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Abstract-From a theoretical point of view, Runge-Kutta methods of colloca.tion type belong 
to the most attractive step-by-step methods for integrating stiff problems. These methods combine 
excellent stability features with the property of superconvergence at the step points. Like the initial
value problem itself, they only need the given initial value without requiring additional starting 
values, a.nd therefore, are a na.tura.1 discretization of the initial-value problem. On the other hand, 
from a practical point of view, these methods have the drawback of requiring in each step the solution 
of a system of equations of dimension sd, s and d being the number of stages and the dimension of 
the initial-value problem, respectively. In contrast, linear multistep methods, the main competitor of 
Runge-Kutta methods, require the solution of systems of dimension d. However, parallel computers 
have changed the scene and have motivated us to design J>Mallel iteration methods for solving the 
implicit systems in such a way that the resulting methods become efficient step-by-step methods for 
integrating stiff initial-value problems. 
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tioning. 

1. INTRODUCTION 

From a theoretical point of view, Runge-Kutta methods of collocation type belong to the most 
attractive step-by-step methods for integrating the stiff initial-value problem (IVP) 

y'(t) = f (y(t)), y (to) =Yo. (1.1) 

However, from a practical point of view, these methods have the drawback of requiring in each 
step the solution of a system of equations of dimension sd, s and d being the number of stages and 
the dimension of the initial-value problem, respectively. In contrast, linear multistep methods, 
the ma.in competitor, require the solution of systems of dimension d. This has prevented Runge
Kutta methods from becoming widely-used integration methods for stiff problems. 

However, the introduction of parallel computers has changed the scene. In [l] and [2], it has 
already been shown that solving the implicit Runge-Kutta relations by a suitable parallel iteration 
process leads to integration methods that are more efficient and much more robust than the best 
sequential methods such as methods based on the backward differentiation formulas (BDFs). 
Iterative processes designed for parallel computers have been discussed by several authors. We 
mention the papers of Bellen [3], Bellen-Vermiglio-Zennaro (4}, Jackson-N9.lrsett [5}, Ja.ckson
Kvrern!ll-N!Zlrsett [6J, a.nd Burrage [7]. 

The aim of this paper is to demonstrate that introducing preconditioning into the iteration 
method results in a. further increase of the efficiency. 
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2. PARALLEL ITERATION METHODS 

We shall study parallel iterative methods for solving the stage vector equation in the s-stage 
Runge-Kutta method 

Y = e ® Yn + h(A ® Jd)F(Y), Yn+1 = Yn + h (b T ®Id) F(Y). (2.la) 

Here, Y is the sd-dimensional stage vector with s vector components Yi of dimensional d, F(Y) 
is the ad-dimensional vector (f(Yi)), i = 1, 2, ... , s, b and e are s-dimensional vectors, A is 
an s-by-s matrix, Id is the d-by-d identity matrix, and ® denotes the Kronecker product. The 
vector e has unit entries, and b a.nd A contain the Runge-Kutta parameters. Since we are aiming 
at stiff IVPs, we assume that (2.la) represents a stiffly accurate method, that is, b T = eI A, e8 

denoting the sth unit vector. As a consequence, the step point formula simplifies to 

(2.lb) 

The iterative methods studied in the present paper fit into the class 

y(j+I) - h(D ® Jd)F ( yCi+l)) = y(j) - h(D ® ld)F ( y(J)) 
-P;Rn(h,YU>), j=O, ... ,m-1, (2.2a.) 

ftn(h,Y) := Y-e®yn-h(A®ld)F(Y), 

where y(o) is a given initial iterate, D is a diagonal s-by-s matrix with fixed, positive diagonal 
entries, P; is an sd-by-sd matrix whose entries may depend on the stepsize hand the Jacobian 
matrix Jn = Bf(!§;;,y"). The matrix P; may be considered as a preconditioning matrix for the 
residual function Rn· It will be assumed that P; is bounded with respect to hand Jn. Evidently, 
if (2.2a) converges, then it converges to the stage vector Y. Since D is diagonal, the s stage 
vector components of y(;+l) can be solved in parallel from the equation (2.2a) provided that 
at least s processors are available. Recursion (2.2a) will be called the outer iteration, and the 
iteration method used for solving y0+1) from (2.2a) is called the inner iteration. 

Assuming that a Newton-type iteration is used as inner iteration method, we a.re faced with 
linear systems whose matrix of coefficients lad - h (D ®Jn) is block diagonal, that is, each 
processor has to solve linear systems with d-by-d coefficient matrix le. - h6iJfl, where 5, denotes 
the ith diagonal entry of D. 

