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1 Introduction and main results

Let X be a Poisson process on the real line R with (unknown) locally integrable intensity
function A. We assume that A is periodic with (known) period 7 > 0 and is positive a.e.
w.r.t. Lebesgue measure. We do not assume any parametric form of X, except that it is

periodic. For each point s € R and all £ € Z, we have
A(s+ k1) = A(s), (1.1)
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where Z denotes the set of integers.

Suppose that, for some w € €, a single realization X (w) of the Poisson process X
defined on a probability space (£, F,P) with intensity function X is observed, though
only within a bounded interval [—n, 0].

Our goal in this paper is to propose and investigate a (1 — a))-upper prediction bound
for the time Z of the first event of the Poisson process X after the present time 0, using
only a single realization X (w) of the cyclic Poisson process X observed in the past, i.e. in
an interval [—n,0]. A much simpler but related prediction problem for the homogeneous
Poisson process was investigated in Vit (1973).

It is well-known that, for any real number z > 0, the distribution function of Z is

given by :
Fr(z) = P(Z<2)=1-P(Z>2)=1-¢e", (1.2)

with A(z) = [§ A(s)ds. Let z, = z — 7[%] where for any real number z, [z] denotes the
largest integer that less than or equal to x. Then, for any z > 0 we have z = 7[2] + 2,
with 0 < z, < 7. Let # = 77! [T A(s)ds be the global intensity of X. Then, for any z > 0,

we can write
A(z) = 97[5] +A(z). (1.3)

Since A(s) > 0 a.e. we also have § > 0. This latter condition is equivalent to the
requirement that, with P-probability one, |X(w)| = oo, which is obviously a necessary
assumption for obtaining our consistency results.

In view of (1.2) and (1.3) our probability model for Z is a semiparametric one, the
nonparametric component is given by the function A(z.) = [;7 A(s)ds, 0 < 2z, < T,
whereas the parametric component is described by 6 (with known period 7).

Let F zn(2) denote the empirical counterpart of Fz(z), using the available past data
set at hand, i.e. X(w)N[—n,0], the Poisson process X observed in [—n, 0], which is given

by
Fra(z) =1—e M0 (1.4)
with

10, + An(z) (1.5)



where

b, — M7 (1.6)

™,

An(z) = nii)(([—kr, 2 — k7)) (1.7)

T k=1
and n, = [2].
A (1 — a)-prediction interval for a future observation of X, i.e. the time of the first

event after time 0, is given by (0,£z1-4), Where z1_, is defined by
Ez1-a =1nf{z: Fz(2) > 1—a}, (1.8)

ie. £z1-0 = Fz_l(l — «), where FZ_1 denotes the inverse of F;. In other words, {z1_, is

nothing but the (smallest) solution of
P(Z<&z10)=1-a. (1.9)

Since the distribution of Z is unknown, we replace equation (1.8) by its empirical coun-

terpart, i.e. we define £4,,1_o by

~

éZ,n,l—oe = Z_,yll(l - 04)~ (110)
As a simple consequence of (1.10) we have that
FZ,n(éZ,n,l—a) =l—-a+ Op(n_1>a

as n — 00, which in turn easily reduces to the equation

i o LS (ks e — B]) = n (1> o (%) RNCRE)

T [z =1 (8]

[752’”;1“’]. In other words, éZ,n,l—oe given by (1.10)

as n — oo, where éZ,n,l—a,r = éZ,n,l—oe -7
is nothing but the (smallest) solution of (1.11). Note that the non negative O,(n~!) error
term appearing in (1.11) is due to the fact that F zn is discrete, a step function with
jumps of size O,(n~1) occuring at points z = s; + k7 for positive integers k and events s;
which belong to our past data set X (w) N [—n,0].

The density of Z exists and is given by (cf. (1.2))
d —A(z
fz(2) = = (Fz(2)) = AMz)e ). (1.12)
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Clearly fz is unknown, but we can estimate f at a given point z by

~

f2n(2) = Anic(2)e ), (1.13)

where, for any z > 0, \, K(z) is given by

A2 / ( (2 + ’”)) X (dz), (1.14)

n k ol

which is the kernel-type estimator of the intensity function A of X introduced in Helmers
et al. (2003) and investigated also in Helmers et al. (2005). Here, h, is a sequence of
positive real numbers such that h, | 0, as n — oo, and K denotes a kernel function
K : R — [0,00) satisfying the following properties: (K.1) K is a probability density
function, (K.2) K is bounded, and (K.3) K has support in [—1, 1].

The main result of this paper is the following theorem:

Theorem 1 Suppose that X is periodic and locally integrable. Let éz,n,l_a given by (1.10),
i.e. the smallest solution of (1.11).

