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From a theoretical point of view, the Butcher-Kuntzmann Runge-Kutta methods belong to the best step
by-step methods for nonstiff problems. These methods integrate first-order initial-value problems by means 
of formulas based on Gauss-Legendre quadrature, and combine excellent stability features with the property 
of superconvergence at the step points. Like the IVP itself, they only need the given initial value without 
requiring additional starting values, and therefore are a natural discretization of the initial-value problem. On 
the other hand, from a practical point of view, these methods have the drawback of requiring in each step an 
approximation to the solution of a system of equations of dimension sd, s and d being the number of stages 
and the dimension of the initial-value problem, respectively. However, parallel computers have changed the 
scene and enable us to design parallel iteration methods for approximating the solution of the implicit systems 
such that the Butcher-Kuntzmann methods become efficient step-by-step methods for integrating initial-value 
problems. In this contribution, we address nonstiff initial-value problems and we investigate the possibility of 
introducing preconditioners into the iteration method. In particular, the iteration error will be analysed. By a 
number of numerical experiments it will be shown that the Butcher-Kuntzmann method, in combination with 
the preconditioned, parallel iteration scheme, performs much more efficiently than the best sequential methods. 
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1. Introduction 

From a theoretical point of view, the Butcher-Kuntzmann Runge-Kutta methods belong to the best 
step-by-step methods available in the literature. These methods integrate the initial-value problem 
(IVP) 

y'(t) = f(y(t)), y(to) =Yo· 
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by means of formulas based on Gauss-Legendre quadrature which are, as is stated in [3, p. 75] 
"best in the sense that they integrate exactly polynomials of as high degree as possible". Like 
the IVP itself, the Butcher-Kuntzmann methods only need the given initial value y0 without re
quiring additional starting values, and therefore are a natural discretization of the IVP. Excellent 
stability features are combined with the property of superconvergence at the step points. As was 
proved by Kuntzmann [ 7] and Butcher [ 1 ] , s-point Butcher-Kuntzmann methods possess order 
2s. 

From a practical point of view however, these methods have the drawback that in each integration 
step a system of equations has to be solved. The dimension of this system equals sd, where s 
denotes the number of stages and d is the dimension of the initial-value problem. The amount of 
computational work involved in solving this huge system prevented the Butcher-Kuntzmann methods 
to become widely used. This is especially the case for nonstiff problems, where we do not need the 
robust stability behaviour of these methods; therefore, on traditional (i.e., sequential) computers the 
Butcher-Kuntzmann methods are never used to solve nonstiff problems, since explicit methods are 
much more appropriate. 

However, parallel computers have changed the scene. Using a predictor-corrector approach with 
a Butcher-Kuntzmann method as the corrector, it is the high-accuracy property of this correc
tor that we can exploit; a feature which is of course also nice for nonstiff problems. The re
sulting method is explicit and, owing to the large amount of inherent parallelism, very efficient. 
This predictor-corrector approach based on an (implicit) Runge-Kutta corrector has been studied 
in several papers (see e.g. [5,6,8,9,12]). Once the corrector has been fixed, the main concern 
in obtaining optimal efficiency is to reduce the number of iterations, that is, the number of !
evaluations. 

A first, and rather obvious, step in this direction is to use a predictor of high order (see also [ 8] for 
a few numerical experiments). For this purpose the properties of the Butcher-Kuntzmann corrector 
can be exploited as well. For example, if the stage value components calculated in the previous step 
are used to generate a prediction, then we obtain an initial iterate of relatively high order. This is due 
to the collocation principle underlying the Butcher-Kuntzmann methods. 

Another, more sophisticated, technique to increase the convergence of the predictor-corrector iter
ation is studied in this paper. By introducing preconditioners into the iteration process, a significant 
reduction is obtained in the number of iterations needed to reach the accuracy of the corrector. 
Here, we distinguish two approaches: one technique is based on the knowledge of the spectrum of 
the Jacobian matrix and is quite useful if this information is available. The second approach uses 
the Jacobian itself within the iteration process and is beneficial in the case of problems for which 
a Jacobian-times-vector multiplication is cheap compared to an evaluation of the right-hand side 
function. 

In conclusion, this contribution to the SCADE conference on the occasion of the sixtieth birthday 
of John Butcher is an attempt to design a parallel iteration method for solving the implicit systems 
in such a way that the Butcher-Kuntzmann methods become efficient step-by-step methods for in
tegrating nonstiff initial-value problems. The format of the parallel iteration including the proposed 
preconditioners allows for a natural extension to the treatment of st(ff problems. Similar (implicit) 
parallel iteration methods can be designed that fastly converge to the corrector solution. In a forth
coming paper, we shall report on the performance of these parallel iteration methods applied to stiff 
problems. 
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2. Parallel iteration methods 

We shall study parallel iterative methods for solving the stage vector equation in the s-stage 
Butcher-Kuntzmann method 

Y = e ® Yn + h(A ® ld)F(Y), 

Yn+I = Yn + h(bT ® ld)F(Y) = Yn + (bTA- 1 ® ld)(Y - e ® Yn). 
(2.l) 

Here, Y is the sd-dimensional stage vector with s vector components Y; of dimension d, F(Y) is the 
sd-dimensional vector (f(Y;) ), i = 1, 2, ... , s, band e are s-dimensional vectors, A is a nonsingular 
s x s matrix, Id is the d x d identity matrix, and ® denotes the Kronecker product. The vector e is the 
s-dimensional vector with unit entries, and b and A contain the Gauss-Legendre quadrature weights. 
Introducing the residual function 

the iteration methods investigated in this paper fit into the following family of methods: 

y<J+I) = yU> - PjRn (h, yU>) + h2Qj(yU> - yU-1>), j = 0, 1, ... , m - 1, 

(2.2a) 

(2.2b) 

where y< -i l = y<0l is a given initial iterate, and Pi and Qi are sd x sd matrices whose entries may 
depend on the stepsize h and on the Jacobian matrix Jn = a f (Yn) /a y. It will be assumed that Pi and 
Qj are bounded with respect to h and ln· Evidently, if (2.2b) converges, then it converges to the stage 
vector Y. The s stage vector components of yU+ll defined by (2.2b) can be evaluated in parallel 
provided that s processors are available. Hence, the sequential computational effort per iteration does 
not depend on s. 

