i{r). 
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WithoutWithout self-interaction, as in the, case with QSSA. then r = Xdxps(r). Hence, 
accordingaccording to this estimation, the self-interaction causes a decrease in source speed of 
43%.. It has to be noted that the quality of this estimation depends on the acceleration 
ofof the point source. The used equation (2.21) is valid for constant r (= r) and t —> 
occ and therefore, if v does not change too rapidly, the convergence of the measured 
gradientgradient to equation (2.21) can be faster than the speed with which v changes. D 

2.5.11 Self-interaction in two dimensions 

Wee next want to examine the effect of the width of source functions on the self-
interactionn in two dimensions. For this, we define Sf : R2 —> R. by S'(x) = ^ 5 ( ^|x|). 
withh suppS = [0.1]. so that 

S*(x)dx== / S(x)dx. (2.28) 
Bt(0)Bt(0) JBi(O) 

wheree Bf(Q) — {x <E K2 | |x| < /:}. Again we consider the moving profile for a source 
movingg with a constant speed v. i.e. p(x.t) = p(x - tv). The equation for the field 
iss given by 

ddttp(x,t)p(x,t) = DAp(x,t) -Kp{x,t)+aS({x-tv). (2.29) 

forr which the moving profile will be determined by the equation 

DApDAp + v • V/3 - Kp + aSl = 0. (2.30) 

wheree p and S( are functions of x only. We will solve this equation by using a Green's 
functionn PQ. which is the solution of equation (2.30) with a Dirac distribution S instead 
off the function S(. For these functions we have the expression 

/5G(x)=^1e (- j 4 2V-x )A'0(A3|x|)) (2.31) 

°° 1 V/|VI2 + 4DK 

andd the solution of equation (2.30) is then equal to 

p(x)=J^Pc;(x-S)Sp(x)=J^Pc;(x-S)Sff(0<lt.(0<lt.  (2.33) 

Too consider the self-interaction, we have to calculate Vp(tv.t) = V/3(0). Because of 
thee fact that 5'' has support B((0) and is symmetric at 0. we can write 

V/5(0)== f VpG(0Sf(Z)dS. 
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Thee series expansion of V pc m the neighbourhood of 0 is equal to 

VpG(x)) = - {42i4,f (-4aV-x)tf«, (A3\x\)} v - | j ^ i e < - ^ v - * > A T Ï ( 4 3 | x | ) | x 

== { ^^2 111(^,431x1) - ^ ï ^ C v - x J l n f e ^ ' A - j I x D l v 

( A\A\ , A v • x ] ^ ,, ., 

I xll  lxl J 
soo that we have for Vp(0), 

Vp{0)Vp{0) = AiA2\ f l n ( e ^ + ^ 3 | x | ) 5 ( x ) r f x + ln(^) ) \ + Ö {(). (2.34) 
\JBiiO)\JBiiO) V y / 

Withh this expression of the gradient at the position of the source of a moving profile 
solutionn we can estimate the effect of self-interaction in case of the general mixed 
parabolic-gradientt system (2.1) and (2.2). Selecting a moving source ra and a field 
P0P0 for which we have self-interaction, we split the field p into two parts; one part pr, 
producedd by the source itself, and the other part pe, produced by other sources, giving 
vee = AVpe(r(f)./). Here we dropped the subscripts a and 3 for convenience. Using 
thee first term in the equation (2.34). we can write Vp,(r) « Vp(0) ~ Ai(^)v- F° r 

thee speed of the source we then have by the gradient equation r  ̂ \A${()r + ve , 
yieldingg r » (1 — 1\e. With parameter choices of Example 4 we then get 
rr « (0.76)ve. 

Clearly,, the effect of self-interaction can become infinitely large for small source 
widthss L The source width is therefore a critical parameter of the system. Further, 
thee sign of A determines whether the self-interaction field acts as an attract ant or as 
aa repellent. We have shown an example of an attract ant field. For A < 0. hence a 
repellentt field, the speed of the moving source will be greater instead of smaller. 

2.66 Numerical tests 

Inn the previous sections we found by analytic means some properties of the mixed 
parabolic-gradientt systems. In this section we will do some numerical tests to illustrate 
somee of these findings. For this, we use a simple numerical method, which is first order 
accuratee in time and second order accurate in space and serves for showing the effects 
off self-interaction. 

Wee will concentrate on a 1-dimensional example system (the system from Example 
4).. The system is 

ddttp(x.p(x. t) = Dd2
xp{.r. t) - KP(X, t) + arS(\x - r(t)\) + asS(\x - .s|). (2.35) 

r{t)r{t)  = MxP(r(t).t). (2.36) 

whichh is the most simple system that shows self-interaction. The moving source 
(positionn r{t))  and the static source (position .s) both produce p. and the moving 

file:///JBiiO
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sourcee is growing to higher concentrations of p. Again. supp5 = [O.t].  with S one of 
thee functions from Table 2.2. Further we will assume that the domain is [0.1] and we 
imposee periodic boundary conditions. 

2.6.11 Numerical method 

Forr discretization of the parabolic equation (2.35) we will use the backward-time 
central-spacee scheme, 

kk h2 

-niC-niCll+^rS(\x+^rS(\xmm-r'-r' ii\)+a\)+assS(\xS(\xmm-s\)-s\) (2.37) 

onn an evenly spaced grid 0 = XO..,..XM = 1. with gridsize h in space and step 
sizee k in time. Because of the periodic boundary conditions we can work with vectors 
v"" = (c\> iqI)

T of length M. such that v't\, % p(xm.tn). If we denote Sm(rn) = 
aarrS(\xS(\xmm — rn\) + asS(\xm —s\), such that S(r") £ MA/. then we can write this scheme 
as s 

Av n + 11 = v n + A-S(rn). (2.38) 

wheree A is a periodic tridiagonal matrix. If we denote the projection of the exact 
solutionn p(x, t) on the grid by p(t), then substitution of this solution into (2.38) yields 

Ap(tAp(tn+1n+1)) = p(tn) + kS(r(tn)) + kO(k + h2) , (2.39) 

andd therefore the discretization is first order consistent in time and second order 
consistentt in space. Further, this scheme is unconditionally stable [46] for a given 
functionn r(t). 

Thee path r(t) of the moving source will be approximated at discrete time points tn 

(r™™ % r(tri)). For the discretization of the gradient equation (2.36). we need to 
approximatee the gradient at r". which is not necessarily a grid point xm. For this, we 
needd a numerical gradient function Pv : ^-A1 x [0-1] —>• M. such that if an arbitrary, 
smoothh function ƒ: [0,1] —• K is projected on the grid x £ M.AI, yielding f G RA/. then 
Pv(f - r )) ~ dsf{r)- Then we use forward Euler to calculate r"+ 1 from r". giving 

rrnn + i =rn + kXpv(v
n. rn). (2.4Ü) 

Iff we assume that Pv(f\r) = dxf(r) + O (hp) for arbitrary, smooth ƒ. then we can 
substitutee the exact solution r(t) into (2.40) to obtain 

r(*n+1)) = r(tn) + k\Pv(p(tn). r(tn)) + kO (k + hp). (2.41) 

makingg scheme (2.40) first order accurate in time and pth-order accurate in space. 
Ourr time stepping process now consists of two stages: equation (2.38) together 

withh equation (2.40). But we still need to define the numerical gradient function Py. 
Thee most straightforward way to define a numerical gradient function is to define 

iV(f.*i++ 0/0 = £(ƒ,- + ! - / i ) . (2.42) ) 
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Figuree 2.3: Solution of system (2.35)-(2.36) at times t = 300, 900: 2100. 3000. 
Sourcess (•••), ps (— • —) and p (—). 

withh the unique 9 G [0.1) and Xj such that r = Xi + Oh. which gives P v ( f . r ) = 
dxf(r)dxf(r) + O (h), for arbitrary, smooth functions ƒ. However, it is easy to build higher 
orderr gradient functions by using more grid points. For example. 

Pv(f•• Xi + eh) = ^ ( - ƒ,_! + 3/ , - 3 / ( + 1 + f,+2)d
2 

++  (ƒ,_! - 2U + fi+1)6 +l(-  2/i_i - 3fi + 6fl+1 - fi+1)y (2.43) 

forr which Py(f , r ) = dxf(r) + Ö (h3) for arbitrary, smooth functions ƒ, which is the 
highestt order numerical gradient function possible using four grid points. We now 
willl show some results of an example calculation using equations (2.38), (2.40) and 
(2.43). . 

Examplee 5. We use the parameter values D = 1.0-10 4 . n = 1.0T0~4. o = 3.0T0 - 3 . 
AA = 1.0-10-4 and the cone-like source functions with £ — 0.1. Further we take s = 3/4 
andand as initial values r(0) = 1/3 and p{x. 0) = 0. for all x G [0.1] and we will  integrate 
toto t = 3000. For a calculation with 2000 grid points, both in the x and t-direction 
(h(h — 0.5 • 10_,i and k — 1.5,). the results are shown in Figure 2.3. These grid sizes 
areare sufficiently small to approximate exact solutions up to plotting accuracy. 
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ItIt  can be seen that the source at position r(t) moves toward the source at position s. 
TheThe dash-dotted line shows a p-field that is produced solely by the source at s, which 
wewe called ps in Example 4- This field isn't used in the calculation, but is shown for 
illustrationillustration purposes. The solid line shows the p-field that is used in the calculation. 
ItIt  is the sum of the two fields excreted by the sources. The dotted line displays the 
scaledscaled source profile functions. They are scaled down by a factor 20 to make them 
nicelynicely fit into the picture. 

InIn Section 2.5 we made an estimation of the diminishing effect on the moving 
speedspeed of a source in case of block source functions and for p defined on the whole ofM.. 
ForFor our example case, where we have cone source functions and the domain is [0,1] 
withwith periodic boundary conditions, we can do a similar calculation. We then get for 
££ in equation (2.27), 

Aaa (1 - /:) sinh(/ji) - ^sinh(//(l - ()) 
^  ̂ ~ AD2p i{ev - l)(e-v - 1) ' 

WithWith our choices of parameters, we have £ = —0.511 and equation (2.27) gives r « 
(0.G6)) • Xdxps(r). In the left, graph of Figure 2.4 the gradients Oxps(r(t)) (dash-dotted 
line)line) and dxp(r(t),t) (solid line) are shown. Clearly, Oxp(r(t).t) is much smaller 
thanthan dxpi,(r(t)) due to the self-interaction. According to our estimation we should 
havehave dxp(r(t).t)/dxp9(r(t)) m 0.66. This ratio is depicted in the right graph. We see 
thatthat the ratio is a little less than the estimation we made. 

TwoTwo things might explain this. First, the estimation is based on a moving profile 
solutionsolution m,oving with constant speed r. The fact that r is not constant, but increasing, 
mightmight give some differences. Second, from the gradient of the moving profile solution 
wewe only take the first order term in r in our estimation. For higher speeds, higher 
orderorder terms can come into play and they then have to be accounted for. 

WeWe see that the self-interaction causes a decrease of about 30% — 40% in moving 
speedspeed of the source here. If QSSA is used the self-interaction is automatically neglected, 
becausebecause concentration fields in steady-state do have a vanishing gradient at the location 
ofof the source. Therefore, sources seem to move faster than they really do with QSSA 
inin this particular problem. In Figure 2.5 the QSSA solution for r(t) (dash-dotted) 
isis shown next to the full integration solution of r(t) just calculated. Clearly, in the 
QSSAQSSA solution the moving source reaches the static source too early. 

UsingUsing QSSA. we turned the parabolic equation into an elliptic equation by putting 
dtpdtp — 0. This equation can be solved analytically and its solution, which depends 
onon r(t) can be used in the gradient equation, resulting in an autonomous ODE. We 
solvedsolved this equation numerically using the classical Runge-Kutta Ath-order integration 
scheme.scheme. • 

2.77 Conclusions 

Inn this chapter we examined a mixed parabolic-gradient system, which is a prototype 
forr such systems arising in neurobiology, where they act as a model for the axonal 
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Figuree 2.4: (Left) dxp(r(t)J) (—) and dxps{r{t))  ( ) against time. (Right) Ratio 
off the gradients against time. 
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Figuree 2.5: Location of the moving source against time computed with QSSA (• 
andd with numerical integration of the full parabolic-gradient system (—). 
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growthh out of neurons. The long term goal is to develop efficient numerical methods 
forr solving such equation systems. Here, we tried to get a better understanding of the 
equationss by analytical and numerical means. 

Wee found that, with the parameters in the estimated ranges, putting the parabolic 
equationss in steady-state gives very different results. Although some reasons to jus-
tifyy the quasi-steady-state approximation exist, see [21]. this approximation can give 
movingg speeds of the sources that are significantly wrong in case self-interaction oc
curs. . 

AA way to estimate the self-interact ion effect is found and by using this, it should be 
possiblee to give an indication of the quality of the quasi-steady-state approximation in 
particularr cases. In addition, we found as a rule of thumb that decreasing the source 
widthh will give a greater self-interaction effect. In one dimension this effect seems to 
bee bounded for decreasing source widths, but in two and three dimensions this effect 
cann become unbounded, resulting in source speeds approaching zero or becoming very 
large. . 

Thiss brings us to the use of point sources. With point sources the solutions of the 
parabolicc equations are smooth everywhere except for the locations of the sources. 
Iff self-interaction occurs, gradients have to be taken at these locations, making the 
combinationn of self-interaction and point sources impossible. In one dimension we 
cann work around this by redefining the gradients, but in two and three dimensions 
thiss seems not to be possible. As an alternative, sources that are spread out in space 
cann be used, but then care has to be taken on the smoothness of solutions of the 
concentrationn fields. 

Inn doing the numerical tests we found that the number of grid points needed to 
reachh good accuracy is very high, even for the simple problem we used. In future 
researchh we will focus on this aspect and search for better ways to discretize these 
equations. . 

Otherr points of interest are how the model can be extended to make it more real
istic.. For instance, the model relates certain mechanisms (e.g. sensing gradients) to 
globall behaviour (e.g. bundling). However, the dynamics can be such that at a cer
tainn moment of time the mechanisms are not. realistic anymore and other mechanisms 
shouldd take over. 
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Chapterr 3 

Domainn definition with Bézier 
curves s 

Inn this chapter we will consider the selection of node's on the boundaries of the domains 
off the PDEs. where the boundaries are given as a combination of Bézier curves. Such 
aa selection is needed for the spatial discretization. We will start with the definition 
off Bézier curves and Bézier paths and discuss some of their properties. 

3.11 Bézier curves and paths 

Givenn n +  1 control points p , G IR2. /' — 0 ti. a Bézier curve C: [0.1] —• R2 of 
degreee // is defined by 

C ( 00 = ^ Z ? „ , - ( 0 P ; . with fl,u(f) = ("X'il-t)"- 1. (3.1) 
// = () ^ / 

forr t G [0.1]. see [3]. If // = 1 this results in a straight line between the points po 
andd p ] . In general c is a curve which has as its end points p 0 and p„ and is entirely 
containedd in the convex hull of the set of control points p 0 p n . see [3]. The first 
andd second order derivative of a Bézier curve c are given by 

n-l n-l 

cc,,(t)(t) = Yg»Br,-iAn(Pi+i-Pi)- (3-2) 

n-2 n-2 

c"(t)c"(t) = Y, " ( " ~ VBn-l.i(t)(pl+2 ~ 2 p ? + , + p , ) . (3.3) 

Fromm this follows that , given the end points p 0 and p n . the derivatives at these end 
pointss are determined by fixing the points p i and p „ _ i . because c'(0) = n(pi — p(J) 

27 7 
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andd c'(l) — n{pn - p „ - i ) . Similarly, given these four points that specify the end 
pointss and derivatives at the end points, fixing the points p 2 and p„_2 determines 
thee second order derivatives at the end points. 

Forr the definition of the domains we work with a set of Bézier curves that together 
formm a closed continuous path. Such a path we will refer to as a "closed Bézier path". 
Itt is C30 at its Bézier curves, but might be not even C1 at its connection points. 
InIn the following we will write such Bézier paths as a single function -.: Ij  —> R2. 
wheree IT — [0. T). and -> restricted to subintervals of unit length -;• |[,-.,-+i) for integers i 
representt the independent Bézier curves. 

Givenn a closed Bézier path, we will assign nodes to it that are being used for 
thee discretization of the PDEs of which the path specifies a part of the domain's 
boundary.. Such a distribution of nodes along the path will depend, as we will see in 
Sectionn 3.2. on the arc-length |c'(/)| and the curvature H. see [45]. defined by 

\c'\c' x c"\ 
K = J ^ f i .. (3.4) 

Here,, v x w = det[v|w] for some arbitrary vectors v .w G R2. To get node dis
tributionss that behave well in the sense that the distances along the nodes change 
gradually,, we will require that the arc-length and curvature are continuous along the 
path.. Using (3.2) and (3.3) we see that this can be accomplished by letting control 
pointss p, and q̂  of two consecutive Bézier curves (of the same degree 77) obey the 
followingg equations 

p„„ - p n_i = q! - q0 ((^-continuity). 

p„„ - 2pn_i + pn_2 = q2 - 2qi + q0 (C2-continuity). 

att the connection point p„ = q0. resulting in a path that is C2 . 
Inn the left picture of Figure 3.1 a closed Bézier path is displayed that consists 

off three Bézier curves of degree 4. i.e., they all have 5 control points. The rest 
off this chapter will be devoted to the assignment of nodes to such Bézier paths or 
combinationss thereof, as is shown in the right picture of Figure 3.1. Such a distribution 
off nodes should represent the (combination of) curve(s) as closely as possible and 
shouldd therefore use relatively many nodes where the curves turn and twist most. 

3.22 Node choosing on curves 

Considerr a curve ~ which is given by a certain parametrization ->: Ij  — [0. T] — E2 . 
Thee path-length s as a function of t is defined by ,s = F(t) with F : IT —> Is = [0-L] 
and d 

ss = F(t)= I \l'(r)\dr.  (3.5) 
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Figuree 3.1: (Left) Domain consisting of three coupled bezier curves of degree 4. The 
blackk dots are the control points (5 for every curve) that specify the curves. (Right) A 
selectionn of nodes on the domain boundary that can be used for discretization. 

wheree 7 ' refers to the derivative j[ï(t).  Here, the curve's total length L is given by 
LL = F(T). The parametrizat ion based on the path length is often called the "natural 
parametrization'' of the curve, sec [45]. and is given by 

77 = 7 o F Is Is 

Inn addition we will define a transformation of the path-length parameter s, denoted 
byy G: Is —> I = [0.1]. tha t defines the node distribution along the curve. To this 
endd we will assume tha t there is a monitor function M: Is —> M+ U {0} that yields a 
relativee node densitv along the curve. Using M the transformation G we define then 

ƒ„„  M(0# 
(3.6) ) 

Inn the left picture of Figure 3.3 a possible monitor function M is shown for the Bézier 
pathh of Figure 3.1. The right picture shows the accompanying transformation G. 
Choosingg a suitable monitor function for a given path will be the subject of Section 3.3. 

Givenn a monitor function, which has as its domain Is, we can also define a repara-
metrizationn based on the original domain IT of 7 by 

MM = M o F: I T T U{0}. . 

Itt is often the case that we have, instead of function M. the function M available in 
explicitt form, making that we can use M only in the form . l / o f - 1 . Figure 3.2 shows 
aa schematic overview of the function we defined so far. 

Usingg this setting, we will choose a uniform grid in the unit interval / . which 
wee denote by {.;,}. with z, = i/N for i = 0 A*. The grid then defines a node 
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Figuree 3.2: Schematic overview of the used functions. 

by y 
cii = ( 7 o G - 1 ) ( 4 (3.7) ) 

forr all ?. = 1 iV. The right picture of Figure 3.3 shows how the transformation G 
determiness the nock; distribution. The uniform grid {z,} in the unit interval I is 
mappedd by G _ 1 onto a nonuniform grid {.s,-} in [0, L], which in turn is mapped by -) 
too the nodes in K2, as shown in the right picture of Figure 3.1. 

0.02 2 

0.015 5 

0.01 1 

0.005 5 

Figuree 3.3: (Left) The monitor function M(s). (Right) The transformation G(s) 
togetherr with the grids {z,} and {s,}. 

Usingg -; and M The definition of the node set in equation (3.7) uses the functions 
77 and G. Because often we have been given the curve and an appropriate monitor 
functionn not in terms of the natural parametrization -) and M, but in the form -) 
andd M, we will define the transformation G = G o F and express it in 7 and M. For 
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thee integrals in (3.6) we have 

// M(S)dS= / (MoF-])(Od^^=T)) / M(r)F\r)dr 
JoJo Jo Jo 

== / M(T)\-/(T)\ dr. 

Jo Jo 

resultingg for G in the expression 

 , ~, 

Joo ^ ( r ) h' (r)l dr 

Givenn the parametrization -S and the monitor M the nodes can now be determined 
by y 

x,, = h o G ' - ' j U ) = h . o F o F " 1 oG-^izi) = (-,oG-l){zi). (3.9) 

Becausee the integrals in (3.8) can not be calculated analytically, we need for de
terminationn of the nodes numerical procedures for integral evaluation and function 
inversion. . 

3.33 Choosing the monitor function M 

Wee will now focus on choosing a suitable monitor function for a given 7. A possible 
choicee for the monitor function could be to set 

M(s)M(s) - 1 = > z = G(s) = s/L (3.10) 

orr any other constant, all resulting in the same transformation G. Given a uniform 
nodee distribution in I this will result in a uniform node distribution in Is. Therefore 
thee resulting transformation only takes into account the distance between the nodes 
alongg the curve, making them all equal. In the left picture of Figure 3.4 a node 
distributionn is shown that is the result of this monitor. 

Ass a curve may be more or less straight at some regions, whereas it twists and 
turnss elsewhere, it might be preferable to have relatively more nodes in these latter 
regions.. Consider the more advanced curvature monitor function 

M(S)M(S) = K(S) = • z = G(s) = hH{2di- (3-11) 

AA resulting node distribution is displayed in the right picture of Figure 3.4. There 
aree two main reasons why also this one is not such a good monitor function: 

•• In situations where part of the curve consists of straight lines the curvature H 
vanishes.. This leads to G being constant at the corresponding parameter ranges, 
whilee G should be a globally invertible function. 
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Figuree 3.4: (Left) Node distribution according to the arc-length monitor (3.10). 
(Right)) Node distribution according to the curvature monitor (3.1 1). 

•• The curvature monitor tends to assign too few nodes to the relatively straight 
partss of the curve, and too many to the more curving parts. This leads to rather 
abruptt changes in node distances, which in turn can result in ill-conditioned 
matricess when being used for discretization. 

Itt seems favourable to have a combination of the two methods, where the curvature 
iss used to select the parts of the curve where relatively many nodes are needed, while 
att the other hand we have some mechanism smearing out nodes over the relatively 
straightt parts. 

Inn general, we might assume tha t the monitor function M is a convex combination 
off a set of normalized monitor functions Mi, 

Mi Mi 
M M 

fofo W 
Wltl l 2>=1. . (3.12) ) 

Eachh weight ci, represents the relative contribution of the monitor i to the total 
monitorr M. For the total transformation G this results in 

''  ' 1/ . - I \i ^ ^ 

(3.13) ) 
/n''  E• aAMii  /;, Mi) ^ r; M, ^ 

SoEi^Mi/SoMj) SoEi^Mi/SoMj) Joo Mi 

Applyingg this technique and taking a combination of the curvature monitor and 
thee arc-length monitor gives 

G(s)G(s) = (1 jr>(0_g g s s 

whichh with respect to the original parameter space 11 has the form 

== (GoF)(t) = ( l - a H 
^  ̂ k(T)W(T)\dr 

drdr jlW{r)\di 
rTrT  ,~ 
/oo | 7 ' ( T ) | dr 

(3.14) ) 

(3.15) ) 
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Thee node distribution in the right picture of Figure 3.1 is the result of this monitor 
functionn with Q = 0.5. 

3.44 Number of nodes based on maximal distances 

Inn the previous sections a method is used that translates a uniform grid on the unit 
intervall in a set of nodes along the boundaries. In this section we will consider a 
criteriumm for choosing the total number of nodes. N, being used for representing 
thee boundary. It is based on the arc-length and. essentially, it specifies a maximal 
distancee (As)max along the boundary between two consecutive nodes. 

Lett us assume that we work with a monitor function that is a convex combination 
off monitors, as in (3.12). for which the first monitor equals the arc-length moni
torr (3.10). To achieve that the maximal distance between two consecutive nodes is 
boundedd by (As)„mx. we can choose for the number of nodes 

N=N= rZ./(oi(A.s)max)"|. (3-16) 

whichh is the smallest integer greater or equal than L/(c*i(As)niax). 
Thatt this will result in a node set of which every node distance is bounded 

byy (As)max , can be seen as follows. Writing transformation (3.13) as 

zz = G{s) = <*ij+Yl  ajGjis), (3.17) 

wee see that for two consecutive nodes, denoted by zt and 2^+1, we have 

a mm ~ * = Qi Si+1~ St + X>i(C?i(*'-+i) - GjM). (3.18) 

Becausee the functions Gj are increasing, this gives for the distance (.s;+i — si) along 
thee boundary between the two consecutive nodes 

{si+i{si+i  - Si) < — {zl+l  - Zi) < N{As)max  N-1 = (As)max , (3.19) 

becausee L/a\ < N(As)m,AX and Z{+\ — Z{ = N~x. 

3.55 Combining multiple curves 

Inn Section 3.3 we considered the combination of different monitor functions. Here. 
wee will consider the combination of different curves, each curve coming with its own 
monitorr function. We want to use the same methodology to distribute a number of 
nodess on this set of curves, where we have to take into account the following issues. 
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•• The distances between the nodes should be comparable for all the curves. Hav
ingg a domain with a number of holes, we would like to have the nodes distributed 
onn the hole boundaries in a similar fashion as on the outer boundary. 

•• If a curve has a point where the curve does not have a continuous derivative. 
likee a sharp angle, we would like to be able to force a node on this point. This 
cann be accomplished by splitting the curve at the point, resulting in two curves. 
Whenn doing this, one still wants the nodes to be distributed in a similar fashion 
onn both sides of the point. 

Too incorporate both issues we will use the approach of splitting the path at points 
wheree they are not C1 and glueing all resulting parametrizat ions together, while 
keepingg track of the connection points. 

Lett us assume tha t after such a splitting step, we have for j — 1 . . . . ,n, at our 
disposall natural parametrizations 7j : Ps —• U2, monitor functions Mj\ l{  —> R + U 
{0}} and corresponding transformations Gj : Ps —> I. Then we define the overall 
parametrizat ionn by 

j(s) j(s) 

( 7 i ( s ) ,, 0<s<s{, 

7 n ( « - S * - i ) ,, < - l <8 < < . 

(3.20) ) 

andd the overall monitor M similarly. Here, the s* denote the connections points along 
thee curve, given by s\ — L\, s\ — L\ + L2, • . . , s*r — ]Cj=i Lj- Using these overall 7. 
MM and G, results in a single-curve problem instead of the multi-curve problem that 
wee s tar ted with. 

However,, there is a significant difference with the single-curve problems used in 
Sectionn 3.2. The nodes should be chosen such that the corresponding grid {s,} 
containss the set of connection points  Using the technique from Section 3.2, 
onee would choose a uniform grid {zi} in the unit interval / . which is mapped on 
{.Sj}} = G~1({z{}). The resulting grid {st} will then in general not obey this require
ment.. To solve the problem we do not start with a uniform grid in I. but with a grid 
thatt contains the nodes z* = G(s*). for all j — 1 , . . . , n, and is as close as possible to 
aa uniform grid. In the next section we will examine the construction of such needed 
semi-uniformm grids {^j}-

Inn the left picture of Figure 3.5 we see an example of a domain with holes and a 
boundaryy that is not Cl. At the right the total transformation is shown. It consists 
off four parts , which are separated by the horizontal and vertical lines. The first two 
par tss represent the outer boundary and the latter two represent the two holes. The 
nodess on the vertical axis represent the 'almost ' uniform grid {zt} which is mapped 
onn the non-uniform grid {s,}. 
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Figuree 3.5: (Left) Node set selection for a domain with two holes and outer boundary 
thatt is not C 1 . (Right) Used transformation G with grids {.:,} and {s;}. 

3.66 Semi-uniform grids 

Inn this section we consider two approaches for finding the semi-uniform grids in I. 
onee using maximal distances between the nodes and another using fixed number of 
nodes. . 

