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Abstract: In this paper we consider the computability of the solution of the initial-
value problem for differential equations and for differential inclusions with semicontin-
uous right-hand side. We present algorithms for the computation of the solution using
the “ten thousand monkeys” approach, in which we generate all possible solution tubes,
and then check which are valid. In this way, we show that the solution of a locally Lip-
schitz differential equation is computable even if the function is not effectively locally
Lipschitz, and recover a result of Ruohonen, in which it is shown that if the solution is
unique, then it is computable. We give an example of a computable locally Lipschitz
function which is not effectively locally Lipschitz. We also show that the solutions of a
convex-valued upper-semicontinuous differential inclusion are upper-semicomputable,
and the solutions of a lower-semicontinuous one-sided Lipschitz differential inclusion
are lower-semicomputable.
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1 Introduction

In this paper we study the computability of initial-value problems defined with
ordinary differential equations (ODEs) and differential inclusions (DIs). For-
mally, let E be a domain in R × Rm, f : E → Rm be a continuous function
and F : E ⇒ Rm be a (semicontinuous) multivalued function. We consider the
initial-value problem for the ordinary differential equation

ẋ = f(t, x); x(0) = x0, (1)

and the initial value problem for the differential inclusion

ẋ ∈ F (t, x); x(0) = x0. (2)
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For simplicity of discussion, though not essential, we take the initial time to be
t0 = 0. The question of interest in this paper is to find conditions on f and F

in order that one might be able to effectively compute the solution of (1) or (2).
The standard condition used in literature to study solutions of initial value

problem (1) is to assume that f is Lipschitz, in which case the problem has
a unique solution (see e.g. [CL55]). The proof of this result can be effectivised
[Abe70, Abe80, Ko91, Moo66] in order to show that this solution can be com-
puted from x0 and f .

If the function f is continuous but not Lipschitz, then Peano’s existence
theorem guarantees the existence of at least one solution, but the solution needs
not be unique. In the case that the solution of (1) is not unique, it can happen
that none of the solutions is a computable function [Abe71, PER79] even if f

is a computable function. However, in [Ruo96] it was shown that if the solution
of (1) is unique, then it can be computed from x0 and f .

The results of [Ruo96] have the desirable characteristic of not demanding f

to be globally Lipschitz on its domain. While the globally Lipschitz condition
ensures that a solution for (1) exists and is unique, it may be too strong as a
requirement. This has already been noticed by mathematicians when establishing
existence and uniqueness results for solutions of (1) in unbounded domains,
where a Lipschitz condition usually does not hold. To circumvent this problem,
a possible approach is to require the Lipschitz condition to be satisfied only
locally. Under these conditions, the solution of (1) can be shown unique (see
e.g. [CL55]).

Following this reasoning, in [GZB07], the authors introduce a notion of ef-
fectively locally Lipschitz functions and show that if f in (1) has this property,
then the solution of (1) can be computed from f and x0 over the maximal inter-
val of existence. The existence of such maximal interval follows from standard
results from the theory of ODEs, that ensure that when computing the solution
of (1) one can extend it until the solution becomes unbounded or reaches the
boundary of the region where f is defined. In particular, the results in [GZB07]
yield the (expected) computability of the solution of the initial-value problem
ẋ = −x2, x(0) = 1 over (0, +∞). The effectivity in this definition is required
in order that one might be able to pick for each compact set an appropriate
Lipschitz constant to be used on the computation of the solution as soon as it
reaches the aforementioned compact set.

The problem (2) for differential inclusions is typically studied for functions
F which are convex-valued, and either Lipschitz lower-semicontinuous or upper-
semicontinuous [AC84, Dei84]. The classical result is that if F is defined on the
whole of R × Rm and is upper-semicontinuous with compact convex values and
sublinear growth at infinity, then there is at least one solution defined for all
times, and that the set of all solutions varies upper-semicontinuously with the
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initial condition. If F is locally Lipschitz continuous, then the solutions vary
continuously with the initial conditions. It was recently shown [Gab07] that the
Lipschitz condition can be relaxed to a one-sided locally Lipschitz condition. In
the case that F is Lipschitz continuous, computability was shown in [PBV95,
Szo03].

In this paper we will prove that we can compute over-approximations of the
solutions of (2) requiring only that F is upper-semicontinuous with compact
convex values. We prove this result by giving an explicit algorithm based on
the ten thousand monkey theorem — ten thousand monkeys1 hitting keys at
random on a typewriter keyboard will eventually type a particular chosen text.
The idea is that we can approximate the solutions of ẋ ∈ F (t, x), x(0) ∈ X0 from
above with a union of boxes, with arbitrary precision. These boxes satisfy some
relations between them, which only apply to this kind of covering, and which
can be effectively checked. Now we just need to use the ten thousand monkey
theorem to run computations over all the possible finite sequences of unions of
boxes. We can check whether each sequence of boxes constitute a valid covering,
and we know that such a covering approaching the solution of ẋ ∈ F (t, x),
x(0) ∈ X0 with an arbitrary preassigned precision exists. Since, as we will see,
the solution set of ẋ ∈ F (t, x), x(0) ∈ Xn will converge to the solution of (2),
it is enough to keep computing these sequences until we get a finite sequence of
boxes which cover the solution at time t with the desired precision. We do not
need any conditions bounding the growth of F at infinity; instead, solutions are
computable on their domains of definition.

We will also consider approximations to the solutions of (2) in the case that
F is lower-semicontinuous. In this case, we do need an extra condition, namely
the one-sided locally Lipschitz condition used in [Gab07], in order to obtain
lower-semicontinuity of the solution set. We obtain, for each time t, a collection
of open boxes, each of which is guaranteed to contain a solution. Our results
extend those of [Gab07] since we do not require F to be continuous or even
bounded; lower-semicontinuous with closed convex values suffices for one-sided
locally Lipschitz functions. A further strengthening of [Gab07] is that we obtain
a continuous selection of the solution set through any given reference solution.

In the case of a Lipschitz differential equation, we give a simpler version of
the algorithm in which the (necessarily unique) solution is contained in a single
box at all times. However, we give a counterexample demonstrating that this
algorithm is not powerful enough to compute the solution of a non-Lipschitz
differential equation even if the solution is unique. Instead, in the non-Lipschitz
case we need to allow the solution bound to be a finite union of boxes, giv-
ing an equivalent algorithm to the case of an upper-semicontinuous differential
1 In [CG08] we only used a thousand monkeys, but in the case of differential inclusions

it is useful in practice to have more monkeys to provide massively parallel processing
capability.
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inclusion.
We now briefly sketch the contents of the paper. In Section 2 we present

some standard results from ODEs, computable analysis, and real analysis that
will support the main results of the paper. In Section 3 we show that our results
are not a special case of those obtained in [GZB07] since, as we will prove, there
are computable functions which are locally Lipschitz (guaranteeing uniqueness of
the solution), but not effectively locally Lipschitz. In Section 4 we prove that the
solution of (1) can be computed provided f is continuous and the solution of (1)
is unique. To achieve this result we present a first algorithm, that as we will see
is not enough to compute the solution of (1), but will serve as a useful subroutine
for a second algorithm that computes the desired solution. The results of this
paper extend those of the earlier paper [CG08], and give more complete proofs.

