
AAECC 5, 159-191 (l994)

A Declarative Approach for First-Order
Buih-in's of Prolog*

Krzysztof R. Apt 1, Elena Marchiori2, Catuscia Palamidessi3

AAECC
Applicable Algebra in
Engineering, Communication
and Computing
cg Springer-Verlag 199~

1 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands and Faculty of Mathematics
and Computer Science, University of Amsterdam, Plantage Muidergracht 24 NL-1018 TV
Amsterdam, The Netherlands
2 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
3 Dipartimento di Informatica e Scienze dell' Informazione, U niversita di Genova, Viale Benedetto
XV 3, I-16132 Genova, Italy

Received November 9, 1992; revised version April 19, 1993

Abstract. We provide here a framework for studying Prolog programs with various
built-in's that include arithmetic operations, and such metalogical relations like var
and ground. To this end we propose a new, declarative semantics and prove
completeness of the Prolog computation mechanism w.r.t. this semantics. We also
show that this semantics is fully abstract in an appropriate sense. Finally, we provide
a method for proving termination of Prolog programs with built-in's which uses
this semantics. The method is shown to be modular and is illustrated by proving
termination of a number of programs including the unify program of Sterling and
Shapiro [17].

Keywords: Prolog programs, Built-in's, Declarative semantics, Termination.

1. Introduction

1.1 Motivation

Theory of logic programming allows us to treat formally only pure Prolog programs,
that is those whose syntax is based on Horn clauses. Any formal treatment of more
realistic Prolog programs has to take into account the use of various built-in's. Some
of them, like arithmetic relations, seem to be trivial to handle, as they simply refer
to some theory of arithmetic. However, the restrictions on the form of their
arguments (like the requirement that both arguments of< should be ground) cause
complications which the theory of logic programming does not properly account

* 1991 Mathematics Subject Classification: 68Q40, 68T15,
* 1991 CR Categories: F.3.2, F.4.1, H.3.3, 1.2.3.

!60 K. R. Apt et al.

for. In particular, in presence of arithmetic relations the independence of the
refutability from the selection rule fails, as the goal+-- x = 2, l < x shows.

Further, the use of metalogical relations (like var, ground) leads to various
additional problems. Clearly, var cannot be handled using the traditional semantics
based on first-order logic because var(x) is true whereas some instances of it are
not. In presence of nonvar another complication arises: the well-known Lifting
Lemma (see Lloyd [14]) used to prove completeness of the SLD-resolution does
not hold - for a non-variable term t the goal+-- nonvar(t) can be refuted whereas its
more general version..-- nonvar(x) cannot.

Finally, study of termination of Prolog programs in presence of the above
built-in's calls for some new insights. For example, the program list

list([])+--.
list ([XIXs]) ..-

nonvar (Xs), list (Xs).

which recognizes a list, always terminates, whereas its pure Prolog counterpart
obtained by dropping the atom nonvar(X s) may diverge.

The aim of this paper is to provide a systematic account of the class of the above
mentioned built-in's of Prolog. This class includes the arithmetic relations (like +,
< etc.) and some metalogical relations (like var, ground etc.). To distinguish them
from those built-in's which refer to clauses and goals (like call and assert), we call
them first-order built-in's. Hence the title.

The main tool in our approach is a new, non-standard declarative semantics
which associates with each relation symbol input and output substitutions. It is
introduced in Sect. 2. We also prove there a completeness result connecting this
semantics with the Prolog computational mechanism. We show that this semantics
is a natural extension of the S-semantics by Falaschi et al. [12], in the sense that it
is isomorphic to the S-semantics for pure Prolog programs. Moreover we show that
our semantics is in a sense the most simple extension, by proving that it is fully
abstract w.r.t. goals conjunctions.

This semantics is crucial for the study of termination of Prolog programs that
use the first-order built-in's. Our approach to this subject combines the use of the
level mapping functions (that assign elements from a well-founded set to atoms)
with the above semantics. In this respect it is thus similar to that of Apt and
Pedreschi [5] which called for the use oflevel mappings assigning natural numbers
to ground atoms, and declarative semantics. However, important differences arise
due to the presence ofbuilt-in's. First, we have to analyze the original program and
not its ground version. Second, in presence of first-order built-in's it seems natural
to study programs that terminate for all goals and not only for all ground goals as
in Apt and Pedreschi [5]. So different characterization results are needed. These
issues are dealt with in Sect. 3 where we also show how termination of Prolog
programs with first-order built-in's can be dealt with in a modular way.

In Sect. 4 we apply our approach to termination to prove termination of the
above list program, the typed version of the append program and a version of the
unify program of Sterling and Shapiro [17].

We are aware of two other approaches to define the meaning of Prolog first
order built-in's, namely that of Borger [7] based on so-called dynamic algebras, and
that of Deransart and Ferrand [11] based on an abstract interpreter.

Their aim is to provide semantics to the complete Prolog language whereas ours

A Declarative Approach for First-Order Built-in's of Prolog 161

is to extend the declarative semantics to Prolog programs withfirst-order built-in's
so that one can reason about such programs. In this respect our approach has the
same aim as that of Hill and Lloyd [13] where all metalogical features of Prolog
are represented in a uniform way by means of a representation of the object level
in the meta-level, reminiscent of the Godelization process in Peano arithmetic.

1.2 Preliminaries

In what follows we study logic programs extended by various built-in relations. We
call the resulting objects Prolog programs, or simply programs, and identify pure
Prolog programs with logic programs. Prolog programs can be executed by means
of the LD-resolution, which consists of the usual SLD-resolution combined with the
leftmost selection rule, that is appropriately extended to deal with the built-in
relations. By length 1 (~) of an LD-derivation ~ we mean the number of its goals.

Given an expression (term, atom, goal, ...) or a substitution Ewe denote the set
of variables occurring in it by Var(E). We often write 111£ to denote 111 Var(E). The
set of all variables is denoted by Var. We often manipulate various sets of variables.
In general x, y stands for sequences of different variables. Sometimes we identify
such sequences with sets of variables. Given a substitution 11 and a set of variables
x we denote by 11lx the substitution obtained from 11 by restricting its domain,
Dom (1'/), to x. By Ran (11) we denote the set of variables that appear in the terms of
the range of 17. A renaming is a substitution that is a permutation of the variables
constituting its domain. We use mgu as a shorthand for most general unifier.

Recall that an mgu 11 of A and B is idempotent if 1111 = 11 and is relevant if
Ran (17) ~ Var(A, B).The relation more general than defined on pairs of atoms, terms
or substitutions is denoted by ~.

Lets be a term. Then si denotes the i-th argument of s, when it is defined, nodes(s)
denotes the number of nodes of s in the tree representation, a(s) denotes the arity
of the principal functor of sand funct(s) denotes its function symbol.

It is convenient to associate with each pair of terms that unify a unique
idempotent (hence relevant) mgu in the sense of Apt [1] [p. 502]. Given such a pair
s, t we denote it by mgu (s, t). Further, we associate with each pair of sequences of
terms that unify a unique idempotent (hence relevant) mgu defined as follows.

• mgu((), ()) = s, where() indicates the empty sequence;
• mgu((s,s), (t, t)) = cxmgu((scx), (tcx)), where ex= mgu(s, t).

We write mgu (s, t) instead of mgu((s), (t)). It is not difficult to show that mgu (s, t) is
indeed an idempotent mgu of sand t. Then we associate with each pair of atoms A
and B that unify mgu(s, t), where sand tare the sequences of arguments respectively
of A and B. We denote this mgu by mgu(A,B).

Atoms of the form p(x) where p is a relation are called elementary atoms and
atoms containing a built-in relation are referred to as built-in atoms. Finally, atoms
containing a relation used in a head of a clause of a program Pare said to be defined
in P. In the context of logic programs, or more generally, Prolog programs, it is
convenient to treat sequences of atoms as conjunctions (sometimes called conjuncts).
Usually A, B denote such conjuncts.

The rest of the used notation is more or less standard and essentially follows
Lloyd [14]. Recall that, if 81,. • ., Bn are the consecutive mgu's along a refutation of

162 K. R. Apt et al.

a goal G in the program P, then the restriction (8 1 ... en) War (G) of 81 ... en to the
variables of G is called computed answer substitution (c.a.s. for short) of Pu { G}. In
this paper we also associate c.a.s.'s with prefixes of LO-derivations in the obvious
way. These prefixes of LO-derivations are also called partial derivations.

2 The Declarative Semantics

2.1 Motivation

In this section we define a declarative semantics appropriate to describe the oper
ational behaviour of Pro log programs. First, let us see why it is impossible to achieve
this goal by simply modifying one of the usually considered declarative semantics.

The standard declarative semantics, based on the (ground) Herbrand models
due to van Emden and Kowalski [18], is clearly inadequate to deal with first-order
built-in's. Indeed, in this semantics in a given interpretation if an atom is true then
all its ground instances are. However, for every ground term t, var (t) should be false
in every model whereas var(x} should be true. Therefore we say that var is a
non-monotonic relation.

We conclude that any declarative modeling of non-monotonic relations requires
an explicit introduction of non-ground atoms in the Herbtand interpretations, in
order to define the truth value of an atom independently from its ground instances.
The first declarative semantics based on non-ground atoms was given by Clark
[1 OJ, with the aim of defining the validity of open atoms (like p(x)) in terms of their
truth value in the least Herbrand model. Successively, other declarative models
based on non-ground atoms were investigated in Falaschi et al. [12]: the C- semantics -
which was shown to be equivalent to Clark's semantics, and the S-semantics.
However, all these models are not suitable for Prolog programs, because - like the
standard semantics of van Emden and Kowalski [18], the resulting definition of
truth treats the body of a clause as a logical conjunction - i.e. the ',' is interpreted
as an 'and', and this means that the order of the literals in the body is irrelevant.
On the other hand, the presence of built-in relations - in particular of the non
monotonic ones, makes this order relevant. Consider for instance

P 1 : p(X)+-var(X),q(X).
q(a)+-.

and

P2 : p(X)+-q(X),var(X).
q(a)+-.

The behavior of the goal+- p(x) in these programs is different (in P 1 it succeeds,
whereas in P 2 it fails). In other words, the independence from the selection rule, and
the Switching Lemma of Lloyd [14] do not hold for Prolog programs. If we want
to characterize declaratively the operational behaviour of goals, we must therefore
describe the meaning of',' in the body of clauses in a non-commutative way, more
precisely, we have to mimic the leftmost selection rule of Prolog.

However, the intended model cannot be obtained simply by modifying the
interpretation of',' in the C-semantics. The reason is that the domain structure of
the C-semantics is too poor: it does not allow us to model the meaning of non-

A Declarative Approach for First-Order Built-in's of Prolog 163

monotonic relations. Indeed, in the C-semantics the interpretations are upward
closed, that is, if A belongs to (is true in) an interpretation I, then all its instances
belong to I, as well.

On the other hand, in the S-semantics the interpretations are not upward closed.
However, the S-semantics is monotonic, that is A is true in an interpretation I if a
more general version of A belongs to I.

Moreover, in presence of built-in relations like nonvar, another problem arises:
the goal+- nonvar(x) fails whereas for every non-variable term t the goal +-nonvar(t)
succeeds. Therefore we say that nonvar is a non-down-monotonic relation. Due to the
presence of non-down-monotonic relations the Lifting Lemma (see Lloyd [14]) does
not hold for Prolog programs. Consider for instance

P 3 : p (X) +- nonvar (X).

With this program for every non-variable term t, the goal+- p(t) has a refutation,
whereas +- p(x) fails.

