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1 Introduction

Suppose one is given in R
m the initial value problem for the system of ODEs

w′ = F (t, w) , w(0) = w0 , 0 < t ≤ T , (1.1)

and a sequence of approximations wn to its exact solution values w(tn) computed by a
numerical integration method at a certain time grid

0 = t0 < t1 < · · · < tn < · · · < tN−1 < tN = T . (1.2)

1



Hereby the major research concerns are efficiency: how to get the wn at minimal CPU costs
(if mÀ 1), and reliability: how large are the global errors

εn = w(tn)− wn , n = 0 , . . . , N . (1.3)

In the past, numerical ODE research has focused on the efficiency question. The reli-
ability question has received much less attention in spite of the by now twenty years old
survey paper ’Thirteen ways to estimate global error’ [20]. Existing popular codes focus on
efficiency by adaptively optimizing time grids (1.2) in accordance with local error control.
Such a control makes sense if solutions exhibit sharp changes at local intervals much smaller
than the total interval [0, T ] and are smooth elsewhere. However, local errors (errors made
within a single integration step) may substantially differ from the global ones (1.3). This
largely depends on the conditioning (stability) of the system (1.1) at hand (sensitivity to
growth in time of perturbations of w0 and F (t, w)). If a system is well-conditioned, a well
designed local error control [17, 18] will work out reliably. But if the conditioning is bad,
even the best designed local error control should not be trusted.

For global error control it is necessary to take into account the conditioning of system
(1.1), similar to the matrix condition number in numerical linear algebra. Herewith it is
desirable to avoid strict a priori error bounds as these can be overly pessimistic, e.g. when
fortunate cancellation effects occur. Taking into account the conditioning of system (1.1)
is best done during actual computation. This requires at least two full integrations over
[0, T ], both in the classical (forward-forward) and the adjoint (forward-backward) approach.
For large-scale ODE problems, such as spatially discretized multi-dimensional PDEs, a clear
disadvantage of the latter is that many or all approximations wn computed on the whole
of (1.2) must be stored. Yet, in recent years the adjoint approach has gained popularity to
obtain goal oriented a posteriori error estimation for an adaptive error control for PDEs [1,
5, 7] and ODEs [2, 6, 13].

Our interest in this paper lies in estimation and control of the global errors (1.3). Specif-
ically, regarding estimation we will compare a novel approach based on the adjoint method
combined with a small sample statistical initialization proposed by Cao & Petzold [2] to
the classical approach based on the first variational equation. For both, global control is
achieved by exploiting the property of tolerance proportionality derived from local con-
trol [17]. As a typical integration method we will use the existing Runge-Kutta-Rosenbrock
method ROS3P [16]. Both approaches are found to work well and to enable estimation and
control in a reliable manner. However, the novel approach is not found to be competitive
with the classical approach, mainly because of its huge storage demand for large problems.

2 The classical (forward-forward) approach

2.1 The perturbed system

In the spirit of backward error analysis and following an approach proposed in [23] (see
also [20, 21]), let us suppose that there exists a nearby solution v(t) ≈ w(t) being the exact
solution of a perturbed system

v′ = F (t, v) + r(t) , v(0) = v0 , 0 < t ≤ T , (2.1)

with perturbation v0 − w0 at t = 0 and perturbation r(t) for 0 < t ≤ T . Assuming F
to be continuously differentiable, so that the mean-value theorem for vector functions is
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applicable, the error function

e(t) = v(t)− w(t) , 0 ≤ t ≤ T , (2.2)

then satisfies
e′ = A(t)e+ r(t) , e(0) = v0 − w0 , 0 < t ≤ T , (2.3)

where

A(t) =

∫ 1

0

F ′
(

t, v(t) + (s− 1)e(t)
)

ds =

∫ 1

0

F ′
(

t, w(t) + se(t)
)

ds . (2.4)

Here F ′ denotes the Jacobian matrix with respect to the dependent variable. As we speak
of perturbations we tacitly assume that e(0) is significantly smaller than w0 and likewise
that r(t) is significantly smaller than F

(

t, v(t)
)

. The error function e(t) can be expressed as

e(t) = Φ−1(t)Φ(0) e(0) + Φ−1(t)

∫ t

0

Φ(s)r(s) ds , (2.5)

where the m × m fundamental matrix solution Φ(t) solves Φ′(t) = −Φ(t)A(t). Note that
Φ(t) = Φ(0)exp(−At) for constant A where Φ(0) is an arbitrary nonsingular matrix. Ap-
parently, the product Φ−1(t)Φ(s), 0 ≤ s ≤ t, governs growth or decay of e(t) in time and
thus determines the conditioning of (1.1).