2 Preliminaries

This section introduces concepts and results from the theory of differential equa-
tions, differential inclusions, computable analysis and real analysis. For more
details the reader is referred to [CL55, Lef65] for ordinary differential equa-
tions, [AC84, Dei84] for differential inclusions, and [Ko91, PER89, Wei00] for
computable analysis.

2.1 Standard results from differential equations/inclusions

We now recall some basic results concerning initial-value problems defined with
ODEs and DIs.

Let E be a domain in R × Rm and f : E → Rm. Recall that f is locally
Lipschitz in the second argument if for each compact K ⊂ E, there exists some
constant L > 0 such that

|f(t, x) − f(t, y)| ≤ L |x − y| whenever (t, x), (t, y) ∈ K.

Let us consider the initial-value problem (1). The following theorem can be found
in [Har82] (see also [CL55, Lef65]).

Theorem 1 (Existence and uniqueness of solutions of ODEs). Let E be
a domain over R × Rm and f : E → Rm be a continuous function. Then the
initial-value problem ẋ = f(x); x(0) = x0 has a solution y defined on some open
interval containing 0. Every solution y can be extended to a solution on some
maximal interval (α, β), and y(t) → ∂E as t → α, β. If f is locally Lipschitz in
the second argument, then the maximal solution y is unique.

Let us now consider the initial-value problem (2) for differential inclusions.
It is a standard result that an absolutely continuous function is differentiable at
almost every point in its domain.
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Definition 2. A function ξ : [0, T ) → Rm is a solution of the differential inclu-
sion ẋ ∈ F (t, x) if ξ is absolutely continuous, and ξ′(t) ∈ F (t, ξ(t)) for almost
every t ∈ [0, T ).

The solution operator of a differential inclusion ẋ ∈ F (t, x) is the function SF :
Rm ⇒ C(I, Rm) taking each point x0 to the set of solution curves ξ : I → Rm

with ξ(0) = x0. The flow operator is the function ΦF : R × Rm ⇒ Rm taking
(t, x0) to {ξ(t) | ξ ∈ SF (x0)}.

The following result (see [AC84, Dei84]) is a classical existence theorem for
solutions of upper-semicontinuous differential inclusions.

Theorem 3 (Solutions of upper-semicontinous differential inclusions).
Assume that a convex compact valued map F : R × Rm → Rm is upper-
semicontinuous in x ∈ Rm and measurable in t ∈ R. Assume moreover
that F has sublinear growth at infinity, i.e. there is a constant c such that
|F (t, x)| ≤ c(1 + |x|) for every t ∈ R and x ∈ Rm.

Then for every initial point x0 there is a function y : R → Rm such that
y(0) = x0, y(·) is absolutely continuous and ẏ(t) ∈ F (t, y(t)) almost everywhere.
Further, the flow operator ΦF : R×Rm ⇒ Rm is continuous in the first argument
and upper-semicontinuous in the second argument.

Let E be a domain in R × Rm and F : E ⇒ Rm. We say F is one-sided
Lipschitz with constant L if for every (t, x), (t, y) ∈ E and fx ∈ F (t, x), there
exists fy ∈ F (t, y) such that

(x − y) · (fx − fy) ≤ L||x − y||2. (3)

The following theorem [Gab07] generalises existence theorems for Lipschitz dif-
ferential inclusions.

Theorem 4 (Solutions of one-sided Libschitz differential inclusions).
Assume that a convex compact valued map F : Rm → Rm is continuous and
one-sided Lipschitz continuous with constant L. Assume moreover that F has a
sublinear growth at infinity.

Then there exists a continuous selection of the solution map SF : Rm ⇒
C(I, Rm) corresponding to the differential inclusion ẋ ∈ F (x).

2.2 Standard results from computability

We now continue our discussion with a presentation of fundamental concepts of
computable analysis, which provides a notion of computability over the reals.

We define computability in terms of open rational boxes, which are sets of the
form (a1, b1) × · · · × (am, bm) ⊂ Rm where ai, bi ∈ Q for i = 1, . . . , m. We could
equally well use open rational balls B(a, r) where a ∈ Qm and r ∈ Q with r > 0,
or even rational convex polyhedra P = {x ∈ Rm | Ax ≤ b} where A ∈ Qn×m

and b ∈ Qn.
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Definition 5.

1. A name for a point x ∈ Rm is a sequence of nested open rational boxes (In)
such that ∩∞

n=1In = {x}.
2. A name for an open set U ⊂ Rm is a sequence of open rational boxes (In)

such that In ⊂ U for all n ∈ N, and U =
⋃∞

n=1 In.

3. A name for a function f is a list of all pairs of open rational boxes (I, J)
such that f(I) ⊆ J .

4. A name for a lower-semicontinuous multivalued function F is a list of all
pairs of open rational boxes (I, J) such that I ⊆ F−1(J).

5. A name for a upper-semicontinuous multivalued function F is a list of all
tuples of open rational boxes (I, J1, . . . , Jk) such that F (I) ⊆ ⋃k

i=1 Ji.

Definition 6. A point x ∈ Rm is computable if it has a computable name. An
open set U ⊂ Rm is recursively-enumerable if it has a computable name. A func-
tion f is computable it has a computable name. A lower (upper) semicontinuous
function F is lower (upper) semicomputable if it has a computable name.

If Y and Z are spaces with an associated naming system, then an operator
f : Y → Z is computable if there is a computable function which associates each
name of y ∈ Y to a name of f(y) ∈ Z.

2.3 Effective Lipschitz properties

The following definition was introduced in [GZB07], and gives a computable
counterpart for the notion of a function which is locally Lipschitz in the second
argument.

Definition 7. Let E =
⋃∞

n=0 B(an, rn) ⊆ Rm be a recursively enumerable
open set, where an ∈ Qm and rn ∈ Q yield computable sequences satisfying
B(an, rn) ⊆ E. A function f : E → Rm is called effectively locally Lipschitz
in the second argument if there exists a computable sequence {Kn} of positive
integers such that

|f(t, x) − f(t, y)| ≤ Kn |y − x| whenever (t, x), (t, y) ∈ B(an, rn).

The following result was proved in [GZB07].

Theorem 8. Let E ⊆ R × Rm be a recursively enumerable open set and f :
E → Rm be an effectively locally Lipschitz function in the second argument. Let
(α, β) be the maximal interval of existence of the solution x(t) of the initial-value
problem (1), where (t0, x0) is a computable point in E. Then:
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1. The operator (f, x0) 	→ (α, β) is semicomputable (i.e. α can be computed
from above and β can be computed from below), and

2. The operator (f, x0) 	→ x(·) is computable.

2.4 Standard results from analysis

In this section we state three classical theorems that are the main tools in finding
solutions of differential equations and inclusions, and give some corollaries.

Theorem 9 (Arzela-Ascoli). Let X and Y be locally-compact metric spaces
and ξn be a sequence of uniformly bounded uniformly equicontinuous functions
X → Y i.e. ∀ε > 0, ∃δ > 0 ∀n ∈ N, x, y ∈ X, d(x, y) < δ =⇒ d(ξn(x), ξn(y)) <

ε. Then there is a subsequence ξnk
which converges uniformly to a continuous

function ξ∞.