Max ima ll  d i s tance pr inc ip l e If we want to base the node choice on the maxi
mall distance principle of Section 3.4. we can treat every part of the transformation 
separately,, assigning 

L L 
N< N< 

W A s ) ) 
;3.21) ) 

nodess to it. Here. (»i is again the scalar multiplying the arc-length monitor in the 
convexx combination of monitors. L is the total length Xl, = i Lj of the curve and Ay = 
z*z* —Zj_lt where we set c(* = 0. The the A ; can be expressed in the monitor functions 
giving g 

*i*i = ff00
LLM(Z)d(;M(Z)d(; ' tfM{Z)dt ' 

(3.22) ) 

Fixedd number  of nodes Given that we want to distribute iV nodes over the 
boundary,, we have to find n integers Nj, with N = X!,'=i ^j- s u ch that 

N< N< 
AA  • A • — 7* — y* (3.23) ) 
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Too formulate this more precisely we consider the problem of finding the Nj E N that 

Y^Y  ̂ / ( -rf ~ A J ) • w i t h constraint: ^ XJ =  N- (3-24) minimize e 
J = I I 

where e 

•• ƒ: M+ U {0} —> W is a monotonically increasing, convex function. 
•• Aj G (0.1]. with £ J = 1 Aj = 1 and Ar G N. 

Accordingg to Theorem 1 below, the solution must have Nj € {[Aj.V-]. |_AjArJ}. so 
that,, for small numbers n we can consider all 2" possibilities, {[.r] is the smallest 
integerr greater than or equal to ;r and [-''J is the largest integer smaller than or equal 
too .r.) This would be the case when we have for example a C1 outer boundary with a 
smalll number of holes with C1 boundaries, giving that n equals the number of holes 
pluss one. On the other hand, for boundaries with a lot of C1-discontinuities, like 
complexx polygonal domains, this approach could become unfeasible. 

Thee semi-uniform grid {z,} in Figure 3.5 is based on a fixed number of nodes and 
thee minimization problem above. It contains the nodes z\ = 0.1097, z  ̂ = z\ +0.3886, 
z33 = z2 + 0-2658 and Z4 = Z3 + 0.2359 = 1. In total it has 50 nodes, distributed over 
thee four parts with node numbers 6. 19. 13 and 12. respectively, in each part giving a 
uniformm distribution, with node distances equal to 0.0183, 0.0205. 0.0204 and 0.0194, 
respectively.. The node numbers are calculated using a function f(x) — \x\ in the 
minimizationn problem. The function G is (3.14) with 0 = 0.7. 

Wee will end this chapter with a theorem on the minimization problem (3.24). 

Theoremm 1. If {Nj}  is a solution of the minimization problem (3.24). then for 
everyevery j , Nj e {\AjN].[AjN\}. 

Proof.. We consider an equivalent minimization problem. Find disjoint index sets 
22 . IQ. I+. with T_ U To U J+ = {1 11}, and sets of numbers and n3 G N U {0}. 
that t 

"" • I Z-, eJ + nj= z2 ej+ nj • 
minimizee V , f ( (J y"J ) • w ' T n constraints: < jei- jei  ̂ (3.25) 

i=li=l  l " j = 0 - for all . ; 'GX 0 -

where e 

[Aj iV-IAj iVJ .. J G I _ . 

^ = < o ,, j e i o . 

II [AjJVl - AjiV. j e l + . 

Thee twro minimization problems are equivalent with respect to the map 

( T _ . j 0 . r + . ( i , j ) ) - ( A y y 'Vjj = 

[AjN-f-j-nj. [AjN-f-j-nj. 

AjN. AjN. 

[AjN[AjN + fj + Tij. 

jel-jel-
j £ l o . . 

i e l + + 
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whichh is bijective if we take the constraints into account. 
Wee will prove the theorem by showing that for the minimizer of the latter problem 

alll rij  = 0. In the following the term 'cost function' refers to the function to be 
minimized.. To proceed let us consider some choice of (Z_,Zo,Z+, (rij)),  with for some 
off the i. rij  > 0. We will search for choices that have a smaller cost function value. 

Iff we have j 6 l _ . with nj > 1 and k G Z+ with n*. > 1, then we can substract 1 
fromm both rij  and n^. The change in cost function will be 

fC-^hfC-^h 11)) + K'-*^)  - ( / ( ^ ) + /(*#*)) < o. 
whilee the constraint in (3.25) continues to be satisfied. This we can repeat several 
timess until for one of the index sets all n3 = 0. Let us assume that this index set 
iss Z_. We can then continu in the following way. 

Selectt arbitrary i G Z_ (has n3 = 0) and j G Z+ with n*. > 1. we can substract 1 
fromm nk and move j from Z_ to Z+ , while replacing' e3 with 1 — e3•. The change in the 
costt function will be 

ƒ ( * )) + fC-*^)  - (/(ft) + /(*#*)) 
<<  ƒ ( T ^ ) + / ( ' • + " ' ^ i 1 ' 2 " 1 ) ^ (m) + /('-*$*))  (/ increasing) 
<<  ( r / m a x ( l - t j ; e j ) \ _ w m a x ( l - € j .ej ) _ |1—2gj| \ A _ ( n I ek+nh. \ _ rUk+nk _ \l-2tj\\\ 

<< 0 (ƒ convex) 

Thiss process can be repeated until all n3 — 0. For if there is only one element left 
inn J_, all rtj  = 0 because of the constraint. We now have constructed a new choice 
off (Z_.Zo,Z+. {rij)),  with a cost function value that is lower than the cost function 
valuee of the original choice. 

Iff after the first step the index set with all n3 = 0 is Z+ instead of Z_. we can 
interchangee the roles of both index sets in the second step, arriving also at a state for 
whichh all n3 vanish. D 
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Chapterr 4 

Spatiall discretization of the 
fieldd equations 

4.11 Introduction 

Inn the present chapter a meshfree method is presented for solving time-discrete diffu
sionn equations. This method is meant to be used for the simulation of certain models 
usedd in brain research. Such models describe mechanisms behind the development of 
thee nervous system and in particular the formation of the connections between the 
nervee cells [21]. The resulting equations are constituted by two systems. One of the 
systemss is a set of diffusion equations for certain chemicals {attractants and repel
lents)) that is coupled to the other system which consists of nonlinear ODEs describing 
thee growth of the connection forming structure's, i.e.. axons. The diffusion equations 
containn moving sources which are small compared to the domain and their strength 
andd movement may depend on the solution of the ODEs. The nonlinear ODEs de
pendd on the solutions of the diffusion equations, and gradients thereof, evaluated 
alongg solution paths in the space domain. 

Forr the sake of clarity, we consider an example consisting of one diffusion equation 
andd one ODE ([28]. Chapter 2). 

^ - / , (x .. t) = (<IA - K)p(x.t) + 5 (x - r„) + S(x - r(f)) . 
at at 

^r(t)^r(t) = Vp(r(t).t). 
(It (It 

wheree p is some concentration. S is a source1 profile with compact support , and ro 
andd r(7) are two source locations of which r(7) moves in the direction of higher con
centrationss of p. A first-order discretization in time of this model, where the ODE is 

39 9 
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handledd explicitly and the diffusion equation implicitly, is 

( ll - St{dA - K)) /> ' ! + 1 (X) = p"(x) + <ft(<>'(x - r0J + S(x - rn+l)). 

rnn + i = r « + d - ^ V p " ( r " ) V 

wheree the superscripts n and n -f 1 denote different time levels and öt is the size of a 
timee step. Clearly, we have to solve in every time step an elliptic equation and this 
stepp will comprise the majority of the work. Time discretizations of Runge-Kutta 
typee will require the calculation of several of such equations per time step. 

Thiss chapter is focused on the numerical solution of these elliptic equations. The 
combinedd challenges of small, moving sources and flexible domain geometry suggests 
thee use of a meshfree approach. The basic idea behind meshfree methods is to work 
withh an arbitrary set of nodes instead of a grid. While this makes it easy to handle 
refinementt and flexible domain geometries, function approximation and solvability of 
resultingg systems become more complicated. 

Inn most meshfree methods solving elliptic equations starts with the definition of 
ann approximation space in which a best approximation of the solution is sought. This 
spacee is defined by selecting a set of basis functions, which in all cases forms a partition 
off unity to guarantee at least first-order approximation. While in finite element 
methodss the basis functions are chosen with respect to a partition of the domain, 
meshfreee methods form a basis by assigning functions with compact supports to each 
nodee of an arbitrary node set. Here the function's supports have to cover the whole 
domain,, while the overlap has to be minimal so that the resulting linear equation 
systemss become as sparse as possible. More on meshfree methods can be found in the 
overvieww articles [4, 12, 33]. 

Inn the method developed in this chapter the approximation space is not defined 
throughh a set of basis functions but as the image of a linear map. This map assigns 
too every combination of function values on the nodes a piecewise smooth function on 
thee domain by using a least squares approximation locally. In this way the function 
valuess on the nodes parametrize the approximation space that will be used in a 
Galerkinn procedure. Because the approximating functions are piecewise multinomials 
thee integrals in the resulting matrices can be evaluated exactly. This is in contrast to 
methodss like DEM [36] and EFG [5] or variants thereof, where a quadrature rule is 
neededd because of the use of moving least squares interpolants. 

AA Voronoi diagram [7. 11] based on the nodes is used for finding neighboring 
nodess and for glueing local approximations together to form a global approximation. 
Somee other meshfree methods that use Voronoi diagrams (or the related Delaunay 
triangulations)) are the Natural Element Method [47] and the Meshless Finite Element 
Methodd [27]. Both methods, however, use an approximation space constructed by 
choosingg a set of basis functions. 

Forr the construction of suitable node sets different techniques are available, see for 
examplee [34. 6]. Here an algorithm is presented that makes use of Voronoi diagrams 
andd shifting nodes to 'regularize" node sets. 
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Thee contents of the chapter is as follows. We start in Section 4.2 with meshfree 
functionn approxiination based on a local least squares approximation. This is followed 
byy a description of the discretization of the equation in Section 4.3. In Section 4.4 
moree practical considerations concerning the computat ion of the discretization are 
discussed.. A way for dealing with different domains and refinement in a meshfree 
contextt is examined in Section 4.5. followed by Section 4.6 with a numerical test 
example.. Finally. Section 4.7 summarizes the chapter. 

4.22 Meshfree function approximation 

Thiss section deals with the meshfree function approximation used in the discretization 
off the equation. We wall start with a description of local least squares approximation, 
examinee its convergence and use it for a global approximation. 

4.2.11 Local least squares approximation 

Givenn a function ƒ : R2 —» M. and some node set {x() + //Xi x 0 + hxn}. we want 
too approximate the function in the disc with center x 0 and radius h > 0. using the 
valuess {/(x0 + hxi) f(x0 + hxn)}. We choose the approximant to be a linear 
combinationn of multinomials which are maximal of second order, i.e.. 

pphh(x)(x) = a - b ( x ) with b (x) = (1 x y x2 xy y2)T. (4.1) 

wheree x — (x, y) and a € Rb is determined by minimizing 

Y,Y, | / ( x 0 + hxi) - ,/'{x0 + hxi)\2 . (4.2) 

Fromm now on we will assume that x 0 = 0. A particular choice of x 0 will not influ
encee any approximation properties, because a translation in the domain of the least 
squaress problem can be viewed as a linear change of basis functions, meaning that 
thee approximation is in the same function space. 

Iff we define 

B{h)B{h) = b(/iX] 

7(/»x x 
b( / jxH )JJ and ¥{h) = 

substitutionn of (4.1) into (4.2). will result in 

aaTT{D(h)B(h){D(h)B(h)TT)a)a - 2aTB(h)F(h) + F(h)TF(h). (4.3) 

whichh has to be1 minimized over a. The 6 x 6 matrix B{h)B(h)1 is positive semi-
definitee and positive definite if det (B(h)B(h)1) ^ 0. In the latter case a unique 
minimumm exists that is determined by 

{B{h)B(h){B{h)B(h)TT)oc)oc = B(h)Y{h). (4.4) 
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Thee entries of the matrix B{h)B{h)T can be written as 

(B(h)B(h)(B(h)B(h)TT))LjLj = Y,bi(hxk)bj(hxk). (4.5) 
A= l l 

Ill-conditioning g 

Forr finding the local approximation we have to solve equation (4.4). It turns out 
thatt for small h the matrix B(h)B(h)r is ill-conditioned for all sets {xi x„}. To 
obtainn a rough lower bound for the condition number we can use the fact that the 
diagonall elements of a symmetric matrix are bounded by the smallest and largest 
eigenvalue,, which can be easily deduced using the interlacing eigenvalues theorem for 
borderedbordered matrices [24]. 

Thee (l.l)-entry of B(h)B(h)T is equal to £ " = 1 1 = //. while we also have, by 
usingg (4.5) and considering the diagonal elements (B(h)B(h)1),.,. / — 4.5.6. 

4A l l l lD <ft'èl*jl 4S»ftW|* J l 44 =* p—* < £ ^ . (4.G) 
** J 'I maxj x, An,,„ 

JJ = l 

Thereforee cond(B(h)B(h)T) > O (h~4) and direct calculation of the approximation 
couldd be an error-prone procedure. A more stable way of calculating the approxima
tionn is to use scaled basis functions 6;(x) = öy(^x). i = 1 6. Then the matrices 
inn equation (4.4) become independent of h and the ill-conditioning for small h will 
disappear. . 

4.2.22 Convergence propert ies 

Too examine the convergence order of such an approximation, we will assume from now 
onn that all points {xi xr i} are situated in the unit circle, that at least for one 
pointt ||x,||2 = 1, and that the resulting matrix B{\)B(\)T is invertible. An example 
configurationn of points is shown in Figure 4.1. For an arbitrary point x in the unit 
circlee we will examine now \ph{hx) — f(hx)\. 

Firstt we define S(h) = diag (l . h. h. ti2. h2. h2) and B = B(l). so that we can write 
b(/j.x)) = S(h)h(x) and B(h) = S(h)B. Using this we have from (4.4) 

S(h)(BBS(h)(BBTT)S(h)a(h))S(h)a(h) = S{h)BF{h) =>  S(h)a(h) = (BBT)~lBF(h) 

andd the approximation ph(lix) can be written as 

ppbb(hx)(hx) = a(h)  h(hx) = b(x)TS(h)a(h) = b(x)T(BBT)~] BF(h). 

Forr the difference ph(hx) - f(hx) a Taylor series expansion can be written down by 
makingg Taylor series of F(//) and f{hx). It turns out that the lower order coefficients 
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Figuree 4.1: Example configuration of points and the related circle. 

cancell out due to the following equalities. 

' £ / ( 0 ) ( x , ) \ \ 
== 1. v r == A/(0)(x) . 

(4.7) ) 
\lj\lj  \Df(0){xn)/ 

/ o 2 / ( 0 ) ( x , . X l ) \ \ 

v TT \ = JD
2 / (0 ) (x .x) . 

\D\D22f(0)(xf(0)(xnn,x,xnn)J )J 

wheree v is defined by v r = b(x)T(BBT)~lB. Here we used the rn-th order Fréchet 
derivativee D">  (f)(0): (R2)m ^ K of ƒ at 0 which is a multi-linear operator and 
definedd by 

£>"7(0)(VV rj'")=  (flfafa+rt&yjnz) 

Eachh of these equations can be associated with a least squares approximation prob
lemm that has an exact solution because the approximated function is a low order 
multinomial. . 

Itt follows that 
PPhh(hx)(hx) = /(/ix) + 3 + 0(/*4) 

with h 
'D 3 / ( 0 ) (x i . x , . x i ) ) 

CC = b(x)J (BB1) B D 3 / (0) (x .x .x) .. (4.8) 

D 3 / (0 ) (x„ .x„ .x„ . . 

Forr arbitrary z e M2 with |z| < 1. we have ||b{z)||2 < \/6||b(z)|j,c < ^6 and 

Z>3/(0)(z.z.z)) = {zldl+z2d2ff(zl.z2' 
^0.^= 0 0 

< 88 max \di0jdkf({i)\. 
i.j.k—li.j.k—l .2 
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which,, because |x|. |xi | |xr i| < 1. yield together 

\C\\C\ < (48r>\\(BBT)-1\\-K + 8) max \didjdkf(0)\. 
i,j.k=l.2 i,j.k=l.2 

Forr a real square mxm-matrix A we havee the inequality of Hadamard [51] which states 
that.. |det(v4)| < ( m + l ) ^ ' + 1 ^ 2 / 2 m - Applying the general expression for matrix 
inversess using cofactors on BBT gives 

T \ - l l ((BBT'hj ((BBT'hj 
1 1 

det(BBdet(BBT T i-\y^det{BBi-\y^det{BBTT\j,i}). \j,i}). 

wheree BBT[i.j]  is a matrix BBT with row i and column j deleted. One can now 
estimate e 

81 1 'BB 'BB T\-\ T\-\ < < T T 

\\ n 

whichh by denoting D(0:h) — {|x| < 1}. results finally in 

sup p l/(x ) ) / (x) || < 
324 4 

 BBT) ++ i maxx \didjdkf{0)\h' 
i.j,k=\.2 i.j,k=\.2 

(4.9) ) 

forr h small enough. 
Thereforee we can state that for node sets in the domain of which the subsets 

usedd for local approximation can be enclosed in circles of radius h and for which all 
det(-.B£?T)) are bounded from below by some constant, the approximation is of third 
order.. These used subsets we will call the local node sets. 

Onn the other hand, for arbitrary local node sets, det(^BBT) can be arbitrary 
closee to zero, making the third order constant larger, possibly resulting in a bad 
approximation.. Because the idea of meshfree methods is to start with arbitrary node 
sets,, we will after choosing subsets of the global node set. test their approximation 
abilityy by evaluating det(-BBT). For determinant values too small we will add more 
pointss from the global node set. repeating this procedure until the determinant is 
abovee the required constant. 

Derivat ivee approximat ion 

Forr the approximation of derivatives we expect similar behavior with one order lower 
accuracy,, i.e.. second order. To examine how well the derivatives are approximated, 
wee define the matrices Di, D2 e M6x6 by 

£>ii  = 

/00 0 0 0 0 0\ 
11 0 Ü 0 Ü 0 
00 0 0 0 0 0 
00 2 0 0 0 0 
00 0 1 0 0 0 

\o\o 0 0 0 0 0 / 

andd D'2 = 

/ oo 0 0 0 0 0\ 
00 0 0 0 0 0 
1 00 0 0 0 0 
00 0 0 0 0 0 
00 1 0 0 0 0 

\ 00 0 2 0 0 0 / 
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Thesee represent the actions of the partial derivatives with respect to the basis func
tionss b\ ba in such a way that for functions g: M.2 —• R that are arbitrary linear 
combinationss of the basis functions g{x.) — a • b(x) we have 

6>,r/(x)) = a • Dfb(x) (>'=l-2). 

Withh respect to the matrix S(h) these matrices obey DtS(h) = £S(/?)D,-. This is a 
directt consequence of the fact that for arbitrary functions ƒ: R —>• R with f(hx) — 
/;'7(-00 for some constant p. it follows that Df(hx) = hP~lDf(x). 

Forr the approximation of the z'-th partial derivative we can write now 

ddiPiP
hh{hx.){hx.) = a{h) • D i b ( k ) = Djb{x)T} }S(h)a{h) = Dfb{x)T (BBT)~1 B^F(h). 

Differentiatingg the equations (4.7) gives 

DD i TT ,.T 

DD i 7\T 7\T 

' 1 \\ (Df(0)(xlr 

:: = ^ 1 = 0. Z ^ r r : = _ D / ( 0 ) ( x ) = Ö,/(0). 

VV "  \Af(o)(x H: ' 
Z > 2 / ( 0 ) ( X ! , X , ) \ \ 

/> 2 / (0) (x„ .x n ) / / 
7 ^ D 2 / ( 0 ) ( x . x )) = 2D(^/) (0)(x) 

whichh again leads to vanishing coefficients in the Taylor series expansion of 
djpdjphh(h-x.)(h-x.) - dif(hx). resulting in 

ddiPiP
hh{hx){hx) = dif(hx) + \C'h2 + O (h3) 

with h 

/D-V(0)(x1.x1.x1)\ \ 
CCff

ii=DTb(=DTb(xx))
TT{BB{BBTT)~)~llB\B\ : - D 3 / (0 ) (x ,x .x ) . (4.10) 

\ D 3 / ( 0 ) ( x n . x , , x „ ) / / 

AA similar estimation as in the non-derivative case yields for h small enough 

supp \diP
h(x)-dif(x)\< (—-^—- +  max \didjdkf(0)\h2. (4.11) 

4.2.33 Quality of local node sets 

Abovee it was stated that we use det(^BBT) of a local node set as a measure of the 
approximationn quality. In this paragraph we want to investigate this further. 

Inn the calculation of the determinant a circle of radius h was used which contains 
alll nodes of the local node set with the restriction that at least one of the nodes is 
onn the circle. The convergence results (4.9) and (4.11) then hold for arbitrary points 
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inn the circle. In most cases the area in which we use the approximation is actually 
muchh smaller than the circle (e.g. a Voronoi tile containing the central node. See 
Figuree 4.2) and probably somewhere in the middle of it. This means that there are 
manyy possibilities for choosing such a circle, as is illustrated in Figure 4.2. Here, a 
locall node set is shown together with a polygonal area in which we are interested. 
Thee three circles, having radii 0.97 (solid circle). 1.00 and 1.10. respectively, are all 
suitablee choices. 

Figuree 4.2: Three possible choices for the circle 

Becausee the approximation is independent of the choice of the circle, we want the 
qualityy measure of the local node set to be also independent of this choice, which 
meanss that we have to make a particular choice. Before showing what a good choice 
iss we will examine how det(-BBq ) responds to translations, rotations and scaling of 
thee local node set. For this we introduce a translation vector v £ R2 . an orthogonal 
rotationn matrix Q G M' i x2 and some real scaling constant r > 0. If we compare now 

det{^BBdet{^BBTT)) for a node set {x ,} . i = 1 /; with det(^BBT), where B is made out 
off vectors h(rQx, + v) instead of vectors b (x , ) as with B. then it can be shown that 

TT)) = r 1 6 T). 

Thiss means that the measurement is invariant with respect to rotation and translation, 
butt that the radius of the chosen circle strongly affects the value of the determinant. 
Forr example, choosing a circle which is twice as large, means that the distances 
betweenn the nodes in the local node set measured relative to the circle radius h 
willl be twice as small, yielding r = 0.5. This will result in a determinant which 
iss (0.5)16 = 1.5 • 1 0 - 5 times as large. The determinants in Figure 4.2 are in ratio 
11 : 0.G1 : 0.13. 

AA good circle choice is the smallest enclosing circle of the given local node set, so 
thatt the determinant is maximal. From now on. we will use this choice and assume 
thatt the area in which we will use our approximation is inside the smallest enclosing' 
circle.. Actually, the solid circle in Figure 4.2 is the smallest enclosing circle. 

Ann algorithm for calculation of the smallest enclosing circle is described in [7]. 
whichh is a randomized incremental algorithm with an expected time complexity of 
linearr order in the number of' nodes in the local node set and hence is verv efficient. 
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4.2.44 Global approximation 

Inn the previous subsections a method for local function approximation is discussed. 
Heree we will use it for making a global approximation of a function, given an arbitrary 
sett of nodes in our global domain. The basic idea is to divide the domain into disjoint 
sub-domainss in which we use then the local approximation. 

Suchh a division can be made out of our set of nodes by calculating the related 
Voronoii diagram [7], In such a diagram every node has its own Voronoi tile, which 
consistss of all points of the domain which are closer to the node associated with the 
tilee than to every other node of the node set. This will make all the tiles disjoint 
andd their union equal to K2 except for a set of which the points are equally close to 
twoo or more nodes. This set is called the Voronoi diagram. In the left picture of 
Figuree 4.3 the Voronoi diagram of a particular node set is shown. We will use the1 

unboundedd Voronoi diagram to make a division for our bounded domain by connecting 
alll nodes which are on the boundary of the domain by straight lines. This gives us an 
approximationn of our domain which is of second order (with respect to integrals) in 
thee distance between the nodes on the boundaries in case the boundaries are curved. 
Thee right picture of Figure 4..'5 shows the division of the domain. 

Figuree 4.3: Voronoi diagram of the node set and the domain decomposition based on 
it. . 

Noww for all the Voronoi tiles we have a local approximation giving us a global 
approximationn in our domain except for the Voronoi diagram, which is of measure zero 
andd therefore irrelevant, because we will use the global approximation for evaluating 
integrals. . 

Findingg ne ighbor ing nodes 

Forr finding the local approximation in a Voronoi tile a local set of nodes has to be 
found.. Using the diagram, we can define nodes to be neighbors if and only if their 
Voronoii tiles have a common Voronoi edge of the diagram. In this way we can find 
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aa ring of neighbors of a node and also a second ring of neighbors of neighbors of a 
node.. Proceeding until we have at least the number of neighbors we need, which is 
minimallyy six nodes in case of six basis functions, and the determinant det(-BD) 
iss above some threshold, will result in the local node sot. 

Globa ll approx imat ion mapp ing 

Wee are now ready to define a mapping which will map a function defined on the set 
off nodes A^ into the space L](Q). where O is our domain. This mapping will be used 
inn the subsequent section on the discretization of the PDE. Wo define the mapping 
F.y:: M'̂  —»• L1^}) such that for a given node function f £ IRA . a tile 11,- and its local 
approximationn put. we have F.y(f) = pn, in tile i},. This defines F\-(f ) in every tile 
(jff the domain. What is left is the Voronoi diagram, which is a set with measure zero 
andd because functions that differ on a set of zero measure1 are identical in Ll. the 
definitionn is complete. 

Iff we define also a restriction map G\ - : C 1 ({})  —• E A by G A ' ( » ) = v\y (pomtwise 
restriction),, we can write for an arbitrary function a 6 C3(S2). and ft defined as the 
maximall radius of all circles used in the local approximation. 

| | u - F y o G A ' ( u ) | UU <Kh\ (4.12) 

forr /; small enough and where K is some positive constant. In a similar way we have 
forr i = 1.2. 

\\diu\\diu - t),(Fv- o GA-(u))\U < K'h2. (4.13) 

4.33 Discretization of the PDE 

Too discretize the PDE problem we will formulate it as a minimization problem and 
usee the approximation technique from the previous section to end up with a discrete1 

minimizationn problem. We then consider the solvability of the linear system that has 
too be solved for finding the minimum. 

4.3.11 Minimization problem 

Wee will consider the elliptic problem 

((IA((IA - K)H + ƒ = (). x e Q. 

Vww • n = 0. x e 0Ü. 

file:////diu
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withh tf, K > 0 and ƒ G L2(Vt). This boundary value problem can be written as the 
variationall problem 

(( K[w]=A(w.w)-L(f.w). 

K\u]K\u]  = min K\w}. with < 
u-e//1 1 ,4.15) ) 

A(v.w)A(v.w) = / | dV r • Vu.' + ^KVW dx, 

£(ƒ,«>)) = ƒ / u ^ r , 
II Jo. 

(4.16) ) 

whichh can be found in textbooks on elliptic PDEs, for example [14]. 
Too find a numerical solution of the minimization problem we will calculate first 

ann approximation of the integral for a given node function w G RN. We do this by 
pluggingg Fy[w] and FAr[f] into integrals A(w.w) and L(f.w) of (4.15). where we 
definee f = Gj\r(f). yielding 

4(F[w].F[w])) = / ^ /V(F[w])-V(F[w]) + iKF[w]2dx. 

L(F[f].F[w])) - I F[f]F[w]dx. 

wrheree we have dropped the subscript M for convenience. In order to write 

I w
T i ww = A(F[w].F[w]) and fTZw - L(F[f], F[w]). 

forr certain matrices A and L, we define linear operators Pt: RN —> Rn> , such that for 
ann arbitrary node function w G RN, P*w G Rn' equals the node function restricted 
too N't (with the ordering inherited from J\f). 

Iff we denote .A/) = {xj xj,. }. and define the matrix P? = (b(x^)j . . . | b (x^) ) . 
wee can write the least squares approximation PQ. [w] on Q, as 

m [ w ] ( x )) = [(BiBfr'BiPiw]  b(x). (4.17) 

Lett us write Bt = {BlBjylBl. so that we have pni[w](x) = P (P (w • b(x). Taking 
thee gradient of such a function will result in an expression like 

V(pn,.[w])(x)== K n r 
'Dff P (P,w • b(x)N 

KKD$BiPiWD$BiPiW  b(x), 

wheree Di,2 are the 6 x G-matrices defined in Section 4.2. yielding 

.4(F[w].F[w])) = V ƒ If/||V(A2,[w])||2 + iK(^,[w])2 . /x 

==  Y. I \\d™TPlBj(pM*)b(x)TD]  + £) 2b(x)b(x) rF» 2
r)P ?Pw 

++ i « wTP/ rB/ 'b(x)b(x)TB ? -P Iwl <ix. 
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Byy defining /p.. — [Q b(x)b(x)T ^/x. this can bo written as 

A(F[w].F[w]) ) 

== èwT \YJPTBj(d{DlhllD{ + D2In,DÏ)+Kl ili )êiPi)vr 
\ t tt J (4-18) 

wheree we have written A//4 = ËJ ^{Dxh^Dj + D2IQ,DJ) + KIQ^B,. which is an 
n,n, x nz-niatrix. Therefore A = Y,?Li PfM^Pi- The Ar x AT-matrix PfM^P, is a 
largee sparse matrix with the entries of matrix M;A put at locations dependent on the 
locationn of the nodes A/Ï in the ordering' of jV. 

