
ar
X

iv
:0

90
7.

45
18

v1
  [

m
at

h.
O

C
] 

 2
6 

Ju
l 2

00
9

A NEW SEMIDEFINITE PROGRAMMING HIERARCHY

FOR CYCLES IN BINARY MATROIDS

AND CUTS IN GRAPHS

JOÃO GOUVEIA, MONIQUE LAURENT, PABLO A. PARRILO,
AND REKHA THOMAS

Abstract. The theta bodies of a polynomial ideal are a series of semi-
definite programming relaxations of the convex hull of the real variety
of the ideal. In this paper we construct the theta bodies of the vanish-
ing ideal of cycles in a binary matroid. Applied to cuts in graphs, this
yields a new hierarchy of semidefinite programming relaxations of the
cut polytope of the graph. If the binary matroid avoids certain minors
we can characterize when the first theta body in the hierarchy equals
the cycle polytope of the matroid. Specialized to cuts in graphs, this
result solves a problem posed by Lovász.

1. Introduction

A central question in combinatorial optimization is to understand the
polyhedral structure of the convex hull, conv(S), of a finite set S ⊆ R

n.
A typical instance is when S is the set of incidence vectors of a finite set
of objects over which one is interested to optimize; think for instance of
the problem of finding a shortest tour, a maximum independent set, or a
maximum cut in a graph. As for hard combinatorial optimization problems
one cannot hope in general to be able to find the complete linear description
of the polytope conv(S), the objective is then to find good and efficient
approximations of this polytope. Such approximations could be polyhedra,
obtained by considering classes of valid linear inequalities. In recent years
more general convex semidefinite programming (SDP) relaxations have been
considered, which sometimes yield much tighter approximations than those
from LP methods. This was the case for instance for the approximation of
stable sets and coloring in graphs via the theta number introduced by Lovász
[18], and for the approximation of the max-cut problem by Goemans and
Williamson [9]. See e.g. [17] for an overview. These results spurred intense
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research activity on constructing stronger SDP relaxations for combinatorial
optimization problems (cf. [20, 23, 12, 22, 13, 17]). In this paper we revisit
the hierarchy of SDP relaxations proposed by Gouveia et al. [10] which was
inspired by a question of Lovász [19]. To present it we need some definitions.

Let I ⊆ R[x] be an ideal and VR(I) = {x ∈ R
n | f(x) = 0 ∀f ∈ I} be its

real variety. Throughout R[x] denotes the ring of multivariate polynomials
in n variables x = (x1, . . . , xn) over R and R[x]d its subspace of polynomials
of degree at most d ∈ N. As the convex hull of VR(I) is completely described
by the (linear) polynomials f ∈ R[x]1 that are non-negative on VR(I), relax-
ations of conv(VR(I)) can be obtained by considering sufficient conditions
for the non-negativity of linear polynomials on VR(I).

A polynomial f ∈ R[x] is said to be a sum of squares (sos, for short) if

f =
∑t

i=1 g
2
i for some polynomials gi ∈ R[x]. Moreover, f is said to be

sos modulo the ideal I if f =
∑t

i=1 g
2
i + h for some polynomials gi ∈ R[x]

and h ∈ I. In addition, if each gi has degree at most k, then we say that
f is k-sos modulo I. Obviously any polynomial which is k-sos modulo I is
non-negative over VR(I). Following [10], for each k ∈ N, define the set

(1) THk(I) := {x ∈ R
n | f(x) ≥ 0 for all f ∈ R[x]1 k-sos modulo I},

called the k-th theta body of the ideal I. Note that THk(I) is a (convex)
relaxation of conv(VR(I)), with

conv(VR(I)) ⊆ THk+1(I) ⊆ THk(I).

The ideal I is said to be THk-exact if the equality conv(VR(I)) = THk(I)
holds. The theta bodies THk(I) were introduced in [10], inspired by a
question of Lovász [19, Problem 8.3] asking to characterize THk-exact ideals,
in particular when k = 1.

This question of Lovász was motivated by the following result about stable
sets in graphs: The stable set ideal of a graph G = (V,E) is TH1-exact if
and only if the graph G is perfect. Recall that a subset of V is stable in
G if it contains no edge. The stable set ideal of G is the vanishing ideal of
the 0/1 characteristic vectors of the stable sets in G and is generated by the
binomials x2i − xi (i ∈ V ) and xixj ({i, j} ∈ E) (cf. [19] for details).

For a graph G, let IG be the vanishing ideal of the incidence vectors of
cuts in G, and the cut polytope, CUT(G), be the convex hull of the incidence
vectors of cuts in G. Following Problem 8.3, Problem 8.4 in [19] asks for
a characterization of “cut-perfect” graphs which are precisely those graphs
G for which IG is TH1-exact. We answer this question (Corollary 4.12) by
studying theta bodies in the more general setting of cycles in binary ma-
troids. As an intermediate step we derive the theta bodies of IG which give
rise to a new hierarchy of semidefinite programming relaxations of CUT(G).

Some notation. Let E be a finite set. For a subset F ⊆ E, let 1F ∈ {0, 1}E

denote its 0/1-incidence vector and χF ∈ {±1}E its ±1-incidence vector,
defined by 1Fe = 1, χF

e = −1 if e ∈ F and 1Fe = 0, χF
e = 1 otherwise.
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Throughout RE := R[xe | e ∈ E] denotes the polynomial ring with variables
indexed by E. If F ⊆ E, we set xF :=

∏

e∈F xe. For a symmetric matrix
X ∈ R

n×n, X � 0 means that X is positive semidefinite, or equivalently,
uTXu ≥ 0 for all u ∈ R

n.

Contents of the paper. Section 2 contains various preliminaries and some
results of [10] needed in this paper. In Section 3 we introduce binary ma-
troids, which provide the natural setting to present our results for cuts in
graphs. A binary matroid is a pair M = (E, C) where E is a finite set and
C is a collection of subsets of E (the cycles of M) closed under taking sym-
metric differences; for instance, cuts (resp., cycles) in a graph form binary
matroids. In Section 3.1 we present a generating set for the cycle ideal IM
(i.e. the vanishing ideal of the incidence vectors of the cycles C ∈ C) and
a linear basis B of its quotient space RE/IM (cf. Theorem 3.4). Using
this, we can explicitly describe the series of theta bodies THk(IM) that
approximate the cycle polytope CYC(M) (i.e. the convex hull of the inci-
dence vectors of the cycles in C). In Section 3.2, we specialize these results
to cuts in a graph G and show that B can then be indexed by T -joins of G.
This enables a combinatorial description of the theta bodies THk(IG) that
converge to the cut polytope CUT(G) of G. Section 3.3 compares the semi-
definite relaxations THk(IG) to some known semidefinite relaxations of the
cut polytope. In Section 3.4 the results from Section 3.1 are specialized to
cycles in a graph. Section 4 studies the binary matroids M whose cycle ideal
IM is TH1-exact (i.e., TH1(IM) = CYC(M)). Theorem 4.6 characterizes
the TH1-exact cycle ideals IM when M does not have the three special
minors F ∗

7 , R10 and M∗
K5

. As an application, we obtain characterizations
of TH1-exact graphic and cographic matroids, and the latter answers Prob-
lem 8.4 in [19]. The paper contains several examples of binary matroids for
which we exhibit the least k for which IM is THk-exact. In Section 5 we do
this computation for an infinite family of graphs; if Cn is the circuit with n
edges, then the smallest k for which THk(ICn) = CUT(Cn) is k = ⌈n/4⌉.