This example shows that it is not sufficient to identify the meaning of a relation
p with the set of(computed answer) substitutions 11 which p is able to compute - in a
sense, the post-conditions which are verified after the possible executions of the
goal+- p(x). We also need a pre-condition, i.e. information about the substitution 8
by which the atom p(x) is instantiated before starting the computation. A possible
way to do it is by enriching the domain with another component, thus explicitly
representing the substitution before execution.

2.2 <9-Semantics

This leads us to consider objects of the form < 8, p(x), 11), where 8 represents the
pre-substitution (or input substitution) and t/ represents the post-substitution (or
output substitution) for the goal +- p(x). For technical convenience we equivalently
represent these triples as pairs of the form <A, 11), where A is the atom obtained by
the application of the input substitution() to the elementary atom p(x), i.e. A = p(x)8.
In Sect. 2.6 we prove the full abstraction of this model, thus showing that all the
information we encode in this semantical structure is in fact necessary.

Of course, we can restrict our attention to pairs< A, 11) in which 11 does not affect
the variables that do not appear in A.

First, we deal with built-in relations. For any such relation p we stipulate a set
[p] of pairs defining its operational behaviour. We list here some cases. In the
definition below,"=" is the well-known built-in standing for "is unifiable with".

[var] = { <var(x),e)lxeVar},
[nonvar] = { <nonvar(s),e)ls~Yar},
[=] = {<s=t,17)l17=mgu(s,t)},
[>] = { <s > t,e)ls, tare ground arithmetic expressions and s > t},
[constant] = { <constant(a),e)la is a constant},
[compound] = { <compound(s),s)ls is a compound term},
[functor] = { <functor(t,f, n), n) IDom(ri) ~ {!, n}, n17 is a natural number and

t = (f ri)(t 1 ,. •. , tn~) for some t 1 , ... , tm,, or n is a natural number,
f is a functor symbol, Dom (I'/) = { t} and tri = f (X 1 , ••• , X nl where
X 1 , ••. , X n are fresh variables},

164

·' -

K. R. Apt et al.

<x: = s. [x/t}) lxE Var, sis a ground arithmetic expression with

valuer}. . 1 < arg(n, s,t), 11) IDom(11) ~ { t} and tl] = s. or Dom (11) = {Sn J and

S/I = t}.
= :<s\==t,e)ls#t}.

We assume that the set of pairs associated with a built-in relation describes correctly
its operational behaviour, in the following sense.

Definition 2.1. Let A be an atom with a built-in relation p. Then for every conjunct
B the goal<-- 817 is a resolvent of <--A, B iff <A, 1J)E[P]. D

Notice that in our approach we do not distinguish between failures and errors.
For example. in Prolog the evaluation of the goal<-- X: = Y + 1 will result in an
error and not in a (back-trackable) failure. By further refining the structure of the
sets . we could easily incorporate this distinction in the semantics.

\\le consider now atoms defined by the program. First we introduce the following
generalization of Herbrand base and Herbrand interp.retation.

Definition 2.2. (@-domain and @-interpretation)

• Let P be a Pro log program. The 6>-base Gp of P is the set of all pairs <A, 11),
where A is an atom defined in P, and 1J is a substitution s.t. Dom (11);;:; Var(A).

• A 0-interpretation f of Pisa subset of the 0-base ep. O

To define the truth in 6>-interpretations we have to model appropriately the
proof theoretic properties of the computed answer substitutions. To this end it is
important to reflect on them first.

The following lemma relates c.a.s.'s of resolvents of a goal with c.a.s. 's of the
goal. It is a consequence of Corollary 3.5 of Apt and Doets [3], to which the reader
is referred for the proof.

Lemma 2.3 (C.a.s.) Consider an atomic goal +-A with input clause p(x)-<- B. Let
8 = mgu(A,p(x)) be s.t. Dom(8) = x and let 11 be a c.a.s. of Pu { +-- B8}. Suppose that
Ran(r/)n Var(p(x)8) ~ Var(B8). Then 111 A is a c.a.s. of Pu {<--A}.

This Lemma provides a sufficient condition to guarantee that a c.a.s. of a goal
coincides with a c.a.s. of its resolvent on the variables of the goal. Let us give an
example showing that this condition is needed. Consider the program P:

p(X. Y) +-q(X).
q(X) +-X = f(Y).

and the goal<- p(X, Y). Take as input clause p(X', Y') +-- q(X'). Then f) = mgu (p(X, Y),
p(X'. Y')) =pc X, Y' Y} and <--q(X) is the corresponding resolvent. Now 11 =
{ Xif(l')} is a c.a.s. of P v { <-- q(X)}, but '1 is not a c.a.s. of Pu { <-- p(X, Y)}.

Definition ~.4 Let A, B ~e conjuncts and let f) and (J substitutions. We say that
(A, B, II. (J) is a good tuple 1f the following conditions are satisfied:

(i) Ran(O)n Var(B) ~ Var(A)
.. (the variables introduced by 0 that occur in B also occur in A),

(11) Ran(O")n (Var(A, B) v Ran(O)) ~ Var(BO)
~the variables introduced by (J that occur in A, B or in Ran(fJ) also occur
mBO). 0

A Declarative Approach for First-Order Built-in's of Prolog 165

The importance of this, admittedly esoteric, notion is revealed by the following
lemma, which characterizes c.a.s.'s of a conjunction of goals in terms of c.a.s.'s of its
conjuncts.

Lemma 2.5. (Good Tuple) Consider a goal +--A, B. Then 11 is a c.a.s. of Pu {+-A, B}
if! for some e and <J

• ()isac.a.s.ofPu{+-A},
• <J is a c.a.s. of Pu { +- B()},
• 11 = ({)<J)I (A, B),
• (A, B, (), <J) is a good tuple.

Proof. The proof is lengthy and tedious and can be found in the technical
report [4]. D

This lemma shows that the c.a.s.'s for a compound goal +--A, B cannot be
obtained by simply composing each c.a.s. ()for .-. A with each c.a.s. <J for +--Be. The
notion of a good tuple formalizes the conditions that 0 and <J have to satisfy, due
to the standardization apart. Both conditions of Definition 2.4 of Good Tuple are
needed: consider for example the program P: p (Z) +-. and the goal G = +-- p(X),
p(Y). Then 0 = { X / Y} is a c.a.s. for +-- p(X), <J = c; is a c.a.s. of Pu { +- p(Y)B} but
(8<J)IG= {X/Y} is not a c.a.s. of Pu{G}. This shows that the first condition in
Definition 2.4 of good tuple is needed. Now 0 = c; is also a c.a.s. for +-- p(X),
<J = { Y/X} is a c.a.s. of Pu { +- p(Y)8} but (8<J)I G = { Y /X} is not a c.a.s. of Pu { G}.
This shows that the second condition in Definition 2.4 of good tuple is needed.

Since we want to model the meaning of a conjunct w.r.t. a post-substitution Y/
in such a way that a precise match with the procedural semantics is maintained, the
notion of a good tuple will be crucial also for the semantic considerations.

The next step is dictated by the simplicity considerations. We shall restrict our
attention to Prolog programs in a certain form. Then, after proving soundness and
completeness for these programs, we shall return to the general case.

Definition 2.6. (Homogeneous Programs)

• A Prolog clause is called homogeneous if its head is an elementary atom.
• A Prolog program is called homogeneous if all its clauses are homogeneous.

D

We now define truth in @-interpretations for homogeneous programs. It relies
on the notion of good tuple. Given a conjunct A of atoms we denote by /(A) its
length, i.e. the number of atoms in A. If /(A)= 0 we denote A by true.

Definition 2.7. (Truth in @-interpretations) Let f be a e-interpretation of a homo
geneous Prolog program P.

The truth of a conjunct A in f w.r.t. a (post-)substitution Y/, denoted by
. .ff=< A, 11), is defined by induction on /(A), the length of A.

• l(A) = 0. Then A= true .
. .FF <true, 11) iff 11 =e.

• /(A)= I. Then A =A for an atom A .
. .ff= <A,17) iff <A,17)e[p], where A is a built-in atom with the relation
symbol p,
f F <A, 11) iff <A, 11) EY, where A is defined in P.

166 K. R. Apt et al.

e /(A)> I. Then A= A, B for an atom A and a non-empty conjunct B .

. ?'p (A, B,r1) iffthere exist 8, a s.t.17 = (8a)l(A, B) and

-.lp(A,0),
.fp (B8, a)
(A, B, 8, a) is a good tu pie.

The truth of a homogeneous clause H +-- B of P in .f, denoted by § F H +-- B, is

defined as follows.

• .f F (H +--B,17) iff for all 8 s.t. Dom(8) = Var(H), Ran(B)n Var(H +--B) = 0,
Ran(17)n Var(H8) ~ Var(BO):
.fp (B&,17) implies .fp (H0,17jHO),

• .f F H +-- B iff for all 17, .f F (H +-- B, 11) .

. f is a 8-model of P ilf all variants of the clauses of P are true in .f. D

Notice that in the definition of the truth of a clause the restrictions on 0 and a

are needed in order to establish the correspondence with the operational semantics.

These restrictions model at the declarative level the restrictions induced by the

standardization apart. The following lemmas will be useful to reason about the

truth.

Lemma 2.8. (Monotonicity) Let ,f, J be 8-interpretations, A a conjunct, and 17 a

substitution. If.Ji F (A, 17) and .f ~ J, then Jp (A, 17).

Proof. Straightforward by induction on the length of A. O

Lemma 2.9. (Continuity) Let ,fi (i;;:; 0) be 8-interpretations such that .f 0 ~ .f 1 ~

Then for every conjunct A and substitution 17

Ut: 0.fJ= (A,17) if! for some k ~O .fkF (A,17).

Proof. Straightforward by induction on the length of A and the Monotonicity

Lemma 2.8. D

Note that the Continuity Lemma strengthens the Monotonicity Lemma.

2.3 8-semantics and LD-resolution

The next step is to show that LO-resolution is correct w.r.t. the e-semantics. The

proof relies on the Good Tuple Lemma 2.5.
The following assumption is convenient.

Assumption 2.10. Whenever in the LO-resolution step the selected atom A is

unified with the head H of the input clause where H is a pure atom, then the mgu 8

of A and His s.t. Dom(B) = Var(H).

By the previous assumption we have A= H8.

Theorem 2.11. (Soundness I) Let P be a homogeneous Pro/og program and A a

conjunct. If 1J is a c.a.s. for Pu {+--A} then for any 8-model § of P we have
§f= (A,17).

Proof. Fix a 8-model § of P. Let ~ be a LO-refutation of Pu {+--A} with c.a.s. 17.

We prove the claim by induction on the length /(~)of~- Three cases arise.

A Declarative Approach for First-Order Built-in's of Prolog 167

Case 1. l(A) = 0. Then A= true and 17 = i:, so the claim follows directly by Defini
tion 2.7.
Case 2. l(A) = I. Then A = A for an atom A.
If A is a built-in atom, then the claim follows directly by Definitions 2.1 and 2. 7.
HA is defined in P, then consider the resolvent BO of+- A in ~ obtained using the
input clause H +-Band mgu 0. H is a pure atom and by the standardization apart
A and H +- B have no variable in common, so by Assumption 2.10.

Dom(O) = Var(H), Ran(O)n Var(H +- B) = 0,
and

A=H8.

(1)

(2)

Let 17' be the c.a.s. for Pu { +- 88} computed by the suffix(' of (starting at +- 811.
Then

11 =(817')IA. (3)

We have/(~')=/(~)- I, so by the induction hypothesis YI= <BO,t/'). But .f is
a model of P, so H +- B is true in ,f and consequently by (1) and Definition 2.7
.f I=< HD, r/' I HD). Thus by (2) .ff=< A, 17' I A). However, A and H have no variable
in common, so by (1) 81 A= e and consequently by (3) IJ = (81J')IA = IJ'IA. So we
proved YI=< A, 17).