Remark 2.1 For practical purposes the fundamental matrix solution concept is clearly of
little use. An a priori bound which sometimes can be used in practice is based on the
logarithmic matrix norm. Let µ

(

A(t)
)

denote the logarithmic matrix norm of A(t) and

suppose µ
(

A(t)
)

≤ ω with ω a constant valid for all t ∈ [0, T ]. Then, with ‖ · ‖ denoting the
associated vector norm in R

m, there holds [3, 12]

‖e(t)‖ ≤ eωt‖e(0)‖+
∫ t

0

eω(t−s)‖r(s)‖ds , 0 ≤ t ≤ T . (2.6)

This a priori bound is useful for strictly negative ω. Let for simplicity e(0) = 0 and suppose
that ‖r(t)‖ is uniformly bounded by a small number δr. Then

‖e(t)‖ ≤ 1

ω

(

eωt − 1
)

δr , (2.7)

uniformly bounding e(t) in norm by δr/|ω| for infinite time if ω < 0. Due to the negative
logarithmic norm this is an instance of a well-conditioned ODE system (1.1). On the other
hand, with a positive logarithmic norm the bound predicts exponential growth in time. Then
we speak of an ill-conditioned ODE system, provided the bound is realistic or even sharp.
However, any result of this sort depends on the chosen vector norm since µ

(

A(t)
)

depends

on the norm. More precisely, it can happen that µ
(

A(t)
)

À 0, even if in a global sense the
problem is well conditioned, see e.g. [3] and Example I.2.5 in [12]. Also, for hard problems
from practice, finding estimates of ω may be very cumbersome. 3

For properly using the perturbed system in the classical (forward-forward) approach for
p-th order consistent one-step integration methods, it is helpful to associate equation (2.3)
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with the well-known first variational equation for the global error εn of such a one-step
method. For this purpose we adopt for the one-step method the general Henrici notation [9]

wn+1 = wn + τnΨ(tn, wn; τn) , τn = tn+1 − tn , (2.8)

and introduce its local error

δn = w(tn+1)− w(tn)− τnΨ(tn, w(tn); τn) . (2.9)

Assuming now a constant step size τ (for simplicity only), p-th order consistency and a
sufficiently smooth solution, the local error defined at

(

t, w(t)
)

δ(t) = w(t+ τ)− w(t)− τΨ(t, w(t); τ) , (2.10)

possesses an expansion of the form δ(t) = τρ(t) +O(τ p+2). Hence in this notation the prin-
cipal error function ρ(t) = O(τ p). Next, let G(t) = F ′

(

t, w(t)
)

. With this local expansion
at hand the global error εn is then known to possess an expansion εn = η(tn) + O(τp+1)
where η(t) is the solution of the first variational equation

η′ = G(t)η + ρ(t) , η(0) = 0 , 0 < t ≤ T . (2.11)

We refer to [9], Section 3.3 and [8], Section II.8 for further details.1) One can now connect
equation (2.3) to (2.11). To that end put e(0) = 0 (this bears no restriction) and approximate
A(t) = G(t) +O

(

e(t)
)

by G(t), so that (2.3) is replaced by

e′ = G(t)e+ r(t) , e(0) = 0 , 0 < t ≤ T . (2.12)

Apparently, by implementing a proper choice of the defect r(t), solving (2.3) or likewise
(2.12) will in leading order amount to solving the first variational equation (2.11) for the
true global error. We will illustrate this next.

2.2 Interpolation and defect computation

We define the nearby solution v(t) by piecewise cubic Hermite interpolation of the given
approximation sequence. Hence at every subinterval [tn, tn+1], n = 0, 1, . . . , N − 1, we form

P (t) = wn + (t− tn)An + (t− tn)2 Bn + (t− tn)3 Cn , tn ≤ t ≤ tn+1 , (2.13)

and choose the coefficients such that P (tn) = wn, P (tn+1) = wn+1 and P ′(tn) = Fn,
P ′(tn+1) = Fn+1 where Fn = F (tn, wn) and Fn+1 = F (tn+1, wn+1). This gives

An = Fn ,

Bn =
(

3wn+1 − 3wn − τFn+1 − 2τFn

)

/τ2 ,

Cn =
(

2wn − 2wn+1 + τFn + τFn+1

)

/τ3 .

(2.14)

Would one interpolate (smooth) exact solution values w(t), w′(t) at t = tn and t = tn+1,
then

A = w(1) , B =
1

2
w(2) − 1

24
τ2w(4) +O(τ5) , C = 1

6
w(3) +

1

12
τw(4) +O(τ5) , (2.15)

1) In spite of the fact that the asymptotic theory behind (2.11) is classical in the sense that F is assumed
Lipschitz without taking into account stiffness (τ‖F ′(w)‖ À 1), we will use it for stiff problems in Section 4.
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where the expressions are evaluated at t = tn. Writing t = tn + sτ, 0 ≤ s ≤ 1, yields

P (t) = w(t) + 1
24

(

2s3 − s2 − s4
)

τ4w(4)(tn) + O(τ5) ,

P ′(t) = w′(t) + 1
24

(

6s2 − 2s− 4s3
)

τ3w(4)(tn) + O(τ4) ,
(2.16)

so that at every subinterval [tn, tn+1] the defect function d(t) = P ′(t)− F
(

t, P (t)
)

satisfies

d(t) = P ′(t)− w′(t) + F
(

t, w(t)
)

− F
(

t, P (t)
)

=

{

O(τ3) , s 6= 1
2 ,

O(τ4) , s = 1
2 .

(2.17)

Here we have assumed that F is Lipschitz and have used that 6s2 − 2s− 4s3 = 0 for s = 1
2 .

