
Adaptation of Software Entities for Synchronous
Exogenous Coordination

An Initial Approach

Nikolay Diakov and Farhad Arbab

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, 1090 GB Amsterdam,

The Netherlands,
{nikolay.diakov, farhad.arbab}@cwi.nl

Abstract. In this paper we present an ongoing work on a framework for
adaptation of heterogeneous software entities to allow their integration
together with the help of synchronous connectors. By using synchronous
connectors for software integration, we intend to make it possible to
significantly reduce the time and money spent for programming fortifi-
cations against unwanted behavior, as compared to the time and money
spent for programming explicit business scenarios. In this paper, we de-
scribe our initial approach to how one can adapt a large class of existing
software entities that offer standard RPC-style operational interfaces, for
integration through an arbitrary synchronous Reo connector.

1 Introduction

A business scenario explicitly describes a recipe for performing some necessary
steps that ultimately lead to the production of a desired end-result. Take as an
example a holiday reservation service that requires the reservation of a flight, a
hotel, and a car. A successful reservation requires all of the individual steps to
happen and it does not require them done in any particular order.

A business scenarios typically states what should happen, which at the same
time means that anything omitted from the scenario that may prevent the
achievement of any explicitly mentioned results, should not happen. We dis-
tinguish two general methods that business automation developers use to build
a software system that enforces a business scenario: (1) direct – through pro-
gramming the steps that the scenario says should happen, and (2) fortification –
through programming to prevent the unwanted behavior that a scenario does not
mention explicitly, but common sense and experience dictate should not happen
in order to make sure that the software systems always follows the scenario that
it automates.

In our experience, developers often spend less time for designing and pro-
gramming business scenarios directly, than for designing and programming for-
tification code for these scenarios. Developers spend even more time for debug-
ging the manually-developed fortification code, often designated to operate in a

39

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



large and dynamic distributed environment. The high cost of enforcing explicit
behavior of software applications by default, through developing fortification
code, sometimes even becomes prohibitive. We consider this as one of the main
problems in contemporary business automation. Therefore, any tool or technique
that improves on the situation has the potential to generate serious value for the
software development industry.

Large and dynamic distributed systems, such as the Internet, offer great po-
tential for business automation to take advantage of. At the core of programming
in a distributed environment lies the capability and the necessity to coordinate
independent activities together, to achieve a common goal. Using connectors to
directly and exogenously (i.e., from the outside) coordinate the activities per-
formed by independent, autonomous, and possibly physically distributes software
entities, has become a promising technique for integrating heterogeneous soft-
ware in large, dynamic and distributed computing environments. Channel-based
coordination languages, such as Reo [1], facilitate the modeling, construction,
and execution of such connectors.

The database community has studied the problem of directly enforcing be-
havior in an automatic manner by introducing the notion of a transaction.
Among other things, any steps undertaken by design within the context of a
transaction, appear to an entity outside of this context as one atomic activ-
ity. Most databases support transactions by automatically taking care of any
clean up necessary after an incomplete transaction, thus enforcing only explicit
(completely successful transaction representing a) business behavior. Packages
for doing business transactions have also appeared (MTS [2], IBM CICS [3])
that operate at the level of inter-component interactions. These packages al-
low developing components that can participate in transactions. Current vendor
technologies: (a) focus on providing transactions for particular narrow domains of
applications (e.g., databases); (b) can provide a wider choice of applications but
at the cost of leaving too much for the application developers to do themselves
(e.g., transactions cover only basic sequences of simple component interactions);
and (c) do not provide sufficient support for composition and nesting of exist-
ing transactional components. Synchronous programming languages also allow
enforcement of synchronous behavior. ESTEREL [4] and LUSTRE [5] offer a
practical approach and have large commercial acceptance especially in the em-
bedded systems domain. This class of languages, however, enforce a click-step
style of synchrony through all components in the system – something inappro-
priate in a distributed system, in which individual components may want to
execute at their own speeds.

