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Abstract 

This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity 
periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of 
index l;. We show that its fat tail gives rise to an even fatter tail of the buffer content distribution, viz., one that is regularly 
varying of index l; + I. In the special case that l.; E ( -2, -1 ), which implies long-range dependence of the input process, 
the buffer content does not even have a finite first moment. 

As a queueing-theoretic by-product of the analysis of the case of N identical sources, with N ~ oo, we show that the 
busy period of an M/G/oo queue is regularly varying of index l; iff the service time distribution is regularly varying of 
index l;. 

Keywords: Fluid queue; Regular variation; Long-range dependence; Buffer content 

1. Introduction 

Recent measurements (see e.g. [11,15]) have revealed that in high-speed telecommunication net­
works, like the ATM-based Broadband ISDN, traffic conditions can occur that exhibit long-range 
dependence and burstiness over an extremely wide range of time scales. In terms of probability distri­
butions, such conditions may be due to the occurrence of interarrival or service time distributions with 
a fat, non-exponential, tail. It is important to obtain qualitative insight into the effect of such fat tails 
on performance measures like workload and waiting time distributions. This paper aims to contribute to 
such insight. 

We study a fluid queueing system, that is fed by N independent on/off sources. Each source alternates 
between activity periods and silence periods; in the former periods a source feeds work into the buffer 
at constant rate (larger than the output rate of the buffer). This fluid queueing system has been found 
to be particularly well matched to the ATM environment. Since the fundamental publications of Anick 
et al. [2] and Kosten [10], it has become a key model for the performance analysis of high-speed 
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telecommunication networks. However, in [2,10] and subsequent publications the activity and silence 
periods are exponentially distributed or determined by some Markov process, leading to exponential 
behaviour of the tail of the buffer content distribution. We are interested in the case that the activity 
periods of one or more of the sources have a fat tail (this may, for example, arise in file transfers). More 
precisely, we consider the case that the tail of some activity period distributions is regularly varying. 

A measurable positive function f is called regularly varying of index~ if, for all x > 0, 

f(xt)/f(t) ~ x~. t ~ oo, (1.1) 

(cf. [3], p. 18). One writes f E R~. When t = 0, one speaks of a slowly varying function; this could 
for instance be a constant, or a logarithmic function. We shall say that a distribution F(.) is regularly 
varying (or "has a regularly varying tail") when Fc(t) := 1 - F(t) is a regularly varying function. 
The class of regularly varying distributions is an important one, containing for example the Pareto 
distribution. Of particular interest to us is the case that an activity period distribution has a regularly 
varying tail of index t E (-2, -1). In that case the first moment of the distribution exists, but the 
variance is infinite. This case is known to give rise to long-range dependence. We shall roughly indicate 
this. Long-range dependence of a continuous-time process {Z1 , t ::=:: O} is defined by the property that 
cov(Zo, Z1) is not integrable overt. Let Y1 be 1 when the source is active, and 0 otherwise. Observe that, 
for large values oft, cov(Yo, Y1) is linearly related to the probability that the activity period that covers 0 
is still going on at t. The resulting distribution of the residual activity period is again regularly varying, 
but of index t + 1 E (-1, 0) ( cf. [3], and see also Section 4 of this paper). Hence the covariance function 
is not integrable overt, implying long-range dependence. 

For the traditional GI/G/1 queue, Cohen [6] has studied the effect of regularly varying interarrival or 
service time distributions on waiting-time and workload distributions. We shall exploit his main result, 
which states: the waiting-time distribution in the GI/G/1 queue is regularly varying of index 1 - v (with 
v > 1) iff the service time distribution is regularly varying of index -v. See Abate et al. [1] for a 
recent discussion of waiting-time tail probabilities in the GI/G/1 queue with a fat-tailed service time 
distribution, with an emphasis on approximations based on waiting-time tail asymptotics. 

Other papers that are particularly relevant for our study are those of Brichet et al. [4] and Norros (13]. 
Norros [13] studies a fluid queue with Fractional Brownian Motion as input process. This self-similar 
input process exhibits long-range dependence. Norros analyzes the buffer content process of this model. 
Brichet et al. [4) consider the same model as we, restricting themselves to N identical sources. In the 
limit of a large number of sources, in heavy traffic, they obtain the important result that the tail of the 
buffer content distribution is Weibullian. They also indicate how their model relates to that of Norros. 