After ea.eh iteration, we define the step point values 

y0+1) = ( eI ®Id) y(J), 

Yn+l = Y(m)' 

j = 0, 1, ... , m - 1; 
(2.2b) 

where the step value Yfl+l = y(m) denotes the accepted approximation to the corrector solution 

at tn+l· 
For P; = lad, we obtain the PDIRK method (Parallel Diagonally Implicit Runge-Kutta 

method) proposed in [1,2]. In these papers, the matrix D was either used to achieve A-stability 
or £-stability for a given value of m, or for 'damping at infinity,' that is, the damping of compo
nents in the iteration error corresponding to 'infinite' eigenvalues of the Jacobian was optimized 
by minimizing the spectral radius of the iteration matrix a.t infinity. Since the latter technique 
turned out to be superior, the matrix D will again be used for 'damping at infinity,' whereas 
the matrices Pj will be employed for damping of error components corresponding to (complex) 
eigenvalues of the J acobia.n matrix lying in the neighbourhood of the origin (damping of nonstiff 
error components). 
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In order to analyse the convergence of (2.2), we define the stage vector iteration error 

e{j) := yU) - Y, 

and we write (2.2a) in the form 

gU+i) - h (D ®Id) [F (yU+1>) - F (Y)] = (I,,d - Pj] e(j) 

-h(D®ld) [F(v0>)-F(Y)] +hPj(A®Id) (F(Y(j))-F(Y)]. (2.2a') 

For sufficiently smooth righthand side functions f, we have 

F(U + 6) - F(U) = J(U)6 + 0 (o2), 

where J(U) is an sd-by-sd block-diagonal matrix whose diagonal blocks consist of the Jacobian 
matrices arwi), U, being the components of U. On substitution into (2.2a') and ignoring second 

order terms of gU), we straightforwardly derive the linear error recursion 

which can be written in the form 

Ge(;+i) = (G - PjC) e(j), C :=lad - h (A® Id) J(Y), G :=lad - h (D ®Id) J(Y). (2.3) 

Hence, 

0 

e(m) = Hm(h)e(O), Hm(h) := IT Zj(h), Zj(h) := 0-1 (G - P;C), m ~ 1. (2.4) 
j=m-1 

Anticipating that for h ~ 0 the matrix Hm can be written in the form 

e ~ o, (2.5) 

where the s-by-s matrix Km is determined by the corrector matrix A and the d-by-d matrix Lm 
by J(Y), we find the iteration error 

(2.6) 

Denoting the (exact) corrector solution by un+l := (eI ®Id) Y, we find at the step points 

We now assume that the predictor formula. is only based on stage values from the preceding 
step, i.e., 

y(O) - h (D .. ® Id)F (v<0>) = (E ®Id) x, {2.8) 

where X is the stage vector computed in the previous step. We distinguish three types of 
predictors: 

BDF predictor 
EXP predictor 
LSV predictor 

D• = D and E determined by backward differentiation formulas 
D• = 0 a.nd E determined by extrapolation formulas 
D• = 0 and E = eeI (last-step-value predictor y(O) = e ® y,..). 
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THEOREM 2.1. Let the error amplification matrix Hm be written in the form (2.5), Jet the stage 

order of the corrector (2.1) be r, and define the vectors 

c:= Ae 

Vo:= Ee-e 

vi := ~ (E(e - e)i + jD*ci- 1 - c1), 
J. 
1 ( . . 

vj := j! E(c-e)J-j(A-D*)cJ- 1), 

I -5, j :::; r, (2.9) 

j > r. 

H the matrices D* and E are such that vj = 0 for j = 0, ... , q with q ~ r -1, then the predictor 

is of order q and the iteration error is given by 

(2.10) 

where the principal iteration error vector Cm is given by Cm:= KmVq+l with Ko:= ]8 • 

PROOF. Let y(t) denote the locally exact solution at the point tm and let us impose the localizing 

assumption, that is, we assume that the components of X are on y(t). Suppose that 

Then 

e:(o) = y(o) - Y = 0 (hq+l), q-5,r-l. 

y(o) = (E ®Id) X + h (D* ®Id) F ( y(o)) 

= (E ®Id) Y (tn-1e +he)+ h (D* ®Id) F (y (tne +he)+ 0 (hq+l)) 

= (E ®Id) Y Ctn-1e +he)+ h (D* ®Id) y' (tne +he)+ 0 (hq+2), 

Y = e®y(tn) +h(A®ld)F(Y) 

= e ®y(tn) + h(A ®Id) F (y (tne +he)+ 0 (hr+1)) 

= e® y(tn) + h(A®ld) y' (tne +he)+ 0 (hr+2), 

where y (t,..e +he) is defined by its components y (tn + hci), i = 1, 2, ... , s (componentwise 

notation). Taylor expansion yields 

y(O) - Y = (E ®Id) ( e ® y (tn) + h(c - e) ® y' (tn) + ~h2(c - e)2 ® y" (tn) 

+ ~h3 (c - e)3 ® y"' (tn) + · · ·) - e ® Y (tn) 
3. 

+ ((D* - A)® Id) (he® y' (tn) + h2c ® y" (tn) + ;! h3 c2 ® y 111 (tn) 

+ ;! h4c3 ® y"" ( tn) + · · ·) + 0 (hq+2 ) • 

Since the corrector satisfies the simplifying condition C(r), i.e., jAc3-l = ci, 1 -5, j ~ r, we can 

eliminate the matrix A from the Taylor coefficients up to order r. Finally, by introducing the 

vectors v 3, the predictor error is given by 

e:(O) = y(O) - Y = L Vjhj ® y(j) (tn) + 0 (h'1+2). 

j=O 

The proof is completed by substitution of this expression into (2.6). I 

Although we are primarily interested in the iteration error at the step points, the accuracy of 

the stage vector y(m) itself plays a role in the predictor formula (2.8) for the next step (unless 

the LSV predictor is used). Therefore, all components of the principal iteration error vector Cm 

should be considered and not only its last component. 
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3. PRECONDITIONING 
First, we show that there exists a two-parameter family of preconditioners by which in each 

iteration the iteration error can be reduced by a factor 0 ( h2) ash -+ O. The parameters occurring 
in the preconditioners can be used for improving the accuracy of specific solution components. 
In the case of linear or weakly nonlinear IVPs, these parameters can effectively be employed by 
fitting them to the points in the spectrum of the Jacobian matrix of the IVP that correspond 
to the solution components we want to approximate with increased accuracy. The family of 
preconditioners derived here contains the preconditioners constructed in [8] and [9] as special 
cases. 