After each iteration, we define the step point values 

y<J+l) = Yn + (bT A- 1 @ Id) (yU+I) - e@ Yn), j = 0, 1, ... , m - 1, 

Y -y<m) 
n+I - ' 

(2.2c) 

where the step value Yn+I = y<ml denotes the accepted approximation to the corrector solution at ln+I· 
If Pj = lsd• and Qi= 0, then the iteration method (2.2) reduces to functional iteration. For Runge

Kutta correctors, such iteration methods were studied in [5,6,8,9,12]. The matrices Pi in front of the 
residual function Rn may be considered as preconditioning matrices. Together with Qj, these matrices 
will be used for improving the damping of the iteration error components (see Sections 3 and 4) . 

In order to analyse the convergence of (2.2) we define the stage vector iteration error 

B(j) := yU> - Y, 

and we write (2.2b) in the form 

sU+I) = [lsd - Pj]s<j) + hPj(A ©Id) [F(YU>)-F(Y) ]+h2Qi(s<j) - sU-1>). 

For sufficiently smooth right-hand side functions f we have 

F(U+8)-F(U) =J(U)o+O(lP), 

(2.2b') 
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where J(V) is an sd x sd block-diagonal matrix whose diagonal blocks consist of the Jacobian 
matrices a j( Ui) /a y, Vi being the components of U. On substitution into (2.2b') we straightforwardly 
derive the error recursion 

e(j+I) = (Isd - PjC + h2Qi)eU) - h2Qje<J-I) + O((e<j)) 2), 

C := lsd - h(A@ld)J(Y), j = 0,. . ., m- 1. 

Suppose that Qi = 0 for all even values of j, and let us define the iteration matrices 

zi := {lsd .~(Pi+ Pj-1)C + (PiC - h1Qi)Pi_1C, j odd, 
Zi .- lsd - Pie, j even. 

Then we obtain 

Let us define the error amplification matrix 

Hm := {Zm-1 · Zm-3 · Zm-5 · · ·Z3 · Z1, m even, 
Zm-1 · Zm-1 · Zm-4 · · · Z:i · Z1, m odd. 

j odd, 

j even. 

Then, neglecting higher-order terms, the iteration error satisfies 

(2.3) 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

In order to compare the rate of convergence of the iteration scheme (2.2) for various predictor
corrector pairs, we consider the iteration error at the step points. To that end, we write the step point 
'ormula defined in ( 2.2c) in the form 

Yn+I = Yn + (bT A-1 ®Id) (Y(m) - e ®Yn) 

= Yn + (bT A-1 ®Id) (Y - e ® Yn) + (bT A-1 ® ld)e<m>, 

Let us introduce the (exact) corrector solution 

Un+I := Yn + (bT A-I® /d)(Y - e ® Yn), 

and let us anticipate (see Theorems 3.1 and 4.1) that Hm can be written in the form 

Hm = h8m[Km@Lm + LIHm], fJ ~ 1, 

(2.6) 

(2.7a) 

where the s x s matrix Km is determined by the corrector matrix A, the d x d matrix Lm by J ( Y), 
and where LIHm denotes an sd x sd matrix which vanishes for linear problems. Using (2.5b) and 
(2.7a), the iteration error at the step point tn+I reads 

Yn+I - Un+I = (bT A-I @/d)e(m) (2.7b) 

= h6m[bT A- 1 Km® Lm + (bT A-I® Id)LIHm]e<O). 
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We now assume that the predictor formula is based on extrapolation of y and on preceding stage 
. n 

values, i.e., 

(2.8) 

where X is the stage vector computed in the preceding step, and the vector w and the matrix E 
contain the extrapolation weights defining the predictor. Notice that-at least formally-this predictor 
transforms the method into a multistep format. However, the influence of the "history" is very mild 
in this set-up; firstly, because only one previous step is involved, and, more importantly, because 
the basic formula that we apply (i.e., the corrector) is still of one-step nature. This precludes all 
the difficulties in stepsize variation that are usually encountered when a "real" multistep method is 
applied (for example, a predictor-corrector method of Adams type where also the corrector is of 
multistep form). 

Next we want to obtain an expression for the local behaviour of the iteration error in terms 
of the locally exact solution through Ctn. Yn). This is the standard approach in (one-step) Runge
Kutta theory. However, since the predictor (2.8) is of multistep type, we shall make the additional 
assumption that the numerical stage vector X is on this locally exact solution. Then we can formulate 
the following theorem: 

Theorem 2.1. Let the error amplification matrix Hm be written in the form (2.7a), let the stage 
order of the corrector (2.1) be r, and de.fine the vectors 

1 . 1 ·-1 
vi := -=iE(e- e)1 - (. - l)'Ac' , j;?: 1. 

]. J . 
e := Ae, v0 := w + Ee - e, 

If vi = 0 for j = 0, ... , q with q ~ r, then the iteration error at the step points is given by 

Yn+I - Un+I = h8m+q+I [CmLmY(q+l)(tn) + O(LlHm) + O(h) ], 

Cm:= bT A-I KmVq+I· 

(2.9) 

Proof. Let y(t) denote the locally exact solution at the point tn and let the stage vector X in (2.8) 
satisfy this solution. On substitution of y(t) into the right-hand side of (2.8), the predictor formula 
reads 

y<Ol = w 0 y(tn) + (E ® Id)y(tn-le +he), 

where y(tn_ 1e +he) is defined by its components YUn-I +he;), i = 1, 2, ... , s (componentwise 
notation). Furthermore, by expressing the stage vector in the right-hand si~e of th~ stage vect~r 
equation in (2.1) in terms of the exact solution, and again using componentw1se notation, we obtam 

Y = e ® y n + h (A ® Id) F ( Y) 

= e ® y(tn) + h(A ® Jd)F(y(tne +he)+ O(h'+1)) 

= e ® y(tn) + h(A ® Id)y'(tne +he)+ O(h'+2). 