Our paper is organized as follows. The fluid queueing system under consideration is described in 
Section 2. Section 3 displays for this model some key results of [7,9) that form the starting-point of 
our approach. Section 4 summarizes the main ingredients of the theory of regular variation. Our results 
are gathered in Sections 5-7. Section 5 considers the case of a single on/off source. We show that, 
analogously to the ordinary GI/G/1 queue, the buffer content distribution is regularly varying with 
parameter 1 - v iff the activity period distribution is regularly varying with parameter -v. In Section 6 it 
is shown that the buffer content distribution is still regularly varying with parameter 1 - v if, in addition 
to that single source, there are one or more sources with exponential activity and silence periods. Section 
7 is concerned with the case of an infinite number of identical on/off sources, all with regularly varying 
activity period distributions. We present results for the regularly varying behaviour of (i) the period in 
which at least one source is active, (ii) the net buffer increment during such a period, and (iii) the buffer 
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content. The result (i) implies that the busy period distribution of an M/G/oo queue is regularly varying 
of index -v iff the service time distribution is regularly varying of index -v. 

2. The model 

Consider a fluid queueing system with an infinite storage capacity and constant, unit, output rate. 
This system receives input from N independent on/off sources. Source j has mutually independent 
alternating silence periods Sij and activity periods Aij. j = 1, ... , N, i = 1, 2, .... Source j constantly 
transmits at rate r1 when active, so source j feeds r1 A;1 traffic into the buffer during its ith activity 
period. The silence periods SiJ have a negative exponential distribution with mean 1/A.1, and the activity 
periods A;1 have distribution A j ( ·) with A J (0+) = 0 and with mean a 1 and Laplace-Stieltjes Transform 
(LST) a 1 ( ·). We assume that r; > 1, j = 1, ... , N. This assumption is somewhat restrictive and can be 
relaxed (see Remark 6.2 and also Section 5 of [9]); we shall discuss this issue in more detail in a future 
study. 

The total traffic load offered to the buffer per unit time is assumed to be less than one: 

N r·a·A.· 
L := L J J J < l. 

J=l 1 + CXJAJ 
(2.1) 

This is the ergodicity condition, cf. [9]. 

3. The fluid queue 

Let V1 denote the content of the buff er at time t. Assume that the buffer is empty at time zero. We call 
Cn, n = 1, 2, ... , the length of the nth cumulative activity period after zero; this is a period in which at 
least one source is active. Such a period is followed by a period, with length In+ 1, in which all sources 
are silent. Denote by Bn the net increment of the buffer content during Cn, and by Wn the buffer content 
at the beginning of the nth cumulative activity period. It is easily seen ( cf. Fig. 1 and [9]) that 

Wn+1 = max[O, Wn + Bn - In+1L n = 1, 2, ... , 

W1 =0. 

83 

11 · C1 12 . C2 la : Ca: .....___..+---------+ ----.+---""-----+ ----~-- . ....-.-----....... 

Fig. I. The buffer content 

(3.1) 
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The assumptions in the previous section about the silence periods imply that Ii, fz, . . . are independent 
and negative exponentially distributed with mean 1/ A := 1/[A.1 +···+AN]. Furthermore, B1, B1, ... 
are independent random variables; and Wn, Bn and In+I are mutually independent. Hence the sequence 
Wn, n = 1, 2, ... , has the same stochastic behaviour as the sequence of actual waiting times in an 
M/G/1 queue with arrival rate A and with service time distribution B(-), the distribution of Bn· So once 
we have determined BO, M/G/l theory tells us the steady-state distribution, W(·), of the buffer content 
at the start of cumulative activity periods. In this paper we shall concentrate on W ( ·). Knowledge about 
its behaviour will also enable us to draw conclusions about the buff er content distribution at arbitrary 
epochs; this will be done in Remarks 5.4 and 6.4. 

Determination of BO is a far from trivial problem if N > 1, because the number of active sources 
may fluctuate during a cumulative activity period. Cohen tackles this problem in [7] for N identical 
sources with r 1 = · · · = rN = l, and in [9] for N different sources. He observes that the activity and 
silence periods of the N sources give rise to N alternating renewal processes, and uses this to obtain 
the LST of the joint distribution of B and C (B and C denote generic random variables with joint 
distribution the joint limiting distribution of the random variables Bn and Cn). For the model with N 
different sources, with Rew ::::: 0, Res > 0, and some y > 0, according to [9], 

1 = 1"° e-st fr {-1-f ioo+y eur du} dt. 
s + A(l - E[e-w(B+C)-sC]) r=O j=I 2rri -ioo+y u + Aj[l - O!j{Wrj + u}] (3.2) 

One can obtain the LST ,B{w} := E[e-w8 ], if the validity of (3.2) can be extended to the domain 
Rew ::::: 0, Re s > - R - Rew for some R > 0 so that s = -w can be put; we shall return to this when 
the need arises, in Sections 5 and 6. 

