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Abstract—A simple lower bound to the capacity of the discrete-
time Poisson channel with average number of quanta of energy εs

is derived. The rate 1
2

log(1 + εs) is shown to be the generalized
mutual information of a modified minimum-distance decoder,
when the input follows a gamma distribution of parameter 1/2
and mean εs.

I. INTRODUCTION

Consider a memoryless discrete-time whose output Y is
distributed according to a Poisson distribution of parameter
X , the channel input. By construction, the output is a non-
negative integer, and the input a non-negative real number.
The channel transition probability W (y|x) is thus given by

W (y|x) = e−x
xy

y!
. (1)

This model, the discrete-time Poisson (DTP) channel, appears
often in the analysis of optical communication channels. In
this case, and without loss of generality, one can identify both
input and output with an integer number of quanta of energy.
In the following, we omit the words “quanta of”, and simply
refer to energy.

Let PX(x) denote the probability density function of the
channel input. We assume that the input energy is constrained,
i. e. E[X] ≤ εs, where E[·] denotes the expectation operator
and εs is the average energy. Random variables are denoted
by capital letters, and their realizations by small letters.

An exact formula for the capacity C(εs) of the DTP channel
is not known. Recently, Lapidoth and Moser [2], derived a
lower bound for a Poisson channel with additive Poisson noise
and a peak constraint, which particularized to our channel
model gives

C(εs) ≥ log

((
1 +

1
εs

)1+εs√
εs

)
−
(

1 +
√

π

24εs

)
. (2)

Observe that this bound becomes negative for vanishing εs.
Capacity is given in nats and the logarithms are in base e.

A closed-form expression for the mutual information
I(X;Y ) achieved by an input with a gamma distribution of

parameter ν was derived by Martinez in [3], namely

I(X;Y ) =
∫ 1

0

(
εs −

(
1− νν

(ν + εs(1− u))ν

)
uν−1

1− u

)
du

log u

+ (εs + ν) log
εs + ν

ν
+ εs

(
ψ(ν + 1)− 1

)
,

(3)

where ψ(y) is Euler’s digamma function. For ν = 1/2,
numerical evaluation of the mutual information gives a rate
which would seem to exceed 1

2 log(1 + εs) for all values
of εs. In this paper, we prove that the rate 1

2 log(1 + εs) is
indeed achievable by this input distribution. The analysis uses
a suboptimum minimum-distance decoder, similar in spirit to
Lapidoth’s analysis of nearest neighbor decoding [4].

II. MAIN RESULT

Let the input X follow a gamma distribution of parameter
1/2 and mean εs, that is,

PX(x) =
1√

2πεsx
e−

x
2εs . (4)

This choice led to good lower and upper bounds in [2] and
[3] respectively.

We consider a maximum-metric decoder; the codeword
metric is given by the product of symbol metrics q(x, y) over
all channel uses. The optimum maximum-likelihood decoder,
for which q(x, y) = W (y|x), is somewhat unwieldy to analyze
(Eq. (3) gives the exact mutual information). We consider
instead a symbol decoding metric of the form

q(x, y) = e−ax−
y2

x , (5)

where a = 1 + 1
εs

. The reasons for this choice of a will be
apparent later.

Clearly, the decoder is unchanged if we replace the symbol
metric q(x, y) by a symbol distance d(x, y) = − log q(x, y),
and select the codeword with smallest total distance, summed
over all channel uses. This alternative formulation is remi-
niscent of minimum-distance, or nearest-neighbor decoding.
Indeed, the metric in Eq. (5) is equivalent to a minimum-
distance decoder which uses the distance

d(x, y) =
(y −

√
ax)2

x
=
y2

x
+ ax− 2y

√
a. (6)



The term −2y
√
a is common to all symbols x and can be

removed, since it does not affect the decision.
For a = 1, the distance in Eq. (6) naturally arises from a

Gaussian approximation to the channel output, whereby the
channel output is modeled as a Gaussian random variable of
mean x and variance x. This approximation is suggested by
the fact that a Poisson random variable of mean x approaches
a Gaussian random variable of mean and variance x for large
x.

Minimum-distance decoders were considered by Lapidoth
[4] in his analysis of additive non-Gaussian-noise channels.
For our channel model, even though noise is neither additive
(it is signal-dependent), nor Gaussian, similar techniques to
the ones used in [4] can be applied. More specifically, since
we have a mismatched decoder, we determine the generalized
mutual information [5]. For a given decoding metric q(x, y)
and a nonnegative number s, it can be proved [5] that the
following rate —the generalized mutual information— is
achievable

IGMI(s) = E
[
log

q(X,Y )s

E[q(X ′, Y )s]

]
. (7)

The expectation is carried out according to PX(x)W (y|x).
This quantity is obviously a lower bound to the channel
capacity.

Our main result is

Theorem 1. In the discrete-time Poisson channel with average
signal energy εs, the rate 1

2 log(1 + εs) is achievable.

This rate is reminiscent of the capacity of a real-value Gaus-
sian channel with average signal-to-noise ratio εs. Similarly to
the situation in this channel, the rate is achieved by a form of
minimum-distance decoding. Differently, the input follows a
gamma distribution, rather than a Gaussian.

Proof: We evaluate the generalized mutual information
IGMI(s) for an input distributed according to the gamma
density, in Eq. (4). First, we evaluate the expectation in the
denominator [6, Eq. 3.471-15]

∫ ∞
0

e−
x′
2εs
−asx′− sy2

x′

√
2πεsx′

dx′ =
e
−|y|

q
2s(1+2aεss)

εs

√
1 + 2aεss

. (8)

Further, using the expression of the first two moments of
the Poisson distribution, namely1

∑
y

W (y|x)y = x,
∑
y

W (y|x)y2 = x2 + x, (9)

together with the input constraint E[X] = εs, we can explicitly

1The moment generating function of a Poisson random variable of mean x

is readily computed to be ex(et−1). The first two moments are the first two
derivatives, evaluated at t = 0.

carry out the expectation in Eq. (7),

IGMI(s) = E
[
log q(X,Y )s

]
− E

[
log E[q(X ′, Y )s]

]
(10)

= sE
[
−aX − Y 2

X

]

+ E

Y√2s(1 + 2aεss)
εs

+ log
√

1 + 2aεss


(11)

= −s ((a+ 1)εs + 1) +
√

2εss(1 + 2aεss)

+
1
2

log(1 + 2aεss). (12)

Choosing ŝ = 2εs

(a−1)2ε2s+2εs(a+1)+1 , the first two summands
cancel out. And for a = 1 + 1

εs
we have that 2aŝ = 1, and

therefore

IGMI(ŝ) =
1
2

log(1 + εs). (13)

The same rate, 1
2 log(1+εs), is also achievable by a decoder

with a = 1. In this case, we have to replace the generalized
mutual information by the alternative expression ILM [5], given
by

ILM = E
[
log

a(X)q(X,Y )s

E[a(X ′)q(X ′, Y )s]

]
. (14)

As for IGMI, s is a non-negative number; a(x) is a weighting
function. Setting a(x) = e−

s
εs
x we have that ILM is given by

Eq. (11), thus proving the achievability.
The bound provided in this paper is simpler and tighter

than Eq. (2). It would be interesting to extend Theorem 1 to
channel models Y = S(X) + Z, where S(X) corresponds
to the case considered here and Z is some additive noise Z,
with a Poisson or a geometric distribution. A different input
distribution and another modified decoding metric are likely
required for either case.
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