Taylor expansion of y<Ol and Y yields 
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l 
y<OJ = (w +Ee) ® y(tn) + (E ®Id) (h(c- e) ® y'(tn) + lh2(c - e) 2 ® y"Ctn) + · · ·), 

12. 
y = e ® y(tn) +(A® Id) (he® y' Un)+ h2 c ® y"(tn) + 2! h3 c2 ® y"'(tn) + ... ) + O(hr+2 ). 

Thus, in terms of the vectors vj, the predictor error is given by 

e(O) = y<O) - y = ~ Vjhj ® yU> (tn) + O(hr+2). 
j=O 

The proof is completed by substitution of this expression into (2.7b) and taking into account the 

conditions of the theorem. 0 

Notice that the Butcher-Kuntzrnann correctors allow for a prediction of orders (i.e., q = s), since 

they are based on collocation points in the open interval ( 0, 1). For Radau HA and Lobatto correctors, 

which all have Cs= 1, (2.8) allows for predictions of at most orders -1, since for such methods, Yn 
is already contained in X. 

The constant Cm may be interpreted as the principal iteration error constant after m iterations. 

3. Spectral fitting 

We shall determine the preconditioning matrices P1 and Qj such that, for the test equation y' ( t) = 
Ay(t), the error amplification matrix Hm defined in (2.5) vanishes at m prescribed points {Ak: k = 
1, 2, ... , m} in the complex A-plane for all values of h. The iteration method will be said to be fitted 

at the points Ak. 
We remark that in [ 11 ] , spectral fitting in real intervals [a, b] has been considered. Since in that 

paper only one-step iteration processes were considered (Qj = 0 for all j), it was not possible to 

achieve spectral fitting at complex points. By introducing the two-step iteration method (2.2), it is 

possible to achieve spectral fitting at points that are either on the real axis or complex conjugate. 

3. 1. The preconditioner 

In this section, we consider preconditioners completely determined by the m fitting points { Ak} 
and the matrix A. 

Theorem 3.1. Let Sm be the polynomial of degree m defined by 

( { (7T1 -0"1x+x2)(1T3-0"3X+x2 )···(trm-1-0'm-1x+x2), meven, ( 3_1) 
Sm x) = 2 2 2 

('tr1 - 0"1X + x )(1T3 - 0'3X + x) ... (7Tm-2 - O'm-2X + x) (x - Am), m odd, 

where 0"1, 7Tj and Am are real coefficients, and let the matrices P1 and Q1 be defined by the expressions 

( A h2 2)-l 
Pj-I = I.,·J, P1 = Is - 0"1h + 1T1 A ® IJ, 

Q1-1 = 0, Q,; = -7T1Pj(A2 ®Id), 
j odd, 1 ~ j ~ m - 1, 

(3.2) 

Pm-I = (is - hAmAr 1 ®Id, Qm-1 = 0, modd. 
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Then, the error amplification matrix Hm is given by 

(3.3) 

where '1.Jn vanishes if Jn does not depend on Yn· 

Proof. The matrix C defined in (2.3) can be written as 

J ._a f(Yn) 
n .- ay ' (3.4) 

where '1.Jn is the block-diagonal matrix h-1 [ J(Y) - Us© Jn)] which is bounded as h -+ O and 
vanishes if Jn does not depend on Yn· Since we assumed Pj-t = /54 for odd values of j less than m, 
it follows from (2.4a) that 

Zj = h2 (-Qj + Mj[Us ©In)+ O(hL1Jn)]+Pj(A2 © /4) [Us© J;) + 0(hL11n)]), 

Mj := h- 1Usd - Pj + h2Qj)(A © /4), j odd, I~ j ~ m-1. 

It is easily verified that the relations (3.2) imply that 

Zj = h2Pj(A2 © [ 7r/d - uJn + J;J) + O(h3 L1Jn), j odd, 1 ~ j ~ m- I. (3.5a) 

For even values of j we derive 

Zj := ls4 - Pj(ls4 - h(A ©Id) Us 0 Jn))+ O(h2'1Jn). 

From (3.2) it follows that 

lsd =Pm-I Usd - h(A ©Amid)), m odd, 

hence, the iteration matrix Zm- I takes the form 

(3.5b) 

The relations (3.5), together with (3.1) and (3.2) lead to (3.3). Finally, in the case of constant 
Jacobian matrices, the order term 0( hm+t Lt Jn) vanishes. 0 

If the method defined by (2.2) and (3.2) is applied to the test equation y'(t) = -\y(t), then this 
theorem shows that H"' vanishes for all zeros of the spectral fitting polynomial Sm. Since the zeros of 
Sm can be chosen arbitrarily, we can achieve spectral fitting at any prescribed set of m fitting points 
{Ak}. Ideally, these zeros should be chosen in the region where ln = af(Yn)/ay has its spectrum and 
such that Sm Un) is minimal on the spectrum of ln (spectral fitting). The resulting method will be 
denoted by PIRK{m, -\k} (Parallel Iterated Runge-Kutta method with m fitting points {-\k} ). 

A comparison with (3.3) reveals that Hm is of the form (2.7a) with q = 1, Km = Am, and 
Lm = Sm (Jn). By means of Theorem 2.1 we can prove: 

Theorem 3.2. Let the conditions of Theorem 2.1 be satisfied. Then the iteration error of the 
P!RK{ m, Ak} method is given by 
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(3.6) 

Expression (3.6) shows that the convergence accelerating effect of the spectral fitting polynomial 
Sm and of the underlying predictor-corrector pair are more or less factorized, so that the determination 
of an appropriate fitting polynomial Sm (see Section 5) can be addressed independently of the choice 
of the predictor-corrector arrays A, b, c, w and E. 