In actual application the interpolation is based on numerical approximations of order p.
By assuming exact local solution values at t = tn and corresponding local Taylor expansions
of wn+1, Fn+1 it then follows in the same way as above that d(t) = O(τ q) where q =
min(p, 3), and with the special value s = 1

2 we have q = min(p, 4). Hence the cubic Hermite
polynomial can be used up to consistency order p = 3, and when using only s = 1

2 even up
to order p = 4. In the remainder we will employ the defect d(t) halfway the step intervals,
that is,

d(tn+1/2) =
3wn+1 − 3wn

2τ
− Fn + Fn+1

4
−F

(

tn+1/2,
wn + wn+1

2
+
τ

8

(

Fn−Fn+1

)

)

. (2.18)

Now, let wn = w(tn) and consider local expansions

wn+1 = w + τw′ +

p
∑

k=2

τk

k!
w(k) +

τp+1

(p+ 1)!
Cp+1 +O(τp+2) , (2.19)

with the righthand side evaluated at w = w(tn) and an empty sum for p = 1. Hence the
ρ-term in the local error expansion at t = tn then reads

ρn =
τp

(p+ 1)!

(

w(p+1)(tn)− Cp+1

)

, (2.20)

and inserting the expansion for wn+1 into d(tn+1/2) will reveal

d(tn+1/2) = −
3

2
ρn +O(τp+1) , 1 ≤ p ≤ 3 . (2.21)

The cubic Hermite defect halfway the step interval thus can be used to retrieve in leading
order the local error of any one-step method of order 1 ≤ p ≤ 3.

Finally we connect (2.12) and (2.11) by putting r(tn+1/2) = − 2
3 d(tn+1/2) in the stepwise

frozen version of (2.12), i.e.,

e′ = F ′(tn, wn)e+ r(tn+1/2) , tn < t ≤ tn+1 , n = 0, . . . , N − 1 , (2.22)

which will be integrated for the global error estimation. In this manner we actually work
in leading order with the stepwise frozen version of the first variational equation (2.11) for
the true global error (both G(t) and ρ(t) are frozen at t = tn). Within the more general
setting of continuous Runge-Kutta methods, this use of defects and relations like (2.21) were
discussed earlier, see e.g. [4, 10, 11, 18, 19]. Trivially, multiplying r(tn+1/2) by a certain
constant multiplies the solution by the same constant (if e(0) = 0). This simple property
forms the basis for tolerance proportionality which we shall use for attempting control over
the global errors (both in the classical and novel approach).
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2.3 The example integration formulas

The adjoint approach discussed in Section 3 heavily relies on the small sample statistical
method whose major challenge lies in problems of a large dimension. For the comparison
between the adjoint and classical approach we will therefore use stiff, semi-discrete diffusion-
reaction problems.2) Consequently, as example integrator for generating the approximations
wn we have chosen an A-stable scheme, the 3rd-order Runge-Kutta-Rosenbrock scheme
ROS3P [16]. To save space we refer to [15, 16] for details.

The implemented step size strategy by which the time grid (1.2) is generated with ROS3P
is standard, except that different from [16] the defect r(tn+1/2) is used. So for local control
we work with

Est = (I − γτnA)−1r(tn+1/2) , A = F ′(tn, wn) , (2.23)

where γ is a ROS3P coefficient. The common filter (I − γτnA)−1 serves to damp spuri-
ous stiff components which would otherwise be amplified through the F -evaluations within
r(tn+1/2).

3) Note that while the local error is O(τ 4
n), this estimate is O(τ 3

n) by which we
asymptotically have tolerance proportionality [17].

Let Dn = ‖Est‖ with ‖ · ‖ the L2-norm.4) The step is accepted if Dn ≤ Toln where
Toln = TolA + TolR ‖wn‖ with TolA and TolR given tolerances. Otherwise the step is
rejected and redone. In both cases the new step size is determined by the standard rule
τnew = min

(

1.5,max(2/3, 0.9 r)
)

τn where r = (Toln/Dn)
1/3. After each step size change we

adjust τnew to τn+1 = (T − tn)/b(1 + (T − tn)/τnew)c so as to guarantee to reach the end
point T with a step of averaged normal length. The initial step size τ0 is prescribed and is
adjusted similarly.

Simultaneously, equation (2.22) is integrated by means of the implicit midpoint rule

en+1 = en + τnA
(en+1 + en

2

)

+ τnr(tn+1/2) , A = F ′(tn, wn) , (2.24)

implemented in the equivalent form

ẽn+1 = 2en + 1
2τnAẽn+1 + τnr(tn+1/2) ,

en+1 = ẽn+1 − en .
(2.25)

The main additional costs for (2.25) come from an extra decomposition since γ 6= 1
2 (as-

suming a direct solve). Due to freezing G(t) and ρ(t) at t = tn as discussed above, the
second-order midpoint rule (2.24) is a first-order method when interpreted for solving the
first variational equation (2.11). As a result, the associated local error takes the form
C(tn)τ

2
n + h.o.t. where the leading error constant C(tn) = O(τ3

max) as it is proportional
to η(t) which itself is O(τ 3

max). Consequently, the global error approximations en satisfy
en = η(tn) +O(τ4

max).

