
Centrum Wiskunde & Informatica

A model of context-dependent component
connectors

M.M. Bonsangue, D. Clarke, A.M. Silva

SEN-E0903

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2009, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Science Park 123, 1098 XG Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A Model of Context-Dependent Component Connectors

Marcello Bonsanguea,c, Dave Clarkeb, Alexandra Silvac

aLIACS, Leiden University, The Netherlands
bDept. Computer Science, Katholieke Universiteit Leuven, Belgium

cCWI, The Netherlands

Abstract

Recent approaches to component-based software engineering employ coordinat-
ing connectors to compose components into software systems. For maximum
flexibility and reuse, such connectors can themselves be composed, resulting
in an expressive calculus of connectors whose semantics encompasses complex
combinations of synchronisation, mutual exclusion, non-deterministic choice and
state-dependent behaviour. A more expressive notion of connector includes also
context-dependent behaviour, namely, whenever the choices a connector can
take change non-monotonically as the context, given by the pending activity on
its ports, changes. Context dependency can express notions of priority and inhi-
bition. Capturing context-dependent behaviour in formal models is non-trivial,
as it is unclear how to propagate context information through composition. In
this paper we present an intuitive automata-based formal model of context-
dependent connectors, and argue that it is superior to previous attempts at
such a model for the coordination language Reo.

1. Introduction

The holy grail of component-based software engineering is to develop truly
reusable software components that can be sold off-the-shelf and reused to build
software systems [35]. Research on software composition plays a key role in
this quest, as it offers flexible ways of plugging together components. Some
approaches to software composition use textual glue code [30, 18, 32], usually in a
scripting language, whereas others offer a more visual approach, where ‘channels’
or ‘connectors’ are used to compose components into a system [9, 20, 1, 16].

Connectors play the role of coordinating software systems, yet their func-
tionality is traditionally more limited than scripting languages. This trend
has been reversed with investigation into the notion of compositional connec-
tors [1, 30]. In such a setting, connectors are formed by composing simpler
connectors such as channels together. These ‘languages’ express various coordi-
nation patterns exhibiting combinations of synchronisation, mutual exclusion,
non-deterministic choice, and state-dependent behaviour. A number of compo-
nent connector models exist, including Reo [1], Ptolemy [27], Ptolemy II [28],
MoCha [20], Manifold [5], and pipe and filter architectures [34]. Although these

Preprint submitted to Elsevier December 3, 2009

1998 ACM Computing Classification System: F.1.1
Keywords and Phrases: Reo; Semantics; automata

overlap in philosophy and functionality, Reo is the only one that enables syn-
chrony and mutual exclusion to propagate through connectors.

The trend is to increase (or improve) the expressiveness of such coordina-
tion models by investigating features such as dynamic reconfiguration [24], data
sensitive operations such as data filtering and transformation [12], and context-
dependent behaviour [11]. The latter feature is characterised by behaviours
which depend upon both the positive and negative occurrences of I/O requests
on the boundary ports of the connector. This paper follows this trend, by in-
vestigating the notion of context dependency in the setting of the coordination
language Reo [1]. Context dependency enables connectors to be more respon-
sive to changes in their environment, and thus increases the expressiveness of
connectors enabling them to express, for example, priority and inhibition. Our
primary goal is twofold, namely to produce a model of context-dependent con-
nectors which avoids a number of the problems of previous such models for Reo,
in a manner which can be implemented efficiently.

Context-dependent behaviour has already been studied in the context of
non-monotonic concurrent constraint programming [15] and generative com-
munication [19], where operators are defined with the ability of observing the
absence of data. The extra difficulty present in connector-based models is how
to propagate context-dependent behaviour properly.

Contributions. This paper is an extended version of our Coordination’09 ar-
ticle [10]. It presents a compositional automata model for expressing context-
dependent connectors. Following intensional automata [14], the model expresses
context dependency by modelling both the I/O requests from the environment
and the firings of the connector. It is a simple and intuitive model, in the sense
that automata corresponding to basic connectors have a small number of states
and transitions, compared to intensional automata. Moreover, because our au-
tomata are partial, the model overcomes a problem with totality preservation
present in connector colouring [11].

Connector plugging is achieved by a novel two-step composition operation
consisting of a product, modelling the independent execution of distinct connec-
tors, plus a synchronisation operation. Composition propagates context infor-
mation, which contains both positive and negative information. Using this we
define a previously elusive notion of enabledness and show that it is also appro-
priately propagated through composition. We also formally define the notion
of context dependency, which had never been formalised for any of the other
existing models of Reo. The presented automata model also enables an efficient
implementation of context dependent Reo connectors, combining the benefit
of previous automata-based implementations [29] with the context dependency
originally developed in the connector colouring model [11]. In addition, we
extend the notion of context dependent automata to include the modelling of
data flow, as in constraint automata, and we present a final semantics for our
automata model in terms of guarded strings.

2

a b a b ||a b a b a b

Sync(a, b) LossySync(a, b) AsyncDrain(a, b) SyncDrain(a, b) FIFO1 (a, b)

a

b

c

a

b

c

!
a

b

c

Merger(ab, c) PriorityMerger(ab, c) Rep(a, bc)

Figure 1: Basic Reo channels

Organisation. Section 2 describes the Reo coordination language and highlights
problems with its models with regard to context dependency. Section 3 describes
guarded strings, the formal basis for traces of context dependent connectors.
Section 4 describes guarded automata, the basis of our formalism, along with its
product and synchronisation operations, and the additional conditions required
for modelling Reo connectors. Section 5 presents two concrete models of guarded
automata, extending both port automata [25] and constraint automata [7] with
context dependency. The latter model is the first automata model to express
both context dependency and data flow. Section 6 describes and justifies various
technical conditions present in our model via theorems and counter-examples.
Section 7 presents the final semantics of our automata model, and Section 8
concludes.

2. The Coordination Language Reo and its Models

Reo [1] is a model of component coordination wherein component connectors
are constructed by composing more primitive connectors, such as channels, data
replicators, stream mergers and routers. Primitives express state-dependent
synchronisation and mutual exclusion constraints on their ports, along with the
data flow between the ports that synchronise. Primitives can exhibit different
behaviours in terms of synchronisation and mutual exclusion of their ports,
the direction of data flow, the presence of buffering, state, and whether or not
data can be lost. Composition of connectors is achieved by plugging ports
together (one-to-one, in the direction of data flow, is sufficient). Composition
imposes the constraint that the two ports plugged together synchronise, and
hereby synchronisation and mutual exclusion constraints propagate through a
connector.

A number of Reo’s primitive connectors are depicted in Figure 1. These
form quite an expressive set of connectors (most connectors appearing in the
literature use these or their close relatives). Their semantics are presented later
in Figure 3.

The interaction model presupposed by Reo is that components try to write

3

or take data from the ports it is connected to. The connector then determines
when the write or take ‘fires’, together with passing data along through the
channels of the connector. The notion of synchrony is equated with the ports
that fire together, and mutual exclusion is when ports cannot fire together. Most
existing formal models of Reo express only the sets of write/take actions which
can fire together, dubbed as firing. Context-dependent behaviour goes beyond
this: such behaviour differs depending upon both the positive and negative
occurrences of I/O requests on the boundary ports of the connector. Using this
request information as well, connectors can express a notion of priority, when
two or more choices are possible, and a notion of inhibition wherein attempts by
the components to perform operations blocks (certain) firings from occurring.

Informal accounts of Reo give a localised description of the context-dependent
nature of certain connectors. For instance, the LossySync channel (with ports a
and b) has the behaviour that if a write request and a take request are present on
a and b, respectively, then data flows from a to b (synchronously). If, however,
no take on b is present, then data may flow at a, but it is lost in the channel.
In contrast, the Sync channel (with ports a and b) is not context dependent:
data must only flow synchronously. In fact, we will show in the sequel that this
channel behaves as identity when composed with other channels. Notions of
priority can also be described in this fashion, by using the context (boundary
I/O requests) to break any non-determinism.

The problem with this kind of description, first identified by Clarke et al. [11],
is that it relies on the presence of requests on the ports of primitives, but after
composition these ports are generally no longer on the boundary of a connector,
but made internal, and informal accounts do not provide a precise enough de-
scription of how context-dependent behaviour propagates through composition.
This is a consequence of the impedance mismatch resulting from the plugging
together two ports: both ports are expecting some environment to initiate inter-
action, but the environment (some component) is not present at the point where
two ports are joined. Arbab [1] describes how offers of data (writes) and will-
ingness to accept data (takes) propagate through channels, but unfortunately,
this description is incomplete and imprecise, in particular with regard to how
context propagation interacts with non-deterministic choice. Clarke et al. [12]
goes as far as arguing that there are no natural intuitive models for Reo, hence
no natural or obvious way of implementing it, as our intuition about data flow
networks is insufficient to determine how connectors behave. Two consequences
of this are, firstly, that the semantics of any Reo connector can only be under-
stood in terms of a specific semantic model and appropriate translation into the
model, and, secondly, that the only effective implementations of Reo have been
direct implementations of some semantic model; no reference model exists.

2.1. Formal Models of Reo

Numerous models have been proposed in the literature to capture the state-
dependent, synchronisation and mutual exclusion constraints imposed by a Reo
connector over its ports. Providing a semantic model which captures the desired
context-dependent nature of Reo connectors in a compositional manner has,

4

however, been a challenge. Models either express no context dependency or are
inadequate at doing so.

Constraint automata [7] have transitions whose labels capture the synchro-
nisation (and data flow) between ports, implicitly expressing mutual exclusion,
by describing the sets of ports that fire together (the ‘firing set’) at the exclusion
of the ports not mentioned in the set. In their basic form, however, constraint
automata cannot express context dependency.

A coalgebraic model of Reo [6] was provided in terms of relations on timed
data streams (so-called Abstract Behaviour Types [2]). These were shown to
be more or less equivalent to constraint automata, and thus unable to express
context dependency. Moreover, the underlying time streams are infinite, so the
model excludes not only finite behaviour, but also connectors which exhibit
finite behaviour on any of their ports.