We shall consider the principal iteration error constant Cm associated to the 

Last-step-value predictor: 

(2.8) with E = 0, w = e, 

Last-stage-vector predictor: 

{ (2.8), (2.9)} with vi = 0, j = 0,. . ., r, 

r being the stage order of the corrector. 

(3.7a) 

(3.7b) 

Theorem 3.3. For the Last-step-value predictor (3.7a), the iteration error of the PIRK{m, J..k} 
method is given by 

Yn+I - Un+I = CmSm(Jn)h"'+ 1y'(tn) + O(hm+2), 

Cm:= -bT Am-IC, 

where Cm = -1 / ( m + 1) ! for m ~ p - 1, p denoting the order of the corrector. 

(3.6a) 

Proof. If E = 0, then q = 0, and it is easily verified that (3.6) reduces to (3.6a). The relation 
bT Am- 1c = 1/ (m+ 1) ! form~ p-1 follows from the order conditions for Runge-Kutta methods. 0 

For a number of Butcher-Kuntzmann correctors, Table 1 lists the values by which the principal 
iteration error constant Cm is reduced in each iteration (i.e., the values of Cm/ Cm-I where C0 := 
-bT A-1c corresponds to the predictor error). These values show that-for the first few iterations
the choice of the corrector is irrelevant; low-order and high-order correctors will generate iterations 

Table I 
Values of Cm/Cm-! for Butcher-Kuntzmann correctors using the Last-step-value predictor 

p s Co m 

2 3 4 5 6 7 8 9 10 00 

2 -1 112 112 1/2 1/2 1/2 112 112 112 1/2 112 1/2 

4 2 -1 112 1/3 1/4 1/6 0 00 112 1/3 114 1/6 0.29 

6 3 -1 112 113 114 1/5 1/6 3/20 116 7/30 2/7 11140 0.22 

8 4 -1 112 113 1/4 115 116 1/7 118 23/210 2/23 1156 0.17 

10 5 -1 112 1/3 1/4 115 1/6 117 1/8 1/9 1/10 23/252 0.14 
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Table 2 
Values of C,./Cm-1 for Butcher-Kuntzmann correctors using the Last-stage-vector predictor 

p s Co m 

2 3 4 5 6 7 8 9 10 00 

2 0.75 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

4 2 0.36 0.31 0.23 0.14 0.11 1.25 0.43 0.31 0.23 0.14 0.11 0.29 

6 3 0.13 0.25 0.21 0.18 0.16 0.17 0.22 0.26 0.27 0.24 0.22 0.22 

8 4 0.038 0.22 0.18 0.16 0.14 0.12 0.10 0.07 0.10 0.64 0.29 0.17 

10 5 0.009 0.19 0.16 0.14 0.13 0.11 0.10 0.10 0.09 0.11 0.14 0.14 

with an equal iteration error. This implies that high-order correctors are also appropriate for generating 
low-order results. Note that Cm/ Cm-I converges to the spectral radius of A as m tends to infinity. 
From this table we observe a periodic behaviour (with period of length 6) for the fourth-order 
Butcher-Kuntzmann method. This can easily be explained by observing that for this method A6 = yls 
(with y = -1/1728). 

Theorem 3.4. Let U and V be s x s matrices whose columns are respectively given by the vectors 
{jci-1, j = 1, ... , s} and { ( c - e )j, j = 1, ... , s }, and let V be nonsingular and E = Auv-1• Then, 
for the Last-stage-vector predictor (3.7b) with E = Auv- 1 and w = e - Ee, the iteration error of 
the PIRK{m, Ak} method is given by 

(3.6b) 

Proof. From Theorem 2.1 it follows that we can always achieve q = r if w and E satisfy the relations 

w=e-Ee, E(c-e)i=jAd-1, j=l, ... ,s. (3.8) 

It is easily verified that E can be represented in the form E = Auv-1 with U and V as defined in the 
theorem. From the Theorems 2.1 and 3.2 the expression (3.6b) is readily obtained. D 

The analogue of Table 1 is given by Table 2. Taking into account the rather small values of Co, 
this table clearly shows that the Last-stage-vector predictor should converge faster than the Last-step
value predictor. It also shows that it is now more efficient to generate low-order results by high-order 
correctors than by low-order correctors. 

3.2. Stability 

Next, we address the stability of PIRK{m, Ak} methods. Confining our considerations to the Last
step-value predictor, we have the following theorem: 
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Table 3 
Stability boundaries {,Bn,.1.,B;m.1} for PIRK{m. Ak} methods with Butcher-Kuntzmann correctors 

p 

4 

6 

8 

m=p 

{2.78. 2.82} 

{3.55, 0.5*} 

{4.31, 3.39} 

m=p+2 

{3.54, 3.46} 

{3.99, 3.68} 

{ 5.27, 1.5*} 

m=p+4 

{3.01,0.6*} 

{3.89, 1.0*} 

{ 4.99, 1.6*} 

Theorem 3.5. Let the predictor be defined by the Last-step-value predictor (3.7a) and let Sm be 
defined by (3.1 ). Then, for the test equation y' = Ay, the stability polynomial of the PIRK{m, Ak} 
method is given by 

Rm(Z, h) = l + f31(h)z + /32(h)z 2 + ... + f3m(h)zm, 
1 T a1M 

{31(h) := 7b -. (0, h)e, z := hA., 
1! az1 

M ( z. h) := z [I + zA + z 2 A 2 + · · ·) [/ s - Sm ( h- 1 z ) [Sm ( h- 1 A - I ) ] - i) . 