2. Preliminaries

2.1. Ideals and combinatorial moment matrices. Let R[x] be the poly-
nomial ring over R in the variables x = (x1, . . . , xn). A non-empty subset
I ⊆ R[x] is an ideal if I is closed under addition, and multiplication by
elements of R[x]. The ideal generated by {f1, . . . , fs} ⊆ R[x] is the set
I = {

∑s
i=1 hifi : hi ∈ R[x]}, denoted as I = (f1, . . . , fs). For S ⊆ R

n, the
vanishing ideal of S is I(S) := {f ∈ R[x] | f(x) = 0 ∀x ∈ S}. For W ⊆ [n],
IW := I ∩ R[xi | i ∈ W ] is the elimination ideal of I with respect to W .

An ideal I ⊆ R[x] is said to be zero-dimensional if its (complex) variety:

VC(I) := {x ∈ C
n | f(x) = 0 ∀f ∈ I},

is finite, I is radical if fm ∈ I implies f ∈ I for any f ∈ R[x], and I is

real radical if f2m +
∑t

i=1 g
2
i ∈ I implies f ∈ I for all f, gi ∈ R[x]. By the
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Real Nullstellensatz (cf. [4]), I is real radical if and only if I = I(VR(I)).
Therefore, I is zero-dimensional and real radical if and only if I = I(S)
for a finite set S ⊆ R

n. If I is real radical, and πW denotes the projection
from R

[n] to R
W , then the elimination ideal IW is the vanishing ideal of

πW (VR(I)), and there is a simple relationship between the k-th theta body
of I and that of its elimination ideal IW :

(2) πW (THk(I)) ⊆ THk(IW ).

The quotient space R[x]/I is a R-vector space whose elements, called the
cosets of I, are denoted as f + I (f ∈ R[x]). For f, g ∈ R[x], f + I = g + I
if and only if f − g ∈ I. The degree of f + I is defined as the smallest
possible degree of g ∈ R[x] such that f − g ∈ I. The vector space R[x]/I
has finite dimension if and only if I is zero-dimensional; moreover, |VC(I)| ≤
dimR[x]/I, with equality if and only if I is radical.

Gouveia et al. [10] give a geometric characterization of zero-dimensional
real radical ideals that are TH1-exact.

Definition 2.1. For k ∈ N, a finite set S ⊆ R
n is said to be k-level if

|{f(x) | x ∈ S}| ≤ k for all f ∈ R[x]1 for which the linear inequality
f(x) ≥ 0 induces a facet of the polytope conv(S).

Theorem 2.2. [10] Let S ⊆ R
n be a finite set. The ideal I(S) is TH1-exact

(i.e., conv(S) = TH1(I(S))) if and only if S is a 2-level set.

More generally, Gouveia et al. [10, Section 4] show the implication:

(3) S is (k + 1)-level =⇒ I(S) is THk-exact;

the reverse implication however does not hold for k ≥ 2 (see e.g. Remark 5.8
for a counterexample).

We now mention an alternative more explicit formulation for the theta
body THk(I) of an ideal I in terms of positive semidefinite combinatorial
moment matrices. We first recall this class of matrices (introduced in [16])
which amounts to using the equations defining I to reduce the number of
variables. Let B = {b0 + I, b1 + I, . . .} be a basis of R[x]/I and, for k ∈ N,
let Bk := {b + I ∈ B | deg(b + I) ≤ k}. Then any polynomial f ∈ R[x]

has a unique decomposition f =
∑

l≥0 λ
(f)
l bl modulo I; we let λ(f) = (λ

(f)
l )l

denote the vector of coordinates of the coset f + I in the basis B (which has
only finitely many non-zero coordinates).

Definition 2.3. Let y ∈ R
B. The combinatorial moment matrix MB(y) is

the (possibly infinite) matrix indexed by B whose (i, j)-th entry is
∑

l≥0

λ
(bibj)
l yl.

The k-th truncated combinatorial moment matrix MBk
(y) is the principal

submatrix of MB(y) indexed by Bk.
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In other words, the matrix MB(y) is obtained as follows. The coordinates
yl’s correspond to the elements bl+ I of B; expand the product bibj in terms

of the basis B as bibj =
∑

l λ
(bibj)
l bl modulo I; then the (bi, bj)-th entry of

MB(y) is its ‘linearization’:
∑

l λ
(bibj)
l yl.

To control which entries of y are involved in the truncated matrixMBk
(y),

it is useful to suitably choose the basis B. Namely, we choose B satisfying
the following property:

(4) deg(f + I) ≤ k =⇒ f + I ∈ span(Bk).

This is true, for instance, when B is the set of standard monomials of a term
order that respects degree. (See [5, Chapter 2] for these notions that come
from Gröbner basis theory.) If B satisfies (4), then the entries of MBk

(y)
depend only on the entries of y indexed by B2k. Moreover, Gouveia et al.
[10] show that THk(I) can then be defined using the matrices MBk

(y), up
to closure and a technical condition on B. This technical condition, which
states that {1 + I, x1 + I, . . . , xn + I} is linearly independent in R[x]/I, is
however quite mild since if there is a linear dependency then it can be used
to eliminate variables.

Example 2.4. Consider the ideal I = (x21x2 − 1) ⊂ R[x1, x2]. Note that
B =

⋃

k∈N{x
k
1 + I, xk2 + I, x1x

k
2 + I} is a monomial basis for R[x1, x2]/I

satisfying (4) for which

B4 = {1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x1x

2
2, x

3
2, x

4
1, x1x

3
2, x

4
2}+ I.

The combinatorial moment matrix MB2
(y) for y = (y0, y1, . . . , y11) ∈ R

B4 is

1 x1 x2 x21 x1x2 x22
1 y0 y1 y2 y3 y4 y5
x1 y1 y3 y4 y6 1 y7
x2 y2 y4 y5 1 y7 y8
x21 y3 y6 1 y9 y1 y2

x1x2 y4 1 y7 y1 y2 y10
x22 y5 y7 y8 y2 y10 y11

.

Theorem 2.5. [10] Assume B satisfies (4) and B1 = {1+I, x1+I, . . . , xn+
I}, and let the coordinates of y ∈ R

B2k indexed by B1 be y0, y1, . . . , yn. Then
THk(I) is equal to the closure of the set

(5) {(y1, . . . , yn) | y ∈ R
B2k with MBk

(y) � 0 and y0 = 1}.

When I = I(S) where S ⊆ {0, 1}n, the closure is not needed and THk(I)
equals the set (5).