Connector colouring [11] describes the behaviour of a connector in a compo-
sitional fashion by colouring the parts where data flows and where it does not
flow with different colours, requiring simply that colours match at connected
ports. The model also captures context-dependent behaviour by propagating
negative information about the absence of data flow through the connector.
This model was extended to cover both state changes and the passing of data
using tile logic [3]. Nonetheless, this model and its extension suffer from a num-
ber of problems. The first is that some colourings are non-causal, but this can
easily be fixed by tracking the causality relation [14].1 The second problem is
that degenerate behaviour can arise in certain circumstances (see Section 6).
Colouring tables normally are defined to give a colouring for all possible bound-
ary conditions. However, this totality property is not preserved by composition.
Furthermore, composition with a non-total colouring table can result in no be-
havioural description for connectors, whereas often the semantics should be
that no flow is possible. (By analogy, this is the difference between ∅ and {∅}.)
When composed with any other connector (even when the two parts are not
connected), the resulting composite has no behaviour.

Intentional automata [14] express context dependency by labelling transi-
tions with a request set and a firing set, where the request set models the
context and the firing set models the subsequent behaviour. In addition, states
record pending requests—namely, requests that have arrived but have not fired.
This means that there are quite a large number of states in the automata man-
aging the buffering and firing of such requests, and automata rapidly become
difficult to manipulate and not suitable for model checking purposes. For ex-
ample, one Sync channel requires 3 states, and 2 disconnected Sync channels
require 9 states. In constraint automata and our model, only 1 state is required
in both cases.

The Büchi automata model of Reo [21, 22] assigns to connectors infinite fair
behaviours. In this model, τ -transitions capture the arrival of requests, which
are recorded in states. In this model, there are two different non-equivalent

1Our model also does not deal with causality issues; Costa’s fix is applicable here [14].

5

ways of modelling something as simple as a Sync channel. Thus the model
differs significantly from other approaches.

Mousavi et al. [31] describe Reo’s semantics using structural operational se-
mantics. To capture context-dependent behaviour (of lossy synchronous chan-
nels) a global maximal progress rule is employed to remove undesired behaviours.
This was subsequently encoded into Alloy [23]. The kind of context-dependent
behaviour which can be captured by this rule is limited, as it cannot express
the preference between two unrelated behaviours.

Barbosa et al. [8] present models of Reo-like connectors. The semantics is
given by process algebra expressions, where both the presence and absence of
signals can be specified. Complex connectors are then built from simpler ones
using one of five combinators: parallel composition, interleaving, hook, right
and left join. However, these composition operations increases the complexity
of the model without gaining any expressiveness.

Unlike constraint automata, our model can express context dependency us-
ing a request and firing set, as in intentional automata. We abstract away from
data flow constraints, but indicate how to add them back into the model in Sec-
tion 8. Our model is significantly more compact than intentional automata, in
terms of both the number of states and transitions, as information about pend-
ing requests is not stored in states—it can easily be calculated. In contrast to the
Büchi model, our model expresses only finite behaviours and records request sets
in transition labels along with the firing sets, instead of in the states, resulting
in more intuitive models. Furthermore, our model expresses only the positive
behaviour, and does not rely crucially on the Büchi acceptance criteria to rule
out unwanted ‘paths’ in automata. The semantics of our model is based on
finite strings, which are much simpler than relations on timed data streams un-
derlying the coalgebraic model. Our model also overcomes the totality problem
of connector colouring by, ironically, not insisting that the transition relation is
total, and by interpreting the absence of a transition simply as no behaviour for
the given context. In contrast to Mousavi et al.’s model, our approach achieves
an expressive notion of context dependency in a compositional manner without
recourse to a global rule. Our composition operation is a compact two-step
operation, much simpler than the five operations proposed by Barbosa et al..
As far as we can tell, merely just adding information recording the absence of
signals is insufficient to adequately deal with context dependent behaviour.

Overall, we claim that our automata are simpler and more intuitive than ex-
isting models of context dependent connectors. In addition, we prove numerous
relevant properties about our model, not even considered by others.

3. Preliminaries: Guarded Strings

Let Σ = {σ1, . . . , σk} and BΣ be the free Boolean algebra generated by the
following grammar:

g :: = σ ∈ Σ | ⊤ | ⊥ | g ∨ g | g ∧ g | g

6

We refer to the elements of the above grammar as guards and in its represen-
tation we frequently omit ∧ and write g1g2 instead of g1 ∧ g2. Given two guards
g1, g2 ∈ BΣ, we define a (natural) order ≤ by putting g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1.
The intended interpretation of ≤ is logical implication—g1 implies g2.

Given a guard g there exists an equivalent guard norm(g) =
∨ ∧

a, where
a ∈ Σ ∪ Σ, with Σ = {σ | σ ∈ Σ}, and

∨
and

∧
the extensions of ∨ and

∧, respectively, to sets of guards. The guard norm(g) is usually called the
disjunctive normal form of g. Since norm(g) can be written as a disjunction,
we use the notation g′ ∈ norm(g) to refer to an arbitrary disjunct of norm(g).

An atom of BΣ is a guard a1 . . . ak such that ai ∈ {σi, σi}, 1 ≤ i ≤ k. We
can think of an atom as a truth assignment. We denote atoms by Greek letters
α, β, . . . and the set of all atoms of BΣ by AtΣ. Every element of a finite Boolean
algebra can be written as a disjunction of atoms. Given S ⊆ Σ, we define Ŝ ∈ BΣ

as the conjunction of all elements of S. For instance, for S = {a, b, c} one has

Ŝ = abc. We define the atom associated with a set S in the expected way —

αS = Ŝ ∧ ̂Σ \ S. For example, if Σ = {a, b, c}, then α{a,b} = abc. Conversely,
the set associated with an atom α is defined as α+ = {σ ∈ Σ | α ≤ σ}.

A guarded string over Σ is a sequence x = 〈α1, f1〉〈α2, f2〉 . . . 〈αn, fn〉, where
n ≥ 0 and each αi ∈ AtΣ and fi ⊆ Σ. Thus, a guarded string is an el-
ement of (AtΣ × 2Σ)∗. For simplicity, we drop the brackets and write x =
α1f1α2f2 · · ·αnfn.

To understand the intuition behind guarded strings, imagine that Σ contains
the names of all doctors in a hospital. Every hour there is a meeting to distribute
the incoming patients. Each atom αi describes the definite presence or absence
of every doctor in the meeting at hour i and f contains the doctors that got
a patient. Thus, the guarded string 〈α1, f1〉〈α2, f2〉 . . . 〈αn, fn〉 will contain the
activity of the doctors from hours 1 to n.

4. Guarded automata

In this section, we define a new automata model for context-dependent con-
nectors. We start by introducing a generic automata, acceptor of guarded strings
and we define a product operation. Then, suitable restrictions are introduced
to single out the class of Reo automata, i.e., automata that are valid models of
context-dependent connectors, for which a synchronisation operation is defined.

4.1 Definition (Guarded automaton). A guarded automaton over an alphabet
of ports Σ is a non-deterministic (and possibly partial) automaton with transi-
tion labels BΣ × 2Σ. Formally, a guarded automaton is a triple (Σ, Q, δ) where
Q is a (finite) set of states and δ ⊆ Q × BΣ × 2Σ × Q is the transition relation.
♣

We use the following notation in the representation of guarded automata:

q
g|f
−−→ q′ ⇐⇒ 〈q, g, f, q′〉 ∈ δ

7

q q q q′ab|a a|ab, ab|ab

a|a

b|b

Figure 2: Example guarded automata over the alphabet {a, b}.

If there is more than one transition from state q to q′ we often just draw one

arrow and separate the labels by commas. Intuitively, a transition q
g|f
−−→ q′

denotes that the actions in f will occur if the guard g is true.
Example guarded automata over the alphabet {a, b} are depicted in Figure 2.
A guarded automaton can be seen as an acceptor of guarded strings as fol-

lows. Given a guarded string α1f1α2f2 · · ·αnfn and a state q in the automaton

the string is accepted in state q if there exists q
g|f1

−−→ q′ ∈ δ such that α1 ≤ g
and α2f2 · · ·αnfn is accepted in q′. The empty string ε is accepted in any state.
We denote by Lq the set of guarded strings accepted in a state q. Note that our
definition of acceptance implies that Lq is always non-empty and prefix-closed.

Another way to compute the language Lq would be to first write every
guard g as a disjunction of atoms

∨
I αi (for instance a = ab ∨ ab), replace the

transition q
g|f1

−−→ q′ ∈ δ by the transitions q
αi|f1

−−−→ q′ and then compute the
accepted language of the automata in the standard way. An interesting remark
is that if one writes the automaton only using atoms, as described above, and
then determinises it using a subset construction, the resulting automata will
have a transition function of type Q → (1 + Q)AtΣ×2Σ

[26]. It is then well-
known [33] that such automata have as final semantics precisely the non empty

and prefix closed languages L ⊆ 2(AtΣ×2Σ)∗ .
Two automata are equivalent if they accept the same language. We also

introduce a novel notion of bisimulation, which implies language equivalence.

4.2 Definition (Bisimulation). Given guarded automata A1 = (Σ, Q1, δ1) and
A2 = (Σ, Q2, δ2). We call R ⊆ Q1 × Q2 a bisimulation iff for all 〈q1, q2〉 ∈ R:

1. For all q1
g|f
−−→ q′1 ∈ δ1 and α ∈ AtΣ such that α ≤ g, there exists a

q2
g′|f
−−→ q′2 ∈ δ2 such that α ≤ g′ and 〈q′1, q

′
2〉 ∈ R;

2. For all q2
g|f
−−→ q′2 ∈ δ2 and α ∈ AtΣ such that α ≤ g, there exists a

q1
g′|f
−−→ q′1 ∈ δ1 such that α ≤ g′ and 〈q′1, q

′
2〉 ∈ R.