Case 3. l(A) > 1. Then A= A, B for an atom A and a non-empty conjunct B. By the
Good Tuple Lemma 2.5 there exist e and <J s.t. 17 = (8<J)IA and

(i) Pu {+-A} has an LD-refutation (1 with c.a.s. 8,
(ii) Pu {+-BO} has an LD-refutation (2 with c.a.s. a,

(iii) (A, B, 0, <J) is a good tuple.

Moreover by the proof of the same Lemma it follows that we can choose (1 , ~ 2

to be subderivations of(. Then /(~ 1) </(~)so by the induction hypothesis

(4)

Also /((2) < 1(0 so by the induction hypothesis

.Jl'I= <BD,a). (5)

Thus by (iii), (4) and (5) we get .f I= <A, IJ) by Definition 2.7. D

In order to prove the converse of Theorem 2.11 it is helpful to consider a special
E>-model representing all @-models, in the sense that a conjunction is true in it
(w.r.t. a given post-substitution) iff it is true in all the E>-models.

The @-interpretations are naturally ordered by the set inclusion. In this ordering
the least e-interpretation is 0, the greatest one is ep. Analogously to standard
Herbrand models, the 6-models are closed w.r.t. arbitrary intersections, from which
we deduce the existence of the least e-model.

Theorem 2.12. Let P be a homogeneous program. Let ulf be a class of @-models of P.
Then M = n. 11 .f is a model of P.

Proof. Let H +- B be a variant of a clause of P and let 17, e be such that Dom (8) =
Var(H), Ran(D)n Var(H +-8) = 0, Ran(17)n Var(Hl1) ~ Var(BO) and Ml= <B0,17).
Fix Y e.fi. By the Monotonicity Lemma 2.8 we have .fl= < 811, 17), so since Y is a

168 K. R. Apt et al.

0-model, .ff= <H0,17j(HO)). By Definition 2.7 and the fact that .f is an arbitrary
element of j/ we conclude MF= <HB,17IHO). D

Corollary 2.13. (Least Model) Every homogeneous program P has a least 0-model,
Np. D

This 0-model is the intended representant of all 0-models of Pin the following
sense.

Corollary 2.14. Let A he a conjunct and ri be a substitution. Then NP f= <A, I'/) i/Ifor
all 0-models .f of P we have .J1f= (A,ri).

Proof. By the Monotonicity Lemma 2.8. O

In the theory of Logic Programming the least Herbrand model can be generated
as the least fixpoint of the immediate consequence operator Tp on the Herbrand
interpretations. This characterization is useful to establish the completeness of
SLD-resolution with respect to the least Herbrand model. We now provide an
analogous characterization of the least 0-model NP in order to show the complete
ness of the LD-resolution with respect to NP·

First, we introduce the appropriate operator Tp.

Definition 2.15. Let P be a homogeneous program. The immediate consequence
operator Tp on the 19-interpretations is defined as follows

Tp(.1) = { <H8, ril(HO))lforsomeB

H +-Bis a variant of a clause from P,

Dom (0) = Var (H), Ran (8) n Var(H +- B) = 0,
Ran (YJ) n Var (HO)~ Var (B8), .ff= <BO, YJ)}. D

Next, we characterize the 19-models of P as the pre-fixpoints of Tp. The
following proposition shows this characterization for programs consisting of one
clause only.

Proposition 2.16. Given a clause C and a 19-interpretation f, we have that .f is a
model ~('{ C} if]' T1 c: (.f) ~ .f.
Proof. For every H, e and 17 we have (H8,ri1HB)E7{ci(.f) iff(by Definition 2.15)
H+-B is a variant of C such that ff=<BB,ry), Dom(O)= Var(H), Ran(O)n
Var (H +- B) = 0 and Ran (Y/) n Var (HO)~ Var (B8). Since .f is a model of { C} then
this holds iff.J'f= <HO,ryj(H8)), i.e. <H8,ryj(H8))E.~. 0

To generalize Proposition 2.16 to non-singleton programs we use the following
obvious lemma which states the additivity of the operator Tp.

Lemma 2.17. Let P, P' he homogeneous programs. Then for every 19-interpretation
f we have TPuP'(.~) = Tp(.fo)u Tp,(f). O

Corollary 2.18. (Model Characterization) .f is a 19-model of P Uf Tp(.f) ~,f. D

Now, we characterize NP as the least fixpoint of Tp. We need the following
observation.

Proposition 2.19 .(Monotonicity) Tp is monotonic, that is I~ J implies Tp(J) ~ Tp(J).

Proof. By the Monotonicity Lemma 2.8. O

A Declarative Approach for First-Order Built-in's of Prolog !69

Proposition 2.20. (Least Fixpoint) Tp has a least fix point lfp (Tp) which is also its
/east pre.Jixpoint.

Proof. By the Monotonicity Proposition 2.19 and Knaster-Tarski Theorem. D

We can now derive the desired result.

Corollary 2.21. lfp(Tp) =Np.

Proof. By the Least Fixpoint Proposition 2.20, Least Model Corollary 2.13 and
Model Characterization Corollary 2.18. D

Finally, we provide a more precise characterization of the E>-rnodel NP that will
be used in the proof of the completeness of the LD-resolution. We need the following
strengthening of the Monotonicity Proposition 2.19.

Proposition 2.22. (Continuity) Tp is continuous, that is for every sequence . .I; (i ~ 0)
of @-interpretations such that f 0 ~ • .1 1 ~ ••• we have

Tp(U~o.Jfd = LJt=o Tp(.Jf;).

Proof. By the Continuity Lemma 2.9. D

We define now a sequence of @-interpretations by

Tpj0=0,

Tp i(n +I)= Tp(Tp i 11),

Tpjw=LJt;;, 0 Tpji.

Proposition 2.23. (Characterization) NP= Tp j w.

Proqf By the Continuity Proposition 2.22 and the Knaster-Tarski Theorem lfp(Tp) =
Tp j (1), so the claim follows by Corollary 2.2 l. D

We can now prove the completeness of LD-resolution with respect to the
@-semantics for homogeneous programs.

Theorem 2.24. (Completeness I) Consider a homogeneous program Panda conjunct
A. Suppose that for all EJ-mode/s .Y of P we have .Jf I=< A, 11). Then there exists an
LD-refutation of Pu {+-A} with c.a.s. 17.

Pro<~f In particular we have NP I= (A, 11). By the Characterization Proposi
tion 2.23 Tp j (1) I= <A, 11). By the monotonicity of Tp we have Tp i 0 ~ Tp j1 ~ .. .,
so by the Continuity Lemma 2.9 Tp j k I= (A, 17) for some k > 0.
We now prove the claim by induction w.r.t. the lexicographic ordering < defined
on pairs < k, /(A)) of natural numbers. In this ordering

<n 1 , n2) < <m 1 , m2) iff (n 1 < m1) or (n 1 = m1 /\ n2 < m2).

The case when A is empty, i.e. /(A)= 0 (which covers the base case of the induction)
is immediate by Definition 2.7.
Suppose now A = A, B. There exist substitutions 0, (J such that

Tp j k I= (A, 0),

Tp j k I= (BO, (J),

(A, B, 0, (J) is a good tuple and Y/ = (O(J)I (A, B).

170 K. R. Apt et al.

We first prove that Pu{ .--A} has an LD-refutation with c.a.s. e. When A is a
built-in atom this conclusion follows immediately from Definitions 2.1 and 2.7.

When A is defined in P we have k > 0. By Definition 2.15 there exists a variant
H.--B' of a clause from P, a substitution if! s.t. Dom(l/t)= Var(H), Ran(l/!)n
Var(H +- B') = 0, A= HI/! and a substitution</> such that

Ran(</>) n Var(HI/!) ~ Var(Bl/t), (6)

Tp T(k- lH= <B't/!, </>)and e =<PIA.
Since < k - 1, /(B'I/!)) < < k, l(A)), by the induction hypothesis there exists an

LO-refutation of Pv{ +-B't/!} with c.a.s. <f>. Now notice that Dom(l/f)= Var(H),
+- B'l/t is a resolvent of .--A using the mgu l/t and (6) holds. Then by the c.a.s.
Lemma 2.3 8 is a c.a.s. of Pu {<--A}.

Since < k, /(BB)) < < k, /(A)), by the induction hypothesis also there exists an
LO-refutation of P v { +- B8} with c.a.s. a. Since (A, B, 8, a) is a good tu pie and
IJ = (8a)l(A, B), we can apply the Good Tuple Lemma 2.5. We conclude that there
exists an LO refutation of P v {+-A} with c.a.s. '1· O

Corollary 2.25. Let P be a homogeneous Prolog program. Then

NP = {<A, '1) I A is defined in P and

there exists an LD-refutation of P v { <-- A} with c.a.s. IJ}.

Proof. By Definition 2.7 and Theorems 2.11 and 2.24. D

This corollary shows that the 0-model NP captures precisely the computational
meaning of the homogeneous program P.

2.4 Extension to Arbitrary Programs

Now, every program can be easily transformed into a homogeneous program.

Definition 2.26. (Homogeneous Form) Let P be a Prolog program. Let x 1 , x2 , ... be
distinct variables not occurring in P. Transform each clause

p(t 1 ,. •• , td+-B

of P into the clause

p(X1,····xd+-x1 = t1, ... ,Xk= tk,B.

Here= is the built-in discussed in Sect. 2 and interpreted as "is unifiable with". We
denote the resulting program by Hom (P) and call it a homogeneous form of P. D

We now show that a Prolog program P and its homogeneous form Hom(P)
have the same computational behaviour.

Theorem 2.27. (Equivalence I) Let P be a Pro log program, G a goal. Then Pu { G}
has a refutation with c.a.s. ry if and only if Hom (P) v { G} has a refutation with c.a.s. ry.

Proof See [4]. D

Theorem 2.27 allows to reason about the meaning of Prolog programs by
transforming them first to a homogeneous form. Alternatively, we can extend the
definition of the truth to arbitrary programs by simply defining a clause to be true

A Declarative Approach for First-Order Built-in's of Prolog 171

iff its homogeneous version is true. By "processing" then the meaning of the
introduced calls to the built-in= we obtain the following direct definition of truth
of a clause.

Definition 2.28. f I= (H +-- B, 11) iff for any atom A and a variant H' +-- B' of H +-- B
disjoint from A the following implication holds: B = mgu (A, H'), .-1 I= (B'8, 11) and
Ran(17)n(Var(A)u Var(H' +-B')) ~ Var(B'B) implies fl= (A, B11IA). D

We now establish the semantics equivalence of a program and its homogeneous
form.

Theorem 2.29. (Equivalence II) f is a model of a Pro log program P if! it is a model
of Hom(P).

Proof. See [4]. D

From the two previous results on operational and semantic equivalence of P
and Hom(P) the soundness and completeness of the LO-resolution for Prolog
programs directly follows.

Theorem 2.30. (Soundness II) Let P be a Prolog program and A a conjunct. If 11 is a
c.a.s.for Pu {+-A} then for any <9-model f of P we have fl= (A,11).

Proof. By the Equivalence I Theorem 2.27 and the Equivalence II Theorem 2.29. D

Theorem 2.31 (Completeness II) Consider a Prolog program Panda conjunct A.
Suppose that for all <9-models f of P we have ff= (A, 11). Then there exists an
LD-refutation of Pu {+--A} with c.a.s. 11·

Proof. By the Equivalence II Theorem 2.29 and the Equivalence I Theorem 2.27. D

2.5 Relation between the <9-Semantics and the S-Semantics

In this section we show that the <9-semantics is the natural extension to Prolog
programs of the S-Semantics defined in Falaschi et al. [12] for logic programs, in
the sense that if P is a pure Prolog program (i.e. it does not contain built-in atoms)
then the least <9-model NP coincides with the least S-model Sp. To this purpose,
it will be helpful to consider the following operational characterization of S P

(cf. Falaschi et al. [12]).

