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integral representations with uniform asymptotic expansions are also given. The algorithms will
be given in a future paper.
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cylinder functions U(a, z), V(a, 2) and W (a, z) and their derivatives.
The new integrals will be used in numerical algorithms based on
quadrature. They follow from contour integrals in the complex plane,
by using methods from asymptotic analysis (saddle point and steep-
est descent methods), and are stable starting points for evaluating
the functions Ul(a, z), V(a,z) and W (a, ) and their derivatives by
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for large parameter cases. Relations of the integral representations
with uniform asymptotic expansions are also given. The algorithms
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Contents of the paper

We give an overview of the structure of the paper.

Section 1 The basic properties of the parabolic cylinder functions
Ul(a, z) and V(a, z) that are used in this paper.
Section 2 The integral representation of U(a, z) for a > 0.
2.1 the case z > 0.
2.2 the case z < 0.
2.3 a Wronskian relation for 4 integrals.
2.4 the relation with uniform asymptotic expansions.
Section 3 The integrals of U(a, z) and V (a, z) for a < 0.
3.1 the case —1 <t < 1, where t = z/(2\/]a]).
3.1.1 a Wronskian relation for 4 integrals.
3.1.2 the relation with uniform asymptotic expansions.
3.2 the caset > 1.
3.2.1 a Wronskian relation for 4 integrals.
3.2.2 the relation with uniform asymptotic expansions.
3.3 the caset ~ 1.
3.4 the caset < —1.
Section 4 The W —function.
4.1 the standard solutions.
4.1.1 the function p(a).
4.2 the case a < 0.
4.3 the case a > 0.
4.3.1 the case t > 1, where t = 2/(2\/a).
4.3.2 thecase -1 <t <1.
4.3.3 unstable representations.
Section 5 Concluding remarks.

1 Introduction

The solutions of the differential equation

d*y
T (1 re)y=o -

are called parabolic cylinder functions and are entire functions of z.
As in [1], Chapter 19, [7], and [9] we denote two standard solutions of
(1.1) by Uf(a, z),V(a, z). Another notation found in the literature is
D,(z) = U(—v — L, z). Special cases are Hermite polynomials, error
functions and Fresnel integrals.
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Values at the origin are given by

_ VT / _ VT
Ula,0) = 254 (4 ka) V(e,0) = 2297114 La)’
(1.2)
Vi(a,0) = =5 E__ y1(q,0) = —_ =2
T NG5l (g4 5a) T (33054 5a)
Then we have
Ula, z) = Ula,0) y1(a, z) + U'(a,0) ya(a, 2), (1.3)
V(a,z) = V(a,0) yi(a, z) + V'(a,0) y2(a, 2), (1.4)
where
1.2
yl(a7z):€4 lFl (_%a+%7%7_%22)
12
=e * 1F1(%a—|—%,%;%22), (1.5)
1.2
yg(a,z):ze4 lFl (_%a+%7%7_%22)
_1.2
=ze ' 1F (%a—l- 1% %22) 5
and the confluent hypergeometric function is defined by
Fi(a C'Z)Ii (@) " (1.6)
141 %, 6y . (C)n n!7 .

3

with (a), = I'(a+n)/I'(a),n=10,1,2,....
The functions y (@, z) and yz(a, z) are the simplest even and odd
solutions of (1.1) and the Wronskian of this pair is given by

Wilyi(2), y2(2)] = 91(2)y5(2) — y1(2)2(2) = L. (1.7)

JFrom a numerical point of view, the pair {y, y2} is not a satisfactory
pair [4], because they have almost the same asymptotic behaviour at
infinity.

The behaviour of Ul(a, z) and V (a, 2) is, for large positive z and
z> |al:

1.2

Ula,z) = e T z:a;% [11—|— O (z79)],
Via,z) = \/2/—77612 22 [1+0(z7?)].

Clearly, numerical computations of U(a,z) that are based on the
representations in (1.3) and (1.4) should be done with great care,
because of the loss of accuracy if z becomes large. Also, for large a
these representations become useless.

(1.8)
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The Wronskian relation between Ul(a, z) and V(a, z) reads:

WU (a,z),V(a,z)]=+/2/~. (1.9)

WIU (a, z),U(a,—z)] = %.

which shows that U(a, z) and V(a,z) are independent solutions of
(1.1) for all values of a. Other relations are

(1.10)

Ula,z) = o ma I{a+ %) V(a,—z) —sinwaV(a, z)], .
I'(a+ %) )
V(a,z) = ———[sinmraU(a, 2) + Ula, —2)].

Equation (1.1) has two turning points at +2v/—a. For real pa-
rameters they become important if ¢ is negative, and the asymptotic
behaviour of the solutions of (1.1) as « — —oo changes significantly
if z crosses the turning points. At these points Airy functions are
needed for describing the asymptotic behaviour.

The purpose of this paper is to give integral representations of
U(a,z) and V(a,z) for real values of @ and z. We use integral rep-
resentations from the literature and modify these by saddle point
methods. In this way we obtain integrands that are non-oscillating,
also for the case a < 0. In particular, we can use the new representa-
tions for large parameter cases. In earlier papers [8] and [2] we have
used these methods for obtaining stable integral representations for
modified Bessel functions with pure imaginary order and for inhomo-
geneous Airy functions (Scorer functions).

We give relations of the integral representations with uniform
asymptotic expansions, which are taken from [6] and [10]. We only
give the expansions in terms of elementary functions. Uniform expan-
sions in terms of Airy functions can be found in [6], and a modified
form in [10].

We also consider solutions W (a, +2) of the differential equation

W+ (iaﬂ - a) W =0, (1.12)

a modified form of (1.1), again for real @ and . Properties of W (a, )
are given in §4, which can be found in [1] and [5].