♣

We say that two states q1 ∈ Q1 and q2 ∈ Q2 are bisimilar if there exists
a bisimulation relation containing the pair 〈q1, q2〉 and we write q1 ∼ q2. Two
automata A1 and A2 are bisimilar if there exists a bisimulation relation such
that every state of one automata is related to some state of the other automata

8

and we write A1 ∼ A2. The automata depicted in the following figure are
bisimilar.

q q1 q2a|a a|a
ab|a, ab|a

4.3 Theorem. Let A1 = (Σ, Q1, δ1) and A2 = (Σ, Q2, δ2) be guarded automata
and q1 ∈ Q1, q2 ∈ Q1. Then, q1 ∼ q2 ⇒ Lq1

= Lq2
.

Proof. First suppose q1 ∼ q2. We prove that x ∈ Lq1
⇔ x ∈ Lq2

, by induction
on the length of x. The base case follows trivially because the empty word is
accepted by any state. For the induction case, take x = α1f1α2f2 · · ·αnfn.

x ∈ Lq1
⇔ ∃q1

g|f1

−−→ q′1 ∈ δ1 · α1 ≤ g and α2f2 · · ·αnfn ∈ Lq′

1

q1∼q2

⇔ ∃q2
g′|f1

−−−→ q′2 ∈ δ2 · α1 ≤ g′ and α2f2 · · ·αnfn ∈ Lq′

1

IH
⇔ ∃q2

g′|f1

−−−→ q′2 ∈ δ2 · α1 ≤ g′ and α2f2 · · ·αnfn ∈ Lq′

2

⇔ x ∈ Lq2

4.1. Product

In this section we define a product operation for guarded automata. This
definition differs from the classical definition of product for automata: the au-
tomata have disjoint alphabets and they can either take steps together or in-
dependently. In the latter case the transition explicitly encodes that the other
automaton cannot perform a step in the current state, using the following no-
tion:

4.4 Definition. Given a guarded automaton A = (Σ, Q, δ) and q ∈ Q we define

q♯ = ¬
∨

{g | q
g|f
−−→ q′ ∈ δ}.

♣

This captures precisely the conditions in which A cannot fire in state q. Note
that if q has no outgoing transitions then q♯ = ⊤ and if q has a transition defined
for every g ∈ BΣ then q♯ = ⊥. Intuitively, if q♯ = ⊤ (respectively, q♯ = ⊥) then
the state can never (respectively, always) inhibit the step of a state in another
automaton, in the context of the product, defined below. For instance, in the
automata

q1 q2ab|a ab|ab, ab|ab

9

one has q♯
1 = a ∨ b and q♯

2 = a.

4.5 Definition (Product). Given two guarded automata A1 = (Σ1, Q1, δ1) and
A2 = (Σ2, Q2, δ2) such that Σ1 ∩ Σ2 = ∅, we define the product of A1 and A2

as A1 ×A2 = (Σ1 ∪ Σ2, Q1 × Q2, δ) where

δ = {(q, p)
gg′|ff ′

−−−−→ (q′, p′) | q
g|f
−−→ q′ ∈ δ1 and p

g′|f ′

−−−→ p′ ∈ δ2} (1)

∪ {(q, p)
gp♯|f
−−−→ (q′, p) | q

g|f
−−→ q′ ∈ δ1 and p ∈ Q2} (2)

∪ {(q, p)
gq♯|f
−−−→ (q, p′) | p

g|f
−−→ p′ ∈ δ2 and q ∈ Q1} (3)

♣

Here and throughout, we use ff ′ as a shorthand for f ∪ f ′. Case (1) accounts
for when both automata fire in parallel. Cases (2) and (3) account for when one
automata fires and the other is unable to (given by p♯ and q♯, respectively).

The following is an example of the product of two automata.

q1 × q2 = (q1, q2)ab|ab cd|cd, cd|c

abcd|abcd

abcd|abc

abc|ab

cd(a ∨ b)|cd
cd(a ∨ b)|c

Observe that the automaton 1 = (∅, {·}, ∅) is a neutral element for product.
The product operator satisfies expected properties such as commutativity and
associativity. The first property follows directly from the definition. The second
one follows from the definition and the following theorem, which states that
(q1, q2)

♯ = q♯
1 ∧ q♯

2.

4.6 Theorem. Let A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2) be guarded au-
tomata such that Σ1 ∩ Σ2 = ∅ and let A1 × A2 = (Σ, Q1 × Q2, δ) be their
product. For any (q1, q2) ∈ Q1 × Q2,

(q1, q2)
♯ = q♯

1 ∧ q♯
2

Proof. Let G1 = {g1 | q1
g1|
−−→ } and G2 = {g2 | q2

g2|
−−→ }. Note that

q♯
1 = ¬

∨
G1 and q♯

2 = ¬
∨

G2. The result follows by formulae manipulation

10

using mainly distributivity rules.

¬(q1, q2)
♯

=
W

{g | (p1, p2)
g|
−−→ ∈ δ}

=
W

“

{g1g2 | p1

g1|
−−→ ∈ δ1, p2

g2|
−−→ ∈ δ2}

∪ {g1 ∧ (¬
W

{g2 | p2

g2|
−−→ ∈ δ2}) | p1

g1|
−−→ ∈ δ1}

∪ {g2 ∧ (¬
W

{g1 | p1

g1|
−−→ ∈ δ1}) | p2

g2|
−−→ ∈ δ2}

”

=
`

W

G1 ∧
W

G2

´

∨
`

W

G1 ∧ ¬
W

G2

´

∨
`

W

G2 ∧ ¬
W

G1

´

=
“

`

(
W

G1 ∧
W

G2) ∨
W

G1

´

∧
`

(
W

G1 ∧
W

G2) ∨ ¬
W

G2

´

”

∨
`

W

G2 ∧ ¬
W

G1

´

=
`

W

G1 ∧ (
W

G2 ∨
W

G1) ∧ (
W

G1 ∨ ¬
W

G2) ∧ ⊤
´

∨ (
W

G2 ∧ ¬
W

G1)
=

`

W

G1 ∨ (
W

G2 ∧ ¬
W

G1)
´

∧
`

(
W

G2 ∨
W

G1) ∨ (
W

G2 ∧ ¬
W

G1)
´

∧
`

(
W

G1 ∨ ¬
W

G2) ∨ (
W

G2 ∧ ¬
W

G1)
´

=
`

W

G1 ∨
W

G2

´

∧ ⊤ ∧
`

W

G2 ∨
W

G1

´

∧ ⊤ ∧ ⊤ ∧ ⊤
=

W

G1 ∨
W

G2

= ¬(q♯
1
∧ q

♯
2
)

4.2. Reo automata

In this section we focus on a subclass of guarded automata that constitutes an

operational model for context dependency. Intuitively, every transition q
g|f
−−→

q′ in an automaton corresponding to some Reo connector represents that, if
the connector is in state q and the boundary requests present at the moment,
encoded as an atom α, are such that α ≤ g, then the ports f will fire and
the connector will evolve to state q′. Not all guarded automata correspond to
valid Reo connectors. We are interested only in automata where each guard
g|f satisfies two criteria: reactivity—data flows only on ports where a request
is made, capturing Reo’s interaction model; and uniformity—which captures
two properties, firstly, that the request set corresponding precisely to the firing
set is sufficient to cause firing, and secondly, that removing additional unfired
requests from a transition will not affect the (firing) behaviour of the connector.
These two properties are captured in the following definition.

4.7 Definition (Reo automaton). A Reo automaton over an alphabet Σ is a

guarded automaton (Σ, Q, δ) such that for each q
g|f
−−→ q′ ∈ δ:

– g ≤ f̂ (reactivity)

– ∀g ≤ g′ ≤ f̂ · ∀α ≤ g′ · ∃q
g′′|f
−−−→ q′ ∈ δ · α ≤ g′′ (uniformity)

♣

Among the guarded automata depicted in Figure 2 only the third one is a
Reo automaton (in fact, it models a FIFO1 channel). The first automaton is
not uniform, because ab ≤ a ≤ a and there is no transition whose guard g is
such that ab ≤ g. The second automaton in not reactive: ab 6≤ ab.

In Figure 3 we depict the guarded automata for the basic channel types
listed in Figure 1. Here it is worth remarking that the automata for LossySync,

11

q1

ab|ab

q1

ab|ab

ab|a

q1

ab|b
ab|a

q1

ab|ab

e f

a|a

b|b

Sync(a, b) LossySync(a, b) AsyncDrain(a, b) SyncDrain(a, b) FIFO1 (a, b)

q1

ac|ac
bc|bc

q1

ac|ac
abc|bc

q1

abc|abc

Merger(ab, c) PriorityMerger(ab, c) Rep(a, bc)

Figure 3: Guarded automata for basic Reo channels

AsyncDrain and PriorityMerger contain negative information in some of their
guards. As we will show later this is the key to represent and propagate context-
dependent behaviour, which all these channels exhibit.

4.8 Lemma. Reo automata are closed under product, i.e., product preserves
reactivity and uniformity.

Proof. Given A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2) Reo automata, we want
to show that the automaton A1×A2 = (Σ1∪Σ2, Q1×Q2, δ) is also reactive and

uniform, that is for every transition q
g|f
−−→ q′ ∈ δ′, g ≤ f̂ and for all g ≤ g′ ≤ f̂

and α ≤ g′ there exists q
g′′|f
−−−→ q′ ∈ δ′ such that α ≤ g′′.

The result follows directly from the definition of δ and the fact that the
original automata are reactive and uniform.

For reactivity, we just illustrate case (1) of the definition.