3.1. The Iteration Error 

The following theorem provides the explicit form of our preconditioners. 

THEOREM 3.1. Let 82m be the polynomial of degree 2m delined by 

S2m(x) = {11"0 - <ToX + x2) (11"1 - o-1x + x2) · .. · · (11'm-1 - O'm-1X + x2), (3.1} 

where u; and 'If; are real coefficients, and let the matrices P;,j = 0, 1, 2, ... , m-1, be defined by 
the expressions 

P; = (lad - hD ® Jn)- 1 (lad - 11';h2 D 2W;(h) ®Id+ hD2 (W;(h) - 18 ) A- 1 ® J .. ), 

Tn .•-- 8f (Yn) > 
J, 8y (3.2} 

W;(h) = (Is -2D-1A+D-2A2) (la -u;hA+11';h2A2)-1 • 

Then, for small h, the error amplification matrices Z; and Hm are given by 

Z;(h) = h2 {A2 - 2DA + D2) ® (11';1d - a;Jn + J~) - h2 (A- D) ® Idll.Jn + 0 (h3), 
(3.3) 

Hm(h) = h2m (A2 - 2DA + D2)m ® 82m (Jn)+ 0 (h2mll,.Jn) + 0 (h2m+l) 1 

where AJn vanishes if Jn does not depend on Yn· 

PROOF. The line of proof is analogous to that given in {9]. It starts with writing the precondi
tioner in the form 

J ·- 8f (Yn) 
n·- 8y ' (3.2') 

where Mi and Nj are matrices to be determined. Next, the matrices C and G defined in (2.3) 
are written as 

C =lad - h (A ®Id) [(18 ®Jn)+ hll.J.,.], 

G := lad - h (D ®Id) [(la ®Jn)+ hll.Jn], 
(3.4) 

where ll,.Jn is the block-diagonal matrix h-1 [J(Y) - (18 ®Jn)] which is bounded ash--+ 0 and 
vanishes if Jn does not depend on Yn· Finally, P; is substituted into the matrix Z; as defined 
in (2.4) and the coefficient matrices M; and N; are determined such that Z; = 0 (h2). An 
elementary derivation then leads to the expression (3.2) for P; containing the free parameters <1j 

and 11';. 
Given the matrices Pj, the matrices Z; and Hm can now be derived by substituting (3.2) 

and {3.4) into (2.4). For Z;, we find 

1 ( 2 )-1 Z; = lad - o- P;C =lad - lad - h (D ®Jn) - h (D ®Id} 6.Jn 

x P; (lad - h(A® J .. ) - h2 (A ®Id)ll.Jn) 

= I,d - (lad - h (D ® Jn})-1 (I,d + h2 (D ®Id) 6.Jn) 

X P; (lea - h (A® Jn) - h2 (A® Id) ll.Jn) + 0 (h3 6.Jn) . 

CMll Zl:IOfll·C 
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Using (3.2'), we find 

Z; = Isd - (Isd - h (D ® Jn))-1 P; (lsd - h (A® Jn)) - h2(A - D) ® Id.tJ..Jn + 0 (h3 .tJ..Jn) 

= (Iad-h{D®Jn))-2 [(Isd-h(D®Jn))2 

- (Isd - 7r;h2 D2W;(h) ®Id+ hD2 (W;(h) - Itt) A- 1 ®Jn) (Isd - h (A® Jn))] 

- h2(A - D) ® Id.tJ..Jn + 0 (h3 .tJ..Jn) 

= (I .. d - h (D ® Jn))-2 D2W;(h) 

x [7r;h2I. ® IcL - h (ls - W;(h)- 1 [I, - 2n-1 A+ n-2 A2]) A- 1 ®Jn+ h2 Is® J~) 
- h2(A- D) ® IdAJn + 0 (h36.Jn) 1 

where W;(h) is defined in (3.2). Elimination of W;-1(h) yields 

Z; = h2 (/scL - h (D ® Jn}}-2 D2W;(h} 

® ('rr;ld -q;Jn + J~) - h2(A- D) ® Id.tJ..Jn + 0 (h3AJn), {3.3a) 

resulting into the expression given in the theorem ash-+ 0. On substitution of (3.3a.) into (2.4), 
we obtain for Hm 

Hm = h2m(I114-h(D®Jn))-2m 
0 

X II [D2Wj(h) ® (7r;Id - u;Jn + J~) - (A- D) ® ld.tJ..Jn] + 0 (h2m+l), 
j=m-1 (3.3b} 

which again reduces to the expression given in the theorem as h -+ 0. I 
The method defined by (2.2) and (3.2) will be denoted by PDIRKJ{2m, Ak} (Parallel Di

agonally Implicit Runge-Kutta method using the Jacobian matrix and 2m fitting points p.,.J ). 
From (3.2), it follows that the preconditioners P; involve Jacobian evaluations and LU-decomposi
tions of lad - hD ®Jn. However, these are already available because they are needed in the New
ton iteration process, so that per iteration the sequential costs of applying the preconditioner P; 
essentially consists of a forward-backward substitution of dimension d and a multiplication by 
the Jacobian Jn· 