(i) (Consistency) We have
P(Z<&mia) = 1-a, (1.15)
as n — 0.

(i1) (Asymptotic Normality) We have
VA (§z1-0)
Q(§Z717a)

as n — 00, provided {z1_o ts a Lebesque point of N, where for any z > 0

(éZ,n,lfa - §Z,17a> i) N(O, ].) (116)

a(2) = [ZP70 + (14 2[2DAGz,) (1.17)

T

with z, = z — T[]

(iii) (Studentization) Let A\, i be the kernel-type estimator of X given by (1.14), then we

have
vV nTj\n,K (gZ,n,l—a)

RS I ) (€ a —E21-0) = N(0,1 1.18
o) (Z 1 Z1 > (0,1) (1.18)

as n — 0o, provided {z1_o ts a Lebesque point of N, where for any z > 0

Gn(2) = [5]%0}1 F(1+ 2[;])An(zr). (1.19)



Note that, a point z is called a Lebesgue point of X if limy g 5- I Nz +z) = A(2)|de =
0. This assumption is a rather mild one since the set of all Lebesgue point of A is dense in
R, whenever \ is assumed to be locally integrable. The Lebesgue point assumption also
occurs in Helmers et al. (2003) and Helmers et al. (2005).

It is easy to check (cf. (2.22) and (2.23)) that ¢({z1-«) appearing in (1.16) reduces to
AEz1—ar), With €210, = Ez1-0 — T[gz’%], whenever £7,_, < 7 which happens if and

only if 07 > In(1/a) (cf. (2.24)). In other words

Q(gZ,l—a) = A(gZ,l—a,r) = A(fz,l_a) <==> 01 > 1Il<1/0z) (120)

We note in passing that ¢({z1-) = A({z1-a,) also holds true in the case that 6 is
assumed to be known. To check this is an easy matter in view of (1.5); i.e. A,(z) now
reduces to 7[2]0 + An(2).

An important statistical application of (1.18) is that it enables one to construct a

confidence interval for the (1 — a)—upper prediction bound £z, as follows:

Corollary 1 For any significance level p, 0 < p < 1, a normal based confidence interval

for £z1_q with approximate coverage probability 1 — p is given by

11 _p A~ E —1/1 _»p s o(E
U Olanaca) o 27U E) q7<€z’n’1a)),<1.21>
(2] A (Ezm1-a) (2] A (Ezm1-a)

where ® denote the distribution function of a standard normal r.v. and

In = (éZ,n,la -

P(¢s1a€l)=1—p+o(l), (1.22)

as n — 00, provided {714 s a Lebesgue point of X, N(€z1-o) > 0 and the period T is

known.

The upper prediction bound é Zni1-a Can be viewed as an estimator of {z;_, based on
the semiparametric model (1.2). In contrast, a simple nonparametric estimator of {71,

is given by the sample quantile €%, defined as
SNt =y (1-a) (1.23)

where for any 0 < s < 1, Fy'(s) = inf{z : Fy(x) > s}, and Fy denote the empirical

distribution function (df) with random sample size N based on Zy, Zs, ... , Zy, with
N = ZI(X([—(nT —i+ )1, —(n, —i)7)) > 1) (1.24)
i=1
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where N has Binomial distribution with parameters n, and 1 — e~%". Note that for each
i,i=1,2,...,n,, we have P(X([~(n, — i+ 1)1, —(n, —i)7)) > 1) = 1 — 797, whereas
the summands in (1.24) are i.i.d.

The Z!s,i=1,2,... , N, are the observed times to the first ’event’ in X (w) N [—n, 0],
starting at time —(n, — ¢+ 1)7, i = 1,2,... ,n,, whenever well-defined. For instance,
when X ([—n,0]) = 0, i.e. the data set at hand is empty, the Z/s do not exist; i.e.
N = 0. If there is no ’event’ of X (w) in the interval [—(n, — ¢ + 1)1, —(n, — i)7) but
there is an ’event’ in the next interval [—(n, — i)7, —(n, — i — 1)7), then we know that
T < Z; < 27. To obtain Z;;; we observe the time to the next 'event’ of X (w) starting
from time —(n, —i — 1)7. More generally, if N =m, m = 0,1,2,... ,n,, then precisely
m waiting times, say Zy,Zs, ..., Z,, are observed. Of course, the Z/s are i.i.d. with
common df F; (cf. (1.2)), because of (1.1).