Let (q1, q2)
g1g2|f1f2

−−−−−−→ (q′1, q
′
2) ∈ δ′. Because both A1 and A2 are reactive we

know that g1 ≤ f̂1 and g2 ≤ f̂2. Thus, g1g2 ≤ f̂1f̂2 = f̂1f2.
For uniformity, the most interesting cases are (2) and (3) in the definition

of product. We illustrate case (2). Let (q1, q2)
g1q

♯
2
|f1

−−−−→ (q′1, q2) ∈ δ′. Now take

any g′ such that g1q
♯
2 ≤ g′ ≤ f̂1 and α ≤ g′. The guard g′ can be divided into

two guards g′1 ∈ LΣ1
and g′2 ∈ LΣ2

such that g′ = g′1g
′
2, with g1 ≤ g′1 ≤ f̂1

and q♯
2 ≤ g′2. Because A1 is uniform, we know that for all α1 ≤ g′1 there exists

q1
g′′

1
|f

−−−→ q′1 ∈ δ1 such that α1 ≤ g′′1 (and α ≤ g′′1). We also know that either

α ≤ q♯
2 or α ≤ g2 for some q2

g2|f2

−−−→ q′2. In the first case, there exists a transition

(q1, q2)
g′′

1
q

♯
2
|f1

−−−−−→ (q′1, q2) ∈ δ with α ≤ g′′1 q♯
2. In the second case, there exists a

transition (q1, q2)
g′′

1
g2|f1f2

−−−−−−→ (q′1, q
′
2) ∈ δ′ with α ≤ g′′1 g2.

12

4.3. Synchronisation

We now define a synchronisation operation which corresponds to connecting
two ports in a Reo connector. In order for this operation to be well-defined
we need that the transition labels in the automata are normalised (the formal
justification for this is presented in Section 6.1). More precisely, we need each
guard in a label to be a conjunction of literals. Note that in the automata
presented in Figure 3 for basic Reo channels this is already the case.

4.9 Definition. Given a guarded automaton A = (Σ, Q, δ) we define the nor-
malisation of A as norm(A) = (Σ, Q, norm(δ)) where

norm(δ) = {q
g′|f
−−→ q′ | q

g|f
−−→ q′ ∈ δ and g′ ∈ norm(g)}

♣

4.10 Lemma. Reo automata are closed under normalisation, i.e., normalisation
preserves reactivity and uniformity. Moreover, A ∼ norm(A).

Proof. Let A = (Σ, Q, δ) be a Reo automaton. We want to prove that the
automaton norm(A) is also reactive and uniform. Reactivity follows easily from

the definition. For uniformity we must show that for every transition q
g|f
−−→ q′ ∈

norm(δ) and for all g ≤ g′ ≤ f̂ and α ≤ g′ there exists q
g′′|f
−−−→ q′ ∈ norm(δ) such

that α ≤ g′′. Let q
g′|f
−−→ q′ ∈ norm(δ). We know that there exists q

g|f
−−→ q′ ∈ δ

such that g′ ∈ norm(g). Because the original automaton is uniform we know
that

∀
g≤g1≤ bf

∀α≤g1
∃q

g′′|f
−−−→ q′ ∈ δ · α ≤ g′′

We have

g ≤ g1 ≤ f̂ ⇔ ∀g′∈norm(g)g
′ ≤ g1 ≤ f̂ and α ≤ g′′ ⇔ ∃g2∈norm(g′′) · α ≤ g2.

Therefore,

∀
g′≤g1≤ bf

∀α≤g1
∃q

g2|f
−−−→ q′ ∈ norm(δ) · α ≤ g2

The result A ∼ norm(A) follows because the relation R = {〈q, q〉 | q ∈ Q}
is a bisimulation. Let 〈q, q〉 ∈ R.

First, take any q
g|f
−−→ q′ ∈ δ and α ≤ g. Now note that

α ≤ g ⇔ α ≤ norm(g) ⇔ ∃g′∈norm(g) · α ≤ g′

Thus, by the definition of norm(δ), there exists a transition q
g′|f
−−→ q′ ∈ norm(δ),

such that α ≤ g′ and 〈q′, q′〉 ∈ R.

Conversely, take any transition q
g′|f
−−→ q′ ∈ norm(δ) and α ≤ g′, with g′ ∈

norm(g). Now observe that α ≤ g′ ⇒ α ≤ norm(g) ⇔ α ≤ g. Thus, there is a

transition q
g|f
−−→ q′ ∈ δ such that α ≤ g and 〈q′, q′〉 ∈ R.

13

Now we are ready to define the synchronisation operation of two ports a
and b (that are then made internal). In the new automaton only transitions
where either both a and b or neither a nor b fire are kept—that is, a and b
synchronise. In order to propagate context information (requests), we require
that the guard contains either a or b, expressed by the condition g 6≤ ab, which
more or less corresponds an internal node acting like a self-contained pumping
station [1], meaning that an internal node cannot actively block behaviour. This
also corresponds to the condition in connector colouring [11] that the reason for
no flow on a node must come from an external place (see Section 6.5).

4.11 Definition (Synchronisation). Given a guarded automaton A = (Σ, Q, δ).
We define the synchronisation of a and b (a, b ∈ Σ) as ∂a,bA = (Σ, Q, δ′) where

δ′ = {q
g\ab|f\{a,b}
−−−−−−−−→ q′ | q

g|f
−−→ q′ ∈ norm(δ) s.t. a ∈ f ⇔ b ∈ f and g 6≤ ab}

♣

Here, g\ab is the guard obtained from g by deleting all occurrences of a and b.

4.12 Lemma. Reo automata are closed under synchronisation, i.e., synchroni-
sation preserves reactivity and uniformity.

Proof. Let A = (Σ, Q, δ) be a Reo automaton and a, b ∈ Σ. We want to
show that the automaton ∂a,bA = (Σ\{a, b}, Q, δ′) is also reactive and uniform.
Reactivity follows directly from the definition. For uniformity, we must show

that for every transition q
g|f
−−→ q′ ∈ δ′ and for all g ≤ g′ ≤ f̂ and α ≤ g′ there

exists q
g′′|f
−−−→ q′ ∈ δ such that α ≤ g′′.

Take a transition q
g\ab|f\{a,b}
−−−−−−−−→ q′ in δ′. We know that g 6≤ ab and that

a ∈ f ⇔ b ∈ f . Thus,

g \ ab ≤ g′ ≤ ̂f \ {a, b} ⇐⇒ g ≤ g′ ≤ f̂ or g ≤ g′ab ≤ f̂

Because the original automaton is uniform we know that there exists a transition

q
g′′|f
−−−→ q′ ∈ norm(δ) such that for all α ≤ g′ (αab ≤ g′ab), α ≤ g′′.

Now we only have to prove that this transition is in δ′, i.e., g′′ 6≤ ab. This
follows immediately from the fact that ∀α≤g′α ≤ g′′ and g′ 6≤ ab.

The product and synchronisation operations can be used to obtain, in a com-
positional way, the guarded automaton of a Reo connector built from primitive
connectors for which the automata are known. Given two Reo automata A1 and
A2 over disjoint alphabets Σ1 and Σ2, {a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2

we construct ∂a1,b1∂a2,b2 · · · ∂ak,bk
(A1 ×A2) as the automaton corresponding to

a connector where port ai of the first connector is connected to port bi of the
second connector, for all i ∈ {1, . . . , k}. Note that the ‘plugging’ order does not
matter because of ∂ is commutative and it interacts well with product. In ad-
dition, the sync channel Sync(a, b) acts as identity (modulo renaming). These
properties are captured in the following lemma.

14

4.13 Lemma. Given Reo automata A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2).
Then:

1. ∂a,b∂c,dA1 = ∂c,d∂a,bA1, if a, b, c, d ∈ Σ1.
2. (∂a,bA1) ×A2 ∼ ∂a,b(A1 ×A2), if a, b ∈ Σ1 and Σ1 ∩ Σ2 = ∅.
3. ∂a,c(A1 × Sync(a, b)) ∼ A1[b/c], if a, b /∈ Σ1 and c ∈ Σ1.

where A[b/c] is A with all occurrences of c replaced by b.

Proof. Property 1 follows easily from the definition. For 2., first, observe that

∂a,bA1 = {q
g\ab|f\{a,b}
−−−−−−−−→ q′ | q

g|f
−−→ q′ ∈ norm(δ1), a ∈ f ⇔ b ∈ f and g 6≤ ab}

and thus (∂a,bA1) ×A2 = (Σ1 \ {a, b} ∪ Σ2, Q1 × Q2, δ) where

δ = {(q, p)
g\abg′|f\{a,b}f ′

−−−−−−−−−−−→ (q′, p′) | q
g|f
−−→ q′ ∈ norm(δ1),

p
g′|f ′

−−−→ p′ ∈ δ2,

a ∈ f ⇔ b ∈ f and g 6≤ ab} (1)

∪ {(q, p)
g\abp♯|f\{a,b}
−−−−−−−−−→ (q′, p) | q

g|f
−−→ q′ ∈ norm(δ1),

p ∈ Q2,

a ∈ f ⇔ b ∈ f and g 6≤ ab} (2)

∪ {(q, p)
gq♯|f
−−−→ (q, p′) | p

g|f
−−→ p′ ∈ δ2,

q ∈ Q1

and q♯ 6≤ ab} (3)

Now, note that ∂a,b(A1 ×A2) = (Σ1 \ {a, b} ∪ Σ2, Q1 × Q2, δ) where

δ = {(q, p)
g\abg′|f\{a,b}f ′

−−−−−−−−−−−→ (q′, p′) | q
g|f
−−→ q′ ∈ norm(δ1),

p
g′|f ′

−−−→ p′ ∈ norm(δ2),

a ∈ f ⇔ b ∈ f and g 6≤ ab} (1)

∪ {(q, p)
g\abg′|f\{a,b}
−−−−−−−−−→ (q′, p) | q

g|f
−−→ q′ ∈ norm(δ1),

p ∈ Q2, g
′ ∈ norm(p♯)

a ∈ f ⇔ b ∈ f and g 6≤ ab} (2)

∪ {(q, p)
gg′|f
−−−→ (q, p′) | p

g|f
−−→ p′ ∈ δ2,

q ∈ Q1, g
′ ∈ norm(q♯)

and g′ 6≤ ab} (3)

One can easily see that ∂a,b(A1 × A2) = norm((∂a,bA1) × A2) and thus, by
Lemma 4.10:

(∂a,bA1) ×A2 ∼ ∂a,b(A1 ×A2)

For 3., we have ∂a,cA× Sync(a, b) = (Σ[b/c], {(q, ·) | q ∈ Q}, δ′), where

δ′ = {(q, ·)
g′b|f ′b
−−−−→ (q′, ·) | q

g|f
−−→ q′ ∈ δ, c ∈ f, f = f ′c, g = g′c} (1)

∪ {(q, ·)
(g\c)|f
−−−−→ (q′, ·) | q

g|f
−−→ q′ ∈ δ, c 6∈ f and g 6≤ c} (2)

∪ {(q, ·)
(g\c)b|f
−−−−−→ (q′, ·) | q

g|f
−−→ q′ ∈ δ, c 6∈ f} (3)

15

Now, note that the relation

R = {〈(q, ·), q〉 | q ∈ Q}

is a bisimulation. Let 〈(q, ·), q〉 ∈ R.