Theorem 10 (Banach-Alaoglu). Let X be a Banach space and X∗ the dual
space with the weak-* topology. i.e. the topology generated by open sets of the
form {g ∈ X∗ : |g(x)− f(x)| < ε} for f ∈ X∗, x ∈ X and ε > 0. Then the closed
unit ball in X∗ is compact.

In particular, since L∞ is the dual of L1, the closed unit ball in L∞ is compact
for the weak-* topology.

Combining the above results, we obtain the following corollary.

Corollary 11. Suppose f is a continuous function and ξε are uniformly bounded
absolutely continuous functions satisfying ||ξ̇ε(t) − f(ξε(t))|| < ε for almost all
t ∈ [0, T ]. Then the functions ξε have at least one limit point, and any limit point
of the functions ξε as ε → 0 is a solution of the differential equation ẋ = f(x).

Proof. Suppose that there is a convergent sequence ηn corresponding to εn with
limit η∞. Then the sequence f(ηn) converges uniformly to f(η∞). By integration,
we have η̇∞ = f(η∞).

For differential inclusions we will need the following stronger corollary.

Corollary 12. Suppose F : Rm ⇒ Rm is an upper-semicontinuous function with
compact convex values and ξε are absolutely continuous functions such that for
almost all t ∈ [0, T ], there exists s with |s − t| < ε and d(ξ̇ε(t), F (ξ(s))) < ε.
Then any limit point of the functions ξε as ε → 0 is a solution of the differential
inclusion ẋ ∈ F (x).

Proof. Since the functions ξε are uniformly-bounded and F is compact-valued,
the derivatives ξ̇ε are uniformly-bounded almost everywhere, so the functions
are uniformly equicontinuous (indeed, they are uniformly Lipschitz). By the
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Arzela-Ascoli theorem, any sequence ξεn has a convergent subsequence, and the
convergence is uniform, so any limit is absolutely continuous.

Suppose that ηn is a convergent sequence corresponding to εn with limit η∞,
and let C be a bounded set such that for all n, η̇n(t) ∈ C for almost all t ∈ [0, T ].
From the Banach-Alaoglu theorem any closed bounded subset of L∞ is compact
in the weak-* topology, so, taking a subsequence of the ηn if necessary, there
exists an L∞ function δ∞ such that η̇n converges weakly to δ∞ as n → ∞. Since
the antidifferentiation operator is continuous, we must have δ∞ = η̇∞ almost
everywhere.

There exist measurable functions sn(t) and vn(t) such that |sn(t) − t| < εn,
vn(t) ∈ F (ηn(sn(t))) and ||η̇n − vn||∞ < εn. Then clearly vn converges weakly
to η̇∞ as n → ∞. Further, if η∞ is differentiable at t, then taking functions
φt,h defined by h φt,h = I[t,t+h], we have

∫
η̇∞(s)φt,h(s) ds =

∫ t+h

t
η̇∞(s) ds/h =

(η∞(t + h) − η∞(t))/h → η̇(t) as h → 0. Hence
∫∞
0

vn(s)φt,εn(s) ds → η̇∞(t) as
n → ∞. Now

∫∞
0 vn(s)φt,εn(s) ds ∈ conv F (ηn(sn([t, t + εn]))) ⊂ conv F (ηn([t −

εn, t+2εn])). Since conv is continuous on compact sets, taking the limit as n → ∞
yields η̇∞(t) ∈ conv F (η∞(t)) = F (η∞(t)) as required.

The following result is useful in finding solutions of lower-semicontinuous differ-
ential inclusions.

Theorem 13 (Michael). Let F : Rn ⇒ Rn be lower-semicontinuous with
nonempty closed convex values. Suppose x ∈ Rn and y ∈ F (x). Then there
is neighbourhood U of x in Rn and a continuous function f : U → Rn such that
f(x) = y and f(w) ∈ F (w) for all w ∈ U .

3 A computable, non-effectively locally Lipschitz function

Before presenting our main result of this section, we start with a Lemma, which
is an adaptation of a result from Radó [Rad62]. We outline the proof, since it is
needed for what follows.

Lemma14. There exists a function S : N → N and a computable function
u : N2 → N such that:

1. For any given computable function f : N → N, there exist infinitely many
n ∈ N for which S(n) > f(n). In particular, S is non-computable.

2. For any given n ∈ N, one has limi→+∞ u(n, i) = S(n) and u(n, i) ≤ S(n)
for every i ∈ N.

3. For any n, i ∈ N, one has u(n, i) ≤ i.
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Proof. We recall the busy beaver game introduced by Radó in [Rad62]. Consider
a one-tape Turing machine M with binary alphabet {0, 1}, where 0 stands for
the blank symbol. Suppose also that M has n non-halting states, plus one halting
state. In this case we say that M has n operational states. Now run the machine
with the tape initially filled only with blanks. We also assume that the head
must always move either left or right in a transition. Now define:
(i) En as the set of n-operational state, 2-symbol Turing machines that halt
when run on a blank tape.
(ii) s(M) = the number of steps M takes before halting, for any M ∈ En.
(iii) S(n) = max{s(M)|M ∈ En}.

Some remarks are in order. Notice that the set En is non-empty since, for
every n ∈ N, there is a n-operational state Turing machine which always halts
(just take the Turing machine where every possible transition finishes on the
halting state). Moreover En is finite, since the number of n-operational state,
2-symbol Turing machines is finite.

From all of the above, we conclude that we have defined a total function
S : N → N, the maximum shift function. Condition 1 of the Lemma was proved
in [Rad62].

For condition 2 of the Lemma, define u(n, i) by the following algorithm:

1. Enumerate all n-operational state, 2-symbol Turing machines;

2. For every Turing machine obtained in Step 1, run it on a blank tape for i

steps, or until it stops. If no Turing machine halted, return 0. Otherwise from
those machines who halted, count the number of steps needed to reach the
halting configuration, and return the maximum of these numbers as u(n, i).

It is easy to see that this function u satisfy conditions 2 and 3 of the Lemma.

We now provide an example of a computable function which is locally Lips-
chitz, but not effectively so. First, for λ ∈ R+

0 , where R+
0 = [0, +∞), we define

a “spike” function gλ,b,c : R → R as depicted in Fig. 1. The function gλ,b,c

is always 0, except in the interval [c − b, c + b], where it increases with slope
λ, until it reaches half-way of the interval, and then decreases with slope −λ

giving origin to a “spike”, centred on the midpoint c of that interval. We now
define a sequence of computable functions {fi}i≥1 such that, on each interval
[n, n + 1), n ≥ 1, fi is constituted by i + 1 spikes, in intervals of the format
[n, n+1/2], [n+1/2, n+3/4], . . . ,

[
n − 1 +

∑i
j=0 2−j , n − 1 +

∑i+1
j=0 2−j

]
. A spike

in the interval ⎡
⎣n +

m∑
j=0

2−j, n +
m+1∑
j=0

2−j

⎤
⎦ (4)

with n ∈ N0, 0 ≤ m ≤ i is defined with the following parameters: λ = u(n, m)
(slope), c = n +

∑m
j=0 2−j + 2−m−2 (midpoint, which is within distance 2−m−2
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Figure 1: A spike function.

from the extremities of the interval (4)) and, if u(n, m) �= 0 (and hence u(n, m) ≥
1), b = 2−m−2/u(n, m). With this definition the non-zero part of the spike is
entirely contained in the interval (4), and its height (assuming that u(n, m) �= 0.
If it is u(n, m) = 0, the height is 0) is 2−m−2.