Theorem 2.5 implies that optimizing a linear objective function over
THk(I) can be reformulated as a semidefinite program with the constraints
MBk

(y) � 0 and y0 = 1 which, for fixed k, can thus be solved in polynomial
time (to any precision).
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2.2. Graphs, cuts and cycles. Let G = (V,E) be a graph. Through-
out, the vertex set is V = [n], the edge set of the complete graph Kn is
denoted by En, so that E is a subset of En, and the edges of En corre-
spond to pairs {i, j} of distinct vertices i, j ∈ V . For F ⊆ E, degF (v)
denotes the number of edges of F incident to v ∈ V . A circuit is a set of
edges {{i1, i2}, {i2, i3}, . . . , {it−1, it}, {it, i1}} where i1, . . . , it ∈ V are pair-
wise distinct vertices. A set C ⊆ E is a cycle (or Eulerian subgraph) if
degC(v) is even for all v ∈ V ; every non-empty cycle is an edge-disjoint
union of circuits. For S ⊆ V , the cut D corresponding to the partition
(S, V \ S) of V is the set of edges {i, j} ∈ E with |{i, j} ∩ S| = 1. A basic
property is that each cut intersects each cycle in an even number of edges;
this is in fact a property of binary matroids which is why we will present
some of our results later in the more general setting of binary matroids (cf.
Section 3).

Each cutD can be encoded by its ±1-incidence vector χD ∈ {±1}E , called
the cut vector of D. The cut ideal of G, denoted as IG, is the vanishing ideal
of the set of cut vectors of G. The cut polytope of G is

(6) CUT(G) := conv{χD | D is a cut in G} = πE(CUT(Kn)) ⊆ R
E,

where πE is the projection from R
En onto R

E . (Cf. e.g. [6] for an overview
on the cut polytope.) The cuts ofKn can also be encoded by the cut matrices
X := xxT for x ∈ {±1}n indexing the partitions of [n] corresponding to the
cuts. Thus the set
(7)

{y ∈ R
E | ∃X ∈ R

V×V ,X � 0, Xii = 1 (i ∈ V ), Xij = y{i,j} ({i, j} ∈ E)}

is a relaxation of the cut polytope CUT(G), over which one can optimize
any linear objective function in polynomial time (to any precision), using
semidefinite optimization.

Given edge weights w ∈ R
E, the max-cut problem asks for a cut D in G

of maximum total weight
∑

e∈D we; thus it can be formulated as

(8) max

{

1

2

∑

e∈E

we(1− ye) | y ∈ CUT(G)

}

,

where the variable can alternatively be assumed to lie in CUT(Kn). This is
a well-known NP-hard problem [8]. Thus one is interested in finding tight
efficient relaxations of the cut polytope, potentially leading to good approx-
imations for the max-cut problem. It turns out that the simple semidefinite
programming relaxation (7) has led to the celebrated 0.878-approximation
algorithm of Goemans and Williamson [9] which, as of today, still gives the
best known performance guarantee for max-cut.
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3. Theta bodies for cuts and matroids

In this section we study in detail the hierarchy of SDP relaxations for
the cut polytope arising from the theta bodies of the cut ideal. As is well-
known, cuts in graphs form a special class of binary matroids. It is thus
natural to consider the theta bodies in the more general setting of binary
matroids, where the results become more transparent. Then we will apply
the results to cuts in graphs (the case of cographic matroids) and also to
cycles in graphs (the case of graphic matroids).

3.1. The cycle ideal of a binary matroid and its theta bodies. Let
M = (E, C) be a binary matroid; that is, E is a finite set and C is a collection
of subsets of E that is closed under taking symmetric differences. Members
of C are called the cycles of M, and members of the set

C∗ := {D ⊆ E : |D ∩ C| even ∀C ∈ C}

are called the cocycles of M. Then, M∗ = (E, C∗) is again a binary matroid,
known as the dual matroid of M, and (M∗)∗ = M. The (inclusion-wise)
minimal non-empty cycles (cocycles) of M are called the circuits (cocircuits)
of M. An element e ∈ E is a loop (coloop) of M if {e} is a circuit (cocircuit)
of M. Two distinct elements e, f ∈ E are parallel (coparallel) if {e, f} is
a circuit (cocircuit) of M. Every non-empty cycle is a disjoint union of
circuits. Given C ∈ C, an element e ∈ E \ C is called a chord of C if there
exist C1, C2 ∈ C such that C1 ∩ C2 = {e} and C = C1∆C2 (if C is a circuit
then C1, C2 are in fact circuits); C is said to be chordless if it has no chord.
Here is a property of chords that we will use later.

Lemma 3.1. Let C be a circuit of M, let e ∈ E \ C be a chord of C and
C1, C2 be circuits with C = C1∆C2 and C1 ∩ C2 = {e}. Then each Ci has
strictly fewer chords than C.

Proof: It suffices to show that each chord e′ of C1 is also a chord of C.
For this let C ′

1, C
′′
1 be two circuits with C ′

1 ∩ C ′′
1 = {e′} and C1 = C ′

1∆C ′′
1 .

Say, e ∈ C ′
1, and thus e 6∈ C ′′

1 . Suppose first that e′ ∈ C2. Then we have
C ′′
1 ∩C2 = {e′} and C ′′

1∆C2 ⊆ C. As C is a circuit and C ′′
1 6= C2, we deduce

that C = C ′′
1∆C2, which shows that e′ is a chord of C.

Suppose now that e′ 6∈ C2. Then, C = C1∆C2 = (C ′
1∆C2)∆C ′′

1 with
(C ′

1∆C2) ∩ C ′′
1 = {e′}, which shows again that e′ is a chord of C. �

The binary matroids on E correspond to the GF(2)-vector subspaces of
GF(2)E , where GF(2) is the two-element field {0, 1} with addition modulo 2.
Namely, identifying a set F ⊆ E with its 0/1-incidence vector 1F ∈ GF(2)E ,
the set of cycles C is a vector subspace of GF(2)E and the set of cocycles C∗

is its orthogonal complement. Thus the cycles of a binary matroid also arise
as the solutions in GF(2)E of a linear system Mx = 0, where M is a matrix
with columns indexed by E, called a representation matrix of the matroid.
In what follows we will use C (and C∗) both as a collection of subsets of E
and as a GF (2)-vector space.
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As before let RE := R[xe | e ∈ E] and, for C ∈ C, let χC ∈ {±1}E denote
its ±1-incidence vector, called its cycle vector. Then,

CYC(M) := conv(χC | C ∈ C)

is the cycle polytope of M and

IM := I(χC | C ∈ C)

is the vanishing ideal of the cycle vectors of M, called the cycle ideal of M.
Thus IM is a real radical zero-dimensional ideal in RE.

We first study the quotient space RE/IM. For this consider the set

(9) H := {x2e − 1 (e ∈ E), 1− xD (D chordless cocircuit of M)}.

Obviously, H ⊆ IM; Theorem 3.4 below shows that H in fact generates the
ideal IM. First we observe that H also generates all binomials xA − xB

where A ∪B partitions any cocycle of M.

Lemma 3.2. Let D ∈ C∗ be partitioned as D = A∪B. Then, xA−xB ∈ (H).

Proof: First we note that it suffices to show that 1 − xD ∈ (H) for all
D ∈ C∗. Indeed, for any partition A∪B = D, xA(1−xD) = xA−(xA)2xB ≡
xA − xB modulo (H). Thus 1− xD ∈ (H) implies xA − xB ∈ (H).

