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l. INTRODUCTION 

Probabilistic arguments in combinatorial theory, as used by Erdos and 
Spencer [ 5 ], are usually aimed at establishing the existence of an object, 
in a non-constructive sense. It is ascertained that a certain member of a 
class has a certain property, without actually exhibiting that object. 
Usually, the method proceeds by exhibiting a random process which 
produces the object with positive probability. Alternatively, a quantitative 
property is determined from a bound on its average in a probabilistic situa­
tion. The way to prove such "existential" propositions often uses averages. 
We may call this "first-moment" methods. "Second-moment" methods, 
using means and variance of random variables to establish combinatorial 
results, have been used by Moser [18]. Pippenger [19] has used related 
notions like '"entropy," "self-information," and "mutual information" from 
information theory [21]. He gives two examples of "universal proposi-
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tions," such as a lower bound on the minimum of a quantity or an upper 
bound on the maximum of a quantity. 

In [10], Kolmogorov established a notion of complexity (self-informa­
tion) of finite objects which is essentially finitary and combinatorial. Says 
Kolmogorov [ 11]: 

The real substance of the entropy formula [based on probabilistic assumptions 
about independent random variables] ... holds under incomparably weaker and 
purely combinatorial assumptions .... Information theory must precede probability 
theory, and not be based on it. By the very essence of this discipline, the founda­
tions of information theory must have a finite combinatorial character. 

It is the aim of this paper to demonstrate how to replace probability 
based arguments in combinatorics by complexity based arguments, which 
of themselves are essentially combinatorial in nature. 

One can often convert Kolmogorov arguments (or probabilistic 
arguments for the matter) into counting arguments. Our intention is 
pragmatic: we aim for arguments which are easy to use in the sense that 
they supply rigorous analogs for our intuitive reasoning why something 
should be the case, rather than have to resort to nonintuitive meanderings 
along seemingly unrelated mathematical byways. It is always a matter of 
using regularity in an object, imposed by a property under investigation 
and quantified in an assumption to be contradicted, to compress the 
object's description to below its minimal value. 

We introduced this method, and gave a comparison of proofs of the first 
example in this paper by counting, by probabilistic argument, and by 
Kolmogorov complexity argument in [14]. Here we treat two examples 
from Erdos and Spencer's book, and the two examples in Pippenger's 
article. It is only important to us to show that the application of 
Kolmogorov complexity in combinatorics is not restricted to trivialities. To 
make this paper self-contained we briefly review notions and properties 
needed in the sequel. 

2. KOLMOGOROV COMPLEXITY 

We identify the natural numbers .;V and the finite binary sequences as 

(0, c:), (1, 0), (2, 1), (3, 00), (4, 01 ), .. ., 

where c: is the empty sequence. The length l(x) of a natural number x is the 
number of bits in the corresponding binary sequence, /(e) = 0. If A is a set, 
then IAI denotes the cardinality of A. Let <. ): JV x JV-+ JV denote a 
standard computable bijective pairing function of which the inverse is 
computable too. Define (x, y, z) inductively by (x, (y, z) ). 
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We need some notions from the theory of algoritms, see [20]. Let 
</J 1 , ef> 2 , ... be a standard enumeration of the partial recursive functions. The 
(Kolmogorov) complexity of x E JV, given y E .;V, is defined as 

K( x I y) = min { /( ( n, z)) : ef> n( ( y, z)) = x}. 

This means that K(x I y) is the minimal number of bits in a description 
from which x can be effectively reconstructed, given y. The unconditional 
complexity is defined as K(x) = K(x I e).Alternatively, fix a universal partial 
recursive function ef>0 , such that ef>0((y, (n,z)))=ef>n((y,z)). An equi­
valent definition, often used, is 

K(x I y) = min{l(z): ef>o( (y, z)) =x }. 

A survey is [14]. 
Throughout "log" denotes the binary logarithm. We use f(n) = O(g(n)) 

(as n--+- oo) as meaning "there exist two constants C, n0 such that 
lf(n)I ~ C lg(n)I for all n ~n0 ." When O(g(n)) occurs in the middle 
of a formula it represents a function f satisfying this meaning. We use 
f(n)=o(g(n)) as meaning that limn_. 00 /(n)/g(n)=O. 

We need the following properties. For each x, y E .;V we have 

K(x I y) ~ l(x) + 0(1). (1) 

For each y E .;V there is an x such that K(x I y) ~ l(x ). In particular, we can 
set y =e. Such x's may be called random, since they are without regularities 
which can be used to compress their description: the shortest effective 
description of x is x itself. In general, for each n and y, there are at least 
2" - zn- ,. + 1 distinct x's of length n with 

K(x I y) ~ n - c. (2) 

It is not too difficult to show that, if K(x)~n-f(n) (n=l(x)), then the 
number of zeros #zeros(x) it contains is, [15] (or [17] for f(n) = 0(1)), 

I #zeros(x)-n/21 = O(~). (3) 

(If x contains less or more zeros, then it can be described as an element of 
an ensemble which is significantly smaller than 2n.) 