Sp = {p(x)11l xe Var and f- p(x) has an LO-refutation with c.a.s. 11}

or, equivalently,

S P = { (p(x), 11) Ix e Var and +-- p(x) has an LD-refutation with c.a.s. 11} (7)

We define now some properties on <9-interpretations which will be shown to
hold for NP when P is pure, and which will be useful for proving the correspondence
stated above.

Definition 2.32. Let f be a 6>-interpretation. f is called

•upward-closed iff V(A,11)ef, VB such that 30"=mgu(AB,A17), we have
(Ae, q')e."', where q' is the restriction of O" to AB.

•downward-closed iffV(AB,<1)Ef. 317. 30"1 =mgu(A8,A17). (A,11)ef and O"

is the restriction of q' to AB. D

171 K. R. Apt et al.

Proposition 2.33 Let P be a pure Prolog program. Then NP is upward-closed and
downward-closed.

Proof. By using the characterization of NP expressed by Corollary 2.25 it is
sufficient to prove the operational counterparts of upward and downward closedness,
which when extended to arbitrary conjunctions, are expressed by the following
lemma.

Lemma 2.34
1. If the goal <--- Q has a LD-refutation with c.a.s. 17, then, for each () such that

:Ja= mgu(QO, Q11), the goal <- Q8 has an LD-refutation with a computed
answer substitution a' which is the restriction of a to QO.

2. q the goal <--- QO has a LD-refutation with c.a.s. (J then there exists Y/ and
(J 1 = mgu(Q€1, Q11) such that <--- Q has a LD-refutation with c.a.s. 1J and <r is the
restriction of a' to QY/.

Proof. See [4] D

Note the analogy between Lemma 2.34(2) and the Lifting Lemma. Actually,
Lemma 2.34(2) (which can obviously be generalized to arbitrary selection rules) is
stronger than Lifting Lemma, because not only it ensures the existence of 17, but it
also gives more precise information about the relation between 8, (J and Y/ (from the
Lifting Lemma we would only know that Q11 ~ Q(l(J).

If P contains built-in relations, then NP could be non upward-closed or non
downward-closed.

Example 2.35 Consider the program P:

p(X) <-var(X), q(X).
q (a)

The goal <-p(x) has an LO-refutation with c.a.s. Y/ = {x/a}, but the goal <-p(x)11
has no refutations. Thus, NP is not upward-closed.

Consider the program P:

p (X) ...-- nonvar (X).

The goal <--- p(a) has an LO-refutation, but the goal ...-- p(x) has no refutations.
Thus, NP is not downward-closed.

We show now that if P is a pure Prolog program, then NP is isomorphic to the
least S-model Sp, in the sense that there exist a mapping a from S-interpretations
to El-interpretations, and a mapping f3 from El-interpretations to S-interpretations
such that for every program P NP= a(Sp) and Sp = f3(N p).

Note that a and f3 are abstraction operators, i.e. they do not depend upon P: if
S p 1 = Sp, then [J(S Pi!= /3(S p 2) and if N p 1 =NP, then a(N p 1) = a(N p,).

Definition 2.36. The mappings Up from S-interpretations to El-interpretations, and
Kernel from El-interpretations to S-interpretations are defined as follows.

Up(.1) = { <AB,<r)l31J. <A, IJ)E.9' and :Ja'= mgu(AD, Al]). ais the restriction of
a' to A€1}, Kernel (.f) = { < p(x), 1J >Ix E Var and <p(x), Y/) E.~} D

Note that the definition of Up and Kernel does not depend upon P. We prove
that Up and Kernel are the intended a and P satisfying the property described above.

A Declarative Approach for First-Order Built-in's of Prolog 173

Proposition 2.37. If P is a pure Prolog program, then

1. NP= Up(Sp), and
2. Sp = Kernel(N p).

Proof. The equality Sp = Kerne/(N p) follows immediately by the definition of
Kernel and by (7). Therefore we have only to prove that NP= Up(Kernel(N p)).

~) Let (A,<T)ENp. Assume A =p(x)e. Then by Proposition 2.33(2) there exist
YJ and a'=mgu(A,p(x)ri) such that (p(x),YJ)ENp (and therefore (p(x),YJ)E
Kernel(N p)), and <T is the restriction of a' to A. The rest follows by Proposition
2.33(1).

~)Let (A,<T)EUp(Kernel(Np)). Then there exists (p(x),YJ)EKernel(Np)~ Np
such that, for some e, A= p(x)O and 3<T' = mgu(A, p(x)ri) such that a is the
restriction ofa' to A. By Proposition 2.33(1), we conclude <A,a)ENp. D

2.6 Full Abstraction of the @-Semantics

In the previous sections we have seen that NP coincides with the set of computa
tional pairs <A, YJ) s. t. there exists an LO-refutation of Pu {~A} with c.a.s. 1'/ and
that the @-semantics is and-compositional, in the sense that the truth value of a
conjunction of atoms (possibly sharing variables) can be derived by the truth value
of the atoms.

We argue that a declarative semantics should provide such a compositional
interpretation of conjuncts. We focus on conjuncts of the form

P1(Xi}, ... ,pn(Xn)

where the Pi(x;)'s are either elementary atoms or atoms of the form x = t, and
x 1 , ••• , x" are possibly not disjoint. Every conjunct can be equivalently trans
formed into a conjunct of this form.

One might wonder whether it is possible to develop a declarative semantics
for Prolog based on a simpler (i.e. more abstract) domain than the @-domain,
possibly encoding less information concerning the computational behavior of
goals. One might for instance be interested in observing only the non-ground
success set of a program P, defined as:

N GSS P = { A11 I~ A has an LO-refutation with c.a.s. '1}

(which corresponds to the least C-model when P is a pure program (cf. Falaschi
et al. [12])). This notion can be considered the most abstract interesting one,
since, as we already have seen in the introduction, the ground success set is not
suitable for programs containing built-in relations. So the question is:

is it possible to give a declarative, hence and-compositional,
characterization of N GSS P?

Ifwe want to have a declarative model which coincides with NGSSp, then the answer
is no. In fact, it is easy to show that NGSSp is not and-compositional (in the sense
that the NGSSp information about a goal in P cannot be derived from the NGSSp
information about its atomic subgoals). An example of this fact will be given below.

We have therefore to be content with a declarative semantics from which it is
possible to derive NGSSp, but which contains more information than NGSSp

174 K. R. Apt et al.

necessary to achieve and-compositionality. The main result of this section is that
the information encoded in NP is the least one which is necessary to model
NGSSp and to provide an and-compositional notion of truth. In other words, Np
is the fully abstract semantics with respect to and-compositionality and NGSSp,
which means that NP is the simplest declarative semantics for Prolog programs with
first-order built-in's.

We first introduce the notions of semantical mappings associated to NP and
NGSSp (which we will still denote by Np and NGSSp).

Definition 2.38. Let x 1 , ... , xn be sequences of variables, possibly not disjoint. Let
p1 (x i), ... , Pn(x") be either elementary atoms, or atoms of the form x = t.

• The mapping NP from conjunctions of elementary atoms to pairs of sub
stitutions is defined as follows:

Np [P1 (X1), ... , Pn(xn)] = { < e, 11 >I Dom (8) ~ { X1} \.) ... \.) { xn} and

.__ (p 1 (X 1), · · • , p n (Xn)) 8
has an LO-refutation with c.a.s. 11}

• The mapping NGSS P from conjunctions of elementary atoms to substitutions
is defined as follows:

NGSSp[p 1 (x 1), ... ,pn(x")] = { 8171 Dom(8) ~ { x 1 } u · ·· u {xn} and

<-- (p 1 (X 1), · · · , p n (Xn)) 8
has an LO-refutation with c.a.s. 11} O

The correspondence with the standard notions of Np, NGSSp is immediate,
since

and
Nr[p(x)] = { (&,17)l(p(x)8,17)ENp}

NGSSp[p(x)] = {alp(x)aENGSSp}.

The semantics NGSSp is more abstract than NP• i.e. the information encoded in
NGSSp can be retrieved from the one in NP (correctness of NP w.r.t. NGSSp). This
is shown by the following fact.

Fact 1. NGSSp[Q] = { 817 I (8, 11)EN p[Q] }.

On the other hand, it is not possible to retrieve the information encoded in NP
from the one encoded in NGSSp, i.e. Np and NGSSp are not equivalent. This is
because the mapping NP is and-compositional and NGSSp is not. In fact N p[Q, R]
can be derived from N p[Q] and N p[R]:

(8,17)ENp[Q,R] iff 3a·(8,a)ENp[Q], and
(8a, 11)EN p[R], and
(Q8, RB, a, 17) is a good tuple.

On the contrary, NGSSp is not and-compositional, as it is shown in the following
example.

Example 2.39. Consider the program P:

p(X)..-X=a.
q(X)..-var(X), X=a.

A Declarative Approach for First-Order Built-in's of Prolog 175

We have NGSSp[p(x)] = NGSSp[q(x)] = { {x/a} }, but NGSSp[p(x),p(x)] =
{ {x/a}} whereas NGSSp[q(x), q(x)] = 0. Note that the key point of this counter
example is the presence of shared variables.

The next theorem shows, however, that NP is the most abstract and-compositional
semantics which is correct w.r.t. NGSSp. We first need the following lemma.

Lemma2.40. If(B,17)ENp[Q]\Np[R] then there exists <B',1J')ENp[Q]\Np[R]
s.t. O' is idempotent.

Proof.
From< 0, I/)EN p[Q] it follows that there exists an LD-refutation ~of Pu { +--QO}

with c.a.s. I). Let Dom (0) n Ran(O) = { x 1 , ... , xn} and let y 1 , .•. , Yn distinct variables
that do not occur in ~· Let p = {x 1/y 1 , .. . ,xn/Yn}, p- 1 = {y 1 /x 1 , ... ,yn/xn}. Let
O' = (Bp) IQ and I)'= (p- 1 11)1 (QO'). Then~'= ~p, is an LD-refutation of Pu { +--QO'}
with c.a.s.11'. Hence <O',l)')ENp[Q]\Np[R] and O' is idempotent. D

Theorem 2.41. (Full Abstraction) If NP [Q] =IN P [R] then there exists a conjunction
A such that NGSSp[A, Q] =! NGSSp[A, R].

Proof.
Assume, without loss of generality, that there exist < 0, I)) EN p[Q]\N p[R]. By

Lemma 2.40 we can assume e idemp 1tent. Let e = {x1/t 1• ... ' Xm/tm}, Var(QO) =

{Y1,. . .,yn}·
Define now:

A1=X1=t1,···•Xm=tm,

A 2 = var(y 1), ••• , var(yn),

A3 = (Yk, \ = = Y1,), ... ,(ykr\ = = Y1J,

where { { k 1 , 11 }, ... , { k" lr}} are all possible combinations of two indexes in the set
{ 1, ... , n} (r is the cardinality of such combinations: r = (n - l)n/2). Finally, define
A= A1 , A2 , A3 • By the definition of A we derive immediately that 01]ENGSSp[A, Q].
We show now that Oryit=NGSSp[A,R]. Assume, by contradiction, that there exists
aENGSSp[A,R] such that

(j = 811. (8)

Then, there exist</;, ijJ such that +--(A, R)</> has an LO-refutation with c.a.s. ijJ and

<Pi/l = O". (9)

We show that in this case+-- RO has an LD-refutation with c.a.s. 11, i.e.< 0, I/)EN p(R),
against the hypothesis. Consider an LD-refutation for +-(A, R)</> with a c.a.s. ijJ
which satisfies (9). Then there exists y, -c such that

and

+--A 1 </>has an LD-refutation with c.a.s. y,

+- A 2 </>y has an LO-refutation (with c.a.s. 1:),

+- A 3 </;y has an LO-refutation (with c.a.s. 1:),

+- R</Jy has an LO-refutation with c.a.s. r,

yr= l/J.