Notice that fi and fi+1 have the same first i spikes, the difference being that
fi+1 has an extra spike with height at most 2−i−3. This shows that the sequence
{fi}i≥1 converges uniformly to a computable function f with the property that
in the time interval [n + 1, n + 2) it has infinitely many decreasing spikes, with
slope u(n, 0), u(n, 1), . . . .

The function f is locally Lipschitz: On an interval [n, n + 1], with n ∈ N, it
satisfies

|f(x) − f(y)| ≤ Kn |x − y|
if, and only if Kn ≥ limk→+∞ u(n, k) = S(n), where the function S is defined in
Lemma 14. In general, |f(x) − f(y)| ≤ K |x − y| for a compact B ⊆ ⋃m

i=1[ai, ai+
1), with ai ∈ N, where

K ≥ max
1≤i≤m

Kai .

Let us show that f is not effectively locally Lipschitz on R. Suppose, for contra-
diction, that there are computable sequences {an} and {rn}, an ∈ Q and rn ∈ Q

such that

R =
∞⋃

n=0

B(an, rn)

and a computable sequence {Ln} of positive integers such that

|f(x) − f(y)| ≤ Ln |x − y| whenever x, y ∈ B(an, rn).

Then we show that we will be able to present a computable function g : N → N

which satisfies g(n) ≥ S(n) for all n ∈ N, thus deriving the desired contradiction.
How can we compute g(n) for an arbitrary n ∈ N? First notice that [n, n + 1] is
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a compact set. Thus there must exist n1, . . . , nk ∈ N such that

[n, n + 1] ⊆
k⋃

j=1

B(anj , rnj ) (5)

If we can compute the values n1, . . . , nk ∈ N satisfying (5), then we can take

g(n) = max
1≤j≤k

Lnj ≥ S(n).

The remaining issue is to compute the values n1, . . . , nk ∈ N satisfying (5). We
can do that with the following algorithm:

1. Start with k = 0.

2. Check if

[n, n + 1] ⊆
k⋃

i=0

B(ai, ri).

If yes, return 0, . . . , k, else increment k and go to Step 2.

Notice that this algorithm always stops. Thus the result is proven. The above
algorithm could certainly be improved to discard those balls which provably do
not overlap [n, n+1], but this is not necessary for our construction and therefore
we avoid this step in order to prevent unneeded technical complications.

We thus have proved the following result.

Theorem 15. There is a computable function f : R → R which is locally Lips-
chitz, but not effectively so.

In particular, this obviously yields the following corollary, which is more
related to Theorem 8 since it proves that it cannot always be used when f is
locally Lipschitz in the second variable.

Corollary 16. There is a computable function f : R×Rm → Rm which is locally
Lipschitz in the second argument, but not effectively so.

4 Computing the Solution of Differential Equations and
Inclusions

We now consider the computation of the solution of an ordinary differential equa-
tion or differential inclusion. We give two algorithms to compute the solution of a
differential equation, the former of which is simpler and the latter more general.
We also give algorithms for lower-semicontinuous and upper-semicontinuous dif-
ferential inclusions. All algorithms rely on an exhaustive enumeration of trial
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“runs” of the system; each run is then checked to see if it gives a valid bound for
the solution set. In this way, we can compute bounds on the solution without a
knowledge of Lipschitz constants or moduli of continuity. Of course, the resulting
algorithms are highly inefficient in practice; the motivation for introducing them
is their conceptual simplicity.

Without loss of generality, we suppose that the right hand side does not
depend on the time t (if this is true, just encode t as a new variable τ by adding
the extra component τ̇ = 1, τ(0) = 0 to the system).

4.1 The Thousand Monkeys Algorithm for locally Lipschitz
differential equations

We now present a first algorithm which proves computability for ordinary differ-
ential equations in the case where f is locally Lipschitz, but is not sufficient to
prove computability for non-locally Lipschitz equations with unique solutions.

The idea underlying this algorithm is to enclose the solution at times ti by a
box Xi. Since the solution of (1) is unique, there are covers which are arbitrarily
close to the solution. In the time interval [ti, ti+1] we enclose the solution curve
by a box Bi, and the derivative vectors in a box Ci. We can enumerate all
sequences of times ti (actually, we use time differences hi = ti+1 − ti) and boxes
Xi, Bi and Ci, and test if they contain the solution.

We use the notation A � B if A ⊂ B◦ i.e. the closure of A is a subset of the
interior of B.

Algorithm 17 Enumerate all tuples of the form(
(Xi)l

i=0, (hi)l−1
i=0, (Bi)l−1

i=0, (Ci)l−1
i=0

)
(6)

where k ∈ N, the Xi, Bi and Ci are rational boxes and hi ∈ Q. Define t0 = 0
and ti =

∑i−1
j=0 hj for i = 1, . . . , l. We call a tuple of the form (6) a run of the

algorithm.
A run of the algorithm is said to be valid if x0 ∈ X◦

0 and for all i = 0, . . . , l−1:

1. f(Bi) � Ci,

2. Xi ∪ Xi+1 ⊂ Bi, and

3. Xi + hiCi ⊂ Xi+1.

Note that condition 1 is effectively verifiable since the pairs (I, J) such that
f(I) ⊂ J is enumerated in a name of f , and conditions 2 and 3 can be decided
algebraically.

The algorithm works by launching computations of each of the countably
many possible runs in parallel, and testing for validity. Whenever a run is shown
to be valid, that run is written to the output.
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Theorem 18. Let f be a locally-Lipschitz continuous function, and suppose
that the initial value problem has a (necessarily unique) solution ξ defined on
[0, Tmax). Then

1. For any valid run of Algorithm 17, ξ(t) ∈ Bi for all ti ≤ t ≤ ti+1.

2. For any ε > 0 and T < Tmax there is a run of Algorithm 17 such that tl > T

and diam(Bi) < ε for all i.

The first part of the above theorem can be thought of as proving the “correct-
ness” of the method; a computed run approximates a real solution. The second
part can be seen as a convergence result; there exist runs computing arbitrarily
accurate solutions.

Proof.

1. For any valid run we have ξ(t0) = x0 ∈ X0. Suppose ξ(ti) ∈ Xi. Let hi,max =
sup{h ≤ hi | ξ(ti + h) ⊂ Bi}. Then ξ̇(t) ∈ Ci for t ∈ [ti, ti + hi,max], so
ξ(t) ∈ Xi + [0, hi,max]Ci ⊂ Bi. Therefore hi,max = hi, so ξ(t) ∈ Bi for all
t ∈ [ti, ti+1] and ξ(ti+1) ∈ Xi+hiCi ⊂ Xi+1. The result follows by induction.

2. Let W be a neighbourhood of ξ([0, T ]), K be such that ||f(x)|| < K for all
x ∈ W and L be a Lipschitz constant for f on W . Fix δ < Lε/2(eLT −1) and
h < δ/KL, where ε is the precision to which we would like to compute the
solution. Suppose X is such that rad(X) < r. Then the solution over time
step h lies in a box B of radius less than r + hK of the centre x of X . Then
f(B) lies in a box C of radius less than (r + hK)L in W . Then X + hC lies
in a box Y of radius r′ less than r + (r + hK)Lh = (1 + Lh)r + KLh2.