In a future paper we give algorithms based on quadrature rules
for evaluating the integral representations of Uf(a,z), V(a,z) and

Wia, z).
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In [10] numerical and asymptotic aspects of the parabolic cylinder
functions have been discussed, and we refer to this paper frequently.
The notation of certain quantities is also as in [10]. The asymptotic
methods referred to in this paper (saddle point methods) can be found
in [7] and [11]. For an overview of the numerical aspects and software
for the parabolic cylinder functions we refer to [3].

2 Integral representations for a > 0

We derive integral representations for U(a, 2) and U(a, —z). The com-
putation of V'(a,z) for @ > 0 can be based on the second relation in
(1.11). For @ > 0 the functions U(a,z) and U(a, —2) have a non-
vanishing Wronskian relation (see (1.10)), and moreover, these func-
tions constitute a numerically satisfactory pair of solutions of (1.1).

2.1 The case x > 0

We take the integral (see[1], formula 19.5.4)

eI g — (2.1)

where C is a vertical line on which ®s > 0. On C we have —%77 <

—a—1/2

phs < %ﬂ', and the many-valued function s assumes its princi-

pal value. The transformations
r=2t/a, s=+law (2.2)
give
Ula,z) = ———— [ W) — (2.3)
where
d(w) = Tw? — 2tw — In w. (2.4)
The saddle points follow from solving

w2—2tw—1_

¢ (w) = ——— =0, (2.5)

w

giving saddle points at ¢ £ vt? + 1. We take for the path C in (2.3)
the vertical through the positive saddle point

wo =t+ Vi + 1. (2.6)
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At this saddle point C coincides with the steepest descent path trough
wg. The complete steepest descent path follows from solving the equa-
tion J[p(w)] = F[P(wo)]. In the present case I[d(wp)] = 0 and we
obtain for the saddle point contour the equation

1r?sin20 — 2trsin — 0 =0, where w= re' (2.7)

which can be solved for r = r(0):

t+Vt2+0coth
r= ,

cosf

—lr<b<irm. (2.8)

Figure 1. Steepest descent contour for the integral in (2.3).
Then (2.3) can be written as
e%x2+a¢(wo)ai—%a ir

Ula,z) = Nirs . e g(6) db, (2.9)

P(0) = Rp(w) — ¢(wo)] = %rz cos 20 —2tr cos @ —In r—¢(wg), (2.10)

0= ] =33 (5 )
(2cosf 4+ 1)7‘2 —2tr+1

1 .
4+/r cos 50\/ t2 4+ 60coth

sy

(2.11)
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The quantity gdeﬁned by
€=tV + 14+ In(t + V12 + 1)), (2.12)

is used in the asymptotic representation of U(a, ) in this case; see
[10], formula (2.29). We have

Lot tad(wo) = a[t — V2 + 1-In(t+ V12 + 1)] = a(L - 2¢). (2.13)

This gives
ai 6—2ag %7’[‘ p
U(a, x) = W/ . e(w( )9(0) d07 (214)
~ir
where
vy(a) = e 573", (2.15)

For the derivative U’(a, z) we can start from (2.1), and we have

1.2
1 d
U (0, ) = ;4% Ce_xs+%s28—a(%x—s)7‘; (2.16)
This can be written as
/ al T
U'(a, :—7/ O () do, 2.17
w2 = g [ o) 2.17)
where
1 dw
h(O) = -S| —=—(t —
6)=-% L/@ i w)]
(2.18)

r3 —tr?(2cos — 1)+ r(2t2 + 14+ 2cos ) — ¢

44/ cos %0\/ t2+8coth

2.2 The case x < 0

This case can be done by using the representation of the previous
section. However, when t is a large negative number, the saddle point
wq defined in (2.6) is close to origin, at which point the integrand
of (2.3) is singular. As a consequence, the functions ¥(6) and ¢(6)
in (2.9) have singularities close to the origin § = 0 when ¢ is a large
negative number.
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In the present case we start with the well-known integral repre-
sentation (see [1], formula 19.5.3)

1,2
Vo) = o [T R sy ey
a,—T) = ———— s € s a - 5. .
7 I(a+3) Jo 7 ?

There are no oscillations, but it is convenient to transform the integral
in such a way that the saddle point is at the origin and a suitable
normalization is obtained. The transformations (2.2) give
, —dg?
aztie * 00 dw
Ula,—2) = 7/ emat(w) —— 2.20

where ¢(w) is given in (2.4). The positive saddle point wq is as in
(2.6). We transform this point to the origin by writing w = wo(1+4u),
which gives

N

Ly = S [y o
Ula,—z) = Tla+ 1) - T (2.21)

where we have used (2.13), y(a) is defined in (2.15), and
¥(u) = swie’ +u—In(1+ u). (2.22)
For the derivative we have
2 &
(0, —z) = — VT
I(a+3) (2.23)

o] du
—ay(u) 2

X Viz 1 7

/_1 € ( + 1+ wou) TTa

To avoid numerical cancellation for small values of u in the com-
putation of 1 (u) defined in (2.22), a specific code is needed for the
evaluation of In(1 + u) — u.

2.3 A Wronskian for the integrals

When checking the numerical algorithms the Wronskian relations in
(1.9) and (1.10) can be used. When the parameters are large it is more
convenient to use a Wronskian relation that is based on the integrals
derived in the section. This gives a better control of the errors that
occur in the quadrature rules, because large and small factors are not
present in the integrals.
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Table 2.1. Values of U(a, ) and V(a, z) for several values of a, with t = 1.2,
z = 2t\/a. We also give the Wronskian relation (1.9) (reduced to zero).

a U(a, ) Via, ) Wronskian

10.1 .87742145116891(-016) .915940854687909(+015) 43(-17)
20.1  .28991030051243(-034)  .196498319490114(+034) 40(-17)
30.1 .76172124886582(-054)  .611136504670193(+053) 22(-15)
40.1  .37897794771218(-074)  .106421744688740(+074) 61(-14)
50.1  .54336492182121(-095)  .664057299719702(+094) 14(-16)
60.1 .28814488246502(-116)  .114331948734753(+116) 14(-16)
70.1  .66706978761114(-138)  .457283270654938(+137) 14(-16)
80.1 .75880403194555(-160)  .376070790125305(+159) 22(-16)
90.1  .46343084237480(-182)  .580588047014352(+181) 19(-16)
100.1  .16280901630040(-204)  .156790547971731(+204) 19(-16)