As a by-result of (3.2), Cohen [9] shows that 

N 

AE[C] = -1 +TI (1 + O!jAj), 

j=I 

N 

AE[B] = 1 - (1 - L) n (1 + O!jAj). 

j=I 

Note that the ergodicity condition L < 1 (cf. (2.1)) implies AE[B] < 1. 

(3.3) 

(3.4) 

In Sections 5-7 we shall use (3.1) and (3.2) to draw conclusions about the tail behaviour of the buffer 
contents Wn and Yr, given the tail behaviour of the activity periods Aij of the sources. We shall assume 
that one or more of the sources have activity periods with regularly varying tails. Hence we need some 
key results concerning regularly varying distributions and their LST. These results are presented in the 
next section. 

4. Regular variation 

Regular variation is an important concept in probability theory and various other fields. The main 
reference text is the book [3], to which we refer for proofs and detailed discussions of the results 
gathered below. See ( 1.1) for the definition of regular variation. A slowly varying function (see below 
(1.1)) will in the sequel be denoted by l(·). 
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The next lemma links the behaviour of the tail of a probability distribution F(t) on [0, oo) to the 
behaviour of its LST </J(s) for s -+ 0. This is part of Theorem 8.1.6 on p. 333/334 of [3], originally due 
to Bingham and Doney. Assume that the first n moments µ 1, •.• , µn of F ( ·) are finite. Define 

<Pn(s) := (-I)n+I [</J(s) - tµJ (-.~)i]. 
}=0 J. 

Lemma 4.1. Let v = n + i/I with 0 < 1/f < 1. The following are equivalent: 

<Pn(s) ""'svl(l/s), s-+ 0, 

rct),...., (-1r t-vl(t), 
f(l - v) 

t-+ 00. 

In Theorem 8.1.6 of [3] the somewhat more complicated cases i/f = 0, 1 are also discussed. 

(4.1) 

(4.2) 

(4.3) 

The following two results, that will be useful in the sequel, follow quickly from Lemma 4.1 (but can 
also be obtained by more direct probabilistic and analytic arguments). 
(i) 

r(t) E R_v =} f 00 Fc(x)dx E R1-v, (4.4) 

and in fact (cf. [3], p. 28, as part of the Karamata theorem): 

t F' (t) 
----- ---+ v - l t ---+ 00. 
! °" F"( ·) d ' 

X=t X X 

(4.5) 

This follows from Lemma 4.1 by observing that J~ P"(x)dx has LST [1 - cj>(s)]/ s. 
(ii) The sum of two independent nonnegative random variables with regularly varying distributions of 

index v1 respectively v2 is again regularly varying, of index max(v1, v2). 

5.N=l 

Consider the case of a single source (N = 1 ), transmitting at rate r > 1 when active (if r :S 1 then the 
buffer is always empty). The following theorem states that the distribution W(t) = limn-+oo P{ Wn < t} 
of the buffer content at the beginning of activity periods is regularly varying at infinity of index 1 - v 
iff the activity period distribution of this source is regularly varying at infinity of index -v. Unlike in 
the remainder of the paper, we do not assume in the theorem below that the silence periods are negative 
exponentially distributed. We further suppress the index 1 in this section, so we write A (t) instead of 
A 1 (t), etc. 

Theorem 5.1. Fort -+ oo, /(t) E Ro, and v > 1, 

Ac(t) = (v - I)(a/t)vl(t) -<? Wc(t) == (r - l)aA. ((r - I)a/t)v-l z(t). 
1 - (r - l)a.A 

(5.1) 
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Note. Actually in the ''if" (''only if") part of (5.1) the second (first) equality sign should be replaced by 
",..._,"; for briefness sake we use the above notation in (5.1 ), and in subsequent relations of the same type. 1 

Proof. For N = 1, the nth cumulative activity period Cn coincides with the nth activity period An; and 
the net increment Bn of the buffer content during Cn equals Bn = (r - l)An, with LST 

,B{w} = a{w(r - l)}, Rew?:: 0. (5.2) 

Clearly, fort -+ oo and with l(t) E Ro, 

(5.3) 