Inn a similar way we have that 

L(F[f].F[w])) = fT r^pTBTl^BiPA w = fT (f^P^Mf^pA w. (4.19) 

implyingg L = X]/=i Bfln.Bi so that L has the same sparsity structure as A. Further, 
7f2,, is a symmetric matrix for every node i and therefore A and L are also symmetric. 
Ourr continuous minimization problem (4.15) has now been translated into a discrete 
minimizationn problem 

K[u]] = min ^[wl. with K[w]  =  ̂ w T i w - f rLw. (4.20) 
w€R'v v 

4.3.22 Solving the discrete problem 

Iff we assume that A is invertible, then we can rewrite A'[w] as 

A'[w]] = ^(vr-A-1Lf)rA(w-A-1Lf) -ïTL2f. (4.21) 

Thee matrix A is positive semi-definite because vrAv ~ 2A(F[v}. F[v]) > 0. Being 
alsoo invertible would give positive-definiteness. which means that A'[w] is minimal for 
ww = u. with u = i - ] L f and A'[u] = - f r L 2 f . 

Invertibil i tyy of A 

Iff the linear function F : RA —-> L] (il) is inject ivo. meaning that dim(Im(F)) = A\ 
thenn A must be invertible. If so we can define a norm on RA by ||v|| = HF^H/ j . In 
finitefinite dimension this norm is equivalent to the standard norm ||-||2- meaning that there 
mustt be a constant C.\' > 0. such that for arbitrary v € MA. |F[v]||Li > Cv||v| |2. 
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Thiss yields 

v T i vv = 2A(F[v]. F[v])  = 2 V / r/ |VF[v][2 + KF[V\2 dx 
,, = 1 J »< 

> 2 h TT / F [ v ] 2 d r > 2K I dx\\F[\]\\2
Ll > (2KC'\- I dx)vTv. 

j^Ju,j^Ju, Jn Ju 

Thereforee all eigenvalues of A are greater than zero and A is invertible. 
Inn this chapter we will take a practical approach and assume from now on that 

FF is infective (and do not examine under which conditions this is true.) If. given 
aa certain set of nodes, the choice of the local nodes sets is such tha t Mt consists of 
preciselyy 6 points and d e t ( - D , BT ) / 0. then every local approximation multinomial 
iss the unique interpolation multinomial of the six nodes and their function values. In 
thiss case F will be certainly injective. In the cases we will consider, the number of 
nodess used in the local nodes sets will be slightly over 6 and we didn' t encounter any 
non-invertt ible A. 

M e s h f r e e - n e s s s 

Att this point one could wonder whether we should call the method meshfree as the 
discretizationn involves Voronoi diagrams. Here we persist in classifying the method 
ass such, because the basic idea of the method is to build a discretization on an arbi
traryy set of nodes, which is taken as starting point because it will facilitate refinement 
aroundd the localized sources. Also, despite the use of Voronoi diagrams for the se
lectionn of neighboring nodes, building local approximations around nodes does not 
needd a mesh in itself. There are other ways to define neighboring nodes of a certain 
node.. But having used the diagram for this purpose, it also perfectly serves to glue 
thee local approximations together to form a global approximation which is used to 
buildd the discrete operators. Clearly this last step makes that the method cannot be 
characterizedd as truly meshfree. although its main ideas are of meshfree nature. 

4.44 Practical considerations 

Inn this section we will treat some practical issues encountered in calculating and 
solvingg the discrete minimization problem. 

4.4.11 Calculation and storage of Voronoi diagrams 

Forr calculation of the Voronoi diagram we use the sweep algorithm of Fortune [11]. 
whichh has a complexity of ö{N\og N). Some code is available for this, but because 
wee need to store the result in some other way than just a list of edges, a new code 
hass been written, which uses the sweep-line algorithm but stores the diagram in a 
suitablee data s t ructure which is called the "doubly-connected edge list'. 
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Inn such a data structure it is easy to find all neighboring edges, vertices and faces 
off a face. Because in our case a face is just a Voronoi tile and every tile represents 
exactlyy one node, we can find neighboring nodes in this way and also a list of vertices, 
makingg up the polygon which describes the Voronoi tile of a node. The algorithms 
involvedd in finding these neighboring elements are of complexity O (-Y°). More on 
doubly-connectedd edge lists can be found in the book [7]. 

4.4.22 Integrals of multinomials on polygons 

Whenn for a given nodi1 / the neighboring nodes are found we have to calculate the 
matricess {D.Bjy^B, in equation (4.17). To find the matrices il/,4 and /l/,L also the 
calculationn of 7Q; is required. 

Too see how this can be done we assume that we want to integrate a function 
ƒ:: R2 —> R. with f(x. y) ~ x"ym. on a polygon given by the points r , . j — 1 N. 
describingg in counter clockwise order the polygon il-,. (Here the Ar is different from 
thee one used earlier, which denoted the total number of nodes.) If we define 

F(x.y)F(x.y) = I » + i 1. V-F(x. y) = f(x.y). 

then,, by using Gauss" divergence theorem. 

// / r f x = f V-Fdx= j F(x)-n(x)rfx = V f F(x) • n ; rfx. 
 'n, -in, Jim, ~[ Jon' 

wheree dQj is the line segment r J r J + 1 for j < N. düf* = r ^ r i . and rij is the normal 
vectorr pointing outward. When using the parameterizations -\j•: [0.1] —> R2. with 
~ij(t)~ij(t)  — Tj +tArj.  where Ar, = r J + i - r3. we have ||7j-(f)|[ — [Ar,j| a i l (l n j = 
]j3Fjj [A.Vj- -AXJ}T- implying 

/«/(x)-n^=r(iii^)-te)'"--
Consequently. . 

Arr i 

// xnym rfx = £ ~  ̂ f (rl + tAx^HlJj + tAy  ̂ <*t. 
 ~T[ " + i Jo 

Alll entries of 7^. have this form and they differ only in the choice of rt and m. 

4.4.33 Solving the linear system 

Oncee we have built the matrices A and L. using a sparse matrix structure, we have 
too solve the system 

i uu = Li. 
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Althoughh the matrices .4 and L are sparse, they do not have a band structure in 
general.. Due to the use of arbitrary nodes, the non-zero entries are actually scattered 
throughoutt the whole matrix. For solving the system by using an /.["-decomposition. 
itt would be advantageous to have a band structure, because then the number of 
non-zeross in the L and U matrices is also limited [16]. 

Fortunately,, the sweep-line algorithm for calculation of the Voronoi diagram makes 
usee of an ordering of the nodes that can be used here, because it renders our matrices 
intoo band structured matrices. The ordering is a lexicographical ordering, where the 
nodess are ordered on the basis of their coordinates such that 

(xi,yi)(xi,yi) < (2:2,2/2) " " * Vi - 2/2 ci' -''i < -T-2 and t/l = y2. 

Becausee nodes used in a local approximation are close to each other, the matrices will 
havee the desired band structure after applying this ordering. In Figure 4.4 we see 
thee sparsity structure of the matrix A for the node set of the left picture, using the 
originall ordering (middle picture) and the ordening used by the sweep-line algorithm 
(rightt picture). In the original ordering the interior points are chosen randomly, while 
thee boundary nodes are ordered along the boundary. This gives the pat tern in the 
matrixx as can be seen in the middle picture. 

1 1 

0.5 5 

0 0 

-0.5 5 

- 1 _ _ 
-11 -0 .5 0 0.5 1 0 100 200 0 100 200 

Figuree 4.4: (Left) Node set A/" consisting of 257 nodes. (Middle) Sparsity s t ructure 
off A and L with original ordering of AA (Right) Sparsity structure of A and L with 
orderingg of A used by the Voronoi diagram calculation. The number of non-zero 
entriess equals 5409. 

4.55 Choosing nodes in the domain 
Inn this section we will discuss an algorithm for choosing nodes in the domain. As 
saidd in the introduction we will work with very diverse domain geometries. Start ing 
withh a domain of which the boundary is piecewise smooth and which could have some 
holes,, we need to put nodes in its interior and on the boundary. 

Put t ingg nodes on the boundary is relatively easy if we assume that the boundary 
iss given by some parametrization. Given a number of nodes, we can distribute1 them 
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overr the boundary, possibly taking into account the curvature, so that to regions with 
highh curvature comparatively many nodes are being assigned. 

Too put nodes in the interior is harder because testing whether a node is inside 
orr outside a certain domain can be expensive in case of complicated geometries. For 
example,, the method decribed in [15] requires that for every node an integral over the 
boundaryy has to be calculated. This seems to be expensive if some kind of adaptation 
iss involved and for every time step a new set of nodes is needed. Aside from this 
problem,, there is also the problem of making a distribution of nodes that suits well 
functionn approximation and solving PDEs. As it turns out. the set of nodes one gets 
byy randomly distributing points into a domain will show a lot of clustering, which 
iss not optimal for function approximation and which will give also ill-conditioning 
problemss when used for solving PDEs. Another issue is that we want to be able 
too impose some variation in the local node density, so that sufficiently many nodes 
aree used in the neighborhoods of sources and on the boundaries and fewer at some 
distancee of them. 

4.5.11 Lloyd's method 

Wee will now discuss an algorithm to put nodes into the interior, assuming that there 
aree nodes placed on the boundary already. The boundary nodes are connected by 
straightt lines, transforming our domain into one which has a polygonal boundary. 
Thee first step is to find a rectangular region which lies entirely in the interior of the 
domain.. The user of the algorithm has to find it by inspection of the domain. 

Inn this rectangular region nodes are assigned in an arbitrary way. The rest of the 
algorithmm consists of an alternating sequence of the following two steps. 

Stepp 1. Calculation of the Voronoi diagram. Given the set of nodes, calculate the 
Voronoii diagram. The tiles Q{ at the boundaries are cut off by the straight lines 
connectingg the boundary nodes. This results in a tessellation of the polygonal domain, 
inn which every tile has one node in it. An example has been shown in Figure 4.3. D 

Stepp 2. Node replacement using mass centroids. Given the tessellation of the domain, 
shiftt every node to the mass centroid of the tile it is in. except for the nodes on the 
boundary.. The mass centroid of a tile fi; is defined as 

fr-,, x <7x 
centroidd

Whilee alternating these steps the boundary nodes stay on the boundary and the 
interiorr nodes stay in the interior. The boundary nodes are fixed and thus also the 
polygonall boundary. 

Thiss algorithm is called Lloyd's method and more about it can be found in [10]. 
Thee basic idea behind it is that it tries to make all tiles equally large and spreads out 
alll nodes into the domain while avoiding clustering. One might wonder whether the 
iterationn converges or if the possibility exists that it will will run into some cycle. To 
makee this somewhat clearer, we have the following theorem. 
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Theoremm 2. Suppose we are given an arbitrary disjoint node set {x.t, i — 1 N} 
whichwhich is hounded by a piecewise linear boundary, consisting of a part o/{x,} connected 
byby straight lines. Then any step in the alternating sequence of calculation of Voronoi 
diagramsdiagrams and node replacement using mass centroids minimizes the functional 

N N 

F({x,},{a})) = T [  Hx i -x fdx . (4.22) 

wherewhere {fli.i  = 1 N} is a tiling, such that x, G Ï), for all i = 1 N. Step 1 
chooseschooses Qt to minimize (4.22) for fixed x* and step 2 chooses X; to minimize (4.22) 
forfor fixed i}t. 

Proof.. Denote the set bounded by the piecewise linear boundary by T>. resulting in 
VV = Ujfij. 

StepStep 1: to prove the assertion for the Voronoi diagram calculation step, we consider 
ann arbitrary x £ V. Clearly, the contribution of the area around this point to the 
functionall is determined by the value | | x -x , | | 2 . where x, is some node of TV. The fact 
thatt ||x — Xj|| is minimal over all i = 1 N by definition of the Voronoi diagram, 
makess that ||x - x,y2 is also minimal. Because this can be done for arbitrary x € X>, 
thee functional is minimal over all possible tessellations of T>. 

StepStep 2: the assertion can be proved by considering Jn ||z — x| |2dx for a tile fi; 
andd some arbitrary z € IR2. To minimize the integral we can set the gradient with 
respectt to z equal to zero. This results in 

// ( z - x ) d x = 0 = > 7 , . (4.23) 
Jn,Jn, JQi d* 

whichh is exactly the definition of the mass centroid. • 
Accordingg to the theorem both steps minimize F({x,}. {fïj-}) and therefore during 

thee alternating procedure F({x,;}. {J7,}) will be non-increasing. Also, the functional 
iss bounded from below, making the sequence of F({x ;}. {f£,}) convergent. As a result 
noo cycling can occur but on the other hand convergence of the node set {x2} itself 
iss not guaranteed and the found minimal value of F does not need to be a global 
minimizer.. In Figure 4.5 some iterations are shown of a node choosing process which 
resultedd after 200 iterations in the node set shown in the first picture of Figure 4.4. 

4.5.22 Adjusting local node density 

Whenn using the method of the previous subsection we can get node distributions 
wheree neighboring nodes are on a more or less constant distance from each other. To 
imposee some variation in local node density we can use a more general version of the 
algorithmm which makes use of a density function in the evaluation of the centroids [10]. 
Wee take a different approach where after replacement of the nodes by the calculated 
centroidss in step 2. we shift them a little. This shift is in the direction where a higher 
concentrationn of nodes is needed. 
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Figuree 4.5: A node set at the start , after 10 iterations, and after 100 iterations. 

Thiss procedure takes into account that variations in node density should be smooth 
ratherr than abrupt . The size of the shift is taken proportional to the size of the tile 
withh respect to the direction of the shift, yielding that the node stays inside the tile. 
Thee direction of the shift is determined by at t ract ing neighboring nodes. Given node 
ii  and at tract ing neighboring nodes j . the direction will be close to 5Z,(X ; ~ x i ) - The 
calculationn of the shift follows the step of the replacement of the nodes to their mass 
centroids.. To make it more precise we will now give a detailed description of the 
shiftingg step. 

S t e pp 3 . Node replacement by applying the shift. Given the tile fij, a set of vertices 
{y_/}} and a set of a t t ract ing neighbors {x, t }. first calculate the at t ract ing direction 
vv = X f̂c(x»fc ~ x ' ) - Second, determine the minimal and maximal vertices with respect 
too this direction, i.e.. ym ; n minimizes and y m a x maximizes y ; • v. Third, transform 
thee tile using a transformation (£.//) —> (x ,y) , 

1 1 

vv • v 
- i ' 2 2 ( y , n mm + ^ lOg ( £ ) ( y m a x ~ Ynnu)) 

'I 'I 
(4.24) ) 

wheree c > 0 is some constant determining the shift size with respect to the tile size. 
Finally,, for the transformed tile the mass centroid is calculated and the result is 
transformedd back, using the inverse transformation, to give the new location of the 
node.. • 

Figuree 4.6 illustrates the process of calculating the shift for an example tile, in
cludingg the transformation involved. Here c = '2 and the direction of v is given by the 
arroww in the second picture. The first picture shows the tik- and its mass centroid. 
Thee second picture adds the coordinate frame of the transformation, while the third 
picturee displays the1 tile in the transformed coordinate system and its mass centroid 
withh respect to this system. The last picture shows the tile with the original mass 
centroidd and the shifted point. 
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Figuree 4.6: Shift calculation by transformation of the tile 

Attrac t ingg ne ighbor ing nodes 

Too determine how the nodes at tract each other all nodes are classified by some integer 
value.. Attraction can than be implemented by defining the at t ract ing neighboring 
nodess of a node as the neighbors that have a integer value which is higher than their 
ownn integer value. 

Figure11 4.7: Example of refinement near the boundary 

Letss us for example assume that we would like to have refinement near the bound
ary.. Them all boundary nodes could be classified by 2. all neighbors of boundary 
nodess by I. and the rest by 0. By cycling through the steps: I. calculation of the 
Voronoii diagram. 2. giving every node a type. 3. calculation of mass centroids. 4. 
calculationn of shifts, the global nodes would gradually change in a node set which 
hass some refinement near the boundary. The parameter c specifies the maximal spa
tiallyy decay in the distances between the nodes in a refinement area. The number of 
differentt types specifies the size of a refinement area. 

Inn Figure 4.7 a refinement near the boundary is achieved by classifying boundary 
nodess as 3. their neighbors as 2 and their neighbors' neighbors as 1. 
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Standardd meshing algorithms 

Onee might wonder how the node choosing algorithm described here compares to 
standardd FEM meshing algorithms, like for example the algorithms implemented in 
Shewchnk*ss software package Triangle [41]. There. Delaunay triangulation algorithms 
aree being used together with rules on how to deal with holes and how to ensure certain 
anglee and area properties of the produced triangles. Our method seems conceptually 
simplerr than such a method, especially when also some kind of adaptivity is involved. 

Althoughh we could use software like Triangle with a standard FEM approach for 
ourr problems, we are searching for a method that is focussed on the presence of 
movingg sources, which requires a well-defined form of adaptivity. The combination of 
thee described meshfree method and node choosing algorithm results in a method that 
givess refinement around the sources in a relatively straightforward way and provides 
adaptivityy at the same time. While meshing algorithms need besides their refinement 
techniquess also rules that specify how coarsening takes place in case of adaptivity. this 
methodd moves the nodes along with the1 moving sources ensuring refinement around 
eachh of them during the process. How our method compares to standard meshing 
algorithmss from the perspective of efficiency is an object of current research. 

4.66 Numerical tests 

Inn this section we will carry out two numerical tests. We will start with a convergence 
testt on the unit circle where we use a uniform distribution of nodes. I.e., after inserting 
thee nodes randomly in the domain we use the iteration procedure from Section 4.5 
withh a constant node density. We calculate the solution of the elliptic problem (4.14) 
forr the source function 

f(r.9)f(r.9) = r (7 rf^4) cos(i7rr)((7r2 + l)rcos(lTrr) +7rsin(l7rr)). 

withh r and 0 polar coordinates. With D = 1 and K = 1 the exact solution is 

a ( r . ^ ) ^ - ^ 1 ( 2 c o s 2 ( i 7 r r )) + 7r2). 

Figuree 4.8 shows both the source function (left) and the solution (right). 
Forr the test the solution is calculated thirty times. The number of nodes is in

creasedd every time, such that the maximal distance between two neighboring nodes Amax 

willl vary gradually between 0.2 and 0.02. The maximal local radius h. used in the 
convergencee analysis, will be around twice this distance and will therefore also change 
withh a factor 10. The number of nodes used varies between 106 and 922G. 

Forr each numerical solution we computed the error e = u n u m — uc.XiU-t. its L -norm 
||e||L22 = (eTLe)1 / / 2 . and its maximum error | | e j |^ . Figure 4.9 shows the results of 
thee test and both errors display a second order convergence. 

Inn the second test we calculate the solution of equation (4.14). where the domain 
iss the unit circle with a hole in it. The source function is formed by two narrow peaks 
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Figuree 4.8: source function and solution of equation (4.1 1) 
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somewheree in the domain. The peaks are circle symmetric with a circular support of 
radiuss of ( = 0.02. inside of which they are given by 

f(r-o) f(r-o) 
• > --

£ 2 ( ^ 2 - 4 ) ) 
cos-- {wnr). 

withh (r. o) being polar coordinates centered at the location of the peak. Again we 
takee D = 1 and K = 1. 

Thee refinement strategy is used to put a high concentration of nodes in the neigh
borhoodd of the peaks and near the boundaries. With 1890 nodes in total this yields 
thee left picture in Figure 4.10. The right picture shows a magnification around the 
supportt of one of the peaks. In such a circular support 70 nodes are being used. 
Too determine the nodes, first the nodes for the peaks and the boundary nodes are 
determined,, after which they are fixed. Then the other nodes are added and the 
nodee shifting iterations are done. Here» the nodes for the peaks are surrounded with 
eightt rings of at tract ing nodes, while for the boundaries three and five rings are used, 
respectively.. In Figure 4.11 the numerical solution is shown. For the integral of the 
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Figuree 4.10: (Left) Node distribution. (Right) Refinement around one of the peaks. 

solutionn we have 

[[  u(x)dx= / / ( x ) d x = 2. 
Jo,Jo, J ii 

AA second order approximation of this integral is l r I u = 1.9875. where 1 is a vector 
whosee entries are all equal to 1. To fill the domain with nodes such that the node 
densityy would be equal to the node density as it is in the peak support, would require 
overr 100.000 nodes. We did a similar experiment with peak widths ten times as small 
ass in the test under consideration, but with the same number of nodes. With the 
numberr of rings of at tract ing nodes changed from 8 to Li. the result was l' Lu = 1.96. 
Inn that case a node distribution with a uniform node density would require over 10 
millionn nodes. 
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Figuree 4.11: Numerically computed peaks 

4.77 Summary 

Inn this chapter we developed a meshfree method for solving time-discrete diffusion 
equationss that arise in equation systems used in models from brain research. Impor
tantt criteria for a suitable method are flexibility with respect to domain geometry and 
easyy refinement possibilities. Both criteria are met when using a meshfree method. 
Thee two main results of this chapter are a meshfree1 discretization of the modified 
Helmholtzz operator and a node choosing algorithm that allows for easy placement of 
nodess into a given domain while varying node density. Both the discretization and 
thee node choosing algorithm use a Voronoi diagram based on the given node set. 

Thee meshfree discretization uses a Voronoi diagram for finding neighboring nodes 
off a node and for approximation of an integral on the domain. It is based on a local 
leastt squares approximation and the minimization problem in / / ' that is related to 
thee modified Helmholtz equation in combination with the boundary conditions. The 
minimizationn problem is discretized by using node functions instead of elements of 
ƒƒ'.. The node choosing algorithm uses a Voronoi diagram for shifting nodes in the 
rightt direction. Here the final node distribution tends to be optimal in a certain sense. 
Duringg the algorithm the nodes repel each other, thereby resulting in some kind of 
uniformity. . 

Thee local least squares approximation underlying the discretization uses a finite 
numberr of nodes, called the local node set, to determine a local approximation of a 
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function.. Its convergence in the maximum norm is of second order in the diameter of 
thee local node set, provided that the quality of this set is sufficient. Here the quality 
iss being measured by a determinant based on the set. Numerical experiments show 
that,, when using the node choosing algorithm, the numerical solution of the diffusion 
equationn converges in second order in the maximal diameter of all used local node 
sets. . 

Ann example has been given to show the domain flexibility and refinement possi
bilitiess of the node choosing algorithm. Here the method is applied to the modified 
Helmholtzz equation on a circular domain with a hole in it and a source function with 
veryy small support compared to the domain. 



Chapterr 5 

AA mathematical framework 
forr modelling axon guidance 

5.11 Introduction 

Thee proper functioning of the nervous system relies on the formation of correct neu
ronall connections. During development, neurons project long, thin extensions, called 
axons,, which grow out. often over long distances, to form synaptic connections with 
appropriatee target cells. Axons can find their target, cells with remarkable precision 
byy using molecular cues in the extracellular space (for reviews, see Tessier-Lavigne 
andd Goodman [48]; Dickson [8]: Yamamoto et al. [53]). They steer axons by regu
latingg cytoskeletal dynamics in the growth cone (Huber et al. [25]). a highly motile 
andd sensitive structure at the tip of a growing axon. Extracellular cues can either 
at tractt or repel growth cones, and can either be relatively fixed or diffuse freely 
throughh the extracellular space. Target cells secrete diffusible a t t ractants and create 
aa gradient of increasing concentration, which the growth cone can sense and follow 
(Goodhilll [17]). Cells that the axons have to avoid or grow away from produce re
pellents.. By integrating different molecular cues in their environment, growth cones 
guidee axons along the appropriate pathways and via intermediate targets to their final 
destination,, where they stop growing and form axonal arbors to establish synaptic 
connections.. The responsiveness of growth cones to guidance cues is not static but 
cann change dynamically during navigation. Growth cones can undergo consecutive 
phasess of desensitization and resensitization (Ming et al. [35]). and can respond to 
thee same? cue in different ways at different points along their journey (Shirasaki et 
al.. [42]: Zou et al. [56]: Shewan et al. [40]). Through modulation of the internal s tate 
off the growth cone, at traction can be converted to repulsion and vice versa (Song et 
al.. [43]: Song and Poo [44] j . 

Axonn guidance is a very active field of research. Several families of molecules 
havee been identified and a few general mechanisms can account for many guidance 
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phenomena.. The major challenge is now to understand, not only qualitatively but 
alsoo quantitatively, how these molecules and mechanisms act in concert to generate 
thee complex patterns of neuronal connections in the nervous system. 

Too address this challenge, experimental work needs to be complemented by mod
ellingg studies. Unlike for the study of electrical activity in neurons and neuronal 
networkss (e.g., NEURON: Hines and Carnevale [22]). however, there are currently no 
generall simulation tools available for axon guidance. 

Inn Hentschel and Van Ooyen [21] a model is presented in which growing axons 
onn a plain are modelled by means of differential equations for the locations of the 
growthh cones. These equations are coupled to diffusion equations that describe the 
concentrationn fields of diffusible chemoattractants and chemorepellents (henceforth 
referredd to as guidance molecules). The system is simplified by using quasi-steady-
statee approximations for the concentration fields. This approach turns the problem 
off solving a system consisting of PDEs (partial differential equations) plus ODEs 
(ordinaryy differential equations) into a much simpler problem where only ODEs have 
too be solved. This works fine if the whole plain is used as a domain for the diffusion 
equations,, but we also want to be able to consider more general domains with, for 
example,, areas where diffusion cannot take place ("holes") or with boundaries. Also, 
Krottjee ([28], Chapter 2) showed that in Hentschel and Van Ooyen's approach moving 
growthh cones that secrete diffusible guidance molecules upon which they respond 
themselvess causes the speed of growth to be strongly dependent on the diameter of 
thee growth cone (a phenomenon that was called self-interaction). Using a quasi-steady 
statee approximation will then result in heavily distorted dynamics. 

Heree we present a general framework for the simulation of axon guidance together 
withh novel numerical methods for carrying out the simulations. The two major in
gredientss of the modelling framework are the concentration fields of the guidance 
moleculess and the finite-dimensional state vectors representing the growth cones and 
targett neurons. For the latter two, ODEs must be constructed that describe the in
teractionn with the concentration fields. The dynamics of the fields is described by 
diffusionn equations, where we allow for domains with holes or internal boundaries. 

Numericall difficulties arise from small, moving sources for the diffusion equations 
(seee Krottje [28], Chapter 2) and from the time integration of a system that is a 
combinationn of highly nonlinear, non-stiff ODEs and stiff diffusion equations (see 
Verwerr and Sommeijer [50]). To circumvent this last difficulty we consider the use of 
quasi-steady-statee approximations, and we will discuss some criteria on the validity 
off such approximations. 

Thee organization of the chapter is as follows. We start with a description of the 
simulationn framework in Section 2. In Section 3 we will discuss some features of the 
underlyingg mathematical model and in Section 4 the numerical methods are discussed. 
Somee simulation examples are given in Section 5. We will finish with a discussion in 
Sectionn 6. 
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5.22 Simulation framework 

Inn this section we will describe a modelling framework that can be used to model 
axonn guidance. In the models that can be defined within this framework one can 
incorporatee different biological processes and mechanisms, some of which are displayed 
inn Figure 5.1. From a mathematical perspective the framework consists of states, 
fieldsfields and their coupling. We will now discuss these components and their biological 
interpretation,, as well as show how they are related through the model equations. 

targett neurons excreting 
guidancee molecules impenetrable e 

hole e 

neuronss with 
outgrowingg axons 

non-diffusive e 
fieldd of membrane-
boundd molecules 

growthh cone 
excretingg molecules 

Figuree 5.1: Examples of biological concepts that can be incorporated in a model. 

S t a t e ss We define states to be finite-dimensional state vectors that represent objects 
thatt interact with the concentration fields of guidance molecules. These objects can 
be,, for example, growth cones that move in response to the concentration fields, 
targett neurons that act as sources of guidance molecules, or locations where artificial 
injectionn of guidance molecules takes place. 

