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Chapter 1

Introduction

The subject of this thesis can be categorized as the implementation of constraint
solvers. In this chapter we put constraint solving, and the programming style
that it enables into context. We motivate our work, give an outline of the thesis,
and summarize the scientific contributions.

1.1 Context

Constraint programming falls in the category of declarative programming
styles, where essentially a program describes what must be computed, as op-
posed to imperative programming, where a program describes how the output
must be computed. A constraint “program” is called a constraint satisfaction

problem (CSP), and consists of the following elements.

• a set of variables, each with a set of allowed values, and

• a set of constraints, where every constraint applies to a subset of the vari-
ables, and restricts somehow the values that these variables may assume.

Writing a CSP to represent a combinatorial problem that occurs in practice is
called modeling . The purpose of constraint solving is to generate solutions

to CSPs. These are assignments of values to variables that satisfy all constraints.
We will also consider a modification of constraint satisfaction problems where
the goal is to generate an optimal solution, according to some objective function.
The combination of a CSP and an objective function is called a constrained

optimization problem (COP). Programs, procedures, and algorithms for con-
straint solving are called constraint solvers. For a tutorial, and textbooks on
constraint programming, the reader is referred to [Smi95, Apt03, Dec03]. The
subject of this thesis is the implementation of constraint solvers.

Because of the very general nature of a CSP, constraint programming sub-
sumes several other forms of modeling, such as linear programming. For some

1



2 Chapter 1. Introduction

specific forms of CSPs and COPs there exist very efficient solving methods, such
as the simplex algorithm for linear programs. In this thesis we deal with general
methods for constraint solving that are applied only when no efficient, problem-
specific methods are available.

In particular, we deal with methods that are based on an exhaustive explo-
ration of all possible assignments of values to variables. This excludes so-called
local search methods, which start from an initial assignment, and try to im-
prove it according to some notion of quality by iteratively making small (local)
modifications. Local search methods naturally apply to COPs, but they can also
be applied to CSPs by minimizing the number of violated constraints. Local
search methods typically find good solutions quickly, but are not guaranteed to
find the optimum, and therefore they cannot determine whether a solution to a
CSP exists or not.

In contrast, the exhaustive methods that we consider in this thesis are guar-
anteed to find a solution if it exists, but in general they have a time complexity
that is exponential in the size of the problem. Although computations with an
exponential time complexity are considered to be intractable, this characterizes
only the worst-case behavior, and despite their potentially intractable nature,
such methods are successfully applied in practice. Examples of such applica-
tions are the generation of test patterns for digital circuits (see, e.g., [VHSD92]),
the analysis of nonlinear functions [HMD97], and scheduling problems [BLPN01],
such as sports tournament scheduling [Hen01].

1.2 Motivation

Constraint solving is based on a collection of largely independent techniques,
that fall into two categories: search methods, and techniques for reducing the
search space. In the context of constraint solving, techniques in the latter cate-
gory are usually called constraint propagation techniques, and the approach
to constraint solving that is considered in this thesis is known as branch-and-

propagate search . To a large extent, constraint programming consists of deter-
mining the combination of techniques that make a given CSP solvable. Many of
these techniques have successfully been used in specific domains to build practical
constraint programming tools, but in general it is not possible to combine them
without reprogramming or re-engineering the tools, and a major challenge in this
field is how to achieve a combination of various existing methods and techniques
within a single framework. We will refer to realizing such combinations as solver

composition .

Recently, it was demonstrated that many constraint propagation algorithms
proposed in the literature are actually instances of a generic iteration algorithm
[Apt99, Gen02]. In this scheme, a constraint solver consists of a scheduler com-
bined with the functions that are to be scheduled. If certain conditions are met,
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different schedulers will lead to the same result, and the schedulers can be config-
ured to exploit several properties of the functions. Moreover, distributed versions
of the generic iteration algorithm exist [MR99, Mon00a], and distributed con-
straint propagation can be realized simply by substituting a sequential scheduler
by a distributed scheduler.

Our goal is to exploit the conceptual simplicity of this scheme, and to comple-
ment it with facilities for search to form an integrated framework for constraint
solving. The central theme of this thesis is an exploration of the possibilities and
limitations of such a framework. We have taken a practical approach, which has
led to the development of OpenSolver, a highly configurable constraint solving
engine that supports a wide range of relevant solver configurations. A major de-
sign goal was that OpenSolver can be used as a software component, to form the
core of a solver, and to participate in several solver cooperation schemes. As a
result, composing constraint solvers around OpenSolver involves various methods
of software composition. We give an account of the design and implementation of
OpenSolver, and of the experiments that were performed to verify the efficiency
of the resulting constraint solvers.

1.3 Outline of the Thesis

The thesis can be read as a description of the OpenSolver software, plus a series
of case studies that demonstrate how it can be configured for various application
domains and methods of constraint solving. In addition to exploring the possi-
bilities and limitations of our approach, some of these case studies address more
specific research questions. The following chapters fall naturally in three parts.
The first part contains the preliminary material:

Chapter 2. Here we introduce constraint solving, and branch-and-propagate
search. To motivate our work further, we review several forms of solver
composition that are found in the literature.

Chapter 3. A description of the OpenSolver software, which is used in the sub-
sequent chapters as a platform for experimenting with solver composition.
Part of the material presented here was submitted to the CP 2003 doctoral
program, and an abstract appeared in the conference proceedings [Zoe03c].

The second part consists of three chapters that describe applications of a
single OpenSolver instance:

Chapter 4. Here we demonstrate how OpenSolver can be configured as a solver
for constraints on finite domains, real, and Boolean variables. We also
describe a number of general-purpose facilities that are independent of the
application domain, and we investigate how a number of existing techniques
that are normally hard-wired in solvers can be realized through composition.
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Chapter 5. In this chapter we demonstrate how OpenSolver can be configured
for solving arithmetic constraints on integer variables. Two specific ques-
tions are addressed in this chapter: first, there are a number of natural
approaches to implement these constraints, and we investigate which one
of them can be expected to give the best performance. Second, we try to
characterize the effect of constraint propagation for these constraints. This
chapter is based on joint work with Krzysztof Apt, the preliminary results
of which appear in [AZ04].

Chapter 6. This chapter is a case study describing a solver for the job-shop
scheduling problem, based on OpenSolver. Like Chapter 4, this involves ex-
isting solving techniques, but this material serves two other purposes. First,
job-shop scheduling is considered to be a non-trivial problem whose com-
plexity is representative of many scheduling problems that occur in practice.
As such, it shows that our approach leads to realistic solver implementa-
tions. Second, it demonstrates a technique that we refer to as constraining
special-purpose data types. In an open-ended solver, this technique can be
applied when the existing facilities do not support an efficient implementa-
tion of a solver for a given problem. Part of the material in this chapter
was submitted to the CP 2004 doctoral program, and an abstract appeared
in the conference proceedings [Zoe04b].

In computer science, coordination refers to the orchestration of the inter-
action among the various components of a software system [Arb98]. While all
meaningful computation involves coordination, it is a particularly relevant aspect
of concurrent systems, where several computations overlap in time. The design
of OpenSolver allows that in addition to its use as a stand-alone constraint solver,
it can be coordinated from the outside in many different ways, to support solver
composition at a higher level. In the last part of the thesis we look at several
ways in which OpenSolver instances can cooperate to solve a single constraint
satisfaction problem. The techniques described here are orthogonal to those of
the three preceding chapters, and can be used in combination with them. Two
of these techniques involve concurrency, and the emphasis of their presentation
is on the coordination aspects.

Chapter 7. There exist constraint propagation techniques that internally in-
volve search. This internal search process occurs in the context of another,
encompassing branch-and-propagate search, and is therefore called nested
search. In this chapter we propose a generic reduction operator for nested
search, and investigate the extent to which three existing techniques from
different application domains can be expressed as applications of this generic
operator. We also describe an implementation of the operator based on an
almost autonomous OpenSolver instance, and we evaluate its performance
on some benchmark problems. This chapter is based on a paper [Zoe04a]
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that was presented at the 2004 ERCIM/CologNet workshop on constraint
solving and constraint logic programming.

Chapter 8. Parallel processing is used to reduce the turn-around time by dis-
tributing the workload among a number of threads or processes running
on different processors or computers. In this chapter we describe a parallel
constraint solver that uses a time-out mechanism for load balancing. To
our knowledge, this is a novel approach to parallel search that supports the
composition of a parallel solver from autonomous component solvers. The
research question addressed in this chapter is whether this approach leads
to efficient and scalable parallel solvers. This chapter is based on a paper
with Farhad Arbab [ZA04].

Chapter 9. Here we discuss the use of OpenSolver as a software component for
implementing a solver based on distributed constraint propagation. Several
researchers have recognized the need for such a solver. A possible motivation
is that in some cases, the CSP that we are trying to solve is distributed,
while it is impossible, or undesirable to gather all constraints in a single
solver. The chapter is based on two publications [Zoe03b, Zoe03a], that
continue the research of Eric Monfroy and Farhad Arbab in the area of
coordination-based constraint solving [Mon00a, AM00].

In Chapter 10 we review the material in the preceding chapters, and suggest
directions for future work.

1.4 Contributions

This thesis demonstrates that solver composition can lead to efficient branch-and-
propagate constraint solvers. Specific contributions are the following.

• An account of the design and implementation of a general purpose con-
straint solving engine, with a flexible architecture that supports a wide
variety of relevant solver configurations. In particular

– It is configurable with respect to low-level aspects such as the schedul-
ing of the functions that implement constraint propagation. This al-
lows the composition of techniques that are normally hard-wired in
constraint programming tools. Solver composition in turn leads to
reuse of code, and allows that solving techniques carry over to other
data types and application domains.

– It is designed as an autonomous application that communicates with
its environment through a programmable interface and a solver con-
figuration language. This design facilitates the component-based con-
struction of constraint solvers around the solving engine, independent
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of a particular computing environment or programming language. The
configuration language gives unique possibilities for external manipu-
lation of CSPs and solver configurations, which allow that special-
purpose functionality can be implemented outside the solving engine.

• A demonstration and discussion of the technique of constraining special
purpose data structures as a tool to implement solvers for problems that do
not have a straightforward CSP formulation.

• A systematic study of several approaches to implementing arithmetic con-
straints on integers, using an interval representation for the variable do-
mains, and integer interval arithmetic to describe and implement constraint
propagation. For the most promising approach, we provide results that
characterize the effect of constraint propagation.

• A demonstration that several operators for enforcing so-called stronger
forms of consistency, which improve the efficiency of constraint solving in
specific application domains, are actually instances of the same technique:
nested search. We demonstrate that using a generic reduction operator for
nested search, these operators can be composed from the operators that
enforce weaker forms of consistency. Experiments show that this composi-
tional approach leads to a viable implementation of the techniques that we
are interested in.

• A study of a time-out mechanism for implementing parallel search. We
demonstrate that by equipping constraint solvers with a time-out mecha-
nism, these solvers can then be used as software components for building
a parallel constraint solver, resulting in a very simple implementation that
performs well on shared memory and distributed memory architectures, and
gives a good load-balance in practice.

In addition, we believe that the OpenSolver software itself is potentially of
interest to a wider audience. However, it was developed primarily for the experi-
ments reported in this thesis, and has not been used for other purposes. Conse-
quently, ease of use has not been a priority, and no user’s manual or programmer’s
manual exists. The latter would be essential for exploiting the open-ended nature
of the system. If time permits, we hope to be able to continue the development
of OpenSolver, and to make it available as open source software.



Chapter 2

Constraint Solving

This chapter introduces the subject of constraint solving. The results in this
thesis apply to one particular approach to constraint solving, namely branch-

and-propagate search. We give a precise definition of this approach, and argue
that it is desirable to be able to compose constraint solvers from components for
different techniques, heuristics and other aspects of constraint solving. With this,
we provide the main justification for the work reported in this thesis.