The crucial observation is (see (3.1)) that W(t) behaves like the waiting-time distribution in the GI/G/1 
queue with service times Bn and interarrival times In. We can now apply Theorem l of [6] for the 
ordinary GI/G/1 queue, which relates the tail behaviour of the waiting-time distribution W c1 /G/I (t) and 
that of the service time distribution Bcf/G/I (t). This theorem states that, fort -+ oo and v > 1, and 
with f3 denoting mean service time, and p traffic load: 

BGI/G/I (t) = (v - l)(fJ/t)"l(t) ~ w~I/G/l (t) = _P_(,B/t)v-lz(t). 
1 - p 

(5.4) 

The theorem follows from (5.3) and (5.4). Actually, the result of [6] has been extended [14] to the larger 
class of subexponential distributions; accordingly, one can extend Theorem 5.1 to that class of activity 
period distributions. D 

We close the section with five remarks. 

Remark 5.1. If N (t) E R_v with v E (1, 2) (the case of long-range dependence, as observed in 
Section 1), then the first moment of W(t) is infinite. This emphasizes the profound effect of long-range 
dependence on the buffer content, as has also been observed in [4] and [13]. 

Remark 5.2. Note that if the silence periods have a regularly varying tail, this does not imply that wc(t) 

is regularly varying. That makes sense: an extremely long silence period will most likely lead to an 
empty queue. See [4] for some further remarks about fat-tailed silence periods. 

Remark 5.3. We return to the case of exponential silence periods. Formula (3.1) implies that the LST of 
W (-) is given by the M/G/1 Pollaczek-Khintchine formula: with f3 := E[Bn], 

Joo 1 - {3). 
e-wtdW(t) = ------­

r=O- 1 - >.(1 - /J{w})/w' 

By inversion, 

Rew?:: 0. 

oo { [' l B( ) }n* 
W(t) =~(I - ,B>.)(,B>.Y Ju=O - f3 u du , t :::: 0. 

t Note added in proof The reader is referred to [5] for a different discussion of the case N = I. 

(5.5) 

(5.6) 
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It is interesting to observe that Theorem 5.1 easily follows from (5.5) and Lemma 4.1; Brichet et al. 
[4] make a similar observation for the ordinary M/G/1 queue. An insightful way to understand the 
relation between the regularly varying behaviour of the service-time and waiting-time distributions in 
an M/G/1 queue is to consider (5.6). Firstly, as remarked in (i) below Lemma 4.1, the residual service 
time distribution f~[l - B(u)]/ f3du has a regularly varying tail of index 1 - v: the integration increases 
the index by one. Probabilistically this also makes sense: the residual part of a random variable with 
a regularly varying distribution will have a distribution with an even heavier tail. Secondly, then-fold 
convolution of the residual service time distribution also has a regularly varying tail of index 1 - v (see 
(ii) below Lemma 4.1), but the coefficient is multiplied by n. In probabilistic terms: when the sum of n 
independent identically distributed random variables with regularly varying distribution exceeds a large 
value t, this is probably due to one of these n random variables being large. Finally, the multiplicative 
factor ((r - l)aA.)/(1 - (r - l)aA.) = {JA./(l - {JA.) arises in the theorem because a weighted sum 
is taken in (5.6): this only affects the coefficient of the regularly varying function, multiplying it by 
L~o n(l - f3A.)(f3A.)n = f3Aj(1 - {JA.). 

Remark 5.4. So far for Wn; what about the buffer content V1 at some arbitrary time t? In an ordinary 
M/G/l queue these two quantities have the same limiting distribution. That is not true in the present 
model, but they are clearly quite closely related. Observe that the distribution of the sum of the inde­
pendent random variables Wn and Bn has a regularly varying tail of index 1 - v iff the same holds for 
Wn (cf. the end of Section 4). Relating V1 to the immediately preceding end or beginning of an activity 
period (whichever has come last) makes it clear that the tail of its distribution is regularly varying of 
index 1 - v iff the same holds for Wn. We omit the details. 

Remark 5.5. With a view towards the analysis of the case N = 2 in the next section, it is instructive to 
derive (5.2) from (3.2) in the case N = 1; remember that the latter formula yields the joint distribution 
of a cumulative activity period C and the net increment B during C. Observe that the second integral in 
(3.2) is the inversion formula for the Laplace Transform [u + A.(1 - a{wr + u })]-1, whereas the first 
integral in (3.2) is the Laplace transform of the second integral. Consequently the successive application 
of the two integral operators yields the integrand back again, with its argument replaced by s. Hence, 
from (3.2), for Rew ::: 0, Res > 0, 

1 1 
(5.7) 

s + A(l - E[e-w<B+C)-sC]) - s + A.(1- a{wr + s}) · 

So E[exp(-w(B + C) - sC)] = a{wr + s} for Rew'.:: 0, Res > 0 (note that A =A. for N = 1). It is 
allowed to takes = -w (see below (3.2)), since r > 1: a{w(r - 1)} is analytic for Rew ::: 0, and the 
"M/G/1-like" denominatorw -A.(1- a{w(r -1)}) has no zeros in Rew::: 0, except for cv = 0. We thus 
have rederived (5.2). 