Next, we show the lemma for the case when D is a cocircuit, using induc-
tion on the number p of its chords. If p = 0 then 1−xD ∈ H by definition. So
let p ≥ 1, let e be a chord ofD and let D1,D2 be cocircuits withD = D1∆D2

and D1 ∩D2 = {e}. Then, 1− xD1 , 1 − xD2 ∈ (H), using the induction as-
sumption, since each Di has at most p− 1 chords by Lemma 3.1. We have:
1− xD ≡ 1− (xe)

2xD1\{e}xD2\{e} = 1− xD1xD2 = xD1(1− xD2) + 1− xD1 ,
where the first equality is modulo (H). This shows that 1− xD ∈ (H).

Finally we show the lemma for D ∈ C∗, using induction on the number
p of cocircuits in a partition of D. For this, let D = D1 ∪ D2, where D1

is a cocircuit and D2 is a cocycle partitioned into p − 1 cocircuits. Then,
by the previous case, 1 − xD1 ∈ (H), and 1 − xD2 ∈ (H) by the induction
assumption. Then, 1−xD ≡ (xD2)2−xD1xD2 = xD2(1−xD1)−xD2(1−xD2),
where the first equality is modulo (H). This implies 1− xD ∈ (H). �

Define the relation ‘∼’ on P(E), the collection of all subsets of E, by

(10) F ∼ F ′ if F∆F ′ ∈ C∗;

this is an equivalence relation, since C∗ is closed under taking symmetric
differences. The next lemma characterizes the equivalence classes.

Lemma 3.3. For F,F ′ ⊆ E, we have:

F∆F ′ ∈ C∗ ⇐⇒ xF − xF ′

∈ (H) ⇐⇒ xF − xF ′

∈ IM.

Proof: If F∆F ′ ∈ C∗, then xF −xF ′

= xF∩F ′

(xF\F ′

−xF ′\F ) ∈ (H), using

Lemma 3.2; xF − xF ′

∈ (H) =⇒ xF − xF ′

∈ IM follows from H ⊆ IM.

Conversely, if xF − xF ′

∈ IM then, for any C ∈ C, xF − xF ′

vanishes at
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χC and thus |C ∩ F | and |C ∩ F ′| have the same parity, which implies that
|C ∩ (F∆F ′)| is even and thus F∆F ′ ∈ C∗. �

Let

(11) F := {F1, . . . , FN}

be a set of distinct representatives of the equivalence classes of P(E)/ ∼
and set

(12) B := {xF + IM | F ∈ F}.

Theorem 3.4. The set B is a basis of the vector space RE/IM and the set
H generates the ideal IM.

Proof: First, we show that B spans the space RE/(H). As x2e − 1 ∈ H
(∀e ∈ E), it suffices to show that B spans all cosets of square-free monomials.
For this, let F ⊆ E and, say, F ∼ F1; then, x

F − xF1 ∈ IM by Lemma 3.3,
which shows that xF + IM ∈ span(B). Therefore, we obtain:

|C| = dimRE/IM ≤ dimRE/(H) ≤ |B| = N.

To conclude the proof it now suffices to show that |C| = N . For this, fix a
basis {C1, . . . , Cm} of the GF(2)-vector space C, so that |C| = 2m. Let M be
the m× |E| matrix whose rows are the 0/1-incidence vectors of C1, . . . , Cm.
Then Mx takes 2m distinct values for all x ∈ GF(2)E . As, for F,F ′ ⊆ E,

F ∼ F ′ if and only if M1F = M1F
′

, we deduce that the equivalence relation
(10) has N = 2m equivalence classes. �

We now consider the combinatorial moment matrices for the cycle ideal
IM. For any integer k define the set

Fk := {F ∈ F | ∃D ∈ C∗ with |F∆D| ≤ k}

corresponding to the equivalence classes of ∼ having a representative of
cardinality at most k. Then Bk = {xF + IM | F ∈ Fk} can be identified
with the set Fk. Moreover relation (4) holds, so that the entries of the
truncated moment matrix MBk

(y) depend only on the entries of y indexed
by B2k. For instance, F1 can be any maximal subset of E containing no
coloops or coparallel elements of M, along with ∅. Indeed, e ∈ E is a coloop
precisely if {e} ∼ ∅, and two elements e 6= f ∈ E are coparallel precisely
if e ∼ f . Thus, F0 = {∅} and F1 \ F0 = E if M has no coloops and no
coparallel elements.

When M has no coloops and no coparallel elements, its k-th theta body
THk(IM) consists of the vectors y ∈ R

E for which there exists a positive
semidefinite |Fk| × |Fk| matrix X satisfying X∅,e = ye for all e ∈ E and

(13)
(i) X∅,∅ = 1,
(ii) XF1,F2

= XF3,F4
if F1∆F2∆F3∆F4 ∈ C∗.
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Remark 3.5. The constraints (13)(ii) contain in particular the constraints

(14) XF1,F2
= XF3,F4

if F1∆F2 = F3∆F4.

Note that the above constraints are the basic ‘moment constraints’, which
are satisfied by all ±1 vectors. Indeed, if y = χF ∈ {−1, 1}E , define the
|Fk| × |Fk| matrix X by XF1,F2

:= (−1)|F∩F1|(−1)|F∩F2)|, so that ye = X∅,e

(e ∈ E). Then X � 0 since X = uuT where u = ((−1)|F∩Fi|)Fi∈Fk
, and

X satisfies (13)(i) and (14). Therefore the constraints (14) do not cut off
any point of the cube [−1, 1]E . Non-trivial constraints that cut off points
of [−1, 1]E that do not lie in CYC(M) come from those constraints (13)(ii)
where F1∆F2∆F3∆F4 is a non-empty cocycle.

Remark 3.6. Checking whether F ∈ Fk amounts to finding a minimum
cardinality representative in the equivalence class of F for (10) which might
be a hard problem. Indeed, this amounts to solving

min |F∆D| such that D ∈ C∗

or equivalently

(15) max wTx such that x ∈ CYC(M∗),

after defining w ∈ R
E by we = −1 for e ∈ F and we = 1 for e ∈ E \ F (and

noting that wTχD = |E| − 2|F∆D|). As we find in Sections 3.2 and 3.4,
(15) is the (polynomial-time solvable) maximum T -join problem when M is
a cographic matroid and the (NP hard) maximum cut problem when M is
a graphic matroid.

However if we fix the cardinality of F , then the problem becomes easy
(by enumeration), so that it is still possible to construct the truncated com-
binatorial moment matrix MBk

(y) (for fixed k).

3.2. Application to cuts in graphs. Binary matroids arise naturally from
graphs in the following way. Let G = ([n], E) be a graph, let CG denote its
collection of cycles, and DG its collection of cuts. Since CG and DG are closed
under symmetric difference, both MG := (E, CG) and M∗

G := (E,DG) are
binary matroids, and since each cut has an even intersection with each cycle,
they are duals of each other. The matroid MG is known as the graphic
matroid of G and M∗

G as its cographic matroid.

We consider here the case when M = M∗
G is the cographic matroid of

G = ([n], E). Then, CYC(M) = CUT(G) is the cut polytope of G and IM
is the cut ideal of G (denoted earlier by IG), thus defined as the vanishing
ideal of all cut vectors in G.