2.1 Introduction

Constraint solving deals with finding solutions to constraint satisfaction prob-

lems (CSPs). It refers to the techniques that enable constraint programming ,
a branch of declarative programming where instead of implementing an algorithm,
the programmer models the problem as a CSP, and uses a constraint solver to
construct a solution. Constraint solving applies to combinatorial (optimization)
problems, and many examples of successful applications exist, including schedul-
ing [BLPN01, Hen01], analysis of nonlinear functions [HMD97], and testing of
digital circuits [VHSD92].

Informally, a CSP consists of a set of variables, each with an associated do-

main , plus a set of constraints. The domains are sets of possible values for the
variables. Each constraint is defined on a subset of the variables, and restricts
somehow the combinations of values that can be assigned to these variables. Con-
straint solving comes down to finding an assignment of values to variables that
violates none of the restrictions imposed by the constraints. Constraints appear
in various forms. They can be defined by explicitly enumerating allowed or dis-
allowed combinations of values for the variables, but in most cases, the domains
have some structure, and a more compact notation, such as a mathematical equa-
tion, can be used.

This chapter is organized as follows. Section 2.2 contains the definitions re-
lated to constraint solving that we will use throughout the thesis. Section 2.3

7
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introduces branch-and-propagate search. In Section 2.4 we illustrate the need for
a configurable constraint solver.

2.2 Definitions

In this section we define what we mean by constraint solving. This involves a def-
inition of constraint satisfaction problems that conforms largely to the standard
definitions as they are used, for example, in [Apt03]. Also we will introduce two
notions of local consistency of CSPs that are widely used in the literature: arc
consistency and hull consistency. For modeling the solving process we introduce
the notion of a domain type , and we will define a number of standard domain
types that will be used throughout this thesis. Domain types provide a context for
the solving process. We will call the combination of a CSP and a solving context
an extended CSP . Such combinations are essential to the model of constraint
solving that this thesis is based on.

2.2.1 Sequences and Schemes

Several definitions used throughout this thesis rely on the notion of a sequence ,
which is an ordered multiset. We consider only finite sequences, and for a sequence
of length n we use the notation 〈e1, . . . , en〉. Tuples are finite sequences that are
an element of a specific Cartesian product of sets. To simplify the notation, when
it does not lead to confusion we will omit the angular brackets.

An n-scheme is a subsequence of 1, 2, . . . , n. Given a sequence t := e1, . . . , en

and an n-scheme s := i1, . . . , il, let t[s] denote the sequence ei1 , . . . , eil , which is
called the subsequence of t with scheme s. Sequences of length one are identified
with the element that they contain, so for 1 ≤ i ≤ n we have t[i] = 〈ei〉 = ei.

Some notation: for a sequence A of length n, a sequence B of length 1, and
a binary relation symbol r, we use ArB as shorthand for A[1]rB[1], . . . , A[n]rB[1].

2.2.2 Constraint Satisfaction Problem

Consider a sequence of variables X := x1, . . . , xn that have respective domains
D1, . . . , Dn associated with them. By a constraint C on X we mean a subset
of D1 × . . . × Dn. The number n is the arity of the constraint.

A constraint satisfaction problem consists of a finite sequence of variables
X := x1, . . . , xn with respective domains D := D1, . . . , Dn, together with a finite
set C of constraints, each on a subsequence of X. The scheme of this subsequence
is the scheme of the constraint. We use the following notation for CSPs.

〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉. (2.1)

Instead of explicitly specifying the set of allowable tuples, we will often use an
implicit specification of constraints, such as a mathematical equation.
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2.2.1. Example. Consider the following CSP.

〈x < y, y 6= z ; x, y, z ∈ {1, 2, 3}〉

The constraint x < y denotes the subset {〈1, 2〉, 〈1, 3〉, 〈2, 3〉} of Dx × Dy. Its
scheme is the sequence 1, 2, identifying the first two elements of X := x, y, z.
According to the notation introduced above, x, y, z ∈ {1, 2, 3} is shorthand for
x ∈ {1, 2, 3}, y ∈ {1, 2, 3}, z ∈ {1, 2, 3}. 2

By a solution to a CSP of the form (2.1) we mean an element d of D1×. . .×Dn

such that for each constraint C ∈ C with scheme s we have d[s] ∈ C. We call a
CSP consistent if it has a solution, and inconsistent otherwise. Two CSPs
with the same sequence of variables are called equivalent if they have the same
set of solutions.

Further, given a CSP of the form (2.1), a sequence D′ := D′
1, . . . , D

′
n having

D′
i ⊆ Di, for 1 ≤ i ≤ n, and a constraint C ∈ C with scheme s := i1, . . . , il,

let C[D′[s]] denote C ∩ D′
i1
× . . . × D′

il
, the projection of D′[s] on C. C[D]

denotes the set of constraints obtained by replacing every constraint C in C with
the projection C[D′[s]], where s is the scheme of C. Projections of domains
on constraints are needed to maintain the property that constraints are subsets
of Cartesian products of domains, when transforming CSPs by modifying their
domains. They are seldom needed, because we mostly use implicit constraints as
in Example 2.2.1.

2.2.3 Local Consistency

In addition to the distinction between consistent and inconsistent CSPs, several
other notions of consistency of CSPs are commonly used. They are called local

consistency notions, and in a CSP that complies to a local consistency notion,
some values that do not contribute to any solution have been removed from the
domains of variables. The various local consistency notions differ in the extent
to which such values are absent. It is convenient to introduce a local consistency
notion at this stage.

Consider a CSP P of the form (2.1), and a binary constraint C ∈ C on variables
x and y. The constraint C is called arc consistent if

• for every a ∈ Dx there is a value b ∈ Dy such that 〈a, b〉 ∈ C, and

• for every b ∈ Dy there is a value a ∈ Dx such that 〈a, b〉 ∈ C.

P is called arc consistent if every binary constraint in C is arc consistent.

The following examples demonstrate that arc consistency does not imply con-
sistency, and vice versa. This is true for local consistency in general.
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2.2.2. Example. The inconsistent CSP

〈x 6= y, y 6= z ; x, y, z ∈ {0, 1}〉

is arc consistent: for both disequality constraints, all values in the domains of the
variables that it applies to occur in a tuple allowed by that constraint. Conversely,
The consistent CSP of Example 2.2.1 is not arc consistent: the value 3 in the
domain of x does not occur in any of the tuples 〈x, y〉 ∈ {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}
allowed by the constraint x < y, nor does the value 1 in the domain of y. However,
this CSP can be transformed into an arc consistent CSP by removing these values
from their respective domains. This yields the CSP

〈x < y, y 6= z ; x ∈ {1, 2}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉

which is equivalent to the original CSP. 2

Arc consistency, which was introduced by Mackworth [Mac77], applies to binary
constraints only. Its generalization to arbitrary constraints is called hyper-arc

consistency .

2.2.4 Domain Type

We will regard constraint solving as a process that performs a series of transfor-
mations on CSPs. Example 2.2.2 already demonstrated one such transformation.
In principle, these transformations may affect the set of constraints, but in most
cases that we consider, the transformations change only the domains of the vari-
ables. To model this process, we introduce the notion of a domain type . A
domain type is the set of all domains that can possibly be associated with a
particular variable during the solving process.

Ideally, for a CSP of the form (2.1) and 1 ≤ i ≤ n, we would like to be
able to use P(Di), the set of all subsets of Di as a domain type. For finite Di

this is possible, but the cost of maintaining the data structures to represent such
domains in a constraint solver can be high, and using P(Di) may not be the most
efficient choice.

Moreover, if Di is a set of real numbers, using P(Di) is generally not possible
because most real numbers cannot be represented inside a computer. Instead
we have at our disposal a set of binary floating-point numbers. This set of
floating-point numbers is a finite subset of IR, and in general the only feasible
representation of a real number that is not a floating-point number is an inter-

val that contains this number, and whose bounds are consecutive floating-point
numbers of a certain precision. By consecutive floating-point numbers we
mean two floating-point numbers a < b, such that we do not have at our disposal
a floating-point number c for which a < c < b. Finite Di ⊂ IR can be represented
as finite sets of such intervals, but in practice, the smallest interval that contains
Di is used.
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Domain types provide a level of abstraction that allows us to model constraint
solving on finite domains, interval domains, and other domains in a uniform way.
Examples of similar notions that are used in the literature are the approximate

domains of Benhamou [Ben96], the subdefinite extensions of Telerman and
Ushakov [TU96], and the collections of subsets based on a domain of Monfroy
[Mon00a]. Borrowing from these, we will use the following definition.

2.2.3. Definition. A domain type T is a set of sets that is partially ordered
with respect to set inclusion, and has the following properties:

• there is a largest element, denoted by T ⊤ that is a superset of all elements,

• it contains the empty set ∅,

• it is closed under intersection, and

• set inclusion is a well-founded relation over T . 2

The last property of this definition is due to [Ben96]. As a result of it, our
domain types are specific forms of acceptable approximate domains , intro-
duced in that reference. They are specific in the sense that they contain the
empty set. Recall that a well-founded relation over a set T is a partial order re-
lation R such that every non-empty subset of T has an R-minimal element. This
ensures that domain types do not contain any infinite decreasing sequences of ele-
ments. Because computer memory is finite, implementations of domain types will
be implementations of finite domain types, and these correspond to subdefinite
extensions of their largest element [TU96].

2.2.4. Example. The set consisting of ZZ, and all finite subsets of ZZ is a domain
type. The set of all sets of integers is not a domain type: it is a superset of the
set {{x ∈ ZZ | x ≥ l} | l ∈ ZZ}, which does not have a least element with respect
to set inclusion. 2

During the solving process, we may be able to associate a new set of allowable
values with a variable. Instead of this set, we will use its representation in a
particular domain type, which is defined as follows.

2.2.5. Definition. Given a domain type T and a set D ⊆ T ⊤, let T (D) denote
the smallest element of T that is a superset of D. T (D) is called the represen-

tation of D in T . 2

2.2.6. Example. Let T denote the domain type containing the following 11
domains.

{1, 2, 3, 4, 5, 6, 7}
{1, 2, 3, 4, 5} {3, 4, 5, 6, 7}

{1} {1, 2, 3} {3} {3, 4, 5} {5} {5, 6, 7} {7}
∅
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The set {2, 4} is not in T , so its representation T ({2, 4}) = {1, 2, 3, 4, 5} is a
proper superset of it. Only subsets of T ⊤ = {1, 2, 3, 4, 5, 6, 7} have a representa-
tion in T , so T ({7, 8}) does not exist. 2

The elements of a domain type that are representations of singleton sets play
a special role in the solving process. These are called canonical domains, and are
defined as follows.

2.2.7. Definition. For a domain type T we define

⌊T ⌋ := {T ({x}) | x ∈ T ⊤}.

The elements of ⌊T ⌋ are called the canonical domains of T . 2

2.2.8. Example. The canonical domains of the domain type T of Example 2.2.6
are {1}, {1, 2, 3}, {3}, {3, 4, 5}, {5}, {5, 6, 7}, and {7}. 2

In addition to some special purpose domain types, we will mainly be concerned
with the four standard types defined below.

2.2.9. Definition. Let IR∞ denote IR ∪ {−∞,∞}, the set of reals augmented
with the symbols for plus and minus infinity. We define −∞ < ∞, and x < ∞
and x > −∞ for all x ∈ IR. IF denotes a finite subset of IR∞ that contains −∞
and ∞, and is used to model a set of floating-point numbers of unspecified, but
fixed precision. For a, b ∈ IR∞, let [a, b] denote the set {x ∈ IR | a ≤ x ≤ b}, and
for two integers a and b, let [a..b] denote the set {i ∈ ZZ | a ≤ i ≤ b}.

• B denotes the domain type {{true, false}, {true}, {false}, ∅}, containing the
domains for Boolean variables.

• Z denotes the domain type containing ZZ and all finite sets of integers,
including ∅.

• I denotes the domain type containing ZZ, ∅, and all intervals [a..b] with
a, b ∈ ZZ and a ≤ b. Elements of I are called integer intervals.

• F denotes the domain type that consists of ∅ and all intervals [a, b], where
a, b ∈ IF and a ≤ b. Elements of F are called floating-point intervals.