First, take any transition (q, ·)
g1|f
−−−→ q′ ∈ δ′ and α ≤ g1. If it comes from (1)

or (2), there exists q
g|f
−−→ q′ ∈ δ[b/c] and g ≤ g1 ≤ f̂ . Because A is uniform then

we know that there exists q
g′′|f
−−−→ q′ ∈ δ[b/c] such that α ≤ g′′.

If the transition comes from (3), note that g1 = (g\c)b ≤ (g\c) and g ≤

(g\c) ≤ f̂ . Thus, since A is uniform, we know that there exists q
g′′|f
−−−→ q′ ∈ δ[b/c]

such that α ≤ g′′.

Conversely, take any transition (q, ·)
g|f
−−→ q′ ∈ δ[b/c] and α ≤ g. If b ∈ f ,

there exists a transition (q, ·)
g′b|f
−−−→ (q′, ·) ∈ δ′ and α ≤ g′b = g. If b 6∈ f and

g ≤ b, there exists a transition (q, ·)
(g\c)b|f
−−−−−→ (q′, ·) ∈ δ′ and α ≤ g \c b = g. If

b 6∈ f and g 6≤ b, there exists a transition (q, ·)
(g\c)|f
−−−−→ (q′, ·) ∈ δ′ and α ≤ g\c.

Moreover, we remark that ∼ is a congruence with respect to the product
and synchronisation operations.

5. Two Example Models

The model presented thus far is defined abstractly in terms of Boolean al-
gebras, whereas existing automata-based models of Reo are defined more con-
cretely in terms of some specific underlying model. In this section, we take two
existing models of Reo connectors, namely port automata [25] and constraint
automata [7], and present context-dependent variants of these using our formal-
ism by describing how the one-step behaviour in these models is represented as
a Boolean algebra.

5.1. Context-dependent Port Automata: Pure Synchronisation

The port automata model of Reo [25] is an automata-based model used to
study the decomposition of automata into more primitive ones. Port automata
abstract away from data flow, and thus present exclusively the synchronisation
present in a Reo connector. For example, the following is a port automata for
a LossySync(a, b) channel:

q{a, b} {a}

16

Our model can be used to provide a context-dependent variant of port au-
tomata, by basing our guarded automata on the power set Boolean algebra,
P(X), where X is the set of ports of the connector, and ∧ = ∪, ∨ = ∩, · = X \ ·,

as usual. Each transition of such an automaton has the form q
A|B
−−−→ q′, where

A ⊆ P(X) and B ∈ P(X). Elements of A represents the set of ports at which
a write or take is being attempted and B represents the ports that fire syn-
chronously. A context-dependent LossySync is represented as:

q1{{a, b}}|{a, b} {{a}}|{a}

On the other hand, a non-context-dependent LossySync channel, as represented
by the port automaton above, would be modelled as:

q1{{a, b}}|{a, b} {{a, b}, {a}}|{a}

In this setting reactivity and uniformity (Definition 4.7) become much sim-

pler to state: for any transition q
A|B
−−−→ q′ in the automaton, we have

reactivity B ∈ A — meaning that only ports where an attempt to fire is made
can fire.

uniformity for all C ∈ P(X) such that B ⊆ C ⊆ A0 ∈ A, there is also a

transition q
A′|B
−−−→ q′ in the automaton such that C ∈ A′.

5.2. Context-dependent Constraint Automata: Synchronisation and Data Flow

Constraint automata were the original automata-based model of Reo con-
nectors [7]. Transitions in this model describes both the ports of a connector
that synchronise along with data flow at those ports. Specifically, each tran-
sition includes two components, the set of ports at which data flows, and a
constraint over those ports describing the data flow. For example, the seman-
tics of a FIFO1 buffer can be represented by the following automata, where
there is a state full(d) and pair of transitions for each d ∈ Data:

empty full(d)

{a}, da = d

{b}, db = d

17

This automaton states, firstly, that in state empty data can flow on port a alone,
the datum must match the constraint da = d, meaning that the datum on port
a has value d, and the automaton goes into state full(d). Similarly, in state
full(d), data can flow on port b alone, and the datum must match constraint
db = d, meaning that the datum on port b is d. Note that there will be one
transition for each d with start state empty , whereas there is only one transition
with start state full(d). So even though the constraint on both transitions are of
the same shape, this automaton does capture the behaviour of a FIFO1 buffer,
as when the channel is full in state full(d) only datum d can flow.

We will describe the data flow using a Boolean algebra, so that we can
develop a context-dependent variant of constraint automata using our model.
Given a set of ports of a connector X and a non-empty set of data Data, let
X ⇀ Data denote the partial functions from X to Data. This models the flow
of data on the ports of the connector: if f :X ⇀ Data and f(x) = d, where
x ∈ X and d ∈ Data, then datum d flows on port x; if f(x) is undefined, then
no data flows on x.

Constraint automata have transitions of the form q
N,δ
−−→ q′ where N ⊆ X

and δ is a constraint over N , describing the data flow on ports N . We assume
that δ is specified by the following grammar:

δ = ⊤ | ⊥ | δ ∧ δ | δ ∨ δ | ¬δ | da = d | da = db | P (da)

where da represents the datum at port a, d ∈ Data, and P (−) is some monadic
predicate over Data, corresponding to a set PI ⊆ Data.

We interpret each of these in the power set Boolean algebra P(X ⇀ Data)
as follows:

I(⊤) = P(X ⇀ Data)

I(⊥) = ∅

I(δ1 ∧ δ2) = I(δ1) ∪ I(δ2)

I(δ1 ∨ δ2) = I(δ1) ∩ I(δ2)

I(¬δ) = P(X ⇀ Data) \ I(δ)

I(da = d) = {f ∈ X ⇀ Data | f(a) = d}

I(da = db) = {f ∈ X ⇀ Data | f(a) = f(b)}

I(P (da)) = {f ∈ X ⇀ Data | f(a) ∈ PI}

In addition, we write just(N) to denote that data flows on exactly on ports N ,
where N ⊆ X, and define this as follows:

I(just(N)) = {f ∈ X ⇀ Data | dom(f) = N}

The meaning of the label on a transition q
N,δ
−−→ q′ is given by the set just(N)∩

I(δ). Every element of this set describes a data flow for the transition of the
automaton as an element.

18

In our setting, context-dependent constraint automata will have transitions

of the form q
g|f
−−→ q′ where g ∈ P(X ⇀ Data) (or alternatively, in as an expres-

sion in the Boolean algebra), and f ∈ X ⇀ Data such that f ∈ g (reactivity).
(Uniformity is as above for port automata.)

This, however, is not a particularly compact representation. Instead we
can keep g as an element of the Boolean algebra and allow f to be a pair
N, δ as in the original constraint automata model. Reactivity requires that
just(N) ∩ I(δ) ⊆ g—where g is considered as an element of P(X ⇀ Data).

In addition, we can also use the notions defined here to better model inter-
action with the components connected to a connector. These issue a requests
to connectors on its ports. In general, two basic kinds of requests are possible,
depending upon whether the port is an input or output ports: a request to
write a particular datum d to port x is represented as request {{x 7→ d}}; and
a request to take some datum is {{x 7→ d} | d ∈ Data}. Other variants, such
as a request to write either d1 or d2, or a request for some datum satisfying
predicate P (−), are denoted {{x 7→ d1}, {x 7→ d2}} and {{x 7→ d} | d ∈ PI},
respectively.

This example shows how to incorporate data into our framework.

6. Discussion

The model presented above contains many technical details. In order to
justify them, we present a theorem and/or counter-example to illustrate their
purpose. In the examples we mark in bold transitions in the product automaton
which are deleted in the synchronisation step because the condition b ∈ f ⇔ c ∈
f fails, and we mark in gray the transitions that are removed because g ≤ bc.

The following definition will come in handy.

6.1 Definition (Firings). Let A = (Σ, Q, δ) be a guarded automaton. Given
q ∈ Q and α ∈ AtΣ define the set of possible firings in q induced by α as

firingsA(q, α) = {(f, q′) | q
g|f
−−→ q′ ∈ δ ∧ α ≤ g}.

We will drop the subscript A whenever the automaton is clear from the context.
♣

6.1. Uniformity, Normalisation and the Sync Channel

A desirable property of a model of (context-dependent) connectors is that
the Sync channel acts like an identity (modulo port renaming) whenever plugged
into another connector (Lemma 4.13). The following example demonstrates that
this property fails to hold without the uniformity property of Definition 4.7.
Consider a channel Loser(a, b) which fires port a only if a request of port b is
also present. Its guarded automaton is non-uniform, as it should have transition
a|a. Composing with a synchronous channel gives an automaton which should
be Loser(a, d) if Sync behaved like the identity:

19

Loser(a, b) = q1 ∂b,c(Loser(a, b) × Sync(c, d)) = (q1, q1)ab|a a|a

A similar reason justifies the fact that we have to normalise the automaton
before applying the synchronisation operator. Suppose we want to compose a
lossy synchronous channel with a synchronous channel. The automaton for the
product LossySync(a, b) × Sync(c, d) is:

q1 × q2 = (q1, q2)
ab|ab

ab|a
cd|cd

abcd|abcd

abcd|acd

acd|cd
ab(c ∨ d)|ab

ab(c ∨ d)|a

Now applying ∂b,c with and without normalising results in different automata:

(q1, q2)

(q1, q2)

(q1, q2)

(q1, q2)

abcd|abcd

abcd|acd
acd|cd

ab(c ∨ d)|ab
ab(c ∨ d)|a

normalisation

abcd|abcd

abcd|acd
acd|cd
abc|ab
abd|ab
abc|a
abd|a

∂b,c

ad|ad

a ∨ ad|a

∂b,c

ad|ad

ad|a

The Sync channel behaves like an identity only in the second case.