Wee will assume that the first two variables of the state vector will always represent 
itss 2-dimensional location, which we will denote by r. Whereas in the model of 
Hentschell and Van Ooyen a growth cone is completely characterized by its location r. 
ourr description allows for a more general approach in which the state can be extended 
withh a vector s that further describes the characteristics of the growth cone. Possible 
characteristicss of growth cones and targets that can be modelled with s are: 
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Sensitivityy Growth cones can respond to different guidance molecules. Their sensi
tivityy to a particular molecule may vary over time (Shewan et al. [40]) and can 
bee influenced by the concentration levels of other guidance molecules as well as 
byy the level of signaling molecules inside the growth cone (Song and Poo [44]). 

Growthh cone geometry It is known that growth cones can change their size while 
movingg through the environment (Render and Kater [38]). The vector s could 
modell how this process depends on the concentration fields, or it could model the 
wayy in which changes in growth cone size change the growth cone's sensitivity 
orr behavior. 

Internall state of growth cone Inside a growth cone biochemical reactions take 
placee that determine the growth cone's dynamics (Song et al. [43]; Song and 
Pooo [44]). With s, the concentrations of the different react ants and their effect 
onn growth cone dynamics and axon guidance can be modelled. 

Productionn rates The rate at which target cells produce guidance molecules may 
dependd on the concentration fields measured at the locations of the targets. 
Thee vector s can be used to describe such dependencies. Alternatively, s can 
describee production rates that are given explicitly as functions of time. 

Forr the dynamics of the states we allow for two possibilities. In the first one, the 
statee (r, s) is given explicitly as a function of time t and the different concentration 
levelss of guidance molecules pj and their gradients V p3 evaluated at position r, 

\s)\s) ^G s ( t , p i ( r , t ) ,Vp 1 ( r , t ) , . . . , p M ( r , 0 ,VpA / ( r , t ) J 

Inn the second possibility an ODE describes the dynamics of the states. 

== G(*,s Jp1(r ,*),Vpi(r , t) , . . . ,pA f(r .*).V/>A /(r , t))- (5-2) 

Thee functions G"\ Gs and G are used to model the different biological processes and 
mechanisms.. We will now discuss the fields pj (j = 1..... M). 

Fieldss The fields in our framework represent the concentration fields of the guid
ancee molecules. The dynamics of these fields are determined by diffusion, absorption 
andd some highly localized sources. With p the concentration field, d the diffusion 
coefficient.. A' the absorption coefficient, and S t o t a source term, this results in the 
diffusionn equation 

dtpdtp = dAp - kp + S t o t , on Ï2 c R2. n • Vp = 0. on dit, (5.3) 

wheree the domain fï may contain several holes (i.e.. areas that are impenetrable for 
guidancee molecules) with piecewise smooth boundaries. Thus on the boundary of the 

(5.1) ) 

d d 
dt. dt. 
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domainn we will assume that there is no in- or outflow of guidance molecules. A domain 
iss defined by specifying an outer boundary and possibly several internal boundaries. 
Inn our framework all boundaries must be given by parameterizations -,,-: [0.1) —s- O. 

AA number of states is linked to a field. These states determine the total source 
functionn S t o t . which is the sum of source functions 5',. each of them belonging to a 
singlee state (r. s ) , . To further specify the form of the 5 , . we make use of a translation 
operatorr Ty , which can by applied to arbitrary functions i] : f 2 —> M and is defined for 
yy G V- by (Xy//)(x) = J/(X — y) for all x e il. For the source functions 5',- : ! ) - > ! , we 
makee the assumption that S, = (jj(si)Tr.S. Here. 5' is some general function profile 
andd (T,(SJ) G R denotes the production rate. 

Wee also allow for the possibility of having fields in steady-state. A reason to 
incorporatee such fields is that the field dynamics might by significantly faster than 
thee dynamics of the growth cones or targets. In this case the fields equation will be 

dApdAp - kp + Stot = 0. on V. C nn • Vp = 0. Oil. Oil. (5.4) ) 

Wee will refer to them as quasi-steady-state equations because the source term Stc 

mayy depend on time due to time dependent s, and r, . 

Statee 1 

t t 1 1 ''  ' ' ' 

Statee 2 

3 3 

Statee 3 

Fieldd B 

Figuree 5.2: Example setting with three dynamic states and two fields. 

Coupl ingg The coupling between the states and the fields occurs through the argu
mentss I>J(VJ) and Vpj(r,) in G and the functions CT(S,) in Stot- An example of the 
couplingg is depicted in Figure 5.2. where we have three states and two concentration 
fields.. Here an arrow from one object to another means that the dynamics of the lat
terr object depend on the former. For example the dynamics of state 1 is determined 
byy itself and the fields A and B. whereas the dynamics of field A depend on the state 



68 8 CHAPTERR 5. AXON GUIDANCE MODELLING FRAMEWORK 

11 and 2. The system of equations in this case might be 

r )) ^G1(f..sl.pA(r1J).VpA(r1.t).pB(r1.t).WpB(r l.t)y 

r2\\ ( Gl(t) \ 
SS22)) \Gl(KUpB(T2.t).VpB{T2.t))) 

r,3 3 

d d 

dt dt 

ddttpApA = dApA - kpA + 0A.i(si)TriS + aA/2(s2)Tr2S. 

00 = dApB - kpB + (TB.3(S3)Tr:iS. 

Wee see tha t only the dynamics of s tate 1 depends on the state itself, which is reflected 
inn having an ODE for its dynamics, while the dynamics of the other two states are 
givenn in a more explicit form. 

5.33 Underlying mathematical model 

Inn the framework, the complete simulation model consists of a number of s tate vectors 
Ujj = (rJsf)T, i = l , . . . , i V , with their dynamics determined by (5.1) or (5.2). to
getherr with concentration fields p3, j = 1 , . . . , M, defined by diffusion equations (5.3) 
orr quasi-steady-state equations (5.4). We assume tha t for the first Md fields the 
dynamicss are given by the full diffusion equations and that for the other fields the 
dynamicss are given by quasi-steady-state equations. This results in our system of 
fieldd equations of the form 

ddttpjpj = Ljpj + ^2 v.)i{si)Tr,S. on Ü. j = l Md (5.6) 
11 = 1 

A r r 

00 = Ljpj + Y  ̂ <7jiMTr, S. on Ü. j = Md + 1,. - -. i\/ (5.7) 

nn • Vpj = 0. on OU. j = 1 M. (5.8) 

wheree Lj = djA — kj. Here we assume that S: f2 —> IR is an L2 —function with 
compactt support with the property that J^ 5(x) c/x = 1. This means that w7e can 
interprett the aJt as the production rate of the source at tached to state ( r . s ) ; with 
respectt to field pr 

Wee assume that the dynamics of the first Ar„ state vectors are given by ODEs. 
i.e... equations of the form (5.2). and that the dynamics of the other vectors are given 
explicitlyy as a function of t ime and the fields. When wre make use of the vector 
notationss p ( r , ) . <9rp(r,-). and dyp{vi). tha t are defined by 

p{r,)jp{r,)j  - pj(ri). dxp(ri)j = dxpJ{Yi), dyp(ri)j  = Oypj(r,). 
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thiss results in 

OtVLiOtVLi = Gi{t,\l l,p(Yi).dxp{Ti),dyp{Ti)), ii  = l.....N0 (5.9) 

ii  = N0 + h...,N. (5.10) 

Inn the functions d we have to implement the different mechanisms that are involved 
withh the behavior of the growth cones and targets when they measure the levels of 
particularr concentration fields and their gradients. To complete the system we have 
too add initial conditions for the states Uj and the fields pj. 

Typicall parameter ranges Goodhill [18] gives some estimates for the ranges of 
somee relevant parameters. Table 5.1 shows a list with parameter ranges. The ratio of 

quantity y 
Tablee 5.1: Parameter ranges 

symboll order of magnitude units s 

diffusionn constant 
productionn rate 
minimall concentration 
forr gradient detection 
maximall concentration 
forr gradient detection 
minimall relative 
detectablee gradient 
growthh cone diameter 
growthh speed 
growthh range 

dj dj 

Pram Pram 

Pmax x 

LLconecone\Vpj\/pj \Vpj\/pj 

•^cone e 
V V 

-kpath h 

10"5-10-4 4 

i o - 7 7 

urMo-1 1 

100 0 

0.01-0.02 2 

100 2-2 • 10 2 

io- 6 - io- 4 4 

10" 1 - ! ! 

mm2 /s s 
nMol/s s 
nMol/1 1 

nMol/1 1 

mm m 
mm/s s 
mm m 

thee maximal and minimal concentration for gradient detection pmax/Pmm c a n be used 
togetherr with the diffusion constant d to find an upper bound on the possible values 
off the absorption parameter kj. Assume that the ratio pmax/Pmm is 100/10 -2 = 104 

andd that we have a point source located at the origin that produces the steady-state 
fieldfield Ps(r). Then using the assumptions that the maximal distance over which a cone 
cann be guided Lpath is 1 mm and the growth cone radius equals 0.005 mm, we find 

ps(0.005) ) 
Ps(l-O) Ps(l-O) 

==  K0 0.00 << 10' ^ < 6 0 .. (5.11; 

Heree we used an expression for ps that is derived in the Appendix. We can derive a 
lowerr bound for the absorption constant kj by considering the ratio Lcone\drps(r)\/ps(r) 
whichh decreases with r and increases with kj. If we assume it to be greater than 0.01. 
forr all r < 1. this yields a bound y/kj/dj > 0.60. 
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M o v i n gg sources Our framework also allows for the possibility tha t guidance mole
culess are released by the growth cones themselves, i.e. we allow for moving sources. 
Althoughh the biological evidence for this is less strong than for the release of guidance 
moleculess by target cells, it is certainly not implausible. Growth cones secrete various 
chemicalss that may operate as chemoattractants and chemorepellents. For example, 
migratingg axons are capable of secreting neurotransmitters [54]. which have been 
implicatedd as chemoattractants [55]. The t reatment of moving sources that respond 
too guidance molecules they themselves secrete is mathematically challenging and will 
bee dealt with in the Appendix. 

Quas i - s t eady - s ta tt e approx imat ion When we run a simulation using the whole 
systemm (5.6)-(5.10), we should use a time integration technique that is suitable for the 
stifff diffusion equations in combination with the non-stiff ODEs. If the dynamics of 
alll the diffusion equations are fast compared to the state-dynamics, then it is possible 
too approximate the pj, j = 1 . . . . . M,i with solutions of the steady-state equations 

N N 

00 = Ljpj + ] T <Tji(si)TTi S o n f i , j = 1 . . . . , Md. (5.6') 
• ; = i i 

Thee original dynamical system, which had as its dependent variables the s tates u^ 
andd the fields pj, is now replaced by a dynamical system that has the u^ as its 
dependentt variables only. Although the system at hand is therefore reduced from 
ann infinite-dimensional to a finite-dimensional system, evaluation of the right hand 
sidee still involves solving a infinite-dimensional system. Determination of the values 
Pjfti)Pjfti)  requires solving the equations (5.6')-(5.7). From a numerical perspective the 
advantagee is that we do not need a t ime integrator that can handle the combination 
off stiff PDEs and non-stiff ODEs. but wTe can simply make use of a s tandard explicit 
t imee integrator. 

Too investigate the validity of such an approximation we will consider a diffusion 
equationn (5.12) and its steady-state approximation (5.13) 

ff dtp = dAp - kp + S, 2 
<< on K 
[ p ( 0 , x )) = p o ( x ) 

00 = dAp -kp + S, on JR2 

Somee implications of using an approximation like (5.13) for (5.12) are discussed 
inn ([28], Chapter 2). There the case of self-interaction is considered, meaning tha t 
forr a particular field a source is a t tached to a state and the dynamics of the state is 
determinedd by the same field. Here we want to consider some more general criteria on 
whenn such a quasi-steady-state approximation might be valid for different parameter 
valuess of the diffusion rate d. the absorption rate k. and the speed a source moves 
throughh the domain v. 

Hentschell and Van Ooyen [21] used the approximation on the basis of comparing 
thee t ime scales of growth and diffusion. Here, however, the absorption parameter 

(5.12) ) 

(5.13) ) 
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playss also a role. To determine criteria that take also k into account we will follow 
twoo approaches. In the first approach we consider the time needed for setting-up 
aa concentration field. In the second approach we compare the concentration profile 
producedd by a point source moving with constant speed with its quasi-steady-stat e 
approximation. . 

Fie ldd s e t -up t i m e To examine how the time for setting up the concentration field 
dependss on d and k. we consider the solution of (5.12) with S being a point source 
att the origin, S(x , t) = <S(x). and an initial field p — 0 at time t = 0. The solution is 
rotationn symmetric, making it dependent on the distance to the source r and the t ime 
tt only, p{rj). In the Appendix it is shown that it approaches a steady-state solution 
p(r,, 5c). To see how fast the field approaches the steady state field, we consider 

f)(r,x)-p(r,t) f)(r,x)-p(r,t) 
c{rJ)c{rJ) = . 

p(r .3c) ) 

whichh represents how close the field is to its limit value. For example, a value c(r. t) = 
0.01,, means that, at time t the field is for 99% set up, at location r. In the Appendix 
wee derive 

11 e~kt 

c(r,t)~c(r,t)~ ^ ^ _ - , (5-1 4) 

2*,, (-7Ï) Kt 

wheree KQ is a modified Bessel function of the Second Kind [l]. This can be used to get 
ann indication of the time scale of the field dynamics. Such an indicator is important 
iff we want to work with fields of which the sources do not move through the domain. 
Inn case of moving sources, one might wonder how the speed of a source influences the 
producedd field. To this end we examine the solution of (5.12) with a point source 
tha tt moves with constant, speed. 

Fie ldd produced by mov ing source Consider equation (5.12) with a point source 
thatt moves with constant speed v along the .r-axis in positive direction, i.e.. S(x. t) = 
<5(xx —v£). with v — ( t \ 0 ) r . In the Appendix it is shown that we get a stable constant 
profilee solution that moves also with constant speed v. 

Heree we want to compare how close the quasi steady-state-approximation solution 
ppss is to this moving profile solution pp. It turns out that in the vicinity of the source 
thee moving profile is smaller than the steady-state-approximation, and on approaching 
thee location of the source they tend to become equal. In the Appendix it is derived 
that t 

, —— i 

rr<2e-^Jyll<2e-^Jyll + ) => &<-,-.  (5.15) 
Ps Ps 

Iff we choose -;. — 0.99. we get an indication of the size of the region around the source, 
wheree the difference between the moving profile and the quasi-steady-state solution 
iss less than 19?. given the values of the diffusion rate d. absorption rate k and moving 
speedd v. 
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5.44 Numerical methods 

InIn this section we will consider the numerical methods we use for solving the equation 
systemss (5.6) (5.10). We will start with the spatial discretization for solving the field 
equations.. This will be followed by a description of the time integration techniques. 

Forr solving the field equations we use an unstructured spatial discretization based 
onn an arbitrary set of nodes situated in the domain. This approach facilitates dealing 
withh complex domains, refinement and adaptivity; the latter is needed in cases where 
wee have moving sources with small support. A thorough description of the method 
cann be found in ([29], Chapter 4); we will briefly outline it here. 

Functionn approximation Given function values on the nodes, we use a local least-
squaress approximation technique to determine for every node a second-order multino
miall that is a local approximation of the function around that node. For this we use 
thee function values on a number of neighboring nodes. Because every second-order 
multinomiall can be written as the linear combination of six basis functions, we must 
choosee at least five neighbors for every node to determine such an approximating 
multinomial. . 

Withh this procedure a set of function values is mapped onto a set of local ap
proximationss around every node. If we assign to every node a part of the domain for 
whichh we assume the local approximation to be valid, such that the whole domain is 
covered,, this results in a global approximation. For a given set of function values in a 
vectorr w E MjV. we denote the global approximation by F(w) G L\(Q). where Li(Q) 
iss the space of integrable real functions defined on Q C IR2. 

Voronoii diagrams For choosing neighboring nodes of nodes, as well as for assigning 
partss of the domain to the nodes, we use the Voronoi diagram [11], It assigns to every 
nodee a Voronoi cell, which is the set of points closer to the node than to every other 
node,, hence dividing the domain and at the same time creating neighbors in a natural 
way. . 

Becausee a Voronoi diagram extends to all of M2, we will truncate1 it by connecting 
thee nodes on the boundary by straight lines, resulting in a bounded diagram. From 
noww on all our diagrams will be truncated ones, but we here will still refer to them 
ass Voronoi diagrams. Determination of such a diagram can be done in Ö (N\og(N)) 
operations,, where N is the number of nodes [7]. We store the diagram in a totally 
disconnectedd edge list [7], so that searching neighboring nodes for every node becomes 
aa process of O (N) operations. 
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Variationall problem Solving equations of the form (5.7) can be done by solving 
thee variational problem of minimizing A(u\w) — L(S. w) over w G Hl [2. 29]. where 

A(v.A(v. w) = / irfVï' • Vu« + ^Kvwdx. (5.16) 

L{S,w)L{S,w) = I Swdx. (5.17) 
Jn Jn 

AA direct discretization of this problem is to minimize A(F(w). F(w)) — L(S.F(w)), 
forr all w e RN. It can be shown ([29], Chapter 4) that sparse matrices A and L 
existt such that | w r i w = 4(F(w) ,F(w)) and STLw = L{F(S). F(w)). If A is non-
singularr the discrete problem has a unique solution w = A _ 1 S . With the algorithm 
forr finding the Voronoi diagram comes a lexicographical ordering of the nodes that 
willl give the sparse matrices a band structure1, which is advantageous when solving 
thee system directly using an LU-decomposition. 

Convergencee tests show that the solution is 2Ild-order convergent in the L2-norm, 
withh respect to the maximum distance between neighboring nodes ([29], Chapter 4). 

Choosingg nodes To distribute nodes appropriately over a domain we make use of 
Lloyd'ss algorithm [10]. This algorithm is based upon the determination of Voronoi 
diagramss and the process of shifting nodes to centroids of Voronoi cells. An alternating 
sequencee of these two operations distributes the nodes equally over the domain, in 
thee sense that distances between neighbors will tend to become equal throughout the 
diagram. . 

Too achieve refinement at certain points, we use a variation of Lloyd's algorithm. 
Here,, after shifting the nodes to their centroids, an extra shift in the direction of 
neighboringg nodes is added. To determine for a particular node which of its neighbors 
aree attracting this node, all nodes are given an integer type. Nodes will then be 
attractedd to the neighbors with higher type than their own type. 

Too get refinement around a certain point in the domain, a node is fixed at that 
point,, and several rings of decreasing node type are defined around it. The extended 
Lloyd'ss algorithm then moves nodes around, which results in a refinement around the 
fixedfixed node. 

Inn contrast to methods where refinement is based on local error estimation, here 
refinementt takes place around the source locations. This is done because we know 
inn advance that only at those locations, and possibly at the boundary, refinement is 
requiredd for optimal accuracy. Doing it this way instead of using an error estimation 
processs will then speed up the refinement process. 

Havingg discussed the spatial discretization method we will now focus on the time 
integration.. We will consider three different cases that can be distinguished by the 
fieldfield dynamics in the model. 
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T i m ee in tegrat ion w i t h s ta t i c fields We first consider the case with static fields 
only.. In this case we only have ODEs which need the solutions of the fields for the 
evaluationn of their right hand sides. These fields are determined at the start of the 
simulationn by solving the elliptic equations, giving the approximations to the field 
solutionss pi PM. After this the growth cone dynamics can be solved using a 
s tandardd explicit ODE solver. 

Forr the fields to be static we need a number of static s tates that make up the 
sourcess of the fields. Let us assume that of all the states only the last Ns are static, 
i.e.,, (r.,-.Sj) = constant, and that the rest of the states do not influence the field 
dynamics.. Thus, we must have 

( ; '' = 1 M, (all fields) 
<7j,-- = (). for all I , 5.18 JJ \i = l N- N8 (all dynamic states). 

Thenn given the I\'s static positions r ; . i > A* - Ns. we have to solve 

s(-- = ^ ( p ( r ) ) , 0 ^ ( r ? ; ) . ^ p ( r ) ; ) ) . i = N NH + 1 N. (5.19) 

v v 

LjPjLjPj  + / J &ji(si)TTiS — 0. on Q, 

nn • Vpj — 0. on dQ.. 

jj  = l,...,M. (5.20) 

Thiss system can be solved by solving first the field equations (5.20). Using the 
inversee operators of L3 with respect to the boundary conditions, we get 

N N 

PjPj = - Y, (TjiML^Tr.S, o n O . (5.21) 
i=N-N»i=N-N» + l 

Whenn combined with equation (5.19). evaluation of these field solutions and their 
gradientss in the given r, . results in a closed algebraic system with respect to Sj, 
pj{vj).pj{vj). dxpj(ri)  and dypj(ri).  We will assume that this nonlinear system can be 
solved,, although the solvability depends on the r ; and the functions oyt. 

Therefore,, to solve numerically the fields p3 we first have to solve numerically 
thee fields L~]TriS, using the spatial discretization above. After evaluation of these 
fieldss (i.e.. their numerical approximations) and their derivatives in all locations r ( 

thee algebraic system can be built by substituting (5.21) into (5.19). We can solve 
thiss system by using, for example. Newton iterations and use the s2 to determine the 
solutionss pj. 

Oncee the fields and static s tates (/' > N - Ns) are solved we can start solving the 
non-staticc states from the equations 

ddttUiUi  = G1(t.ul.p(ri).d_tp(vl),dyp(vl)). i = 1 N„  (5.22) 

TiTi)=()=( nnsusu , , ? ( ? , o , u V i = Xo + l A ' - - Y s . (5.23) 
ss00 \Gs

t(t.p{ri).dxp{r l).dyp(rl))J 
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Forr solving the ODEs we choose an explicit integration scheme because the ODEs are 
non-stifff (and nonlinear). We will use the classical 4th-order RK (see for example [26]) 
forr this. Note that for the function evaluations in the scheme we have to determine 
locall approximations of the fields and their gradients. A slight difficulty arises here 
becausee the local least-squares approximations are discontinuous from one Voronoi 
celll to another. Therefore, if the integration process crosses the edge of a cell during 
aa time step, there will be loss of order with respect to the size of the time step. To 
preventt this we make sure that during a time step we use for every state only one 
locall field approximation for all function evaluations used in the scheme. Because the 
locall field approximation is a multinomial the order of the scheme will be retained. 

Quasi-steady-statee approximation When using quasi-steady-state approxima
tionss for the fields, the system we have to solve 

ddttu,u, = Gl(t.ul.p(rl).Oxp{r l).dyp{rl) 

(n\(n\ = f G\{t) ^ 
\\SS,J,J \,G?(*.p(r I).o,p(r i).o t fp(r l-))y 

N N 

LjpjLjpj  + y_] °ji{Si)TYlS = 0, on il, 

nn • Vpj = 0. on dfl. 

Heree we use. as in the previous case, an explicit time integrator for the ODEs in (5.24). 
Too evaluate the right hand side of the equations we need to solve the fields pj for given 
valuess of (r,-. Si)K. i — 1 , . . . , N0, and tn, where n denotes the time level. To find these 
wee have to determine the fields again by solving a non-linear algebraic system as is 
donee in the case with static fields. Here, the system will have as its unknowns the 
PJ{TPJ{TLL).). dxpj(r,) and dypj{vi) for all combinations of fields pj and states r ; . together 
withh all Sj. for / > N0. 

Inn contrast to the case with static fields, every function evaluation in the right 
handd side of (5.24) requires solving equations (5.26) and evaluations of the resulting 
solutionn fields and their gradients. Also, because the source terms in (5.26) depend 
onn the states u (, it may be necessary to redefine the nodes used to solve the field 
equations.. Therefore solving such a system is computationally much more expensive 
thann solving a system with static fields only. 

Fulll system Solving the full system, i.e.. equations (5.6) (5.10) requires a numerical 
methodd that can deal with both the nonlinear, non-stiff ODEs and the stiff diffusion 
equations.. Verwer and Sommeijer [50] use for a system similar to the combination 
off (5.6) and (5.9) the RKC method, which is explicit and can deal with moderately 
stifff systems due to a long narrow stability region around the negative real axis. 
Lastdragerr [32] used a Rosenbrock method with approximate Jacobians for the same 
systemm so that effectively the field equations are integrated implicitly and the state 
equationss explicitly, as with IMEX (IMplicit-EXplicit) methods [26]. 

11 = 1 N0 (5.24) 

ii  = Na + l N. (5.25) 

jj = l M. (5.26) 
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Wee use a Runge-Kutta IMEX scheme, in particular an an IMEX-midpoint scheme, 
whichh can be seen to be a combination of an implicit and an explicit midpoint step. 
Forr a system x — / j ( f . x ) + f2(f.x) it is given by 

x.x.ss = x„ + {rf\{t n + 7jT.xs) + ^ r / 2 ( f „ . x n ) . 
// ' x (5.27) 

x„„ + 1 = 2x s - x n +r^f2(in + £ r . x s ) - / 2 ( f „ . x „ ) J . 

wheree the s in x s refers to the intermediate stage. For our system the part f\. which 
iss t reated implicitly, contains the linear operators Li from equation (5.6). while the 
explicitt par t ƒ2 contains the source terms of equation (5.6) and the functions G, from 
equationn (5.9). This is a second-order time integration method and the implicit part , 
i.e... the implicit midpoint method, is A-stable. Also, using this scheme for the sys
temss at hand never revealed any stability problems. 

Inn the next section we will show some example models. Although our framework 
cann deal with non-static fields (as discussed earlier), in these examples we will only 
considerr cases in which the fields are static. 

5.55 Simulation examples 

Inn this section we will discuss simulations of some example models. We want to 
stresss tha t the models used here are still simple and only serve to show the different 
possibilitiess of our framework. To model the growth cones and the sources of the 
guidancee molecules, such as target cells, we have to choose state vectors (r,.s,-) that 
characterizee these objects and accompanying functions G tha t describe the dynamics 
throughh equations (5.1) and (5.2). 

G r o w t hh cone mode l As a first example of a growth cone model we consider growth 
coness characterized by three-dimensional s tate vectors. To the position r, = {.v. y) we 
addd a variable representing the orientation angle s, — o ^L [0. 2TT) of the growth cone. 
Thiss gives our model growth cone a growth direction, which it has to adjust in order 
too steer. It gives the opportunity to build in some kind of "stiffness", the inability to 
undergoo instant changes in growth direction 

Inn order to describe the dynamics of the growth direction we need to define a. 
differentiall equation. We will assume that the growth speed is constant, given as v. 
andd that the cone grows with this speed in the direction given by the orientation 
anglee 0, i.e.. r, — (ccos(0) . ï 's in(ó)). For the dynamics of 0. we assume that it is 
continuouslyy compared with some1 ideal direction o g . which we will assume to be a 
linearr combination of the sensed gradients of the fields pj evaluated at location r , . 

^ , = a r gg ] T A > ( r , ) ) V ^ ( r , ) . (5.28) 
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withh 'arg' the function that returns the angle between the argument and the positive 
.r-axis.. Here the real functions \j determine the sensitivity to each of the fields. A 
positivee \j will cause the cone to be attracted by the field p}. while a negative Xj 
causess repulsion. 

Too formulate an ODE for o that depends on 
thee value of og. we use the mapping o —*• (sin (o), cos (o)) 
too view the growth directions as two-dimensional 
unitt vectors, z. and zg. respectively. The ideal 
directionn zg can be split in a part parallel to the 
growthh direction z and a part that is perpendicu
larr to it. zg — Zj| + zj_- An illustration of this is 
shownn in Figure 5.3. We assume that z = (r//)zx-
Returningg to angles O and og this results in o = 
v/£sm((pv/£sm((pgg - <p). 

Here,, the parameter I' is a measure for the 
smallestt circle the growth cone can make while 
turning.. This latter fact can be understood by re
alizingg that the maximal value of & is v/L If we 
considerr a solution where o is maximal we get, with r = (x.y). 

Figuree 5.3: An example configu
rationn of the vectors z and z„ 

d__ (x 
dtdt U 

0-£c,Os(<2>) ) 

d)fd)f sm(o) -icos{o{t))-icos{o{t)) + y0 

meaningg that the solution path of (x(t).y(t)) is part of the circle with radius £ and 
centerr (xo.yo). Using the framework the dynamics of state (r(, Sj) are described by 

fyfy =Gi(t.ri.si.p(Ti).dxp(ri).dyp(ri)) 

ccos(s,) ) 
rsin(sj) ) 

-//sinn (arg ( E J I I Aj(p(r>))Vpj(r,:)) - s tJ 

(5.29) ) 

Fieldd sources In the examples we will assume that the fields are produced by 
sourcess that are not moving and not changing their behavior in time. Therefore it 
willl serve to include in their state vectors only their positions r, £ M2 and keep them 
constantt in time r, = G*(t) = r^. 