2

Variables with domain type Z are usually called finite domains variables. Note
that IR ∈ F , and that I ⊂ Z, and ⌊I⌋ = ⌊Z⌋ = {{x} | x ∈ ZZ}.

Domain type F is used for solving constraints on the reals. It is similar to the
domain type of Example 2.2.6, in the sense that some of the domains overlap just
on their bounds. The set of canonical intervals ⌊F⌋ contains a singleton set
for each of the elements of IF − {−∞,∞}, and an interval representation for all
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other real numbers. The representation of a set of real numbers is usually called
the hull of this set, and to conform our notation, for D ⊆ IR we define

hull(D) := F(D).

As an example, − 1
10

, 1
10

/∈ IF (no binary floating-point representation exists for
these values), so hull([− 1

10
, 1

10
]) is the interval [a, b] with a = max({x ∈ IF | x <

− 1
10
}) and b = min({x ∈ IF | x > 1

10
}).

Constraints on the reals are the topic of Section 4.5, but it is convenient at this
point to introduce hull consistency, a local consistency notion that is specific to
these constraints. This definition can be found in many publications concerning
constraints on the reals, see for example [CDR99, BGGP99, BMVH94].

A constraint C ∈ IRn is hull consistent if for all 1 ≤ i ≤ n,

Di = hull({xi ∈ IR | ∃x1 ∈ D1, . . . , xi−1 ∈ Di−1, xi+1 ∈ Di+1, . . . , xn ∈ Dn

for which 〈x1, . . . , xn〉 ∈ C}).

A CSP of the form (2.1) is hull consistent if all constraints C ∈ C are hull
consistent.

As the following example demonstrates, hull consistency is an approximation
of hyper-arc consistency that deals both with the fact that we represent domains
by intervals, and with the imprecision inherent to computing with floating-point
numbers.

2.2.10. Example. Let a = max({x ∈ IF | x < − 1
10
}) and b = min({x ∈ IF | x >

1
10
}). The CSP

〈100x2 = 1 ; x ∈ hull({− 1
10

, 1
10
})〉

is hull consistent. x = − 1
10

and x = 1
10

are the only solutions, but domain type
F does not provide the means to represent the information that 0, or any of the
other values in [a,− 1

10
) ∪ (− 1

10
, 1

10
) ∪ ( 1

10
, b] does not contribute to a solution. 2

2.2.5 Extended CSP, Solved Form

Domain types specify what domains can be associated with the variables of a CSP
during the solving process. The canonical domains and the empty set play special
roles: if an equivalence preserving transformation changes the domain of a variable
into the empty set, the CSP that we are trying to solve is inconsistent. Conversely,
if all domains are singleton sets, while the CSP conforms to a notion of consistency
that ensures that no constraint is violated, the values in these singleton sets
constitute a solution to the CSP. For singleton domains, all practicable notions of
local consistency have this property, but for constraints on the reals, the domain
type may not support a precise representation of the solution. In this case, the
best we can get is a sequence of canonical intervals for which the CSP conforms
to some notion of local consistency, such as hull consistency, which generally does
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not imply consistency. In either case, when we reach canonical domains and
local consistency, constraint solving is finished in the sense that the maximum
precision allowed by the domain type has been reached. If we are not sure about
consistency, other methods must be applied.

So constraint solving based on local consistency enforcing ends at canonical
domains, but in some cases we are not interested in canonical domains for each of
the variables. For example, a variable may have been introduced just to represent
an intermediary result of a calculation, or the precision of the canonical intervals
may be higher than what is needed, and CPU time can be saved by accepting
domains of a lower precision. To specify such requirements, in addition to a
domain type, we associate with every variable a set of final, or acceptable domains.

2.2.11. Definition. A set of domains A ⊂ T qualifies as a set of final do-

mains of domain type T if it has the following properties:

• The empty set is not a final domain, i.e., ∅ /∈ A.

• All canonical domains are final domains, i.e., ⌊T ⌋ ⊆ A.

• All non-empty subsets of final domains are final domains, insofar as they
are elements of the corresponding domain type, i.e.,

for all D ∈ A, (P(D) ∩ T ) − {∅} ⊆ A. 2

We will be using three specific sets of final domains:

• In general we will use A = ⌊T ⌋ for all variables. For integers and Booleans,
this entails that constraint solving yields solutions to CSPs. For constraint
solving on the reals its yields a sequence of canonical domains for which the
CSP complies to some notion of local consistency, as explained above.

• Alternatively, for constraints on the reals we may be interested in a limited
precision ǫ only. In this case we use the set

A = ⌊F⌋ ∪ {[a, b] ∈ F | 0 < b − a ≤ ǫ}.

• We will also be looking at situations where we are interested in finding
an assignment, or an interval of adequate precision for only some of the
variables. The other variables are called auxiliary variables, and for
these we use A = T − {∅} to indicate that we will accept all non-empty
domains of the domain type. The variables for which A ⊂ T − {∅} are
called decision variables.

We call the combination of a CSP, and a domain type and set of final domains
for each of the variables an extended constraint satisfaction problem.
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2.2.12. Definition. By an extended constraint satisfaction problem , or
ECSP we mean a structure of the form

〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; T1, . . . , Tn ; A1, . . . ,An〉, (2.2)

where 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉 is a CSP, and for 1 ≤ i ≤ n,

• Ti is a domain type,

• Di ∈ Ti, and

• Ai ⊂ Ti is a set of final domains of Ti.

An ECSP is called consistent if the corresponding CSP is consistent, and incon-
sistent otherwise. 2

Instead of enumerating the full sequences of domain types and sets of final
domains, we may use a more compact notation such as Dx, Dy, Dz ∈ Z and
Ax,Ay,Az = ⌊Z⌋.

2.2.13. Example. In the ECSP

〈x < y, y 6= z ; x, y, z ∈ {0, 1, 2} ; Dx, Dy, Dz ∈ Z ; Ax,Ay,Az〉

having Ax = ⌊Z⌋, Ay = Z − {∅}, and Az = ⌊Z⌋, x and z are decision variables,
and y is an auxiliary variable. Their domains are represented by elements of the
domain type Z. 2

During the solving process, the domains of the variables are drawn from their
respective domain types. Instead of an ECSP that constitutes a solution, in our
model of constraint solving we will be concerned with creating a solved form.

2.2.14. Definition. Let γ refer to a local consistency notion, e.g., γ = arc for
arc consistency. An ECSP of the form (2.2) is said to be γ consistent iff the
corresponding CSP 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉 is γ consistent. The ECSP is said
to be in γ solved form iff

• it is γ consistent, and

• Di ∈ Ai, for all 1 ≤ i ≤ n.

Further, for two ECSPs

P := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; T1, . . . , Tn ; A1, . . . ,An〉

and
P ′ := 〈C′ ; x1 ∈ D′

1, . . . , xn ∈ D′
n ; T1, . . . , Tn ; A1, . . . ,An〉

having D′
1 ⊆ D1,. . . ,D

′
n ⊆ Dn, we say that
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• P ′ is a γ solved form of P if

– P ′ is in γ solved form, and

– P , with D1, . . . , Dn substituted by D′
1, . . . , D

′
n and C substituted by

the projection C[D′
1, . . . , D

′
n] is in γ solved form.

• P ′ is a subproblem of P if every γ solved form of P ′ is also a γ solved
form of P .

• P ′ is a proper subproblem of P if

– P ′ is a subproblem of P , and

– D′
i ⊂ Di, for some 1 ≤ i ≤ n. 2

The definition of a subproblem can be extended to allow that subproblems
have more variables than the ECSP that they are subproblems of. Because this
leads to infinite sets of subproblems, and we do not need this facility to model
our solving process, we have deliberately restricted the subproblem relation to
ECSPs with equal numbers of variables. The modified constraints C ′ are needed
because constraints are defined as subsets of Cartesian products of domains.

2.2.15. Example. The ECSP

〈100x2 = 1 ; x ∈ hull({− 1
10

, 1
10
}) ; Dx ∈ F ; Ax = ⌊F⌋〉

is hull consistent, but is not in hull solved form because Dx /∈ Ax = ⌊F⌋.
The ECSP

〈x < y, y 6= z ; x = 0, y ∈ {1, 2}, z = 0 ; Dx, Dy, Dz ∈ Z ; Ax,Ay,Az〉
with Ax,Az = ⌊Z⌋ and Ay = Z − {∅} is in arc solved form, because it is
arc consistent, while the domains of all decision variables are elements of the
corresponding sets of final domains. It is also a proper subproblem and arc solved
form of the ECSP of Example 2.2.13. Note that we use x = c as shorthand for
x ∈ {c}. 2

As we mentioned before, for integer and Boolean variables, all practicable
consistency notions have the property that an inconsistent assignment of values
to variables leads to a failed ECSP. A solved form corresponds to a solution of
the original CSP, and the solving process is sound .

For constraints on the reals, using F as a domain type, this is not the case. In
general, proving the presence or absence of a solution in a solved form is difficult.
The constraint solving process is complete , though, and the best that can be
expected is a set of solved forms whose domains are guaranteed to contain all
solutions to the original, real valued problem.

With integer or Boolean variables and in the absence of auxiliary variables,
the notions of a solution and a solved form coincide. If the distinction is not
important, we will sometimes use the term “solution” also for solved forms.
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2.2.6 Constraint Solvers

We can now give a precise definition of constraint solving, as we will use it in this
thesis. Given

• a CSP P = 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉,

• a sequence of domain types T1, . . . , Tn such that for all 1 ≤ i ≤ n, Ti(Di)
exists, and

• a sequence of sets of respective final domains A1, . . . ,An,

let PE denote the ECSP

〈C ; x1 ∈ T1(D1), . . . , xn ∈ Tn(Dn) ; T1, . . . , Tn ; A1, . . . ,An〉.

Now by solving P we mean constructing an ECSP that is a γ solved form of
PE, for some notion of local consistency γ. A constraint solver is any algorithm,
procedure, or application that works towards this goal. In particular

A complete constraint solver is guaranteed to deliver any number of solved
forms that we are interested in (notably one, or all solved forms), or all
solved forms, if the number of existing solved forms is less than the number
that we are interested in.

An incomplete constraint solver transforms an ECSP into a set of ECSPs
that are proper subproblems of the original ECSP. The sets of solved forms
of these subproblems cover the set of solved forms of the original ECSP.
Incomplete constraint solvers for which the set of subproblems always is of
size one will play an important role in our model of constraint solving.

A distinct branch of constraint solving deals with solving constrained opti-

mization problems (COPs). Here the goal is to find an assignment of values to
variables that satisfies all constraints and in addition yields an optimal value for
some objective function . We will consider optimization as constraint solving,
where every next solved form is constrained to be an improvement of the solved
forms that have already been found (see Section 5.9.2). In this sense, by means of
an all-solution search a complete constraint solver is guaranteed to find the solved
form for which the objective function yields the optimum. We will be looking at
optimization only in the context of integer domain types. The standard reference
for optimization in presence of constraints on the reals is Numerica [HMD97].

2.3 Branch-and-Propagate Search

Generally, constraint solving comes down to a systematic exploration of all pos-
sible assignments of values to variables by means of a tree search algorithm. At
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Figure 2.1: An illustration of branch-and-propagate constraint solving

every node of the search tree we try to reduce the remaining search space by
removing values from the variable domains that will not contribute to any solu-
tion. This is called pruning the search tree, and the pruning techniques that are
applied in constraint solving are referred to as constraint propagation . These
techniques enforce some form of local consistency on the subproblems represented
by the nodes of the search tree. In many cases, the time saved by the reduced
search space significantly outweighs the time spent on constraint propagation.