6.N=2 

Consider the case of two sources. The first source has activity period distribution A 1 (t) that is 
regularly varying at infinity of index -v, whereas the second source has a negative exponential activity 
period distribution; the silence periods of both sources are negative exponentially distributed. From the 
previous section we know that, in the absence of the second source, wc(t) E Ri-v· Below we derive the 
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LST of W(t); the obtained expression will allow us to show that wc(t) E Ri-v even in the presence of 
the second source. Moreover, it will also lead to the reverse statement that A~(t) E R_v if wc(t) E Ri-v· 

Theorem 6.1. For the case of two sources with exponential silence periods, and with exponential activity 
periodsforsource2, andfort--+ oo, l(t) E Ro, andv > 1, 

(6.1) 

with 

(6.2) 

Proof. Starting-point is formula (3.2) for N = 2. It will be used to obtain E[e-w8 ], and then 
fr'::_0_ e-a>t d W(t). We first evaluate the second term, X2, of the product in the right-hand side (RHS) of 
(3.2): fort :;::: 0, Rew:;::: 0, and some y > 0, 

with poles 

-[l + a2wr2 + a2A.2] ± [(l + a2wr2 + a2A.2)2 - 4a~A.2wr2] 112 
U+,- := 

(6.3) 

(6.4) 

Note that both poles u+,- of the integrand in (6.3) are in the left half-plane. This is obvious for real Aw. To 
see it for complex w, apply Rouche's theorem. Consider the region G inside the closed contour G that 
consists of the line from -i R to i R and a semi-circle to its left with radius R, and then let R --+ oo. The 
functions / 1 (u) := (u + A.2)(1 + a2uJr2 + a2u) and fz(u) := A.2 (appearing in the second line of (6.3)) 
are analytic inside G and continuous up to the boundary, while 1!1 (u)I > lfz(u)I on G; the statement 
now follows because / 1 (u) has two zeros inside G. 

Subsequently take the contour integral of the integrand in (6.3) along G. The contribution along the 
semi-circle disappears for R--+ oo, and what remains is the sum of the residues at the poles u+ and u_: 

eu+t 

-----[1 + a2wr2 + a2u+] 
(u+ - u_)a2 

eu_t 

-----[1 + a2u>r2 + a2u-], 
(u+ - u_)a2 

(6.5) 

t:;::: 0, Rew:;::: 0. 
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Substitution in (3.2) gives: for Rew ::: 0, Res > 0, and some y > O, 

s + A(l _ E[e-w(B+C)-sCJ) (6.6) 

1 + a2wr2 + a2u+ 100 -(s-u )1 1 lioo+y eut = e + -. dudt 
(u+ - u_)a2 r=O 2m -ioo+y u + .A.1 (1 - a1 {wri + u}) 

1 + a2Wr2 + a2u-100 -(s-u_)t 1 f ioo+y eut 
- e -. dudt. 

(u+ - u_)a2 r=O 2m -ioo+y u + .A.1 (l - a1 {wr1 + u}) 

As in Remark 5.5 we make the following observation. The two terms in the RHS of (6.6) are Laplace 
transforms of inversions of Laplace transforms. Successive application of the two integral operators 
yields the integrand with u replaced bys - U± (note that Re (s - u±) > 0): for Rew ::: O, Res > O, 