2) Observe that only temporal error behaviour is studied and that spatial errors are not discussed.
3) The defect contains a new F -evaluation which in turn contains F (tn, wn) and F (tn+1, wn+1), indicating

that two filter steps would be needed. Our practical experience is that one filter step is sufficient, although
we know of at least one hypothetical problem (the Kaps problem given at page 215 of [3]) for which two
filter steps are appropriate.

4) By L2-norm we mean the weighted inner product norm, i.e., ‖v‖2=vT v/m, v ∈ R
m. This norm will

also be used for the adjoint approach.
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2.4 The control rule

Suppose ROS3P and (2.25) have delivered a numerical solution wN and a global error
estimate eN at time tN = T . We then verify whether

‖eN‖ ≤ Ccontrol TolN , T olN = TolA + TolR ‖wN‖ , (2.26)

where Ccontrol ≈ 1, typically > 1. If (2.26) holds the true global error is considered small
enough relative to the chosen tolerance and wN is accepted. Otherwise, the computation
with ROS3P and (2.25) is redone over [0, T ] with the same (small) τ0 and the adjusted
tolerances

TolA = TolA × fac , TolR = TolR × fac , fac = TolN/‖eN‖ . (2.27)

The primary aim of global error estimation is to provide an additional check on accuracy.
Especially when the problem at hand is ill-conditioned (unstable) this is useful since local
control will not detect instability so that εN might be substantially larger than the imposed
tolerance. The second (control) computation with ROS3P (and (2.25) for an additional
check) serves to reduce εN to the imposed tolerance level. If all is going well, with (2.26)
we thus account on the quality of the global error estimation and with (2.27) on tolerance
proportionality, thus expecting that reducing the local error estimates with the factor fac
will reduce εN by fac [17].

Remark 2.2 It is possible to avoid (2.27) by storing the whole step size sequence (1.2) from
the first run over [0, T ] and to carry out the second computation on a new step size sequence
obtained by dividing all intervals [tn, tn+1] in d1/fac1/3e equal subintervals. We then only
account on the quality of (2.26) and even would have the possibility to also use global
Richardson extrapolation for global error estimation for an additional check. However, we
then also give up local control. This renders no problem if all is going well, but it might
result in instability which otherwise would have been detected by local control. 3

3 The adjoint (forward-backward) approach

Like for the classical approach the analysis of the adjoint approach starts from the perturbed
system derived in Section 2.1.

3.1 Error representation for scalar derived functions

The error representation formula (2.5) there reveals that an approximation of Φ−1(t)Φ(s),
0 ≤ s ≤ t, would be desirable to estimate the sensitivity of (1.1) with respect to perturbations
v0 − w0 and r(t). Instead of computing these matrix products, which is in general far too
expensive or even unattainable, we first derive error estimates for a scalar derived function.
The analysis is based on the adjoint method which has been used successfully to obtain goal–
oriented a posteriori error estimation for an adaptive error control for PDEs (see [1, 5, 7])
and ODEs (see [2, 6, 13]).

Let M
(

w(t)
)

be the scalar quantity of interest. Then one has for the error in M

4M(t) :=M
(

v(t))−M(w(t)
)

=M(t) e(t) (3.1)
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with row vector

M(t) =

∫ 1

0

M ′
(

v(t) + (s− 1)e(t)
)

ds =

∫ 1

0

M ′
(

w(t) + se(t)
)

ds . (3.2)

Hence, using (2.5),

4M(t) =M(t)Φ−1(t)Φ(0)e(0) +M(t)Φ−1(t)

∫ t

0

Φ(s)r(s) ds . (3.3)

Solving backward in time the adjoint equation

φ′(s) = −AT (s)φ(s), φ(t) =M
T
(t), 0 ≤ s < t, (3.4)

and taking into account that Φ−T (s) is the fundamental matrix of this equation if (and only
if) Φ(t) is the fundamental matrix of (2.3) defined in (2.5), one gets

φT (s) =M(t)Φ−1(t)Φ(s) . (3.5)

Thus

4M(t) = φT (0)e(0) +

∫ t

0

φT (s)r(s) ds, 0 ≤ t ≤ T. (3.6)

Formula (3.6) serves as the fundamental relation to derive a strategy for global error esti-
mation. The adjoint solution value φT (0) measures sensitivity of M

(

w(t)
)

with respect to
e(0). Likewise, the integral term measures sensitivity with respect to the defects.

Remark 3.1 In principle one may consider quantities M
(

w(t)
)

= ξTi w(t), i = 1, . . . ,m,

where ξi is the i-th unit vector in R
m. Then 4M(t)= ξTi e(t)= e

(i)(t), the i-th component

of the error vector e(t). Thus M
T
(t) = ξi. Denoting by ψi the solution of (3.4) with ξi as

initial value, one gets from (3.6)

ξTi e(t) = e(i)(t) = ψT
i (0)e(0) +

∫ t

0

ψT
i (s)r(s) ds . (3.7)

By this way all components of the error vector e(t) could be computed at the price of solving
the adjoint equation m times. However, if m À 1 one would have to solve a tremendous
number of adjoint systems making this method impractical. The best choice would be
M(w(t))=eT (t)w(t)/(m‖e(t)‖) [2]. Then 4M(t)=‖e(t)‖ directly from (3.1), but one does
not have e(t). The choice of appropriate initial conditions for the adjoint system is the main
challenge for the adjoint approach [2, 7]. 3