Proof. For the test equation y' = Ay, we derive from (2.7), (3.3), (2.8) and (2.1) 

Yn+I = Un+I + (bTA- 1Km ® Lm)(Y(O) - Y) 

= [I+ hA.bT (I - hA.A)- 1e]y11 + Sm(A)bT A- 1 [Sm(h- 1 A-1) ]- 1 [/ - (I - hAA)-1] eyn. 

Defining the stability polynomial Rm (A, h) according to 

Yn+I = Rm(Z, h)Yn• 

it follows that 

z := hA., 

Rm(Z, h) = 1 + zbr (I - zA)- 1 [ls - Sm(h- 1z )[Sm(h- 1 A-1) r 1]e. 

If zA has its eigenvalues within the unit circle, we may write 

Rm(Z, h) = 1 + bTM(z, h)e, 

M(z, h) := z [I+ zA + z2 A2 +···][Is - Sm(h-1z) [Sm(h- 1A- 1)1- 1]. 

Since Rm ( z, h) necessarily is a polynomial of degree m in z, the assertion of the theorem follows. 0 

Let us first consider conventional predictor-corrector iteration where all fitting points are at the 
origin, i.e., Sm(x) = xm. Then, Theorem 3.5 shows that the stability function takes the form 

(3.9) 

For a few values of p and m, the real and imaginary stability boundaries {.Brea1 • .Bimag} are given in 
Table 3. The three-digit numbers refer to stability intervals where I Rm I does not exceed 1, whereas, 
in the case of /3imag• the two-digit numbers (carrying an *) refer to imaginary stability intervals 
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where I~"' I is les~ than 1 + 10-6. Although the latter cases fonnally indicate zero imaginary stability 
boundanes, the given values may be considered to be effective boundaries. 

For no~zero fitting points, the polynomial (3.9) is approximated as h----* O. However, if h =I=- O, this 
polynomial'. ~nd hence the stability region, may change considerably. Although we did not introduce 
the precond1t10ners for improving stability, we want to remark that they can also be used to relax the 
stability conditions. 

Example 3.6. As an illustration, we derive the stability polynomial for the case where p = m = 2 
and 

for Ao a real, fixed parameter. The corresponding stability polynomial is given by 

R2(Z, h) = 1 + z[l - h2 A6bT Us - hA0A)-2A2e] 
+ ~Z 2 [l + 2h"-obT (2/s - h"-oA) Us - h"-oA)-2 A2e]. 

For h ----* 0, the stability region of this polynomial converges to that of the stability polynomial of 
Runge's method. However, if h -:/= 0, the stability region changes considerably. For example, let the 
corrector be defined by the one-stage Butcher-Kuntzmann method with A= t and b = 1. Then, 

R ( h) = 1 1 - hAo ~ 2 1 
2 z, +z (l -hAo/2)2 + 2z (l-h"-o/2)2· 

If z is negative, then R2 (z, h) assumes values in [ -1, + 1] for h"-o ~ ~ and -2( 1 - h"-o) ~ z ~ 0 
Let p(J,,) denote the spectral radius of the Jacobian ln- For Ao~ -tPUn), we have unconditiona, 
stability. For Ao > -tp(J,,), the stability condition becomes h ~ 2[2A0 +p(J,,)1-1. From this 
expression we conclude that for negative Ao, the stability condition is always less stringent than that 
of Runge's method. For imaginary values of z, the stability condition takes the form Ao > 0 and 
h ~ 4"-o[3A6 + p(J,,) 2]-1, whereas Runge's method is always unstable. 0 

4. Spectral fitting using the Jacobian matrix 

In this section, we construct preconditioners by using the Jacobian matrix of the IVP. This enables 
us to achieve convergence factors of 0 ( h2), and at the same time, to apply spectral fitting at 2m 
points in the complex plane (m being the total number of iterations). The use of the Jacobian matrix 
is quite uncommon in nonstiff problem solvers. However, in many problems, the increased rate of 
convergence and the observation that an update of the entries of the Jacobian is probably needed only 
once in a few steps and, moreover, can be done in parallel, justifies the use of the Jacobian-dependent 
preconditioners in nonstiff problems. 

4.1. The preconditioner 

The analogue of Theorem 3.1 reads: 
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Theorem 4.1. Let iJ.In be defined as in Theorem 3.1, let Sim be the polynomial of degree 2m defined 
by 

( 4.1) 

where ui and 1Tj are real coefficients, and let the matrices Pi and Qi be defined by the expressions 

pj = Isd -1Tjh2 ~(h) ®Id+ h~(h)A- 1 ®In, 

Qi=O, 

\.J(h) = A2 (Is - ujhA + 1Tjh2A2f 1, 

j = 0, 1, ... ' m - 1, I. := a f (Yn) . 
ay 

Then, the error amplification matrix Hm is given by 

Hm(h,In) = [Sim(h- 1A-1)]-1 ®Sim(Jn) +0(h2mJin), In:= of;;n). 

(4.2) 

(4.3) 

Proof. Using that all Qi vanish and substituting (3.4), the matrix Zi defined in (2.4a) takes the 
factorized fonn 

On substitution of ( 4.2) into Wi we obtain 

Wi(h, In) 

= 1Tih2~(h) ®Id+ h(A - ~(h)A- 1 - 1Tih2 ~(h)A) ®In 

+ h2~(h) ®I;+ O(h2Jin) 

= 1Tjh2~(h) ®Id - Ujh2~(h) ®In+ h2~(h) ®I;+ 0(h2iJ.In) 

= h2(A2Us - o-ihA + 1Tih2 A2)-1 ® u; - urfn + TrJd)) + O(h2 Jin), 

j = 0, I, 2, ... , m - 1. 