1 + a2wr2 + a2u+ 
~~~~~~~~~~~~-

s + A(l - E[e-cv(B+C)-sC]) (u+ - u_)a2 s - U+ + .A.1 (1 - ai{wr1 + s - u+}) 

1 + a2wr2 + a2u_ 1 
(u+-u-)a2 s-u_+.A.10-a1{wr1+s-u_})· 

(6.7) 

Multiply both sides of (6.7) by (.L\EB - l)w, and then takes = -w. Using the principle of permanence, 
one can show that it is allowed to continue (6.7) analytically to such values of s. The LST's a 1 {·}in the 
RHS of (6.7) are analytic for these values of s and w. The LHS of (6.7) (after multiplication by w) is 
analytic at least upto s = -w. In fact, multiplying (6.7) by (.L\EB - l)w and then takings = -w gives 
exactly the LST of the waiting-time distribution W (t) (cf. (3.1) and (5.5)). For Rew ::: 0: 

100 (1 - AE[B])w 
e-wrdW(t) = -------,-­

r=O- W - .L\(l - E[e-wB]) 

= (1 - .L\E[B])w [ 1 + a2wr2 + a2u+ 

(u+ - u_)a2 w + u+ - A1 (1 - a1 {w(r1 - 1) - u+}) 

l + a2wr2 + a2u- ] 

It easily follows from ( 6.4) that, for w ~ 0, 

a2.A.2r2 2 
u+ = -w + O(w ), 

1 + a2.A.2 
1 + et2.A.2 r2 2 

u_ = - - w + O(w ). 
a2 1 + a2.A.2 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Substitution of these formulas in (6.8) gives, using (3.4) and after tedious but straightforward calcula-
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(J)-+ 0. 
(6.12) 

The => part of the theorem now follows by application of Lemma 4.1. The {:: part is obtained similarly, 
again exploiting the relation (6.8) between the LST's of A 1 (t) and W(t). For v =:::: 2 a similar result can 
be obtained from (6.8), at the expense of more lengthy calculations. 0 

Note that a less direct way to prove the theorem would have been to apply Lemma 4.1 to ,B{w} (as 
specified by (6.7) with s = -w) to prove that B'(t) E R_v if A~(t) E R-v· Subsequently W'(t) E Ri-v 
follows by exploiting the M/G/1-like relation (3.1) between Bn and Wn+i. and the GI/G/l result (5.4). 

We close the section with four remarks. 

Remark 6.1. Take a 2 = 0 (i.e., the second source is never active) to get the N = 1 case of Section 5 
back again. Formula (6.12) reduces to 

e-wtdW(t)=l-A.1r(2-v)a)(r1 -l)v wv-I, w-+0. 100 1 

t=O- 1 - A.1a1 (r1 - 1) 
(6.13) 

The presence of the second (exponential) source apparently does not change the fact that W'(t) E Ri-v. 
but the coefficient is increased by a multiplicative factor 

( a2A.2r2 1 ) v 1 + a2A.2 
1 +1 +a2A.2 r1 -1 1-AE[B] (1-A.iai(ri - l)):::: 1. (6.14) 

Remark 6.2. So far we have assumed that r 1 > 1 and r2 > 1. It is intuitively clear that taking 
r2 ::: 1 cannot influence the conclusions of this section. But if r 1 ::: 1, it is possible that the buffer 
content decreases most of the time during which source 1 is active. Clearly the average increment 
of the buffer content per time unit that source 1 is active equals r 1 - 1 + a2A.2rz/(l + a 2A.2) (cf. the 
factor in (6.12)!). Our conjecture is that (i) if the latter quantity exceeds 0, then A~(t) E R_v implies 
W'(t) E Ri-v even if r1 < 1, and (ii) if that quantity is less than zero, then W'(t) is not regularly 
varying even if A~(t) E R-v· So while the presence of exponential sources in the case r 1 > 1 only 
influences the coefficient of the regularly varying function W'(t) (see the factor in (6.12)), in the case 
r1 ::: 1 these exponential sources may make the difference between W'(t) being regularly varying or not. 

Remark 6.3. Let us briefly consider the case of N sources, with A~(t) E R_v and all other sources 
having exponentially distributed activity periods. The last N - 1 terms of the product in (3.2) give a 
product of N - 1 terms that are completely similar to X2 in (6.5). Accordingly, the RHS of (6.7) is 
replaced by 2N-I terms similar to those in (6.7). The LST of W(t) is obtained just as above, taking 
s = -w; all this eventually leads to the important conclusion that the one source with regularly varying 
activity periods dominates the behaviour of the buffer. The analysis and conclusion can even be extended 
to the case in which the activity periods of sources 2, ... , N have an exponential tail. The details will be 
presented in a future paper. The results suggest that the conJecture of Remark 6.2 may be extended in 
the following sense: if r1 < 1, then the sign of r1 - 1 + :Ei=2 a/)..iri/(l + ai)..i) determines whether 
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wc(t) is regularly varying or not. Conditions like this, which are reminiscent of effective bandwidth, 
could be most valuable in admission control. 