The rest of this paper has the following structure. We elaborate on the notion
of enforcing explicit business scenarios in Section 2, and introduce our approach
to specify and enforce them using Reo. In Section 3, we analyze the issues related
to our goals, and we present what designers need to do to adapt a COTS compo-
nent built using common middleware technology. We present a proof-of-concept
implementation of a Simple Transactional API for the MoCha coordination
middleware in Section 4, using a special f(x) channel, allowing us to adapt an
example database application for use with synchronous connectors.

40

 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 Enforcing business scenarios

In a business scenario, to achieve the end result one usually performs all nec-
essary steps of the scenario and therefore no intermediate result can count as
a success. Referring to individual business scenarios as inherently atomic seems
natural – the term business transaction predominates the language we use when
communicating about business. In this paper we disregard long running business
interactions, which may tolerate partial failure by allowing for compensation ac-
tivities. Technically, we do not consider these as atomic in the classical sense
introduced with ACID transactions (where A stands for atomicity) [6].

Automating a business scenario in a distributed environment requires the co-
ordination of the behavior of several otherwise independent software components.
After some refinement of a business scenario, software designers typically come
up with some protocol to coordinate the activities of the instances of the nec-
essary software components to achieve the desired result. In a component-based
system, a coordination protocol resides within the “glue code” that composes
some (possibly independent, e.g., off-the-shelf together as well as home-grown)
components. Exogenous coordination treats glue code as a first-class modeling
entity that resides outside of any of the components it coordinates (hence “exoge-
nous”). Exogenous coordination promotes loose-coupling between components,
which in turn improves software reusability, maintainability, change manage-
ment, and with proper technological support, allows dynamic re-configuration
[7, 8].

Our work focuses on facilitating a component-based software development
process that allows and encourages the direct (semi)automatic enforcement of
explicit behavior by means of exogenous and synchronous coordination, as op-
posed to manual fortification against unwanted behavior by means of additional
developers work. We aim to allow integration of commercial off-the-shelf (COTS)
components into atomic implementations of business scenarios (transactions).
Furthermore, we aim at facilitating composition of existing transactions. To
specify and implement exogenous and synchronous connectors, we use the Reo
coordination language [1]. Reo offers both synchronous and asynchronous coor-
dination primitives, called channels.

The concept of synchrony in Reo directly relates to the notion of atomicity
we introduced earlier. Consider the synchronous channel Sync. A Sync has two
channel ends, an input and an output. A request for writing a data item on the
input end of a Sync succeeds if and only if a pending request exists to take a data
item on the output end of the channel. Since neither a write nor a take request
can succeed on its own, Sync appears to combine the acts of writing and taking
of data items into a composite atomic act enforced by this channel. Composing
more synchronous channels together using Reo’s topological operations allows
one to create a connector that makes an arbitrary number of write and take
activities appear atomic, with the side effect of transporting data items, e.g.,
across some communication infrastructure.

The Reo coordination language by design supports compositionality [9], al-
lowing compositional construction of complex applications [10]. Compositional-

41

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ity in Reo permits nesting of synchronous connectors for free – behaviorally,
we interpret the notion of nesting as composition of constituent behaviors to
form a new higher order behavior. Reo also comes with the added value of the
ability to compose during runtime. Consider an example in which an electronic
auction system supports many participants: an auctioneer hosts the auction, and
an owner determines the initial conditions of the auction [11]. Now suppose that
several of the participants dynamically enter into an alliance in order to im-
prove their outcome. An auction protocol and an alliance protocol implemented
in Reo, allow composition just by using some auxiliary synchronous channels
to connect the alliance to the auction as a new participant [12]. From the auc-
tions perspective, this looks like nesting an alliance behavior within a participant
behavior to allow participation in the an auction (transparent to the auction).