Using a well-known result for sample quantiles based on a sample with non random

sample size (see, e.g., Reiss, 1989, p.109) and the fact that \/N/(nT(l —e ) 51, as

n — oo, we have

\/mfz(§z,1—a) (ANP _52’1_06) A, N(0,1) (1.25)

a<1 — a) Z,N1—«

as n — 00. So, the asymptotic variance of £J 5, is equal to

a(l —a)
n(1—e ) f2(€z1-a)

(1.26)

provided fz(€z1-4) > 0.
Our prediction bound €5,,1_4 uses the whole past data set X (w) N [—n,0] at hand.
So, in contrast to fJZV ﬁ@—w which based on a Binomial random sample of size N with

—97), our proposed prediction bound éZm,l—oe is a function of X ([—n,0])

mean n.(1 — e
data points - a Poisson random sample size with mean [° \(s)ds ~ n, [ A(s)ds = n, 07.
Since for any 67 > 0 we have 7 > (1 — e~ %7), we use, on the average, a bigger data set
in constructing ézm,ka compared with EJZV 5,1—04- Comparing (1.26) with the asymptotic

variance of ézm,l,a (cf. (1.16)) which is equal to

q(€21-a) _ q(Ez1-)e 2 E21-0) _ q(Ez1-a)0”
n‘r)\z(gZ?lfa) an%(ﬁZ,lfa) n‘rf%(gZ,lfa)’

provided A(€z1-4) > 0, one can check - c¢f. Theorem 2 below - that the variance in (1.27)

(1.27)

is smaller than the variance in (1.26), as one would perhaps expect.
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Theorem 2 Suppose that X is periodic and locally integrable. If

or > ln(l?)/a)’ (1.28)

then for any 0 < a < 1, we have

q(Ez1-0)0” - a(l —a)
nrf%(gZ,l—a) n.(1— e_eT)f%(gZ,l—a) 7

provided fz(£z1-4) > 0.

(1.29)

Comparing the r.h.s. of (1.29) (cf. (1.26)) with the Lh.s. of (1.29) in the special case
that (1.20) holds true, i.e. when ¢(£71_4) reduces to A(€z1_ar) = AM€z1-0) =In(a™!), a
simple calculation shows that

asymp. var (£307,.,) al—1

asymp. var (Ez,1_) n(a™1)(1—e )

(1.30)

holds true, provided 67 > In(1/a). Condition 7 > In(1/«), when o = 0.05 (0.10), is
equivalent to assuming that, on the average, there are at least 2.9957 (2.3026) events
of the process X in any interval of length 7. In particular this means, for instance,
when a = 0.05 (0.10), the ratio in (1.30) is bigger or equal to 6.6762 (4.3430), whenever
01 > 2.9957 (2.3026).

To obtain a Studentized version of (1.25) (cf. Ho & Lee, 2005; Reiss, 1989) one need
to estimate 6 and f7(Ez1-a) by 0, (cf. (1.6)) and a density estimate f,,(€5% ), where
fZ,n (cf. (1.13)) denotes an appropriate density estimate of f. For any significance level
p, 0 < p < 1, a normal based confidence interval for {7, , with approximate coverage

probability 1 — p is given by

]NP —

( (1—— a(l —a) ‘NP (1__) all —a) )
Z,N,1-a \/Won €ZN1 o) ’ 2N A \/ﬁon szl o)

where
P(¢z1a€I)T) =1-p+o(1), (1.31)

as n — oo, provided £z, is a Lebesgue point of A\, A({z1-,) > 0 and the period 7 is

known.



Ho and Lee (2005) recently obtained an iterated smoothed bootstrap-t method for
setting confidence interval for quantiles like é]ZV ika for a non random sample size n,

—98/57 je. the classical normal error O(n~'/2), which one

with coverage error of order n
would expect in (1.31), is replaced by a much smaller coverage error O(n~°%/°7) using
an iterated smoothed bootstrap method to approximate the distribution of a Studentized
sample quantile. The question remains whether we can obtain such much smaller coverage
errors using bootstrap methods for (1.31) and (1.22) as well. The authors hope to pursue
this matter elsewhere.

In certain cases of interest the intensity function A is apriori known to be sufficiently
smooth and one may estimate A(z) by [ A, x(s)ds instead of A,(z), for any z > 0. In
this set up, it might be of interest to construct a confidence region for the function A(z),
z >0 (cf. (1.3)) using a kernel type estimator for A, somewhat similar to the methodology
used in Helmers et al. (2009).

To conclude this section we also want to refer to Helmers and Zitikis (1999) and

Helmers and Mangku (2009) for some related statistical work on Poisson intensity func-

tions.