Denote K((x,y)) by K(x,y). It can be proved [11, 14] that, up to an 
additive term O(log min{K(x), K(y)}), 

K(x,y) =K(x) + K(y Ix)= K(y) + K(x I y). (4) 
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This identity is sometimes referred to as "symmetry of information." The 
logarithmic error term is caused by the fact that we need to encode a 
delimitor to separate two concatenated binary sequences (description of x 
and description of y given x) in the original pair. We also denote 
K(x I <y, z)) by K(x I y, z). 

3. TOURNAMENTS 

The first example proved by Erdos and Spencer in [5] by the 
probabilistic method, Theorem 1, is originally due to Erdos and Moser 
[ 4]. A tournament T is a complete directed graph. That is, for each pair of 
nodes i and j in T, exactly one of edges ( i, }), (}, i) is in the graph. The 
nodes of a tournament can be viewed as players in a game tournament. If 
(i,j) is in T we say player j dominates player i. We call T transitive if 
( i, }), (}, k) in T implies (i, k) in T. 

Let I' be the set of all tournaments on N = { 1, ... , n }. Given a tourna­
ment TE I', fix a standard coding E: r--. JV, such that l(E(T)) = n(n -1 )/2 
bits, one bit for each edge. The bit for edge (i,j) is set to 1 if i <}and 0 
otherwise. 

THEOREM 1. If v(n) is the largest integer such that every tournament on 
N contains a transitive subtournament on v(n) nodes, then v(n) ~ 1 + 
L2 log nj from some n onwards. 

Proof By Eq. (2), fix TE r such that 

K(E(T) In, p) ~ l(E(T))I', (5) 

where p is a fixed program that on input n and E'(T) below, outputs E(T). 
Let S be the transitive subtournament of T on v(n) nodes. We try to 
compress E(T), to an encoding E'(T), as follows. 

1. Prefix the list of nodes in Sin order of dominance to E(T), each 
node using !log nl bits, adding v(n)llog nl bits. 

2. Delete all redundant bits from the E(T) part, representing the 
edges between nodes in S, saving v(n)(v(n)- 1 )/2 bits. 

Then, 

l(E'(T)) = l(E(T))- v~) (v(n)- l - 2r1og nl). (6) 
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Given n, the program p constructs E(T) from E'(T) (We can find v(n) by 
exhaustive search.) Therefore, 

K(E( T) In, p) ~ l(E'( T) ). (7) 

Equations (5), (6), and (7) can only be satisfied with v(n)~ 

1 + L2 log n J. I 

The general idea used is the following. If each tournament contains a 
large transitive subtournament, then also a T of maximal complexity con­
tains one. But the regularity induced by the transitive subtournament can 
be used to compress the description of T to below its complexity, yielding 
the required contradiction. It now takes only a few lines to prove the 
following result with the new method. 

CLAIM 1. Let w(n) be the largest integer so that for each tournament T 
on N there exist disjoint sets A and B in N of cardinality w(n) such that 
Ax B ~ T. Then w(n) ~ 21log nl. 

Proof We can save x= w(n)2 bits for the edges between A and B 
by adding the code of the nodes in A and B in y = 2w(n )!log n l bits. 
Since for a tournament satisfying Eq. (5) we have y- x ~ 0, the claim 
follows. I 

The second example is Theorem 9.1 in [5], originally due to Erdos [3]. 
A tournament T on N has property S(k) if for every set A of k nodes 
(players) there is a node (player) in N -A which dominates (beats) all 
nodes in A. Let s(k) be the minimum number of nodes (players) in a tour­
nament with property S(k). An upper bound on s(k) has applications in 
constructing time stamp systems in distributed computing [ 13]. 

THEOREM 2. s(k) ~ 2kk 2(loge 2 + o(l )). 

Proof Choose 

(8) 

Assume the notation of the previous theorem. By Eq. (2 ), choose T such 
that 

K(E( T) In, k, p) ~ l(E( T)) = n(n - 1 )/2, (9) 

where p is a fixed program to compute E(T) from E'(T) (given below), and 
n, k. 
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By way of contradiction, assume that S(k) is false for T. Fix a set A of k 
nodes of T with no common dominator in N - A. Describe T as follows by 
a compressed effective encoding E'(T). 

1. List the nodes in A first, using !log n 1 bits each. 

2. Second, list E(T) with the bits representing edges between N -A 
and A deleted (saving (n-k)k bits). 

3. Third, code the edges between N - A and A. From each i E N -A, 
there are 2k - 1 possible ways of directing edges to A, in total 
t = (2k - 1 r- k possibilities. To encode the list of edges !log tl bits suffice. 