To facilitate the integration/assembly of COTS component with synchronous
connectors specified in Reo, we need to provide the necessary minimum technol-
ogy that enables this integration. We cannot assume that a COTS component
that provides the necessary functionality comes also with support for participa-
tion in a transaction. For example, if a transaction does not succeed, a component
may need to restore its previous internal state in order to remove the traces of
any intermediate results of the unsuccessful transaction; something the original
designers of a component may not have intended it to do.

To summarize our initial approach: we analyze what facilities we need to
provide so that a designer can adapt a COTS component with little effort for
integration with the Reo technology; we implement the identified facilities in the
MoCha middleware [13] – an initial implementation of Reo; we then provide
an example of the use of these facilities to demonstrate the feasibility of our
proposition.

3 Middleware for synchronous interactions

In this section, we analyze our problem from several perspectives. We explore
what it means for a component to interact synchronously (as we defined it). We
summarize the interaction patterns of common component middleware. Finally,
we present the current state of coordination middleware that we can use.

3.1 Synchronous interactions

We assume that a coordination middleware that “speaks” Reo enforces the
necessary synchronous coordination among arbitrary individual COTS compo-
nents. To integrate a particular component technology with such a coordination
middleware, we need to (a) allow a component instance to interact with a syn-
chronous connector technologically, and (b) since, in the general case, we cannot
assume that a COTS component supports transactions, we may need to adapt
it to support them. We consider (a) as a matter of proper wrapping, done once
at the technological level for a particular component middleware, and therefore

42

 
 
 
 
 
 
 
 
 
 
 
 
 
 



we do not discuss it in detail. To do (b), however, one may need additional work
per individual component depending on what it does.

Designers can easily integrate stateless components into a transaction. In
stateless components, every interaction depends entirely on its immediate pa-
rameters and a component instance does not keep any information about its
past interactions in the form of some internal state. For example, a component
that sorts an array passed to it in a parameter and returns the result does not
need to preserve a state. A stateful component, on the other hand, requires
certain adaptation to allow it to clean up its internal state, if a transaction in
which it participates fails. The Reo computational model [14, 15] uses a proto-
col similar to the well-known two-phase commit protocol (2PC) to implement
its synchronous connectors. Adapting stateful components for the 2PC provides
one solution to their integration: the connector plays the role of the global coor-
dinator in the 2PC. Depending on the actual component middleware, in addition
to state, designers may also have to take care of various concurrency issues, such
as call isolation among concurrent access sessions, re-entrance within the same
session, object activation/deactivation, persistence, and others, which we do not
discuss in this paper.

3.2 Component middleware

Most technologies for component-based development use an RPC-capable com-
munication infrastructure for interaction – DCOM [16], CORBA CCM [17], EJB
with Java RMI [18], and so on. A component offers its behavior in terms of an
interface: a collection of individual operations (also called methods, functions, or
procedures) specified by a signature, perhaps pre and post conditions per oper-
ation, and some relations among the operations (e.g., order of calls, etc). Thus,
we do not much limit our options by considering a component to represent an
RPC-enabled library of (a) functional blocks defined in formal operational in-
terfaces, and (b) software protocols for using them, often specified informally. In
this paper we deal with facilitating (a). We leave (b) for future work.

The RPC protocol for invoking operations blocks the caller until a result be-
comes ready. In the blocking 2PC protocol, the component that serves an RPC
call (callee) also blocks until the transaction in which it participates (through in-
teractions with a synchronous connector) completes, either failing or succeeding.
A designer can hide this blocking from a component through a generic wrapper
that mediates all interactions with the component. This wrapper exposes the
necessary facilities for notification of success or failure through a generic pro-
gramming interface. Integrators use this interface to adapt their components for
synchronous integration.