2 Proof of Theorem 1 and relation (1.20)

First we prove part (i) of Theorem 1. To check this, we write the Lh.s. of (1.15) as
P (Z <&zi1-a+ (£Z,n,1—a - §Z,1—a)) =P (Z - (é—Z,n,l—a —&21-0) < §z,1—a)
Then, by (1.9), proving (1.15) is equivalent to showing that
P (Z —(2m1-a — €21-a) < 52,1—a> — P(Z<&z1-4), (2.1)
as n — 00. To prove (2.1), it suffices to check
(Ezni-a —Ez1-a) 20, (2.2)
as n — 00. By (1.8) and (1.10), to verify (2.2), it suffices to show
(inf {z: Fzn(x) > 1 - a} —inf {2 : Fz(x) > 1-a}) 50, (2.3)

as n — co. By writing F,(z) = Fy(z) 4+ (Fyn(z) — Fy(x)), proving (2.3) is equivalent
to checking that

(inf {a : Fz(2) + (Fzn(x) = Fz(x)) > 1= a} —inf {z: Fz(z) > 1—-a}) 5 0, (24)
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as n — 0o. By part (i) of Proposition 1 (cf. section 4) and the fact that F is continuous
in a neighborhood of £z1_,, we obtain (2.4) . This completes the proof of part (i) of
Theorem 1.

Next we prove part (ii) of Theorem 1. To verify this, by (1.8) and (1.10), we write the
Lh.s. of (1.16) as

% (inf {2 Fp(e) > 1o} —inf {z: Fy(r) 2 1-a}).  (25)
g\SZ1—a

By part (ii) of Proposition 1 we can write

U ()

as n — 00. By (2.3), we know from the proof of part (i) of Theorem 1 that

FZn(x) = Fy(z)+ (2.6)

(inf {x CFy(x) >1— a} - §Z’1_a) = 0,(1),
as n — oo. Hence, to prove part (ii) of Theorem 1 we only need to consider z in a

shrinking neighborhood of €714, i.e. |2 —&z1-a| = 0,(1), as n — oo. Next we show

that, for any z, |v — €21 o] = 0,(1), as n — oo, N(0,1),/q(z)e 2@/ /n; in (2.6) can be
replaced by N(0,1)/q(£z1_a)e 2621-0) / /n”. To verify this we have to show

\/% <\/@ I T 8—A(5Z,1a>> o, (%) , (2.7)

which is equivalent to checking that

(Vale) e — ) e 651-2) = ,(0), 2:5)

as n — 00. To prove (2.8), we write the Lh.s. of (2.8) as

q(x) (e‘A(:C) _ e_A(gZ,lfa)> + G <\/q(:r) — \/Q(é-Z,l—a)) . (2‘9)

Since | — €z1-a] = 0,(1) as n — o0, a simple argument show that, the quantity in (2.9)

is of order 0,(1) as n — oo, provided
A(t) — AEz1-0) = oy(1), (2.10)
as n — o0. To verify (2.10) we note that the Lh.s. of (2.10) is equal to
Ax) = AEg1 o) = /0 " As)ds — /0 As)ds = / T As)ds

£z 1-a
(x—€z1-a)
= / As+E€z1-a)ds = Méz1-a) (@ —E21-0)

0

€Z,170¢

& — €21 ) <; /(x_gz’“”)(A(s Eria) — A(gm_a))ds) (2.11)

(517 - gZ,lfa) J0



Since £z1_4 is a Lebesgue point of A and |x — £z1-4| = 0,(1), then the r.h.s. of (2.11) is

0p(1), as n — oo. Hence we have (2.7).

Next, substituting (2.6) with N(0,1),/q(x)e=*® /,/n; replaced by

N(0,1)

q(€21_o)e Mez1-0) |/ into (2.5), we obtain that the Lh.s. of (1.16) is equal to

M (inf {m c Fy(r) + NO1)yalear-o) +0p <L> > 1= a}

(gZ 1— a) \/n_T eMézi-a) \/ﬁ
—inf{z: Fz(z) > 1—a})
VA €z -a) N(0,1)/q(€21-a) 1
£Z 1— a { Z l-a+ \/n_T @A(fZJfa) + Op \/ﬁ

|
=
=
—~~
& T
Sj
H

(z) >

N(0,1 —a
—\/_)\(521 o) Fy! (1 —at (\/n_T)eA?SZiZJa) ) +0p (

B
~
~
|
S
_
|
£
~

\/ﬁA(gz,l_a) N(0,1)\/q(€z1-a) e 1 .
e \vm e (ﬁ)) <fZ<FZ-1<1—a>>+ p(”)
e Mézi-a)

\/n_;)‘(gZ,l—a) N(Ovl) Q(gZ,l—a) ) )—l—Op(l)

(€z1-a) Viefz(§21-a
N(0,1) + 0,(1), (2.12)

as n — 00, where for any 0 < s < 1, F,;'(s) = inf{x : Fz(z) > s}. This completes the

proof of part (ii) of Theorem 1.