6.2. Totality and Inhibition

Two notions of totality can be defined for connectors. We phrase them in
terms of guarded automata, although they apply to other models too.

6.2 Definition (Totality). A guarded automaton A = (Σ, Q, δ) is said to be
total if and only if for all states q ∈ Q and for all α ∈ AtΣ, firings(q, α) 6= ∅. ♣

The presentation of connector colouring [11] requires that the colouring ta-
bles are total. Unfortunately, composition does not preserve totality. Consider
the Rep-AsyncDrain in Figure 4. In the connector colouring model its colouring
table is not total, which might lead to unexpected behaviours during composi-
tion. For example, when a FullFIFO1 is plugged into the Rep-AsyncDrain, the
composite has an empty colouring table, corresponding to “no behaviour possi-
ble.” If this is further composed with other connectors, the colouring table re-
mains empty, even if no connection is made with the FullFIFO1-Rep-AsyncDrain
composite.

20

||

a

b

c

d

e

q1 × q2 =

(q1, q2) (q1, q2)
∂b,d∂c,e

abc|abc
de|d
ed|e

abcde|abcd

abced|abce

abc(de ∨ de)|abc

de(a ∨ b ∨ c)|d
ed(a ∨ b ∨ c)|e

Figure 4: Guarded automaton for ∂b,d∂c,e(Rep(a, bc) × ASyncDrain(d , e))

We do not require totality, and due to the use of negative information in the
product, composition with Rep-AsyncDrain causes no problems, as its automata
is one with no transitions (Figure 4), which behaves neutrally in the composition
(since (q1, q2)

♯ = ⊤).
We also find it unnecessary to specify any behaviour that does not result in

a firing (though we do permit τ -transitions, represented by ⊤|∅). The following
definition captures a sensible notion, which is weaker than totality. It states
that if some request set α causes a firing, then all larger request sets also cause
a firing (though not necessarily the same one).

6.3 Definition (Firing upclosed). A guarded automaton A = (Σ, Q, δ) is said
to be firing upclosed if and only if for all states q ∈ Q and for all α ∈ AtΣ, if
firings(q, α) 6= ∅, then for all α1 such that α+ ⊆ α+

1 we have firings(q, α1) 6= ∅.
♣

This is a nice property, but it turns out that, in general, composing Reo
automata does not preserve firing upclosure. Consider the following example
connector ∂b,b′∂c,c′PriorityMerger(ab, c)×Rep(c′, b′d) and its accompanying au-
tomaton, where a is the higher priority port: 2

b

c

a d

c'

!

b'

qad|d

This automaton is not firing upclosed, as although d|d produces a firing, ad
does not. In fact, a request on a acts to inhibit the firing of d, without itself

2Note that this connector contains a causal loop, which should produce no data. A
more complex variant without the causality problem can be easily produced, by inserting
a SyncSpout(a, b) plugged to a SyncDrain(b′, c) between b and b′.

21

being fired. This kind of behaviour was not considered in previous models of
Reo. We tried to find an alternative definition of synchronisation, ∂̂, which
preserved Firing upclosed. Unfortunately, all our attempts failed to satisfy the
required equivalence ∂̂a,b∂̂c,dA ∼ ∂̂c,d∂̂a,bA. Embracing partiality—that is, the
absence of firing upclosure—open the door to connectors which act as request-
based inhibitors, as in the previous example.

6.3. Context Dependency and Negative Guards

We now formally define the notion context-dependency. This has never been
formalised for any of the other existing models of Reo.

6.4 Definition (Firing Monotonic). Let A = (Σ, Q, δ) be a guarded automaton.
A is firing monotonic if and only if for all states q ∈ Q and for all α1, α2 ∈
AtΣ if α+

1 ⊆ α+
2 , then firings(q, α1) ⊆ firings(q, α2). That is, firings(q,) is

monotonic for all q ∈ Q. ♣

6.5 Definition (Context Dependent). A guarded automaton A is context de-
pendent if and only if it is not firing monotonic. ♣

Thus an automaton exhibits context dependent behaviour in state q whenever
there exist α1, α2 ∈ AtΣ such that α+

1 ⊆ α+
2 and firings(q, α1) 6⊆ firings(q, α2).

Intuitively, this means that the state q has a transition that will be blocked in
the presence of certain additional requests. In the following automata, the state
q exhibits context dependent behaviour, because firings(q, ab) = {(q, a)} 6⊆
{(q, ab)} = firings(q, ab), whereas the state p does not.

q pab|a, ab|ab a|a, ab|ab

The following lemmas show that negative information in guards is required
to express context dependency.

6.6 Lemma. Let A = (Σ, Q, δ) be a guarded automaton for which no negative
atoms appear in the guards. Then A is firing monotonic.

Proof. Let q ∈ Q and let α1, α2 ∈ AtΣ such that α+
1 ⊆ α+

2 . Note that if a
guard g only has positive atoms then the following holds

α1 ≤ g ⇐⇒ ĝ ⊆ α+
1 ⇒ g ⊆ α+

2 ⇐⇒ α2 ≤ g (1)

Then, we reason

firings(q, α1) = {(f, q′) | q
g|f
−−→ q′ and α1 ≤ g} (def. of firings)

⊆ {(f, q′) | q
g|f
−−→ q′ and α2 ≤ g} (by (1))

= firings(q, α2) (def. of firings)

22

It is interesting to remark that firing monotonicity is not preserved by prod-
uct. As a counterexample consider the product of the automata corresponding
to two FIFO1 channels — FIFO1(a, b)×FIFO1(c, d). The original automata are
firing monotonic whereas the product automaton is not (the automaton appears
in Figure 6).

Constraint automata [7] can be embedded in a natural way into our model
by transforming every transition labelled by F into a transition labelled by
F̂ |F . As a consequence of the previous lemmas, this makes explicit the fact
that constraint automata do not exhibit context dependent behaviour.

In addition we have, for Reo automata:

6.7 Lemma. A firing monotonic Reo automaton is firing upclosed.

Proof. Let A = (Σ, Q, δ) be a firing monotonic Reo automaton, let q ∈ Q and
let α ∈ AtΣ such that firings(q, α) 6= ∅. Now, take α1 ∈ AtΣ such that α+ ⊆
α+

1 . Because A is firing monotonic we know that firings(q, α) ⊆ firings(q, α1).
Thus, firings(q, α1) 6= ∅ and A is firing upclosed.

Note that the converse does not hold: the LossySync channel is not firing
monotonic, yet it is firing upclosed.

6.4. Enabledness and Product

We now formally define the notion of enabledness, which captures that a
port can fire whenever a request is made on that port (in a given state). This
property has not been previously formalised for existing models of Reo. We
also show that this property is propagated through product, though this would
not be the case if negative information were not included in the definition of
product.

6.8 Definition (Enabledness). Let A = (Σ, Q, δ) be a guarded automaton.
A port a ∈ Σ is enabled in a state q if for all α ∈ AtΣ such that α ≤ a,
(1) firings(q, α) 6= ∅ and (2) for all (f,) ∈ firings(q, α) we have a ∈ f . ♣

Intuitively, a port a is enabled whenever all request sets containing a match
some guard g and a subsequently fires. Including negative information in the
definition of product (using q♯) preserves enabledness through product.

6.9 Lemma. Let A1 = (Σ1, Q1, δ1) and A2 = (Σ2, Q2, δ2) be guarded automata
with Σ1∩Σ2 = ∅. Assume that in A1 the port a ∈ Σ1 is enabled in state q ∈ Q1.
Then in A1 ×A2, the port a is enabled in all states (q, q′), where q′ ∈ Q2.

Proof. It is obvious that condition (1) follows as a consequence of the transition

(q, q′)
gg′|ff ′

−−−−→ (q1, q
′
1) ∈ δ1 × δ2. For condition 2, the proof follows by case

analysis of the product definition. The most interesting case is the third clause,

where (q, q′)
q♯g′|f ′

−−−−→ (q, q′1). Here, the key observation is that if α ≤ g for some

q
g|f
−−→ q1 ∈ δ1 then α 6≤ q♯ and thus (f ′, (q, q′′)) 6∈ firings((q, q′), α).

23

Without negative information in the product, enabledness is not preserved,
as the following counter-example demonstrates. Port a of LossySync(a, b) is
enabled. If we remove the q♯ from the definition of product, thus taking the naive
definition of product (×̂) following the definition in constraint automata directly,
then a is no longer enabled in LossySync(a, b)×̂Sync(c, d), because a transition
with guard cd|cd is present in the resulting automaton. This transition matches
request set acd, but a does not fire.

6.5. Justification of the g 6≤ ab condition in ∂a,b

The LossySync-FIFO1 example (Figure 5) alone motivated the research into
context-dependent models. When the FIFO1 buffer is empty, data must flow
through the LossySync into the buffer, as the buffer’s port c is enabled. Our
product and synchronisation operations ensure this. What existing research
lacks is a general and formal characterisation of the requirements underlying
this example. We believe that until now, the required technical machinery was
missing.

a b c d q × e f =

(e, q) (f, q) (e, q) (f, q)
∂b,c

ab|ab

ab|a

c|c

d|d

abc|ab
abc|a

abd|ab
abd|a

abc|abc

abc|ac
ca|c

abd|abd

abd|ad

da|d

a|a

ad|ad

da|d ad|a

Figure 5: LossySync-FIFO1

6.10 Definition. Let A = (Σ, Q, δ) be a guarded automaton. We say that a
port a ∈ Σ is (q,R)-sensitive for state q ∈ Q and request set R ⊆ Σ whenever
a ∈ f for all (f,) ∈ firings(q, αR∪{a}) and firings(q, αR∪{a}) 6= ∅. ♣

This property holds for port b in LossySync(a, b) in the request set {a}, and
for port c in FIFO1 (c, d) in state empty for all request sets. In contrast, port a
of Merge(ab, c) is not sensitive for request set {b, c}.