We write (see (2.14), (2.17), (2.21), and (2.23), respectively)

a% e—Zag
Ula,z) = Wl(a, ), (2.24)

a% e—Zag
Ula,z) = _W Ii(a,z), (2.25)

ai woy (a 620‘g
Ula,—z) = QP:E %)) J(a,z), (2.26)

a% woy (a 620‘g
U'la, —z) = — %ﬁ; Ja(a, z). (2.27)

Then the relation for the integrals reads

27

a+/Wo

Ia,z) Jy(a,z) + I4(a, 2) J(a,z) = (2.28)

In Table 2.1 we give values of U(a, z) and V (a, ) for several values
of a, with t = 1.2, 2 = 2t\/a. The values of I(a,z), I4(a, ), J(a,z),
Ja(a, ) of (2.24)—(2.27) are computed with double precision in one
algorithm, with about 50 function evaluations for the trapezoidal rule
for each value of a. We compared these values with those computed
with the Maple 7.0 functions CylinderU(a, ) and CylinderV(a, z),
with Digits = 20, and found agreement for a < 40. For the higher
a—values, Maple’s Digit parameter has to be increased.
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2.4 Uniform asymptotic expansions for a > 0

The quantities related with the integrals are closely related with the
uniform asymptotic expansions given in formulas (2.29), (2.33) and

(2.34) of [10]. We have

s - 7r£ 2 )1/4 ~
Ha,z) = \/5(752/4—_1)1/4 Fu(t),  laa,z) = - t\/-%l Gult),
(2.29)
p ~ (2 1/4 ~
J(avx) = \/m(\/t;_l)lﬂ Pu(t)v Jd(avx) = %Qu(t%

where F,(t), G,(t), P.(t), and Q,(t) are supplied with asymptotic
expansions that have a double asymptotic property: one of the pa-
rameters a or ¢ (or both) should be large. Recurrence relations for
the coefficients of the expansions are given in [10].

3 Integral representations for a < 0
We give integral representations for U(—a,z) and V(—a,z), with
a > 0, and we consider three z—intervals. Let t = 2 /(2y/a). The dif-

ferential equation (1.1) becomes for U(—a,2t\/a) and V(—a,2t\/a)
in terms of ¢

—2—4a* (P =1)y =0, (3.1)
which has turning points at ¢ = £1. Consequently, we consider the

intervals t < —1, [t| < 1 and ¢t > 1. We start with the middle interval,
where the oscillations occur.

3.1 The case —1 <t <1
We consider the integral
Y(a,z)= /OOO g3 Fwisga—g ds, Ra>-1. (3.2)
Using (2.19), we see that
Y(a,2) = [a+ L)e 3% Ula, —iz). (3.3)
We also have

ﬁe—%mﬁm’(](a, —iz) = U(=a,2)/T(a+ 1) +iV(a,z). (3.4)
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This follows from using the initial values in (1.2) and those of Y (a, z).
It also follows from the relations in (1.11) and 19.4.6 in [1].
Hence,

ﬁe—%mﬁm’e%fﬂa, 2) = U(=a,2) +il(a+ HV(-a,2). (3.5)

We see that the single integral (3.2) produces U(—a, z) and V (—a, )
by taking real and imaginary parts.
We proceed with Y (a, ), and the transformations x = 2\/at, s =

Vaw give

o0 dw
Y , = a/2—|—1/4/ _a(b(w) , 36
(a,0) = /30114 [ et 2 (3.6)
where
d(w) = %w2 — 2itw — Inw. (3.7)

We consider a path through the saddle point

wy =it +/1— 12, (3.8)

We have
plwg) = %—I—t2—|—2i (77 — iﬂ') , = % (arccost —tV1-— t2) , (3.9)

where arccost has values in [0, 7] for ¢t € [-1,1].

The path of steepest descent starts at w = 0, runs through wy,
and terminates at +oo; see Figure 2. The path follows from solving
the equation

Sp(w) = S6(ws), (3.10)
that is, from solving
%rzsin 20—2trcos€—0—277—|—%71’:07 (3.11)

where w = re'. The solution of (3.11) reads

tcosf + U\/t2 cos? @ + sin O cos (6 + 21 — %ﬂ')
"= sin @ cos @ '

(3.12)
0 < 0 < 007

where 6 = =21+ %77; the square root is non-negative. The number
o equals —1 when phwy < 8 < 6y, and +1 when 0 < 8 < phwy.
Observe that phwy = %ﬂ' — arccost. When 6 = 6y, we have r = 0;
when § = phwy, we have r = 1, and 8 = 0 gives r = oo. For t = 0 the
path coincides with the positive real axis. When ¢ < 0 the paths are
in the lower half plane, and follow from those for ¢ > 0 by symmetry.
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1

2.5

Figure 2. Steepest descent contours for the integral in (3.6)
for t = 0.1,0.5,0.9.

A simple approximation of the path is given by (we write w =
u+ )
t(1
G S N ) (3.13)
u 4+ ug
This path runs through the point wy = u4 + i¢, and has the same
slope at this point as the exact steepest descent path, that is, dv/du =
t/(1+ uy) for u=uy.

For t = 1 the steepest descent path runs from the origin to wy =4
along the imaginary axis, and from ¢ to 2¢ 4+ oco. For more details on
the case t > 1 we refer to §3.2.