Next we prove part (iii) of Theorem 1. To check this, by (1.16), it suffices to show

Q(fzﬁm) EANY (2.13)
(jn(gz,n,l—a)
and
5\n K(éZn 17(1) P
AnKiSZmloa) g 92.14
NEz1-a) 21
as n — 00.
First we consider (2.13). By writing
q(€z1-0) . \] q(€21-a)
Gn(Ezni1 o) (€21-0) + (G(€zm1-0) — 0(6z1-0))
to prove (2.13), it suffices to check
(G0(62n1-0) = 4(€z1-0)) 2 0, (2.15)
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as n — oo. By (1.17) and (1.19), and since (éz?n,l,a —&z1-0) = O,(n7Y?) (cf. (1.16))
and (6, —0) = O,(n"/2), as n — oo (cf. (4.37)), a simple argument shows that, to prove

(2.13), it suffices to verify

(An(éZ,n,l—a,r) - A(é-Z,l—a,T)) & 07 (216)

as n — o0o. To verify (2.16), we write the L.h.s. of (2.16) as

<[\n(éZ,n,1—a,r) - An(éZ,l—oe,r)) + <[\n(£Z,1—a,r) - A(§Z71—Oc,7")> . (217)
By (4.33) with z replaced by £z1_4,, we have the second term of (2.17) is of order

O,(n"1%), as n — oo. Next we show the first term of (2.17) is of the same order, i.e.

(ul€znr-an) ~ hulezi-an) =0y (=), 2.18)

as n — co. To verify (2.18), note that by (1.16), we have £4,1-o = £21-a + Op(n~/?),
which also implies fz?n,lfa,r = &21 ar + Op(n71?), as n — oco. The Lh.s. of (2.18) can
be written as

1 oo nr

n, Z X<[_k7-’ éZ’n’lfa’T - kT]) o Z X([_k7—7 £Z,1fa,r - kT])

nr k=1 Ny k=1

= N X (k7€ + Opln™ ) — br]) = X((k7, €0 — b))}
T k=1

-0, <%) , (2.19)

asn — oo, since clearly X ([€2.1 ., — k7,21 ar —kT+0,(n7Y2)]) = O,(n~'/?) uniformly
in k, because A is periodic and £z, is a Lebesgue point of A. Hence we have (2.18).
Therefore, we obtain (2.16).

Next we prove (2.14). By writing the Lh.s. of (2.14) as

<)\(§Z,1a) + ke Eznia) — >‘(§Z,1a))>
A(gZ,lfa) ’

to prove (2.14), it suffices to check

~

(Mo (€zni—a) = AMEzi-a)) 2 0, (2.20)
as n — oo. To verify (2.20), we write the L.h.s. of (2.20) as
<;\n,K(éZ,n,1—a) - /A\n,K(é-Z,l—a)> + <5\n,K(§Z,1—a) - A(&Z,l—a)) . (221)
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Since {71, is a Lebesgue point of A, by Theorem 2.1. of Helmers et al. (2003) for the
case T is known, we have the second term of (2.21) is 0,(1), as n — oco. By a similar
argument as the one used to prove (2.18), we also obtain the first term of (2.21) is 0,(1),
as n — o0o. Hence we have (2.20). Therefore, we obtain (2.14). This completes the proof

of Theorem 1.

Proof of (1.20):
To begin with, first we show
€z1-o <7 if and only if 07 > In (é) . (2.22)
To verify (2.22) we argue as follows. By (1.9) we have P (Z > £1_,) = a. Note also that
€71 a<T <==> P(Z>71)<P(Z>&z1 4) <==> P(Z>71)<a. (223
Since P(Z > 1) = e~ %7, the statement in (2.23) is equivalent to

1
e <a <==> 0r>h <—> . (2.24)
a

Combining (2.23) and (2.24) we obtain (2.22). By the Lh.s. of (2.22) we have [52%] = 0.
Substituting [gz%] = 0 into q(€z1-«) we obtain the Lh.s. of (1.20). This completes the
proof of (1.20).

3 Proof of Theorem 2

Since A(€z1-ar) = AM€z1-0a) — [52’%]07, q(€z,1-a) can also be written as

0€1-a) = (14 2L A0 0) — (14 (2 Sy

T T

instead of (1.17). Then, proving (1.29) is equivalent to checking that

R e R e e

(3.1)

To prove (3.1), we split up condition (1.28) into three cases, namely, case (i) 07 > In(1/«),
case (ii) In(1/«)/2 < 67 <1In(1/a) and case (iii) In(1/a)/3 < 07 < In(1/a)/2.