Remark 3.2 To set up the adjoint equation (3.4) we have to replace AT (s) by a suitable
approximation in the neighborhood of v(s). Thus the adjoint equation depends on the
solution of the original ODE. A first possibility is to store the forward solution for every
time step to determine the adjoint equation. Alternatively, the solution is stored at only a
few selected times 0 = T0 < T1 < · · · < TK = T . As the adjoint equation solver marches
backwards in time from Tk to Tk−1, one recomputes the solution over that time interval
using the previously stored solution Tk−1 as initial value. This approach reduces the storage
requirements at the price of a second forward solve. The need to make the forward equation
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available to the adjoint equation is clearly a drawback of the adjoint approach. Solution
storage is of course not needed for linear systems (1.1) of type w′ =A(t)w + g(t). On the
other hand, in all cases all defects must be stored. Another drawback of the adjoint approach
is that it is defined for single output times t at which estimation is wanted. In other words,
if estimation is wanted at multiple times t, the adjoint solution must be computed apart for
each value of t. 3

3.2 Global error estimation

We have implemented global error estimation applying ROS3P to solve (1.1) as described
in Section 2.3 and using equation (3.6) and the small sample statistical method proposed by
Cao and Petzold for BDF methods ([2], see also [14] for more details). The main idea is to
replace the vectors ξi in (3.7) by a small number of orthonormal vectors z1, z2, . . . , zk which
are selected uniformly and randomly from the unit sphere Sm−1 in m dimensions. Instead
of computing accurate error estimates of global errors, we try to approximate them with a
high probability.

Let ηi(t)= |zTi e(t)|. Then an estimate for ‖e(t)‖ is given by

‖e(t)‖ ≈ gk(t) =
Ek

Em

√

1

m

(

η2
1(t) + η2

2(t) + · · ·+ η2
k(t)

)

, (3.8)

where E1=1, E2=2/π, and for n > 2

En =



















1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n− 1)
for n odd,

2

π
· 2 · 4 · 6 · · · (n− 2)

1 · 3 · 5 · · · (n− 1)
for n even.

(3.9)

En can be estimated by
√

2/(π(n−1/2)). The “≈” in (3.8) has to be understood in the sense
of probability. More precisely, the expected value of the random variable gk(t) is given by
E(gk(t))=‖e(t)‖ ([14], Theorem 3.1). For k=m the vectors z1, . . . , zk form an orthonormal
basis in R

m and hence from the definition in (3.8) we get for k =m directly the identity
gm(t)=‖e(t)‖.

The important question now is, what is the probability that the estimator gk(t) provides
upper and lower bounds for ‖e(t)‖? Let c > 1 be a given factor. Then one has for two and
three random vectors [14]

P

(

g2(t)

c
≤ ‖e(t)‖ ≤ c g2(t)

)

≈ 1− π

4c2
, (3.10)

P

(

g3(t)

c
≤ ‖e(t)‖ ≤ c g3(t)

)

≈ 1− 32

3π2 c3
. (3.11)

To achieve 99% probability of accuracy, for example, one can use k = 2 for c = 10 and
k=3 for c=5. In [2] it is pointed out that in practice usually at most two or three random
vectors are sufficient, although without giving numerical evidence because in their numerical
experiments k=m. Hence the small sample statistical method was not tested in [2].
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Remark 3.3 To generate k independent vectors z1, . . . , zk uniformly and randomly on
Sm−1 one can use the following procedure: let λ(1), . . . , λ(m) be normally distributed in-
dependent random variables with mean zero and variance one. Then the vector λ/‖λ‖ is
uniformly and randomly distributed over Sm−1 where λ=(λ(1), . . . , λ(m))T [22]. 3

The small sample statistical method described above thus will be used to estimate ‖e(T )‖.
We first select random vectors z1, . . . , zk from Sm−1 and construct an orthonormal basis for
their span by using a Gram–Schmidt procedure or a QR decomposition. Then we solve the
corresponding adjoint equations

φ′i(s) = −AT (s)φi(s) , φi(T ) = zi , (3.12)

for φi, i= 1, . . . , k. From (3.1) and (3.6) with 4M(T ) = zTi e(T ) we have for each φi the
identity

zTi e(T ) = φTi (0)e(0) +

∫ T

0

φTi (s)r(s) ds. (3.13)

In the following we assume e(0)=0. Using (3.8) and recalling ηi(T )= |zTi e(T )| we get

gk(T ) =
Ek

Em





1

m

k
∑

i=1

(

∫ T

0

φTi (s)r(s) ds

)2




1/2

. (3.14)

The integral terms must be approximated (recall that with k=m and an exact computa-
tion of these integrals we have ‖e(T )‖=gm(T )). We integrate (3.12) using the second-order
implicit midpoint rule on the same grid as selected to solve (1.1) by means of ROS3P, but
now backward in time starting from zi

φ̃i,n = 2φi,n+1 +
τn

2 AT φ̃i,n , AT =
(

F ′
(

tn+1/2,
wn+wn+1

2

))T

,

φi,n = φ̃i,n − φi,n+1 , n = N − 1, . . . , 0.
(3.15)

Note that for larger problems one cannot store all Jacobians A from the forward integration,
so one has to recompute them. The practical need for recomputing Jacobians is another
drawback of the adjoint approach. Further note that like in the forward approach AT is
an accurate approximation to the integrated Jacobian A(t) defined in (2.4) as long as the
global error e(t) is sufficiently small. The adjoint problems are not coupled and hence can
be solved in parallel. Also recomputing Jacobians for use in the backward in time midpoint
rule is needed only once, that is, once for all adjoint problems.