(10)

(11)

(12)

(13)

(14)

176 K. R. Apt et al.

Since 0 is a mqu for {x 1 = t 1' ... , xn = tn}, by (10) we have A 10 ~Ai cpy. Moreover,
by (11), (12) and the definition of [var] and [\ = =] we also have Ai cpy ~ A10, and
therefore, since the domains of </Jy and 0 are restricted to A1 , we can derive (up to
renaming)

c/J"i = 0. (15)

By (13), we have that

<--RO has an LO-refutation with c.a.s. T

furthermore, by (15), (14), (9), and (8),

Rlh = R<iJ/'T = R</Jt/J = RCJ = R017

i.e. (since both the domains of T and 1J are restricted to Qt!), T = 17. D

3 Termination of Prolog Programs

In this section we show that the E>-semantics is helpful when studying termination
of Prolog programs. The presence of built-in's allows us to better control the
execution of the programs and consequently it is not surprising that most "natural"
programs with built-in's terminate for all goals. This motivates the following
definition.

Definition 3.1. We say that a Prolog program P stronqly terminates if for all goals
G all LO-derivations of Pu { G} are finite. D

Traditionally, the main concept used to prove termination of Prolog programs
is that of a level mapping. Level mapping was originally defined to be a function
from ground atoms to natural numbers (see Bezem [6], Cavedon [9], Apt and
Pedreschi [5]).

In our case it is more natural to consider level mappings defined on non-ground
atoms. Such level mappings were already considered in Bossi, Cocco and Fabris
[8] and subsequently in Plumer [16] but they were applied only to prove termination
of pure Prolog programs. In our case it is convenient to allow a level mapping
yielding values in a well-founded ordering.

Definition 3.2. A level mapping I I is a function from atoms to a well-founded
ordering with a smallest element 0 such that I A I =I BI if A and B are variants. D

The following auxiliary notion will be used below.

Definition 3.3. C' is called a head instance of a clause C if C = CO for some
substitution that instantiates only variables of C that appear in its head. D

First we provide a method for proving (strong) termination of Prolog programs
in homogeneous form. Our key concept is the following one.

Definition 3.4. A homogeneous Pro log program P is called acceptable w.r. t. a lei1e[
mapping 11 and a e-model I of p if for all head instances A<-- B 1, ... 'B,, of a clause
of P the following implication holds for iE[l, n]:

if /'p= (B 1 , ..• , Bi_ i ,r/ > then I A I > I Bi 1J 1-

A Declarative Approach for First-Order Built-in's of Prolog 177

P is called acceptable if it is acceptable w.r.t. some level mapping and a E>-model
of P. D

The relevance of the notion of acceptability is clarified by the following theorem.

Theorem 3.5. (Soundness Ill) Let P be a homogeneous Prolog program. If P is
acceptable then it strongly terminates.

The following notion will be useful in the proof.

Definition 3.6. Consider an LO-derivation ~- Let G be a goal in ~- Let k be the
minimum length of a goal in the suffix of~ starting at G and let H be the first goal
in this suffix with length k. We call H the shortest goal of~ under G. D

Proof of Theorem 3.5. Suppose by contradiction that there exists an infinite LD
derivation of Pu{G}. Call it~- Denote G by H0 . We first define two infinite
sequences G1 , G2 , ..• and H 1 , H 2 , .•• of goals of~ by the following formula forj ~ 1:

G i is the shortest goal of~ under Hi- 1 ,

Hi is the direct descendant of Gi in~-

Fix j ~ l. Let A+- B 1 , ••. , Bn be the input clause and e the mgu used to obtain Hi
from Gi. By the choice of Gi and Hi we have l(Gi) ~ l(Hj), son~ l. Gi is of the form
+-C1 ,. .• ,Ck where k~ 1 and Hi is of the form +-(B 1 ,. •• ,B., C2 , .•. ,Ck)8. By
definition, no goal of~ under Gi is of length less than k, so Gi+ 1 is of the form
+-(B;, ... ,B., C2 , ... ,Ck)017 for some 17, where ie[l,n-1]. This means that there
exists an LO-refutation of Pu{+-(B 1 ,. . .,B;_ 1)0} with c.a.s. 17. This refutation is
obtained by deleting from all goals of ~ between and including Hi and G i + 1 all
occurrences of the instantiated versions of B;e, ... , B.8, C 20, ... , c.e.

By the Soundness Theorem 2.11 we have II=< (B 1, ... , B;_ 1)8, 11). By the accept
ability of P

(16)

By Assumption 2.10 the mgu µused to obtain Hi+! from Gj+t does not bind the
variables of the selected atom 8;817. So B;81] = B;811µ and consequently

(17)

Thus assumingj > 1, we have

(18)

(C 1 is the first atom of Gi and B;81J is the first atom of Gi+ 1). But 0 unifies A and
C 1 , so

IC18I = IA81. (19)

By (16), (18), and (19) we conclude, assumingj > 1,

IC1I > IB;811I.

Thus applying the level mapping I I to the first atoms of the goals G2 , G3 , ... we
obtain an infinite descending sequence of elements of a well-founded ordering. This
yields a contradiction. D

We now prove a converse of the Soundness III Theorem 3.5.
For a Prolog program P that strongly terminates and a goal G, denote by

178 K. R. Apt et al.

nodesp(G) the number of nodes in the LO-tree of Pu { G}. The following lemma
summarizes the relevant properties of nodesp(G).

Lemma 3.7. (LO-tree) Let P be a PnJlog program that strongly terminates. Then

(i) nodesp(G) = nodesp(H) if G and Hare variants,
(ii) nodesp(H) < nodesp(G) for all non-root nodes H in the LD-tree c?f' Pu { G},
(iii) nodes p(H) ~ nodesp(G) for all prefixes H of G.

Proo.f (i) By a simple generalization of the Variant Lemma 2.8 of Apt [!] to the
class of Prolog programs, an isomorphism between the LO-trees of Pu{G} and
Pu { H} can be established. (ii), (iii) Immediate by the definition. O

We are now in position to prove the desired result.

Theorem 3.8. (Completeness III) Let P be a homogeneous Proloy proyram. Suppose
that P stronyly terminates. Then P is acceptable.

Proof. Put for an atom A

I A I= nodesp(+-A).

By Lemma 3.7 (i) I I is a level mapping. We now prove that P is acceptable w.r.t.
I I and Np, the least 0-model of P. To this end consider a clause C with head A0

and its head instance Ce = A+- B 1 ,. .. , B. where Dom (8) ~ Var (A 0). Let us assume
that ce is disjoint with C. Then A is disjoint with A0 , A = A 08 and Dom(8) ~
Var(A 0), so 8 is idempotent and Ae =A. Thus ()unifies A and A 0 and it is easy to
see that in fact 8 is an mgu of A and A 0 • Thus +- B 1 , •.. , B. is a resolvent of +-A
with the input clause C. By Lemma 3.7 (ii)

nodesp(+-A)> nodesp(+- B 1 , ... , B.). (20)

This conclusion was reached under the assumption that CB is disjoint with C but
Lemma 3.7 (i) allows us to dispense us with this assumption. Suppose now that
N PF (B 1,. . ., B;_ 1, 11) for some iE[l, 11] and substitution 11· Then by the Complete
ness Theorem 2.24 there exists an LO-refutation of+- B 1 , ... , B; _ 1 with c.a.s. lJ, so
+-(B;,. .. ,B.)11 is a node in the LO-tree of Pu{ +-B 1 , .. ., B.}. By Lemma 3.7 (ii)

nodesp(+- B 1 , ..• , B.)~ nodesp(+-(B;,. .. , B.)11)

and by Lemma 3.7 (iii)

nodesp(+-(B;, ... , B.)11) ~ nodesp(+-B[IJ).

By (20), (21), and (22) we now conclude

nodesp(+-A)> nodesp(+- B;IJ),

i.e. !Al >IB;11I.
This shows that P is acceptable. O

(21)

(22)

Thus we proved an equivalence between the notions of acceptability and strong
tetmination for homogeneous Prolog programs.

Now, every Prolog program can be easily transformed into a homogeneous
program with the same termination behaviour.

A Declarative Approach for First-Order Built-in's of Prolog 179

Theorem 3.9. Let P be a Prolog program and G a goal. Then the LD-tree of Pu { G}
is finite ifJ the LD-tree of Hom (P) u { G} is finite.

The following lemma is useful.

Lemma 3.10. Let G be a goal and C a clause. G and C have LD-resolvent +-- QO with
mgu e ifJ G and Hom(C) have resolvent <-.X11X = ti, ... , x.a = t., Q with mgu IX and e
is the c.a.s. of +-x1a=t1 ,. • .,x.a=t., where t 1 , ••• ,t. (resp. x 1 , .• .,x.) are the
arguments of the head of C (resp. Hom(C)).

Proof. See [4]. D

Proof of Theorem 3.9
The LO-trees (in P and in Hom(P)) are finitely branching, so by Konig Lemma it
suffices to show that G has an infinite derivation in P iff G has an infinite derivation
in Hom(P). The result follows by Lemma 3.10. D

Corollary 3.11. Let P be a Prolog program. Then P strongly terminates ifJ Hom (P)
strongly terminates. D

This allows us to reason about termination of Prolog programs by transforming
them first to a homogeneous form and then using the notion of acceptability. We
offer now an alternative, direct way of reasoning about termination. To this end the
following auxiliary notion will be needed.

Definition 3.12. Let P be a Prolog program and I I a level mapping. An atom A is
called stable w.r.t.1 I if I A I~ IAOI for every mgu 0 of A and a disjoint with A variant
of a head of a non-unit clause of P. D

Intuitively, an atom A is stable w.r.t. a level mapping I I if A is 'sufficiently instantiated
so that the value of I I on every instance of A can be defined by means of the
arguments of A. Note that atoms with built-in relations are automatically stable
w.r.t. every level mapping.

The following is a generalization of Definition 3.4 to arbitrary Pro log programs.

Definition 3.13. A Prolog program P is called acceptable w.r.t. a level mapping I I
and a e-model I of P if for all head instances A+-- B 1 , ••• , B. of a clause of P the
following implication holds for iE[l, n]:

if Jf= (B 1 ,. .. ,B;_ 1 ,IJ) then

(i) IAI > IB;IJI,
(ii) B;Y/ is stable w.r.t. I I-

p is called acceptable if it is acceptable w.r.t. some level mapping and a 0-model
of P. D

It is important to note the following.

Lemma 3.14. Let P be a homogeneous Prolog program and I I a level mapping. Then
every atom is stable w.r.t. I I.
Proof. Suppose an atom A unifies with a disjoint with A variant B of a head of a
non-unit clause of P. B is an elementary atom, so A is an instance of B, say A = B17
with IJ such that Dom(17) = Var(B). Then Al]= A, so 1J unifies A and B.

180 K. R. Apt et al.

Let now B be an mgu of A and B. Then A8 is more general than A17, i.e. AB is
more general than A. Also A is more general than AG, so A and AG are variants and

consequently IAI = [A81. D

Corollary 3.15. For homogeneous programs both definitions of acceptability coincide.
D

The following theorem is a generalization of the Soundness III Theorem 3.5.

Theorem 3.16. (Soundness IV) Let P be a Prolog program. Suppose P is acceptable.
Then P strongly terminates.