So IG is an ideal in RE, while IKn is an ideal in REn. One can easily
verify that IG is the elimination ideal, IKn∩RE, of IKn with respect to E.
By Theorem 3.4, we know that the (edge) binomials x2e−1 (e ∈ E) together
with the binomials 1− xC (C chordless circuit of G) generate the cut ideal
IG. When G = Kn is a complete graph, the only chordless circuits are
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the triangles so that, beside the edge binomials, it suffices to consider the
binomials 1−x{i,j}x{i,k}x{j,k} (or x{i,j}−x{i,k}x{j,k}) for distinct i, j, k ∈ [n].

When G is connected, there are 2n−1 distinct cuts in G (corresponding to
the partitions of [n] into two classes) and, when G has p connected compo-
nents, there are 2n−p cuts in G and thus dimRE/IG = 2n−p.

The following notion of T -joins arises naturally when considering the
equivalence relation (10). Given a set T ⊆ [n], a set F ⊆ E is called a
T -join if T = {v ∈ [n] | degF (v) is odd}. For instance, the ∅-joins are the
cycles of G and, for T = {s, t}, the minimum T -joins correspond to the
shortest s − t paths in G. If F is a T -join and F ′ is T ′-join, then F∆F ′ is
a (T∆T ′)-join. In particular, F ∼ F ′, i.e. F∆F ′ ∈ CG, precisely when F,F ′

are both T -joins for the same T ⊆ [n].
Thus the equivalence classes of ∼ correspond to the members of the set

TG := {T ⊆ [n] | ∃T -join in G} (which consists of the sets T1∪. . .∪Tp, where
each Ti is an even subset of Vi and V1, . . . , Vp are the connected components
of G). The set F (in (11)) consists of one T -join FT for each T ∈ TG, and
Fk = {FT | T ∈ Tk}, after defining Tk as the set of all T ∈ TG for which there
exists a T -join of size at most k. Then the corresponding basis of RE/IG
is B = {xFT + IG | T ∈ TG}, Bk = {xFT + IG | T ∈ Tk} and (4) holds.

For instance, F1 consists of all edges e ∈ E together with the empty set.
Hence the first order theta body TH1(IG) consists of the vectors y ∈ R

E

for which there exists a positive semidefinite matrix X indexed by E ∪ {∅}
satisfying ye = X∅,e (e ∈ E) and

(16)
(i) X∅,∅ = Xe,e = 1 for all e ∈ E,
(ii) Xe,f = X∅,g if {e, f, g} is a triangle in G,
(iii) Xe,f = Xg,h if {e, f, g, h} is a circuit in G.

Remark 3.7. When G = Kn is the complete graph, for any even T ⊆ [n],
the minimum cardinality of a T -join is |T |/2; just choose for FT a set of |T |/2
disjoint edges (i.e. a perfect matching) on T . Hence the set Tk consists of all
even T ⊆ [n] with |T | ≤ 2k. As an illustration, if we index the combinatorial
moment matrices by Tk, then the condition (13)(ii) reads:

(17) XT1,T2
= XT3,T4

if T1∆T2 = T3∆T4.

This observation will enable us to relate the theta body hierarchy to the
semidefinite relaxations of the cut polytope considered in [15], cf. Section
3.3.

Example 3.8. IfG has no circuit of length 3 or 4, then TH1(IG) = [−1, 1]E ,
since the conditions (16)(ii)-(iii) are void. For instance, if G is a forest, then
TH1(IG) = [−1, 1]E = CUT(G) and thus IG is TH1-exact. On the other
hand, if G = Cn is a circuit of length n ≥ 5, then TH1(IG) = [−1, 1]E

strictly contains the polytope CUT(Cn) (as |E| = n and CUT(Cn) has only
2n−1 vertices). Thus ICn is not TH1-exact for n ≥ 5.
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Example 3.9. For G = K5, IK5 is not TH1-exact. Indeed, the inequality
∑

e∈E5
xe + 2 ≥ 0 induces a facet of CUT(K5) (cf. e.g. [6, Chapter 28.2])

and the linear form
∑

e∈E5
xe + 2 takes three distinct values on the vertices

of CUT(K5) (namely, 0 on the facet, 12 on the trivial empty cut and 4
on the cut obtained by separating a vertex from all the others). Applying
Theorem 2.2, we can conclude that IK5 is not TH1-exact.

In Section 3.3 below we will characterize the graphs whose cut ideals are
TH1-exact and we will determine the precise order k at which the cut ideal
of a circuit is THk-exact in Section 5.

3.3. Comparison with other SDP relaxations of the cut polytope.

We mention here the link between the theta bodies of the cut ideal IG and
some other semidefinite relaxations of the cut polytope CUT(G). First note
that the relaxation TH1(IG) coincides with the edge-relaxation considered
by Rendl and Wiegele (see [26]) and numerical experiments there indicates
that it is often tighter than the basic semidefinite relaxation (7) of CUT(G).

Next we compare the theta bodies of IG with the relaxations Qt(G) of
CUT(G) considered in [15]1. For t ∈ N, set Ot(n) := {T ⊆ [n] | |T | ≤
t and |T | ≡ t mod 2}. Then Qt(G) consists of the vectors y ∈ R

E for which
there exists a positive semidefinite matrix X indexed by Ot(n) satisfying
(17), XT,T = 1 (T ∈ Ot(n)), and y{i,j} = X∅,{i,j} for t even (resp., y{i,j} =
X{i},{j} for t odd) for all edges {i, j} ∈ E. Therefore, for t = 1, Q1(G)
coincides with the Goemans-Williamson SDP relaxation (7). Moreover, for
even t = 2k, Q2k(Kn) coincides with the theta body THk(IKn). (To see
it use Remark 3.7.) The following chain of inclusions shows the link to the
theta bodies:

(18) CUT(G) ⊆ Q2k(G) = πE(Q2k(Kn)) = πE(THk(IKn)) ⊆ THk(IG)

(where the last inclusion follows using (2)). Therefore, the k-th theta body
THk(IG) is in general a weaker relaxation thanQ2k(G). For instance, for the
5-circuit, CUT(C5) = Q2(C5) (see [15]) but CUT(C5) is strictly contained
in TH1(IC5) = [−1, 1]5 (see Example 3.8).

On the other hand, the SDP relaxation THk(IG) can be much simpler and
less costly to compute than Q2k(G), since its definition exploits the structure
of G and thus often uses smaller matrices. Indeed, Q2k(G) is defined as the
projection of Q2k(Kn), whose definition involves matrices indexed by all
even sets T ⊆ [n] of size at most 2k, thus not depending on the structure of
G. On the other hand, the matrices needed to define THk(IG) are indexed
by the even sets T ⊆ [n] of size at most 2k for which G has a T -join of size
at most k. For instance, for k = 1, TH1(IG) uses matrices of size 1 + |E|,
while Q2(G) needs matrices of size 1 +

(

n
2

)

.