Remark 6.4. So far we have concentrated on the distribution of Wn. Now we turn to the buffer content 
Yr at an arbitrary time t and to Vmax• the maximum of the buffer content during a busy period (a period 
in which the buffer is never empty). For Yr the argument presented in Remark 5.4 again implies that the 
tail of its distribution is regularly varying of index 1 - v iff the same holds for Wn. Regarding Vmax• note 
that it is the maximum of Wn + Bn over a busy period; since Wn and Bn have the same distributions as 
the corresponding quantities in the ordinary MIG/I queue, the same holds for Vmax· Cohen ([8], Formula 
(III.7.67)) shows that, in the M/G/l queue, 

l dW(t) 

P{V.max > t} = _ __E!_ t > 0. 
- A W(t)' 

(6.15) 

The monotone density theorem ([3], p. 39) tells us that, fort--+ 00, wc(t) ""'t 1-Vl(t) => dWC(t)/dt ,,.,.., 
(1 - v)t-vl(t). Hence P{Vmax ~ t} E R-v when wc(t) E R1-v; the tail of the distribution of Vmax is 
regularly varying of the same index as the tail of the activity period distribution of source 1. 

It may be counterintuitive that the tail of the buffer content distribution is heavier than that of its 
maximum. However, note that Vmax is sampled only once per busy period, whereas a busy period in 
which some Wn exceeds a large value x will probably contain many such large values. In the same vein, 
note that if the second moment of the service (activity) time distribution is not finite (as is the case if 
1 < v < 2), then the first moment of W(t) is not finite, whereas E[Vmax] < oo. 

7. N=oo 

In this section we consider the case of N identical sources, each with activity period distribution A ( ·) 
regularly varying of index -v and with exponentially distributed silence periods with mean N /A, and 
we let N --+ oo. Activity periods hence begin according to a Poisson process of rate A. Cohen ([7], 
Formula (2.2.7)) derives the following expression for the joint LST of B and C (he takes r = 1): for 
Rew~ 0, Res> 0, and some y > 0, 

---------- = e-ste-AI(wr,t)dt 1 100 

S + A(l - E[e-w(B+C)-sC]) t=O , 
(7.1) 

with (cf. [7], Formula (2.2.9)): fort ~ 0, Rew~ 0, and some y > 0, 

I jioo+y 1 - a{cv + u} 
l(w, t) := -. eut 2 du 

2rrz -ioo+y u 
= t(l - a{w}) +E[Ae-wA] -E[(A - t)e-wA(A ~ t)], (7.2) 

with(·) an indicator function. Formula (7.1), that can be seen as a limiting form of (3.2) with ).i =A/ N, 
is our starting-point. It can be used to prove that Ac(t) E R-v implies that cc(t) E R-v and Bc(t) E R-v· 
The latter result immediately yields (as in Section 5) that wc(t) E R1-v· The derivations are rather 
technical. For lack of space we shall therefore refrain from detailed proofs, and just sketch our approach. 
We start with cc(t). 
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The cumulative activity period distribution 
Taking w = 0 in (7 .1) and multiplying by s yields (use (7 .2) and apply partial integration in the last 

step): 

s -sc = ('° se-s1exp {-Aa +A 100 
Ac(x)dx} dt 

s + A(l - E[e ]) lr=O x=t 

= 1 + e-Aa 1: e-sr d { eA fx":., AC(x)dx} • (7.3) 

Now exploit the fact that - after some scaling - an LST of a proper probability distribution appears in 
the RHS of (7.3), so that we can apply Lemma 4.1. If Ac(x) = x-vl(x) for x -+ oo, with v E (1, 2), so 
that (see also (4.5)) fx':,r Ac(x)dx = v~ 1 t 1 -vl(t) fort-+ oo, then 

s 
------- = e-Aa - e-Aa Af(l - v)sv-ll(l/s), s-+ 0. 
s + A(l - E[e-sC]) 

Hence 

(7.4) 

(7.5) 

Observe that, indeed, E[C] = (eAa - 1)/ A (cf. Formula (2.3.2) of [7]). Yet another application of 
Lemma4.1 leads to the conclusion that, fort-+ oo and v E (1, 2), 

(7.6) 

One can easily check that the reverse statement also holds. Furthermore, at the expense of additional 
calculations one can also handle the case v ~ 2. 

Remark 7.1. The cumulative activity period distribution, C(-), in this case equals the busy period 
distribution of an M/G/oo queue, as has been observed in Remark 2.4 of [7]. Indeed, it is the distribution 
of an uninterrupted period in which at least one source is active, active sources "emerging" according to 
a Poisson process with rate A. As a by-product of our investigations we have hence found the interesting 
result that the busy period of an M/G/oo queue has a regularly varying tail of index -v iff the tail of the 
service time distribution is regularly varying of index -v. For the M/G/1 queue a similar statement is 
known [12]. 

The net increment distribution 
Cohen [7] presents LST expressions for the distributions of B (Formula (2.2.19)) and of B + C 