Proof. The proof is completely analogous to that of the Soundness III Theorem 3.5.
The only difference is that instead of (17) we can now only claim by condition

(ii) of acceptability

so assumingj > I we now only have

IC1 I;?; IC18I.

instead of (18). However, this weaker conclusion is still sufficient to yield the same
contradiction as in the proof of Theorem 3.5. O

Ideally, we would like to prove the converse of the Soundness IV Theorem 3.16,
that is Pro log programs that strongly terminate are acceptable. Unfortunately this

is not the case.

Theorem 3.17. There exists a Prolog program P that strongly terminates but is not
acceptable.

Proof. Consider the following program P:

p (f (X)) +- nonvar (X), p (X).
p (f (f (X))) +- nonvar (X), p (X).

It is easy to see that all LO-derivations of P terminate. In fact, in every LD
derivation of P a goal of the form +- p(y) leads to a failure in two steps and a goal
of the form +- p(f"(y)), where n;?; 1, leads to a goal of the form +- p(.[k(y)), where
k < n, in two steps.

Suppose now that P is acceptable w.r.t. some level mapping I I and a E>-model I.
Then due to condition (i)

[p(f(f(Y)))[> [p(f(Y))[

because nonvar(f(Y)) holds. Also p(f(Y)) is stable w.r.t. I [,so

[p(f(Y))[;?; [p(f(f(X)))[

which gives a contradiction. - O

It may seem disappointing that we opted here for a notion of acceptability that
did not allow us to prove its equivalence with strong termination for all Prolog
programs. Clearly, it is possible to characterize strong termination by means of
well-founded relations for all Prolog programs. To this end it suffices to use the
concept of a level mapping defined on goals, with the condition that IHI< I G I
whenever H is a direct descendant of G in an LO-derivation. However, such a

A Declarative Approach for First-Order Built-in's of Prolog 181

characterization of strong termination is hardly of any use when proving termination
because it requires an analysis of arbitrary goals. In contrast, the definition of
acceptability refers only to the program clauses and calls for the use of a level
mapping defined only on atoms, so it is simpler to use.

On the other hand, the introduction of homogeneous programs allows us to
draw the following conclusion.

Theorem 3.18. Let P be a Prolog program. Then P strongly terminates ifJ Hom(.P)
is acceptable.

Proof. By the Soundness III Theorem 3.5 and Completeness III Theorem 3.8
applied to Hom(P), and Corollary 3.11. D

4 Applications

We illustrate the use of the results established in the previous section to prove strong
termination of some Prolog programs. We start by considering the program list
given in Section 1.

Then we show how a relation that strongly terminates can be treated as a built-in
relation when proving strong termination of a program depending on this relation.
This allows us to prove strong termination in a modular way. We illustrate this
method by proving strong termination of two well-known Prolog programs.

First, we define by structural induction the function I I on terms by putting:

I xl = 0 if x is a variable,

lf(x1, ... ,x.)I =O iff~ [·l·J,
l[xlxs]I = lxsl + 1.

It is useful to note that for a list xs, lxsl equals its length. This function will be
used in the examples below.

List

Consider the program list from Sect. 1:

{1 1) list ([]) +-.

(1 2) list ([X I Xs]) +-

nonvar (Xs), list (Xs).

To prove that list strongly terminates we show that it is acceptable. We define a
level mapping I I by putting

j/ist(xs)j = lxsl

jnonvar(xs)I = 0.

Clearly, IAI = IBI if A and Bare variants, so I I is indeed a level mapping. Next,
we take the @-base ep as the @-model of list.

Theorem 4.l. list is acceptable w.r.t. I I and <?Jp.

Proof. Consider a head instance C = A +- B 1 , B 2 of(/ 2). It is of the form

list([xl xs]) +- nonvar (xs), list (xs).

182 K. R. Apt et al.

Claim t. I A I > I Bi 11 I.

Proof Note that \/ist([xlxs])I > 0 = lnonvar(xs11)\. D

Suppose now BPI= (B 1 ,r/ >·Then Y/ =<:and 8 1 YJ = nonvar(xs) with xs~ Var.

Claim 2. I A I > I B 211 I.

Pro1?f. Note that IAI = llist([x\xs])I = l[xlxs]I > lxsl = llist(xs)I = IB 217I. D

Claim 3. B2 YJ is stable w.r.t. I I·

Proof Suppose B2 ri unifies with a variant /ist([x'lxs']) of the head of the clause

(1 2). Since X5 ~ Var, B 2 YJ is an instance of list ([x'lxs']). As in the proof of Lemma 3.14

this implies that for anymgu &of B2 rpnd list([x'lxs'])we have IB 2ril = IB 2 riOI. D

Modularity

In the proof of Theorem 3.5 the level mapping of built-in relations is not used. This

is due to the fact that the built-in relations always terminate and never occur in the

head of a clause. So we can assume that I A I = 0 if A is a built-in atom.

This observation provides an idea of how to prove the strong termination of a

Prolog program in a modular way. Before formalizing this idea we show how the

relation list previously defined can be treated as a built-in in the proof of the strong

termination of a Prolog program.

Example 4.2. Consider the following program APPEND:

(a 1) a ([J, Ys, Ys) +-

list (Ys).
(a 2) a([X!Xs], Ys, [XIZsJ) +

nonvar (Xs), a (Xs, Ys, Zs).

augmented by the clauses (/ 1) and (12) defining the list program.

To prove that APPEND strongly terminates we regard APPEND as union of the

program append, containing only the clauses (ai) and (a 2) of APPEND, with the

program list. In append the relation list does not occur in the head of any clause.

We already proved that list strongly terminates. Thus the relation list can be treated

as a built-in with the semantics given by an arbitrary E>-model I 0 of the program

list. Hence, to show that APPEND strongly terminates, it is sufficient to prove that

append is acceptable w.r.t. a model of APPEND and a level mapping I I s.t. I A I is

0 if A is a built-in or is an atom of the form list (x,). We choose the following level

mapping:

la(x, y, z)i =Ix!,

I A I = 0 if A is a built-in or list (xs).

Next, we define a @-interpretation for the relation a by putting

I= { (a(xs,ys,zs),11>1 lxsYJI + lysril = lzsY/I}.

Lemma 4.3. JuJ0 is a G-model of APPEND.

Proof. Clearly I u I 0 is a model of list.

A Declarative Approach for First-Order Built-in's of Prolog 183

Let A = a(r, s, t) and let a([], Y~, YJ <-list (r:i be a variant of (a 1) disjoint with A.

Suppose that 8 = mgu (A, a([], r:, r:)) exists and suppose that I u I 0 I= <list (r:)B, 'I),
with 'I satisfying the restriction of Definition 2.28. We have to show that IuJ0 1=
<A,(Ory)IA). We have that re= [], sO = te = r:e. Then lrOI + 1se1 =I tBI and so

lr011I + ls811I = lt817I. Hence /uJ0 f= <A.(811)IA) holds.

Let now a([X'\ x:J, r:, [X'I Z~]) <- nonrnr(X~), a(X_;, Y:, Z~) be a variant of (a 2)

disjoint with A. Suppose that B=mgu(A,a([X'\X:J, Y~, [X'IZ:J)) exists

and suppose that Iul 0 f= <(nonvar(X:), a(X:, r:.z:))0,11), with 17 satisfying the

restriction of Definition 2.28. We have to show that Jul 0 f= <A,(017)\A). Clearly

(nonvar (X:)e, a(X~, Y~, z:)O, t:, 17) is a good tuple. Then, by the semantics of nonvar,

it follows that I u I 0 f= < (nonvar (X:), a(X:, Y_;, z:))8, 1J) iff I u I 0 f= < a(X:, Y~, z:)O, 1J),

with x:O<f Var. Then we have 1x:e111+IY:811I=1z:o111 and, by rO = [X'IX:Je,
se = Y,8 and t8 = [X'IZ:Je it follows that \r811\ + \sth7\ =I tlh1I. Hence JuJ0 f=
<A,(817)\A) holds.

This concludes the proof that I u I 0 is a E>-model of APP EN D. D

Theorem 4.4. append is acceptable w.r.t. I I and I u I 0 .

Proof. Analogous to that of Theorem 4.1, due to the similarity between clauses (a 2)

and (/ 2). D

We can now formulate our modular approach to termination.

Definition 4.5. Let P 1 and P 2 be two Pro log programs. We say that P 2 extendsP 1 ,

and write P 1 < P2 , if

(i) P 1 and P 2 define differ~nt relations,
(ii) no relation defined in P 2 occurs in P 1 . D

Informally, P 2 extends P 1 if P 2 defines new relations, possibly using the relations

defined already in P 1 • For example the program APPEND extends the program list.

The following theorem formalizes the idea used to prove termination of the

APPEND program.

Theorem 4.6. (Modularity) Suppose P2 extends P1 • Assume that

(i) P 1 is acceptable,
(ii) P 2 is acceptable w.r.t. a @-model I of P 1 uP2 and a level mapping I I such that

I A I = 0 if A contains a relation defined in P 1 .

Then P 1 uP 2 strongly terminates.

Proof P 2 extends P 1 . Thus P 1 uP2 strongly terminates iff P 1 strongly terminates

and P 2 strongly terminates when the relations defined in P 1 are treated as built-in 's

defined by

[p] = {<A, IJ) I A contains p and there exists an LO-refutation of P 1 u {<--A}
with c.a.s. 'I}.

Now, by (i) and the Soundness IV Theorem 3.16P1 strongly terminates. To deal

with the other conjunct consider Np 1up,, the least E>-model of P1 uP2 . By (ii) and

Corollary 2.13 P 2 is acceptable w.r.t. N Pi u p 2 and the level mapping I 1- Moreover, by

Corollary 2.25 and the fact that P 2 extends P 1 we have for all atoms A containing

a relation p defined in P 1

NPiuP,F (A,1]) iff <A,l])E[p].

184 K. R. Apt et al.

Thus by the Soundness IV Theorem 3.16 P2 strongly terminates when the relations
defined in P 1 are treated as built-in's defined as above.

This concludes the proof of the theorem. D

We illustrate the use of this theorem in the example below.

U nijlcation

Consider the program UN I FY (for unification without occurs check) from Sterling
and Shapiro [page 150] [17]. In this program several built-in's, namely var, nonvar,
=,constant, compound,functor, > are used. The meaning of them was already given
in Section 2. Additionally, the function " - " (minus) is used on terms. Its meaning
is implicitly referred within the description of the meaning of":=". For instance,
(x: = 3- 1, {x/2})e:[: =].

The program UN I FY consists of the following clauses.

(tu)

unify (X, Y) +--
var (X), var (Y), X = Y.

unify (X, Y) +--
var (X), nonvar (Y), X = Y.

unify (X, Y) +--
var (Y), nonvar (X), Y = X.

unify (X, Y) +--
nonvar (X), nonvar (Y), constant (X), constant (Y), X = Y.

unify (X, Y) +--
nonvar (X), nonvar (Y), compound (X), compound (Y),
term - unify (X, Y).

term - unify (X, Y) +--
functor (X, F, N), functor (Y, F, N), unify- args (N, X, Y).

unify- args (N, X, Y) +--
N > 0, unify- arg (N, X, Y), N1 := N - 1, unify- args (N1, X, Y).

unify- args (0, X, Y).
unify - arg (N, X, Y) +--

arg (N, X, ArgX), arg (N, Y, ArgY), unify (ArgX, ArgY).

We assume that UN I FY operates on the domain of natural numbers over which
the built-in relation> and the function - , both written in infix notation, are defined.

In Pieramico [15] it was proved that UN I FY terminates for ground goals by
showing that the program obtained by deleting all built-in relations is acceptable
in the sense of Apt and Pedreschi [5].