Integrating (3.6) with respect to § we obtain

U(—a,z)+ il (a + %)V(—a7 r) =
1 : 1 fo 3.14
= ﬁaz'y(a)e_l(%”—ﬂ)/ e~ g(6) de, (3:14)
0

where v(a) is defined in (2.15),

$(0) = 1r?cos20 + 2trsinf —Inr —t* — 1, (3.15)
and 9/2
e dr
H=-—_—"[— ) . 1
g(6) NG (d@ —I—ZT‘) (3.16)

We write the representations for U(—a,z) and V(—a,z) in real
form, with trigonometric functions that correspond with those in [6]
and [10]. We first write

9(0) = g1(60) — 1g92(0), (3.17)
where ¢;(0),j = 1,2, are real. That is, by (3.16),
ﬁcos(%@) N rsin(%@)

R

91(0) = (3.18)
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_ cos(38)  drsin(39)
g2(0) =r W + B
Then we have
U(-a,z) = %ai'y(a) [(sin A) Gp + (cos A) Gy ,

V(-a,2) = ﬁai% [(cos A) G — (sin A)Gy],

A:Qan—l—iﬂ

G = /090 ) g (0)do, j=1,2.
For the derivatives we find, using (3.2) and (3.5),
U'(—a,2) +il (a+4) V'(~a,2) =
ﬁa%y(a)e_i(z‘m_%”) / " e~ n(6) de.
0

where

h(0) = (t + tw)g(8) = h1(8) — iho(6).
That is, by (3.25), (3.18) and (3.19),
hi(8) = (t — rsin8)g1 () + rcosfg2(6),
ha(8) = rcosfgi(0) — (t — rsinf)g2(6).

Then we have

Ul-a,z)= ﬂa%'y(a) [(sin A) Hy + (cos ) Hq] ,

aty(a)
I'a+3)

where A is given in Eq. (3.22) and

V'(-a,z) =

S

H]:/ O p 0y do, j=1,2.
0

[(cos\) Hy — (sin A) Hy].

13

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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3.1.1 A Wronskian for the integrals By using (1.9) and the integrals
in (3.23) and (3.30), we find the relation
Ia+3) =

H\Gy—GiHy= J2——— 2 = T~ l) 31
1G2 — G1H, \/; a3 (a) . (a—|—2 ; (3.31)
where

F(a—l—%):x/ﬂ’y%a)]“(a—l—%), I(a+3)=1+0(1/a), (3.32)

as a — oo. Hence, for large a, the right-hand side in (3.31) is of order
Z[14 O(1/a)] (see also formula (3.28) in [10]). The relation in (3.31)
can be used for testing the numerical algorithms.

3.1.2 Uniform asymptotic expansions —1 < t < 1 The relationship
of the integrals G;, H; with uniform expansions follows from (2.23),
(2.24) and (2.27) of [10]. These expansions are the same as in [6]. On
the other hand, we can derive modified expansions (a main topic in
[10]), by using (2.29) and (2.33) of that reference. From (3.4) and by
changing ¢t to —it in(2.29) of [10], we obtain

U(—a,z)+ I (a + %) V(-a,z) =

Lri—2ian " (333)
F* ((Z T %) \/571((1)64 L FM(_it)v
at(l—t?)%
U-a,z)+ il (a + %) Vi(-a,z) =
(3.34)
- ( + ) V2aty(a)e iR )1 G (—it),
where F,(—it) and G, (—it) have the asymptotic expansions
- . — 5¢5 " 5 . - 5¢5 "
Futeit) e (-1 ) Gt~ -1 (5
s=0 s=0

as @ — oo, uniformly for t € [-1446, 1 —4]. The quantity 7" is defined

by
P Y L B (3.36)
2AV1 -2

The polynomials ¢, and 15 are given in (2.11) and (2.16) of [10], with
recursion relations. The first fraction at the right-hand sides of (3.33)
and (3.34) has the asymptotic estimate 1 4+ O(1/a) (see also formula
(3.28) in [10]).
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3.2 The caset > 1

We use the the integral for Y (a, z) given in (3.6) with ¢(w) given in
(3.7). The saddle points are now purely imaginary:

wo =it —ivVit2 -1, wy =i+ ivVi2 -1 (3.37)
We have
dlwy) = § + 1% — Lmi £ 2¢,
(3.38)
E=4 =T —In(t4+vZ-1)].

The quantity £ is also is used in the asymptotic representation of
U(—a, z) for this case; see [6] and [10].

The path of steepest descent starts at w = 0, runs through w_
and w4 on the positive imaginary axis, and from w4 to +o0o. The
path from w4 to +oo follows from solving the equation

Sp(w) = -1, (3.39)
that is, from solving

1r?sin20 — 2trcosf — 6 + tx =0, (3.40)

where w = re'. The solution of (3.40) reads

tcosf + \/t2 cos? f + sin O cos (6 — %ﬂ')

r= 0<6<

9

n =

sin @ cos 6 7 (3.41)

The square root is positive, unless when ¢t = 1 and 6 = %77.
We obtain

U(—a, 2) +il(a+1/2)V(—a,z) = ﬁaiy(a) et
(3.42)

1
27 —ay(0) - 2a€ /7’+ a%(v)ﬂ
X e #) df + e e ,

where 6(v) = d(w_) — ¢(iv), g(8) as in (3.16), and ¥(8) = ¢(w) —
d(wy) = R[p(w) — ¢(wy)], w = re?, now with r defined in (3.41).
Explicitly,

¢(v) =
b(0) =

ot =2t +Inv—4r2 4+ 2tr_ —Inr_,

4
1r?cos260 4+ 2trsinf —Inr — L — 12 — 2¢. (3:43)
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where
r_=t—Vt?—1. (3.44)

Considering the real and imaginary parts on both sides of (3.42),
we see that for V(—a, z) we need the v—integral with the dominant
factor €2%¢ and part of the f—integral. When ¢ ~ 1 (in fact, when a
is small) both integrals are of the same asymptotic importance. The
dominant saddle point in the v—integral is r_; in the #—integral the
dominant point is the upper limit.