To approximate the integrals in (3.14) we use the 1-point, second-order Gaussian formula
for each integration interval to obtain

gk(T ) ≈
Ek

Em





1

m

k
∑

i=1

(

N−1
∑

n=0

τn
φTi,n + φTi,n+1

2
r(tn+1/2)

)2




1/2

, (3.16)

where the residual r(tn+1/2) are computed in exactly the same way as within the classical

approach described in Section 2.2 and Section 2.3, i.e., we take r(tn+1/2) = − 2
3d(tn+1/2).
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3.3 The control rule

The possible need for a second forward computation with ROS3P is decided on the same
control rule as in the classical approach which we described in Section 2.4. Hence also for
the adjoint approach we rely on tolerance proportionality for the global error control. If a
second forward computation is decided, then for an additional error check we apply (3.15)
once again for the already chosen random vectors zi taken as initial values, similar as the
additional error check in the classical approach.

Remark 3.4 The conditioning of system (1.1) with respect to small perturbations r(t) can
be estimated using equation (3.14). There holds

‖e(T )‖ ≈ |gk(T )| ≤ KT · max
0≤s≤T

‖r(s)‖ (3.17)

with the condition number

KT = KT (φ1, . . . , φk) =
Ek
√
m

Em





k
∑

i=1

(

∫ T

0

‖φi(s)‖ ds
)2




1/2

. (3.18)

If KT is small, a well designed defect based local error control will work out well. But if KT

is large, one could end up with a global error much larger than the imposed local tolerance.
As proposed in [5] for parabolic problems, and discussed in [2] for BDF methods, one could
tighten the local tolerance for the second ROS3P run within (2.27) through fac = 1/KT .
However, when taking norms in (3.17), favorable effects of error cancellation and nearly zero
defect values are completely ignored and therefore the new local tolerance can be extremely
pessimistic. Indeed, this is observed for the example system of Section 4.4. Its condition
number computed from (3.18) with k = 2, while using the 1-point, second-order Gaussian
formula, is huge, being about 1020. On the other hand, the integral terms in (3.14) are
of moderate size due to cancellation and many zero entries in the defect function r(s). So
for the example system of Section 4.4, the use of the condition number KT for global error
control is impossible. In fact, KT is of the same size as the a priori condition number
Kµ2

= (eωT − 1)/ω, based on the logarithmic matrix norm µ2, given in (2.7). Inserting the
accurate bound ω = 100, which in this case is just the largest eigenvalue of the Jacobian
matrix due to symmetry [12], yields Kµ2

≈ 5.2 1019. 3

4 Numerical illustrations

Numerical results are given for (i) a 2-dimensional unstable nonstiff example problem from [2],
(ii) the 3-dimensional stable stiff Robertson chemical kinetics problem [8], (iii) a 100-
dimensional unstable semi-discrete diffusion-reaction problem (an often used test problem
from combustion theory [12]), and (iv) a 400-dimensional unstable semi-discrete diffusion-
reaction problem (from pattern formation and often called the bi-stable Allen-Cahn prob-
lem). For the semi-discrete problems spatial errors are left out of consideration, i.e., we
compare to a highly accurate ODE reference solution.

All four problems are solved with TolA = TolR = Tol for the four tolerance values
Tol = 10−l, l = 3, 4, 5, 6 using one and the same initial step size τ0 = 10−5. If after the
first attempt (2.26) is violated with Ccontrol = 1 a second attempt is carried out with the
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same τ0 and the automatically adjusted new value for Tol through (2.27). Needless to say
that Ccontrol = 1 is too stringent. We use it here only for the sake of illustrating the good
performance of the global control rule (2.27). It will be clear from the tables of results
whether a second attempt was necessary.

The tables of results contain the following quantities, TolN = Tol (1+‖wN‖) from (2.26),
for the classical approach the ratio ‖εN‖/‖eN‖ of the true global error and the estimated
global error, for the adjoint approach the ratio ‖εN‖/gk(T ) of the true global error and the
estimated global error defined by (3.16), and for both approaches the ratio ‖εN‖/TolN . The
first and second ratio serve to illustrate the quality of the estimation, while the third does
this for the control. In addition, numbers of accepted and rejected ROS3P steps are given.

Finally, for the small sample statistical initialization used in the adjoint method, k = m
orthonormal random vectors were used for the two small sized problems, whereas for the
other two much larger problems we used only two random vectors. So only for the two larger
problems the small sample statistical initialization was tested and for the two small sized
problems the classical and adjoint approach should give identical results, except for minor
implementation differences. Also observe that the randomness of the initialization will lead
to differences in the results when computations are repeated, although minor ones.