First we consider case (i). In this case, by (2.22), we have [gz%] = 0. Since (1 —
e%7) < 1, proving (3.1) in this case, it suffices to check

(1—a)

Aéz1-ar) < (3.2)
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By noting that A({z1-a,) < A(§z1-a) = —In(a), to prove (3.2), it suffices to check

(1-a)

«

1
—In(a) < <==> In(a) + ——1>0.
a

Let h(a) = In(a) + 1/a — 1. We have to show, for all 0 < a < 1, h(a) > 0. To do
this, note that 2(1) = 0 and W' (a) = a (1 — a™1). Since 0 < a < 1, we have a™! > 0
and (1 — a™1) < 0, which implies 2/(a) < 0 for all 0 < a < 1. Hence, h(a) is monotone
decreasing to 0 in interval (0,1), which implies h(a) > 0 for all 0 < a < 1. Therefore we
obtain (1.29).

Next we consider case (ii). By a similar argument as the proof of (2.22), we have

In(1 1 1
n(z/oz) <Or <In(—) <==>6r <In(—) <207 ifand only if 7 <&z;_, <27. (3.3)
a a

By (3.3) we have [gz%] = 1. Since 67 < In(1/a), we have (1 —a)/(1 — e %) > 1. Then

to prove (3.1) in this case, it suffices to check
1
{SA(fZ,lfa) — 27'9} < a (34)

By noting that A(£z1-o) = In(1/a) and 207 > In(1/a) (cf. (3.3)), to prove (3.4), it

suffices to verify

{3In(1/a) — In(1/a)} < é <==> a(In(1/a)) < (3.5)

N | =

Since the maximum value of a(In(1/a)) is e™! (when a = e™!) which is less than 1/2, we
have (3.5).

Next we consider case (iii). Similarly to (3.3), we now have

In(1 In(1 1
H<3/a> <or< B s gy < (=) <307 iff 27 <& 0 <3n (36)

By (3.6) we have [&%] = 2. Next to prove (3.1) in this case, it suffices to check

{5A(§Z,1—o¢) — 67’9} < o (1 — Oé)

it (3.7)

Since 7 < In(1/a)/2, we have (1—e~%") < (1—a'/?). By noting that A(£7,1 ) = In(1/a)
and 7 > In(1/a)/3 (cf. (3.6)), to prove (3.7), it suffices to verify

{5In(1/a) — 2In(1/a)} < 04((11_;0% <==> ﬁ +aln(a) >0.  (3.8)

13



Define

(1—a) a

fzla) = 3=l +

+ aln(a).

Wl
|5

+ aln(a) =

It remains to show that f3(a) > 0 for all 0 < o < 1. To verify this, first note that
fi(a) = 1/(6y/a)+In(a)+1and f(a) = —1/(12a*?)+1/a. Since the first derivative f} is
monotone increasing on (0, 1) with f4(0) = —oo and f§(1) = 7/6, the function f is equal to
zero for exactly one value of a, namely 0.266351... Because f}(0.266351) = 3.148215 > 0,
we can conclude that f3(0.266351) = 0.152998 is the minimum value of f5 on (0,1). Hence
fs(a) > 0 for all 0 < a < 1. This completes the proof of Theorem 2.

4 Some asymptotics
In this section we investigate the asymptotic behaviour of Fy,, (cf. (1.4)), our estimator
of Fy.
Proposition 1 Suppose that X is periodic and locally integrable.

(i) (Consistency) For any z > 0 we have

Fua(z) L Fy(2), (4.1)
as n — oo.
(11) (Asymptotic normality) For any z > 0 we have

n,el?)

— (Fza(2) = Fz(2)) 5 N(0,1) (4.2)

as n — oo, where N(0,1) denotes a standard normal random variable and q(z) is
given by (1.17).

(iii) (Studentization) For any z > 0 we have

ehn(s)
\/_ii (Fun(z) = Fu(2)) % N(0,1) (4.3)

\/ %L(Z)

as n — 0o, where §¢,(z) is given by (1.19).

The error of the normal approximation in (4.2) is easily seen to be of the classical order

n~1/2. A correction term of Edgeworth type, correcting not only for bias and skewness but

14



also for the lattice character of the Poisson distribution, can in principle be established
using a general result on Edgeworth expansions for lattice distributions due to Kolassa
& McCullagh (1990). We also refer to (4.17) for a simple explicit bias correction term to

Fy.(2) of order n=/2.

Next we prove Proposition 1. To check Proposition 1 we need the following lemmas.

Lemma 1 Suppose that X is periodic and locally integrable. Then for any z > 0 we have

EA,(2) = A(z), (4.4)
Var (An(z)) = %i), (4.5)

where q(z) is given by (1.17), and

~

\{]Z) (Au(2) = A(2)) = N(0,1) (4.6)

as n — oQ.