When we write

e g(0) = 91(6) + iga(0), (3:45)
where g1(0) and g2(0) are real, we have
U(-a,z) = %ai'y(a)e_zg‘g Gy (3.46)
and
2a&
V(-a,2) = %aim (6_4‘1g Go+ Gg) . (3.47)
r (a + %)

where (for j =1,2)

[ e, _ [T ek Y
G /0 O g.(0) df, Gy /0 S (3.48)

For the derivatives we have
U'(=a, 2) + il (a+ D)V/(—a,2) = | [Faiy(a) [ 2e+5m
X / e~ WO R(0) df + ie?*® /7’+ ) (t— v)d—v )
0 0 Vv
where h(0) = (t + iw)g(f). When we write

e h(B) = hy(0) + iha(6), (3.50)

where hy(#) and hy(0) are real, we have

(3.49)

Kis

NI

Ul-a,z) = %a%'y(a)e_zang, (3.51)
and
2a&

V'(—a,z) = ﬁa%'y((z)iel {6_4(15 H, + Hg} . (3.52)

where (for j =1,2)

3T r+  ~ dv

H:/2 O (0)do, H :/ @ -y 2 (353
= 0y do, = [T 0 )
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3.2.1 A Wronskian for the integrals By using the Wronskian relation
in (1.9) and the integrals in (3.48) and (3.53), we obtain (cf. (3.31))

e~ 198(G 1 Hy — H1Gl) + (G H3 — H G3)

I'a+ 3 1
- \/@M: Zr (a—l——).
avy?(a) a 2
The relation in (3.54) can be used for testing the numerical algo-
rithms.

(3.54)

3.2.2 Uniform asymptotic expansions for t > 1 We give the rela-
tionship of the integrals with the uniform expansions given in (2.9),
(2.14), (2.18) and (2.29) of [10]. We have

Gl = Ll Fﬂ(t)v
2/t~ 1)

V(- 1)
2v/a

I'la+ %)e“a_“_%
V2(t2 - 1)

Hy=- Gu(t)v
(3.55)

e Gy + Gy =

Pﬂ(t)7

1 1
a4+ L)eta "2 (12 - 1)%
e Hy + H3 = 7 Qu(t),
where F,(t), G,(t), P,(t), and @Q,(t) are supplied with asymptotic
expansions that have a double asymptotic property: one of the pa-
rameters a or t (or both) should be large; t > 14 §. Recurrence
relations for the coefficients of the expansions are given in [10].

3.3 The case t ~ 1

For ¢t ~ 1 the contours used in §3.1 becomes less suitable for nu-
merical quadrature. For example, we see in Figure 2 that the saddle
point w4 approaches the imaginary unit when ¢ 1 1, and that the
path becomes non-smooth when ¢t = 1. For numerical calculations
we may consider uniform Airy-type asymptotic expansions if t ~ 1,
and we will investigate later if this is indeed the best approach. But
we also investigate if a modified contour can be used for numerical
quadrature.
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We use for ¢ ~ 1 the representation of Y (a,z) in (3.6). We write
w = u + v, and integrate with respect to v along the line segment
from the origin to w4, and then along the horizontal path from w4
to w4 + oo with respect to u. In the first integral we substitute v =
t(1 — p), and integrate with respect to p. Observe that for ¢t > 1 the
point w4 is on the imaginary axis, and for this case no difficulties
arise when t ~ 1, because the path is already split up into two parts;
see §3.2.

It is not difficult to verify that the representations in (3.20), (3.21),
(3.28) and (3.29) can be obtained, with G, H; replaced with G;, H;
(7 =1,2), where

~ L
Gj:/o e Yy (p) g](l)(p) dp

- ez () ()
+/ 9, (w) du,
0 (14 2uy/(1 — 124 u?)7

(3.56)
~ L
= [ o
Ca® (u
—I_/oo e Yr (u) : h;?)(u) du,
0 (1+2u/(1 - +u?)s
where
oM (p) = Lp*(1 - 2%) — p—In(1 - p),
$P) = Ju+ w1 =17 — f1n (1 +ou -+ ) 7
3.57
s (p) = V1 - 12, (3.57)
¢(2)(U) — arctan _ou — tu,
Z 14 u/T— 12
g?)(p) _ Z-gél)(p) _ e%in——ai¢l(1)(p)7 T = arcsint,
. —%iT—aiwf) (u)44 arctan ut _ (358)
g%z)(u) - 2952)(?0 =e Luy/1-42
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WP () = tpgl (p) + VI = £2(1 - p)gt (),
W () = tpgM () = VI = £2(1 - p)gi” ().
B2 () = (u+ V1= 2)gi (),
W () = —(u+ V1= 2)gP(u).

(3.59)

3.4 The case t < —1

We can repeat the analysis, starting with (3.2) with < 0, but do not
need new integral representations, algorithms or uniform asymptotic
expansions for this case. For U(a, z) we can use the second relation
in (1.11), and for V'(a, z) the first relation.

When the parameter a is large these relations have to be used
with care, because gamma functions with large negative arguments
occur. It is better to use the quantities ;, H; introduced in §3.2.1.
In the computer code these quantities will be given as output from
the case t > 1.

We have

U(-a,—z) = ﬁaify(a) {6_2“5 [cosma Gy + sin ma G4]
1e2%€ cosTa Gg} ,

Ul-a,—z) = —ﬁaify(a) {6_2“5 [cosma Hy + sin ma Hy]
1e2%€ cosTa Hg},

(3.60)

1
V(-a,—2) = ﬁ% {6_2“5 [cosma Gy — sin ma Gq]
2

—e*sinra Gg} )

3
V/ —a, — — _ 2 at P)/(a) —2a¢& H, — si H
(—a, —z) ﬂif(a Iy {e [cos ma Hy — sin ma Hy]

—e*gin ra Hg}.
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4 The W —function

In this section solutions of equation

322 + ( a) y=0. (4.1)

are considered, again for real ¢ and z. For a < 0 the solutions oscillate
on the real z—axis; for @ > 0 there are turning points at +2./a, and
the oscillations occur outside the interval [—2+/a, 2/a]. From quan-
tum mechanics we know that (4.1) is the equation for propagation
through a potential barrier.