Example 3.10. It was shown in [14] that CUT(Kn) is strictly contained in
Qk(Kn) for k < ⌈n2 ⌉ − 1. Therefore, CUT(Kn) ⊂ THk(IKn) = Q2k(Kn) for

1For simplicity in the notation we shift the indices by 1 with respect to [15].
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all 2k < ⌈n2 ⌉ − 1. This implies that IKn is not THk-exact for k ≤ ⌊n−1
4 ⌋.

However, it is known that CUT(Kn) = Q⌈n
2
⌉(Kn) when n ≤ 7. Therefore,

IK5, IK6 and IK7 are all TH2-exact.

For some graphs there is a special inclusion relationship between the theta
bodies and the Qt-hierarchy. We consider first graphs with bounded diam-
eter.

Lemma 3.11. Let G be a graph with diameter at most k, i.e., such that
any two vertices can be joined by a path traversing at most k edges. Then
THk(IG) ⊆ Q2(G).

Proof: It suffices to observe that the set Tk indexing the matrices in the
definition of THk(IG) (which consists of the even sets T ⊆ V for which there
is a T -join of size at most k) contains all pairs of vertices. Thus Tk contains
the set O2(n) indexing the matrices in the definition of Q2(G). �

Next we observe that THk(IG) refines the Goemans-Williamson relax-
ation (7) for graphs with radius k.

Lemma 3.12. Let G be a graph with radius at most k, i.e., there exists a
vertex that can be joined to any other vertex by a path traversing at most k
edges. Then THk(IG) ⊆ Q1(G).

Proof: Say vertex 1 can be joined to all other vertices i ∈ [n]\{1} by a path
of length at most k. Then the set Tk contains ∅, {i, j} for all edges ij ∈ E,
and all pairs {1, i} for i ∈ [n] \ {1}. Let y ∈ THk(IG), i.e. there exists a
positive semidefinite matrix X indexed by Tk satisfying (17) and ye = X∅,e

for e ∈ E. Consider the n × n matrix Y defined by Yii = 1 (i ∈ [n]),
Y1i = X∅,{1,i} (i ∈ [n] \ {1}), and Yij = X{1,i},{1,j} (i 6= j ∈ [n] \ {1}). Then
Y � 0 (since Y coincides with the principal submatrix of X indexed by
∅, {1, 2}, . . . , {1, n}), y{i,j} = Yij for all {i, j} ∈ E (using (17)). This shows
y ∈ Q1(G), concluding the proof. �

In particular, as already noted in [26], TH1(IG) ⊆ Q1(G) if G contains
a vertex adjacent to all other vertices. For an arbitrary graph G, let G∗

be the graph obtained by adding edges to G so that one of its vertices is
adjacent to all other vertices. Thus, TH1(IG

∗) ⊆ Q1(G
∗) by Lemma 3.12.

Taking projections onto the edge set of G, the relaxation πE(TH1(IG
∗)) is

contained in πE(Q1(G
∗)) = Q1(G) (and in TH1(IG)).

3.4. Application to circuits in graphs. Let us consider briefly the case
when M = MG is the graphic matroid of a graph G = (V,E), i.e. C = CG
is the collection of cycles of G and C∗ = DG is its collection of cuts.

One can find a set F of representatives for the equivalence classes of (10)
as follows. Namely, assume for simplicity that G is connected and let E0 ⊆ E
be the edge set of a spanning tree in G. Then the collection F := P(E \E0)
is a set of distinct representatives for the classes of (10). Indeed, note first
that no two distinct subsets F,F ′ of E \E0 are in relation by ∼, since each
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non-empty cut meets the tree E0. Next, any subset X ⊆ E0 determines a
unique cut DX for which DX ∩ E0 = X, so that X ∼ X∆DX . Hence, for
any set Z ⊆ E, write Z = X ∪ Y with X ⊆ E0 and Y ⊆ E \ E0; then
Z ∼ X∆DX∆Y is thus in the same equivalence class as a subset of E \E0.

Note however that the above set F may not consist of the minimum
cardinality representatives. In fact, as observed in Remark 3.6, finding a
minimum cardinality representative in each equivalence class amounts to
solving a maximum weight cut problem, thus a hard problem. Nevertheless
this collection F can be used to index truncated moment matrices (simply
index the k-th order matrix by all F ∈ F with |F | ≤ k). However, studying
this SDP hierarchy is less relevant for optimization purposes since the linear
inequality description of CYC(MG) is completely known (see Theorem 4.4
below), and one can find a maximum weight cycle in a graph in polynomial
time (with algorithms for maximum T -joins; cf. [7]).

4. Matroids whose cycle ideals are TH1-exact

4.1. Matroid minors. Let M = (E, C) be a binary matroid and e ∈ E.
Set

C\e := {C ∈ C | e 6∈ C}, C/e := {C \ {e} | C ∈ C}.

Then, M\e := (E \ {e}, C\e) and M/e := (E \ {e}, C/e) are again binary
matroids; one says that M\e is obtained by deleting e and M/e by contract-
ing e. A minor of M is obtained by a sequence of deletions and contractions,
thus of the form M\X/Y for disjoint X,Y ⊆ E. In the language of binary
spaces, C\e arises from C by taking the intersection with the hyperplane
xe = 0, while C/e arises by projecting C onto R

E\{e}.

Example 4.1. Let Mr denote the r × (2r − 1) matrix whose columns are
all non-zero 0/1 vectors of length r, and let Pr denote the binary matroid
represented by Mr, called the binary projective space of dimension r − 1.
One can verify that Pr has 2r cocycles; the non-empty cocycles have size
2r−1 and thus are cocircuits. Hence, CYC(P∗

r ) is a simplex and IP∗
r is TH1-

exact. When n = 3, P3 =: F7 is called the Fano matroid. It will follow from
Theorem 4.6 that IF7 is also TH1-exact.

Example 4.2. R10 is the binary matroid on 10 elements, represented by
the matrix













34 35 45 23 24 25 13 14 15 12

1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1













,

where it is convenient to index the columns by the edge set E5 of K5. Then
the cycles of R10 correspond to the even cycles of K5, and the cocycles of
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R10 to the cuts of K5 and their complements. Note that R10 is isomorphic
to its dual. Consider the inequality:

(19)
∑

e∈F

xe −
∑

e∈E5\F

xe ≥ −4,

where F consists of three edges adjacent to a common vertex (e.g. F =
{12, 13, 14}). (Thus (19) is of the form (20), but with a shifted right hand
side.) One can verify that (19) defines a facet of CYC(R10) and that the lin-
ear function in (19) takes three distinct values on the cycles of R10 (namely,
0, 4, and -4). Therefore, in view of Theorem 2.2, we can conclude that R10

is not TH1-exact.

4.2. The cycle polytope. As each cycle and cocycle have an even inter-
section, the following inequalities are valid for the cycle polytope CYC(M):

(20)
∑

e∈F

xe −
∑

e∈D\F

xe ≥ 2− |D| for D ∈ C∗, F ⊆ D, |F | odd.

Let MET(M) be the polyhedron in R
E defined by the inequalities (20)

together with −1 ≤ xe ≤ 1 (e ∈ E). We have CYC(M) ⊆ MET(M). In
particular, CYC(M) is contained in the hyperplane xe = 1 if e is a coloop
of M, and it is contained in the hyperplane xe−xf = 0 if e, f are coparallel.
Thus we may assume without loss of generality that M has no coloops and
no coparallel elements. We will use the following known results.