This shows that 

K(E( T) I n, k, p) ~ l(E'( T) ). (10) 

For large k, 

l(E'(T)) < l(E(T)). (11) 

Equations (9), (8), (10), (11), yield the desired contradiction. Therefore, 
s(k) ~n. I 

4. THE COIN-WEIGHING PROBLEM 

A family £& = { D 1 , ••• ,DJ of subsets of N = { 1, ... , n} is called a dis­
tinguishing family for N if for any two distinct subsets Mand M' of N there 
exists an i (1 ~ i~j) such that ID;n Ml is different from IDJ"' M'I. Let/(n) 
denote the minimum of 1£&1 over all distinguishing families for N. To deter­
mine f(n) is commonly known as the coin-weighing problem. It is known, 
that 

f(n) = _l:!:__ ( 1 + 0 (log log n)). 
log n log n 

The upper bound was independently established in [16, 1]. Erdos and 
Renyi, [6], Moser, [18], and Pippenger, [19], have used various methods 
in combinatorics to show the lower bound. Pippenger used an information 
theoretic argument. We supply a proof using Kolmogorov complexity. Fix 
a standard encoding E: 2N--+ JV, such that E(A ), A s;; N, is n bits, one bit 
for each node in N. The bit for node i is set to 1 if node is in A, and 0 
otherwise. Define £(£&) = (E(D 1 ), ••• , E(D)). To simplify notation, in the 
proof below we identify A with E(A ), where As;; N or A = £&. 
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THEOREM 3. 

f( n) '9 }:!:__ [ 1 + 0 (lo~ log n)]· 
log n og n 

Proof Use the notation above. By Eqs. ( 1) and (2 ), choose M such 
that 

K(M 1221) '9 n. (12) 

Let m;= ID;nMI. Since 221 is a distinguishing family for N: given~, the 
values m1, ••. , m1 determine M. Hence, 

K(M 1221) ~ K(m 1 , ••• , m1 I:!2)+0(1 ). (13) 

Let d; = ID; I, and assume d; > Jn. By a standard argument (detailed 
after the proof), Equation ( J 2) implies that the randomness deficiency 
k = d;-K(M n D; ID;) is O(log n). Therefore, by Eq. (3), m; is within range 

Im; - d;/21 = 0( J d; log n ). Since m; can be described by its descrepancy 
with d;/2, and d; ~ n, 

K(m; ID;)~ ~log n + O(log log n), 

Pad each description of an m;, given D;, to a block of length 
~log n + O(log log n ). Then, 

j 

K(m 1, ••• , m1 I :!fi) ~ L: (1log n + O(log log n)). ( 14) 
i=l 

By Eqs. (12), (13), and (14), j'9n/(~logn+O(log1ogn)), which is 
equivalent to the theorem. I 

Standard Argument. A useful property states that if an object has maxi­
mal complexity, then the complexity of an easily describable part cannot be 
too far below maximal. In the particular case involved in the proof above, 
the standard argument runs as follows. The randomness deficiency k as 
defined in the proof cannot be large, since we can reconstruct M from: 

1. A description of this discussion, and delimitors between the 
separate description items, in O(log n) bits. 

2. The literal description of E(M) leaving out the bits corresponding 
to elements in D;, saving d; bits. 

3. The assumed short program to reconstruct the bits in E(M) 
corresponding to elements in D;, adding d; - k bits. 

4. A description of 221 and i. 
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Then, K(Mlg/J,i)~n-k+O(logn), which by Eq. (12) implies that k~ 
K(i) + O(log n ). Since i ~ j, and j ~ n (the set of singleton sets in N is a 
distinguishing family), we find k = 0( log n ). 

5. COVERING FAMILIES 

Let n and N be as before, and let K(N) denote the set of all unordered 
pairs of elements from N (the complete n-graph). If A and B are disjoint 
subsets of N, then K(A, B) denotes the set of all unordered pairs { u, v }, 
u EA and v E B (complete bipartite graph on A and B ). A family 
<tJ = ( K( A 1 , B 1 ), ••• , K(A 1, B;)) is called a covering family of K( N), if for any 
pair { u, v} E K(N), there exists an i ( 1 ~ i ~j) such that { u, v} E K(A 1, BJ 
For each i (l~i~j), set C1=A 1uB1, and c1=IC1 1. Let g(11) denote the 
minimum of 

1 ~ i~j 

over all covering families for K(N). The problem of determining g(n) arises 
in the study of networks of contacts realizing a certain symmetric Boolean 
function, and the following is known [8]: 

11 log n ~ g(n) < n log n + ( 1 - loge+ log log e)n. 