We prove here a stronger statement, namely that UNIFY strongly terminates by
showing that it is acceptable in the sense of Definition 3.13.

For the subsequent analysis it is important to understand how this program
operates. Intuitively, the goal +--unify (s, t) yields an mgu of sand t as a computed
answer substitution ifs and t unify, and otherwise it fails. It is evaluated as follows.
If either s or t is a variable, then the built-in relation =is called (clauses (u 1)-(u3)).

It assigns to the term out of s, t which is a variable the other term. If both s and t
are variables (clause (ui)) then s is chosen. If neither s nor t is a variable, but both
are constants, then it is tested - again by means of = - whether they are equal

A Declarative Approach for First-Order 13uilt-in's of Prolog 185

(clause (u4)). The case when both sand tare compound terms is handled in clause
(u 5) by calling the relation term - unify. This relation is defined by clause (tu).

The goal .---term - unify (s, t) is evaluated by first identifying the form of sand t
by means of the built-in relation functor. If for some function symbol f and 11 ~ 0,
the term s is of the form f(s 1 , ... , s") and the term t is of the form f (t 1 , ... , t"), then
the relation unify - args is called. This relation is defined by clauses (uar i) and
(uar 2).

The goal .--- unify - args (n, s, t) succeeds if the sequence of the first n arguments
of s can be unified with the sequence of the first 11 arguments oft. When n > 0,
clause (uar iJ is used and these arguments are unified pairwise starting with the last
pair. This last pair is dealt with by calling the relation unify - arg which is defined
by clause (ua).

The goal .--- unify - arg (n, s, t) is evaluated by first extracting the 11-th arguments
of sand t by means of the built-in relation arg, and then calling unify recursively
on these arguments. If this call succeeds, the produced c.a.s. modifies sand t, and the
recursive call of unify - args in clause (uar 1) operates on this modified pair of sand t.
Finally, when n = 0, unify- args (n, s, t) succeeds immediately (clause (uar 2)). It is
clear from this description what is the intended meaning of the defined relations
unify, term - unify, unify - args and unify- arg. In the proof of the strong
termination of UN I FY only partial information about the meaning of these relations
is needed. This information is captured in the E>-model I we use.

Let us first define a level mapping I I. To this end we use the lexicographic
ordering < defined on triples of natural numbers. In this ordering < n 1, 11 2 , 11 3 > <
< m 1, m 2 , m 3 > iff (11 1 < m tl or (n 1 = m 1 /\ n 2 < m 2) or (11 1 = m 1 /\ n 2 = m 2 /\ n 3 < m 3).

For brevity we write Var(s, t) instead of Var(s)u Var(t). We put

lunify(s,t)I = (card(Var(s,t)), nodes(s) + nodes(t), 1),
I term - unify(s, t) I = <card (Var(s, t)), nodes(s) + nodes (t), 0),
I unify - args(n, s, t) I = <card (Var(s, t)),f (n, s, t), 3),

I unify - arg (n, s, t) I = <card (Var (s, t)), nodes(sn) + nodes(tn), 2),
I A I = < 0, 0, 0) if A built-in,

where card (S) indicates the cardinality of the set S and f(n, s, t) denotes the sum of
the number of nodes of the i-th component of sand t for iE[l, n], that is

n

f(n, s, t) = ~ (nodes(s;) + nodes(ti)).
i= 1

Next we define the $-interpretation /.

I= { (unify(s, t), 0), (term - unify(s, t), 0) llnv(s, t, 0)} u
{(unify - args(n, s, t), ()), <unify - arg(n, s, t), 0) In natural number, Inv(s, t, fJ)) },

where Inv (s, t, &) is the assertion below:

Ran (&) ~ Var(s, t) /\ (Var (sO, tO) = Var (s, t)

=>nodes(s) + nodes(t) = nodes(sO) + nodes(tO)).

The following example clarifies the $-interpretation and level mapping we have
chosen. Consider the goal G 1 = .--- u11ify(f(s),f (t)).

I) G1 calls G2 =.---term - unif'y(f(s), f(t)) using clause (u 5);

!86 K. R. Apt et al.

2) G2 calls G 3 =+--unify - args(l, f(s),f(t)) using clause (tu);
3) G3 calls G4 = +--unify - arg(1,f(s),f (t)) and G 5 = +--unify - args (O,f(s)O,f(t)B)
using clause (uar 1), where 0 is a c.a.s. of G4 ;

4) G4 calls G6 = +-- unify(s, t) using clause (ua).

Let iunify(f(s),f(t))I = (m 1 ,m 2 , 1),
!unify- args(l,f(s),f(t))I = (k 1 ,k 2 ,3),

!unify- args(1,f(s)B,f(t)O)I = < k'1 , k~, 3). Then

I term - unify(f(s),f(t))I == (m 1 , m2 , 0),

I unify- arg(l, f(s), f(t))I = < k1 , k2 , 2) and

lunify(s,t)I = (k 1 ,k2 , 1).

We now show that when G; calls Gi, i,jE[l, 6], JG;!> IGJ
For 1) we need lunify(f(s),f(t))I > jterm - un!fv(f(s),f(t))I, which holds because
1>0.
For 2) we need I term - unify(f(s),f(t))I > I unify - args(I ,f(s),f (t)) I, which is satis
fied because m1 = k1 and m2 > k2 .

For 3) we need lunify-args(l,f(s),f(t))I > lunify-arg(l,f(s),f(t))I, which is
satisfied because 3 > 2, and I unify- args(l,f(s),f(t))i >I unify- args(O,f(s)O,f(t)O) I,
which is satisfied when k 1 > k'1 , or k 1 = k'1 and k 2 =. k~. These conditions are satis
fied if
Ran(B) ~ Var(f(s), f(t)) and
Var(f(s)B, f(t){)) = Var(f(s), f(t)) =nodes (f (s)) + nodes(f(t))

= nodes(f(s)O) + nodes (f(t)()),
i.e. if Jnv(f(s), f(t), B) holds.
For 4) we need I unify - arg (1,f(s),f (t)) I >I unify(s, t)I, which holds because 2 > 1.

We prove now that I is a 6>-model of UN I FY. The following definition is useful.

Definition 4.7. Let I be a 6>-in terpretation. We say that I is good if for all < A, e) EI
we have Ran(8)~ Var(A). O

In good interpretations the truth of a conjunct (see Definition 2. 7) can be
checked, as the condition that (A, B, 0, a) is a good tuple is not needed. Indeed this
condition holds for atoms defined in the program if the interpretation is good and
for built-in atoms it follows by Definition 2.1 and the Good Tuple Lemma 2.5.

Lemma 4.8. I is a B-model of UN I FY.

Proof. The condition Ran(B) ~ Var(s, t) that occurs in I implies that I is good.
Consider clauses (u1)-(U4)·(s = t,B)E[=] iff e = mgu(s, t), with (J relevant. Then
Ran(B) ~ Var(s, t) and Inv(s, t, 8) hold. This implies that/ is a 6>-model of (u 1)-(u4).

I is a 6>-model of(u 5), since the relations unify and term - unify are equivalent w.r.t.
I. I is a 6>-model of (uar i), since the condition <unify - args(n, s, t), (J) El does not
depend on the value ofn. I is a E>-model of(uar2), because for an atom A= unify
args(n,s, t) and a variant unijy-args(O,X', Y')+--of(uar 2) s.t. B=mgu(A,unify
args(O, X', Y')) exists, we have that n = 0 and Inv (s, t, (JI A) holds. Consider now the
clause (tu). Let A =term - unify (x, y) and let
term - unify(X', Y') r functor(X', F', N'), functor(Y', F', N'), unify - args(N', X', Y')
be a variant of (tu) disjoint with A. Suppose et = mgu (A, term - un!fy(X', Y')) exists

A Declarative Approach for First-Order Built-in's of Prolog 187

and assume

II= ((functor(X', F', N'),functor(Y',F', N'), unify- args(N', X', Y'))a, 1J >· (23)

We need to show that II= (A,(a11)IA>.
Since F'a and N'a are in Var, then by the semantics orfunctor we have that (23) implies
that N'a8 = a(x), F' ae = fimct(x) = funct(y), I I= (unify - args(N', X', Y')a8, {3),

11 = 8/3 and (a11)I A= {3. But for compound terms x and y we have that II= (term -
unify(x,y),11> iff If= (unify- args(a(x),x,y),11>. Then II= (term- un!fy(x,y), (a17)IA).
It remains to check that I is a model of (ua). Let A= unify- arg(n, x,y) and let
unify - arg(N', X', Y') <- arg(N', X', Arg X'), arg(N', Y', Arg Y'), unify(Arg X', arg Y')
be a variant of (ua) disjoint with A. Suppose a= mgu(A, unify- arg(N', X', Y'))
exists and assume

If= ((arg(N', X', Arg X'), arg(N', Y', Arg Y'), unify(Arg X', arg Y'))a, 11 >· (24)

We need to show that II= (A,(a11)IA >·Since Arg X'a and Arg Y'a are in Var, then by
the semantics of arg we have that (24) implies that N' a= n, with n > 0, Arg X' a8 = xn,
Arg Y' 0:8 = Yn, If= (unify(Arg X', arg Y')a8, f3 >. 11 = 8/3 and (0:17) I A = {J. Now notice
that Dom({J) ~ Var (xn, Yn) and lnv(xno:, Yna, /3) imply Inv (xo:, yo:, /3). Then II= (unify
arg (x, y), (0:11)IA).

This concludes the proof that I is a G-model of UN I FY. 0

We can now prove the desired result.

Theorem 4.9. UNIFY is acceptable w.r.t. I I and I.

Proof. Notice that any atom in the body of an instance of a clause in UN I FY
satisfies property (ii) of Definition 3.13, since each clause with nonempty body is in
homogeneous form. Any instance of (u 1), (u 2), (u 3), (u4) satisfies the appropriate
requirement since lunify(s, t)i > (0, 0, 0 >.Consider now a head instance C =A<- B1 ,

B2 , B3 , B4 , B5 . of (u 5). C is of the form unify(s, t) <- nonvar(s), nonvar(t), compound (s),
compound(y), term - unify(s, t). We prove two claims which obviously imply that
C satisfies the appropriate requirement.

Claim 1. IAI > IB;lfor i = 1, ... ,4.

Proof. Note that IAI > (O,O,O> = IB;lfor i= 1, ... ,4. O

Claim 2. Suppose that IF= (Bi, B2 , B3 , B4 , Y/ >· Then I A I> I B51J I.

Proof. By the semantics of the built-in's nonvar and compound it follows that SY/ = s,
t71=t. So lunify(s,t)l=(card(Var(s,t)), nodes(s)+nodes(t), I>>(card(Var(s,t)),
nodes(s) + nodes(t), 0 >=I term - unify(s, t)I. D

Consider a head instance C =A<- Bi, B 2 , B 3 • of (tu). C is of the form

term - unify(s, t) <- functor(s, F, N), functor (t, F, N), unify - args(N, s, t).

We prove two claims which obviously imply that C satisfies the appropriate
requirement.

Claim 1. IAI > IB;lfor i = 1, 2.

Proof. Note that IA I> (0, 0, 0) = IB;I for i = 1, 2. O

188 K. R. Apt et al.

Claim 2. Suppose that If= (B1 , B 2 , 11 >· Then I A I >I B3 17I.

Proof. By assumption s17 = s, t17 = t and n = a(s) = a(t). Notice that nodes(s) +
nodes(t) >f(n,s, t). So I term - unify(s, t)I >I unify - args(n,s, t)I. D

Consider a head instance C =A+- B 1 , B2 , B3 , B4 . of (uar 1). C is of the form

unify-args(n, s, t)+-n > 0, unify -arg(n; s, t), Nl := n -1, unify- args(Nl,s, t).