Upon substitution of (3.3) into (2.10) and by observing that the order q of the predictor can 
never exceed the number of interpolated values or the stage order r of the corrector, we find that 
the stage vector iteration error of the PDIRKJ {2m, >.k} method is of the form 

e<m> = h2m+q+l [Cm® S2m (Jn) y(q+i) (tn) + 0 (.tJ..Jn) + O(h)] , (3.5) 

where the principal iteration error vector takes the form 

Cm= (A2 -2DA+D2)mvq+ii 

v +l ·= 1 (E(c - e)q+l + (q + I)D*cq - cq+l) 
q • (q + 1)! , q :5 min{r, s -1}. 

(3.6) 

For the LSV predictor yCo) = e®y n, we have q = 0, so that v q+l = -c. In the case of the EXP 
and BDF predictors, we deduce from Theorem 2.1 that we can always achieve q == min{r, s -1} 
if E satisfies the relations 

Ee=e; 
E(c - e)i = d - jD*d-1, 

E(c-e)J =j(A-D*)d-1 , 

j= I, ... ,r; 

j = T + 1, •••I 8 - 1. 
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By introducing the vectors 

ko:=e 
ki :=ci -jD*ci- 1, 

ki :=j (A- D*)ci- 1, 

j = 1, .. . ,r; 
j = r + 1, ... , s - 1, 

23 

(3.7) 

and by defining the s-by-s matrices U and V such that their columns are, respectively, given 
by the vectors {kj} and { (c - e)i}, j = 0, ... , s - 1, we may write E = uv- 1 , provided that 
Vis nonsingular. The vector v9+1 can now be obtained by formula (3.6). Notice that, in the 
particular case where the corrector is of collocation type, we have r = s. 

From the preceding derivations, it follows that the order of PDIRKJ methods is given by 
p* = min{p, 2m} for LSV predictors and by p* = min {p, 2m + min{r, s - 1}} for EXP and BDF 
predictors. The truncation error constants are determined by the truncation error constant of 
the corrector and the iteration error vector Cm defined by (3.6) and (3. 7). 

It is tempting to exploit the free matrix D for the minimization of the magnitude of Cm. 
However, Cm characterizes the magnitude of the nonstiff iteration error components, and since 
we are dealing with stiff IVPs, we should also consider the stiff iteration error components (error 
components corresponding to eigenvalues of the Jacobian matrix Jn of large magnitude). 

3.2. Stiff Iteration Error Components 

In this section, we investigate the damping of the stiff iteration error components. We shall 
do this for the test equation y' = >..y + g(t), where g(t) is a smooth function of t and >.. is a 
stiff eigenvalue of Jn, that is, z := hA. is of large magnitude. The following theorem is the stiff 
analogue of Theorem 3.1 for this test equation. 

THEOREM 3.2. Let S2m 1 Pi and Wj be defined by (3.1) and (3.2), and define the matrices 

0 

Ko:= f 5 , Km(h) := II W;(h), m 2:: 1. (3.8) 
j=m-1 

Then, for z := hA.--+ oo, the error amplification matrices Zi and Hm are given by 

PROOF. It is convenient to apply the iteration method (2.2) directly to the test equation y' = 
>..y + g( t), rather than rewriting this equation in autonomous form. It is straightforwardly verified 
that we again obtain the recursion (2.3) with J(Y) = Alsc1.· Hence, the matrix Zj reduces to 

Zi(h) = [lad - z- 1 n- 1 ® Ic1.r 1 

x [Isa. - (D- 1 ®lc1.) Pj (A® Ic1.) - z-1 (D-1 ®Id)+ z- 1 (D- 1 ®Ic1.) Pj] 

= [Isc1.+z- 1D- 1 ®Ic1.] 

x [Isa. - (D-1 ® Ic1.) Pi (A® Ic1.) - z-1 (n- 1 ® Ic1.) + z- 1 (D- 1 ® Ic1.) Pi] + 0 (z- 2 ) 

=lad - (n-1 ® lc1.) Pj (A® la.)+ 0 (z-1). 

Substitution of 

Pi= - [Isd - z- 1n-1 ® Ic1.r 1 [(D ® Ic1.) (Wj(h) - Is)A- 1 ®id+ z-1 (n-1 ® Ic1.) + o (z- 1h2)] 

= - [Isc1.+z- 1D- 1 ®Ic1.] 

x ((D ® lc1.)(W;(h) - J,,) A-1 ® Ic1. + z-1 (D- 1 ® Ic1.) + 0 (z- 1h2)) + 0 (z-2) 

= - (D ® Ic1.) (Wj(h) - 18 ) A-1 ® Ic1. + 0 (z-1) 

and using (2.4) yields (3.9). I 
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From this theorem, we conclude that for the stiff error components the matrix Hm(h) = 
0(1} as h -+ 0, whereas, for the nonstiff error components, the matrix Hm(h) = O (h2m) (see 
Theorem 3.1). Hence, it is to be expected that the convergence of the stiff error components will 
dominate the overall convergence of the iteration process. This leads us to base the determination 
of the matrix Don the magnitude of the matrix Km(h) as defined in (3.8). 