Forr every source we take a bell shape function S that is translated with r2 to give 
thee function Tr<S. 

Tr,S)(x) ) 
,, 2

2 ^ •> cos2
 (TT-IX — r,l). |x — r,| < te. 

0.. otherwise. 
(5.30) ) 

weree tr denotes the radius of the source. The uJt are constants describing the pro
ductionn rate of the source1 /'. with respect to field j . This is reflected in the fact that 
ffi}i} (Tj(Tjtt{Tr,S)(x)(lx{Tr,S)(x)(lx = aJt. 
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E x a m p l ee 1: A x o n gu idance in a s imple concen tra t i on field We will now 
considerr an example simulation, with a single concentration field and a single growth 
cone.. For the domain ft we take the unit circle and put a source at (0.5. 0). This 
sourcee produces at a production rate1 o\\ = 1-0T0 - 4 a field j>\  with diffusion coefficient 
r/ii = 1.0 • 10~4 and absorption parameter A'i = 1.0 • 10~4 . For the width of the source 
wee take w = 0.02. 

Thee growth cone is modelled by using system (5.29) with the functions Ai set 
too \\ = 1. which means that o,, = a r gVp i . Further we use the parameter values 
vv = 1.0 • 10~5 and é = 0.02. Thus the total system we have to solve becomes: 

00 = rfjAp^x) - fcipi(x) + o - 1 i r r i 5 (x ) , V x e ft, 

00 = n(x) • Vp i (x ) . Vx £ Öfi. 

r ,, = ( 0 . 5 , 0 ) (5.31) 

^fê)) = u  i V%(S21 u J ' fe(0)) = ? \v/i\v/i sm (arg (Vp : (r2)) - s 2 ) / \Oo / 

Inn the simulation we solved the diffusion profile using 1514 nodes with six at
tractingg rings and 2 non-attract ing rings around the source location. This gives a 
refinementt such that the node density inside the source support is about 100 times 
higherr than far away from the source. Using the field solution we solved the pa ths 
off 50 growth cones, where we chose the s tar t positions of the cones (XQ. T/Q) randomly 
insidee an initial area. For this we took a circle with radius 0.1 centered at (—0.5.0). 
Thee initial growth directions OQ were chosen randomly from [0.2TT). With the inte
grationn done from t = 0 to t — 1.0 • 105, we obtained the sot of axon paths shown in 
Figuree 5.4. 

Figuree 5.4: Axon paths growing toward target 

Iff we compare this result with pictures of similar experiments with real axon 
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growthh (Dodd and Jessell. [9]). we see that real axons often start to grow away from 
thee initial area before they seem to react to the a t t ract ing field. This could mean 
thatt real axons have a higher stiffness than the stiffness we used in Figure 5.4. We 
thereforee increased the stiffness by setting £ = 0.1. This results in the paths shown in 
thee left panel of Figure 5.5. While this gives a somewhat better result, it seems not 
realisticc to increase the stiffness this far. because one would expect growing axons to 
makee quicker turns. 

Anotherr option would be to assume that the neurons in the initial area excrete a 
repellent.. To implement this we define a new field />_>. with a source located at the 
locationn of the initial area n, = ( -0 .5 .0 ) . The definition of ófl has to be extended 
withh an extra repellent term: we choose og = arg(Vpi - Vpo)- The resulting system 
noww is 

00 = f/1A^,(x) -k!pi{x) +<7 i iT r i S(x) , Vx e ft, 

00 = d 2 Ap 2 (x ) - A-2p2(x) + rT2;jTr:!5(x). Vx e ft. 

00 = n(x) • Vp] (x) = n(x) • Vp 2 (x ) , Vx e ()Q. 

nn = (0.5,0) (5.32) 

dtdt ^ W ^ i n ( a r g ( V P l ( r 2 ) - V p 2 ( r 2 ) ) - s 2 ) y VM<»7 ^ J 

r 33 = ( -0 .5 .0 ) 

withh v — 1.0 • 10~r' and f: = 0.02. The paths of the growth cones are shown in the 
rightt panel of Figure 5.5. This gives paths more similar to the ones observed in the 
experiments. . 

Figuree 5.5: Compared with Figure 5.4. axons have a higher stiffness (left) or sense a 
reppellentt field secreted in the initial area (right). 
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E x a m p l ee 2: A x o n gu idance in a c omp l ex concentra t ion field We «ill now 
considerr a variation of'the previous example where the domain has been changed from 
aa simple circular domain to a more complex domain with four holes in it. These holes 
mightt represent blood vessels or cells where the axons have to grow around and that 
aree also impenetrable to the diffusive guidance molecules. 

Inn this simulation we again use system (5.31) to model 50 growth cones with 
randomlyy chosen initial s tate vectors {xo,yo,4>o) £ [—0.4. —0.2] x [—0.5.0.5] x [0.2-] . 
Forr the field. 2502 nodes were used with refinement around the outer as well as the 
innerr boundaries and around the source location. The results of the simulation are 
shownn in Figure 5.6. 

Althoughh in this case the axons grow nicely around the holes, there is actually 
noo mechanical force in the model that prevents the growth cones from entering the 
holes.. Here the growth cone dynamics alone was sufficient to keep the growth cones 
outsidee the holes. However, if I is bigger, the growth cones will need more space to 
turn,, and might enter the holes if not stopped by a hard boundary. 

Figuree 5.6: (Left) Field on a domain with holes. (Right) Axon paths produced by 
systemm (5.31 ). 

E x a m p l ee 3: A x o n gu idance w i th internal growth cone dynamic s In this 
examplee we will extend our cone dynamics by adding another variable. In t he previous 
exampless the ideal direction, based on the sensed gradients, is directly translated in 
aa change of direction. In real growth cones, however, signaling pathways inside the 
growthh cone are responsible for this translation. We no\\" incorporate such signaling 
pathwayss and represent it by a single variable n £ —1. 1]. where a < 0 means 
steeringg to the left and a > 0 steering to the right. The growth cone translates the 
ideall direction into the signaling pathway dynamics in a way that is similar to the 
wayy that the ideal direction is translated into the direction dynamics in the previous 
examples. . 
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Thee state consists now of (.r. y. o. a) 6 

d d 

Tit Tit 
tj tj 
0 0 

w w 

II and its dynamics are given by 

rcos(ó)) \ 
us in(ö) ) 
—va/£ —va/£ 

(5.33) ) 

\ r ( s in (o„„ - 4>) - a)J 

withh o s again defined as in (5.28). Here, parameters are as in the previous example 
andd c is a parameter that determines how fast the steering dynamics is. If the dy
namicss is fast. i.e.. c is big. we have a ~ s in(o a — o) . resnlting in the previous model. 
Butt if c is small, a kind of zig-zag behavior emerges (Figure 5.7. c = 0.1) tha t is also 
observedd in some experiments (Ming et al. [35]). In Ming et al. [35]. this behavior 
wass thought to occur as a result of al ternating phases of receptor sensitization and 
desensitization.. Our simulation, without such receptor adaptation, shows that oscil
latoryy growth cones paths can already arise as a result of an inertia of the steering 
dynamics. . 

Figuree 5.7: Wiggly axon paths produced by system (5.34). 

Forr completeness, the total system in this case is 

00 = d iAp i (x ) - kipi(x) + anTTlS(x), Vx e Ü, 

00 = n(x) • V f t ( x ) , Vx G ÖQ. 

d d 

dt dt 

r ,, = ( 0 . 5 . 0 ) 

te)= te)= 
( ( 

v r ( s i n ( ( arj j 

ucos((s2)i) ) 
ysin((s2)i) ) 
- r ( s 2 ) 2 / / / 

; ( V p 1 ( r 2 ) ) - ( s 2 ) 1 ) --- ( s 2 ) 2 ) y y 

r2(0) ) 
s2(0) ) 

\a\a00J J 

(5.34) ) 

withh v = 1.0- 10"° and / =0 . 02 . 
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Examplee 4: Axon guidance with membrane-bound guidance molecules in 
topographicc map formation In our last example we consider a more complicated 
modell of a phenomenon that is called topographic mapping [49]. Many neuronal 
connectionss are made so as to form a topographic map of one structure onto another. 
InIn other words, neighboring cells in one structure make connections to neighboring 
cellss in the other structure. An example of a topographic map is the direct projection 
off the retina onto the optic tectum in the brain of non-mammalian vertebrates [13]. 
Onee explanation for the formation of topographic maps that has received strong 
experimentall support is that it is based on the matching of gradients of receptors and 
theirr ligands [37. 52]. For the retinotectal projection, there is a gradient across the 
retina,, in the number of Eph receptors on the growth cones of the retinal neurons. A 
similarr but opposite gradient is found across the tectum in the number of membrane-
boundd ephrin molecules (the ligands for Eph receptors) on the tectal neurons. Axons 
groww out so that growth cones with a low number of receptors come to connect to 
tectall cells with a high number of ligand molecules, and vice-versa. 

AA simple model for this phenomenon is the following (see also [23]). We use 
essentiallyy model (5.29). but we extend it with two extra variables, 3X and 3y that 
representt the levels of two kinds of receptors. These 3X and 3y remain constant during 
growthh and vary with respect to the initial location ro = (.ZQ. yo). We take for these 

jjjj xx =exp(1.39;r0 + 1.18) and fL = exp(1.39;(/0 + 0.35). (5.35) ) 

Wee will assume that there are five fields of which three are diffusive fields and two are 
thee fields of membrane bound ligands. Fields p\. pi and p  ̂are produced by guidance 
cellss located at n = (-0.1,0), r2 = (0.85,0) and r3 = (0.3,0.85). respectively. We 
usee the same diffusion rate d = 1.0 • 10~4 and the absorption rate k = 1.0 • 10 - 4 as 
inn the previous examples. The two fields of membrane bound ligands p4 and p% are 
describedd by explicit functions that are given by 

pp44{x,y){x,y) = exp(-1.39i + 0.21) and pr,(x,y) = exp(-1.39y + 0.14). ;5.36) ) 

Wee will assume that the dynamics of the growth cones occurs in two phases. In 
thee first phase the growth cones are attracted by field p\ and they grow toward the 
guidancee cell located at ro. Once they have reached the guidance cell, which we will 
formalizee by (TTlS)(r) > 0, they switch their behavior and phase two will start. The 
dynamicss of the growth cones during the first phase are given by 

d_ d_ 
dt. dt. 

( x \ \ 

y y 
0 0 

Px Px 

VV V 

= = 

// vcoa((p) 
i 'sin(0) ) 

c/£sin(0yc/£sin(0y - <p) 

0 0 

II o 

withh oq = arg (V/>i(r)j. ( 5.37) ) 

Forr the dynamics of the growth cones in phase two we need assumptions on the 
influencee of the receptors and ligands on the growth. The basic assumption is the 
following.. For each direction, i.e.. x- or (/-direction, we have a couple of receptor and 
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ligandd pairs. For growth in either of these directions it is needed that the concentra
tionn of the ligand in the neighborhood of the cone is above a certain level, which is 
determinedd by the receptor density on the growth cone. We will assume that growth 
inn j'-direction is determined by the product cx — 3xp4(r) (and similar cy = 3yp^{r) 
forr the .(/-direction.) A cx <C 1 means strong inhibition of growth in ^-direction and 
ccxx ^S> 1 means no inhibition. The dynamics is the same as in the first phase, but now 
with h 

<p<p99 = arg (Sgm20(cc)Vp2(r) + Sgm20(cy)Vp3(r)J. (5.38) 

Heree the function Sgmn is denned by Sgmri(x) — x ' l / ( l +xn). Finally we will assume1 

thatt the growth is completely inhibited if both cx < 0.8 and cy < 0.8. 
Too summarize, the total system is given by 

00 = djApjix) - frj-pj(x) + (TjjTrjS(x). V x e Ü . j = 1 3 

00 = n(x)-Vpj(x) , VxeÖfi . j = l 3 

p4(x)) =exp( - l .39a-+ 0.21). Vx € Q, 

p5(x)) = exp<-1.39t/ + 0.14), Vx e Ü, 

atat U 4 

nn = (-0.1,0) 

r22 = (0.85,0) 

r33 = (0.3,0.85) 

// t»cos((s4)i) \ 
usin((s4)i) ) 

•L'/^sin(arg(0ff)) ~ (s4)i 
0 0 
0 0 V V 

(5.39) ) 

r4(0) ) 
s4(0) ) 

XQ XQ 

yo yo 

exp(( 1.39x0 + 1.18) 
Vexp(1.39vy00 + 0.35)/ 

withh v = 1.0 • 10-5 and C = 0.02. 

phasee 1: og — arg (Vpi(r4) J. if (T r i5(r) > 0) goto phase 2. 

phasee 2: <pg = arg (Sgm20 (;3xp4(r4)) Vp2(r4) + Sgm20 (Pypo(r4)) Vp3(r4)J, 

iff (3xp4(r4) < 0.8 or f3yp5(r4) < 0.8) ready. 

Inn Figure 5.8 we see the fields in a simulation of the topographic mapping model. 
Thee three upper panels show the three diffusive fields p\. p2 and p;$. In Figure 5.9 
thee axons paths are shown. The left panel shows the paths of 200 growth cones 
thatt started at the left with randomly chosen initial positions (xo-yo) and orienta
tionss 0Q. Clearly all growth cones are attracted by the guidance cell in the middle. 
Havingg reached this cell they change their behavior and gain attractivity to the fields 
p-2p-2 and p:i. This attractivity is steered by the fields p4 and p.5. which also determine 
whenn growth is completely inhibited. 
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-11 -1 -11 -1 -11 -1 
PA PA 

Figuree 5.8: Fields in the example of' topographic mapping. The three fields in the top 
roww are diffusive fields, and the ones in the bottom row are fields of membrane bound 
ligands. . 
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Too visualize the conservation of spatial order we luwe color coded the initial lo
cationss and end locations of the paths, i.e.. begin and end points of a path have the 
samee color. The result of this is displayed in the left panel and it clearly shows that 
thee 'A' is transferred from the initial area (at the left) to the final area (at the right). 

Thee combination of the membrane bound ligand fields p4 and />-, with the receptor 
densitiess Bx and .i;/ determines what the topographic mapping will look like. Using a 
modell like this for exploring different possibilities for the concentration fields can give 
uss more insight into the forms of the fields and mechanisms involved in topographic 
ma])) formation. 

Figuree 5.9: Axon paths in the example of topographic mapping. (Left) Resulting 
axonn paths, start ing at the left and ending at the right. (Right) Visualization of the 
conservationn of spatial order between the final axon targets and the initial neuron 
locations. . 

5.66 Discussion 

Inn this chapter we have presented a framework for the modelling of axon guidance. 
Inn contrast to the modelling of electrical activity in neurons and neuronal networks, 
suchh a general framework did not exist. Our framework allows for the relatively 
straightforwardd and fast modelling and simulation of axon guidance and its under
lyingg mechanisms. For example, mechanisms that ' t ranslate ' concentration levels of 
guidancee molecules (or gradients thereof) measured at the growth cone's location 
intoo growth speed, sensitivity for certain fields, and growth direction, can easily be 
incorporated.. A major challenge in the study of axon guidance is to understand 
quantitativelyy how the many molecules and mechanisms involved in axon guidance 
actt in concert to generate complex pat terns of neuronal connections. The framework 
wee developed contributes to this challenge by providing a general simulation tool in 
whichh a wide range of' models can be implemented and explored. 



86 6 CHAPTERR 5. AXON GUIDANCE MODELLING FRAMEWORK 

Ourr framework has three basic ingredients, which are the domain, the concentra
tionn fields and the states. The domain models the physical environment where the 
neurons,, axons, and fields live in: the domain can have a complicated geometry with 
piecewisee smooth boundaries and holes. The fields are defined on the domain and 
representt the time varying concentration fields of guidance molecules that are subject 
too diffusion and absorption. The states model the growth cones and targets cells and 
consistt of finite dimensional vectors for which the dynamics are given in the form of 
ODEss that model the mechanisms involved in axon guidance1. 

Specificc numerical methods have been developed that are suitable for solving the 
systemss of equations that typically arise in models of axon guidance. With respect to 
timee integration for the full system a method is needed that can handle the combi
nationn of stiff diffusion equations (describing the concentration fields) and non-stiff, 
nonlinearr differential equations (describing the states). For this a 2nd-order Runge-
Kuttaa IMEX scheme is used. In case of static fields or a quasi-steady-state approxi
mationn an explicit time integrator will suffice, for which we use the classical 4th-order 
Runge-Kuttaa method. 

Thee spatial discretizations needed for solving the elliptic field equations that arise 
afterr discretization in time, are based on arbitrary node sets. Voronoi diagrams 
aree used for the selection of suitable node sets as well as for the discretization of 
thee equations. Refinement and adaptivity of the1 discretization are based upon the 
locationn of the highly localized sources only, to speed up the node selection process. 

Wee have implemented the framework and the numerical algorithms in a set of 
Matlabb programs. In these programs one can simulate a wide range of models by 
definingg appropriate Matlab data-structures and solve them by applying the spatial 
andd temporal numerical solvers. At the moment, the code is typical research code 
withoutt extensive documentation, but we are working on a more user-friendly version. 

Possiblee extensions of our framework include the incorporation of randomness in 
thee guidance of the axons and the possibility that boundaries (of impenetrable holes, 
forr example) can produce guidance molecules. The latter extension would make it 
possiblee to model also tissues, rather than individual cells, that attract or repel axons. 

Appendix x 

Fieldd set-up time To examine how the time for setting up the field depends on d 
andd k, we consider the solution of (5.3) with a point source at the origin, 5(x, t) = 
6(x).. and an initial field p = 0 at time r = 0. The field will be radially symmetric. 
andd the concentration, which depends only on the radius r and the time t, is 

^ • , ) = y 0 — i ^ — d -- - 2 ^ ^ ( r Vr f J - (5-40) 

wheree the limit of the solution is the steady state solution, which satisfies (5.7). and 
KQKQ is a modified Bessel function of the Second Kind [1]. To see how fast the field 
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approachess the steady state field, we will investigate 

ppxx(r)-p(r.t)(r)-p(r.t) 1 r e - ^ ( ' + ^ ) 
c(r.t)c(r.t) = ————• = -, r- ƒ as. 11 rx 

P~(r)P~(r) ~ 2K0(r<fk\'l^ t 

whichh represents how close the field is to its limit value. For example, a value c(r. t) = 
0.01.. means that at time t the field is for 99% set up. at location r. Using an 
asymptoticc expansion for large t for the integral, we find that 

11 e'kt 

c(r,t)c(r,t) ^ ^ (5.4i; 

Thiss can be used to get an indication of the time scale of the field dynamics. Such 
ann indicator is important if we want to work with fields of which the sources do not 
movee through the domain. In case of moving sources, one might wonder how the 
speedd of a source influences the produced field. To this end we examine the solution 
off (5.3) with a point source that moves with constant speed. 

Fieldd produced by moving source Consider equation (5.3) with a point source 
thatt moves with constant speed v along the x-axis in positive direction, i.e., S(x,t) = 
ö(xö(x — vt), with v = (v,0)T. If we make the 'ansatz' that the solution p(x,t) is the 
summ of a solution profile p that moves with constant speed with the source and a 
'residual'' solution r). 

p{x.p{x. t) = p(x - vt) + r/(x, t). 

wee can rewrite (5.12) to 

—— TJ(X. t) = rfAó(x-vt) + v • V/5(x - vt) - kp(x - vt) + S(x - vt) + dAr)(x, t) - kr)(x, t). 
at at 

(5.42) ) 
Iff p satisfies the equation 

dAp{x)dAp{x) + v • Vp(x) - kp(x) + 6(x) = 0. (5.43) 

wee see that equation (5.12) will turn into a equation for JJ with only diffusion and 
absorption.. Therefore. ?/ will damp out for long times, resulting in p(x. i) ~ p(x — vt). 
Thee solution of (5.43) in polar coordinates (r.0): x — rcos(ó). y = rsin(<#). is given 
by y 

(>{r.Q)(>{r.Q) = ^ e x P \-\l~A ^~7^=, 1 rcon{0) ] K0 

(5.44) ) 

file:///-/l~A
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Thiss solution we will compare to the steady state solution of (5.13) 

'•<r)) = eaK"  ( r / f ) • (5-45) 
wheree the subscript s refers to the steady state. So we will consider the quotient 
functionn q(r, 0) — /3(r, o)/ps(r) and we want to investigate the geometry of the region 
wheree this quotient is close to 1. For example, given a value 7 > 1. and slightly bigger 
thann one, we could consider the region {(r, <p) | 7 _ 1 < p/ps < l}-  Using a rescaling 
off s — ry/k/d and a = v/(2vdk), we get 

q = A ==  c - q - s co S ( 0 ) ^o ( ( v / l + a 2 ) - s ) 
PsPs A'o(s) 

Too analyze q we use the asymptotic expansions of KQ and K\. both modified Bessel 
functionss of the Second kind, 

KK00(x)(x) = ln(2) - ln(a;) - l E + 0 (x2) . K, (x) = i + O (x) (x [  0). (5.46) 

KKQQ{x){x) ~ ^ e " 1 , K, (x) ~ yf^e'x (x - oc). (5.47) 

wheree 7 ^ is Euler's constant [1]. 
Closee to the source, q is close to 1 as follows from lim.sjo q(s. (f>) — 1, which can 

bee seen by using the expansion KQ around 0. To find the behavior around 0, we will 
examinee the derivative of q with respect to s, 

\\ Kx(s) J -Ki{\/l+a 2s) , ,1 

(Ko(s)(Ko(s) Ko(s) J 

Thiss is equal to q times some factor that is increasing with s and has limit values — oc 
att .s = 0 and 1 — \ / l + a2 — acos(<£) at s — oc. For é — 0 this limit is negative, while 
forr d> — n this limit is positive. Therefore, there is an interval [—<pt. <t>t]  with 0t G [0,7r] 
off possible choices of 0 for which q decreases with s while keeping 0 constant. 

Forr 0 outside this interval, i.e.. <j>  G (—n. —ét) U {<pt-n]-  there is an .% > 0. with 
ddssq{sq{s00.. 0) = 0, such tha t q as a function of ,s decreases for ,s G (0. s^) and increases for 
,ss G (Stp, oc). The function 0 —> s<f> itself is decreasing on (0f,7r] with l im^ j ^ «^ = oc. 
Too find (pi G [0,7r], we solve 

1-v /TT T .2 2 
11 - \/l + Q2 - Q COs(ót) = 0. =S> COs(#,) = < 0. 

a a 

wheree the last inequality follows from the fact tha t a > 0. Therefore. (pf G {\-
whichh is increasing with a and has limits Ot — \K with Q | 0 and ot = TT for a -
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Wee can now conclude that close to the origin there is some region where we have 
qq < 1. To find an estimate of the size of this region we will use the asymptotic 
expansionn of q for small s, 

èln(ll + a2) 

" - 1 + l n ( , 2 ) - l n ( 2 ) + , E
+ 0 ( S ) --

Neglectingg the higher-order terms and setting this equal to 7 gives 

1 1 

,2 2 
ss = 2 e - ^ ( l + a2)2ë^TT = > r = 2e-^J- 11 + ^ - ) . (5.48) 

VV k \ 4dk J 

Iff we choose 7 = 0.99, we get an indication for the region around the source, where the 
differencee between the moving profile and the quasi-steady-state solution is smaller 
thann 19c, given the values of the diffusion rate d, absorption rate k and moving speed v. 
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Chapterr 6 

Numericall solution of the 
framework'ss equation systems 

6.11 Introduction 

Thee current chapter considers different methods for numerically solving special sys
temss of coupled PDEs and ODEs/DAEs . The PDEs describe diffusion processes of 
concentrationn fields and are nonlinearly coupled to the ODEs/DAEs. that describe 
thee motion of particle-like objects that interact with these fields. 

Thee start ing point for our research on such systems is an article of Hentschel and 
Vann Ooyen [21]. where they model the outgrowth of axons out of neurons. The growing 
axonss react to different concentration fields of so-called 'a t t rac tants ' and 'repellents' 
thatt are subject to diffusion and absorption processes. The movement of the axon 
heads,, i.e.. when growth occurs, is determined by local values and gradients of the 
fields.fields. At the same time these so called growth cones act as sources for the fields 
ass do the target neurons and messenger cells. In [21] growth cones were modelled 
byy their location, for which ODEs were proposed and point sources were used in the 
diffusionn equations for the fields. The equations were solved by using quasi-steady-
statee approximation for the fields on an infinite 2-dimensional domain, effectively 
reducingg the system to a finite dimensional system of ODEs. that was solved using 
s tandardd explicit RK-methods. 

Too facilitate the research on this so called axon guidance Krottje and Van Ooyen 
([30].. Chapter 13) developed a simulation framework for a certain class of such systems. 
Thee more general approach of this framework allows for the definition of a number of 
fieldss and states that are linked to each other. The fields can be defined on domains 
withh piecewise smooth boundaries on which no in- and outflow is assumed. Sources 
aree described by continuous bell-shaped functions with local support instead of point 
sourcess which may result in ill-defined systems ([29]. Chapter 4). States are defined 
ass objects that interact with the fields having a certain position and are modelled in 

91 1 
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a.. finite-dimensional way. resulting in ODEs/DAEs for their dynamics. They can act 
ass sources for the fields and their movement is determined by local field values and 
gradients.. From a modelling perspective they can be growth cones, target neurons or 
artificiall sources in an experimental setting. 

Itt has turned out that the developed framework has some features which make it 
numericallyy challenging. First, there are the small moving sources for the diffusion 
equations.. Efficiently finding a solution approximation of the field equations may 
needd some kind of refinement and adaptivity in the setting of geometrically complex 
domainss with possibly a number of holes. Second, the system consists of diffusion 
equationss giving rise to stiffness and ODEs/DAEs that are non-stiff and nonlinear. 
Thiss makes that choosing a suitable time integration method is not a trivial task. 

Wee wrote a set of Matlab functions for carrying out simulations of models defined 
inn the framework. To address the first challenge we used a spatial discretization that 
cann handle complex domains as well as refinement and works with a set of independent 
nodess instead of a grid ([29]. Chapter 4). It uses a Voronoi diagram, both for building 
locall approximations and proper placement of nodes. For the time integration we used 
aa second order Runge-Kutta IMEX method based on a combination of the implicit 
andd explicit midpoint rule. 

However,, the question arises whether instead we could use a standard FE package 
forr solving such systems and. if possible, how it would compare to using our set of 
Matlabb functions if one considers efficiency. To get some insight into these issues, 
wee will therefore examine in this chapter simulation of models in the framework 
usingg both our set of Matlab functions as well as a. typical FE solver developed for 
parabolicc PDEs. We will pick as a representative solver the program Kardos [31]. 
Kardoss includes an adaptive multilevel finite element package and uses Rosenbrock 
methodss for time integration. 

Thee organization of the chapter is as follows. We start with a description of 
ourr simulation framework in Section 2. We will give a short introduction to our 
ownn developed Matlab package. AGTools (Axon Guidance Tools) in Section 3 and 
too Kardos in Section 4. Section 5 is devoted to the application of Rosenbrock time-
integrationn methods within our own framework. In Section 6 we will compare the 
efficiencyy of both implementations and we finish with a conclusion in Section 7. 

6.22 Simulation framework 

Fromm the mathematical point of view the framework consists of a number of diffusion 
equations,, the PDEs. which contain besides the diffusion terms, absorption and source 
terms.. These equation are strongly coupled to nonlinear ODEs/DAEs. of which the 
righthandsidess contain field values and gradients of the fields evaluated at certain 
locations.. We will not go into the biological interpretation here, which can be found 
inn ([30]. Chapter 5). but we want to stress that the ODEs/DAEs describe particle-like 
movingg objects that interact with the fields. This interaction occurs by means of field 
sourcess associated to the objects as well as by movement of the objects guided by 
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locallyy measured field values and gradients. 

Modell state The models in the framework are from the mathematical perspective 
infinite-dimensionall dynamical systems of which the model state is a combination of 
fieldss and finite-dimensional particle states. 

Thee fields are defined on a 2-dimensional domain Ï7 with a piecewise smooth 
boundaryy and are denoted by pj•: Q —> M, j = 1 AI, where AI denotes the 
numberr of fields. They will be assumed to be elements of Hl (Q). the space of square 
integrablee functions defined on $} of which also the first-order derivatives are square 
integrable. . 

Thee particle states are finite-dimensional vectors u, E Mn' of which the first two 
componentss denote a location r, E Q and the rest of the variables is gathered in a 
vectorr s-j E M.n'~2 and in the following referred to as the s-part of the state. This part 
mayy be obsolete and therefore the particle states arc at least 2-dimensional. We will 
denotee the number of particle states by A7. 