Since h < δ/KL, we have r′ < (1 + Lh)r + δh. If we now take X0 of radius
r0, we can find Xn of radius rn < r0(1 + Lh)n + δ

(
(1 + Lh)n − 1

)
/L. By

taking r0 < ε/2eLT , we have for n ≤ T/h, that rn < δ(eLT − 1)/L < ε/2.

Since the Thousand Monkeys Algorithm enumerates over all rational boxes
and step sizes, we eventually find (Xi, hi, Bi, Ci) with hi < ε/2K such that
rad(Xi) < ri < ε/2 for all i, and hence rad(Bi) ≤ rad(Xi) + hiK < ε as
required.

However, it is not true that the Thousand Monkeys algorithm can compute
the solution of a non-Lipschitz ordinary differential equation, even if the solution
is unique.

Example 1. Consider the ordinary differential equation ṗ = f(p) in R2 defined
in polar coordinates by

ṙ =
√

r (cos θ − 1/2);

θ̇ = 1/
√

r.
(7)
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In Cartesian coordinates, the system becomes

ẋ = (x2 + y2)1/4

(
x2

x2 + y2
− y + x/2√

x2 + y2

)
;

ẏ = (x2 + y2)1/4

(
xy

x2 + y2
+

x − y/2√
x2 + y2

− y

2
√

x2 + y2

)
.

(8)

Since (x2 + y2)1/4 → 0 as x, y → 0, and the other factors in the expression for ẋ

and ẏ are bounded, we see that the right-hand side is continuous. We claim that

(i) The initial value problem ṗ = f(p); p(0) = (0, 0) has unique solution p(t) =
(0, 0) for all t, and

(ii) For any run of the Thousand Monkeys Algorithm, the solution estimate
P (t) at time t contains the point (t2/4, 0).

For (i), suppose that the solution leaves the origin. Then it spirals round
extremely rapidly, with r increasing if |θ| < π/3 and decreasing otherwise. Since
the average decrease of r per revolution exceeds the average increase, the state
is pulled back to the origin immediately. Hence the only solution starting at the
origin is the constant solution.

For (ii), suppose that an approximation to the solution is a box X containing
the point (x, 0). Then f(X) contains the value (

√
x/2, ẏ) and also (0, 0), so the

box C contains (
√

x/2, 0). Since the initial box P (0) = X0 contains a point
(x0, 0), then the box at time t, P (t), must contains a point (x(t), 0) solving
ẋ =

√
x/2, x(0) = x0. From this we can show that the point (t2/4, 0) lies in the

solution box P (t), regardless of the value of x0 > 0. In particular, at time t = 1,
the solution estimate P (1) must contain the point (1/4, 0). Hence the solution
computed by the Thousand Monkeys algorithm does not converge to the true
solution.

Remark. The above counterexample relies crucially on the fact that the bound-
ing sets are boxes. We do not know if this example remains valid if the bounding
sets would be allowed to be general convex polytopes. We shall see in Section 4.2
that using finite unions of boxes is sufficient to compute a unique solution to
arbitrary accuracy.

4.2 The Ten Thousand Monkeys Algorithm for Differential
Equations

We now give an algorithm to compute the solution of any initial value prob-
lem with unique solutions. The main difference between this algorithm and the
previous algorithm is that the enclosing sets Xi are now unions of boxes. We
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call the algorithm the Ten Thousand Monkeys Algorithm (TTM) since a practi-
cal implementation would require even more computational resources than the
Thousand Monkeys algorithm.

Algorithm 19 Enumerate all tuples of the form (Xi,j , hi, Bi,j , Ci,j , Yi,j) for i =
0, . . . , l−1, j = 1, . . . , mi, where l, mi ∈ N, Xi,j, Bi,j , Ci,j and Yi,j are rational
boxes and hi ∈ Q. Such a tuple is a run of the algorithm.

A run of the algorithm is said to be valid if x0 ∈ int
(⋃m0

j=1 X0,j

)
, and for all

i = 0, . . . , l − 1 and j = 1, . . . , mi, we have

1. f(Bi,j) � Ci,j ;

2. Xi,j ∪ Yi,j ⊂ Bi,j ;

3. Xi,j + hCi,j ⊂ Yi,j;

4.
⋃mi

j=1 Yi,j ⊂ ⋃mi+1
j=1 Xi+1,j.

Just as in Algorithm 17, we enumerate all runs and verify whether a run is valid.
The output is the infinite sequence of all valid runs.

In order to simplify notation, we write Xi for
⋃mi

j=1 Xi,j , and use similar
notation for Bi, Ci and Yi.

Theorem 20. Let f be a continuous function, and suppose that the initial value
problem has a unique solution ξ on [0, Tmax). Then

1. For any valid run of Algorithm 19, ξ(t) ∈ Bi for all ti ≤ t ≤ ti+1.

2. For any ε > 0 and T < Tmax there is a run of Algorithm 19 such that tl > T

and diam(Bi) < ε for all i.

Proof.

1. Essentially the same as the proof of Theorem 18(1).

2. Let W be a bounded neighbourhood of ξ([0, T ]), let K be such that ||f(x)|| <

K for all x ∈ W and let δ(·) be a modulus of continuity for f in W . (Recall
that a function δ : Q+ → Q+ is a modulus of continuity for f on U ⊂ X if
for all x, y ∈ U , d(f(x), f(y)) < ε whenever d(x, y) < δ(ε).)

Fix ε > 0, and time steps hi < δ(ε)/K. We first show that the sets Xi,j , Bi,j

and Ci,j can be chosen such that rad(Xi,j) < δ(ε) − hiK, rad(Bi,j) < δ(ε)
and rad(Ci,j) < ε, assuming all sets remain inside W . For a given Xi, the sets
Xi,j can be chosen to each have radius less than δ(ε)−hiK, simply by taking
the partition sufficiently small. Take Bi,j to be the hiK neighbourhood of
Xi,j , so rad(Bi,j) ≤ rad(Xi,j) + hiK < δ(ε). By the assumption Bi,j ⊂ W ,
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the set Ci,j with f(Bi,j) � Ci,j can be chosen such that rad(Ci,j) < ε and
||v|| < K for all v ∈ Ci,j . Since δ(·) is a modulus of continuity for f in Bi,j ,
we have d(f(w), f(bi,j)) < ε for all w ∈ Bi,j , where bi,j is the centre of Bi,j ,
and ||f(x)|| < K for all x ∈ Bi,j . Then Xi,j + hiCi,j ⊂ Bi,j since Bi,j is the
hiK-neighbourhood of Xi,j .

Consider a run of the algorithm such that each Bi is a subset of W , the sets
Ci,j each have radius less than ε, and that Xi,j + hiCi,j = Yi,j . Consider the
set of functions η : [0, tl] → X satisfying η(t0) ∈ X0, and for all i < l, there
exists j ≤ mi and ci ∈ Ci,j such that η(ti) ∈ Xi,j and η(t) = η(ti)+(t− ti)ci

for all ti < t ≤ ti+1. In other words, η is a piecewise-affine function whose
derivative lies within bounds given by the run. Since η(t) ∈ Bi,j for ti < t <

ti+1, then f(η(t)), η̇(t) ∈ Ci,j , so ||η̇(t) − f(η(t)|| < diam(Ci,j) < 2ε. Hence
||η̇(t) − f(η(t))|| < 2ε for almost every t ≤ tl.