To illustrate constraint solving by branch-and-propagate search, consider the
CSP

〈x < y, y 6= z ; x, y, z ∈ {0, 1, 2}〉

We deal with integer domains, and all variables are decision variables, so no
explicit reference to the ECSP is necessary. Before we do any search, we can
already use the constraint x < y and remove the value 2 from the domain of x:
there is no value in the domain of the other variable involved in the constraint,
y, that would make this constraint true for x = 2. Similarly, we can remove the
value 0 from the domain of y. At that point the CSP is arc consistent, and we
cannot reduce the problem any further by using the individual constraints, so we
proceed by branching (see Figure 2.1). In the left branch we assume x = 0, and
in the right branch we assume x = 1. Suppose now that search continues along
the right branch. Here we can propagate the constraint x < y again, and remove
the value 1 from the domain of y. This effectively fixes the value of y, and now
we can also use the constraint y 6= z to remove the value 2 from the domain of z,
because for z = 2 we would no longer be able to satisfy the constraint y 6= z. After
this we reach arc consistency again, and we proceed by branching. Depending on
whether we are interested in one solution or in all solutions, eventually we would
also have to explore the branch x = 0.
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2.3.1 Constraint Propagation

Domain Reduction Functions

The constraint propagation phase is usually implemented by repeated application
of a number of reduction operators. In principle these operators can modify
the set of constraints as well, and they could even be defined to add or remove
variables, but we will mostly be concerned with reduction operators that modify
the domains of variables. Such operators can be represented as functions on
domain types.

2.3.1. Definition. For an ECSP of the form (2.2) a domain reduction func-

tion (DRF) with input scheme s := i1, . . . , il and output scheme t := j1, . . . , jm

is a function
f : Ti1 × . . . × Til → Tj1 × . . . × Tjm

where s and t are both n-schemes.
Application of f transforms the sequence of domains D1, . . . , Dn into the se-

quence D′
1 . . . , D′

n such that

〈D′
j1

, . . . , D′
jm
〉 = f(Di1 , . . . , Dil)

and D′
i = Di if i does not occur in scheme t.

We denote this transformation by

〈D′
1, . . . , D

′
n〉 = f+(D1, . . . , Dn)

and
f+ : D1 × . . . ×Dn → D1 × . . . ×Dn

is called the domains extension of f . Applying it transforms an ECSP

P := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; D1, . . . ,Dn ; A1, . . . ,An〉,

into
P ′ := 〈C′ ; x1 ∈ D′

1, . . . , xn ∈ D′
n ; D1, . . . ,Dn ; A1, . . . ,An〉,

where C′ is the projection C[D′
1, . . . , D

′
n]. 2

The notion of a domains extension unifies the domains and codomains of all DRFs
on a given ECSP. This allows us to treat the DRFs as univariate functions on
ECSPs. Local consistency enforcing can now be described as the computation of
a common fixed point of the domains extensions of DRFs.

2.3.2. Example. Consider an ECSP with variables x, y, z and domains Dx, Dy,
Dz ∈ Z. The DRF fNE : Ty × Tz → Ty × Tz, having fNE(Dy, Dz) = 〈D′

y, D
′
z〉,

with

D′
y =

{

Dy − Dz if Dz = {z}
Dy otherwise

D′
z =

{

Dz − Dy if Dy = {y}
Dz otherwise
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enforces the constraint y 6= z. Its domains extension is f+
NE : Tx × Ty × Tz →

Tx ×Ty ×Tz, having f+
NE(Dx, Dy, Dz) = 〈D′

x, D
′
y, D

′
z〉 with D′

x = Dx, and D′
y and

D′
z as for fNE.

Alternatively, we could have used two DRFs, each updating one of the domains
involved in the constraint. We demonstrate this for x < y, which is enforced by
fLT1 : Tx × Ty → Tx, and fLT2 : Tx × Ty → Ty, having

fLT1(Dx, Dy) = {x ∈ Dx | ∃y ∈ Dy x < y}

and
fLT2(Dx, Dy) = {y ∈ Dy | ∃x ∈ Dx x < y}

The domains extensions of these two functions have the same signature as f+
NE.

We have f+
LT1(Dx, Dy, Dz) = 〈D′

x, D
′
y, D

′
z〉, with D′

x = fLT1(Dx, Dy), and D′
y =

Dy and D′
z = Dz, and similarly for f+

LT2.
Now the ECSP

〈x ≤ y, y 6= z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ; Dx, Dy, Dz ∈ Z ; Ax,Ay,Az〉

is arc consistent if

• none of the domains Dx, Dy, Dz is empty, and

• 〈Dx, Dy, Dz〉 is a common fixed point of f+
NE, f+

LE1, and f+
LE2. 2

Domain reduction functions, and the reduction operators that they represent, can
be seen as an incomplete constraint solvers, as introduced in Section 2.2.6, for
which the resulting set of subproblems is of size one. In general there are many
options for implementing a constraint with DRFs. For more complex constraints,
these will typically have a different trade-off between computation time and the
amount of pruning, and hence the level of consistency that is achieved.

Also the domain type is of great influence on the level of consistency. For
example if we use domain type I, values can only be removed if they happen
to be equal to the bounds of the domain, and in general we cannot enforce arc
consistency for x 6= y.

Iteration Algorithm

Computing the common fixed point of (the domains extensions of) a set of domain
reduction functions can be realized by repeated application of these functions,
until none of them is able to reduce the domains any further. AC-1, the basic
algorithm for computing arc consistency does just that: it keeps applying all
domain reduction functions in sequence until a full sequence passes in which no
domains are updated.

In order to reduce the number of DRFs that are applied, more advanced al-
gorithms use the schemes of the DRFs, and information on updated variable do-
mains to maintain a bookkeeping of functions that still need to be applied before
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we can be sure to have computed a common fixed point. Many such algorithms
can be described as instantiations of generic iteration algorithms [Apt99, Gen02].
Different instantiations exploit various properties of domain reduction functions.

For expressing the properties that are of interest to us, consider the partially
ordered set (D,⊑), where D is a set of ECSPs on the same variables, and P ⊑ P ′

denotes that P ′ is a subproblem of P . We now have the following properties.

• If all DRFs correspond to inflationary functions on (D,⊑), and D does not
contain infinite increasing sequences, then the generic iteration algorithm
is guaranteed to terminate [Gen02].

• If all DRFs correspond to monotonic functions on (D,⊑), then any termi-
nating execution of the generic iteration algorithm computes the same fixed
point of these functions: the least common fixed point [Apt99].

Recall that a function f on (D,⊑) is called inflationary if P ⊑ f(P ) for all
P ∈ D, and that f is called monotonic if P ⊑ Q implies f(P ) ⊑ f(Q) for all
P,Q ∈ D. An infinite increasing sequence P1, P2, . . . of elements of D has the
property that for all i ≥ 1, Pi ⊑ Pi+1 and Pi 6= Pi+1. In our case, absense of
such sequences (the ascending chain condition of [Gen02]) follows from the
property that set inclusion is a well-founded relation over any domain type.

In this thesis we will mostly be working with Algorithm 2.1, having

update(F,D,D′) := { g ∈ F | there exists an element i in the input
scheme of g for which D[i] 6= D′[i] }

The resulting algorithm is equal to the CDa algorithm [Mon00a], except for the
use of the failed flag (a common extension, see e.g., [AB03]). It is also a restriction
of the generic iteration algorithm for compound domains (CD, [Apt99]). The
restriction is the use of the intersection for updating the domains: D′[t] := D[t]∩
f(D[s]). Here we use D[t] ∩ f(D[s]) as a shorthand for the sequence

D[t1] ∩ f(D[s])[1], . . . , D[tn] ∩ f(D[s])[n],

where n is the length of the output scheme t. This restriction ensures that
application of the DRF is inflationary, and that the algorithm terminates. If the
DRFs are monotonic, which is often the case, the order of their application has
no influence on the computed result, and we have complete freedom to implement
their scheduling by means of an appropriate select function.

The set G of Algorithm 2.1 contains those DRFs for which we cannot yet be
sure to have computed a fixed point. In principle, every function needs to be
applied at least once, so initially, G equals the set of all DRFs F . However, if
we start from a CSP that is already a common fixed point of the functions in
F , except for some minor changes due to branching, efficiency of the propagation
phase can be improved by initializing G with only those functions that are affected
by the branching. This is exploited in our implementation, but here we define
only the basic solving algorithms.
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parameters: function choose,
function update.

input: domains D1, . . . , Dn,
a set F of DRFs,

output: domains D1, . . . , Dn.

D := D1, . . . , Dn

D′ := D
G := F
failed := false

while G 6= ∅ and ¬failed
choose f ∈ G. Let s and t be the input scheme resp. output scheme of f
G := G − {f}
D′[t] := D[t] ∩ f(D[s])
G := G ∪ update(F,D,D′)
D[t] := D′[t]
if there exists an element i in t for which D[i] = ∅
then

failed := true

end

end

Algorithm 2.1: Constraint propagation
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2.3.2 Search

We use an additional operator to model the branching step of the branch-and-
propagate search. Such an operator can be seen as incomplete constraint solver
for which the set of resulting subproblems always contains at least two elements.
As we pointed out before, we restrict ourselves to branching on the domains. In
that case, the branching operator can be expressed as a function on domain types
as well.

2.3.3. Definition. For an ECSP of the form (2.2) a domain branching func-

tion is a partial function

f : T1 × . . . × Tn → P(T1 × . . . × Tn)

such that if 〈D1, . . . , Dn〉 ∈ T1 × . . . × Tn has the property that

• none of the domains Di is empty, and

• at least one of the domains is not a final domain,

then

{D′
1 × . . . × D′

n | 〈D′
1, . . . , D

′
n〉 ∈ f(D1, . . . , Dn)}

is both a proper covering and a minimal covering of D1 × . . . × Dn. 2

Recall that a covering of a set X is a set of subsets of X, whose union equals
X. A proper covering of X does not contain X, and a covering is a minimal

covering if the omission of any element would destroy the covering property.

2.3.4. Example. The function f : Zn → P(Zn) having

f(D1, . . . , Dn) = {〈D1, . . . , Dj−1, {x}, Dj+1, . . . , Dn〉 | x ∈ Dj}

with j = min({i | 1 ≤ i ≤ n, |Di| > 1}) is a domain branching function for an
ECSP of the form (2.2) with Ti = Z and Ai = ⌊Z⌋, for 1 ≤ i ≤ n. 2

A straightforward branching strategy, which is also used in the previous ex-
ample, is to split the domain of a single variable into a number of subdomains,
and to keep the other domains unchanged. In this case, the two primary aspects
of a domain branching function are:

• which variable to select, and

• how to construct the subdomains for that variable.
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chronological the variables are in some explicit order, and the first variable
xi in this order whose domain Di is not yet in Ai is selected.

fail-first selects a variable with the largest domain size. Used primarily
with domain type Z.

fail-last the opposite of the previous strategy.
round robin selects the variable xi whose domain Di is not in Ai that has

least recently been selected

Table 2.1: Variable selection strategies

enumeration used primarily with domain types Z and B: a subdomain
of size 1 is created for each of the values in the original
domain.

L/R-enumeration used with domain types Z and I: the domain is split into
two subdomains. One is a singleton set containing a spe-
cific value, and the other is the original domain minus the
selected element. Obvious candidates for the selection are
the leftmost and rightmost elements.

bisection used primarily with domain types I and F . The interval
domain is split in two intervals of equal width.

Table 2.2: Value selection strategies; see also Figure 4.2 on page 70

We will call these aspects the variable selection strategy , and the value

selection strategy , respectively. Tables 2.1 and 2.2 list the general-purpose
variable and value selection strategies that are used in this thesis. The domain
branching function of Example 2.3.4 uses a chronological variable selection strat-
egy, and enumeration as a value selection strategy. In addition to these general-
purpose strategies, specialized variable selection strategies are used in Section 4.4
and Chapter 6, but we implemented these strategies by manipulating domain
sizes, and use one of the standard strategies for the actual selection.