Concluding,, the model state, which we denote by x. is of the form 

x == (px PM.U, uN) E(Hl(n))AI x R " 1 + - + n * . (6.1) 

Modell dynamics To complete the definition of a dynamical system we wTill add 
too the model state x the dynamics in the form of the PDEs. ODEs and algebraic 
equations.. We start with the dynamics of the AI fields. For all fields we assume 
thatt there is no inflow or outflow across the boundary dQ of Q, giving the boundary 
condition n 

nn • Vpj - 0. on dQ.. j = 1 AI. (6.2) 

wheree n is the outward normal vector. We assume that for the first M  ̂ fields the 
dynamicss is given by full diffusion equations. 

N N 

ddtt()j()j  = Ljp3 + ^^°ji(si)TTlS, on ft. j = 1 . AId. (6.3) 
ii  = l 

wheree L3 — djA — kj for all j — 1 AI(}. In each diffusion equation there is a 
sourcee term <7;,(S()T'r.5' associated with every particle state u, = (r^.s^). Here the 
functionn o"J?: E

n ' —* M. denotes an excretion rate of the source term and the function 
TTrr.. S: Q —>• E denotes a continuous source profile. The latter is defined by applying 
aa translation operator Tri to a general source profile S: Q —> IR, where the operator 
iss defined by (TFi5)(x) = S(x — r,) for all x. x — r, E O. When the s-part of the 
particle-statee is absent we will assume the <jyx to be constants. 

Forr the rest of the fields we will assume that they are in quasi-steady-state and 
usee for their dynamics the equations 

Ar r 

00 = Ljpj + Y  ̂ VjiMTr, S. on SI. j = Md + l AI. (6.4) 
; = i i 
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beingg defined similarly as in (6.3). Note that we can still talk about their "dynamics' 
becausee the source terms contain the time-dependent particle states. 

Forr the particle states we assume in the same way a division in states governed 
byy real dynamics in the form of ODEs and states determined by quasi-static laws in 
thee form of algebraic equations. For the first Nd particle states we assume that there 
aree functions G, such that their dynamics are given by 

ddttuull = Gl(t.ul.p(rl).dJp(rl).dyp(rl)). i = l Nd. (6.5) 

Heree we use the vector notation p(r,), meaning p(i\)j = pj(r,-) for all j , and dxp(rl), 
meaningg dxp{ri)j  = dxp3{Yi) for all j . For the remaining particle states we assume 
thee dynamics to be of the form 

00 = G^t.u^pir^.dspir^.dypir,)). i = Nd + 1 N. (6.6) 

Wee will assume that the function G, in equation (6.6). i.e.. only for / = Nd -+-
1 . . . . ,, N, can be decomposed in a function for the position, G*\ and a function for 
thee s-part. Gf. of the form 

G*u—)=(Gf((..,P(rS;Ïri),V(ri)))-- < = ̂  + ' * ™ 
inn such a way that, using these, the r,; and Sj are uniquely solvable from equation (6.6) 
iff the time t and fields pj are given. 

Abstractt formulation Let us, before proceeding, for convenience first, define the 
indexx sets of the dynamic fields, 3d ~ { 1 , . . . , Aid), static (dynamic) fields, Js = 
{Aid{Aid + 1 AI}. dynamic states. Id = {1 Ar^}. and static (dynamic) states, 
IIHH — {J\Td -j- 1, . . . ,7V}. The equations (6.2)-(6.6) together constitute the dynamical 
systemm behind the model that can be written in the form 

ii  = f{t,z,y) z(0) = z0 

withh (6.8) 
00 = g(t.z.y) y ( 0 ) = y o . 

Here,, the z is composed of the dynamic fields and states, i.e.. the fields pj for j £ Jd 
andd the states ut for / £ Id. and therefore consists of a selection of components of the 
totall model state x in (6.1). Likewise, the vector y is composed of the static fields and 
states,, i.e.. the fields p3 for j £ Js and the states u ; for i G 7S, forming the remaining 
partt of the model state x. The initial condition consisting of the vectors Zo and yo 
hass to be chosen in such a way that it obeys <?(0.zo,yo) = 0. 

Thee dynamical system (6.8) can be turned into a 'lower-dimensional' system for 
zz only, if we assume that for given values of z and t we can solve y uniquely from 
g(t.z.y)g(t.z.y) = 0. This yields y as a function of / and z. y = h(t.z). resulting in the 
system m 

zz = f{t.z.h{t.z)) with z(0) = z0. (6.9) 
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Wee will now examine equation g(t. z.y) = 0 in more detail. Here, the vector z is 
composedd of the dynamic fields and states, i.e., pj with j 6 Jd and û  with i € Id-
Assumingg that these and the time t are given, solving y from g(t,z.y) = 0 comes 
downn to solving the static fields and states from 

00 = LjPj + ^2 aji( si)Tr tS. j € J g . 
iei=i„ui,iei=i„ui,  ( 6 1 0 ) 

00 = Gi(t.ui.p(ri),dxp{r i),dyp{r i)y i e I8. 

Inn the case where we use the general functions Gt we have to solve this full system, 
whichh is nonlinear and infinite-dimensional. Using Newton iteration is a possibility, 
butt one that requires solving elliptic equations every iteration step. An appealing 
alternativee exists if we use the extra assumption that the functions Gt are of the 
speciall form (6.7). We can then turn the system into a finite-dimensional system for 
whichh we do not have to solve elliptic equations for every iteration step, but we have 
too do it only once. 

Too this end we first eliminate the elliptic equations from the system (6.10). Using 
these,, the fields p3 can be expressed in the Sj and r̂  by writing 

PjPj = ~ ^2 Vjk(sk)LJlTrkS, j eJs =>  p{ri) =  -diag([<r(s)][S(f,rz)]). 
fee/du/, fee/du/, 

(6.11) ) 
Here,, the operators L,1, that commute with the scalars a3k- denote the inverse op
eratorss of Lj with respect to the boundary conditions (6.2). The s and f denote 
thee vector (s^\ . . . . s ^ ) T and ( r^ \ . . . . r ^ ) T , respectively, while the matrices a and S 
aree defined by [cr(s)]jk = Cjk(sk) and [Sfr.rjj/cj = (L~1TrkS)(ri), respectively. The 
functionn diag(-) is defined to return the diagonal vector of its argument. Defining the 
matrixx S^ by [Sx(f, Ti)]kj — 9x(L~1Trk.S)(ri) yields a similar expression for dxp(rz) 
withh S replaced with Sx . while a similar definition of Sy results in a similar expression 
forr dyp{Yi). 

Thee second equation in system (6.10) can now be written as 

00 = G i(*,(r i ,s0,-diag([<T(8)][S(f,r i)]),-diag([o-(s)][S r(f,r i)]), 

-diag([CT(s)][S,(f,r ,)])) ,, / e / s . (6.12) 

wheree we wrote the state u^ as (r;,Si). In doing this we have replaced the infinite-
dimensionall system (6.10) with the finite-dimensional system (6.12). where the s and 
thee f are composed of all the S; and rl, respectively (i E Is U Jd), but only the 
staticc Si. Ti are the unknowns. Although the resulting system (6.12) is essentially 
finite-dimensional,finite-dimensional, applying Newton iteration requires solving elliptic equations each 
iterationn step, needed for evaluation of the matrices S. Sx and Sy. However, if the G{ 
aree of the form (6.7). the system decouples. It is then possible to solve the static r ; 
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firstt using the functions G'-. Afterwards, all r, are known and elliptic equations have 
too be solved To find the S. S., and S y . Finally. Newton iteration is used to solve 

00 = G*(f . s l - . -c l iag( [<r(s ) ] [S]) . -d iag([ t r ( sJ ] [S J . ] ) . -d iag([<r(s ) ] [S t f ] ) ) . / e ƒ,. 

forr the static .s,-, where we left out the arguments of the matrices S, S,r and S y . 

6.33 Numerical methods in AGTools 

Inn This section we will go into the numerical machinery implemented in AGTools for 
approximatingg solutions of the systems (6.2) -(6.6). We will start with making some 
generall remarks on the adopted approach for discretizing the model equations. 

Inn general there are two approaches for writing down full discretizations of time 
dependentt PDE systems. The most used one is called the Method of Lines (MOL) 
approachh and star ts with a spatial discretization of the dependent fields and their dif-
feretiall equations, turning the system in a large, but finite-dimensional ODE-system. 
calledd the semi-discrete system. Then a suitable time integrator is selected for the 
temporall discretization to yield the fully discrete solution. 

Ann advantage of the MOL approach is that one can choose a suitable method 
fromm a large collection of t ime integration methods for ODEs that are available. The 
downside11 is that the semi-discrete systems might become very complicated due to 
thee presence of certain discretization- or interpolation operators. Direct application 
of.. for example Rosenbrock methods, which involve the evaluation of Jacobians. can 
becomee cumbersome or even impossible. 

Thee second approach is the so-called Rothe approach [39]. Instead of first choosing 
aa spatial discretization it s tar ts by selecting a time integration method. This will 
resultt in a sequence of PDEs in time containing only spatial derivatives (boundary 
valuee problems). In this approach the PDEs are often stated as an abstract, ODE in a 
certainn Banach space making that the analysis of the used time integration methods 
movess to the realm of functional analysis and therefore becomes much more difficult 

Thee harder analysis however is accompanied by a number of advantages. First, the 
approachh seems to have a cleaner appearance, not having to deal with difficult ODEs 
withh discontinuities that are the result of spatial discretizations, but instead with 
ellipticc equations coupled to algebraic equations, where everything is still smooth 
fromm spatial perspective. Second, it allows for nice error estimators, as is clearly 
describedd and illustrated by Lang [31]. 

Wee will adopt here the Rothe approach and not consider any functional analytic 
aspects,, but take the practical approach in which we assume that our time integration 
methodss work well for our cases, i.e.. do not display any instability behavior. 

Timee integration 

Withh respect to the time integration it is of importance that system (6.2) (6.6) con
sistss of stiff and non-stiff parts . The diffusion in the field equations gives rise to 
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stiffness,, while the nonlinear state equations are not necessarily stiff. For the time 
integrationn of stiff equations we would like to use an implicit method, but using such 
aa method becomes very complicated for the system at hand and is not really suitable 
forr the non-stiff part as well. 

IMEXX scheme A class of schemes that seems to be appropriate here, is the class 
off IMEX (IMplicit/EXplicit) schemes. Such schemes can be applied to dynamical 
systemss of the form z = F\(t.z) + i^ft .z). One part of the vectorfield F\ + F2, 
sayy F], is treated implicitly by the scheme, while the other, i.e.. F2. is treated ex
plicitly.. Different IMEX schemes have been developed, under which there are the 
popularr IMEX-BDF schemes that are of multistep type [26]. We. however, will use a 
Runge-Kuttaa IMEX scheme, because we prefer to work with one-step methods. Es
peciallyy when working with spatial adaptivity, implementation of multistep methods 
cann become very complicated due to the fact that every time level has its own spatial 
discretization. . 

Wee will use an IMEX-midpoint scheme, which can be seen to be a combination of 
ann implicit and an explicit midpoint step, and is given by 

zzss = zn + | rFi ( f n + \r,zs) + 2( i n . z„), 
// . x (6.13) 

z„+ii = 2z.s - zn + T[F2(tn + ir,z. ,) - F2{tn.zn)y 

wheree the s in zs refers to the intermediate stage. This is a second order time 
integrationn method and the implicit part, i.e., the implicit midpoint method, is A-
stable.. Also, using this scheme for the systems at hand never revealed any stability 
problems. . 

Applicationn of (6.13) In the application of this method to the system (6.2)-(6.6), 
wee use the representation (6.8) and choose the implicit and explicit parts as shown in 

N N 

OOttpjpj = Ljpj + ^2(Tji{Si)TriS. j £ Jd, 

ddttUi=Ui=  0 + Gl(t,ul.p{r,).dxp(rl).dyp{r i)). i E Id. 

wheree these systems only represents the first equation of (6.8). Application of the 
IMEX-midpointt scheme leads then to the following solution process. 

Startingg at the beginning of a time step with values p" for all j and u^ for all i. 
thee first equation of (6.13) for our system reads 

.v v 
(ƒƒ - \TLJ)P) = p] + \TY;°3iW)Tr';S. j E Jd. (6.14) 

J - I I 

u^ufu^uf + ^rG?. i£ld. (6.15) 
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wheree G\l = G?(tn. u?.pn(r?), dxp
n{r?). dyp

n{r?)). Equations (6.14) and (6.15) 
aree used to determine the dynamic fields pj and states uf. for j G Jj and i € Id, 
respectively.. For evaluation of the static fields p3 and states ut. for j E Js and i E Is. 
thee second equation of (6.8). which takes the form of (6.10). will be used and reads 

00 = Ljpsj+  Y, °ji(sSi)TrrS. jeJs. (6.16) 

00 = Gi(tn + s(rr).dxp
s(rr).dyp*(rr)).  i <E / , . (6.17) 

Therefore,, to determine the intermediate stage values, elliptic equations for the fields 
havee to be solved for every field. For the dynamic fields these are equations (6.14) 
andd for the static fields these are (6.16) and thus part of a larger system that can be 
solvedd using the method described at the end of Section 6.2. 

Havingg all fields and states of the intermediate stage determined this way. we turn 
too the second equation of (6.13). which reads for our system 

22f>jf>j  ~ Pn3 + T E {°ji(*ï)Tr;S  - ari(s?)Tr,,S) , j € Jd, (6.18) 

< + T G * .. i£ld. (6.19) 

wheree G? is defined similarly as Gf and the upper index s refers to the intermediate 
stage.. After using equations (6.18) and (6.19) for solving the dynamic fields p™+l 

andd states u- l+1 we once more have to solve a system similar to (6.16) and (6.17). 
Therefore,, the whole time stepping procedure amounts to solving one system of linear 
ellipticc equations (6.14) and two systems of the form (6.16) and (6.17). 

Spatiall discretization 

Forr solving the field equations we use an unstructured (meshfree like) approach based 
onn an arbitrary set of nodes in the domain. This approach facilitates dealing with 
complexx domains, refinement and adaptivity: the latter is needed in cases where we 
havee moving sources with small support. A thorough description of the method can 
bee found in ([29]. Chapter 4). We will briefly outline it here. 

Functionn approximation Given function values on the nodes, we use a local least-
squaress approximation technique to determine for every node a second-order multi
nomiall as a local approximation of the function around that node. For this we use 
thee function values on a number of neighboring nodes. Because every second-order 
multinomiall can be written as the linear combination of six basis functions, we must 
choosee at least five neighbors for every node to determine such an approximating 
multinomial. . 

Withh this procedure a set of function values is mapped onto a set of local approxi
mationss around every node. If we assign to every node a part of the domain for which 

.»» + i 

u" + 11 = 
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wee assume the local approximation to be valid, such that the whole domain is covered, 
thiss results in a global approximation. Let Nn denote the number of nodes, then for a 
givenn set of function values in a vector w G RA". we denote the global approximation 
byy Fapp{w) E Z-i(fi), where Li(fi) is the space of integrable real functions defined on 
fic»fic»22. . 

Voronoii diagrams For choosing neighboring nodes of nodes, as well as for assigning 
partss of the domain to the nodes, we use the Voronoi diagram [11]. It assigns to every 
nodee a Voronoi cell, which is the set of points closer to the node than to every other 
node,, hence dividing the domain and at the same time creating neighbors in a natural 
way.. Because a Voronoi diagram extends to all of R2, we will truncate it by connecting 
thee nodes on the boundary by straight lines, resulting in a bounded diagram. From 
noww on all our diagrams will be truncated ones, but we will still refer to them as 
Voronoii diagrams. Determination of such a diagram can be done in Ö (Nn \og(Nn)) 
operations,, where Nn is the number of nodes [7], We store the diagram in a totally 
disconnectedd edge list [7], so that searching neighboring nodes for every node becomes 
aa process of O (Nn) operations. 

Variationall problem The stage equations (6.14) are of the form (aA — 0)p+fTus — 
0,, with a = \rdj > 0, /3 = 1 + \rkj > 0, / r h s given by the right hand side of (6.14), 
andd the unkown psj replaced with p. Solving such equations can be done by solving 
thee variational problem of minimizing Av&r(w, w) - L âr(S, w) over w e H1 (Q) [2, 29], 
where e 

AAvarvar{v,w)={v,w)= / \aVv • Viu+ \fivwdx, Lv a r( / r h s ,
 w) = / frhswdx. 

JnJn Jn 

AA direct discretization of this problem is to minimize 

^ v a r ( i ? a p p ( w ) . F a p p ( w ) )) - L v a r ( / r h s , F a p p ( w ) ) , 

forr all w e RN. After replacement of /rhs with an approximation Fapp(frhs)- where 
frhss is the vector of node values of / rhs, it can be shown ([29], Chapter 4) that sparse 
matricess AVAr and LVSLT exist such that 

1 1 
-w T A v a r ww = A v a r (F a p p (w),F a p p (w)) , 

f r L L v a r WW = £ v a r ( ^ a p p ( f r h » ) ^ a P p ( w ) ) . 

Iff A is non-singular the discrete problem has a unique solution w = /l^Lvarfrhs-
Withh the algorithm for finding the Voronoi diagram comes a lexicographical ordering 
off the nodes that will give the sparse matrices a band structure, which is advantageous 
whenn solving the system directly using an LU-decomposition. 

Convergencee tests show that the numerical solution is 2nd-order convergent in the 
I2-norm,, with respect to the maximum distance between neighboring nodes ([29]. 
Chapterr 4). 

file:///fivwdx
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Choosingg nodes To distribute nodes appropriately over a domain we make use of 
Lloyd'ss algorithm [10]. This algorithm is based upon the determination of Voronoi 
diagramss and the process of shifting nodes to centroids of Voronoi cells. An alternating 
sequencee of these two operations distributes the nodes equally over the domain, in 
thee sense that distances between neighbors will tend to become equal throughout 
thee diagram. To achieve refinement at certain points, we use a variation of Lloyd's 
algorithm.. Here, after shifting the nodes to their centroids. an extra shift in the 
directionn of neighboring nodes is added. To determine for a particular node which of 
itss neighbors are attracting it. all nodes are given an integer type. Nodes will then be 
attractedd to the neighbors with higher type than their own type. To get refinement 
aroundd a certain point in the domain, a node is fixed at that point and several rings 
off decreasing node type are defined around it. The extended Lloyd's algorithm then 
movess nodes around, which results in a refinement around the fixed node. 

6.44 Introduction to Kardos 

Inn short. Kardos [31] is a software package that can be used to approximate solutions 
off systems of nonlinear parabolic equations. Its main features are that it follows the 
Rothee approach using Rosenbrock-type time integration methods and multilevel finite 
elementt methods. It makes use of a posteriori error estimates for local refinement and 
adaptivityy in space and time. We will now consider both the used Rosenbrock methods 
andd finite elements methods in some detail. 

Rosenbrock-typee time integration 

Wee first consider Rosenbrock schemes in general for a system z = F(t.z) in W". 
seee [20. 31. 26]. The scheme determines from zn given at time level tn. z„ + ] at time 
levell tn + i = t„  + T. To accomplish this it uses .s stage vectors k,. /' = 1 .s. and 
coupledd to that the arguments zni. used for function evaluation. To write down the 
schemee we use the following notation, which results in a compact way of writing the 
Rosenbrockk formulas (different from [20. 31. 26]): 

K„K„  = [ki . . . ks]  . Zns =  [z„i . . . z„,.] . ttlll  = [t„i  . . . tnfl]  e Rs. 

FFnsns==  [F(tn].zul)...F(tn,.zlts)}. 1 = [ l . . . l ] 7 ' e K 9 . 

Notee that Ks. Zns and Fns are matrices in MmXs. The Rosenbrock method is com
pletelyy defined by the ,s x ,s coefficient matrices A (strictly lower triangular) and 
rr (lower triangular), here the latter having every diagonal entry equal to " . and the 
.s-dimensionall coefficient vector b. The scheme reads then 

KKHH = F„ 8 + T[DZF]KJT + T[dfF}(Tl)T. Z„,  - u„l r + TKSA
T. 

znn + i - z„ +rK sb. tTltl = tnl + TAl. 
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wheree [DZF]  denotes the Jacobian matrix at ( r n . z n ) . Likewise, [dtF]  denotes the 
partiall derivative at (tn,zn) with respect to time t. Because of the fact that the 
matrixx T is lower triangular we can solve successively for the columns of Ks, i.e., the 
stagess kj. 

However,, it has turned out that we can avoid a number of matrix-vector multi
plicationss if we work with stages defined by the columns of the matrix Zs = rKsT

T', 
ass is well-known. The resulting system is then 

\Z\ZSSY~Y~TT = Fns + [DZF]ZS +r[d tF](Tl)T. Zns = unl
T + Za{AT' 1\T 1\T 

ttnnl+TAl, l+TAl, 
(6.20) ) 

z n + 11 = zn + ZS(T
 T b ) , t r 

inn which we will denote the columns of the new stage matrix Zs by zS|. Again the 
columnss can be solved successively after rewriting the equation for the matrix Zs as 

 Z8 = Fns - \ZS ( r - 1 - l-l)T + r{dtF}(Tl)T, 

wheree (T^1 — ^ / ) and (^4r_1) are strictly lower triangular matrices. Therefore, 
withh e t the vector with the ith component equal to one and zero otherwise, we have 
forr all the stages z^ = Zsei the system 

zznini = zn + Za(ef Ar-r)T, tni = tn + r (e f Al), (6.21) 

, )) - \ZS (ef ( r - 1 - I / ) ) T + r[d tF]  (efTlf . 

(6.22) ) 

Inn Kardos actually a more sophisticated Rosenbrock method is being used, which 
cann handle more general systems H(t,z)z = F(t,z). However, the resulting method 
willl be equivalent to (6.20) for our system z = F( i ,z ) . Therefore we do not describe 
thiss method here. 

zzF})zF})zslsl = F(tr 

Example:: ROS2 As an example consider the 2nd-order method ROS2 [26] defined 
by y 

A A 00 0 
11 0 

1 1 bb = m m 
2 2 
i i 
2 2 

(6.23) ) 

whichh is L-stable for 7 — 1  | \/2. It is also a so-called W-method, meaning it is still 
off 2nd-order when using arbitrary approximations of the Jacobians [DZF]  and [dtF\. 
Wee will apply (6.23) as a W-method in Section 6.5. The stage equations from (6.21) 
andd (6.22) combined with the time step equation for z n + i in (6.20) yield the scheme 

z« i i 

Zrz2 2 

Zn-- <-nl — tn . 

( ^ // - [D tF]}  z.sl = F(tnl.znl) + r^dtF], 

zT11 + ^ z s l . tn2 = tn+r, 

( ^ // - [D,F]) zs2 = F(tn2.zn2) - al - T>)\dtF]. 

A, , 
2 - f ' ' 

Zn+11 = Z„ + ^-Za i + è z s 2 ' 
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Multilevell finite elements 

Too solve the system of linear elliptic boundary problems (6.22) Kardos utilizes a 
multilevell finite element method. Its main idea is to replace the solution space by 
aa sequence of discrete spaces that have successively increasing dimensions yielding 
improvingg approximations of the solution. 

Assumee there exist an admissible finite element mesh Th at t = tn and an asso
ciatedd finite dimensional space Sh consisting of all continuous functions (j) that are 
polynomialss of order q when restricted to an arbitrary element T G Tfx. The standard 
Galerkinn finite element approximation satisfies the equation 

(LnzJi55 0) = (rni, d>) for all 0 e Sh. (6.24) 

Heree Ln is the weak representation of the differential operator -^-1 — [DZF]  on the 
left-hand-sidee in (6.22) and rni stands for the entire right-hand-side in (6.22). Since 
thee operator Ln is independent of the stages i its calculation is required only once 
withinn each time step. 

Stabilizationn To overcome the well-known inconvenience that the solutions zsi may 
sufferr from numerical oscillations caused by dominating convective terms, Kardos uses 
aa stabilized discretization by adding locally weighted residuals, resulting in 

(L(Lnnzzhh
ai1ai1d>)+d>)+  Y, {Ln*

h
slM4>))T - (rnt̂ )+ Y. (rh

sl,w(é))T (6.25) 
T£TT£Thh T£_Th 

forr all (j>  e Sh- Here w(4>) is defined with respect to the operator Ln. Two impor
tantt classes of stabilized methods are the streamline diffusion and the more general 
Galerkin/least-squaress finite element method, both of which can be chosen in Kardos. 

AA posteriori error estimates A posteriori error estimates provide the appropriate 
frameworkk to determine where a mesh refinement is necessary and where degrees of 
freedomm are no longer needed. 

Afterr computing the approximate intermediate values z^ a posteriori error esti
matess can be used to provide specific assessment of the error distribution. Considering 
aa hierarchical decomposition 

Sl+Sl+11=S=Sqq
hh®Z®Zqq

hh
+1+1 (6.26) 

wheree Z^+ is the subspace that corresponds to the span of all additional basis func
tionss needed to extend the space S  ̂ to higher order, an attractive idea of an efficient 
errorr estimation is to bound the spatial error by evaluating its components in the 
spacee Zq

h  ̂ only. This technique, which is known as hierarchical error estimation, 
hass been carried over to time-dependent nonlinear problems in [31]. Defining an a 
posteriorii error estimator E l̂+1 <G Z  ̂ by 

.s s 
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withh £"''0 approximating the projection error of the initial value uu in Z^+ and E^ 
estimatingg the spatial error of the intermediate value z£,-, the local spatial error for a 
finitee element T E 7), can be estimated by Ï]T = \\Ef

r
l
l + 1\\r- The error estimator E'r'l + l 

iss computed by linear systems which can be derived from (6.25). 
Forr practical computations the spatially global calculation of E„ +1 is normally 

approximatedd by a small element-by-element calculation. This leads to an efficient 
algorithmm for computing a posteriori error estimates which can be used to determine 
ann adaptive strategy to improve the accuracy of the numerical approximation where 
needed.. A rigorous a posteriori error analysis for a Rosenbrock-Galerkin finite element 
methodd applied to nonlinear parabolic systems is given in [31]. 

Refinementt In order to produce a nearly optimal mesh, those finite elements T 
havingg an error i]r  larger than a certain threshold are refined. After the refinement 
improvedd finite element solutions z^ defined by (6.25) are computed. The whole 
proceduree solve-esthnate-refine is applied several times until a prescribed spatial tol
erancee | |£^+,|| < TOL.r is reached. To maintain the nesting property of the finite 
elementt subspaces coarsening takes place only after an accepted time step before 
startingg the multilevel process at a new time. Regions of small errors are identified 
byy their //-values. 

Linearr systems The linear systems that arise in the Galerkin procedure Kardos 
cann be solved by direct or iterative methods. The user can choose from a collection of 
methods,, like for example the direct solver MA28 and the iterative solver BiCGStab 
withh ILU-preconditioning. 

6.55 Application of Rosenbrock methods 

Becausee Kardos works with Rosenbrock-type time integration methods, we want to 
examinee whether we can easily apply such methods to the system (6.8). Here, we will 
assumee that Dyg(t. z.y) is invertible and that therefore we can consider the reduced 
systemm (6.9) instead of (6.8). The Rosenbrock methods are directly applicable to this 
reducedd system. 

Settingg F(t. z) = f(t. z. h(t. z)) and differentiating the function F and the equation 
00 — g(t.z.h(t.z)) with respect to z and t gives the expressions 

DDZZFF = DJ - Dyf(Dyg)-lD2g. dtF = dtf - Dyf{Dyg)-ldtg. 

Directt application of the Rosenbrock scheme (6.20) gives therefore for the stage ma
trixx Zs the equation 

ZZSSY~Y~!! = F n , + DJDJ - Dyf(Dyg)-lDzg\zs +r\d tf - Dyf(Dyg)-ldtg~\(Tl 

Inn a finite-dimensional setting solving this equation every stage could be done be
causee the matrix {Dyg)~] can be calculated exactly. Here, in the infinite-dimensional 
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settingg we do not have an explicit form of this inverse and we therefore introduce an 
additionall stage matrix Ys and replace the system by the equivalent system 

s r - TT = Fns + [Dzf]Zs + [Dyf]Ys +  T[dt f](Tl)T 

[D[D yyg)Yg)Yss = -[Dzg)Z^r[dtg}(ri) T. 

whichh does not involve the inverse operator (Dyg)~l explicitly. 'Column-wise" solving 
requiress that we rewrite this as 

 ~ [D,f])  Zs - [Dyf}Ys = Fns - l-Zs ( r - 1 - l-l)T + r[d tf](Tl)T. 

-[D,g]Z-[D,g]Z aa - [Dyg}Ys = r[d tg\{T\)T. 