Lemma 4.3. [1, Corollary 4.21] Let M be a binary matroid with no F ∗
7

minor. The inequality (20) defines a facet of CYC(M) if and only if D is
a chordless cocircuit of M.

Theorem 4.4. [1, Theorem 4.22] For a binary matroid M, CYC(M) =
MET(M) if and only if M has no F ∗

7 , R10 or M∗
K5

minors.

Recall that IM is TH1-exact if CYC(M) = TH1(IM).

Lemma 4.5. Assume M has no F ∗
7 minor. If IM is TH1-exact then M

does not have any chordless cocircuit of length at least five.

Proof: Suppose D = {e1, . . . , ek} is a chordless cocircuit of M with
k = |D| ≥ 5. By Lemma 4.3, the inequality

xe1 − xe2 − · · · − xek ≥ 2− k

defines a facet of CYC(M). We now use the following claim [1, Lemma 4.17]:
For each even subset F ⊆ D, there exists a cycle C ∈ C for which C∩D = F .
Thus we can find three cycles whose intersections with D are respectively
∅, {e2, e3} and {e2, e3, e4, e5}. Then the linear form xe1 − xe2 − · · · − xek
evaluated at each of these three cycles takes the values 2− k, 6 − k, 10 − k.
In view of Theorem 2.2 we can thus conclude that IM is not TH1-exact. �
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Theorem 4.6. Assume M has no F ∗
7 , R10 or M∗

K5
minors. Then IM is

TH1-exact if and only if M does not have any chordless cocircuit of length
at least 5.

Proof: Lemma 4.5 gives the ‘only if’ part. For the ‘if’ part, it suffices to
verify that, if D is a cocircuit of length at most 4 and F is an odd subset
of D, then the linear form

∑

e∈F xe −
∑

e∈D\F xe takes two values when

evaluated at cycles of M, and then to apply Theorems 4.4 and 2.2. �

Corollary 4.7. The cycle ideal of a graphic matroid MG is TH1-exact if
and only if G has no chordless cut of size at least 5.

Proof: Directly from Theorem 4.6 since graphic matroids do not have F ∗
7 ,

R10 or M∗
K5

minors. �

Lemma 4.8. If IM is THk-exact, then the cycle ideal of any deletion minor
of M is also THk-exact.

Proof: Say M′ = M\e1 is a deletion minor of M, where E = {e1, . . . , em}
and E′ = E \{e1}. Take x

′ ∈ THk(IM
′); we show that x′ ∈ CYC(M′). For

this extend x′ to x ∈ R
E by setting xe1 := 1. We verify that x ∈ THk(IM).

For this consider a linear polynomial f ∈ RE of the form f = s + q
where s is a sos of degree at most 2k and q ∈ IM. Define the polynomials
f ′, s′, q′ ∈ RE′ by f ′(xe2 , . . . , xem) = f(1, xe2 , . . . , xem); similarly for q′, s′.
Obviously s′ is sos with degree at most 2k. Since q vanishes on {χC : C ∈
C}, it vanishes on all χC , C ∈ C, with xe1 = 1. This last fact is equivalent
to saying that q′ vanishes on {χC : C ∈ C′}. Therefore, f ′ is k-sos modulo
IM′ and so f ′(x′) ≥ 0 as x′ ∈ THk(IM

′). In particular, f(x) = f ′(x′) ≥ 0
and x ∈ THk(IM) = CYC(M).

Thus x is a convex combination of ±1-incidence vectors of cycles of M;
as xe1 = 1 no cycle in the combination uses e1, which thus gives a decom-
position of x′ as a convex combination of cycles of M′. �

Remark 4.9. On the other hand, the property of being TH1-exact is not
preserved under taking contraction minors. Indeed, every binary matroid
can be realized as a contraction minor of some dual binary projective space
P∗
r (see [11]). Now we observed in Example 4.1 that the cycle ideal of P∗

r is
TH1-exact, while IM is not always TH1-exact.

See Section 5 for examples of cographic matroids whose cycle ideal is TH2-
exact while they have a contraction minor whose cycle ideal is not THk-exact
for large k (this is the case for wheels, cf. Corollary 5.10).

We now characterize the TH1-exact cographic matroids. We begin with
a lemma relating graph and matroid minors involving K5.

Lemma 4.10. The cographic matroid M∗
G of a graph G has a M∗

K5
minor

if and only if K5 is a contraction minor of G.



SDP HIERARCHY FOR CYCLES IN BINARY MATROIDS AND CUTS IN GRAPHS 17

Proof: The ‘if part’ is obvious since if K5 is a contraction minor of G, then
M∗

K5
is a deletion minor of M∗

G. Conversely assume that M∗
K5

is a minor
of M∗

G. By Whitney’s 2-isomorphism theorem (cf. [21]), K5 is 2-isomorphic
to a minor H of G; but then H must be isomorphic to K5 as the the only
graph 2-isomorphic to K5 is K5 itself. Hence K5 is a minor of G, which
implies that K5 is also a contraction minor of G. �

Corollary 4.11. The cycle ideal of a cographic matroid M∗
G is TH1-exact

if and only if M∗
G has no M∗

K5
minor and no chordless cocircuit of length at

least 5.

Proof: Note that M∗
G contains no F ∗

7 or R10 minor. Hence in view of
Theorem 4.6, it suffices to show that if M∗

G is TH1-exact then M∗
G has no

M∗
K5

minor. So assume that M∗
G is TH1-exact. As M∗

K5
is not TH1-exact

(cf. Example 3.9), Lemma 4.8 implies that M∗
K5

is not a deletion minor
of M∗

G. Hence K5 is not a contraction minor of G which, by Lemma 4.10,
implies that M∗

K5
is not a minor of M∗

G. �

Reformulating this last result we arrive at a characterization of ‘cut-
perfect’ graphs, answering Problem 8.4 in [19].

Corollary 4.12. The cut ideal of a graph G is TH1-exact if and only if G
has no K5 minor and no chordless circuit of length at least 5.

In [24, Theorem 3.2], Sullivant obtains the same characterization for com-
pressed cut polytopes; namely he proves that CUT(G) is compressed if and
only if G has no K5 minor and no chordless cycles of length at least 5. See
[10, Section 4] for comments on the connection between compressed poly-
topes and TH1-exactness.

5. The theta bodies for cut ideals of circuits

In this section we determine the exact order k for which the cut ideal ICn

of a circuit Cn with n edges is THk-exact. We also obtain some results on
graphs whose cut ideal is TH2-exact. We begin with a result determining
when the inequalities (20) associated to circuits of G are valid for THk(IG).

Theorem 5.1. Let C be a circuit of a graph G, let e ∈ C, and let k be an
integer such that 4k ≥ |C|. Then the inequality

(21) xe −
∑

f∈C\{e}

xf ≥ 2− |C|

is valid for THk(IG).

The proof uses the following preliminary results. For convenience, for a
graph G = (V,E), let Sk denote the set of polynomials f ∈ RE that are
k-sos modulo the cut ideal IG.