The branch-and-propagate search process can now be specified as in Algo-
rithm 2.2. The set F of this algorithm is called the search frontier [Per99].
It contains the sequences of domains for all subproblems that still need to be
explored. These subproblems are nodes of the search tree. Initially the search
frontier contains just the original problem.

propagate(Dw, R) applies the domain reduction functions in R to the domains
in Dw, the node of the search tree (world) that was selected for further exploration.
For propagate we can use an instance of Algorithm 2.1.

failed and final are predicates on sequences of domains:

failed(〈D1, . . . , Dn〉) is false iff D1 6= ∅, . . . , Dn 6= ∅,

final(〈D1, . . . , Dn〉) is true iff D1 ∈ A1, . . . , Dn ∈ An.
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parameters: function select ,
function propagate.

input: an ECSP P := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; T1, . . . , Tn ; A1, . . . ,An〉,
a domain branching function f ,
a set R of domain reduction functions,

output: a set S of sequences of domains such that for all 〈D′
1, . . . , D

′
n〉 ∈ S,

〈C[D′
1, . . . , D

′
n] ; x1 ∈ D′

1, . . . , xn ∈ D′
n ; T1, . . . , Tn ; A1, . . . ,An〉

is a γ solved form of P , where γ is the notion of consistency enforced
for the constraints in C by propagate and R.

F := {〈D1, . . . , Dn〉}
S := ∅
while F 6= ∅ do

select Dw ∈ F
F := F − {Dw}
D′

w := propagate(Dw, R)
if ¬failed(D′

w)
then

if final(D′
w)

then

S := S ∪ {D′
w}

else

F := F ∪ f(D′
w)

end

end

end

Algorithm 2.2: Branch-and-propagate search
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These predicates characterize a node either as a solution , failure , or internal

node of the search tree. If after constraint propagation all domains are in their
respective set of final domains, the final predicate holds, and the node is consid-
ered to be a solution node. Solution nodes constitute solved forms. If constraint
propagation voids the domain of one or more variables, then the failed predicate
holds, which characterizes the node as a failure. Note that failed and final are
mutually exclusive. Nodes that are neither failures nor final (solutions) are called
internal nodes.

Internal nodes are expanded by applying the branching function f . All nodes
that are thus generated are added to the search frontier F , and the algorithm
terminates when F is empty, so it performs an all-solution search. The algorithm
can easily be modified for a first-solution search.

A very important aspect is still left unspecified. Selecting Dw from F de-
termines in which subproblem of the search frontier the search algorithm will
continue the exploration. This is called the traversal strategy . In case of an
all-solution search this may not seem important, because every node needs to
be visited eventually, but even then it is of great influence on the size of the
set F , and hence on the space complexity of the search algorithm. Two obvious
alternatives are the following.

• If the set F is managed as a stack , which implies that we always select one
of the most recent additions, the algorithm essentially performs a depth-

first search. In this case, there is a linear relation between the number
of variables and the maximum number of nodes in the search frontier. If
at every node we store the complete domains of all variables, then the
space complexity of depth-first search is O(n2d), where n is the number of
variables, and d is a bound on the size of the domains.

• Managing the set F as a queue , selecting always one of the oldest additions,
results in a breadth-first search. In this case, the maximum size of the
search frontier is exponential in the number of variables, leading to a space
complexity of O((nd)n).

Apart from the size of the search frontier, the traversal strategy is important
if we are interested in only a limited number of solutions. In that case, using
a good heuristic may bring the algorithm to these solutions faster, or at least
improve the probability that this will happen. The same applies to optimization,
where we do need to explore the full search space, but where some heuristics
may discover good suboptimal solutions earlier than others, which will lead to a
stronger pruning of the search tree.

In this thesis, depth-first search is the default traversal strategy, but alterna-
tives are discussed in Sections 4.1.2 and 4.3.
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2.4 Composing Constraint Solvers

In the introduction we indicated that there are various approaches to constraint
solving. For some classes of CSPs there exist efficient methods that exploit prop-
erties of these problems, such as all constraints being linear, and if completeness
is not important, local search may give a reasonably good solution quickly. In
this thesis we deal with a specific approach to constraint solving, namely branch-
and-propagate search, but even if we limit ourselves to this particular approach
we have many options for various aspects such as how to build the search tree,
how to explore it, what level of consistency to enforce, etc.

To a large extent, the deployment of constraint solving consist of determining
the right combination of approaches, algorithms, and heuristics. For this reason,
constraint systems must allow us to explore alternative combinations of solving
techniques. Without assuming any level of granularity, we will refer to realizing
such combinations as solver composition . Many techniques have successfully
been used in specific domains to build practical constraint programming tools,
but in most cases the facilities for solver composition are limited to a small set
of built-in alternatives, for only some aspects of constraint solving, and a major
challenge in this field is how to achieve a combination of various existing methods
and techniques in a single framework. In this section we will look at composite
solvers that are described in the literature.

2.4.1 Combining Propagation Operators

In many cases, the best known approach to solving a certain class of CSPs involves
a combination of several constraint propagation techniques that each have a set
of reduction operators. In this section we will look at a number of examples of
such combinations.

Subsuming Forms of Consistency

Reduction operators for stronger forms of local consistency are usually more
computation-intensive than reduction operators for weaker forms of consistency.
For certain strong forms of consistency it is more efficient first to compute a
weaker form of consistency. The stronger form subsumes the weaker form, but
the values that are removed as a part of computing the weaker form of consistency
need not be considered, at a much higher cost, by the reduction operators for the
stronger form. Such schemes can be explained as a combination of reduction
operators for both forms of consistency.

An example is singleton arc consistency (SAC, see also Section 7.6), intro-
duced by Debruyne and Bessière. This form of consistency entails that for every
value in the domain of every variable, the CSP can still be made arc consistent if
that value is assigned to the variable. The algorithm for enforcing SAC presented
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in [DB97] effectively tries all variable - value pairs, and enforces arc consistency
for each such assignment. The values for which a failure is deduced are removed
from the domain of the corresponding variables. Obviously, SAC subsumes arc
consistency, but before entering the loop that tries all possible assignments, the
SAC enforcing algorithm first enforces arc consistency on its argument CSP to
reduce the number of arc consistency computations inside the loop.

Another example is the BC4 algorithm for enforcing box consistency . For
constraints on the reals, using F as a domain type, the obvious approximation of
arc consistency is the notion of hull consistency, defined in Section 2.2.4. However,
as we shall see in Section 4.5, for arbitrary constraints it is difficult to compute
hull consistency. The usual way around this is to decompose the user constraints
into atomic constraints, for which enforcing hull consistency is easy. The dis-
advantage of this approach is that hull consistency for the decomposed system
is a weaker notion of consistency than hull consistency for the original system
[CDR99]. The problem lies in the imprecision that is caused by evaluation of
expressions with multiple occurrences of variables, using interval arithmetic and
the natural interval extension. Therefore many solvers use an intermediate form
of consistency, called box consistency [BMVH94] (see also Section 7.3.2). It can
deal with multiple occurrences of a single variable. The procedure for enforcing
box consistency effectively searches in the domain of this variable for bounds that
do not fail the constraint, if all other domains are kept constant. Because of this
search, the procedure is potentially costly, and the BC4 algorithm [BGGP99]
applies the box consistency procedure only for projections of constraints with
multiple occurrences of variables, and after hull consistency is computed for the
decomposed constraints. The BC4 algorithm can be explained as a combination
of the reduction operators for hull consistency and box consistency.

Such schemes can be implemented by computing a common fixed point of
DRFs for both forms of consistency. In Algorithm 2.1, the selection of DRFs
should then exhaustively apply the DRFs for the weaker form, before applying
any DRF for the stronger form. For this purpose, the Choco system [Lab00] uses
a layered propagation architecture, where operators are divided into eight layers
of increasing computational cost. In [SS04] a dynamic scheme is described to
recognize that different domain modifications may entail different computational
costs for the same reduction operator.

Hybrid Forms of Consistency

For single occurrences of variables, hull and box consistency are the same, and
the BC4 algorithm simply applies the most efficient set of reduction operators.
In other cases, it may make sense to combine sets of reduction operators that
enforce different forms of consistency to achieve some hybrid form of consistency.

Good examples of such combinations are found in constraint-based approaches
to solving scheduling problems. Baptiste, Le Pape and Nuijten provide an overview
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of this area [BLPN01]. A basic solver for the job-shop scheduling problem com-
bines the forms of consistency achieved by enforcing the disjunctive constraint,
and by the edge finding procedure (see also Chapter 6). Job-shop scheduling
allocates activities to machines, and the disjunctive constraint states that if two
activities require the same resource, they cannot overlap in time. Edge finding
aims at identifying activities that must execute first, or last, in a given set of
activities. Enforcing the disjunctive constraint and applying edge finding make
different, and complementary deductions. The basic solver can be described and
implemented as a combination of the reduction operators for the disjunctive con-
straint and the edge finding procedure.

2.4.2 Hybrid Solvers

For many problems, a natural CSP formulation involves variables of different
types. Mixed integer / real problems, combinations of Boolean and numerical
variables, and combinations that involve more complex types like sets and multi-
sets have been reported in literature. Solvers that support multiple domain types
are sometimes called hybrid solvers, emphasizing that for different domain types
different, specialized constraint propagation methods are used.

For example, RealPaver [Gra04b] supports both reals and integers, but it is
essentially a solver on the reals. Integers are implemented as real variables that
are constrained to have integer values. Therefore we do not consider RealPaver
to be a hybrid solver. On the other hand, ILOG solver [Ilo01] will be considered
to be a hybrid solver, because it supports both reals and integers, and uses a
different representation for both of them.

The model of constraint solving introduced in this chapter is well suited for
describing hybrid solvers on the level of constraint propagation: every variable has
its own domain type, and they can be linked through DRFs of a mixed signature.
For example, the DRF f : F ×I → F ×I, having f(〈Dr, Di〉) = 〈D′

r, D
′
i〉, where

D′
r := hull(Dr ∩ Di) and D′

i := [⌈min(Di ∩ Dr)⌉ .. ⌊max(Di ∩ Dr)⌋], enforces the
equality constraint on two variables of domain types F and I.

Audemard et al. [ABC+02] describe a solver for propositional formulas where
in addition to propositional variables and their negations, literals can be (linear)
mathematical constraints. This solver can be characterized as a hybrid solver,
which combines Boolean and numerical domain types. As such, it fits our model
of constraint solving: in principle, their solver uses the DPLL algorithm [DLL62]
for generating assignments of truth values to the Boolean variables, for which the
formula is satisfiable from a propositional point of view. Such assignments have
an induced numerical problem, and a solution consists of an assignment of truth
values for which the induced numerical problem is solvable. As we shall see in
Section 4.4, the DPLL algorithm can largely be expressed in the framework of
Section 2.3.

State-of-the-art solvers for checking satisfiability of propositional formulas
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(called SAT solvers) depend on non-chronological backtracking search, in par-
ticular on backjumping and learning (no-good recording) [LMS03]. In contrast,
our framework relies heavily on constraint propagation. These are opposite ap-
proaches: constraint propagation aims at removing values in an attempt to avoid
failures, while non-chronological backtracking happily works towards a failure,
and then deduces the reason for the failure. This information is used to prevent
the same failure from happening again. In Section 4.4 we will discuss the possi-
bilities to incorporate backjumping and no-good recording into our framework.

2.4.3 Search

The SALSA language [LC02] supports composition of strategies for tree search,
local search, and hybrid forms of search that combine tree search and local search.
For tree search, SALSA supports the composition of branching strategies. For
finite domains, for example, we may want apply a bisection branching until all
domains are of a certain size, and proceed by an enumeration branching from
that point on. We will see an example of the composition of branching strategies
in SALSA in Section 6.4.

Possibilities for composition of traversal strategies also exist. We already men-
tioned that depth-first search has linear space complexity, while that of breadth-
first search is exponential in the number of variables. Yet it may sometimes be
beneficial to perform a limited amount of breadth-first search. A possible strat-
egy would be to search breadth-first until a certain threshold amount of memory
has been used. Then we switch back to depth-first search to clean up the search
frontier, and only when enough memory becomes available again we return to
breath-first search. This can be seen as a composite traversal strategy, built from
two basic strategies.

Another possibility could be to have multiple instances of the same search
strategy running inside a single solver. This would simulate a parallel search, and
can be beneficial because of the speedup anomaly , discussed in Section 8.5.
However, the same effect could be achieved by actually running a parallel solver,
and rely on the operating system for time sharing between the parallel processes
or threads. Moreover, the interleaved depth-first (IDS) strategy [Mes97] was
designed exactly to achieve this effect. But given that IDS is a useful thing to
have, it is desirable to be able to compose an IDS-like strategy, instead of having
to re-program a solver for it.