The lower bound on g(n) was also proven by Pippenger [ 19] using 
an information theoric argument. There the reader can find additional 
references to the source of the problem and its solutions. We give a short 
Kolmogorov complexity proof for the following. 

THEOREM 4. 

g(n) 
- ?; log n + O(log log /1 ). 

n 

Proof Use the notation above. For each x EN, there is a y = Y1 · · · Y.i 
and a binary sequence z of an exactly sufficient number of bits for the 
construction below, with K(z In, x);?; /(z). 

1. If xEA 1, theny;=O. 

2. If x E B;, then Y; =I. 

3. If x EN - C;, then y 1 =next unused bit of z. 

Denote y and z associated with x by yx and z'. Given 11, we can reconstruct 
<(] as the lexicographically least minimal covering family. Therefore, we can 
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reconstruct x from v" and n, by exhaustive matching of all elements in N 
with v' under <fJ. N~mely, suppose distinct x and x' match. By the covering 
prop~rty, { x, x'} E K(A;, B;) for some i. But then y;" #yr, Hence, 
K(x In, yx) = 0( I). Then, by Eq. (4 ), we have 

R(x) ~ K(y" I n)-K(y' In, x)- K(x In)= O(log K(x In)). (15) 

Given n and x, we can reconstruct yx from zx and <ff, first reconstructing 
the latter item from n as above. Thus, up to an O(n) additive term, 
LnN K(yx In, x) can be evaluated, from the number of bits in the z·"s as 
follows: 

L l{i:xEN-C;}I= L l{x:xEN-C;}l=nj- L C;. (16) 
xeN l~i~j 1 ::;;,_i~j 

For each x, by Eq. (1 ), 

K(y'ln)~/(y')+O(l)=j+O(l), (17) 

and K(x In)~ log n + 0( l ). Estimating the lower bound on I: K(x I n) by 
Eq. (2), 

L K(x In)= n log n + O(n ). (18) 
XE N 

By Eqs. (15), (1 ), (16), (17), and (18) we have 

L c;-nlogn+O(n)~ :L R(x)=O(nloglogn), 
xeN 

from which the theorem follows. I 

One may wonder whether we can remove the O(log log n) error term. 
The prefix variant of complexity KP(x I y*) [ 12, 7, 2, or 14] is the length 
of the shortest self-delimiting description from which x can be recon­
structed, given the shortest self-delimiting description y* for y (rather than 
y literally). A description is "self-delimiting" if the interpreter can determine 
the end of it without looking at additional bits. This KP complexity is more 
precise for some applications. In its KP version, Eq. ( 4) holds to within an 
0( 1) additive term, rather than the O(log log n) one [7]. Then, in Eq. ( 15 ), 
the KP version of R(x) = 0(1 ). A straigthforward, somewhat tedious, 
analysis shows that estimates of the quantities in Eqs. (16), (18), and (17) 
still hold in KP-version. Together, it follows that g(n )/n ~log n + 0( l ). 
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6. EXPECTED PROPERTIES 

By Eq. (2), almost all strings have high (Kolmogorov) complexity. 
Hence, almost all tournaments and, as another example, almost all 
undirected graphs, have high complexity. Any combinatorial property 
proven about an arbitrary complex object in such a class will hold for 
almost all objects in the class. For example, the proof of Theorem 1 does 
not only show there exists a tournament on n nodes in which all transitive 
subtournaments have at most 1 + L2 log nJ nodes, but can trivially be 
strengthened as follows. 

By Eq. (2) there are at least 2n<n- 1 >12(1-1/n) tournaments Tonn nodes 
with 

K(E(T) In, p) ;;?;n(n - 1 )/2-log n. (19) 

This is a (1-1/n)th fraction of all tournaments on n nodes. Using Eq. (19) 
instead of Eq. (5) in the proof of Theorem 1 yields the stronger statement 
that: 

THEOREM 5. For almost all tournaments on n nodes (a fraction of at least 
1 - 1/n ), the largest transitive sub tournament has at most 1 + 212 log n l 
nodes, from some n onwards. 

Similarly, choosing K(E( T) In, k, p);;?; n(n - 1 )/2 - log n instead of 
Eq. (9) in the proof of Theorem 2 yields the stronger result: 

THEOREM 6. For all large enough k, there is some n with n ~ 
2kk 2 (loge 2+o(1) ), such that almost all tournaments on n nodes (a fraction 
of at least 1 - 1/n) have property S(k). 

The Kolmogorov complexity argument generally yields results on 
expected properties rather than worst-case properties, and is especially 
suited to obtain results on random structures. Since the submission of this 
paper other such applications (like expected maximum vertex degree of 
randomly generated trees and a related result on random mappings) have 
been exhibited [9]. Bill Gasarch has recently informed us that the method 
also yields the lower bound in Ramsey's Theorem, (see [ 14] ). 
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