Lemma 5.2. For a graph G, let F1, F2, F3, F4 ⊆ E with |Fi| ≤ k and such
that F1∆F2∆F3∆F4 is a cycle of G. Then 2 + xF1 − xF2 − xF3 − xF4 ∈ Sk.
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Proof: We use the following fact: As C := F1∆F2∆F3∆F4 is a cycle,
1−xC ∈ IG by Theorem 3.4, and thus 1 ≡ xC ≡ xF1xF2xF3xF4 modulo IG.
This implies that xFixFj ≡ xFkxFl for {i, j, k, l} = {1, 2, 3, 4}. Now, one can
easily verify that (2+xF1 −xF2 −xF3 −xF4)2 ≡ 4(2+xF1 −xF2 −xF3 −xF4)
modulo IG, which gives the result. �

Lemma 5.3. For a graph G, let A,B ⊆ E with |A|, |B|, |A∆B| ≤ k. Then
1 + xA − xB − xA∆B ∈ Sk.

Proof: We have (1 + xA − xB − xA∆B)2 ≡ 4 + 2(xA − xB − xA∆B) +
2(−xAxB − xAxA∆B + xBxA∆B) ≡ 4(1 + xA − xB − xA∆B) modulo IG. �

Lemma 5.4. For a graph G, let F ⊆ E, e ∈ F , and k ≥ |F |. Then:

(22)
(i) k − 1 + xe −

∑

f∈F\{e} xf − xF ∈ Sk,

(ii) k − 1−
∑

f∈F xf + xF ∈ Sk.

Proof: It suffices to show the result for k = |F |. We show (i) using
induction on k ≥ 2. (The proof for (ii) is analogous.) For k = 2, F = {e, f},
we have 1 + xe − xf − xexf ∈ S2 by Lemma 5.3. Consider now |F | = k ≥ 3
and let g ∈ F \{e}. By the induction assumption applied to the set F \{g},
we have:

k − 2 + xe −
∑

f∈F\{e,g}

xf − xF\{g} ∈ Sk−1 ⊆ Sk.

Applying Lemma 5.3 to the sets F \ {g}, {g} and F , we obtain

1 + xF\{g} − xg − xF ∈ Sk.

Summing up the above two relations yield the desired relation (22)(i). �

Proof: (of Theorem 5.1) Let C be a circuit in G with |C| ≤ 4k, i.e.
k ≥ m := ⌈|C|/4⌉. Let F denote the edge set of C and let e ∈ F . We
show that the linear polynomial fC := xe −

∑

f∈F\{e} xf + |C| − 2 is k-sos

modulo IG. For this we consider a partition of F into four sets F1, . . . , F4

with |Fi| ≤ m ≤ k for i = 1, . . . , 4; say e ∈ F1. Applying Lemma 5.2, we
obtain that

2 + xF1 − xF2 − xF3 − xF4 ∈ Sk.

Next, applying the condition (22)(i) to F1 we obtain

|F1| − 1 + xe −
∑

f∈F1\{e}

xf − xF1 ∈ Sk,

and applying the condition (22)(ii) to Fi yields

|Fi| − 1−
∑

f∈Fi

xf + xFi ∈ Sk ∀i = 2, 3, 4.

Summing up the above relations yields the desired result, namely fC is k-sos
modulo IG and thus fC ≥ 0 is valid for THk(IG). �
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Corollary 5.5. For the circuit Cn of length n, the equality THk(ICn) =
CUT(Cn) holds for n ≤ 4k.

Proof: Consider the circuit Cn = ([n], E) with n ≤ 4k. By Theorem 4.4,
the complete linear description of CUT(Cn) is provided by the inequalities
(i)

∑

e∈F xe −
∑

e∈E\F xe ≥ 2− n where F is any odd subset of E, and (ii)

−1 ≤ xe ≤ 1 for all e ∈ E. Thus in order to show THk(ICn) = CUT(Cn), it
suffices to show that the inequalities (i),(ii) are all valid for THk(ICn). This
is obvious for (ii). Using the well-known switching symmetries of the cut
polytope (cf. [1], [6]), it suffices to show the desired property for the inequal-
ities (i) with |F | = 1. But this result has just been shown in Theorem 5.1.
�

Lemma 5.6. If n ≥ 4k + 1, then THk(ICn) = [−1, 1]E .

Proof: In view of Remark 3.5, it suffices to observe that the constraints
(13) defining the theta body THk(ICn) reduce to the constraints (13)(i)
and (14). Let Fk be the set indexing the combinatorial moment matrices
in the definition of THk(ICn), where we can assume that each Fi ∈ Fk

has cardinality at most k. Now consider a constraint of type (13)(ii). Since
F1, . . . , F4 ∈ Fk have size at most k and ∆iFi is a cycle of Cn, this cycle must
be the empty set since |∆iFi| ≤ 4k < n. Therefore we have a constraint of
type (14). �

Corollary 5.7. The smallest order k at which ICn is THk-exact is k =
⌈n/4⌉.

Proof: Directly from Theorem 5.1 and Lemma 5.6. �

Remark 5.8. One can verify that the linear form xe −
∑

f∈Cn\{e}
xf takes

⌊(n+ 1)/2⌋ distinct values at the cut vectors of the circuit Cn. By (3), this
permits to conclude that ICn is THk-exact for k = ⌊(n + 1)/2⌋ − 1. This
value is however larger than the order ⌈n/4⌉ shown in Corollary 5.7 (for
n ≥ 6). Thus the reverse implication of (3) does not hold.

Corollary 5.9. If the graph G has no K5 minor and no chordless circuit
of length at least 9, then its cut ideal IG is TH2-exact.

Proof: Direct application of Theorems 4.4 and 5.1. �

Note that the reverse implication in Corollary 5.9 does not hold. We will
see below (in Corollary 5.10) that the cut ideal of a wheel is TH2-exact, but
a wheel can contain a chordless circuit of arbitrary length.

While we could characterize the graphs whose cut ideal is TH1-exact, it
is an open problem to characterize the graphs whose cut ideal is TH2-exact.
We conclude this section with several observations about these graphs.

Corollary 5.10. If the graph G has no K5 minor and has diameter at
most 2 then its cut ideal IG is TH2-exact.
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Proof: As G has diameter at most 2, Lemma 3.11 gives the inclusion
TH2(IG) ⊆ Q2(G). It was shown in [15] that if G has no K5 minor then
Q2(G) = CUT(G). �

A wheel of length n is a graph consisting of a circuit of length n with
an additional vertex adjacent to all vertices on the circuit. As wheels have
no K5 minor and their diameter is 2, their cut ideal is TH2-exact. Hence,
within graphs with noK5 minors, the cut ideal is TH2-exact for the following
two classes: graphs with diameter at most 2 and graphs with no chordless
circuit of size at least 9. Note that there is no containment between these
two classes; e.g. wheels of length n ≥ 9 have diameter 2 but contain a circuit
of length n, and C8 has diameter larger than 2.

The following further graphs have a TH2-exact cut ideal: K5,K6,K7 (and
probably K8 too, as conjectured in [15]). Finally, if the cut ideal of a graph
G is TH2-exact, then the same holds for the cut ideal of any contraction
minor H of G; in particular, C9 is not a contraction minor of G.
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