(Formula (A.5.11)) that both are suitable for proving that Bc(t) E R_v if Ac(t) E R-v· The M/G/1 
relations (3.1) and (5.4) subsequently show that wc(t) E Ri-v (and also yield the reverse statement). 
We restrict ourself to mentioning Cohen's Formula (2.2.19), that follows from (7 .1) and (7.2) after some 
manipulations (taker = 1 for simplicity): 

w-A(l-a{w}) 
llf (w) := -----­

w - A(l - E[e-WB]) 

= 1 - A f 00 {100 e-wcx-r)dA(x)} e-AI(w,t) dt, Rew~ 0. 
lr=O x=t 

(7.7) 
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One can prove that, with K 1 some constant, 

IJl(w) = e-Arx - K1w\)- 1Z(l/w), w-+ 0. 
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(7.8) 

The e-Aa factor is readily checked by taking w = 0 in (7.7), but the second factor requires a lengthy 
calculation which we omit. It follows from (7.7) and (7.8) that 

1 
E[e-w8] = 1 - a(e"a - - (e"rx - 1)) w + K2w\)l(l/w), w-+ 0, (7.9) 

Aa 

yielding the correct result (cf. [7]) E[B] = aeAa - (eAa - I)/ A and implying that Bc(t) E R-v· 

Remark 7.2. Let {X1, X2 , ••• } be a sequence of independent random variables with common distribu­
tion F. If there exist constants an > 0 and bn such that the distribution of (X1 + · · · + Xn - bn)/an 
tends to some distribution U, then Fis said to belong to the domain of attraction of U. It is well known 
(cf. [3], pp. 408, 409) that Fc(t) E Ri-v. v > I, iff Flies in the domain of attraction of the extremal 
law <l>v-J (t) := exp(-t 1-\)), t :'.:'.: 0. Interestingly, this Weibull distribution also appears in [4] (or rather 
1 - exp(-tv-1), belonging to the inverse random variable). As mentioned in the introduction, Brichet 
et al. [4] study the same model as we. They show that, in heavy traffic, the tail of the buffer content 
distribution is Weibullian with parameter v - 1 when Ac (t) E R_v (according to the present study, 
Wc(t) E R1-v so W(t) lies in thedomainofattractionof<I>v-1). 

8. Conclusion 

We have studied the buffer content distribution in a fluid queueing system fed by N independent 
sources. Our main results are: 

• for N = 1, the tail of the buffer content distribution is regularly varying of index 1 - v iff the tail of 
the activity period distribution is regularly varying of index -v. 

• for N = 2, with one exponential source, the tail of the buffer content distribution is regularly varying 
of index 1 - v iff the tail of the activity period distribution of the other source is regularly varying of 
index -v. 

• for N = oo, all sources being identical, we have shown (with much less rigour and detail) that the 
tail of the buff er content distribution is regularly varying of index 1 - v iff the tail of the activity 
period distribution is regularly varying of index -v. Moreover, the tail of the cumulative activity 
period distribution - which coincides with the busy period distribution in an M/G/oo queue - is 
regularly varying of index -v iff the tail of the activity period distribution is regularly varying of 
index -v. 

We believe that the above results yield valuable insight into the effect of fat-tailed activity period 
distributions on buffer content behaviour, in a model that is a key model for the performance analysis of 
high-speed communication networks. 

The results have been obtained under the assumption that each source transmits at a rate which is at 
least equal to the buff er output rate. These results can be relaxed; a first step in this direction is taken in 
Remark6.2. 

Several other avenues for research open themselves; we mention a few. 
(i) The case of N - I sources with exponentially tailed activity periods and one source with regularly 

varying tail of its activity period distribution (see Remark 6.3). 
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(ii) The case of two sources, both with regularly varying activity periods (a paper is in preparation). 
(iii) The relation between our results in Section 7 and the heavy-traffic results in [ 4] should be further 

investigated. 
(iv) As pointed out in [1] in another context, it is far from certain that the asymptotic results for 

wc(t) lead to accurate approximations. For this purpose more terms in the asymptotic expansion may 
be required. Or perhaps the obtained LST expressions may be numerically inverted; in that respect the 
explicit LST for a "Pareto mixture of exponentials", introduced in [l], may be useful for us. 
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