4. DETERMINATION OF THE MATRIX D 

In this section, the matrix D will be employed for improving the convergence of the stiff 
error components by controlling the magnitude of the matrix Km(h) defined in (3.8). We shall 
concentrate on the case h = 0 and we write Km = Km(O) = wm where W = W(O) = [8 -

2v-1 A+ v-2 A2 (cf. (3.2)). A similar situation is discussed in [1] for the PDIRK methods. 
We recall that these methods are obtained from (2.2) by dropping the preconditioner. For the 
PDIRK methods, the matrix W is given by I - D- 1A. In [l], the matrix Dis chosen such that 
D minimizes the spectral radius of W. This minimal-spectral-radius iteration strategy is based 
on the assumption that the reduction factor Pm in the formula 

(4.1) 

converges sufficiently fast to the spectral radius p(W) of W. Clearly, if the reduction factor 
Pm ~ p(W), then the best we can do seems to be the minimization of p(W). However, this 
relation is only asymptotically guaranteed, that is, p00 = p(W), provided p(W) ~ 1. Hence, it 
is not evident that the minima.I-spectral-radius approach leads to matrices D such that Pm is 
also sufficiently small for small values of m. We investigate this for the PDIRKJ methods based 
on Radau IIA correctors of orders 3, 5 and 7. The first 5 significant digits of the entries of the 
matrices D minimizing Pm are given in Table 4.1, and Table 4.2 lists for m = 4 and m = 5 
the matrices D minimizing Pm (the minimal-reduction-factor iteration strategy). Furthermore, 
Table 4.3 presents, for various values of m, the Pm-values for these three strategies. These results 
give rise to the following observations: 

(i) in all strategies, the factors Pm strongly vary with m, 
(ii) in all strategies, the first two iterations may lead to amplification of the stiff error compo

nents, 
(iii) ignoring the first two iterations, the minimal p4 and Poo strategies seem to be preferable. 

Table 4.1. Matrices D = diag (di. ... , da) minimizing Poo = p(W). 

Corrector s Poo = p(W) 

Radau IIA 2 0.97266 0.39661 

Radau IIA 3 0.49336 0.25710 0.39656 

Radau IIA 4 

0 

0.013 

0.0041 0.46239 0.29118 0.15770 0.24121 

Table 4.2. Matrices D minimizing Pm for the four-point Radau IIA corrector. 

m Pm 

4 0.13 0.46151 0.29070 0.15757 0.24088 

5 0.14 0.26698 0.15915 0.29987 0.35116 

Table 4.3. Values of Pm for the four-point Radau IIA corrector. 

Iteration strategy m=l m=2 m=3 m=4 m=5 m=6 m=7 

Minimal Poo 5.16 2.33 0.79 0.21 0.15 0.14 0.13 

Minimal p4 5.17 2.33 0.78 0.13 0.14 0.14 0.13 

Minimal p5 2.67 1.67 1.07 0.38 0.14 0.15 0.14 

m=8 

0.09 
0.08 
0.12 
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However, it should be remarked that the computed reduction factors are based on the norm 
of the matrix wm, a.nd therefore correspond to a ''worst case" situation and not necessarily 
to the actual situation. For example, if the stiff components of the initial error g(O) are in a 
particular subspace of the stiff eigenspa.ce of the Jacobian Jn, then the actual Pm factors may 
be much smaller. In order to get some insight into the initial error g(O), we again consider the 
test equation y' = >..y + g(t). Let us assume that the stage vector X occurring in the predictor 
formula (2.8) is sufficiently close to the corrector stage vector solution corresponding to the 
preceding step, that is, Yn-1.Yn and X approximately satisfy (2.1). In such a. model situation, 
we can derive an explicit expression for e(o): 

THEOREM 4.1. Let Yn-1.Yn and X approximately satisfy (2.1). Then, for the BDF predictors 
with D• = D and the explicit predictors with D* = 0, the stiff part of the initial iteration error 
can, respectively, be approximated by 

c(O) = z-1v ® Yn + 0 (z- 2) + 0 (hz- 2g (tn)), 

v = (1. - [e; A-1er1 D-1E) A- 10, 

c(O) = v ® Yn + 0 (z-1) + 0 (hz- 1g(tn)), 

v = [e~ A-1e]-1 EA-1e. 

PROOF. It is easily verified that 

y(o) = ((18 - zD*)-1 E® Id) X+ h ((la -zD•)-1 D* ®Id) g(tne +he), 

Y = (18 - zA)-1 e ® Yn + h ((la - zA)-1 A® Id) g (tne +he). 

{4.2a) 

(4.2b) 

Since Yn-i. Yn and X are assumed to approximately satisfy (2.1), we have for our test equation 

Thus, 

X = (la - zA)-1 e®Yn-1 + h ((I., - zA)- 1 A® Id) g(tn-1e +he), 

Yn-1 = R(z)-1Yn - hR(z)-1 ( eI (la - zA)-1 A® Id) g (tn-1e +he), 

R(z) := eI Ua - zA)- 1 e. 

X = (18 - zA)-1 e ® [R(z)-1Yn - hR(z)-1 ( eI (18 - zA)- 1 A® Id) g (tn-1e +he)] 

+ h ( (!8 - zA)- 1 A® Id) g (tn-1e +he} 

= R(z)-1 (Is - zA)-l e ® Yn - h [ ( R(z)-1 (la - zA)- 1 eeI - la) (ls - zA)- 1 A® Id] 
x g (tn-1e +he). 