2.4.4 Solver Cooperation

Solver cooperation aims at combining individual solvers, in order to solve prob-
lems more efficiently, or to be able to solve problems that none of the combined
solvers could handle on its own. While a solver that combines a number of specific
algorithms could be classified as solver cooperation, and even individual reduction
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operators can be seen as atomic constraint solvers, a commonly used justification
for research in the area of solver cooperation is that the development of new con-
straint solvers is a time-consuming and error-prone process, and that composing
cooperations from pre-existing solvers will reduce the development costs of new
constraint solvers. For this reason we would like to reserve the term for solvers
that are composed of autonomous component solvers.

Let us look again at the solver of Audemard et al. as an example. Intuitively,
we would like to think of this solver as a cooperation between a SAT solver and
a numerical solver. Arguably, this would be a plausible explanation if indeed the
mathematical solver is invoked only after a full model for the propositional part of
the formula has been constructed. However, in [ABC+02] it is demonstrated that
the performance improves significantly if satisfiability of the induced numerical
problem is verified each time the truth value of a mathematical constraint is fixed,
as a part of the SAT solving. For this reason, it is better to say that the numerical
solver is embedded in the SAT solver, comparable to the way that constraint
propagation is embedded in the search procedure of Algorithm 2.2.

The embedded solver is used largely as a black box, but this is not the case
for the solver in which it is embedded. In the ideal case, we would like to be able
to compose a solver like that of Audemard et al. from software components, but
in general, existing SAT solvers will not have facilities for performing checks like
verifying the satisfiability of the growing induced numerical problem.

This illustrates a persistent problem with solver cooperation. Autonomous
solvers are closed applications that run to completion, and there are few, if any,
facilities for exchanging information with the environment, or for controlling the
solving process once it has started. This justifies research towards a uniform in-
terface for constraint solvers, as reported for example in [HSG01] and [AM98].
A further problem with cooperation of arbitrary solvers through a unified in-
terface is the handling of disjunctions. These have to be handled on the level
of the framework in which the solvers cooperate, which then has to implement
a search algorithm. If more than one of the cooperating solvers is allowed to
generate disjunctions simultaneously, the search space grows faster than with a
centralized branching scheme. This becomes even more problematic if subsets of
the constraints are sent to different solvers. Because these subsets likely form
underconstrained problems, the resulting disjunctions will be large. We expect
that this limits the use of such general frameworks to a small number of very
specific cases.

Another, rather straightforward mode of solver cooperation would be to com-
bine a local search solver and a complete solver for solving optimization problems.
The local search solver will not be able to prove optimality, but each time it finds
a better solution, the complete solver can take the updated bound into account to
prune parts of the search space that will not improve on this bound. This simple
branch-and-bound scheme (see Section 5.9.2) already requires that the complete
solver can regularly check on new bounds. A black-box solver may not be able
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to do so, and the best option then is to restart it, with the additional constraint
that it should improve the best solution found by local search.

Having said this, examples of successful cooperations of largely autonomous
solvers do exist. In the area of numeric problems, a survey of cooperations of
symbolic solvers and interval solvers is presented in [GMB01]. Examples of such
cooperation schemes include the following.

• Symbolic solvers may be able to derive redundant constraints for a given
problem, that strengthen the domain reduction when they are combined
with the original constraints. The symbolic solver is applied as a prepro-
cessing step to the branch-and-propagate solving.

• A dedicated solver for linear constraints checks consistency of the linear
part of the problem each time a variable domain is reduced.

Currently there is also much interest in the combination of constraint solv-
ing and operations research methods. Because OR methods can deal only with
specific classes of CSPs, such as linear programs, the models that can be solved
by these methods are typically approximations, or relaxations of combinatorial
problems. These relaxations can be solved very efficiently, and the results can
be used to improve the efficiency of branch-and-propagate solving. For exam-
ple, solving a linear relaxation of a problem first may give a good bound for the
outcome of an objective function quickly. As another example, in [MvH02b], a
linear relaxation of a combinatorial optimization problem is used to partition the
domains of variables into two sets, of promising (good) and less promising (bad)
values. With n variables, this partitioning gives rise to 2n subproblems, that are
solved in sequence, starting with the subproblem that is composed of only good
subdomains, and gradually increasing the number of bad domains in a limited
discrepancy search fashion (see Section 4.1.2).

2.4.5 Distributed Constraint Solving

Instead of composing a constraint solver from its constituent parts, it is sometimes
necessary or desirable to distribute the solving process itself. In this case, the
solver can be seen as to be composed from a number of cooperating processes.
Reasons for doing so may be that the CSP that we want to solve is itself dis-
tributed, while it is impossible or undesirable to gather all constraints, and apply
regular, centralized solving methods. Such problems are commonly referred to as
distributed constraint satisfaction problems (DisCSPs). Another way in
which distributed solving can be beneficial is by exploiting parallelism.

Distributed Constraint Propagation

Distributed versions of Algorithm 2.1 exists [MR99, Mon00a], which can be used
to parallelize, or otherwise distribute constraint propagation. Because of the
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fine-grained communication involved, we expect that in general it will be diffi-
cult to obtain parallel speedup through distributed constraint propagation, but
the approach can be justified in the DisCSP case. We return to the subject of
distributed constraint propagation in Chapter 9.

Distributed Search

Yokoo [Yok01] has defined several algorithms for distributed search, specifically
for the DisCSP case. The underlying assumption is that the DisCSP variables are
distributed among a set of agents , who propose values for their variables to each
other. It is highly desirable that such algorithms are asynchronous, i.e., they
rely as little on synchronization and external coordination as possible, in order
that the agents remain autonomous in the execution of the search algorithms.

Parallel Search

Parallelism in constraint solving is best exploited by parallel search, i.e., different
solvers, running on different processors explore different parts of the search tree
in order to reduce the turn-around time. A common issue with parallel processing
is to achieve a good load balance, i.e., preventing that some processors become
idle, while others do all the work. Because CSP search trees can be irregular and
unbalanced, a dynamic load balancing scheme is required. A special issue is how
to implement parallel optimization, where new bounds for the objective function
have to be communicated between the cooperating solvers. Parallel constraint
solving is the subject of Chapter 8.

2.5 Summary

In this chapter we introduced the subject of constraint solving. In addition to
the regular notion of a constraint satisfaction problem, we defined domain types
and extended constraint satisfaction problems. Domain types provide a uniform
model for solving constraints on integer, real, and Boolean variables, and allow
us to express several properties of the implementation of the domains of such
variables. ECSPs augment a CSP with domain type information. They also
provide the means to distinguish decision variables from auxiliary variables, and
they specify the required precision for solving constraints on the reals.

Returning to the central theme of this thesis, as described in Section 1.2, we
have now created a framework where a branch-and-propagate constraint solver is
composed of the following elements.

• Domain types from which the domains of logical variables are drawn.

• Domain reduction functions that enforce constraints.
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• Functions choose and update that instantiate a generic iteration algorithm
to specify a scheduler for the domain reduction functions.

• A domain branching function that specifies how to construct a search tree.
This typically involves a variable selection strategy and a value selection
strategy.

• A selection function that specifies a traversal strategy. Together, these three
strategies form a search strategy.

In addition, to give an idea of what we want to achieve, we gave an informal
description in the context of this framework of several composite solvers that are
used in practice.

In the next chapter we will describe our implementation of the formal frame-
work defined here. In the chapters thereafter, in addition to addressing some
more specific research questions, we will evaluate the framework and its imple-
mentation by composing constraint solvers for various problems. In Chapter 10
we will return to our description of existing composite solvers, and discuss what
has been achieved, and what questions have been left unanswered.



Chapter 3

OpenSolver: a Software Component

This chapter describes the OpenSolver software, which is used in the remain-
der of the thesis as an experimental platform for composing constraint solvers.
OpenSolver can best be described as a coordination-enabled abstract branch-and-
propagate tree search engine. It is based on the solving algorithms of Section 2.3:
branching, and pruning the search tree are implemented as the application of
reduction operators that modify the domains of variables. It is abstract in the
sense that its functionality is determined by software plug-ins that configure the
basic solving algorithms.

These plug-ins come in a number of categories, corresponding to various as-
pects of branch-and-propagate tree search. A separate category of plug-ins covers
the coordination layer of the algorithm (Figure 3.1). This category is special
in the sense that it does not correspond to one specific aspect of Algorithm 2.1
or 2.2. Instead, plug-ins in this category control the execution of the solving algo-
rithms, and facilitate the exchange of data between a solver and its environment.

No component technology is used to implement the branch-and-propagate
constraint solving, but a major design goal was that OpenSolver itself can be used
as a software component in several solver cooperation schemes. This is realized
through the coordination layer mechanism. In Chapters 7, 8, and 9 we will be
looking at examples of larger systems, were OpenSolver is used as a software
component.

3.1 Introduction

OpenSolver evolved from the DICE (DIstributed Constraint Environment) sys-
tem, which we discuss in Chapter 9. DICE itself started as an implementation
of the coordination-based distributed constraint solver proposed by Monfroy and
Arbab [Mon00a, AM00]. The original DICE system is described in [Zoe03b]. It
is a framework for distributed branch-and-propagate tree search, whose function-
ality is determined by plug-ins for domain types, domain reduction functions,

35
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OpenSolver

Constraint solving plug−ins

Coordination layer

Figure 3.1: Plug-ins determine the actual functionality and appearance of an
OpenSolver instance

and branching and traversal strategies. Basically, in DICE every plug-in resides
in its own process, and in [Zoe03a] we proposed an optimization that allows an
arbitrary distribution of the plug-ins over a set of cooperating solvers. On the
one hand, OpenSolver implements the solvers of the proposed optimization.

On the other hand, many of our experiments do not require distributed solv-
ing, and we also wanted to implement an efficient sequential constraint solver.
Moreover, we wanted to be able to use the same plug-ins in DICE and in this se-
quential solver. Therefore we decided to develop a single application, and tailor it
towards reuse as a software component in several environments. To a large extent
this is realized by the coordination layer plug-in, which forms the interface
between OpenSolver and its environment. One plug-in configures OpenSolver as
a component solver of DICE, and another plug-in configures it as a stand-alone
solver.

In addition to these two roles, the coordination layer made it very easy to
implement the time-out mechanism that forms the basis of the parallel con-

straint solver described in Chapter 8. We also use it to implement nested

search . This technique entails that the functionality of a domain reduction
function involves a limited branch-and-propagate tree search. We use an almost
autonomous OpenSolver instance for such a DRF, and this instance interfaces
with another OpenSolver through a special coordination layer plug-in. Nested
search is the topic of Chapter 7.

The remainder of this chapter is organized as follows. In Section 3.2 we de-
scribe the different categories of plug-ins related to constraint solving. Section 3.3
describes the odd one out: the category of coordination layer plug-ins. In Sec-
tion 3.4 we clarify some implementation aspects, including writing new plug-ins
for OpenSolver.

3.2 Constraint Solving Plug-ins

The following categories of plug-ins implement constraint solving:

• domain types that implement the domains of variables,
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〈Configuration〉 → 〈Statement〉; {〈Statement〉;}
〈Statement〉 → 〈Keyword3 〉 〈Identifier〉 IS 〈Identifier〉 〈Specifier〉

| 〈Keyword2 〉 〈Identifier〉 〈Specifier〉
〈Keyword3 〉 → VARIABLE | AUX
〈Keyword2 〉 → DRF | SCHEDULER | ANNOTATION | TDINFO

| FRONTIER | INTERNAL | EXPLORE | EXPAND
〈Specifier〉 → “{”〈String〉“}”

Figure 3.2: Syntax of the OpenSolver configuration language

• reduction operators that modify these domains,

• schedulers of reduction operators,

• containers of nodes of the search tree,

• selectors that make a selection among the nodes stored in containers,

• annotations that decorate the nodes of the search tree with extra infor-
mation, to be used by plug-ins in some of the other categories,

• evaluators of nodes of the search tree; these determine whether a node of
the search tree is a solution, failure, or internal node.