3.3 Coordination middleware

The MoCha middleware [13] constitutes the current initial implementation of
the Reo coordination language. MoCha implements individual synchronous

43

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



channels, which also support mobility. The individual functional blocks, the op-
erations, that a component offers through its operational interface take an input
(parameters) and produce an output (result and/or exceptions, error codes, etc).
In this sense, an operation behaves somewhat similar to a channel in Reo. It
seems natural then to view a component instance as a collection of channel
instances. For synchronous connectors, we require operations to appear as syn-
chronous channels. Thus, from the point of view of a connector designer, we
regard an operation as a Sync channel that synchronizes its two ends and trans-
ports data. This data transport, however, has the side effect of computing some
(for stateful components – possibly history sensitive) function y = f(x) on that
data (here x stands for a tuple of input parameters and y represents a tuple of
output parameters or results). From the point of view of an application integra-
tor who needs to adapt a component, to appear as a synchronous channel, the
code of each (stateful) operation should become transactional. In MoCha, an
Simple Transactional API (STAPI) for 2PC-style, offered next to the standard
API for implementing new channels, can aid the integrator in the adaptation
process.

4 Proof of concept

In this section we assume the role of an integrator who needs to adapt a simple
database access component for use with synchronous connectors for the pur-
pose of logging of transaction successes (e.g., to use for auditing). Naturally,
the logging of a success should become a part of the transaction itself (through
synchronous integration, logging success only when the transaction completes.
Since we do not have a complete Reo implementation, we use the Java-based
MoCha middleware, which provides only basic synchronous connectors called
synchronous channels.

We build a specific general f(x)Sync channel, which internally provides a
STAPI for MoCha (STAPI4MoCha) programming interface. Integrators can
use this interface to allow something (a connector) that appears as a 2PC proto-
col coordinator, to interact with the implementation of the component operation.
The 2PC protocol requires processing of several messages: a global prepare
sent from the transaction coordinator (in our case, the synchronous connec-
tor) to all participants, to which they respond with either local success or
local failure; a global abort; and a global success. Our interface offers
only two kinds of messages to the component: global success and global
failure. Internally, we consider the actual invocation of an operation as the
global prepare message, returning normal result as a local success, and re-
turning with exception as local failure. A call to transaction(callback
interface) within an operation establishes the callback method, to which the
channel implementation will deliver the messages.

For our example, we use a simple database access component that provides
access to a file storage. As a component model we assume a single Java class.
We intend for the operations of reading from (given offset and size) and writing

44

 
 
 
 
 
 
 
 
 
 
 
 
 
 



to (given offset and data of some size) a file, to appear as operations on two
respective f(x)Sync channels. Note that we have chosen a stateful component
(the write operation), because the file represents the state kept between individ-
ual calls. In this application, we buffer the written data, preparing it for writing
exclusively to the file, checking space limitations, and so on. When a global
success arrives we flush the buffer onto the file.

5 Conclusions and discussion

We presented an approach to synchronous software integration, in which we
propose to use Reo as the specification and implementation language for syn-
chronous connectors. As an added value, using Reo as a specification language
enables one to take advantage of Reo’s formal semantics [19] for tool-based
verification, simulation, and reasoning about software compositions. Used as an
implementation language, Reo’s computational model [14, 15] can enforce co-
ordination protocols in a de-centralized, scalable, and (partially) fault tolerant
manner.

In our approach, for practical reasons we have decided to focus on a basic
behavior block widely used by the industry to offer behavior through remote
interfaces – the RPC-style of operation invocation. By modeling an operation
as a synchronous channel, we enable native integration with Reo-connectors
of PRC-style operational interfaces. Providing native support for other styles of
interaction, such as asynchronous message passing, message queueing and event-
based notification, remains an open issue. Nevertheless, if we have a library for
these interaction styles, implemented with RPC-style interfaces, we can still offer
a technological solution with our framework. We see such solution as non-native,
but one on top of the existing framework presented in this paper. For this kind of
solutions, however, we need to have a better specification of coordination among
the uses of the individual operations in an interface (provided by a component
or library).