The initial stage vector error takes the form 

g(O) = q(z) ®Yn - h(M(z) ®Id) g (tn-1e +he)+ h(N(z) ® Id}g(tne+ he), 

q(z) := ( R(z)-1 (1. - zD*)-1 E - I,) (I., - zA)-1 e, 

M(z) := (111 - zD*)-1 E [R(z)- 1 (la - zA)-1 eeI - 111] (Ja - zA)-1 A, 

N{z} := (I., - zD*)-1 D* - (la - zA)-1 A. 
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For lzl - oo, the choice D* = D yields 

q(z) = z-1 (1a - eI ~-leD- 1E) A-1e+O (z-2), 

M(z)=z-2n-1E( 1 A-1eeT -1) +O(z-3) eI A-le a a ' (4.3a) 

N(z) = z-2 (A-1 - n-1) + 0 (z-3). 

For D* = 0, we find 
1 

q(z)= eTA-leEA-1e+O(z-1), 
a 

M(z) = -z-1 E ( eJ ~-le A- 1ee~ - la), 

N(z) = z-1 la+ 0 (z-2). 

(4.3b) 

From (4.3), the assertion of the theorem readily follows. I 

From {2.4) and the Theorems 3.2 and 4.1, we deduce that, in the model situation, the final 
iteration error reads 

e(m) = [Km(h)®Id+O(z- 1)]e<0> 

= z-ar m(h) ® Yn + 0 ( z-1-a) + 0 (hz-l-a g (tn)) , (4.4) 

r m(h) := Km(h)v, 

where O' = 0 if D* = 0, and a= 1 if D* =D. The vector r m{h) will be called the stiff iteration 
error vector. We define the actual reduction factor 'Ym by 

-Ym := y'nr mlloollfoll~1 , r m := r m(O). (4.5) 

Table 4.4 presents the analogue of Table 4.3 for the quantities 'Ym· Table 4.4 indicates that on 
the basis of the actual reduction factors, the three iteration strategies will show a much more 
equal behaviour than Table 4.3 suggests. However, also note that the minimal Ps strategy has 
an initial vector r o of much smaller magnitude. 

Ta.ble 4.4. Values of 'Ym. for the four-point Rada.u IIA corrector. 

Iteration strategy urolloo m= 1 m=2 m=3 m=4 m=5 m=6 m=T m=8 

Minima.I Poo 213.8 1.31 0.99 0.30 0.10 0.11 0.11 0.08 0.05 

Minimal p4 214.1 1.31 0.99 0.31 0.09 0.11 0.11 0.09 0.06 
Minimal pr, 67.4 0.68 0.84 0.31 0.13 0.09 0.10 0.09 0.07 

Ta.ble 4.5. Values of Cm for the four-point Rada.u IIA corrector. 

Iteration strategy llColloo m= 1 m=2 m=3 m=4 m=5 m=6 m=T m=8 

Minima.I Poo 0.043 0.037 0.25 0.22 0.27 0.28 0.29 0.30 0.31 

Minimal p4 0.044 0.036 0.25 0.22 0.27 0.28 0.29 0.30 0.31 

Minimal p:; 0.001 0.101 0.1 'T 0.18 0.19 0.19 0.19 0.20 0.20 

Finally, we compare the actual nonstiff reduction factors based on the nonstiff iteration error 
vector Cm and defined by 

Cm := \/llCmlloollColl~1 • (4.6) 

This leads to the values listed in Table 4.5. Evidently, it is now the minimal Ps approach that is 
clearly superior to the minimal p00 and minimal p4 strategies. 

Summarizing, we conclude that the three iteration strategies are expected to perform similarly 
in cases where the stiff components in the iteration error dominate the rate of convergence, and 
that the minima.I P5 strategy should become superior if the nonstiff components dominate the 
rate of convergence. 
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5. NUMERICAL EXPERIMENTS 

In this section, we compare the PDIRKJ{2m,>.k} methods, using various iteration strategies, 
with the PDIRK methods developed in [l] which are obtained from (2.2) by setting Pi = Isd· The 
PDIRK methods are applied with the iteration strategy used in [l], that is, the initial iterate is 
provided by the LSV predictor, the outer iteration strategy is based on the minimal p00 approach, 
and the inner iteration uses modified Newton, iterated to convergence. The PDIRKJ{2m, >.k} 
methods are applied with the BDF predictor (unless stated otherwise), the same inner iteration 
strategy as in PDIRK, and with an outer iteration strategy based on either the minimal p00 

approach or the minimal p5 approach. Both methods use Jacobian matrices at step points that 
a.re updated in each step. 

The accuracy of the numerical solution is given by the number of correct digits~. obtained 
by writing the maximum norm of the absolute error or relative error at the endpoint in the form 
10-Aab• or 10-Aret, respectively. The sequential computational effort is estimated by the total 
number of nonlinea.r systems that have to be solved per processor (it is assumed that at least 
s processors are available). This number is given by NM, where N is the total number of steps, 
and M = m when using the LSV predictor and M = m + 1 when using the BDF predictor. 