Further, given any xi ∈ Xi, we can construct such a function η with η(ti) =
xi. For if xi ∈ Xi, then xi = yi−1 ∈ Yi−1,j for some j. Then since Xi−1,j +
hi−1Ci−1,j = Yi−1,j , we can find ci−1 ∈ Ci−1,j and xi−1 ∈ Xi−1,j such that
xi−1 + hi−1ci−1 = xi. Similarly, if xi ∈ Xi,j , then we can take any ci ∈ Ci,j

and set xi+1 = xi + hici. We can then recursively construct the required
function.

Suppose that for a given T there is a run of the algorithm with tl > T ,
rad(Ci,j) < ε for all i, j and Bi ⊂ W for all i. Then such a run also exists
for any smaller ε. Suppose εn is a sequence of positive numbers with εn → 0,
and ξn is a function of the form η for some run of the algorithm with the
given εn and all Bi ⊂ W . Then by Corollary 11, we see that ξn converges
uniformly to a solution of the differential equation ẋ = f(x) on [0, T ]. Since
the solution of the equation is unique, and we can choose ξ with ξ(ti) an
arbitrary point of Xi, we have rad(Xi) → 0 as ε → 0. Taking also hi → 0 we
have rad(Bi) → 0.

It remains to show that T can be extended up to Tmax. This follows since
if W is a ρ-neighbourhood of K, then by taking a run of the algorithm on
[0, tk] which is accurate to within ρ/2, we can make the next time step at
least δ(ρ/2)/K and still have Bk ⊂ W .

Remark. If f is one-sided Lipschitz with constant L and x and y are two solutions
of the differential equation ẋ = f(x), then it is easy to deduce that ||x(t)−y(t)|| ≤
eLt||x(0) − y(0)||. In particular, the solution is unique, so can be computed by
Algorithm 19. We do not know if it can be computed by Algorithm 17.

We obtain from our algorithms the following slight extension of the main
result of Ruohonen [Ruo96].
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Theorem 21. Consider the initial value problem

ẋ = f(x); x(0) = x0,

where f is continuous on the open set E. Suppose there is a unique solution y(·),
defined on the maximal interval (α, β), such that y(t) ∈ E for each t ∈ (α, β).
Then:

1. The operator (f, x0) 	→ (α, β) is semicomputable (i.e. α can be computed
from above and β can be computed from below), and

2. The operator (f, x0) 	→ y(·) is computable.

In particular, if f is a computable function and x0 a computable point, then
(α, β) is a r.e. open set and the solution y(·) is a computable function.

4.3 The Ten Thousand Monkeys Algorithm for Lower-
Semicontinuous Differential Inclusions

We now give an algorithm to solve a lower-semicontinuous one-sided Lipschitz
differential inclusion. The runs of the algorithm will enclose solutions of the dif-
ferential inclusion, and every solution will be included in an arbitrarily accurate
run.

Algorithm 22 A run of the algorithm is a tuple of the form
(Xi,j , hi, Bi,j , Ci,j , Yi,j) for i = 0, . . . , l−1, j = 1, . . . , mi where l, mi ∈ N, Xi,j,
Bi,j, Ci,j and Yi,j are rational boxes and hi ∈ Q.

A run of the algorithm is said to be valid if x0 ∈ X◦
0 and for all i = 0, . . . , l−1

and j = 1, . . . , mi, we have

1. Bi,j � F−1(Ci,j);

2. Xi,j ∪ Yi,j ⊂ Bi,j ;

3. Xi,j + hiCi,j ⊂ Yi,j ;

4.
⋃mi

j=1 Yi,j ⊂ ⋃mi+1
j=1 Xi+1,j.

Just as in Algorithm 17, we enumerate all runs and verify whether a run is valid.

Theorem 23. Let F be a one-sided locally Lipschitz multifunction with closed
convex values.

1. For any valid run of Algorithm 22, there is a solution ξ of the differential
inclusion (2) such that ξ(t) ∈ Bi for all ti ≤ t ≤ ti+1.
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2. If ξ(·) is a solution of (2) defined on an interval [0, Tmax), then for any ε > 0
and T < Tmax there is a run of Algorithm 22 such that tl > T , ξ(t) ∈ Bi for
all ti < t < ti+1 and diam(Bi) < ε for all i.

For the first part of the proof, we use the Michael Selection Theorem to construct
piecewise-smooth solutions contained in the run. The second part is complicated
by the fact that ξ need not satisfy ξ̇(t) ∈ F (ξ(t)) everywhere. We partition the
interval [0, Tmax) into sub-intervals [ti, ti+1] such that for “good” intervals, there
exists a time τi such that ξ̇(τi) is a good estimate of (ξ(ti+1) − ξ(ti))/(ti+1 −
ti), and such that the “bad” intervals have small total measure. The one-sided
Lipschitz condition is used to control the growth of the error outside a small
tube containing ξ.

Proof.

1. Suppose B is a compact box and C an open box such that B ⊂ F−1(C).
Then for every x ∈ B, there exists y ∈ C such that y ∈ F (x). Using the
Michael Selection Theorem (Theorem 13), we deduce that the compact box
B can be covered by finitely many open subsets Vi such that on each V i

there is a continuous function fi such that fi(V i) ⊂ C and fi(x) ∈ F (x)
for all i. Now suppose X is a box such that X + [0, h]C ⊂ B. Then any
solution ξ of the differential inclusion ẋ ∈ C starting in X remains in B

for times t ∈ [0, h]. In particular, any solution of the differential inclusion
ẋ ∈ ⋃{fi(x) | x ∈ Vi} starting in X remains in B. There exists δ > 0
such that for each x ∈ B, there exists i such that Nδ(B) ⊂ Vi. Further,
there exists K such that |fi(V i)| ≤ K. Consequently, the solution lies in
Vi for a time of at least δ/K. Since any ordinary differential equation with
continuous right-hand side has a solution, for each x0 ∈ X , there exists a
piecewise-differentiable function ξ such that ξ̇(t) ∈ F (ξ(t)) ∩ C at all points
of differentiability of ξ. The result follows by applying the above discussion
to Xi,j , Bi,j and Ci,j .

2. Fix ε > 0. Let W be a bounded neighbourhood of ξ([0, T ]). Fix K ∈ R+

such that W ⊂ F−1(NK(0)). Choose positive constants ρ, μ and λ such that
(ρ + Kμ)eLT + (eLT − 1)λ/L < ε and ||ξ(t + h) − ξ(t)|| < ρ/2 whenever
h < μ. The constant ρ is a bound on the size of the flow tube, the constant
μ is a bound on the size of the “bad” time intervals, and the constant λ is a
correction term in the lower-Lipschitz condition.