4.1 A low-dimensional nonstiff ODE system

The first test problem is the 2-dimensional unstable linear system [2]

w′ =

(

1
2(1+t) −2t
2t 1

2(1+t)

)

w, w(0) =

(

1

0

)

, 0 < t ≤ T = 10 , (4.1)

with increasing oscillatory solution w1(t) = cos(t2)
√
1 + t, w2(t) = sin(t2)

√
1 + t. Table 4.1

shows the results for the classical approach. Since k = m = 2, the adjoint approach results
are identical except for negligible implementation differences. The quality of the global error
estimates is very high and the second runs based on tolerance proportionality yield perfect
control for all tolerances.

Tol TolN ‖εN‖/TolN ‖εN‖/‖eN‖ Accept Reject

10−3 3.32 10−3 8.16 1.02 1031 4
1.25 10−4 3.34 10−3 1.03 1.01 2044 0

10−4 3.34 10−4 8.23 1.01 2201 0
1.22 10−5 3.34 10−4 1.00 1.00 4415 0

10−5 3.34 10−5 8.20 1.00 4719 0
1.22 10−6 3.35 10−5 1.00 1.00 9419 0

10−6 3.35 10−6 8.19 1.00 10146 0
1.22 10−7 3.35 10−6 1.00 1.00 20426 0

Table 4.1: Low-dimensional nonstiff ODE system: classical approach.
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4.2 A low-dimensional stiff ODE system

Our second test problem is the well-known Robertson problem from the stiff ODE field [8]

w
′

1 = −0.04w1 + 104 w2w3 ,

w
′

2 = 0.04w1 − 104 w2w3 − 3.0 107 w2
2 ,

w
′

3 = 3.0 107 w2
2 ,

w1(0) = 1 ,

w2(0) = 0 ,

w3(0) = 0 ,

0 < t ≤ T = 1 . (4.2)

This stiff problem is highly stable resulting in global errors much smaller than imposed local
tolerances (the effect of the small initial τ0 = 10−5 is less strong). So, global error control is
redundant here and no control runs were carried out. The global error estimation appears to
work very well for this stiff problem. Table 4.2 shows results of the adjoint approach. Since
k = m = 3, the results of the classical approach again are identical, except for negligible
implementation differences. These only exist for the column for the values of ‖εN‖/g3(T ).
The corresponding values ‖εN‖/‖eN‖ for the classical approach are (1.07, 1.02, 1.03, 1.04)T .

Tol TolN ‖εN‖/TolN ‖εN‖/g3(T ) Accept Reject

10−3 1.56 10−3 7.39 10−5 1.05 29 0
10−4 1.56 10−4 1.05 10−3 0.94 31 0
10−5 1.56 10−5 8.68 10−3 1.01 40 1
10−6 1.56 10−6 7.64 10−2 1.02 62 2

Table 4.2: A low-dimensional stiff ODE system: adjoint approach.

4.3 High-dimensional stiff ODE system I

Our third ODE test system is derived from spatially discretizing the well-known 1D com-
bustion example problem (see e.g. [12], p.434, for the 2D version)

ut = uxx +
1

4
(2− u) e20(1−1/u) , 0 < x < 1 , 0 < t ≤ T = 0.28 , (4.3)

subjected to the initial condition u(x, 0) = 1, the zero Neumann boundary condition ux = 0
at x = 0 and the Dirichlet boundary condition u = 1 at x = 1. The spatial discretization is
done by second-order central differencing on a uniform hybrid grid (because of the Neumann
condition) with mesh width 1/100.5, resulting in a 100-dimensional ODE system w′ = F (w).
We have chosen this system because it requires variable step sizes and it is unstable. The
instability emanates from the reaction term whose derivative ranges between approximately
+1000 and −5500, see [12] for details. Furthermore, the 100-dimensional ODE system poses
a challenging test for the small sample statistical method using k = 2 only.

For the classical approach Table 4.3 reveals an excellent estimation of the global error
and likewise a high quality of the control, for all tolerances. Observe that for Tol = 10−6

the second control run is redundant. Regarding the adjoint approach we emphasize the high
quality of the small sample statistical method. From inequality (3.10) one would expect
the ratios ‖εN‖/g2(T ) to lie asymptotically between 0.1 and 10.0 with 99% probability.
Table 4.4 however shows ratio values ranging between 0.72 and 1.38. Taking k larger with
this large dimension m is no option. For example, doubling k to 4 does not lead to a notable
improvement, yet increases the costs for the global error estimation. Noting the small
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deviations from 1.0 of all listed ratios, especially after the control run, both approaches
perform excellent with respect to estimation and control.

Tol TolN ‖εN‖/TolN ‖εN‖/‖eN‖ Accept Reject

10−3 2.83 10−3 2.56 1.25 529 33
4.91 10−4 2.84 10−3 1.03 1.20 680 32

10−4 2.84 10−4 2.64 1.13 1183 18
4.30 10−5 2.84 10−4 1.11 1.09 1586 11

10−5 2.84 10−5 2.09 1.05 2622 5
5.02 10−6 2.84 10−5 0.85 1.03 3318 3

10−6 2.84 10−6 0.91 1.00 5736 3

Table 4.3: High dimensional stiff ODE system I: classical approach.