Forr a single time step the following has to be done. At the beginning of a step the 
linearr operators Dzf. Dyf. Dzg. Dyg. dtf and dtg. at time level r? have to be solved. 
Duringg every stage first the vectors z„j and y m from 

ttnini = tn+ r(ejAl). zm = un + Zs(ejAT-l)7\ 0 = g(tn>.zm,yni). (6.28) 

havee to be solved. The stage is completed by solving the vectors zSJ = Z,se,; and 
yysisi = Zsez from 

rr l I-DJI-DJ -Dyf 
-D-Dzzgg ~Dyg 

f{tf{t ulul.x.xnini.y.ynini)) - \ZsC
Tel +T~fi[d tf} 

,, - . n n , - (C.29) 

wheree we defined C — T l — -I and ji  = ( r i ) T e ; . After the last stage the values on 
timee level n + 1 are obtained by solving 

ttnn+i+i  =tn+T. z n + 1 =zn + Z s ( r ~ r b ) . O = 0 ( f n + i . z n + i . y„+ i ) . (6.30) 

Wee will nowr focus on solving the stage system (6.29). This system contains lin
earr operators like Duf which are represented by Jacobian matrices in the finite-
dimensionall case, but here we have to consider them as the more general Fréchet 
derivatives.. For example, the Fréchet derivative of ƒ with respect to z denoted 
byy [Dxf(t. z.y)] is defined through 

[£>,ƒ(«,, z,y)]v= A / ( f i Z + £ V , y ; 
(le(le e=0 

forr all variation vectors v that live in the same space as z. 

Examplee system To prevent from immediately getting lost in complex formulae 
whenn applying this definition to the functions ƒ and g in our general system (6.8). we 
willl first consider an example system that is relatively simple. This system contains 
onlyy a dynamic part z, with the dynamics given by ƒ, and lacks the static part y and 
accompanyingg algebraic equations, given by the function g. Further it consists of one 
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fieldd p and one state u = ( r r . s r ) T only and is not explicitly time dependent. The 
abstractt ODE is then given by 

dtdt \ u 
== F(p,u), F(p.u) 

LpLp + a(s)TrS 
G(r.&.G(r.&.  p(r).dxp(r).dyp(r))J ' 

(6.3i; ; 

Thee Fréchet derivative applied to a variation vector (77. v). with v = (pT . q r ) T , is 
definedd by ^ ƒ (p + ejy\u + ev)|e=() and reads for the first component 

i«<-i«<- Li]Li]  - a(s) [OxTrS dyTrS] p + ([Dcr(s)]q)rr5 

Lr]Lr]  + a(s)da(s)dxxTTrrSS -a(s)dyTrS {[Da{s)])T rS 

andd for the second component 

dd „ , 

(6.32) ) 

dt dt 
e = 0 0 

[D[D rrGG DSG] (£j + (DPG) ([DxP]p + ,,(r)) 

++  (DPTG)([Dx(dxp)]p + (dxri)(T)) 

++  (DfivG)([Dx(dyp)]p+{d yri)(TJ) 

(( (DPG) Pr + (DPJ,G) Pr3x + (DPvG) Prdyyn + 

[D[D FFG]G] + (DPG) [DxP]  + (DPxG) \Dx{dxp)\ 

++  (DPuG)[Dx{dyp)] D«G D«G 

(6.33) ) 
Notee that Fx and F2 denote here the vectorial components of F while in the IMEX 
schemee (6.13) they denote terms that sum up to F. The linear operator Pr used 
inn the second component, is the 'point evaluation "-operator defined by Prr/ — 7/(r) 
forr arbitrary fields 77. We use it here because it enables us to write down the linear 
systemss that arise during the Rosenbrock stages (6.29) in a form that is analogous to 
thee matrix notation of finite-dimensional linear equation systems. 

Forr our example function the linear stage system (6.29) lacks the static compo
nentss y and the second equation, and is therefore of the form 

—— I-\DF(p.u) QQ =*•(*.<. »„,-)-iI>« („J- (6-34) 
withh (77. v) denoting {psl. u.S7) and c,, the entries of C. This can be written as 

- a R .. - axPrdr - &yp&ypYYddvv
(6.3.r r 
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wheree the matrices S and A and the vectors a, ax and ay are implicitly defined by 
equationss (6.32) and (6.33). and (Q. w) is given by the right hand side of (6.34). 

Forr convenience we will define L — L - ~I and A — A — -^1. The linear 
systemm (6.35) can be solved by first expressing the field as a linear combination of the 
statee components, resulting in 

77== -(L-la)-{L-lS]v 

-(L--(L-lla)(r)-[(L-a)(r)-[(L- llS)(r)]v, S)(r)]v, 

- ^ ( Z - ' a H r J - P x t L ^ S X r H v ,, (6.36) 

-- dy(L-la)(r) - [dyiL-'S)^)^. 

Here,, S is a (1 x 7?)-matrix (77 = dim(u)) of fields and the notation L _ 1 S stands for 
[ Z _ 1 5 nn . . . L^Sin]- Evaluation of this vector in r is defined to be component
wisee evaluation in r. Using these equations we can derive the following finite-dimen
sionall system for the vector (f](r).dxT}(T).dyr}(r).v), 

"II 0 0 [(L^SXr)] ' 
00 1 0 [dAL-'s)^)] 
00 0 1 [dy(L-lS)(r)] 
aa a 1 ay A 

(( V(r) \ 
ddxxri{r) ri{r) 
ddyyr]{r) r]{r) 

VV v ) 

(( L-la(r) 
dAL-'a)^) dAL-'a)^) 
dy(L-dy(L-lla)(r) a)(r) 

\\ w 

(6.37) ) 

Thee solution of this system gives the solutions of the fields through (6.36). 

Genera ll case This procedure can be generalized to the general case where the 
linearr equation (6.29) takes the form 

VNPrs) VNPrs) 
+ + 

L L 

VVXXP P 

y§y§pprrNN. . 

ddxx + 

(V?Pr (V?Pr 

\VRPr \VRPr 

-- -

V V 

V V 

== — 

rr  -1 

a a 

w w 
LL  -1 

(6.38) ) 

Equationn (6.38) contains the following elements 

•• The diagonal operator L = diag (() L\,..., LA/) , with L3 = L3 for the static 
fieldss j e Js and L3 = L3 - ^1. for the dynamic fields j e 3d-

 The diagonal matrix A = diag(()>ïi. AN) with At = A, for the static 
statess i e Is and At = A, - ^ / , for the dynamic fields i G Id- and 

Ai Ai DDppGi][DGi][D xxp]p]  + [D0rPGi][D x(dxp)) + [DöyPGi}[D x(dyp)]\ [DBlGi 

(6.39 9 

file:///VRPr
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•• The full matrix S composed of M x Ar blocks SJt, with dimensions (1 x dim(u,-)). 
definedd bv 

SjiSji = - ajiMiTr&S) - <7ji(s1-)(Tr,ai/5) [Da^W^S) (6.40) ) 

•• The vector [a. w]T given by the right hand side of (6.29). where the components 
havee been reordered such that the fields are on top. 

•• The matrices Vj. Vf and V? are given by 

VVtt = [DPG{]  . Vf = [DdjrPGi]  . VfVf = [D0yPGA . (6.4i; ; 

Thee unknown dynamic components zsi (fields and states) and the unknown static 
componentss y s ; (fields and states) are denoted by the fields rjj  and states vz. Com
paredd with equation (6.29) the components are reordered, putting the fields before 
thee states as in the original ordering in the model state x of (6.1). 

Systemm (6.38) can be solved in a way completely analogous to solving system (6.35). 
Expressingg the T]J in the V;. using the first AI equations results in 

r,j=r,j=  - ( Z ; 1 ^ ) - ^ } ! - 1 ^ = > rj=  - ( Z - ^ J - f Z - ^ l v . 

suchh that for all k 

r?(rfc)== - ( Z ^ a J f r O - l Z - ' S f r f c J K 

ddxxr,(rk)r,(rk) = ~ ^ ( Z ^ a X r * ) - [ ^ (Z^SHrOJv . 

ddyyrj(rrj(r kk)) - -dy(L-la){Tk) - [dy{L- lS)(vk)]v. 

Wee now define the vectors 

(6.42) ) 

(6.43) ) 

f]f]  = 

'v 'v ( r i ) " " 

MMTTN). N). 

fifi xx = 

'O'Oxxrj{ri)' rj{ri)' 

ppxxrj{rrj{r NN)_ )_ 
 ^y = 

alll elements of KA/;vand the (MN x dim(v))-matrices 

SS = 

[ [ ^ ^ ( r i ) ] " " 

. [Z^Sfr*)] . . 

.. sx = 
r[Öx(Z-1S)(r1)]l l 

Jc>.r(Z-1S)(rA0]. . 

Syy — 

thee MAf-dimensional vectors 

aa = 

' [ Z - ^ f r O ] --

.[Z- ]Q(rA A )]J J 
ototxx = 

• [ ^ ( Z ^ a j f n ) ] --

lm lm L-L-lla)(ra)(ry y O]] ] 
•• °Ly 

\dy \dy vM' vM' 

ddyy7t(r7t(rNN)_ )_ 

- [ ^ ( Z ^ S X n ) ] ! ! 

_[dy(L-_[dy(L-llS)(rS)(rNN)L )L 

= = 

'[dAl-'a)^)] '[dAl-'a)^)] 

.[Oy(L-.[Oy(L-" 1a) ( r r vj] ] 

(6.44) ) 

(6.45) ) 

(6.46) ) 
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andd the block-diagonal matrices V = diag (() \\ V'v). V',r = (Hag (() V{ V'v') 
andd Vy = diag (() \\y Vy). Using these definitions, the analog of system (6.37) 
forr the general case, is 

hrx hrx 

V V 

IM\ IM\ 

VVs s 

LMN LMN 

yy yy 

Ax Ax 

S S 

s, , 

Ay Ay 

Concluding,, every time step s linear stage1 systems (6.29). which are of the form (6.38). 
havee to be solved, all of which have the same linear operator. Solving such a system 
requiress a reformulation (6.42) and (6.47). As the matrix in the linear system (6.47) 
consistss only of elements of the original operator (6.38). its construction is also needed 
oncee per time step only. 

Thee most expensive part of the construction of the matrix in (6.38) is evaluation 
off the matrices S, ST and Sy through equations (6.45). For these, elliptic: equations 
havee to be solved, whereas evaluation of the matrices V. Vx. Vy. and A\....A\' 
doesn'tt require the solution of PDEs. From the perspective of efficiency it would by 
advantageouss if the evaluation of S. S^ and Sy could be omitted. 

Whenn using a member of a subclass of R.osenbrock methods, called the W-rneth-
odss [26], we can retain order of consistency, while using approximations of the Jacobian 
operatorss instead of the exact Jacobian operators. In our case we could ignore S, 
SSxx and Sy and replace these operators by the zero operator. This is equivalent to 
replacingg the operator S with the zero operator in the stage syteni (6.38). This will 
greatlyy reduce the amount of work to be done. When applying the ROS2 method, 
whichh is also a W-method. in the next section, we will take this even an step furthei-
andd also replace the matrices V",. Vy'. Vyy and A with zero matrices. 

6.66 Comparison between Kardos and AGTools 

Inn this section we will examine how Kardos and AGTools can be used on a set of test 
problems.. We will start with some general aspects of using Kardos for simulation of 
thee systems at hand. 

Domainn definition For the definiton of the domains of the equations (6.3) and (6.4) 
AGToolss uses a set of closed paths of cubic Bézier curves [51]. A single path describes 
thee boundary and additional others can be used to specify holes. Using this technique 
onee can specify rather complex domains with relatively little points, while ensuring 
thatt the total boundary is C1 . 

Ann example is shown in the left picture of Figure 6.1. The numbers along the 
axess do not have any physical meaning here and only provide a frame of reference. 

1 1 

Vs Vs 

% % 
Vl l 

V.Y Y 

a a 

Ö ; ; 

« y y 

W ] ] 

W.v v 
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Thee control points that specify the Bézier curves are shown in Figure 6.2. The three 
pathss consist out of 4. 3 and 5 points, respectively. 

1000 200 300 400 

Figuree 6.1: Domain and nodes assigned to the boundary 

Outerr bound? 
(130,, 550)—(074, 481)—(208, 545)—(279, 485) (261, 548)—(251, 559)—(237, 574)—(251, 588) 
(279,, 485)-
(365,, 647)-
(211,, 729)-

Boundary y 
(273,, 658)-
(230,, 694)-
(280,, 713)-

-(350,, 425)—(412, 545)—(365, 647) 
-(317,, 749)—(303, 779)—(211, 729) 
-(119,, 679)—(185, 618)—(130, 550) 
holee 1: 
-(257,, 653)—(228, 666)—(230, 694) 
-(232,, 722)—(262, 728)—(280, 713) 
-(299,, 698)—(289, 663)—(273, 658) 

Boundaryy of hole 2: 

(251,, 588)—(265, 602)—(286, 600)—(302, 588) 
(302,, 588)—(318, 576)—(318, 563)—(319, 553) 
(319,, 553)—(320, 544)—(317, 522)—(306, 517) 
(306,, 517)—(295, 511)—(271, 537)—(261, 548) 

Figuree 6.2: The three Bézier paths making up the boundary. 

Wee cannot directly work with Bézier curves for the domain specification in Kardos. 
Thee domain has to be specified as a set of boundary nodes. Kardos then uses the 
softwaree package Triangle [41] to produce a Delaunay triangulation based on these 
givenn nodes. 

Too produce a set of boundary nodes based on the Bézier curves we tise the algo
rithmm from Chapter 3 that takes into account the are-length as well as the curvature 
alongg a curve and use an equidistribution principle for the assignment of the nodes. 
Takingg 100 nodes and using the transformation (3.14) with a = 0.5. the algorithm 
producess the node set given in the right picture of Figure 6.1. This set is used in both 
Kardoss and AGTools. 

T r i a n g u l a t i o nn Kardos uses Triangle to produce an initial triangulation of the do
main.. It gives the possibility to specify the minimal angle that can occur inside a 
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trianglee or the maximal area of certain triangles. Further, one can add nodes in the 
interiorr to force the presence of certain vertices in the triangulation. More details 
aboutt the algorithm can be found in [41]. For the given domain and node set of 
Figuree 6.1 the resulting triangulation. produced by setting the minimal angle to 34°. 
iss shown in Figure 6.3. It consists of 384 points, 1038 edges and 653 triangles. 

Figuree 6.3: Triangulation determined by Kardos with minimal angle 34°. 

Duee to the very small support of the sources the discretization based on such a 
triangulationn will in general 'not see' the sources. For example, in the left picture of 
Figuree 6.4 a part of a triangulation is shown. The black dots are the actual points 
thatt are used in the FE discretization for calculation of integrals. The gray circle 
denotess the support of a source, which cannot be seen by the discretization. In such a 
situation,, starting with a problem where the initial fields are zero. Kardos will never 
sensee the sources and. as a result, the fields will stay zero. If a source support contains 
integrationn points, Kardos will start refinement routines to resolve the source profile 
properly. . 

Usingg the fact that Triangle can incorporate specific vertices, the source locations 
mayy be incorporated, as in the middle picture of Figure 6.4. Still, this will not solve 
thee problem for very small supports. By adjusting also the cubature rules used by 
Kardoss to evaluate integrals, integration points can be forced to coincide with source 
locations.. See the right picture of Figure 6.4. A disadvantage is that in general 
thiss will result in less efficient cubature rules. For example, both cubature rules in 
Figuree 6.4 are of 5-th order of accuracy, while the old rule uses 7 points and the new 
rulee needs 10 points. 

Problemm 1: s teady-state solutions 

Ourr first test problem is the most simple one and it will serve for the comparison of 
thee refinement capabilities of both methods. We will consider steady-state solutions 
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Figuree 6.4: (Left) Independent triangulation and source location. (Middle) Trian-
gulationn based on source locations. (Right) Cubature rule that that includes vertices 
off triangles. 

off a field, thus no time integration issues are involved. Let us first define the problem. 

Def in i t ionn We take the domain of Figure 6.1 and set a single source at loca
tionn (207.568) without internal behaviour modelled by the s-part. We consider a 
singlee field p\ with diffusion coefficient d\ = 1.0, absorption coefficient k\ = 1.0c — 4 
andd a constant production rate a\ \ = 1.0. In this setting, the field solution approaches 
aa steady-state solution for t —» oc. which we will approximate using Kardos as well 
ass AGTools. The system we consider is simply 

00 = L\pi + a\iTr)S. on il. 

00 = n • Vpi, on 00.. 

207N N 

568, , 
0 0 

(6.48) ) 

r-2, , 

withh L\ = d\ A — k\. Although we deal here with a single field and a single s tate we 
persistt in using the subscript notations to stay as closely as possible to the notation 
off Equations (6.3)-(6.6). The source profile function S is defined by 

S(x) ) aW). . |x|| <L 

otherwise. . 
(6.49) ) 

dieree we take the radius of the source support t = 1. 

So lu t ionn by Kardos As Kardos only handles time-dependent, parabolic equations, 
wee need to take some special actions to solve the steady-state equations. Because the 
steady-statee equations are essentially of linear nature (ignoring for the moment the 
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nonlinearityy incorporated through the coupling with the states), we can use the ROS1 
time-integrationn scheme [26]. Using this in combination with a single fixed time step. 
whilee adjusting diffusion and absorption coefficients with respect to the step size, will 
givee the solution. 

Too find the appropriate coefficients we consider first the linear ODE. w = .4w + s. 
wheree A is an arbitrary linear operator that is invertible. The steady-state solution 
iss equal to w , = —A _ 1s . Applying ROSl to an equation that has an adjusted 
operatorr .4. gives 

w„„ + i = w„ + (I — ryrA) r ( I w „ + s). 

Settingg n = 0. wo = 0. this gives W| = {(1/T)I — -. A) s, and also requiring w s = W| 
leadss to t he condition 

A=A= ll-A-A +

Inn the infinite-dimensional analog we have .4 = d\ — kl. resulting in 

I I 

orr instead of d and k we have to work with d = d/~; and k = k/~, — l/(r"f). 

Figuree G.5: (Left) Triangulation used by Kardos for representing the approximation 
off solution. It consists of 2539 points. 7396 edges and 4856 triangles. (Right) Solution 
representedd by 20 concentration level lines. 

Now,, for solving t he system we start with t he initial triangulation from Figure 6.3. 
Settingg the relative tolerance1 to Le—3, Kardos will produce a triangulation that is 
shownn in the left picture of Figure 6.5 and a solution of which a representation in 
levell lines is shown in the right picture of the same figure. 

Too reach this solution Kardos uses 4 steps of refinement. It subsequently deter
miness solutions based on triangulat ions with a number of points and an estimated 
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error,, as given in the following table. 

#Po in t s :: 384 496 679 1149 2539 
Estimatedd error: 1.373e-2 6.725e-3 2 .940e-3 1.244e-3 5.030e-4 

Solut ionn by A G T o o l s For the solution by AGTools we use the same domain, given 
byy the 100 boundary points. We use 3 rings of at traction at the boundary and 11 
aroundd the source location and 2539 nodes in total. In Figure 6.6 the resulting node 
sett and the solution are displayed. Figure 6.7 shows in the left picture the underlying 
Vbronoii diagram with the used refinement rings at the boundary. In the right picture 
thee refinement rings around the source location are shown. 

KKII l ! , i : : . 00 ?-:.'; SiH! ('•(' -IOC 

Figuree 6.6: (Left) Node set used for the solution of Problem 1. (Right) The solution 
off Problem 1. 

C o m p a r i s o nn One of the main differences between the two approaches of Kardos 
andd AGTools is that in Kardos the selection of a discretization and the actual solving 
off the equation are coupled, while in AGTools this is not so. To retrieve a solution from 
Kardoss the required input is a certain error level. The program will then automatically 
generatee a suitable discretization and solution by repeatedly solving the equation, 
estimatingg the error and adapting the discretization, until the solution falls below tin1 

prescribedd error level. 
Usingg such an approach, the resulting triangulation will have a strong refinement 

aroundd the location of the sources and will be relatively coarse everywhere else. This 
iss due to the fact that the diffusion processes tend to give smooth solutions, which 
possesss their largest gradients near the locations of the sources. AGTools uses this 
informationn to produce, a priori, node sets that are suitable for the equations. 
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Figuree 6.7: (Left) Rings of at t ract ion at the boundaries. (Right) Rings of attraction 
aroundd the source location. 

AA comparison of the triangulation used by Kardos, Figure 6.5. and the node 
sett used by AGTools, Figure 6.7. shows that the refinement area of the node set 
seemss to be more regular than the one of the triangulation. In the latter a kind of 
irregularityy seems to be the result of the refinement technique used by Kardos. which 
splitss triangles using 'Red' and 'Green' refinement. See [31]. 

Forr a precise comparison of the errors of both solutions an exact solution or an 
approximationn with higher accuracy is needed. However, an easier, less accurate, 
wayy is to evaluate the AGTools solution in the vertices of the Kardos triangulation 
andd compare the result with the Kardos solution. Such an approach shows that the 
pointwisee difference of the two solutions away from the source location is about 0.1%, 
whilee the maximum, which is reached near the source location, is around 1%. 

Problemm 2: static sources 

Thee second problem we consider is a problem where the source's still do not move 
throughh the environment, but where, in contrast to the first problem, the fields are 
dynamicc and the sources possess extra behavior modelled by S| and S9. With this 
problemm we want to examine how to implement a combination of field equations and 
ODEss (DAEs) in Kardos. which is developed to deal with a system of PDEs only. 

Def in i t ionn The system consists of two fields and three states. Two of the states 
representt the two non-moving sources, one for each field. The third state models an 
objectt that moves according to the gradients it senses. For both sources the excretion 
ratee depends on the other field's concentration at the source its location. The domain 
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andd the diffusion and absorption coefficients are the same as in Problem 1. The 
equationss are 

dtpidtpi = L\P\ +<Ti i ( s i )T r iS, on O, 

ddttp2p2 = L2p2 + a22{s2)Tr.2S. on Q, 

00 = n • Vpi = n • Vp2- on OQ. 

o o 
568̂  ^ 
io~5 5 

ri i 

00 = 

\io--+\io--+ (P2(v1)y 
350 \ \ 
600,11 " 

Ml"!))4 4 

Si i 

I"2 2 

r 3 = A A 

\io-\io-55 + (p2(r1)y 

Vp i ( r 3 )) + V/o2(r3) 

S2 2 

|Vy91(r3)) + Vp2(r3 ; 

P i ( 0 , x ) = 0 , , 

p 2 (0 .x )) = 0. 

V x e f l l 

VxGf t t 

(6.50) ) 

r 3 (0)) = 
257 7 
618 8 

withh (Tn(si) = s i and 0"22(s2) = s2 . The 0 represents the three-dimensional vector 
withh all components equal to 0. Note that si and s 2 are scalars, despite being typeset 
inn boldface. 

S imula t i onn w i t h A G T o o l s The results of a simulation with AGTools are shown in 
Figuree 6.8 and Figure 6.9. This simulation ran for a t ime T — 12e+4 and used 400 time 
stepss with the IMEX-midpoint scheme. The node set used for the discretization 
consistss of 3261 nodes and is shown in the right picture of Figure 6.9. In this case 
thee two fields share the same node set for simplicity. However, AGTools allows for 
thee fields to have their own node sets, which would be more efficient here. 

Inn the top panel of Figure 6.8 the evolution of the variables S\ and S2 is shown. 
Thesee variables represent the excretion rates of the two fields. The middle panel shows 
thee field values at the location of the sources. It can be clearly seen that these values 
aree driven by the values of si and S2. because they follow a similar pat tern. In turn, 
thee values of Si and s 2 are driven by the values of p2(r\) and p i f o ) , respectively, the 
latterr being shown in the bot tom panel of the figure. 

Ann intuitive description of the oscillation goes like this. At t = 0 both fields 
aree zero. Therefore source 1 its excretion rate equals 1, while the excretion rate of 
sourcee 2 is zero. As a consequence only field p\ s tar ts to develop. 

1.. (Around t = 1.0e+4) The rising value p\(r2) triggers source 2. resulting in a 
risingg S2- As a consequence field p2 s tar ts to develop. 

2.. (Around t = 2.5e+4) A rising field value p2(ri)  will inhibit the production for 
fieldd p\. Therefore field p\ s tarts to decay, because of the absorption. 
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0.05 5 

Figuree 6.8: Problem 2: State variables and field values against time. 

' * : : 

Figuree 6.9: Problem 2: (Left) Locations of the initial states (dots) and the path 
off r:j. (Right) Used node set for the discretization of the fields. 
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3.. (Around f — 4.0e+4) A declining field value pi(r2) will inhibit the production 
forr field p2- Therefore field p-i starts to decay, because of the absorption. 

4.. (Around t — 5.0e+4) A declining field value p2(i"i) will trigger the production 
forr field pi. Therefore field pi starts to develop again. 

Fromm here, the process continues at step 1 again, resulting in an oscillating pattern. 
Wee didn't consider the stability of this pattern. It might be very well the case that 
thee oscillations damp out or that they tend to increase over time. 

Duringg this process r3 moves with constant speed through the domain in the 
directionn of a linear combination of the gradients of the two fields. As a result of the 
oscillatingg fields the path of r3 displays two sharp turns, as can be clearly seen in 
Figuree 6.9. 

Implementationn in Kardos Kardos is designed for systems of nonlinear parabolic 
equations.. The systems that we consider in this chapter include besides a number 
off field equations also a number of ODEs and/or algebraic equations. In Section 6.5 
itt was shown how these systems can be solved using Rosenbrock time integration 
methods,, as are used by Kardos. It turns out that adjusting Kardos for making it 
possiblee to solve these hybrid systems in general is a very complex and time consuming 
task.. This seems not to be the best direction to take, because the underlying idea of 
tryingg to use Kardos for system (6.2)-(6.6), is that it might be, as an existing software 
package,, easily extensible as to incorporate the simulations of our hybrid systems. 

AA far more simpler option is to restrict our use of Kardos to using only the imple
mentedd W-methods. Such methods do allow for replacement of the exact Jacobian 
matrixx by an approximation of it, while retaining the order of accuracy of the method. 
Thee earlier given example of a Rosenbrock method, ROS2, is a representative of this 
classs of W-methods. If we use this method and an approximation of the Jacobian 
inn which we only incorporate the stiff parts, i.e., those parts that are related to the 
diffusionn operators, then we can implement our systems with a relatively little amount 
off work. 

Too show the basic principles behind this approach, consider a simple system con
sistingg of two components p, u, of which the dynamics are determined by 

p=fi(p,u),p=fi(p,u), ii = / 2 (p ,u ) , (6.51) 

wheree the Jacobian operator Dpfi gives rise to stiffness and the other Jacobian op
eratorss Duf\, DpJ2 and Duf-2 do not. When using a W-method, replacement of the 
threee non-stiff Jacobian operators, by zero-operators, will retain the order of accu
racyy and will in general not harm so much the stability of the method. We will now 
comparee the application of this approach, using ROS2. to this system as well as to 
thee first equation of this system only (containing only the p component). 

Wee start with the system consisting of the p-component only. The variable u is 
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thenn considered as a parameter of the system. Application of ROS2 yields 

PPMMPnPn,u)])r,,u)])r,  = Mpn,u) 

( ££ - [DPMpn,u)]) £ = h{Pn + ^ . u ) - ^77 (6-52) 

Pn+lPn+l = Pn + ^V+^t 

Applicationn of ROS2 to the complete system, with the use of the approximation of 
thee Jacobian, yields 

( ^^ - [-Dp/i(p„,un)]) i? = fl(Pn^n) 

( ^^ - [£>p/i(pn,un)]) ^ = A(p n + ^ , u n + ) - ^TT? 

^ ww = / 2{p n + , u n + ) - ^ v 

ppn+1n+1 = Pn + ^rf+^t 

uun+1n+1 =un + ^ v + ^ w . 

Comparingg the systems (6.52) and (6.53), we see that the application of ROS2 to a stiff 
systemm (6.52) can be extended to the application of ROS2 to a larger system (6.53), 
byy inserting a number of actions between the stages. In the following scheme the 
actionss performed by Kardos and the actions that are to be inserted are displayed. 

Kardoss extra implemented 

uu = u„ 

J=[DJ=[D ppff11(p(pnn,u)] ,u)] 

( ^ - j ) 7 77 = /i(A>n,u) 

( ^^ - j ) £ = fi{pn + ^ , 1 1 ) - ^77 

Pn+lPn+l = Pn + è-fV+ift 

^ vv = / 2 (p„ ,u) 

uu = u n + ^ v (6.54) ) 

~ ww = f2(pn +  ^ v 

J L V ++
277 ^ 27 

Implementationn of this approach can be done by using the built-in event mechanism 
off Kardos. It requires the definition of new events before and between the different 
stagess of a time step. They trigger the calls for the suitable subroutines for performing 
thee actions at the right side of (6.54). 
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Simulat ionn w i th Kardos Using the technique described above. Kardos was used 
too approximate the solution to system (6.50). With error tolerances for time set 
too 0.01 and for space to 0.001. the resulting solutions of the states and the fields 
evaluatedd in the s tates ' locations is within VA of the AGTools solutions shown in 
Figuree 6.8 and Figure (i.9. 