The following lemma captures the property underlying the LossySync-FIFO1
example:

6.11 Lemma. Let Ai = (Σi, Qi, δi) be Reo automata, for i ∈ {1, 2}, with
Σ1 ∩ Σ2 = ∅, and ai ∈ Σi, qi ∈ Qi, Ri ⊆ Σi, such that ai /∈ Ri. If ai is

24

(qi, Ri)-sensitive, for i ∈ {1, 2}, then

firings∂a1,a2
(A1×A2)((q1, q2), αR1∪R2

) =

{(f \ {a1, a2}, q
′) | (f, q′) ∈ firingsA1×A2

((q1, q2), αR1∪R2∪{a1,a2})}

Proof. First, note that

δ∂a1,a2
(A1×A2) = {(q1, q2)

g1g2\a1a2
|f1f2\{a1,a2}

−−−−−−−−−−−−−−−→ (q′1, q
′
2) | q1

g1|f1

−−−→ q′1 ∈ δ1,

q2
g2|f2

−−−→ q′2 ∈ δ2, g1g2 6≤ a1a2}.

This is a direct consequence of sensitivity: since ai ∈ fi for qi
gi|fi
−−−→ q′i ∈ δi (i =

1, 2), transitions in the product automaton of type (q1, q2)
g1q

♯
2
|f1

−−−−→ (q′1, q2) or

(q1, q2)
g2q

♯
1
|f2

−−−−→ (q1, q
′
2) will immediately be ruled out in ∂a1,a2

by the condition
a1 ∈ f ⇐⇒ a2 ∈ f . Thus, we have:

firings∂a1,a2
(A1×A2)((q1, q2), αR1∪R2

)

= {((q′1, q
′
2), f1f2 \ {a1, a2}) | q1

g1|f1

−−−→ q′1 ∈ δ1, q2
g2|f2

−−−→ q′2 ∈ δ2,

αR1∪R2
≤ g1g2\a1a2

, g1g2 6≤ a1a2}

We then calculate for firingsA1×A2
((q1, q2), αR1∪R2∪{a1,a2}):

firingsA1×A2
((q1, q2), αR1∪R2∪{a1,a2})

= {((q′1, q
′
2), f) ∈[

{((q′1, q
′
2), f1f2) | q1

g1|f1

−−−→ q′1 ∈ δ1, q2
g2|f2

−−−→ q′2 ∈ δ2, g = g1g2}

∪{((q′1, q2), f1) | q1
g1|f1

−−−→ q′1 ∈ δ1, g = g1q
♯
2}

∪{((q1, q
′
2), f2) | q2

g2|f2

−−−→ q′2 ∈ δ2, g = g2q
♯
1}

]

| αR1∪R2∪{a1,a2} ≤ g
}

†
= {((q′1, q

′
2), f1f2) | q1

g1|f1

−−−→ q′1 ∈ δ1, q2
g2|f2

−−−→ q′2 ∈ δ2, αR1∪R2∪{a1,a2} ≤ g1g2}

= {((q′1, q
′
2), f1f2) | q1

g1|f1

−−−→ q′1 ∈ δ1, q2
g2|f2

−−−→ q′2 ∈ δ2, αR1∪R2
≤ g1g2\a1a2

, g1g2 6≤ a1a2}

The step marked with a † follows because αR1∪R2∪{a1,a2} 6≤ q♯
i (i = 1, 2), since

this would mean that it does not exists a transition qi
gi|fi
−−−→ q′i ∈ δi such that

αR1∪R2∪{a1,a2} ≤ gi, or equivalently, firingsAi
(qi, Ri) = ∅, which is not possible

since ai is (qi, Ri)-sensitive.

This says that if both a and b are mutually enabled in the presence of request
set R, then they will both fire when synchronised, excluding the alternative
possibility that both do not fire. Constraint automata [7] would include both.

25

We believe that this kind of analysis is only the beginning in the key issue of
more deeply understanding the interaction between synchronisation and context
dependency [11, 22, 14].

6.6. Choice of Operations

The original model of constraint automata [7] included one operation for
composing automata, namely a join, which played a similar role to both of our
operations combined. Having a separate product and synchronisation operation
enables a more fine grained analysis, which we believe was required to obtain
the results presented here. Barbosa et al. [8] go even further, presenting 5 oper-
ations (parallel, interleaving, hook, left join and right join). Our product merely
places two connectors next to each other, without restricting their behaviour,
whereas Barbosa et al.’s model forces a choice between parallel or interleaving
composition. Left join and right join (approximately the counterpart of repli-
cator and merger) are modelled by primitive automata in our model, not as
operations. Their hook operation is the same as our synchronisation.

6.7. ‘Hiding’

Constraint automata [7] models of Reo include a ‘hiding’ operation, which
compresses τ transitions in the automata, which are transitions labelled by ⊤|∅
in our model. See Figure 6. This can be used to obtain an automaton for a
FIFO2 channel from the composite of two FIFO1 channels. The alternative
variant defined by Costa [14] is equally applicable, and perhaps more robust.

6.8. Maximal Concurrency

Guarded automata (and thus also Reo automata) exhibit a kind of maxi-
mal concurrency property with respect to maximally enabled transitions, i.e.,
transitions labeled with ⊤|f . Consider for example four FIFO1 channels, the
first one from port a to port b, the second from c to d, a third from e to f and,
finally, the fourth one from g to h. Synchronising ports b and c results in the
Reo connector and Reo automaton described in Figure 6. It has four states,
each representing whether the first or second FIFO is either full (f) or empty
(e). Clearly, the synchronisation of ports f and g will result in a similar Reo
automata with transition labels renamed to ports e and f . The product of these
two automata will have 16 states. In particular there will be a τ transition from
the state ((f, e), (f, e)) to the state ((e, f), (e, f)) denoting the shift of the data
from buffers 1 and 3 to buffers 2 and 4, respectively. What is more important is
that there will be no transitions from state ((f, e), (f, e)) to neither ((e, f), (f, e))
nor ((f, e), (e, f)). That is, all the enabled transitions from ((f, e), (f, e)) fire
together, even if the two connectors are unrelated.

The property is analogous to maximal concurrency of Petri nets expressed
using so-called step semantics [36]. In the Petri net setting the net is still
available to express the notion of maximal concurrency, whereas in our setting
the topology of the connector is not even considered, so it is not clear how
to express precisely the notion of maximal concurrency, nor is it clear how to

26

a b c d e f × e f =

(e, e) (e, f)

(f, e) (f, f)

(e, e) (e, f)

(f, e) (f, f)

∂b,c

c|c

d|d

a|a

b|b

ac|c

ac|a

ac|ac

ad|d

ad|a
ad
|a
d

bc|b

bc|c

bc|b
c

bd|d

bd|b
bd|bd

a|a

ad|d

ad|a

ad|ad

⊤|∅

d|d

(e, e) (e, f) (f, f)

a|a

ad|d

ad|a

ad|ad

d|d

Figure 6: Two FIFO1 buffers plugged together, their automaton, and the result of performing
‘hiding’—a FIFO1 buffer.

specify a semantics that avoids having unrelated connectors fire together. These
are topics for future research.

7. The final (trace) semantics for Reo

In this section, we show how the definition of guarded automaton above can
be rewritten in order to be seen as a partial deterministic automaton. This will
allow us to provide a final semantics: it is well known that partial determin-
istic automata with transition labels in A have as final semantics non-empty
and prefix-closed languages L ⊆ 2A∗

[33]. Thus, we will be providing a trace
semantics for the original non-deterministic automata.

In this section we will not focus in the Reo subclass of guarded automata,
but all the results here presented are valid for that subclass.

The guarded automata presented above are acceptors of non-empty, prefix-
closed languages L ⊆ GSΣ = 2(AtΣ×2Σ)∗ .

27

Note that the automata presented in this paper have labels in LΣ × 2Σ.
This means that determinisation using a subset construction similar to that
for ordinary automata is not enough in order to obtain a partial deterministic
automaton of the right type. Our definition of deterministic automaton will then
differ from the classical one in the sense that we not only require each state to
have a single transition for each label but we will also process the transition
labels in order to replace guards by appropriate atoms. A deterministic guarded
automaton is then a triple (Σ, Q,∆) where

∆ : Q → (1 + Q)AtΣ×2Σ

.

Given a guarded automaton A = (Σ, Q, F, δ) we define the corresponding
partial deterministic automaton as Det(A) = (Σ, 2Q,∆), where

∆(S)(α, o) =

{
κ1(∗) if S′ = ∅
κ2(S

′), otherwise
where S′ = {q′ | 〈q, g, o, q′〉 ∈ δ, α ≤ g, q ∈ S}

Here, κ1 : 1 → 1 + Q and κ2 : Q → 1 + Q denote the usual injection functions
and 1 = {∗}.

One can easily prove that both automata are language equivalent: it follows
easily by induction on the length of guarded strings that

LS =
⋃

q∈S

Lq.

As an example of determinisation consider the automaton representing the
FIFO1 buffer. Determinisation would yield the following automaton (we do
not draw undefined transitions):

e f

{e, f}

ab|a, ab|a

ab|b, ab|b

ab|a, ab|aab|b, ab|b

One can now determine the language accepted by each state and obtain:

Le = ((ab|a + ab|a)(ab|b + ab|b))∗((ab|a + ab|a) + ε)

Lf = ((ab|b + ab|b)(ab|a + ab|a))∗((ab|b + ab|b) + ε)

L{e,f} = (ab|a + ab|a)Lf + (ab|b + ab|b)Le + ε

The equality L{e,f} = Le +Lf can be easily derived, using the axioms of regular
expressions.