4.1 The standard solutions

We consider solutions W (a,z) and W (a, —z); these form a numeri-
cally satisfactory pair for —oo < # < o0o; see [5]. The function W (a, z)
has the initial values (see [1], p. 692)

r(lylig >

W(a.0)=27% FE;;@; ’
1 (4.2)

I(344ia)|2
W(a,0) = —273 F(;;a)
The Wronskian of W(a,z) and W(a, —z) is
WIW (a,z), W(a, —z)] = 1. (4.3)
Power series expansions are

W(a,z) = W{(a,0) wi(a,z) + W (a,0) wz(a,z), (4.4)

where wq(a,z) and wy(a,z) are the even and odd solutions of (4.1).

We have
2n 2n—|—1

:Z:%ogn(a)(zn)!, Zﬁn T (4.5)

where o, (a), 3,(a) satisfy the recursion

Qpi2 = @01 — 3(n+ 1) (2n+ 1) ay,
Btz = aBny1 — F(n+ 1)(2n+ 3) By, (4.6)
apa) =1, w(a)=a, fola)=1, Pia)=

1
2
1

2
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The relation with the function U(a, z) reads
;( )I/V(a7 z) 4+ iv/k(a)W(a, —z)
_ \/ieiwa—l—ip(a)U (ia, xe—wi/4) 7

which follows from using the initial values of the functions, but also
from [1] [19.17.6 and 19.17.9]. The quantities k(a) and p(a) are given

(4.7)

by
1
kla) =V1+e2m — ™ = . 4.8
W= Vizwiger 0
and

pla) = dr (), Gala) =ph T (b4ia)i  (19)

the branch is defined by ¢2(0) = 0 and by continuity elsewhere.
Because we assume that a and z, and hence W (a,+z), are real,
we have, using (4.7), that

Wia,z) = \/Me%”%}? {eip(a)U (ia, xe‘”i/‘l)} 7

2
k(a)

(4.10)

Wi(a,—z) = 1™ {eip(“)U (ia, xe_m/‘l)} .

These relations are convenient for numerical computations because
for x > 0 and x < 0 we can use the same U—function.

4.1.1 The function p(a) We give more details on the function p
defined in (4.9). For large values of @ it is convenient to use the
representation

pla) =7 — ta+ talna®+ p*(a), (4.11)

where p*(a) = O(1/a) as a — oo. An asymptotic expansion follows
from Binet’s formula (see [9], p. 55, for an integrated version)

Inlz+3)=zn(3+2) -+ -2+ 3In2n)

- 1 (4.12)
+/ B(t)e 2" e dt,
0
where . . .
1 1
ezt = ¢! ——+ )2t
Blt)ez <et—1 t+2)
(4.13)




22 Amparo Gil et al.

with ¢ in terms of Bernoulli polynomials:

k43

1
e = B, (=1) = (=1) e k=012 (4.14)
This gives the asymptotic expansion
1 1 & d
* 1 k
as +a — oo, where
dy = (—1)* 2k k=0,1,2,.... 4.16
The first few coeflicients are
1 13 37 29 1129
do = 13, di = =755, 42 = 551650 93 = — 53800 94 = — T5a06a0- (4.17)

4.2 Integral representations for a < 0

For W(—a,+xz) we consider (2.1) for U (—ia, xe_m/‘l) (see (4.7) and
(4.10)), that is,

—1;2
o —mif4\ _ € 4 —re—Ti/454 L g2 iaﬁ
U( ia, ze )_ ion /Ce 2% s 7 (4.18)

where C is a vertical line on which ®s > 0. On C we have —%77 <

phs < %ﬂ', and the many-valued function 1973 assumes its principal
value. The transformations

r=2t/a, s=+aw (4.19)
give
1,02 1,1 .
) —Fwt o at5ar
U _ia7 we_,rm/él — & —
( ) W 2w C Vw

where '
p(w) = %wQ — 2te” ™/t + ilnw. (4.21)

The saddle points follow from solving

2 _ —mif4 ;
¢ (w) = w* — 2te w1 0, (4.29)

w
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giving saddle points

Wy = ug + vy = e /4 (t + M) , Uy — —Us. (4.23)
The relevant saddle point is wy. We have

O(wy) = hm il 426 - 1), (4.24)

where gis given in (2.12). The path of steepest descent through w4
is for |0| < 37 defined by

1r¥sin 260 — 2trsin(f — 37) +Inr = Sp(wy) =7 + 26 — 1, (4.25)
where w = re'?. In rectangular coordinates w = u 4 v this equation
reads

wv + V2t (u — v) + %ln(uz—l—vz) =12 426 - % (4.26)

We can solve equation (4.25) for sin(§— 1) (it is a quadratic equation
for this quantity), giving # as function of r. This makes it possible
to integrate (4.20) with respect to r, but this introduces singularities
in the integral where r attains its minimal value, although the path
itself is smooth.

Integrating with respect to 8 or v is a better option. We can nu-
merically determine the path in an algorithm, but this is not a very
efficient method. Instead, we replace the steepest descent path de-
fined in (4.26) by a path u(v) such that

1. u(v) is smooth for all v € IR;

2. u(v) passes through the saddle point: u(vy) = uy;

3. du/dv at vy has the same value as du/dv for the steepest descent
contour at wy;

4. the path runs into the valleys of e?(*) at +ico.

JFrom (4.26) we can show that du/dv = 0 at the saddle point wy.
Hence, a simple path C that fulfills the four conditions is the vertical
line u = uy4. Introducing ¢ = v — vy, using w = wy + iq and (4.24)
we obtain for (4.20) the representation

1 1. 1 1 -
ezwa— EW‘QZ—I_ Fat

2wy

e?iag

U (—ia,xe_m/‘l) =
(4.27)
></_ e Dg(q) dg.
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The function ¥ (q) is given by

1
V() = d(wy) — o(w), g(g) = NS (4.28)

For small values of ¢ we have

14242 _
blg) = et + e’ + 0L,

(4.29)
wp = d (14 VEFT).