We realize that developers often describe the software protocols for using
interface operations of a component in an informal language (manuals and doc-
umentations). This practice inherently has a huge potential for producing errors
in the way integrators use a component. Components and libraries for high-level
distributed communication protocols, such as the alternatives to RPC mentioned
above, include subtle details of how multiple parties can concurrently use a com-
ponent. We intend to investigate whether one can use “local” connectors that
directly express and enforce any intra-component coordination among the oper-
ation calls on a component interface.

As part of future work, when the middleware that supports the full Reo be-
comes available, we plan to enhance it with facilities for integration with at least
one common component model, such as CORBA CCM, EJB, or COM+/.Net
Components.

45

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Acknowledgements

We thank Dr. David Clarke for his comments on this work.

References

1. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14 (2004) 329–366

2. Microsoft Corporation: Microsoft Transaction Server (2005)
http://www.windowsitlibrary.com/Documents /Book.cfm?DocumentID=405.

3. IBM Corporation: IBM CICS Transaction Server (2005) http://www-
306.ibm.com/software/htp /cics/tserver/v31/.

4. Berry, G.: The Foundations of Esterel. MIT Press (2000)
5. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for

programming synchronous systems. In: POPL. (1987) 178–188
6. ISO/IEC: ISO/IEC 10026-1:1992 Section 4 (1992)
7. Arbab, F.: A behavioral model for composition of software components. L’Objet

(2005) to appear in 2006.
8. Arbab, F.: What do you mean, coordination? (Bulletin of the Dutch Association

for Theoretical Computer Science (NVTI))
9. Arbab, F.: Abstract Behavior Types: A foundation model for components and

their composition. Science of Computer Programming 55 (2005) 3–52 extended
version.

10. Diakov, N., Arbab, F.: Compositional construction of web services using Reo.
In Bevinakoppa, S., Hu, J., eds.: Proceedings of The second International Work-
shop on Web Services: Modeling, Architecture and Infrastructure, WSMAI’2004,
INSTICC Press, Portugal (2004) 49–58

11. Zlatev, Z., Diakov, N., Pokraev, S.: Construction of negotiation protocols for e-
commerce applications. ACM SIGecom Exchanges (2004) 11–22

12. Diakov, N., Zlatev, Z., Pokraev, S.: Composition of negotiation protocols for e-
commerce applications. In Cheung, W., Hsu, J., eds.: The 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service, IEEE Computer Society
(2005) 418–423

13. Arbab, F., de Boer, F.S., Scholten, J.G., Bonsangue, M.M.: Mocha: A middleware
based on mobile channels. In: COMPSAC, IEEE Computer Society (2002) 667–673

14. Everaars, K., Costa, D., Diakov, N., Arbab, F.: A distributed implementation of
Reo connectors – ongoing work at CWI (2005)

15. Costa, D., Clarke, D., Arbab., F.: Connector colouring: Towards implementable
semantics for Reo – ongoing work at CWI (2005)

16. Kirtland, M.: Object-Oriented Software Development Made Simple
with COM+ Runtime Services. Microsoft Systems Journal (1997)
http://www.microsoft.com/msj/1197/complus.aspx.

17. OMG: CORBA Component Model Specification (2001) http://www.omg.org/cgi-
bin/doc?ptc/2001-11-03.

18. SUN Microsystems: Enterprise Java Beans Specification (2002)
http://java.sun.com/products/ejb/docs.html.

19. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In M. Wirs-
ing, D.P., Hennicker, R., eds.: Recent Trends in Algebraic Development Techniques,
Proceedings of 16th International Workshop on Algebraic Development Techniques
(WADT 2002). Volume 2755 of Lecture Notes in Computer Science., Springer-
Verlag (2003) 35–56 http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0216.pdf.

46

 
 
 
 
 
 
 
 
 
 
 
 
 
 


	P3.pdf
	Sin título