(4.4) 

By substitution of Wi(h.Jn) into (4.4) and using the spectral fitting polynomial (4.1), the matrix 
Hm can be written in the fonn ( 4.3). 0 

Like the PIRK{m, Ak} method of the preceding section, the method defined by (2.2) and ( 4.2), 
when applied to the test equation y'(t) = A.y(t), has the property that Hm vanishes for all zeros of the 
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spectral fitting polynomial Sim· However, firstly, we now have 2m fitting points { ,lk}, and secondly, 5. Sp4 
in each iteration we have a factor h2 instead of a factor h. On the other hand, for IVPs where 
iJ.In does not vanish, the eigenvalues of the error multiplication matrix Hm are always O(h2m iJ.In) Fro: 
including eigenvalues that coincide with the fitting points. In this connection, it· should be remarked spectr 
that Theorem 4.1 also applies to nonautonomous IVPs provided that In and iJ.ln are understood consic 
to correspond to the Jacobian of the nonautonomous right-hand side function. As a consequence, on th~ 
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fo~ li?ear ~onautono~ous systems, the eigenvalues of the error multiplication matrix vanish if they 
comc1de with the fittmg points. 

The method defined by (2.2) and (4.2) will be denoted by PIRKJ{2m, ..\.k} (Parallel Iterated 
Runge-Kutta method using the Jacobian matrix and 2m fitting points { ..\.k}). The analogues of the 
Theorems 3.2-3.5 become: 

Theorem 4.2. Let the conditions of Theorem 2.1 be satisfied. Then the iteration error of the 
PIRKJ{2m, Ak} method is given by 

Yn+I - Un+I = h2m+q+I [CmS;mUn)Y(q+I>(tn) + O(L1Jn) + O(h) ], 
C ·-bTA2m-1v m .- q+I· 

(4.5) 

Theorem 4.3. For the Last-step-value predictor (3.7a), the iteration error of the PIRKJ{2m, ..\.k} 
method is given by 

Yn+I - Un+I = CmS;mUn)h2m+ly' Un)+ O(h2m+l Llln) + O(h2m+2), 

Cm:= -bT A2m-IC, 

where Cm = -1 / ( 2m + 1) ! for 2m ~ p - 1, p denoting the order of the corrector. 

Theorem 4.4. Let U and V be s x s matrices whose columns are respectively given by the vectors 
{jcJ- 1, j = 1, ... , s} and { (c - e)i, j = 1, ... , s }, and let V be nonsingular and E = Auv-1• Then, 
for the Last-stage-vector predictor (3.7b) with E = Auv-1 and w = e - Ee, the iteration error of 
the PIRKJ{2m, ..\.k} method is given by 

Yn+I - Un+I = CmS;mUn)h2m+r+ly<r+l)(tn) + O(h2m+r+1L1ln) +0(h2m+r+2), 

Cm:= 1 bTA2m[vv-1(c-e)'+1_(r+l)c']. 
(r+l)! 

(4.6) 

Theorem 4.5. Let the predictor be defined by the Last-step-value predictor (3.7a) and let Si,,, be 
de.fined by ( 4.1). Then, for the test equation y' = ..\.y, the stability polynomial of the PIRKJ {2m, ..\.k} 

method is given by 

R;,,,(z, h) = 1 + /31 (h)z + f32(h)z 2 + · · · + f32m(h)z 2"', 

1 Ta1M 
{31(h) := -:-1 b -a . (0, h)e, z :=h..\., 

J. z1 
M(z. h) := z [I+ zA + z2 A2 + ... ][Is - s;,,,(h-1 z) [S;,,,ch-1 A-I) ]-11. 

5. Spectral fitting polynomials 

From Theorems 3.1 and 4.1 it follows that for small h, the best we can do is to minimize the 
spectral fitting polynomial in some sense ~ver the eigenvalu~ spectrum of ln. In partic~lar, we 
consider eigenvalue spectra located on the lme segment [a, b] m the co~plex plane (e.g., mtervals 
on the real axis or on the imaginary axis). It is easily shown that the maximum norm of the spectral 
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fitting polynomial can be minimized on [a, b] by means of shifted Chebyshev polynomials. For the 
preconditioners (3.2), this minimax spectral fitting polynomial is given by (Tm denotes the first-kind 
Chebyshev polynomial of degree m) 

S ( ) = ( b - a) m T. (a + b - 2z ) 
m z 22m-l m a - b . (5.1) 

The minimax spectral fitting polynomial S2m(z) for preconditioner ( 4.2) can be obtained by setting 

. Sim ( Z ) = S2m ( Z ) · 

It should be remarked that only for intervals [a, b] on the real axis or intervals with a and b complex 

conjugate, the coefficients of Sm and Sim(z) are real-valued. Furthermore, these Chebyshev-type fitting 
polynomials are not optimal for more general eigenvalue spectra. For example, if the eigenvalues of 
ln are located in a circular sector, then the near-optimal polynomials are the Faber polynomials ( cf. 
[ 2]) . However, in this paper, we shall restrict our considerations to fitting polynomials of the form 
(5.1). 

The parameters o-.i and 1Tj occurring in the preconditioners (3.2) and (4.2) can now easily be 
derived from the zeros of the spectral fitting polynomials by using the following expression for shifted 
Chebyshev polynomials of degree n: 

( a+b-2x) 22n-l n 

Tn a-b = (b-a)n Il(x-wnk), 
k=I 

Wnk = } [a + b - ( Q - b) COS c2k ;n l) 1T)] , 
(5.2) 

k = I, ... , n. 

In order to get some insight in the magnitude of SmUn), we set ln =Aid and we write 

(5.3) 

.vhere II · llR denotes the maximum norm over some region R in the complex A-plane. In particular, 
we consider the two cases a= -r, b = 0 and a= -ir, b = +ir for the sectorial regions 

R1 (r, </>) :={A= IAleiC7l'-\fl): 0 ~ IAI ~ r, II/II~</>}, 

Rz (r, c/>) :={A= IAlei(7T/2+\fll: 0 ~ IAI ~ r, 0 ~ l/I ~ c/> }. 