For a full measure set G ⊂ [0, T ], the function ξ is differentiable at τ ∈ G and
ξ̇(τ) ∈ F (ξ(τ)). For each h > 0, let E(τ, h) = ξ([τ − h, τ + h]), and D(τ, h)
be the set of all (ξ(t′) − ξ(t))/(t′ − t) for all t, t′ with t < τ < t′ ≤ t + h.

Fix τ ∈ G and let x = ξ(τ) and u = ξ̇(τ). For each y ∈ W , there exists
v = v(τ, y) ∈ F (y) such that (v−u) ·(y−x) ≤ L||y−x||2. In other words, the
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one-sided Lipschitz condition (3) is satisfied with fx = ξ̇(τ) and fy = v(τ, y).
We must consider two cases, ||y−x|| ≥ ρ/2, for which we show that the error
grows at a rate roughly bounded by L||y−x||, and ||y−x|| < ρ/2, for which
we show that the error remains within ρ.

If ||y−x|| ≥ ρ/2, then (v−u)·(y−x) < L||y−x||2+λ||y−x||, so by continuity
of the left-hand-side in v = v(τ, y), there exists a box neighbourhood C(τ, y)
of v(τ, y) such that (v′−u)·(y−x) < L||y−x||2+λ||y−x|| for all v′ ∈ C(τ, y).
Further, there exists a box neighbourhood B(τ, y) of y such that B(τ, y) �
F−1(C(τ, y)), ||y′ − x|| > ρ/2 for all y′ ∈ B(τ, y) and (v′ − u) · (y′ − x) <

L||y′ − x||2 + λ||y′ − x|| whenever y′ ∈ B(τ, y) and v′ ∈ C(τ, y). By taking
h(τ, y) sufficiently small, we have that y + h(τ, y)C(τ, y) ⊂ B(τ, y) and that
(v′ − u′) · (y′ − x′) < L||y′ − x′||2 + λ||y′ − x′|| whenever x′ ∈ E(τ, h),
u′ ∈ D(τ, h), y′ ∈ B(τ, y) and v′ ∈ C(τ, y). Take a box neighbourhood
X(τ, y) of y such that X(τ, y) + [0, h(τ, y)]C(τ, y) ⊂ B(τ, y).

If ||y − x|| < ρ/2, choose B(τ, y), C(τ, y), X(τ, y) and h(τ, y) satisfying the
conditions for a valid run such that ||y′−x′|| < ρ whenever x′ ∈ E(τ, h(τ, y))
and y′ ∈ B(τ, y). This can be accomplished by taking C(τ, y) to be a neigh-
bourhood of a point of F (y), B(τ, Y ) a ρ/2-neighbourhood B(τ, y) of y

such that B(τ, y) ⊂ F−1(C(τ, y)), X(τ, y) any neighbourhood of y such that
X(τ, y) � B(τ, Y ) and h(τ, y) sufficiently small.

Now choose finitely many yj(τ) such that the sets X(τ, yj(τ)) cover W and
let h(τ) = min{h(τ, yj(τ))}. Let I(τ) be an open interval of radius at most
h(τ) containing τ .

Choose an open cover of [0, T ] \ G by intervals of total size at most μ, and
let I(τ) be an interval containing τ . Then the intervals I(τ) for τ ∈ [0.T ] are
an open cover of [0, T ]. Let I(τ0), I(τ1), . . . , I(τl) be a finite subcover with
τi < τi+1; note that we can also assume I(τi) ∩ I(τi+1) �= ∅. Choose ti such
that [ti, ti+1] ⊂ I(τi) and ti < τi < ti+1, and let hi = ti+1 − ti.

We now construct a run of the algorithm such that rad(Xi) < ε for all i. Set
r0 = ρ, and set ri+1 = rie

Lhi + (eLhi − 1) if τi ∈ G and ri+1 = ri + Khi

if τi �∈ G. We show that if rad(Xi) < ri, then there exists a run of the
algorithm with rad(Yi) ≤ rad(Xi+1) < ri+1. We start with any X0 such that
ξ(0) ∈ X0 ⊂ Nρ(ξ(0)).

If τi ∈ G, then we take the boxes Xi,j to be a finite subset of boxes of
the form X(τi, y), and Bi,j and Ci,j the corresponding B(τi, y) and C(τi, y).
Since the boxes X(τi, y) can be chosen arbitrarily small, if rad(Yi−1) <

ri, then we can choose the Xi,j such that Yi−1 ⊂ Xi and rad(Xi) < ri.
By construction, either Bi,j ⊂ Nρ(ξ(t)) for all t ∈ [ti, ti+1], or we have
(v − u) · (y − x) ≤ L||y − x||2 + λ||y − x|| for all x ∈ ξ([ti, ti+1]), y ∈
Bi,j and v ∈ C(i, j), where u = (ξ(ti+1) − ξ(ti))/(ti+1 − ti). Take η(t) =
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y + (t − ti)v now with y ∈ Xi,j , and ζ(t) = ξ(ti) + (t − ti)u. Then using
the formula d||φ(t)||/dt ≤ φ̇(t) · φ(t)/||φ(t)|| with φ(t) = η(t) − ζ(t), we
find that d||η(t) − ζ(t)|| ≤ L||η(t) − ζ(t)|| + λ. Hence by Gronwall’s lemma,
||η(t + h)− ζ(t + h)|| ≤ ||η(t)− ζ(t)||eLh + (eLh − 1)λ/L for any t and h > 0.
Therefore if rad(Xi) ≤ ri and ρ ≤ ri, then rad(Yi) ≤ rie

Lhi +(eLhi − 1)λ/L.

If τi �∈ G, then we can take Xi,1 = Xi, Ci,1 = NK(0) and Xi+1 = Yi,1 =
Xi,1 + hCi,1. If Xi contains an ρ/2-neighbourhood of ξ(ti), then by the
condition h < μ we also have ξ(t + i) ∈ Xi ⊂ Xi+1. Hence rad(Xi+1) ≤
rad(Xi) + Khi.

We have therefore shown that there is a run of the algorithm with rad(Xi) <

ri for all i. Since the errors for τi ∈ G are exponential and the errors for
τi �∈ G are additive, a worst-case bound on the error is then given by r(T ) <

(ρ + μK)eLT + (eLT − 1)λ/L, which is less than ε as required.

We deduce the following generalisation of [Gab07, Theorem 3.1]

Theorem 24. Let F be a one-sided Lipschitz lower-semicontinuous multivalued
function with closed convex values. Consider the initial value problem

ẋ ∈ F (x); x(0) = x0,

where F is defined on some open domain E ⊂ Rn. Then the solution operator
(F, x0) 	→ ΦF (x0) is lower-semicomputable in the following sense:

– Given a name of F , it is possible to enumerate all triples (I, J, K) where
I, K are open rational boxes and J is an open rational interval such that for
every x0 ∈ I there is a solution ξ such that ξ(0) = x0 and ξ(J) ⊂ K.

Consequently, if y(·) is a solution defined on the maximal interval (α, β),
such that y(t) ∈ E for each t ∈ (α, β), then there exists a continuous selection
of the solution map through y.

The following classical example shows that the solution set need not vary
lower-semicontinuously with the initial conditions if the right-hand side of (2) is
not one-sided locally-Lipschitz.

Example 2. Let f(x) = 2
√

x for x ≥ 0 and f(x) = 0 for x ≤ 0. Then the solutions
with x(0) = 0 are the functions

x(t) =

{
0 for t ≤ c;

(t − c)2 for t ≥ c.