5.1. Convergence of Stiff and Nonstiff Iteration Error Components 

We start with a comparison of the convergence of the stiff and nonstiff iteration error compo
nents for the PDIRKJ{2m, ,\k} methods with zero fitting points (,\k = 0). As a first test problem, 
we choose the problem of Kaps [10]: 

dy1 ( -1) -1 ( )2 dy2 dt = - 2 + e Y1 + e Y2 , dt =Yi - Y2 (1 + Y2) , (5.1) 
Y1(0) = Y2(0) = 1, e = 10-3, 0 $ t $ 1, 

with the exact solution y1 = exp(-2t) and Y2 = exp(-t) for all values of the parameter e:. This 
system consists of a stiff and nonstiff equation. The first and second vector component of the 
numerical solution may be considered as the stiff and nonstiff solution components. Both methods 
are applied with the four-point Radau IIA corrector. 

The Tables 5.la and 5.lb present accuracies for the nonstiff and stiff component in the Kaps 
problem (5.1). These results clearly show that the accuracy of both the PDIRK, PDIRKJ and of 
the corrector solution is dominated by the accuracy of the stiff solution component. Furthermore, 
we see that for both the BDF and LSV predictor the PDIRKJ method is more accurate than 
PDIRK, particularly for low numbers of iterations. This behaviour was confirmed for almost all 
other test problems we tried, so that we shall omit further comparisons with the PDIRK method. 

Table 5.la. Values of Aabs for the nonstiff component in the Kaps problem (5.1). 

Method h M == 2 M=3 M=4 M=5 M=6 4-stage R..adau lIA 

PDIRKJ {2m, O} 1/2 3.6 5.4 7.7 8.6 8.8 8.8 

PDIRKJ {2m,o}• 1/2 4.9 6.9 8.3 8.6 8.8 

PDIRK 1/2 2.5 4.2 5.7 6.4 7.4 

PDIRKJ {2m, O} 1/4 4.1 6.8 9.4 10.4 11.7 11.8 

PDIRKJ {2m,O}" 1/4 4.5 7.8 9.3 9.5 10.8 

PDIRK 1/4 3.4 4.2 7.1 7.9 9.2 

•BDF predictor replaced by LSV predictor 
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Table 5.lb. Values of .::lat>a for the stiff component in the Kaps problem (5.1). 

Method h M""2 M=3 M=4 M=5 M=6 4-sta.ge Rada.u IIA 

PDIRKJ {2m, O} 1/2 3.7 3.8 5.4 7.8 6.4 6.4 
PDIRKJ {2m, o}· 1/2 2.4 4.0 5.6 6.4 6.4 
PDIRK 1/2 1.9 2.3 5.5 5.7 6.8 

PDIRKJ {2m, O} 1/4 4.4 4.9 6.5 7.8 7.8 7.8 
PDIRKJ {2m, OJ- 1/4 1.6 4.8 6.3 6.5 7.5 
PDIRK 1/4 0.6 1.1 5.6 6.2 7.4 

* BDF predictor replaced by LSV predictor 

5.2. Comparison of Outer Iteration Strategies 

Next we compare the minimal p00 and the minimal p5 outer iteration strategy for the PDIRKJ 
{2m, O} method with the four-point Rad.au IIA corrector. The first test problem is the nonlinear 
Prothero and Robinson problem (cf. [1]): 

d~t) = -e-1 (ya(t) - g(t)3) + g'(t), 
(5.2} 

y (to) = g (to), g(t) := cos(t), e := 10-3 , 0 ::; t ::; 1, 

with exact solution y(t) = g(t) for all values of the parameter e. The results of Table 5.2 indicate 
a better performance of the minimal p5 iteration strategy. 

Table 5.2. Values of .::laba for the Prothero and Robinson problem (5.2). 

Iteration strategy h M=2 M=3 M=4 M=5 M=6 4-stage Radau HA 

Minimal Poo 1/2 2.3 3.4 3.7 6.0 7.0 7.3 

Minimal Ps 2.9 4.4 4.6 6.7 7.2 

Minimal Poo 1/4 5.4 5.2 7.8 8.1 8.4 8.5 

Minimal pr, 7.2 6.5 7.8 8.4 8.4 

The test set of Enright et al. [11] contains the following system of ODEs describing a chemical 
reaction: 

dy ( .013 + lOOOya 0 O ) 
dt = - 0 2500y3 0 y, 

.013 0 lOOOy1 + 2500y2 

0 ::; t ~ T := 51. 

y(O) = (1,1,0)T, 
(5.3a} 

Since we use fixed step sizes in our experiments, we avoided the initial phase by choosing the 
starting point at to = 1. The corresponding initial and end point values are given by 

( 
0.990731920827 ) 

y(l) ~ 1.009264413846 ' 
-.366532612659 io-5 

( 
0.591045966680 ) 

y(T) = 1.408952165382 
-.186793736719 10-s 

(5.3b) 

Table 5.3 shows a more or less comparable performance of the two iteration strategies. 

Table 5.3. Values of .::lab• for the chemica.l reaction problem (5.3). 

Iteration strategy h M ""2 M=3 M=4 M=5 M=6 4-sta.ge Radau IIA 

Minimal Poo T/2 3.1 5.7 7.5 8.9 10.2 9.8 

Minimalpr, 3.8 5.4 7.2 8.8 9.6 

Minimal Poo T/4 4.1 7.2 9.1 9.6 10.6 11.8 

Minimal Ps 5.1 7.0 9.2 10.4 11.4 



ParaUel Runge-Kutta Methods 29 

Finally, we consider the circuit analysis problem of Horneber [12] consisting of 15 highly non
linear, stiff equations describing a ring modulator. For specifications of this problem, we refer 
to [13]. We solved this problem on the interval 0 ~ t :5 10-3 . Table 5.4 presents results obtained 
by PDIRKJ{2m,O} using the minimal p00 and minimal Ps iteration strategies, and by PDIRK 
using the minimal p00 strategy. In this difficult problem, the inner/outer iteration process did 
not always converge (indicated by *). Evidently, the minimal Ps iteration strategy is less robust 
than the minimal p00 strategy. 