We prove three claims which obviously imply that C satisfies the appropriate

requirement.

Claim 1. IAl>IB;lfori= 1,3.

Proof. Note that IAI > (O,O,O> = IB;lfor i = 1, 3 D

Claim2. Supposethatlf=(B 1 ,11>- ThenlAl>IB 211I.

Proof. By the semantics of the built-in > it follows that s11 = s, t11=t,n>0. Notice

that f(n, s,t) ~ nodes(s") + nodes(tnl· So I unify - args(n, s, t) I > I un!fY - arg (n, s, t) I.
D

Claim 3. Suppose that If= (B 1 , B2 , B3 , 1')). Then IA I> IB4 11I.

Proof. By the semantics of the built-in's >, := and of the relation unify - arg it

follows that n > 0, a(s) ~ n > 0, N117 = n - 1, Var(s1J, t11) ~ Var(s, t). If Var(s11, t11) c

Var(s, t) then card(Var(s, t)) > card(Var(s11, t17)); if Var(s11, t11) = Var(s, t) then

nodes(s11) + nodes(t11) = nodes(s) + nodes(t), hence f(n, s, t) >f(n - 1, s17, t11). So in

both cases we have I unify - args(n, s, t) I > I unify - args(n - 1, s11, t11)I. D

Consider a head instance C =A+- B 1, B1 , B3 of (ua). C is of the form

unify - arg(n, s, t) +- arg(n, s, Arg X), arg(n, t, Arg Y), unijy(Arg X, Arg Y).

We prove two claims which obviously imply that C satisfies the approximate

requirement.

Claim 1. IA I> IB; I .for i = 1, 2.

Proof. Note that I A I> (0, O,O> = IB;I for i = 1,2. D

Claim 2. Suppose that If= (B 1,B2 ,11), Then IAI > IB3 11I.

Proof Since in the clause C the third argument of arg is a fresh variable, then from

the semantics of arg it follows s11 = s, t1') = t, n > 0, a(s) ~ n > 0, Arg X 11 = s"' Arg Y11 =
t"' So I unify - arg(n, s, t)I >I unify(sn,tn) I. D

Consider now the program UNIFYoc for the unification with occur check (see

Sterling and Shapiro [page 152] [17]). Let UN I FY' be the program obtained by

UNIFY introducing the atom not-occurs-in(X, Y) before the last atom in the bodies

of clauses (u 2) and (u 3). Then UNIFYoc is the union of UNIFY' with the following

program not-occur defining the relation not-occurs-in/2:

(noc 1) not-occurs-in (X, Y) +

var (Y), X\ = = Y.
(noc 2) not-occurs-in (X, Y) +

nonvar (Y), constant (Y).
(noc 3) not-occurs-in (X, Y) +-

nonvar (Y), compound (Y), functor (Y, F, N), not-occurs-in (N, X, Y).

A Declarative Approach for First-Order Built-in's of Prolog

(no 1) not-occurs-in(N,X,Y)+-
N > 0, arg (N, Y,Arg), not-occurs-in (X, Arg), N1 := N -1,
not-occurs-in (N1,X, Y).

(no 2) not-occurs-in (O,X, Y).

189

By the Modularity Theorem 4.6 and the Soundness IV Theorem 3.5 to prove
that UN I FYoc strongly terminates it suffices to prove that non-occur is acceptable
and then prove that UN I FY' is acceptable w.r.t. a 6-model of UN I FYoc and a level
mapping I I such that I not - occurs(s, t)I = 0 for alls, t.

To prove that not-occur is acceptable we define an appropriate level mapping
with

I not - occurs - in(x, y)I = nodes(y) + l,
a(y)

I not - occurs - in (n, x, y) I = nodes (y) - 2:: nodes (Y;) if n > 0,

I not - occurs - in (0, x, y) I = 0,

I A I = 0 if A is a built-in.

Next, we define a @-interpretation of not-occur by putting

J' = {(not - occurs - in(s,t),e)} u {(not - occurs - in(n,s, t),e) 10 ;s; n;:;:; a(t)}.

Lemma 4.10. I' is a 6-model of not-occur.

Proof. Notice that l ;s; n - l ;:;:; a(t) implies 0 ;s; n ;s; a(t). This implies that I' is a
6-model of not-occur. D

Lemma 4.t l. not-occur is acceptable w.r.t. I I and I'.

Proof. Notice that condition (ii) of Definition 3.4 is satisfied since not-occur is
stable. Any instance of (noc il and (noc 2) satisfies the appropriate requirement since
I not - occurs - in (s, t) I > 0. Consider an instance C = A+- B 1 , B 2 , B 3 , B4 of (noc 3).

C is of the form not-occurs-in(s,t)+-nonvar(t), compound(t), functor(t,F,N),
not - occurs - in(N, s, t). We prove two claims which obviously imply that C satis
fies the appropriate requirement.

Claim 1. IAI > IB;I for i = 1, 2, 3.

Proof. Notice that I A I > 0 =I B; I for i = l, 2, 3. D

Claim 2. Suppose that l'I= (B 1 ,B2 ,B3 ,ry). Then IAI > IB4 17I.

Proof. By the semantics of the built-in's nonvar, compound and functor we have
sry = s, t17 = t and N17 = a(t). So !not - occurs - in(s, t)I = nodes(t) + 1 > nodes(t) =
lnot-occurs-in(N17,s,t)i. D

Consider now an instance C =A+- B 1 , B2 , B 3 , B4 , B 5 of (noi). C is of the form
not - occurs - in (n, s, t) +- n > 0, arg (n, t, Arg), not - occurs - in (s, Arg), N 1 := n - I,
not - occurs - in(N 1, s, t).
We prove three claims which obviously imply that C satisfies the appropriate
requirement.

Claim 1. IA I> IB;I for i = 1, 2, 4.

Proof. Notice that IAI > 0 = IB;I for i = 1, 2, 4. D

190 K. R. Apt et al.

Claim 2. Suppose that l'f= (B 1 , B2 ,71). Then IAI > JB371J.

Proof By the semantics of the built-in's >and arg we have syt = s, tyt = t, Arg Y/ = t"
a(t)

and 1~n~a(t). So ::;;not-occurs-i11(11,s,t)i=11odes(t)- I nodes(t;)>
i = n + 1

nodes(t") +I= I not - occurs - in(s, t 0)i. D

Claim 3. Suppose that I' f= (B 1 , B2 , B3 , B4 , rt). Then I A I> I B 5 1J I.

Proof By the semantics of the built-in's >, arg, := and of the relation not - occurs -
in we have SYf = s, t1] = t, ArglJ = t0 , Nl17=11- l(~ 0) and (1~11 ~ a(t)). So lnot-

a(r) a(t)

occurs-in(n,s,t)l=nodes(y)- I 11odes(tJ>11odes(t)- I nodes(t;)=lnot-

occurs-in(11 - 1,s, t)I. D
i=n+l

To prove that UN I FY' is acceptable we consider the level mapping and E>-model
defined in UNIFY and we treat not-occurs-in as built-in relation whose semantics is
given by/'.

Lemma 4.12. UN I FY' is acceptable w.r.t. I I and I.

Proof. Notice that if C =A+- B 1 , ... , B4 is an instance of(u~) (resp. of (u'3) exchanging
the positions of s and t in the body of the clause), then C is of the form

unify(s, t) +-var(s), no11var(t), not - occurs - i11(s, t), s = t.

If If= < B 1 , B2 , B3 , IJ) then by the semantics of the built-in's var, nonvar and of the
relation not - occurs - in we have SY/= sand tY/ = t, i.e. not-occurs-in (s, t) does not
modify s and t. It follows that the proof that UN I FY' is acceptable w.r.t. I I and I is
analogous to the one for UN I FY given in Theorem 4.9. D

Acknowledgements. We thank Annalisa Bossi and Kees Doets for helpful discussions on the
subject of the Good Tuple Lemma 2.5. Also, we thank the referees for useful suggestions on the
subject of this paper.

Notes. This research was partly done during the third author's stay at Centre for Mathematics
and Computer Science, Amsterdam. The work of K.R. Apt and E. Marchiori was partly supported
by ESPRIT Basic Research Action 6810 (Compulog 2). The work of C. Palamidessi was partly
supported by ESPRIT Basic Research Action 3020(Integration) and by the Italian CNR (Consiglio
Nazionale delle Ricerche). The work of E. Marchiori was also partly supported by the Italian CNR
under Grant No. 89.00026.69.

References

I. Apt, K. R.: Logic Programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer
Science. Vol. B. Elsevier 1990

2. Apt, K. R., Bezem, M.: Acyclic Programs. New Generation Com put. 9, 335 -363 (1991)
3. Apt, K. R., Doets, H. C.: A new definition of SLDNF-resolution. Tech. Rep. CS-R9242. CW!,

Amsterdam, NL (1992)
4. Apt, K. R., Marchiori, E., Palamidessi, C.: A declarative approach for first-order built-in's of

Prolog. Tech. Rep. CS-R9246. CW!, Amsterdam, NL (1992)
5. Apt, K. R., Pedreschi, D.: Studies in pure Prolog: termination. ln: Lloyd, J. W. (ed.) Symposium

on Compuational Logic. Berlin, Heidelberg, New York: Springer (1990)
6. Bezem, M.: Characterizing termination of logic programs with level mappings. In: Lusk, E. L.,

Overbeek, R. A. (eds.) Proceedings of the North American Conference on Logic Programming,
69 80. The MIT Press (1989)

A Declarative Approach for First-Order Built-in's of Prolog 191

7. Borger, E.: A logical operational semantics of full Prolog, Part Ill: Built-in predicates for files,
terms, arithmetic and input-output. In: Moschovakis Y. (ed.), Proceedings Workshop on Logic
from Computer Science. Berlin, Heidelberg, New York: Springer MSRI Publications (1989)

8. Bossi, A., Cocco, N., Fabris, M.: Proving termination of logic programs by exploiting term
properties. In: Proceedings of Tapsoft '91, pp. 153-180 (1991)

9. Cavedon, L.: Continuity, consistency, and completeness properties for logic programs. In:
Levi, G., Martelli, M. (eds.) Proceedings of the Sixth International Conference on Logic
Programming, pp. 571-584. The MIT Press (1989)

10. Clark, K. L.: Predicate logic as a computational formalism. Tech. Rep. DOC 79/59. ico,
London, GB (1979)

11. Deransart, P., Ferrand, G.: An operational formal definition of Pro log. In: Proceedings of the
4th Symposium on Logic Programming, pp. 162-172. Computer Society Press (1987)

12. Falaschi, M., Levi, G., Martelli, M., Palamidessi, C.: Declarative modeling of the operational
behaviour of logic languages. Theoret. Comput. Sci. 69, 289-318 (1989)

13. Hill, P. M., Lloyd, J. W.: Analysis of meta-programs. In: Abramson, H. D., Rogers, M. H. (eds.)
Proceedings of the Meta88 Workshop, pp. 23-52. MIT Press (1988)

14. Lloyd, J. W.: Foundations of Logic Programming. Second ed., Berlin, Heidelberg, New York:
Springer 1987

15. Pieramico, C.: Metodi formali di ragionamento sulla terminazione di programmi prolog. Tech.
Rep. Tesi di Laurea. Universita degli Studi di Pisa. I (1991)

16. Pliimer, L.: Automatic termination proofs for prolog programs operating on nonground terms.
In: Proceedings of the 1991 International Logic Programming Symposium. San Diego (1991)

17. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press 1986
18. van Emden, M. H., Kowalski, R. A.: The semantics of predicate logic as a programming

language. Journal of the ACM 23, 733-742 (1976)