An OpenSolver instance is configured through a script in a simple language that
has a statement for each of these categories. Program 3.1 is an example of such
a script, related to one the experiments in Chapter 5.

Figure 3.2 defines the syntax of OpenSolver configuration scripts, where {. . .}
should be read as “zero or more instances of the enclosed,” and where “{” and
“}” denote the curly bracket symbols. Each statement consists of a keyword for
one of the plug-in categories, plus an identifier-specifier pair . The identifier
designates a particular plug-in in the category of the statement, and the specifier
string is used to initialize an instance of this plug-in. For the purpose of this
mechanism, every plug-in, in any category should be able to initialize itself from
a specifier string. These specifier strings can be arbitrarily complex. For example,
in Chapter 7 we use a plug-in that is an almost autonomous OpenSolver instance.
Comparable to procedure definitions in imperative programming languages, the
specifier string for this plug-in contains a full solver configuration. At the other
extreme, when given the empty string as a specifier, the plug-in for domain type
F , the set of all floating-point intervals, yields a representation for the domain
[−∞,∞] = IR.

The VARIABLE and DRF statements introduce variables and their domains, and
reduction operators that operate on them. In addition to the identifier-specifier
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VARIABLE x IS IntegerInterval {1..100000};

VARIABLE y IS IntegerInterval {1..100000};

VARIABLE z IS IntegerInterval {1..100000};

VARIABLE obj IS IntegerInterval {};

AUX aux_x3 IS IntegerInterval {};

AUX aux_y2 IS IntegerInterval {};

AUX aux_z3 IS IntegerInterval {};

AUX aux_x1y1 IS IntegerInterval {};

DRF IIARule { aux_x3^1 * (1) = x^3 };

DRF IIARule { aux_y2^1 * (1) = y^2 };

DRF IIARule { aux_z3^1 * (1) = z^3 };

DRF IIARule { aux_x1y1^1 * (1) = y * x };

DRF IIARule { x^3 * (1) = aux_x3 };

DRF IIARule { y^2 * (1) = aux_y2 };

DRF IIARule { z^3 * (1) = aux_z3 };

DRF IIARule { y^1 * (x) = aux_x1y1 };

DRF IIARule { x^1 * (y) = aux_x1y1 };

DRF IIARule { aux_x3^1 * (1) = -1*aux_y2 + 1*aux_z3 };

DRF IIARule { aux_y2^1 * (1) = -1*aux_x3 + 1*aux_z3 };

DRF IIARule { aux_z3^1 * (-1) = -1*aux_x3 + -1*aux_y2 };

DRF IIARule { obj^1 * (1) = 2*aux_x1y1 + -1*z };

DRF IIARule { aux_x1y1^1 * (-2) = -1*obj + -1*z };

DRF IIARule { z^1 * (1) = -1*obj + 2*aux_x1y1 };

DRF Optimize { +obj };

DRF RoundRobin { 0, x, y, z, obj };

SCHEDULER ChangeScheduler { schedule =

{ 1,2,9,4,0,2,10,5,0,1,11,6,3,12,13,7,8,3,14,15 }

};

Program 3.1: Example of an OpenSolver configuration script
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pairs of the other statements, the VARIABLE statement uses an extra identifier that
is interpreted as the variable’s name. The AUX keyword is a variant of VARIABLE
for introducing auxiliary variables. These two statements are the only ones that
add plug-in instances.

The other statements replace plug-in instances, for which a default is readily
available. The SCHEDULER keyword is used for replacing the scheduler of reduction
operators. FRONTIER and INTERNAL replace the containers for storing sets of nodes
of the search tree, and EXPLORE and EXPAND replace the selectors operating on
them. The ANNOTATION statement specifies what information, by means of an
annotation plug-in, is attached to nodes of the search tree. The default is to
use no annotations. The statement for introducing a node evaluator is TDINFO,
for termination detection information . This reflects OpenSolver’s origin
as a distributed system: establishing that distributed constraint propagation has
finished is then a matter of distributed termination detection. Determining the
nature of a node of the search tree is naturally combined with detecting the
termination of constraint propagation.

In the remainder of this section, we discuss the different categories of con-
straint solving plug-ins.

3.2.1 Variable Domain Types

This category of plug-ins corresponds directly to the variable domain types dis-
cussed in Section 2.2.4. Plug-ins exist for the four standard domain types B,
Z, I, and F that were introduced there, and as is the case for all categories of
plug-ins, new domain type plug-ins can be added to an OpenSolver installation.
This is described in Section 3.4. In Chapter 6 we discuss special-purpose domain
types that are introduced for solving one specific kind of combinatorial problems.

Just like in object-oriented programming an object is an instance of a class,
in OpenSolver a variable domain is an instance of a variable domain type. As we
shall see in Section 3.4, the plug-ins, and hence the individual domain types are
actually classes, with a common base class for each category. For now it suffices
to realize that being objects, the domains of variables have a state, on which
a number of operations are defined, and that these operations are implemented
by means of member functions (we use the C++ terminology, in other object-
oriented languages member functions are called methods).

In the OpenSolver input language, variables are introduced with the following
statement.

VARIABLE 〈Identifier〉 IS 〈Identifier〉 〈Specifier〉
The first identifier gives the variable a name , and the second identifier designates
the plug-in that will be used to implement the domains that are associated with
the variable, during the solving process. The specifier is a character string that
represents the initial domain. It will be used to create a domain for the variable



40 Chapter 3. OpenSolver: a Software Component

in the root of the search tree.
Specifier strings are interpreted by a constructor for the class that implements

a plug-in. For a set T and a domain type T ⊆ P(T ), such a constructor imple-
ments a partial function f : P(T ) → T having f(D) = T (D). For example, the
plug-in RealInterval implements the standard type F ⊂ P(IR), the set of all
floating-point intervals. For the specifier string we can use any interval where
the bounds have a finite decimal representation. This is the case for 1

10
, but no

floating-point representation exists for 1
10

, so

VARIABLE x1 IS RealInterval {[-0.1, 0.1]};

will create the smallest floating-point interval that properly contains [− 1
10

, 1
10

].

For variable domain types, the operations on the state include the following.

• An operation to clone the domain. OpenSolver is a copying-based con-
straint solver (see Section 4.2), and the clone operation implements the
copying on the level of the variable domains.

• An operation to split the domain into a number of subdomains. The mem-
ber function for this operation has an integer argument that can be used to
specify a particular method for generating these subdomains, for example
enumeration, or bisection (see Figure 4.2 on page 70). The interpretation of
this argument, and the value selection strategies that it encodes are specific
to the variable domain types. Applying the split operation on the domain
of a single variable is the primary method of branching, but more complex
branching strategies, typically involving more than a single variable, are
also supported.

• A member function that gives an indication of the size of the domain.
This is a non-negative integer, where 0 means that the domain is empty,
i.e., a failure has been deduced. The value 1 indicates that the domain is a
singleton set, and values greater than 1 are an indication that the domain
can be split into a number of subdomains. In principle, the domain sizes
determine the nature (solution, failure, or internal) of the nodes of the
search tree, but as we shall see below, this can be overridden by a node
evaluator plug-in.

Instead of VARIABLE, the keyword AUX can be used to introduce a variable. The
syntax is the same, and the only effect is that a flag is set, to mark the variable as
auxiliary. Node evaluator plug-ins use this information to implement the notion
of auxiliary variables introduced in Section 2.2.5. For auxiliary variables, all
domains except the empty set are final domains. They are not considered in
distinguishing solutions from internal nodes of the search tree. Therefore we do
not need to branch on auxiliary variables.
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3.2.2 Reduction Operators

Plug-ins in the reduction operator category implement the domain reduction func-
tions and domain branching functions of Sections 2.3.1 and 2.3.2. A hybrid form
is used for optimization. In the OpenSolver configuration language, the statement
for introducing a reduction operator is

DRF 〈Identifier〉 〈Specifier〉

The specifier string typically contains the list of variables that the operator applies
to, and some further specification of the operation that it performs on these
variables. For example,

DRF DDNEQ { x1 - x2 <> 2 };

enforces the constraint x1 − x2 6= 2 on two discrete domain variables x1 and x2.

State

Reduction operator instances have a state that holds at least an internal rep-
resentation of the information extracted from the specifier string. Contrary to
variable domains, the state of a reduction operator is global. It applies to all
nodes of the search tree. The only information about a reduction operator that
is stored per node, is a flag indicating whether the operator is active or not. Re-
duction operators can signal to the scheduler that controls their application that
they have become redundant in a certain branch of the search tree. Schedulers
(see below) may use this information to avoid unnecessary application of such
operators. In principle, the design of OpenSolver also allows that new, redundant
reduction operators (and auxiliary variables) are added during the solving pro-
cess, to be active in particular parts of the search tree only, but these facilities
are not currently exploited.

Interface

Three member functions constitute the basic interface of reduction operators and
the rest of the system:

• a function that reports the names of the variables that the reduction op-
erator applies to; this information is typically extracted from the specifier
string when the reduction operator is created,

• the propagation function , which is called during the constraint propa-
gation phase, and

• the termination function , which is called upon termination of constraint
propagation, during the branching stage.
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Both the propagation function and the termination function take as an argument
an array of pointers, whose type is the abstract base class for variable domain
types. Through these pointers, the functions can reduce the domains of the
variables. The OpenSolver framework takes care that the arrays of pointers cor-
respond directly to the variable names reported by the first of the above three
member functions. Also, like the domain reduction functions that they imple-
ment, reduction operators have an input scheme and an output scheme: the set
of variables that trigger their application, and the set of variables that they can
modify, respectively. In Section 3.4 we see how these are implemented.

The propagation function and the termination function must supply the solver
with information about variables that they change. The minimum requirement
is that they set a flag for every change, but a more elaborate protocol is possible.
For example it could be useful to set different flags for modifying a bound or
an internal value of a domain. Per variable, a reduction operator can specify
what modifications it is interested in. The reduction operators that modify a
variable and the reduction operators that depend on this variable must use the
same protocol for signaling such modifications. It is up to the scheduler that
applies the reduction operators to exploit this information, though. An example
of the use of this facility is discussed in Section 4.2.

Interaction with Domain Types

In Algorithm 2.1 domain reduction is realized by intersecting variable domains
with the outcome of the domain reduction functions. In OpenSolver this is not
implemented in such a clean way. All domain type plug-ins implement the inter-
section, but sometimes it is more efficient to use a different modification of the
domains. A reduction operator can then perform modifications that are specific
to the domain type that the operator is defined for. In other words, the operators
make assumptions about the types of the domains that they operate on. Such
assumptions are implemented by type casting (see also Section 3.4), as a result
of which, member functions for domain specific modifications become available.

As an illustration, the DDNEQ operator of the above example operates on finite
domains variables, and will typecast the argument domains to objects of the
class that implements this domain type. If one of the argument domains has
size 1, it can now retrieve the integer value that it contains. Instead of having
to construct a domain for intersecting the other argument domain with, it will
call a member function specific to the finite domains implementation that allows
individual values to be removed.

The Termination Function

Normally, the termination function is used for branching. The creation of sub-
problems is implemented by this function creating subdomains for one or several
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of the variables. Subdomains can be created in any way that suits the branch-
ing strategy, but in most cases the plug-ins rely on the basic splitting methods
provided by the domain types.

The termination and propagation functions can cooperate to implement opti-
mization. If after termination of constraint propagation we have not deduced a
failure, while none of the variable domains can be split any further, the node of the
search tree is considered to be a (possibly suboptimal) solution. The termination
function can then record some information about this suboptimal solution, such
as a new bound for the outcome of an objective function. The objective function
can be evaluated by regular constraint propagation, and the propagation function
can then enforce this new bound as a dynamic constraint on the variable that
holds the outcome of the objective function.

Classification of Reduction Operators

Depending on the use of the propagation and termination functions, three kinds
of reduction operators1 are distinguished.