Ann initial triangulation. similar to the one of Figure 6.3, was used, which has 
4022 vertices and was forced to contain nodes with locations r; and r2- During the 
simulationn Kardos uses a refined triangulation. where refinement takes place around 
thesee two points. The maximum number of vertices reached during the1 triangulation 
iss 4904. The triangulation at the end of the simulation is shown in Figure 6.10. which 
hass 1540 vertices. 

Figuree 6.10: The triangulation used by Kardos at time T = 12e+4. 

Figuree 6.11 displays the time step size and the number of vertices in the triangu
lationn against the time step index. The number of time steps equals 175. where the 
timee step size is very small in the beginning of the simulation as the fields have to be 
developedd and time derivatives are relatively large. Especially in the beginning of the 
simulationn several time steps are rejected and smaller time steps arc taken instead. 
Forr example, while the initial time step size is set to 1000. the first accepted time 
step,, after three reductions, is equal to 0.182. For every reduction 4 to 6 refinement 
iterationss are carried out. each with their own linear systems to be solved. After the 
initiall phase, time step reductions do occur in smaller numbers, while the time step 
sizee increases gradually to around 1300. At time level 80. at more or less half of the 
computationall work, only lO'/f of the total time interval is reached. 

Wee want to conclude the treatment of this problem by making a few remarks. 
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Figuree 6.11: Problem 2: The time step size (top) and the number of vertices in the 
triangulationn (bottom) against the time level used by Kardos. 
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First,, due to the fact that the handling of the ODEs is 'hacked" into Kardos by 
meanss of the event mechanism, the adaptivity routines completely ignore the ODEs. 
Therefore,, sharp gradients in the dynamics of the states will not enforce smaller 
timee steps. Second, the solution is not flexible with respect to the implementation 
off different ODEs. As a result, changing the dimensions as well as changing the 
dynamicss of the states can be very error-prone. 

Problemm 3: moving sources 

Ourr final test problem concerns a system where we have two fields, both produced 
byy their own sources that are moving through the domain. For both sources applies 
thatt their movement is determined by the field that they do not produce for. 

Definitionn The system is defined by 

ddttpipi = L}pi + anTriS. on H. /? i (0 .x)=0. V x e l i 

0tp20tp2 = L-2P2 + <722Tr2S. Oil O. /?2((). x) = 0 . Vx € tt 

00 = n • Vp\ = n • Vp2- on dü, 

.. , Vp2(ri) /207\ (6-55; 

-- , Vpi(r2) /350 
r22 = XWP^)\\ r 2 ( 0 ) = [GOO 

withh Lx = L2 = dA - k, cru = 1 and av2 = 1. The domain Q. diffusion coefficient d 
andd the absorption coefficient k are taken the same as in Problem 1 and 2 and A = 
8.0e—4.. In the resulting dynamics the twro sources move toward each other. 

Simulationn with AGTooIs Simulation of a problem like Problem 3 is computa
tionallyy more expensive because of the moving sources. Every time step a new node 
sett has to be generated and by using interpolation the solution has to be transferred 
too it. 

Figuree 6.12 shows the result of a simulation with AGTools for t e [0. le+5], where 
3000 time steps with the IMEX-midpoint scheme were used. The left picture of the 
figuree displays the paths of n and r2. Clearly can be seen that the sources move 
towardd each other, while growing around the hole in the domain. In the right picture 
off the figure the used node set at t = 7.4e+4 is shown. 

Implementationn in Kardos The implementation in Kardos of this problem was 
donee in a way similar to Problem 2. We used the same simulation parameters as there 
andd the solution gave paths that were close to the paths of Figure 6.12. The maxi
mall euclidian distance between the two solutions over the whole integration interval 
wass 9.3. in the units of Figure 6.1. 
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Figuree 6.12: Problem .'5: (Left) Locations of the initial states (dots) and the paths of 
rii and r 2 . (Right) Used node set for the discretization of the fields halfway during 
tt he simulation. 

Inn Figure 6.13 the time step size and the number of vertices in the triangulation 
aree shown against the time level. One of the differences with Problem 2 is that the 
sourcess are moving here. Due to these moving sources the maximal number of vertices 
inn the used triangulations is here almost twice as high as in Problem 2. The maximal 
timee step size however, is larger as in Problem 2. This can be probably explained by 
thee fact that the fields arc- not produced by constant sources but that their excretion 
ratess depend on field values. 

Wee want to conclude Problem 3 by mentioning that we did not carry out a com
parisonn between the use of AGTools and Kardos with respect to efficiency. This we 
didd not do because of the great differences between the two approaches and because- of 
thee advanced error control routines present in Kardos. while not available- in AGTools. 

6.77 Summary 

Thiss chapter concerns the numerical approximation of the behavior of the dynamical 
systemss that are present in the AGTools framework. These systems are composed 
off parabolic and elliptic PDEs that are strongly coupled to a system of ODEs and 
algebraicc equations. A presentation of the used numerical methods in AGTools is 
combinedd with a discussion of the possibility of using an existing software package for 
thee solution of the systems at hand, that is designed for solving systems of PDEs. As 
aa representative- was taken the software package Kardos. 

Thee chapter starts with an overview of the AGTools framework: giving both an 
abstractt formulation of the equation systems, as well as a presentation of the used 
numericall methods for approximating these systems numerically. This is followed by 
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Figuree 6.13: Problem 3: The time step size (top) and the number of vertices in the 
triangulationn (bottom) against the time level used by Kardos. 
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aa description of Kardos and its main features. 
Inn Section 6.5 the application of Rosenbrock time integration methods to the 

framework'ss equation systems is discussed. Due to the nature of these systems this 
iss not straightforward. It is shown that the emerging linear stage systems in the 
Rosenbrockk methods contain point evaluation operators. A method for solving such 
linearr systems is described. 

Ass the use of general Rosenbrock methods for the systems at hand is rather com
plexx and because of the way that Kardos builds its discretizations for solving PDEs. 
aa general adjustment of Kardos for incorporating these systems seems not practical. 
AA simpler alternative is to restrict our use of Kardos to the use of W-methods. These 
timee integration methods allow for simplifying the solution process by approximating 
thee Jacobian operators. It is shown that the use of the built-in event mechanisms in 
Kardoss can be used to implement the solution of certain systems in a more ad-hoc 
approach. . 

Kardoss uses an initial coarse triaugulation that is adaptively refined on the basis 
off a posteriori error estimators. It is shown that because of the small supports of 
thee sources this initial triaugulation has to be based on the initial locations of the 
sourcess and that (at least for the first time step) a special cubature rule is used for 
thee numerical approximation of integrals needed for the discretizations of the finite 
elementt method. 

Threee example problems are discussed, together with the issues that are encoun
teredd when implementing the problems in Kardos. An advantage of using Kardos 
overr AGTools is that it has a sophisticated adaptation scheme in space and in time 
andd can produce solutions within a predetermined error range. On the other hand. 
AGToolss makes better use of the a priori knowledge that the refinement areas are 
aroundd the source locations. This leads to an efficiënt discretization of the PDEs and 
noo iterative solving and error estimation is needed. 

AA direct comparison with respect to efficiency was not performed due to the great 
differencess in the two approaches. Concerning the question whether Kardos might 
bee used for the equation systems of the framework, we can say that a structural 
adjustmentt to incorporate such models into Kardos is very difficult and requires a lot 
off programming activity. An easy, more ad-hoc. approach is possible, but requires 
stilll some serious amount of error-prone coding. Also, if using this latter approach, 
errorr control routines do not take into account the ODE dynamics. 

Acknowlegdementt The author wants to thank Prof. Dr. J. Lang of Darmstadt 
Universityy of Technology for his help on using the software package Kardos. He 
deliveredd valuable background information on the architecture of the software and for 
thee implementation of described problems. 
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Thiss thesis is a treatment on the simulation of growing nerve eells during the de
velopmentt of' the nervous system. While there is a basic understanding of how the 
connectionn forming axons find their target neurons by means of chemotaxis, the un
derlyingg precise mechanisms are far from clear. To complement the experimental 
researchh by the use1 of computational models, a framework for modelling these growth 
processess mathematically is presented, together with numerical methods for use in 
simulation.. A basic assumption is that it should be possible to set up a model and 
carryy out the simulations without extensive programming activity. 

Thee framework consists of a set of finite-dimensional vectors and a two-dimensional 
domainn with fields defined on it. The vectors are referred to as states, and can 
bee interpreted as objects that move through the domain. The fields are subject to 
diffusion,, absorption, and excretion processes, the latter being the result of highly 
localizedd source terms that are situated at the locations of the states. 

Ass a s tar t an examination of a representative equation system is given. It serves 
too get acquainted with some specific features of' the systems at hand, in particular 
thee occurrence of a feature called self-interaction. When present, the use of point 
sourcess is prohibited and the resulting dynamics are very sensitive to the width of the 
sourcee supports . Also, the use of quasi s teady-state approximations for fields with 
fastt diffusion may cause large changes in the dynamics. 

\ \\ hat follows is an exposition on the domains of models in the framework can 
bee specified. To make the definition of complex domains easy, the boundaries of the 
domainss are specified by means of Bézier paths. However, the numerical methods for 
solvingg the field equations work with boundaries that are specified as sets of points 
connectedd by straight lines. It is shown how point sets on the Bézier paths that 
representt the boundaries well can be selected, making use of the arc-length and the 
curvaturee of' the paths. 

Afterr tha t , the spatial discretization of the field equations is discussed. Two prop
ertiess of the systems at hand are of importance. First, the sources for the diffusion 
equationss are made1 up of highly localized source terms of which the locations may 
changee over time. Second, the domains can be rather complex, making the use of 
regularr grids difficult. To address these two issues, an unstructured discretization 
iss presented in which the fields are discretized on the basis of arbitrary node sets. 
Thiss approach is flexible with respect to domain geometries and allows for easy re-
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fiiiementt and adaptation needed for the moving sources. It uses Voronoi diagrams for 
discretizingg the operators as well as for choosing the underlying set of nodes. 

Thee thesis continues with a description of the modelling framework. After an 
introductionn to its basic concepts the underlying mathematical model is presented. 
Bothh the field and state dynamics can occur in two forms that are referred to as dy
namicc and static, respectively. Dynamic fields give rise to parabolic partial differential 
equationss (PDEs). while static fields produce elliptic PDEs. Likewise, dynamic states 
givee ordinary differential equations (ODEs) and static states give algebraic equations. 
Inn total, the model can be a system of coupled parabolic PDEs. elliptic PDEs, ODEs. 
andd algebraic equations. 

AA description is given of different regimes that are based on the combination of 
typess of equations that make up the models. As a result, these regimes are connected 
too the numerical methods needed for the simulations. Included is a presentation of 
examplee models that show how the framework can be used to test different mech
anisms.. As the focus lies on the modelling aspect, the discussed models all fall in 
aa regime for which the simplest set of numerical methods is needed. Those models 
merelyy encompass static fields that are in their steady-states. 

Thee final chapter concerns the simulation of models in which all types of equations 
aree present. It discusses the numerical methods used by AGTools; a set of Matlab 
scriptss written especially for use with the framework. Its most important characteris
ticss are the use of a Runge-Kutta IMEX-method for time integration and the earlier 
presentedd spatial discretization technique based on Voronoi diagrams. In addition, 
thee use of a standard finite element package is considered, where the package Kardos 
wass taken as a representative. It is examined how Kardos can be used for the simula
tionn of the framework models. In particular, the use of Rosenbrock time integration 
forr the models is discussed. For three example models the use of AGTools and the 
usee of Kardos are compared. 



Samenvatting g 

Ditt proefschrift handelt over de simulatie van groeiende zenuwcellen tijdens de ont
wikkelingg van het zenuwstelsel. Het betreft het modelleren van groeiende axonen 
enn de mechanismen die ervoor zorgen dat ze groeien in de richting van de neuronen 
waarmeee ze verbinding maken. Ondanks dat de principes die hieraan ten grond
slagg liggen duidelijk zijn, zijn de onderliggende, precieze mechanismen onbekend. 
Omm het experimentele onderzoek te complementeren met het gebruik van compu-
tationelee modellen, is een framework ontwikkeld voor het wiskundig modelleren van 
dezee groeiprocessen. Dit framework wordt gepresenteerd samen met numerieke me
thodenn die gebruikt worden voor de simulaties. Een uitgangspunt bij de ontwikkeling 
hiervann was dat het mogelijk moet zijn om een model te implementeren en simulaties 
uitt te voeren zonder daar uitvoerig programmeerwerk voor te verrichten. 

Hett framework bestaat uit een collectie van eindig-dimensionale vectoren en een 
twee-dimensionaall domein met daarop velden gedefinieerd. Deze vectoren worden 
's tates '' genoemd en kunnen worden beschouwd als objecten die door het domein 
bewegen.. De velden zijn onderhevig aan diffusie, absorptie en uitscheiding door bron
nen.. Deze bronnen hebben een kleine afmeting en zijn gesitueerd op de locaties van 
dee states. 

Hett proefschrift begint met de beschrijving van een representatief systeem van 
vergelijkingen.. Hiermee wordt een introductie gegeven tot een paar specifieke eigen
schappenn van de systemen die in het framewrork voorkomen. In het bijzonder wordt 
ingegaann op een specifieke eigenschap. Als deze eigenschap, genoemd self-interaction, 
aanwezigg is in het systeem, dan is het gebruik van puntbronnen niet mogelijk en de 
dynamicaa van het. systeem zeer gevoelig voor de wijdte van de bronnen. Ook het 
gebruikk van quasi steady-state benaderingen voor velden met een snelle diffusie kan 
tott een dynamica leiden die zeer verschilt van de originele dynamica. 

Watt volgt is een uiteenzetting van de domeinspecificatie voor modellen in het 
framework.. Om een makkelijke definitie van complexe domeinen mogelijk te maken, 
wordenn de randen van de domeinen vastgelegd door middel van Bézierpaden. Echter, 
dee numerieke methoden voor het oplossen van de veld vergelijkingen werken met ran
denn die gespecificeerd zijn als verzamelingen van punten, onderling verbonden door 
middell van rechte lijnen. Er wordt getoond hoe punten op de Bézierpaden kunnen 
wordenn geselecteerd, zodanig dat de randen goed gerepresenteerd zijn. Hierbij is 
gebruikk gemaakt van de 'arc-length' en de 'curvature' van de Bézierpaden. 
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Hett daarop volgende hoofdstuk gaat over de ruimtelijke discretisatie van de veld-
vergelijkingen.. Twee eigenschappen van de systemen zijn belangrijk. Ten eerste 
wordenn de bronnen van de diffusie ver gelijkingen gevormd door brontermen die allen 
eenn zeer klein support hebben en kunnen bewegen door het domein. Ten tweede kun
nenn de domeinen een complexe geometrie hebben, waardoor het gebruik van reguliere 
gridss moeilijk is. Met deze twee eigenschappen in het achterhoofd is een discretisatie 
ontwikkeld,, waarbij de velden worden gediscretiseerd op basis van een verzameling 
vann willekeurige punten in het domein. Deze benadering is flexibel met betrekking 
tott de vorm van het domein en staat daarnaast, een makkelijke vorm van verfijning 
enn adapta t ie toe, nodig vanwege de bewegende bronnen. Voor de discretisatie van de 
diffusieoperatorenn en voor het kiezen van de onderliggende puntverzamelingen wordt 
gebruiktt gemaakt van Voronoi diagrammen. 

Hett proefschrift gaat verder met een uitgebreide beschrijving van het framework. 
Naa een inleiding tot de gebruikte concepten wordt het onderliggende wiskundige model 
besproken.. Zowel de velden als de states kunnen voorkomen in twee vormen, te 
wetenn dynamisch en statisch. Dynamische velden resulteren in parabolische partiële 
differentiaalvergelijkingenn (pdv's) . terwijl statische velden leiden tot elliptische pdv 's . 
Opp dezelfde wijze geven dynamische states gewone differentiaalvergelijkingen (gdv's) 
enn statische states, algebraïsche vergelijkingen. Het totale model bestaat dan uit 
eenn systeem van gekoppelde parabolische en elliptische pdv's , gdv's en algebraïsche 
vergelijkingen. . 

Err wordt tevens een onderscheid gemaakt in regimes van modellen, waarbij een 
regimee bestaat uit modellen waarin overeenkomstige typen vergelijkingen voorkomen. 
Hierdoorr heeft ieder regime zijn eigen numerieke methoden, nodig voor het uitvoeren 
vann de simulaties van de modellen in het desbetreffende regime. Inbegrepen is een 
presentatiee van voorbeeldmodellen die laat zien hoe het framework kan worden ge
bruiktt voor het testen van verschillende mechanismen. Omdat de focus ligt op het 
modelleeraspect,, vallen deze modellen in het regime met de minst uitgebreide nu
meriekee methoden. Deze modellen bevatten alleen statische velden die tevens in hun 
steady-statee verkeren. 

Hett laatste hoofdstuk gaat over de simulatie van de regimes waarin alle soorten 
vergelijkingenn aanwezig zijn. Het behandelt de numerieke methoden die worden ge
bruiktt bij AGTools. een verzameling van Matlab scripts speciaal geschreven voor ge
bruikk van het framework. De belangrijkste karakteristieken zijn de toepassing van een 
Runge-Kut taa IMEX methode voor tijdsintegratie en de eerder besproken ruimtelijke 
discretisatiemethodee gebaseerd op Voronoi diagrammen. Tevens wordt het gebruik 
vann een s tandaard eindige-elementen pakket overwogen, waarbij Kardos als represen
tatieff pakket is gebruikt voor de simulatie van de modellen in het framework. In het 
bijzonderr wordt het gebruik van de Rosenbrock tijdsintegratiemethoden besproken. 
Voorr drie voorbeeldmodellen is het gebruik van AGTools en het gebruik van Kardos 
vergeleken. . 



Bibliography y 

[1]] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions. 
Doverr Publications, New York, 1964. 

[2]] K. Atkinson and W. Han. Theoretical Numerical Analysis, Number 39 in Texts 
inn Applied Mathematics. Springer-Verlag, New York, 2001. 

Richardd H. Bartels. John C. Beatty, and Brian A. Barsky. An introduction to 
splinessplines for use in computer graphics and geometric modeling. Morgan Kaufinarm, 
Paloo Alto, CA, 1987. With forewords by Pierre Bézier and A. Robin Forrest. 

[4]] T. Belytschko, Y. Krongauz, D. Organ, M.Fleming, and P. Krysl. Meshless 
methods:: An overview and recent, developments. Computer Methods in Applied 
MechanicsMechanics and Engineering, Special Issue on Meshless Methods, 139:3 -47, 1996. 

T.. Belytschko, Y.Y. Lu, and L. Gu. Element-free galerkin methods. International 
JournalJournal for Numerical Methods in Engineering, 37:229-256, 1994. 

Y.J.. Choi and S.J. Kim. Node generation scheme for the meshfree method by 
Voronoii diagram and weighted bubble packing'. Fifth U.S. National Congress on 
Computat ionall Mechanics. Boulder, CO, 1999. 

M.. de Berg. M. van Kreveld, M. Overmars. and O. Schwarzkopf. Computational 
Geometry.Geometry. Springer-Verlag, 2nd edition, 2000. 

B.. J. Dickson. Molecular mechanisms of axon guidance. Science, 298:1959 1964. 
2002. . 

J.. Dodd and T.M. Jessell. Axon guidance and the pat terning of neuronal pro
jectionss in vertebrates. Science. 242:692 699. 1988. 

[10]] Q. Du. V. Faber. and M. Gunzburger. Centroidal Voronoi tessellations: Appli
cationss and algorithms. SI AM Review. 41(4):637-676. 1999. 

filll S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica. 2:153 
174.. 1987. 

129 9 



130 0 BIBLIOGRAPHY Y 

T.P.. Fries and H.G. Matthies. Classification and overview of meshfree methods. 
Informatikberichtt 2003-03, Institute of Scientific Computing, Technical Univer
sityy Braunschweig, Brunswick, Germany, 2003. 

R.M.. Gaze. The representation of the retina on the optic lobe of the frog. Quart. 
J.J. Exp. Physiol, 43:209-224, 1958. 

D.. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second 
Order.Order. Springer Verlag, 2001. 

G.S.. Gipson. Use of the residue theorem in locating points within an arbitrary 
multiply-connectedd region. Adv. Eng. Software, 8(2):73-80, 1986. 

G.H.. Goiub and C.F. van Loan. Matrix Computations. The John Hopkins Uni
versityy Press, 3rd edition, 1996. 

G.J.. Goodhill. Diffusion in axon guidance. Eur. J. Neurosci., 9:1414-1421, 1997. 

G.J.. Goodhill. A mathematical model of axon guidance by diffusible factors. In 
M.I.. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Informa-
tiontion Processing Systems, volume 10, pages 159-165. MIT Press, 1998. 

K.E.. Gustafson. Introduction to Partial Differential Equations and Hubert Space 
Methods.Methods. John Wiley & Sons, 2nd edition, 1987. 

E.. Hairer and G. Wanner. Solving ordinary differential equations II:  Stiff and 
differential-algebraicdifferential-algebraic problems, volume 14 of Springer Series in Computational 
Mathematics.Mathematics. Springer-Verlag, Berlin, 1991. 

H.G.E.. Hentschel and A. van Ooyen. Models of axon guidance and bundling 
duringg development. Proc. R. Soc. Lond. B., 266:2231-2238, 1999. 

M.L.. Hines and N.T. Carnevale. The neuron simulation environment. Neural 
Comput,Comput, 9:1179-1209, 1997. 

H.. Honda. Topographic mapping in the retinotectal projection by means of 
complementaryy ligand and receptor gradients: a computer simulation study. J. 
Theor.Theor. Biol, 192:235-246, 1998. 

R.A.. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 
1985. . 

A.B.. Huber, A.L. Kolodkin, D.D. Ginty, and J.-F. Cloutier. Signaling at the 
growthh cone: ligand-receptor complexes and the control of axon growth and 
guidance.. Annu. Rev. Neurosci, 26:509-563. 2003. 

W.. Hundsdorfer and J.G. Verwer. Numerical Solution of Time-Dependent 
Advection-Diffusion-ReactionAdvection-Diffusion-Reaction Equations. Springer. 2003. 



BIBLIOGRAPHY Y 131 1 

[27]] S.R. Idelsohn, E. Onate. F. Del Pin, and N. Calvo. The meshless finite element 
method.. Int. J. Numer. Methods Eng., 2001. 

[28]] J.K. Krottje. On the dynamics of a mixed parabolic-gradient system. Commu-
nicationsnications on Pure and Applied Analysis, 2(4):521-537, December 2003. 

[29]] J.K. Krottje. A variational meshfree method for solving time-discrete diffusion 
equations.. Technical Report MAS-E0319, Centrum voor Wiskunde en Informat
ica,, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, December 2003. 

[30]] J.K. Krottje and A. van Ooyen. A mathematical framework for modelling axon 
guidance.. Bulletin for Mathematical Biology, Submitted, May 2005. 

[31]] J. Lang. Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Num
berr 16 in Lecture Notes in Computational Science and Engineering. Springer, 
2001. . 

[32]] B. Lastdrager. Numerical solution of mixed gradient-diffusion equations mod
ellingg axon growth. Technical Report MAS-R0203, Centrum voor Wiskunde en 
Informatica,, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, January 
2002. . 

[33]] Shaofan Li and Wing Kam Liu. Meshfree and particle methods and their appli
cations.. Applied Mechanics Review, 55:1-34, 2002. 

[34]] X.-Y. Li, S.-H. Teng, and A. Üngör. Point placement for meshless methods using 
spheree packing and advancing front methods. Technical report, University of 
Illinoiss at Urbana-Champaign, 2000. 

[35]] G.-L. Ming, S.T. Wong, J. Henley, X.-B. Yuan, H.-J. Song, N.C. Spitzer, and M.-
M.. Poo. Adaptation in the chemotactic guidance of nerve growth cones. Nature, 
417:411-418,, 2002. 

[36]] B. Nayroles, G. Touzet, and P. Villon. Generalizing the finite element method: 
Diffusee approximation and diffuse elements. Comp. Mech., 10:307-318, 1992. 

[37]] D.D.M. O'Leary and D.G. Wilkinson. Eph receptors and ephrins in neural de
velopment.. Current Opinion Neurobiology, 9:55-73, 1999. 

[38]] V. Rehder and S. B. Kater. Filopodia on neuronal growth cones: multi-functional 
structuress with sensory and motor capabilities. Sem. Neurosci., 8:81-88, 1996. 

[39]] K. Rektorys. The method of discretization in time and partial differential equa-
tions,tions, volume 4 of Mathematics and Its Applications (East European Series). D. 
Reidell Publishing Co., Dordrecht, 1982. 

[40]] D. Shewan, A. Dwivedy, R. Anderson, and C.E. Holt. Age-related changes un
derliee switch in netrin-1 responsiveness as growth cones advance along visual 
pathway.. Nature Neurosci, 5:955-962. 2002. 



1322 _ _ _ _ _ _ _ _ _ ^ _ BIBLIOGRAPHY 

[41]] J.R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delau-
nayy Triangulator. In Ming C. Lin and Dinesh Manocha. editors. Applied Com-
putationalputational Geometry: Towards Geometric Engineering, volume 1148 of Lecture 
NotesNotes in Computer Science, pages 203-222. Springer-Verlag, May 1996. From 
thee First ACM Workshop on Applied Computational Geometry. 

[42]] R. Shirasaki. R. Katsumata. and F. Murakami. Change in chemoattractant 
responsivenesss of developing axons at an intermediate target. Science. 279:105 
107,, 1998. 

[43]] H. Song. G. Ming. Z. He. M. Lehmann. M. Tessier-Lavigne. and M.-M. Poo. 
Conversionn of neuronal growth cone responses from repulsion to attraction by 
cyclicc nucleotides. Science, 281:1515-1518. 1998. 

[44]] H.-J. Song and M.-M. Poo. Signal transduction underlying growth cone guidance 
byy diffusible factors. Current Opinion in Neurobiology. 9:355 363. 1999. 

[45]] M. Spivak. A Comprehensive Introduction to Differential Geometry. Vol. II. 
Publishh or Perish Inc., Wilmington. Del., second edition. 1979. 

[46]] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. 
Chapmann &  Hall, 1989. 

[47]] N. Sukumar, B. Moran. A. Yu Semenov. and V.V. Belikov. Natural neighbour 
galerkinn methods. International Journal for Numerical Methods in Engineering. 
(50):11 27. 2001. 

[48]] M. Tessier-Lavigne and C.S. Goodman. The molecular biology of axon guidance. 
Science.Science. 274:1123-1133, 1996. 

[49]] A. van Ooyen, editor. Modeling Neural Development. MIT Press. 2003. 

[50]] J.G. Verwer and B.P. Sommeijer. A numerical study of mixed parabolic-gradient 
systems.. J. Com.p. Appl. Math.. 132:191 210. 2001. 

[51]] E.W. Weisstein. Concise Encyclopedia of Mathematics. CRC Press. 2nd edition. 
2002. . 

[52]] D.G. Wilkinson. Multiple roles of eph receptors and ephrins in neural develop
ment.. Nature Neuroscience Reviews. 2:155-164. 2001. 

[53]] N. Yamamoto, A. Tamada, and F. Murakami. Wiring up the brain by a range 
off guidance cues. Progress in Neurobiology, 68:393-407. 2003. 

[54]] S. Young and N.M. Poo. Spontaneous release of transmitter from growth cones 
off embryonic neurons. Nature. 305:634-637. 1983. 

[55]] J. Q. Zheng, M. Felder. J.A. Connor, and M.M. Poo. Turning of nerve growth 
coness induced by neurotransmitters. Nature. 368:140-144. 1994. 



== i i i ! r - i i ' i ' ï - ^ j ' ' /i - j v r --* -_ - ^ T . a \ > -,'p "-1 ^ J 

>> :AH» J J »*n 

a^^S^ ^ 



É É ^ ^ 1 1 





111 Limn ui ws*%i*e&^**™i**^*r^T'^mwKm^^3jmimvqrm*^r* 

•••iBidiiiiBi^Hjtill l ..JlttJltt^ l̂tlmmjltlmmjAJ^AJ b̂ttbtt̂  ^ diai^Hiüdd^ÉMii M M 



«as s '^m% '^m% 

„ i - * * * ' ' 

% % 