It is easily verified that 

0-R1(l,if>) = l Vl \Ill Tm( 1 + 2,\) llR1(l,,P)> 
a-;I (I ,if>) = ( O"RJ( l,if>)) 

2 
' 

if a= -r, b = 0, 

0-Rz(l,if>) = ~v2 "'llTm(iA)llR2(1,if>)• 

a-;z(l,t/>) = (a-R2(l,t/>J) 2
, 

if a = -ir, b = +ir. 

(5.4) 

(5.5a) 

(5.5b) 

Thus, it suffices to compute the constants characterizing Sm. These constants are given in Table 4 
for the region R1 (r, </>) with fitting points Ak in [-r, OJ and for the region R2 (r, </>) with fitting 
points Ak in [ -ir, +ir]. For c/> > 0, the constants rapidly converge to a fixed value as m increases. 
These values are substantially less than 1 for regions Rj ( r, c/>) with quite large apertures. Since 
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Table 4 

Constants URj(l,<t>> in formula (5.3) defined by (5.5) 

m Region R1(r,</J) with fitting points 1h in [-r,0] Region R2(r,<f>) with fitting points Akin [-ir, +ir] 

</> = oo </> = 15° <P = 30° <P = 60° <P = 90° </> =00 </> = 15° </> = 30° </>=60° <P = 90° 

0.50 0.54 0.62 0.87 l.12 1.00 l.00 1.00 1.00 l.00 

2 0.36 0.50 0.67 0.94 l.16 0.71 0.79 0.94 l.16 l.23 

3 0.32 0.51 0.67 0.94 l.16 0.63 0.81 0.97 1.15 l.21 

10 0.27 0.51 0.67 0.94 l.16 0.54 0.82 0.97 l.15 1.21 

00 0.25 0.51 0.67 0.94 1.16 0.50 0.82 0.97 l.15 l.21 

the constants corresponding to the conventional fitting polynomial zm are equal to 1 (for all m), 
we see that Chebyshev fitting polynomials with zeros on the real and imaginary axes yield smaller 
convergence factors for </> ~ 60° and </> ~ 30°, respectively. 

6. Numerical experiments 

To test the efficiency of the iterated Butcher-Kuntzmann methods on parallel computers, we applied 
these methods to various test examples. An extensive discussion of these tests can be found in [ 13, 
Appendix]. Here we present results for one, representative, example, i.e., the Arenstorf orbit problem 
[ 4, p. 127] 

I 
Y1 = y3, 

y~ = y4, 
I 2 I Y1 + µ Y1 - µ' 

Y3 = Y1 + Y4 - µ -- - µ , 
D1 D2 

I 2 1Y2 Y2 Y4 = Y2 - Y3 - µ - - µ-, 
D1 D2 

0 ~ t ~ 17.06521656015796 .. ., 

µ = 0.012277471, 

D1 = ((Y1 + µ) 2 + Yn 312
, 

Y1 (0) = 0.994, 

Y2(0) = 0, 

y3(0) = 0, 

y4(0) = -2.001585106379082 ... , 

µ' = 1- µ, 

( I 2 2)3/2 D2 = (Y1 - µ ) + Y2 · 

( 6.1) 

For the underlying corrector we choose the Butcher-Kuntzmann method of order 8. Since it is also 
of interest to see the effect of the order of the corrector on the performance of the PIRK methods, we 
give, in addition, the results of a low-order corrector (p = 4) and of a corrector of very high order 
(p = 26). We remark that this last method is not advocated to be of practical interest; it is merely 
used to show the impact of a high-order corrector. For the predictor we choose the Last-stage-vector 
predictor ( 3.7b). The calculations are performed using 15-digit arithmetic. 

A realistic application of the PIRK{m, O} and PIRKJ{2m, O} methods requires a dynamic variation 
of the stepsize h. Therefore, both versions are provided with an automatic stepsize selection which 
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Table 5 
Comparison with DOPRI8 for the Arenstorf orbit problem ( 6.1) 

Method Order of Order of LI Averaged 
corrector resulting speed-up 

method 3 4 5 6 7 8 w.r.t. DOPRI8 

DOPRI8 8 1564 1900 2459 3215 3944 4817 

................................................................................................................ 

PIRK{3,0} 4 4 1753 3138 6270 11516 18875 39311 0.4 

PIRKJ{4,0} 4 4 1237 1988 3249 5275 9529 15266 0.7 

PIRK{5,0} 8 8 664 812 967 1191 1415 1809 2.6 

PIRKJ{6, O} 8 8 403 483 588 698 831 963 4.4 

PIRK{5, O} 26 18 450 523 545 619 696 852 4.7 

PIRKJ{6,0} 26 19 291 338 373 407 467 760 6.7 

we more or less copied from the code PIRK8 described in [ 12]. Here, we confine ourselves to 
a fixed number of iterations. Moreover, all fitting points are chosen at the origin. One reason is 
that, for the greater part of the integration interval, the eigenvalues for this problem are located in 
the neighbourhood of the origin; another, more important reason is that for this nonlinear problem, 
fitting does not help when it is applied in addition to preconditioning with the Jacobian (see also the 
discussion following Theorem 4.1 ) . We use values of m that turned out to produce the best results 
(these values are indicated in the table of results). It is however to be expected that a variable-m 
strategy (which may result in a variable-order method) will enhance the performance of the codes. 
In passing, we remark that for the Arenstorf orbit problem, the variable stepsize implementation of 
PIRKJ{lO, O} is 50 to 100 times more efficient than its fixed-h variant. This is due to the fact that 
in small parts of the integration interval the problem is (mildly) stiff, forcing the fixed-h version to 
use a small stepsize in the whole interval. 

The accuracy is given by the number of correct digits L1, obtained by writing the maximum 
norm of the absolute error at the endpoint in the form 10 -LI. The computational effort is measured 
by the total number N of sequential right-hand side evaluations performed during the integration 
process. 