In particular, the set of solution values S(t, x0) at time t starting at x0 satisfy

S(1, x0) =

⎧⎪⎪⎨
⎪⎪⎩
{0} for x0 < 0;

[0, 1] for x0 = 0;

{(1 −√
x0)2} for x0 > 0.
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This is an upper-semicontinuous function, but is not-lower-semicontinuous.
Note that the best lower-semicontinuous under-approximation to S(t, x0) has
S(1, 0) = ∅.

4.4 The Ten Thousand Monkeys Algorithm for Upper-
Semicontinuous Differential Inclusions

We now give an algorithm for computing the solution of an upper-semicontinuous
differential inclusion. The idea of this algorithm is similar to Algorithm 19, but
instead of enclosing the set F (Bi,j) by a single box, we use a finite number of
boxes.

Algorithm 25 A run of the algorithm is a tuple of the form
(Xi,j , hi, Bi,j , Ci,j,k, Yi,j,k) for i = 0, . . . , l − 1, j = 1, . . . , mi, k = 1, . . . , ni,j

where l, mi, ni,j ∈ N, Xi,j, Bi,j, Ci,j,k and Yi,j,k are rational boxes and hi ∈ Q.
A run of the algorithm is said to be valid if x0 ∈ X◦

0 and for all i = 0, . . . , k−1
and j = 1, . . . , li, we have

1. conv(F (Bi,j)) �
⋃ni,j

k=1 Ci,j,k;

2. Xi,j ∪ Yi,j,k ⊂ Bi,j;

3. Xi,j + hCi,j,k ⊂ Yi,j,k;

4.
⋃mi,ni,j

j=1,k=1 Yi,j,k ⊂ ⋃mi+1
j=1 Xi+1,j.

Just as in Algorithm 17, we enumerate all runs and verify whether a run is valid.

In order to simplify notation, we write Ci,j =
⋃ni,j

k=1 Ci,j,k and Yi,j =
⋃ni,j

k=1 Yi,j,k.

Theorem 26. Let F : Rn ⇒ Rn be an upper-semicontinuous function with com-
pact convex values. Suppose that the initial value problem ẋ ∈ F (x); x(0) = x0

has bounded solutions on [0, Tmax). Then:

1. For any solution ξ and any valid run of Algorithm 25, ξ(t) ∈ Bi whenever
ti ≤ t ≤ ti+1, i < l.

2. For any ε > 0 and T < Tmax, there exists a valid run of Algorithm 25 with
tl > T such that for any y ∈ Bi, there exists a solution ξ with |ξ(t) − y| < ε

for all t with ti ≤ t ≤ ti+1.

Proof.

1. If ξ is a solution to ẋ ∈ F (x) with ξ(0) ∈ X , ξ([0, h]) ⊂ B, D is a con-
vex set such that F (B) ⊂ D, and D ⊂ C, then ξ(h) ∈ X + hC since
ξ(h) − ξ(0) =

∫ h

0 ξ′(t) dt ∈ hD by convexity. Note that the set F (B) need
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not be convex even if B is convex and F (x) is convex for all x, and ξ′ is
integrable since ξ is absolutely continuous by Definition 2. The rest of the
proof follows that of Theorem 18(1). For if ξ is a solution and ξ(ti) ∈ Xi,
then ξ(ti) ∈ Xi,j for some j. Taking Di,j = conv(F (Bi,j)) we see that
ξ(ti+1) ∈ Xi,j + hi

⋃ni,j

k=1 Ci,j,k = Xi,j + hiCi,j ⊂ Yi,j ⊂ Xi+1, and also
ξ(t) ∈ Xi,j + [0, hi]Ci,j ⊂ Bi,j ⊂ Bi for ti ≤ t ≤ ti+1

2. Consider runs of the algorithm such that for all i, j, k, Xi,j +hCi,j,k = Yi,j,k.
Further, suppose that each hi is less than δ, Ci,j,k intersects F (Bi,j) and
each Ci,j,k has a diameter less than ε. As in the proof of Theorem 20, define
functions η with η(t0) ∈ X0, and for ti < t ≤ ti+1 by η(t) = η(ti) + (t− ti)ci

for some ci such that η(ti) ∈ Xi,ji and ci ∈ Ci,ji,ki . Then η is a piecewise-
affine function and, for almost every t, there exists s such that |t−s| < δ and
||η̇(t)−F (η(s))|| < ε. In particular, the pair (η(t), η̇(t)) lies within max(δ, ε)
of the graph of F . Further, for any y ∈ Xk, we can find such an η such that
η(tk) = y.

Taking any sequence of functions ξn corresponding to sequences δn, εn → 0,
by Corollary 12, we see that ξn converges uniformly to a solution of the
differential inclusion ẋ ∈ F (x). Hence for δn sufficiently small, every point
in Bk is within ε of a solution as required.

Remark. Instead of letting Xi,j and Bi,j be boxes, and covering conv(F (Bi,j))
by a finite union of boxes

⋃ni,j

k=1 Ci,j,k, we could equally well cover F (Bi,j) by a
single convex polytope Ci,j . Condition (1) becomes F (Bi,j) � Ci,j .

Note that Theorem 20 follows from Theorem 26, since an ordinary differential
equation is simply a special kind of upper-semicontinuous differential inclusion.
From Theorem 26 we obtain upper-semicomputability of the solution operator
of upper-semicontinuous differential inclusions with compact convex values.

Theorem 27. Let F be an upper-semicontinuous multivalued function with com-
pact convex values. Consider the initial value problem

ẋ ∈ F (x); x(0) = x0,

where F is defined on some open domain E ⊂ Rn. Then the solution operator
(F, x0) 	→ ΦF (x0) is upper-semicomputable in the following sense:

– Given a name of F , it is possible to enumerate all tuples (I, J, K1, . . . , Km)
where I, K1, . . . , Km are open rational boxes and J is an open rational in-
terval such that for every x0 ∈ I, every solution ξ with ξ(0) = x0 satisfies
ξ(J) ⊂ ⋃m

i=1 Ki.
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5 Conclusion

We have shown that it is possible to effectively the solution of the initial-value
problem for ordinary differential equations with continuous right-hand side if
the solution is assumed unique. We presented algorithms for the computation
of the solution using the “thousand monkeys” approach. In this way, we have
shown that the solution of a differential equation defined by a locally Lipschitz
function is computable even if the function is not effectively locally Lipschitz, a
situation which can happen, as we have seen. We then considered the computi-
ation of the solutions for semicontinuous differential inclusions, showing that
the solutions of a one-sided Lipschitz lower-semicontinuous differential inclu-
sion with closed convex values are lower-semicomputable, and that the solutions
of upper-semicontinuous differential inclusions with compact convex values are
upper-semicomputable.

An important extension of this work would be to consider a “thousand mon-
keys” approach for systems in which the right-hand side is only measurable in
the time variable. Another interesting direction concerns minimal requirements
on the class of sets used to compute the solution of a non-Lipschitz differential
equation with a unique solution. We have seen that boxes are insufficient, but
finite unions of boxes are sufficient. It would be interesting to determine whether
a single zonotope or convex polytope is sufficient to bound the solution.
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