Note also that, since 0 < A(z,) < 70, from (4.5), we have that, for any z > 0,

~

Var(A,(z)) = O(n™1'), as n — oo.

Proof: Define A°(z.) = [] A(s)ds. Then A(z,) + A°(z.) = 07, so that for any z > 0, we

can write
A(z) = (1+ [ZDAG) + EA(z) (4.7)

instead of (1.3). An estimator of A°(z,) is given by
R 1 o
No(z) = —> X((2 — k7,7 — kT)). (4.8)
Nr =1
Note that A,(z,) and A¢(z,) are independent and A, (z,) + A (z,) = 76,. Hence, for any

z >0, we can write A,(2) in (1.5) as

Au(z) = (14

2. Zia
AL (2) + [Z]AS (2,). 4.9
“DAazr) + 2145 (2 (1.9)
EA,(z,) can be computed as follows.

BAu(s) = — S EX(—hrz — k)= —3 /k Az)de = =3 [ M)

Nr .5 Ny =/ —kr Nr .5

= A(z). (4.10)
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Similarly we have EA¢(2,) = A°(z,). Replacing the r.v.’s on the r.h.s. of (4.9) with their
expectations, we obtain the r.h.s. of (4.7). Hence we have (4.4).

Next we prove (4.5). Since A, (z,) and A¢(z,) are independent, by (4.9), we have
z
[_

2Var(An(z) + [C12Var(AS (2,)). (4.11)

Var(A,(2)) = (1+
T T
For any 0 < z, < 7 and any pair of integers (k, j), with k # j, we have that X ([—kT, 2, —
kt]) and X([—j7, 2z — j7]) are independent. Then, by a similar calculation as the one in
(4.10), we obtain
Var <An(zr)) = % i Var(X([—kr, 2z, — kT]) = A<ZT). (4.12)

T k=1 nr

Similarly we also have Var(A¢(z,)) = A°(z.)/n,. Substituting these variances into the
r.h.s. of (4.11) we obtain
_ A+ EDPAG) + EPA()

Var(Ay(2)) = - . (4.13)
Since A°(z,) = 01 — A(z,), we have
(L+ [Z)PAG) + [ZPA(=) = 270+ (1 + 212D A=) = q(2) (4.14)

(cf. (1.17)). Substituting (4.14) into the r.h.s. of (4.13), we obtain (4.5).
Next we check (4.6). By (4.7), (4.9), (4.12) and the line after (4.12), we can write

~

Vi (o) = AG) = v (1 1) (Raler) = M) + V] (Ager) — A))
— VA +E) ( i X([kr 20 — krl) = mA(z»)

nyA(z)
A ( R ”T“Zr)) (4.15)

Since Y37, X([—kT, 2, — k7]) is a Poisson random variable with mean n,A(z,) — oo, as
n — 00, then using normal approximation for Poisson random variables, we obtain the r.v.
in the first term on the r.h.s. of (4.15) converges in distribution to N(0, (1 + [£])*A(z,)),
as n — oo. Similarly, we also have that the r.v. in the second term on the r.h.s. of (4.15)
converges in distribution to N (0, [2]*A%(z,)), as n — oo. Note also that, these two normal
r.v.’s are independent. Hence, by noting that sum of two independent normal r.v.’s is

another normal r.v., we obtain

Vi (Ru(2) = AR)) & NO.(1+ ZIPAG) + ZPA() (4.16)

T
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as n — oco. Substituting (4.14) into the r.h.s. of (4.16) and then multiplying both sides
by (g(2))~'/2, we obtain (4.6). This completes the proof of Lemma 1.

Lemma 2 Suppose that X is periodic and locally integrable. Then for any z > 0 we have

E(Fzn(2)) = Fzlz) — %ﬂm +0 <%) : (4.17)
and
Var (FZn(z)) = M +0 (%) , (4.18)

Proof: First we check (4.17). By (4.9) and noting that A, (z,) and A¢(z,) are independent,

we can compute E(Fy,(z)) as follows.
E(Fra() = 1—Ee O =1 Ber 0+ [R5
— 1 Ee (HEDAGI g [21AG G (4.19)
To compute the expectation on the r.h.s. of (4.19), we use the moment generating function
of Poisson r.v., i.e., if Y is a Poisson r.v. with mean p then Eexp(tY) = exp(u(e’ — 1)).