We conclude that W(—a,+z) (see (4.7) — (4.11)) are given by

W(-a,z) = % R [eix /_O:o e~ g(g) dq] , (4.30)
W(-a,-z) = #}M% [eix /_O:o e_‘“/’(q)g(q) dq] . (4.31)

where .
X =p(—a)+ i + 2a€. (4.32)
For the derivatives we find, starting with (4.18),

1 1. 3 1 -
ezwa—izaaz—l—iaz ~

—7ri/4U/ o —mif4) _ 2taé
€ ia,ze i
( ) V2T (4.33)
></ e Dh(q) dq,
where '
h(q) = ( 241 - e‘“/“q) 9(q)- (4.34)
It follows from (4.10) that W'(—a, £x) are given by
3
at\Jk(—a) [. o [ _
W'(-a,2) = —F——%R [2 e / e~ D p(q) dq] , (4.35)
VT wy] —co
al

W'(—a,—z) = — R) [2 X /_O:o e~ D p(q) dq] . (4.36)

VT lwi|k(-a)
For large values of a and /or ¢ the oscillatory behaviour of W (—a, £2)
and W'(—a,£x) is mainly described by the exponential factor g2iat
contained in eX. The other elements of these formulas are slowly

varying.
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Asymptotic expansions follow from [10]. Formula (2.29) of that
paper gives, with p = v/2a e~ ™/4,

(—a)

W(-a,2) ~ ———~
( ) ai(tQ—l—l

l X Z ] (4.37)

where ¢, are polynomials given in (2.11) and 7 in (2.32) of [10].
Formula (2.33) of [10] gives

>J>|>—-

W' (—a,z) ~ \/k(—a)ai (t + 1)5 R [MXZ )], (4.38)

where 15 are polynomials given in (2.16) of [10].
For W(—a, —z) and its derivative we have

W(—a,—x) ~ BVAIGTIN [ x Z ] (4.39)

i(t2_|_1 T

and
W' (—a,—z) ~ —y/k(—a)a i(tz—l—l TS [zeZX > (=0) ], (4.40)

The asymptotic expansions in (4.37) — (4.40) hold when ¢ — oo,
uniformly with respect to t > —tg, but also for ¢ — oo, uniformly
with respect to a > ag, where ag and ¢y are fixed positive numbers.

4.3 Integral representations for a > 0

Because of the turning points we consider three cases. We write x =
2t\/a. We use the U—function in (4.7), and write (2.1) in the form

: i o d
U(ia,xe_m/4) = —we T et g? gmia 02 (4.41)

— Tt

e =
w2r Je NZ
with conditions as in (4.18). The transformation s = \/aw gives

U (ia,xe_m/‘l) = e—l:x—\/ﬂ/

(4.42)

where
p(w) = %wz — 2" — ilnw. (4.43)
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4.3.1 The case t > 1  The saddle points are now
Wy = uy + vy = e T4 (t + Vi - 1) , Uy — —Us. (4.44)

The relevant saddle point is w,, and for numerical integration a con-
venient choice of C is the vertical line through w,.
Using
—iixz + ap(wy) = 2ia€ + %ia — iﬂ'a, (4.45)

where £ is given in (3.38), and writing in (4.42) w = wy + iq, we
obtain the analogue of (4.27)

1 1. 1 1 -
—47ra—|—22aa4—2a2

V2mwy

U (ia,xe_m/‘l) . eliat / e_‘“/’(q)g(q) dq, (4.46)

where

¥(g) = ¢(wy) — o(w), (4.47)
It follows that

Wia,z) = —F—=———= R[G(a, z)] (4.48)

and X
W(a,—2) = YA S G, 0], (1.49)
™ |wy |
where -
Gla,z) = elP"(@)Fs amt2ial] e~y (q) dg (4.50)

For the derivative we find, as in (4 33),

1 1. 3_1 -
—rrma+zsia v —sat
e 12 2"%q47 2 €2ia£

2rwg

X /OO e=*VWh(q) dg,

— 00

U’ (ia,xe‘”i/‘l) = -
(4.51)

where

h(q) = (6‘7”'/4\/t2 -1+ iq) 9(q). (4.52)

It follows that

"a,z ——7"16(@)@% a,z
Wa, z) = NG R[H (a,x)] (4.53)
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and ,
W(a, ~2) = — e 3 [H (a, )] (4.54)
Vrk(a) lwy]
where
H(a,2) = el (@+gmt2iad / T @D h(g) dg (4.55)

Asymptotic expansions follow from (2.9) of [10]. By changing p —
pe~™/% in that formula we obtain

k i[p*(a)+Ln42a - '5¢5
W (a,z) ~ ﬁ% [e [p*(a)+gm+2ad] S:Z;) Z(Qa()z)] , (4.56)

where ¢,(7) are the same polynomials as in (4.37), and

L ( ! 1) (4.57)
T= = -1]). .
2\Vi2 -1
Formula (2.18) of [10] gives

W (a,z) ~ —/k(a) at (12 — 1)7

o s 4.58
R [ei[p*m—imaf} S WT)]’ (4.58)
= (2a)°
where t,(7) are the same as in (4.38).
The asymptotic expansions in (4.56) and (4.58) hold when @ — oo,
uniformly with respect to t > 1+ ¢g, but also for { — oo, uniformly
with respect to a > ag, where ag and ¢y are positive numbers.

4.3.2 The case —1 <t <1 We use (4.41), (4.42) and (4.43) with
saddle points

wy = eI/ (t +iV/1 - t2) = ~TI/ARD = cos (4.59)
which are located on the unit circle. We have
plws) = £2n— 17 +i(3+17), (4.60)

where 77 = 1(6—sin 6 cos §) is also used in §3.1 and defined in (3.9). We
see that the imaginary parts of ¢(w4) are equal. As a consequence,
the steepest descent path may go (and in fact in the present case does
go) through both saddle points.