For various values of the local error control parameter, we compared the iterated Butcher
Kuntzmann correctors with the DOPRIS code given in [ 4] (DOPRI8 is based on the 8(7)-method 
of Prince and Dormand [ 10] which is nowadays considered as one of the most efficient sequential 
methods). For an easy comparison of the results we computed, for a number of given Li-values, the 
corresponding N-values by linear interpolation. The results are listed in Table 5 showing that the high 
corrector order and Jacobian-dependent preconditioners improve the efficiency drastically. 

From this experiment we can draw several conclusions. Let us first compare the PIRK-type methods 
of order 8 with the eighth-order DOPRI8 code. We observe an averaged speed-up of 2.6 for the PIRK 
variant and 4.4 for the preconditioned version (recall that these parallel methods require 4 processors). 
Hence, it is clear that the preconditioning considerably increases the efficiency. Also for the PIRK 
methods of low and high order, we see that the preconditioned versions are to be preferred. 
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Furthermore, we observe the significant role of the order of the underlying corrector. The fourth
order scheme is clearly of a too low order to compete with DOPRI8, especially in the high-accuracy 
range. The PIRK methods based on the corrector of order 26 on the other hand, show a speed-up 
which is even higher than obtained for the eighth-order PIRKs, also in the low-accuracy range. This 
observation gives evidence to our statement that, for nonstiff problems, a corrector of high order, in 
combination with a predictor based on extrapolation, is generally most efficient. 

7. Summary 

In this paper our starting point is a parallel iteration scheme for the approximate solution of 
the Butcher-Kuntzmann methods. For nonstiff problems, such algorithms have been proposed in 
[5,6,8,9,12]. These methods are "general-purpose methods" in the sense that they do not take into 
account any special knowledge about the problem. 

In the present paper we analyze the effect on the convergence behaviour of these parallel iteration 
methods by incorporating some additional information; we distinguish two approaches: 

• In the case that information on the spectrum of the Jacobian matrix is available, it is possible 
to considerably increase the rate of convergence by adapting the iteration parameters to this 
spectrum. It is shown that this technique is applicable both in the case of real eigenvalues and of 
complex (conjugate) pairs. An advantage of this approach is that the computational effort of the 
method is hardly increased by introducing these "fitting parameters". If no spectral information 
is available, then the best thing to do is fitting at the origin to obtain conventional functional 
iteration. 

• A second approach is to use additional information which is provided by the Jacobian matrix. 
In this case we have shown that the convergence factor can be made of 0(h2 ) instead of 
the usual behaviour of O(h), which implies that roughly half the number of iterations are 
required. A disadvantage is the additional overhead due to Jacobian evaluations and matrix
vector multiplications. However, often an inaccurate Jacobian does not drastically degrade the 
performance, so that this matrix needs not be reevaluated in each integration step. Moreover, 
Jacobian evaluations possess a high degree of parallelism. The Jacobian approach has turned out 
to be useful in cases where a right-hand side evaluation is substantially more expensive than 
a Jacobian-vector multiplication. In such cases the additional work introduced in the iteration 
scheme is negligible. A clear advantage of this approach is that it does not require a priori 
information about the problem. 

In this paper, we have focused on the application of the above convergence-acceleration tech
niques to nonst{ff" problems. Numerical examples have demonstrated (see also [ 13, Appendix]) the 
efficiency-increasing effect of both acceleration techniques in the context of fixed stepsizes. Finally, 
a variable-stepsize implementation of our preconditioned PIRK(J) methods is compared to the best 
sequential nonstiff solver and shown to be superior. 

References 

[I ] J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 ( 1964) 50-64. 



374 P.J. van der Houwen, B.P. Sommeijer!Applied Numerical Mathematics 15 (1994) 357-374 

[2] J.P. Coleman and R.A. Smith, The Faber polynomials for circular sectors, Math. Comp. 49 ( 1987) 81-84, 231-241. 
[3] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic Press, New York, 1975). 
[ 4] E. Hairer, S.P. N!iSrsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series 

in Computational Mathematics 8 ( Springer-Verlag, Berlin, 1987). 
[5] K.R. Jackson, A. Kva:m!iS and S.P. N!llrsett, Order ofRunge-Kutta methods when using Newton-type iteration, Technical 

Report No. 1/91, Division of Mathematical Sciences, University of Trondheim, Norway (1992). 
[ 6] K.R. Jackson and S.P. N!iSrsett, The potential for parallelism in Runge-Kutta methods, Part I: RK formulas in standard 

form, Technical Report No. 239 I 90, Department of Computer Science, University of Toronto, Toronto, Ont. ( 1990). 
[7] J. Kuntzmann, Neuere Entwicklungen der Methoden von Runge und Kutta, Z. Angew. Math. Mech. 41 (1961) 

T28-T31. 
[8] I. Lie, Some aspects of parallel Runge-Kutta methods, Report 3/87, Department of Mathematics, University of 

Trondheim, Norway ( 1987). 
[9] S.P. N!iSrsett and H.H. Simonsen, Aspects of parallel Runge-Kutta methods, in: A. Bellen, C.W. Gear and E. Russo, eds., 

Numerical Methods for Ordinary Differential Equations, Proceedings L'Aquila 1987, Lecture Notes in Mathematics 
1386 (Springer-Verlag, Berlin, 1989). 

[ 1 O] P.J. Prince and J .R. Dormand, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math. 7 (1981) 67-7 5. 
[ 11] P.J. van der Houwen, Preconditioning in implicit initial value problem methods on parallel computers, Report NM

R92l6, Centre for Mathematics and Computer Science, Amsterdam (1992); also Adv. Comput. Math. (to appear). 
[ 12] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize control, 

J. Comput. Appl. Math. 29 (1990) 111-127. 
[ 13] P.J. van der Houwen and B.P. Sommeijer, Butcher-Kuntzmann methods for nonstiff problems on parallel computers, 

Report NM-R9305, Centre for Mathematics and Computer Science, Amsterdam (1993). 