Table 5.4. Values of .6.abe for the Horneber problem. 

Method Iteration strategy h M=2 M=3 M=4 M=5 4-stage Rad.au IIA 

PDIRKJ Minimal Poo * 4.4 4.4 4.4 4.5 

Minimal P5 * * * * 
PD IRK Minimal Poo * * 4.4 4.9 

PDIR.KJ Minimal Poo 210 - 7 4.8 6.6 7.4 8.4 8.4 

Minimal p5 6.0 6.7 7.5 8.4 

PDIR.K Minimal Poo * * 5.5 6.1 

Our conclusion from the experiments of this subsection is that the minimal p5 iteration strategy 
is often more accurate than the minimal p00 strategy, but the greater robustness of the minimal 
p00 strategy leads us to adopt this strategy as the most recommendable one. 

5.3. Comparison of Correctors of Different Orders 

In an actual implementation where the desired accuracy is controlled by a user-specified toler
ance parameter, it is desirable that the method performs well in a range of stepsizes. A four-point 
Rad.au IIA corrector is expected to be suitable for producing high accuracy results because of 
its relatively high stiff order s = 4 and nonstiff order p = 7, but how does it perform for larger 
stepsizes when compared with lower order correctors. Table 5.5 compares s-point Radau IIA cor
rectors for s = 2, 3 and 4. In all cases, we used the minimal p00 strategy for which the matrices D 
are listed in Table 4.1. Evidently, the PDIRKJ{2m, O} using the four-point Rad.au IIA corrector 
is more robust and considerably more accurate than when using lower-order correctors. 

5.4. Spectral Fitting 

Table 5.5. Values of .6.abs for the Horneber problem. 

8 h 

2 410 -7 
3 

4 

2 210 -7 

3 
4 

2 110 - 7 
3 
4 

M=2 M=3 

* * 
• * 
* 4.4 

2.4 2.9 

4.3 5.9 

4.8 6.6 

3.3 3.8 

5.5 7.3 

6.2 8.5 

M=4 M=5 

* * 
* * 

4.4 4.4 

2.9 2.9 

6.0 6.0 

7.4 8.4 

3.8 3.8 

7.4 

8.5 

Finally, we demonstrate that the para.meters occurring in the preconditioners can be used for 
improving the accuracy of specific solution components. This facility may be useful in problems 
where we not only have stiff a.nd nonstiff components, but also "stiff/nonstift"' components. For 
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example, the IVP 

10 -a 0 0 0 0 
a 10 0 0 0 0 

dy 0 0 4 0 0 0 
y + esin(t), -=-dt 0 0 0 1 0 0 

0 0 0 0 1 0 2 

(5.4) 

0 0 0 0 0 1 
10 

a= 104, y(O) = e, 0 :$ t :$ 20, e := (1, 1, 1, 1, 1, 1) T, 

has two extremely stiff components y1 and Y2, one stiff/nonstiff component y3 , and three non
stiff components y4, Ys and Y6 (this problem differs from Problem B2 in [11] by the additional 
inhomogeneous term esin(t) which makes the solution less trivial). The PDIRK method with all 
fitting points at the origin has a strong damping effect on the stiff and nonstiff error components, 
but does not pay much attention to the stiff/nonstiff error components. Table 5.6 lists minimal 
accuracies for the three types of solution components obtained by PDIRKJ{2m,..Xk} using three 
fitting strategies: 

A all fitting points Ak are at the origin, 
B the fitting points coincide with the zeros of the Chebyshev polynomial shifted to the 

interval [a, b] = [-4, O], 
C two fitting points at the origin and the remaining fitting points as in strategy B. 

The results in Table 5.6 clearly show that strategy A "neglects" the stiff/nonstiff component y3. 
Stategy B improves the accuracy of this middle component considerably, but at the cost of 
the nonstiff components. Strategy C seems to be an effective compromise; already after three 
iterations, the stiff/nonstiff as well as the nonstiff components have reached the corrector solution. 

Table 5.6. Values of 6re1 for problem (5.4) obtained by PDIRKJ {2m, A1c} with fitting 
strategies A, Band C. 

Component h Strategy m=l m=2 m=3 m=4 4-stage Radau IIA 

stiff 1 A 5.6 5.7 8.0 7.1 7.1 

stiff./nonstiff 1.6 3.5 4.2 4.8 5.0 

nonstiff 1.9 4.5 5.5 5.6 5.6 

stiff 1 B 5.7 5.9 6.4 6.6 7.1 

stiff/ nonstiff 3.5 4.9 5.0 5.0 5.0 

nonstiff 1.4 3.0 5.1 5.5 5.6 

stiff 1 c 5.6 5.8 6.4 6.6 7.1 

stiff/ nonstiff l.6 4.6 5.0 5.0 5.0 

nonstiff 1.9 4.8 5.6 5.6 5.6 
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