28

8. Conclusion and Future Work

We have presented a new semantic model for context-dependent Reo con-
nectors. The automata corresponding to primitive channels are very compact
and intuitive. As a novelty, when compared to previous approaches, our model
takes negative information into account in the composition operations. This has
allowed us to provide a ‘correct’ behavioural description of connectors (such as
the Repl-AsyncDrain example) which were not possible in other models. More-
over, we provided a detailed justification for the various properties of our model.
We hope that our research will contribute to a more axiomatic description of
Reo connectors. We also extended our model to take account of the actual data
flowing through connectors, thus providing within our more general framework
a context-dependent variant of constraint automata, the hitherto definitive se-
mantic model of Reo. Moreover, our model can be used to give a significantly
simpler account of quantitative Reo [4], though we do not present the details
here. Recently, we incorporated our automata model into CWI’s Eclipse Co-
ordination Tools.3 This enables the generation of Java implementations of our
automata for composing components and services.

Recently Kozen demonstrated that Kleene algebra with tests (KAT) [26] are
to guarded automata what regular expressions are to ordinary finite automata.
Therefore, we want to explore how KAT expressions can be used to specify
and synthesise Reo connectors. This will give us an algebraic description of
Reo connectors, for which reasoning can be automated. More generally, since
our automata can be seen as ordinary labelled transition systems with struc-
tured labels, we are interested in the connection with temporal logic and model
checking.

Other issues that demand attention include using our results to provide
an axiomatic basis for Reo semantics, and exploring the maximal concurrency
property of our model, including finding more realistic models that do not have
this property.

[1] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–366,
2004.

[2] Farhad Arbab. Abstract behavior types: a foundation model for compo-
nents and their composition. Sci. Comput. Program., 55(1-3):3–52, 2005.

[3] Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese, and Ugo Monta-
nari. Tiles for Reo. In Corradini and Montanari [13], pages 37–55.

[4] Farhad Arbab, Tom Chothia, Rob van der Mei, Sun Meng, Young-Joo
Moon, and Chrétien Verhoef. From coordination to stochastic models of
QoS. In Field and Vasconcelos [17], pages 268–287.

3http://reo.project.cwi.nl/

29

[5] Farhad Arbab, Ivan Herman, and P̊al Spilling. An overview of Manifold
and its implementation. Concurrency - Practice and Experience, 5(1):23–
70, 1993.

[6] Farhad Arbab and Jan J. M. M. Rutten. A coinductive calculus of compo-
nent connectors. In Martin Wirsing, Dirk Pattinson, and Rolf Hennicker,
editors, WADT, volume 2755 of Lecture Notes in Computer Science, pages
34–55. Springer, 2002.

[7] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten.
Modeling component connectors in Reo by constraint automata. Science
of Computer Programming, 61(2):75–113, 2006.

[8] Lúıs Soares Barbosa and Marco Antonio Barbosa. A perspective on service
orchestration. Science of Computer Programming, 74:671–687, 2009.

[9] Marco Antonio Barbosa, Lúıs Soares Barbosa, and José Creissac Campos.
Towards a coordination model for interactive systems. Electronic Notes in
Theoretical Computer Science, 183:89–103, 2007.

[10] Marcello M. Bonsangue, Dave Clarke, and Alexandra Silva. Automata for
context-dependent connectors. In Field and Vasconcelos [17], pages 184–
203.

[11] Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Syn-
chronisation and context dependency. Science of Computer Programming,
66(3):205–225, 2007.

[12] Dave Clarke, José Proença, Alexander Lazovik, and Farhad Arbab. De-
constructing Reo. Electronic Notes in Theoretical Computer Science,
229(2):43–58, 2009. Proceedings of the 7th International Workshop on
the Foundations of Coordination Languages and Software Architectures
(FOCLASA 2008).

[13] Andrea Corradini and Ugo Montanari, editors. Recent Trends in Algebraic
Development Techniques, 19th International Workshop, WADT 2008, Pisa,
Italy, June 13-16, 2008, Revised Selected Papers, volume 5486 of Lecture
Notes in Computer Science. Springer, 2009.

[14] David Costa. Formal Models for Context Dependent Connectors for Dis-
tributed Software Components and Services. PhD thesis, Leiden University,
2010. To appear.

[15] Frank S. de Boer, Joost N. Kok, Catuscia Palamidessi, and Jan J. M. M.
Rutten. Non-monotonic concurrent constraint programming. In ILPS ’93:
Proceedings of the 1993 international symposium on Logic programming,
pages 315–334, Cambridge, MA, USA, 1993. MIT Press.

30

[16] José Luiz Fiadeiro and Antónia Lopes. Community on the move: Archi-
tectures for distribution and mobility. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO, vol-
ume 3188 of Lecture Notes in Computer Science, pages 177–196. Springer,
2003.

[17] John Field and Vasco Thudichum Vasconcelos, editors. Coordination
Models and Languages, 11th International Conference, COORDINATION
2009, Lisboa, Portugal, June 9-12, 2009. Proceedings, volume 5521 of Lec-
ture Notes in Computer Science. Springer, 2009.

[18] Cédric Fournet and Georges Gonthier. The Join calculus: A language
for distributed mobile programming. In Gilles Barthe, Peter Dybjer, Luis
Pinto, and João Saraiva, editors, APPSEM, volume 2395 of Lecture Notes
in Computer Science, pages 268–332. Springer, 2000.

[19] David Gelernter. Generative communication in Linda. ACM Trans. Pro-
gram. Lang. Syst., 7(1):80–112, 1985.

[20] Juan Visente Guillen Scholten. Mobile channels for exogenous coordina-
tion of distributed systems: semantics, implementation and composition.
PhD thesis, LIACS, Faculty of Mathematics and Natural Sciences, Leiden
University, January 2007.

[21] Mohammad Izadi and Marcello M. Bonsangue. Recasting constraint au-
tomata into Büchi automata. In John S. Fitzgerald, Anne Elisabeth Hax-
thausen, and Hüsnü Yenigün, editors, ICTAC, volume 5160 of Lecture
Notes in Computer Science, pages 156–170. Springer, 2008.

[22] Mohammad Izadi, Marcello M. Bonsangue, and Dave Clarke. Modeling
component connectors: Synchronisation and context-dependency. In An-
tonio Cerone and Stefan Gruner, editors, SEFM, pages 303–312. IEEE
Computer Society, 2008.

[23] Ramtin Khosravi, Marjan Sirjani, Nesa Asoudeh, Shaghayegh Sahebi, and
Hamed Iravanchi. Modeling and analysis of Reo connectors using Alloy.
In Doug Lea and Gianluigi Zavattaro, editors, COORDINATION, volume
5052 of Lecture Notes in Computer Science, pages 169–183. Springer, 2008.

[24] Christian Koehler, Farhad Arbab, and Erik P. de Vink. Reconfiguring
distributed Reo connectors. In Corradini and Montanari [13], pages 221–
235.

[25] Christian Koehler and Dave Clarke. Decomposing port automata. In SAC
’09: Proceedings of the 2009 ACM symposium on Applied Computing, pages
1369–1373, New York, NY, USA, 2009. ACM.

[26] Dexter Kozen. On the coalgebraic theory of Kleene algebra with tests.
Technical Report http://hdl.handle.net/1813/10173, Computing and
Information Science, Cornell University, March 2008.

31

[27] Bilung Lee and Edward A. Lee. Hierarchical concurrent finite state ma-
chines in Ptolemy. In ACSD, pages 34–40. IEEE Computer Society, 1998.

[28] Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The Ptolemy II frame-
work for visual languages. In HCC, pages 50–51. IEEE Computer Society,
2001.

[29] Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Building mashups
for the enterprise with SABRE. In Athman Bouguettaya, Ingolf Krüger,
and Tiziana Margaria, editors, ICSOC, volume 5364 of Lecture Notes in
Computer Science, pages 70–83, 2008.

[30] Jayadev Misra and William R. Cook. Computation orchestration: A basis
for wide-area computing. Journal of Software and Systems Modeling, May
2006.

[31] Mohammad Reza Mousavi, Marjan Sirjani, and Farhad Arbab. Formal
semantics and analysis of component connectors in Reo. Electr. Notes
Theor. Comput. Sci., 154(1):83–99, 2006.

[32] Oscar Nierstrasz. Piccola – a small compositional language (invited talk).
In Paolo Ciancarini, Alessandro Fantechi, and Roberto Gorrieri, editors,
FMOODS, volume 139 of IFIP Conference Proceedings. Kluwer, 1999.

[33] J.J.M.M. Rutten. Coalgebra, concurrency, and control. In R. Boel and
G. Stremersch, editors, Discrete Event Systems (analysis and control), Pro-
ceedings of WODES 2000, pages 31–38. Kluwer, 2000.

[34] Mary Shaw and David Garlan. Software Architecture. Prentice Hall, 1996.

[35] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Professional, 2nd edition, 2002.

[36] Walter Vogler. Modular Construction and Partial Order Semantics of Petri
Nets. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1992.

32

Centrum Wiskunde & Informatica

Centrum Wiskunde & Informatica (CWI) is
the national research institute for
mathematics and computer science in the
Netherlands. The institute’s strategy is to
concentrate research on four broad,
societally relevant themes: earth and life
sciences, the data explosion, societal
logistics and software as service.

Centrum Wiskunde & Informatica (CWI) is
het nationale onderzoeksinstituut op het
gebied van wiskunde en informatica. De
strategie van het instituut concentreert zich
op vier maatschappelijk relevante
onderzoeksthema’s: aard- en
levenswetenschappen, de data-explosie,
maatschappelijke logistiek en software als
service.

Bezoekadres:
Science Park 123
Amsterdam

Postadres:
Postbus 94079, 1090 GB Amsterdam
Telefoon 020 592 93 33
Fax 020 592 41 99
info@cwi.nl
www.cwi.nl