In Figure 3 we have shown the paths for three values of ¢. The
contours run from —ioo to w_, then along the arc to w4 (in the
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direction of the arrows), and from w; to 4+ioo. Through each saddle
point the local contours of steepest ascent and steepest ascent are
shown. The complete contours include steepest descent parts and
steepest ascent parts.

From (4.60) we see that wy is dominant for 0 < ¢ < 1 (5 is positive
for these values of ¢). Another point of interest is that the oscillatory

factor e~ = e—iat® iy (4.42) is nullified when we put ¢(w_) or
1

¢(wy) in front of the integral, because F¢(w4) = $+t*. This explains

that the function W (a, z) does not oscillate if ¢t € [—1, 1].

Figure 3. Steepest descent contour for the integral in (4.61)
for several t—values. The contours run from —ioc to w_, then
along the arc to wy (in the direction of the arrow), and from w
to +i0c0. Through each saddle point the local contours of steep-
est ascent and steepest ascent are shown. The complete con-
tours include steepest descent parts and steepest ascent parts.
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When we write w = u + iv and integrate in (4.42) with respect to
v we obtain

ooorle 1
. ) az—gazea[gz—zw—l—Qn]
U (m,xe_m/‘l) = X

(4.61)
l/oo e~ (”)fl(v) dv + e~ 4n /U_ e_“¢2(”)f2(v) dv] ,

— 00

where

U1(v) = o(wy) — d(w),  Pa(v) = d(w-) — d(w), (4.62)

Ji(v) = ﬁ (1 - i%) . falv) = ﬁ (1 - i%) . (4.63)

We may assume different relations between u and v in both integrals;
this explains uqy and wuy, which are functions of v.
It follows from (4.10) that

1
VE 1e?an o
W(a,z) = Vhk(a)aze™ o {62[0 (@+37] K (q, w)} 7
VT
(4.64)
L 2an
)= M g [l )
Wia,—z) = NCE0] R) {e 8™ K (a, x)} )
where K (a,z) denotes the sum of the integrals between the square
brackets in (4.61).
For the derivatives we find, starting with (4.42),

w

1.2 3_1 .
) —sx?  S—=zal ) dw
o ia,xe_m/4 = w/eadw) te™ T _ —, (4.65
( ) il K ) T (4:69)
and using (4.10),

% 2an . 1
W(a,2) = W# R [l =57 Ky(a,2)]
(4.66)
% 2an . 1
W'(a, —2) =~ [0 57 Ky (a,2)]

VTk(a)
where Ky(a, z) denotes the sum of the integrals between the square
brackets in (4.61) with f;(v) replaced with g;(v) = (te_%m —w) fi(v).
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The asymptotic expansions follows from (2.29) and (2.33) of [10].

g

We change ¢t - —¢t and u — ,ue% in these formulae and obtain

1.1 1 1
) a—iza—zeiza—ng——wa—lﬂan 00
U (ia xe_m/4) ~
’ V2(1 - 12)7 Z 2a . !
a_%'a+4e2za—|— Wz—%wa—l—?an(l tZ)i (467)

U’ (ia, xe_m/‘l) ~ = \/5

sz QQS,

where 7 is defined in (3.9) and ¢5(7) are the same as in (3.35).
It follows from (4.10) that

W((Z,f) ~ k_(i)_ 20”7%[ ij;) S((gsa() )] )

W(a,2) ~ —/k(a)at (1 — 2)e2an (4.68)

- lei[/)*(a)-l—iw] 5 i%(f*)] '
= (2a)*

The asymptotic expansions in (4.68) hold when ¢ — oo, uniformly
with respect tot € [-144,1— 6], where ¢ is a fixed positive number.

4.3.3 Unstable representations For large values of an the representa-
tions for W(a, —z) and W’(a, —z) in (4.64) and (4.66) are unstable.
To see this, observe that (4.68) can be used for t € [-1+ 6,1 — §].
The dominant behaviour comes from +/k(a)e?*”. Since (see (4.8))

k(a) ~ %e_m, the dominant behaviour comes from e®X, where y =

arcsint—tv/' 1 — 2, an odd function that is positive on (0, 1]. This dom-
inant behaviour does not appear in the representations for W(a, —x)
and W'(a, —z) in (4.64) and (4.66). There we see the dominant parts
€21/, /k(a); in 1 we use positive ¢ when x is positive. It follows that
the imaginary parts in the right-hand sides of (4.64) and (4.66) have
to be very small when an is large. In fact, the first integral in (4.61)
should be of order =447 in that case, which is not apparent from this
representation.

A possible solution to this problem is using the representations for
Wi(a,z) and W'(a,z) in (4.64) and (4.66) for t € [—1,0]. However,
when ¢ | —1 the phase of wy becomes 37 /4 and that of w_ becomes
—5m /4, which is outside the standard interval (—=, 7] of the phase
of w in (4.42); that is, w is outside the standard Riemann sheet. In
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Figure 3 the path for the case ¢ = —0.99 is shown. The technical
details will be worked out when writing the numerical algorithms.

5 Concluding remarks

In a future paper we will discuss the numerical aspects and describe
computer algorithms based on the integral representations given in
this paper. Several quantities have to be calculated with great care.
For example, straightforward use of +(6) defined in (2.10) when 6
is small, that is, at the saddle point, will give cancellation of lead-
ing digits. Also, to represent the functions for a large range of the
parameters scaling is needed.

When implementing the representations we will decide if the steep-
est descent paths will be used or approximations of these paths, as
we suggested for the W—function in §4.2. For example, integrating
in (2.3) along the vertical line through the saddle point wq gives a
simpler representation than (2.9). However, the integral along the
vertical line has a non-real phase function. Another approximation of
a steepest descent contour is given in (3.13). We will investigate effi-
ciency aspects in combination with programming aspects in deciding
which representation in these examples should be used.

This also holds for the quite complicated steepest descent paths
in §4.3.2. We have not indicated in (4.61) the relation between v and
u on the different parts of the path. This will be done during the
implementation of the algorithms.
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