Since Y37, X([—kT, 2. —k7]) is a Poisson random variable with mean n,A(z,), the moment

generating function for Poisson r.v., with ¢t = —(1 + [2]) /n,, yields

. 1+ [2]) &
Ee HEDAG) — Bexp (—7< atl) > X([<kr, 2 — kT]))
k=1

nr
o o Ate) (15— 1) 420
By Taylor we have
z 212
oz, _ g UFED QD <i) (4.21)
n, 2nZ n?

as n — 00. Substituting (4.21) into the r.h.s. of (4.20), we obtain

B8~ (o (LD LEER (1))

n, 2n2
— exp (—(1+[§])A(zr)> exp (%A(%)) exp (o (%)) (4.22)

as n — 0o0. By Taylor, we can simplify the r.h.s. of (4.22) to obtain

21\2
Be-(+EDAn) — —rEhacn (1 BHET) v <i> <1 Lo (L))
2 " n? n2

Ny

N 1 21V2A (2, —(1+[Z])A(zr) 1
= e (HEDAG) 4 (1+ [T]) (z)e +0 <_2> 7 (4.23)
2n, n
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as n — oo. Similarly we have

[2]2A°(z,)e [FIA°Gn)

Ee [31A4(Gr) — o—[21A°Cr) 4
2n,

o) (%) , (4.24)

as n — 00. Substituting (4.23) and (4.24) into (4.19) and by (4.14), we obtain (4.17).
Next we verify (4.18).

. ; ; 2 ; 2
Var <FZn(z)) = Var <e_A"(z)) =E <6_A"(Z)> — (Ee‘A"(Z)> . (4.25)
The first expectation on the r.h.s. of (4.25) can be computed as follows
B (e 0" = B (e20)) = Be 20D e 2518560, (4.26)

By a similar calculation as the one in (4.20) - (4.23), with —(1 4 [2])/n, now replaced by
—2(1 + [2])/n,, we obtain

2(1 4 [£) (o) HEDA

nr

Ee—20+EDAn() _ o—2042DAG)

L0 (i) (427)

n2
as n — oo. Similarly we have

DZPA(,)e NG

Ny

Ee2EAG(r) — —2(£]A%(r) 4 e) <i> 7 (4.28)

n2

as n — 00. Substituting (4.27) and (4.28) into the r.h.s. of (4.26), and by (4.14), we

obtain
. 5 2 —2A(z) 1
E (efAn(z)> = ¢ 203 ¢ M +0 <_2> , (4.29)
N, n
as n — oo. From (4.17) we obtain
R 9 A 9 —2A(z) 1
(B )’ = (1= Bl () = s LTy 0 () )

as n — o0o. Substituting (4.29) and (4.30) into the r.h.s. of (4.25), we obtain (4.18). This

completes the proof of Lemma 2.

Proof of Proposition 1

By Lemma 2, i.e. E(Fy,(2) — Fz(2)) = O(n™Y) and Var(Fyz,(z)) = O(n™"), as n — oo,
Chebychev inequality yields part (i) of Proposition 1.
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To prove part (ii) of Proposition 1, we argue as follows. First we write the Lh.s. of

(4.2) as follows

Az N A
et CREr ) P U i (1= e~ Bn@=AE) (4.31)
q(2) a(z)

By Taylor we can write
e—An@-AG) _ 1 _ ([\n(z) — A(z)) + % (f\n(z) - A(Z))
o (Au() = A) (4.32)

By (4.6) we have

VI N(0,1) 4 0, (%) | (4.33)

as n — 0o. Combining (4.32) and (4.33), we have

; q(2) 1
e Mn(2)-A(z)) — V1 -
(1-e ) = N N(0,1) + o, <\/ﬁ) : (4.34)
as n — 0o. Substituting (4.34) into r.h.s. of (4.31), we obtain
nel®
\/_7() (Fzn(z) = Fz(2)) = N(0,1) + 0,(1), (4.35)
q(z

as n — 00. Hence we have (4.2). This completes the proof of part(ii) of Proposition 1.
Next we prove part (iii) of Proposition 1. By part(ii) of Proposition 1, to verify part

(iii) of Proposition 1, it suffices to check, for any z > 0,

4(2) (Ru2)-Ae) 2, 4 (4.36)

as n — 00. By (4.6) we have (A,(z) — A(2)) = O,(n"Y?), as n — oco. By (4.33) we have
(An(z) = A(z)) = Op(n~/?) and similarly (A (z,) — A%(2,)) = Op(n~1?), as n — oo.
This implies

~

(0, — 0) = O,(n"1/?), (4.37)

as n — oo. Hence we can write G,(z) = q(z) + O,(n"1/?), as n — oo. Then the Lh.s. of

(4.36) can be smplified as follows

q(2) Oy 12) _ $ q(2) LOp(n12)
q(2) + Op(n=172) q(2)(1 + Op(n=1/2))
_ lito, (%) <1+op (%)) _1+0, (%) (4.38)
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as n — 0o. Hence we obtain (4.36). This completes the proof of Proposition 1.
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