Tol TolN ‖εN‖/TolN ‖εN‖/g2(T ) Accept Reject

10−3 2.83 10−3 2.56 1.35 529 33
5.26 10−4 2.84 10−3 1.06 1.38 664 32

10−4 2.84 10−4 2.64 0.92 1183 18
3.47 10−5 2.84 10−4 0.84 0.92 1708 8

10−5 2.84 10−5 2.09 0.76 2622 5
3.66 10−6 2.84 10−5 0.57 0.76 3695 4

10−6 2.84 10−6 0.91 0.72 5736 3
7.93 10−7 2.84 10−6 0.65 0.72 6204 3

Table 4.4: High dimensional stiff ODE system I: adjoint approach.

4.4 High-dimensional stiff ODE system II

Similar to the third, the fourth test problem was chosen because it is unstable again chal-
lenging global error control. It is derived from spatially discretizing the following version of
the bi-stable Allen-Cahn equation

ut = 10−2 uxx + 100u (1− u2) , 0 < x < 2.5 , 0 < t ≤ T = 0.5 , (4.4)

with the initial function and Dirichlet boundary values taken from the exact wave front
solution u(x, t) = (1 + eλ (x−α t))−1, λ = 0.5

√
2, α = 1.5

√
2. Uniform second-order central

discretization in space yields our ODE test system, now with m = 400 components. The
instability emanates from the unstable stationary state u = 0. Further, since m = 400 and
k = 2, also this problem poses an even more challenging test for the small sample statistical
method.

Table (4.5) reveals again a high quality of the global error estimation for the classical
approach and also the control process works very well. The ratios for ‖εN‖/TolN lie between
0.71 and 0.93, after the control run. Observe that for Tol = 10−5, 10−6 the control runs
are redundant. In actual practice, taking the control parameter Ccontrol > 1 in (2.26), this
would also hold for the other tolerances. For the adjoint approach, the ratios ‖εN‖/g2(T )
given in Table (4.6) range from 0.53 to 2.56, which is by a factor 4 better than one would
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expect from inequality (3.10). The adjoint approach does not require a second run for
Tol = 10−4, 10−6 and for the other cases the control is also very efficient (only a factor 0.45
to 0.78 off the imposed tolerance, after the control run).

Tol TolN ‖εN‖/TolN ‖εN‖/‖eN‖ Accept Reject

10−3 1.65 10−3 1.29 0.77 373 0
6.01 10−4 1.65 10−3 0.71 0.83 446 0

10−4 1.65 10−4 0.95 0.93 833 0
9.84 10−5 1.65 10−4 0.93 0.93 838 0

10−5 1.65 10−5 0.82 0.97 1835 0
10−6 1.65 10−6 0.76 0.98 3998 0

Table 4.5: High-dimensional stiff ODE system II: classical approach.

Tol TolN ‖εN‖/TolN ‖εN‖/g2(T ) Accept Reject

10−3 1.65 10−3 1.29 0.53 373 0
4.09 10−4 1.65 10−3 0.45 0.57 510 0

10−4 1.65 10−4 0.95 1.40 833 0
10−5 1.65 10−5 0.82 0.78 1835 0

9.45 10−6 1.65 10−5 0.78 0.78 1870 0
10−6 1.65 10−6 0.76 2.56 3998 0

Table 4.6: High-dimensional stiff ODE system II: adjoint approach.

5 Summary and main conclusions

Inspired by [2] and related earlier literature, e.g. [1, 5, 6, 7, 13], we have discussed and
compared classical global error estimation based on the first variational equation to a recent
more novel approach based on the adjoint equation. The common starting point for both ap-
proaches is the perturbed equation with the residual or defect function defined by piecewise,
cubic Hermite interpolation. As a base integrator for the comparison we have chosen the
third-order, A-stable Runge-Kutta-Rosenbrock method ROS3P. We have also implemented
global error control, for which we have used the property of tolerance proportionality for
both the classical and the adjoint approach.

On the basis of the four example problems, ranging from nonstiff to stiff, the compu-
tational effort of each of the two approaches, and the insight from the analysis, we have
come to three main conclusions. (i) The classical approach is remarkably reliable, both with
respect to estimation and control. Although well known in the numerical ODE literature, it
seems that the virtue of this approach has been insufficiently brought forward since as yet
this form of global error estimation and control is far less popular than the commonly used
local techniques. (ii) Most notable for the adjoint approach is the excellent performance of
the small sample statistical method which forms the heart of the method. We have applied
it successfully using only k = 2 random vectors for dimensions m = 100, 400 (in [2] it was
not tested since there k = m ≤ 2). With k = 2 the computational costs are only marginally
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higher than those of the classical approach. (iii) The main disadvantage of the adjoint ap-
proach is the need to either store the whole approximation sequence (wn; 0 ≤ 1 ≤ N) or to
store part of it and to carry out a second forward computation. When using Jacobians, as is
the case for ROS3P, storage becomes truly a handicap with large problems calling for Jaco-
bian reevaluations and hence additional CPU costs. The classical approach does not suffer
from this storage handicap, and because it is also clearly competitive to the adjoint approach
with respect to the quality of estimation and control, we consider it more attractive, more
efficient, and significantly more practical for large dimensional ODE systems (1.1).
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