• propagation operators, these are reduction operators that do not modify
their state, and whose termination function does not create any subdomains.
Propagation operators are active only during constraint propagation, and
through their propagation functions, they implement the DRFs of Defini-
tion 2.3.1 on page 19.

• branching operators, these are reduction operators that do not modify
their state, and where the propagation function does not modify the variable
domains. Through their termination functions they implement the domain
branching function of Definition 2.3.3 on page 23. Branching operators are
active only during the branching stage.

• optimization operators, these are reduction operators where the termi-
nation function creates no subdomains, but modifies the state, and where
the result computed by the propagation function depends on this state.
They are active in both the propagation stage and the branching stage of
the solving algorithm.

3.2.3 Schedulers

The application of the reduction operators is controlled by plug-ins in the sched-
uler category. In principle, there are two schedulers involved: one for the propa-
gation stage, which applies the propagation functions of the reduction operators,
and one for the termination stage, which applies the termination functions. In

1The keyword DRF is a misnomer because it refers specifically to propagation operators, while
it is also used to introduce branching operators and optimization operators.
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practice, there is no need for elaborate scheduling mechanisms in the termina-
tion stage, and the latter scheduler is currently fixed to apply the termination
functions once, in sequence.

In contrast, the scheduler for the propagation stage implements the constraint
propagation algorithm, and is of great influence on the efficiency of the solver.
The statement for modifying the propagation scheduler is

SCHEDULER 〈Identifier〉 〈Specifier〉
Contrary to the VARIABLE and DRF statements, which always extend the solver
configuration, this statement replaces the current propagation scheduler. Cur-
rently, it is not possible to use different schedulers in different nodes of the search
tree. In a distributed setting, however, each solver has its own scheduler, and de-
pending on the constraints assigned to a solver, it may make sense to use different
plug-ins here.

Schedulers have a state per node of the search tree. This state can be used to
store the bookkeeping of reduction operators that still need to be applied, like the
set G of Algorithm 2.1. In this sense, schedulers are similar to variable domains,
and they also provide an operation for cloning the state of the scheduler. Cloning
the scheduler state is interesting when branching commences before constraint
propagation has reached a fixed point, and some operators are still scheduled for
application.

The primary member function of a scheduler plug-in runs the constraint prop-
agation algorithm. In addition, a scheduler provides to the framework member
functions for scheduling individual variables and reduction operators. These are
called when reduction operators are introduced, and when changes to variables
are made outside the control of the scheduler, for example when creating new
nodes of the search tree by splitting the domain of a variable.

The scheduler has access to two data structures: one that contains the problem
structure (the PStruct) and one that contains information about the problem
that is specific to a node of the search tree (the WPStruct, for world problem
structure). The PStruct gives access to the reduction operators, and contains the
dependencies between variables and reduction operators. The WPStruct is used
mainly to keep track of which reduction operators are still active: through this
data structure OpenSolver allows a scheduler to deactivate a reduction operator.
If it signals after application that it will not be able to achieve further reduction,
it can be deactivated in the present branch of the search tree. A scheduler plug-in
can choose to use this facility or not. Reference counting, and copy-on-change are
used to maintain this information. As a result, actually switching off reduction
operators may involve a considerable memory overhead (bounded by the number
of reduction operators times the size of the search frontier) for storing new versions
of the bitmap of active operators.

Algorithm 2.1 computes a fixed point of the domain reduction functions in its
input set F . In contrast, a scheduler plug-in need not run to completion. It may
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Figure 3.3: Three sets of nodes constitute the solver state

stop executing the constraint propagation algorithm at any point, but it needs
to signal to the solver whether it wants to be reactivated later, to continue the
computation of the fixed point. If this is not the case, the solver will consider that
the propagation stage has finished. Otherwise it will activate the scheduler again
before starting the branching stage. This can be useful even in a stand-alone
constraint solver: as in the model of Monfroy and Arbab [AM00], multiple nodes
of the search tree can be subject to constraint propagation, and each of these
nodes can be expanded by branching. If schedulers run to completion, constraint
propagation in these nodes is executed in sequence. Examples of CSPs exist
where in some nodes of the search tree, constraint propagation takes much longer
than in others. For such problems, one node could block the progress of search
in the other nodes. By running a scheduler only for a fixed amount of time, and
then passing control to other nodes before resuming the computation of the fixed
point, we can benefit from concurrency in the search without having to resort to
distributed processing.

3.2.4 Containers

The state of the OpenSolver search algorithm consists of three sets of nodes of
the search tree (Figure 3.3). Each of these sets is implemented by a container
plug-in.

• The search frontier , containing unexplored nodes that are pending con-
straint propagation. Both the original CSP, and the subproblems that are
the result of applying a branching operator enter the algorithm in this set.

• A set of nodes that are subject to constraint propagation .

• A set of internal nodes where constraint propagation has terminated
without deducing a failure or a solution. In these nodes, the search tree can
be expanded by applying a branching operator.

In what follows, the state of the solver usually refers to these three sets.
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Being set implementations, containers have member functions for adding and
removing nodes of the search tree, and for iterating over their contents. Im-
plementing sets of nodes of the search tree in specific, containers can be aware
of some properties of the nodes that they contain, and iterate over these nodes
accordingly. Such properties are implemented by annotations (discussed be-
low). We will see examples of actual container implementations in Sections 4.1.2
and 4.3.

The containers for the sets of nodes that are pending propagation and branch-
ing can be modified. The syntax is, respectively,

FRONTIER 〈Identifier〉 〈Specifier〉

INTERNAL 〈Identifier〉 〈Specifier〉
Like the SCHEDULER command, these commands replace the currently active plug-
in instances. For the set of nodes that are subject to propagation, it is important
that all nodes can be removed from the container efficiently, so here an imple-
mentation based on a linked list is used. There seems to be little use for other
alternatives here, so this particular container is currently fixed, and cannot be
changed in the configuration language.

3.2.5 Selectors

Selectors are used to identify the nodes that are transfered between the three sets
of Figure 3.3. All nodes where constraint propagation has terminated are moved
to the rightmost set automatically, so selectors are used only for transferring
nodes from the search frontier, and for selecting the nodes that will be expanded
by branching. The respective commands are the following.

EXPLORE 〈Identifier〉 〈Specifier〉

EXPAND 〈Identifier〉 〈Specifier〉
These commands override the currently active selectors.

Apart from the plug-in machinery, selectors offer a single operation to the
OpenSolver framework. The member function for this operation takes as an argu-
ment an array of containers, and returns an array of elements of these containers.
So in OpenSolver, the selectors can inspect the entire state, i.e., all three sets of
nodes of the search tree of Figure 3.3. It is the responsibility of the programmer of
the plug-in, and of the application or person who writes the solver configuration
to ensure that nodes are selected from the correct set. For example, if OpenSolver
consults the selector for identifying the nodes that must be expanded by branch-
ing, and a node from the search frontier is selected, a run-time error will occur
once OpenSolver discovers that this node cannot be removed from the container
of nodes that are pending branching. We see selectors at work in Section 4.3.
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3.2.6 Node Evaluators

The TDINFO command changes the OpenSolver node evaluator:

TDINFO 〈Identifier〉 〈Specifier〉

The purpose of a node evaluator2 is to determine the nature of a node of
the search tree, solution, failure, or internal node, once constraint propagation
has finished. In a distributed setting, this information is collected when the
coordination-layer plug-ins of the cooperating solvers try to establish termination
of distributed constraint propagation. For this reason the keyword refers to the
information that is collected during termination detection.

There is basically one way to establish that a node is a failure : at least one
of the variable domains reports a size 0. Therefore the main purpose of a node
evaluator is to distinguish between internal nodes and solution nodes, the
latter corresponding to subproblems that are in solved form. This implements
the test D1 ∈ A1, . . . , Dn ∈ An, for an ECSP of the form (2.2), as we discussed
in Section 2.2.5. To this end, node evaluator plug-ins provide a member function
that takes as an argument the array of domains of a node. In Section 4.5 we
use a node evaluator to calculate solved forms of a limited precision, for variables
whose domains are floating-point intervals.

After establishing the nature of a node, the plug-in instance is cloned, and
attached to the node itself, in order that the nature of the node is made known to
the branching operators. The termination functions of such operators can then
verify properties that are hard to establish by means of constraint propagation,
and may decide to fail a node yet, after it was characterized as a solution by the
branch-and-propagate tree search.

In addition to establishing the nature of a node of the search tree, node evalu-
ators may access the annotations, thus allowing extra information to be attached
to a node before the branching stage commences. We will see how this facility is
used in Section 4.3.

3.2.7 Annotations

Annotations are used to decorate nodes of the search tree with additional infor-
mation, to be maintained and referenced by plug-ins in the other categories. The
annotation of a node is set by the following command.

ANNOTATION 〈Identifier〉 〈Specifier〉

In addition to the basic plug-in machinery, the base class for annotation imple-
mentations requires only that annotations can be cloned. Since annotations exist

2ILOG Solver also has a NodeEvaluator class, which implements related, but different func-
tionality [Per99].
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only for the convenience of other plug-ins, OpenSolver makes no further assump-
tion about the functionality that they offer. This is entirely a matter of subtyping,
and type casting by the plug-ins that use the annotations. We see specific uses
of annotations in Sections 4.1 and 4.3, and in Chapter 8.

3.2.8 Putting it All Together

Before we move on to the coordination-layer plug-in, it is good to take a step back
and discuss the relation and interaction between the plug-ins in the categories that
we just introduced.

Generally, branch-and-propagate constraint solving starts with constraint prop-
agation. This involves the domain type, reduction operator, and scheduler plug-
ins. The domain type plug-ins provide representations for the domains of the
variables, and the reduction operators inspect and modify the domains to
enforce the constraints. Note that the concept of a constraint is absent in the
system.

Before the start of the branch-and-propagate search, the system asks the re-
duction operators for the names of the variables that they want to be applied to.
These names are compared to the variable names introduced by the VARIABLE

and AUX statements, and the relation between the variables and the reduction
operators is laid down in the PStruct. The actual application of the reduction
operators is controlled by the scheduler plug-in. It is responsible for applying
the reduction operators to the right variables, as specified in the PStruct. The
scheduler plug-in applies only the propagation functions of the reduction opera-
tors, so during the constraint propagation stage, only two of the three kinds of
reduction operators, namely propagation operators and optimization operators
are active.

At some point, the scheduler plug-in will return control to the system, and
notify that constraint propagation has finished. It now becomes important to
realize that we have been working in a particular node of the search tree. At the
start of the solving process, this is the root node. These nodes are data structures
of the framework, but they may have been decorated with extra information in
the form of an annotation plug-in.

When constraint propagation finishes in a node of the search tree, the system
applies the node evaluator plug-in to this node. In any case, a node evalua-
tor has to determine (typically by inspecting the sizes of the variable domains)
whether a node is a solution, failure, or internal node of the search tree, but it
may gather further information about the node, which can then be stored in its
annotation.

Nodes that have been characterized as failures (dead-end leaves in the search
tree) are least interesting from the perspective of the search process: these are
basically just discarded. Solutions are slightly more interesting, but before a
node gets the solution treatment, which may actually mean the end of the solving
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process, all reduction operators are applied once more. This time, instead of the
propagation functions, the termination functions of the reduction operators are
applied. Termination functions are used for branching, but that concerns internal
nodes of the search tree only. For solutions they can perform some last-minute
tests, and decide to characterize a node as a failure yet, but they can also record
some information about the solution, such as a new bound for a criterion variable
in the state of the reduction operator.

Internal nodes of the search tree are the most important for the search process.
They are stored in the rightmost of the three sets of Figure 3.3. Exactly how
they are stored, and in what order they can be retrieved again, is determined
by the container plug-ins that implement these sets. On several occasions,
two selector plug-ins will examine the state of the solver (the three sets of
Figure 3.3). One of these plug-ins will make a (possibly empty) selection among
the internal nodes in the rightmost set. These nodes are subjected to branching,
which entails that the termination functions of all reduction operators are applied
in sequence. Typically, most reduction operators are propagation operators, and
have inactive termination functions, and there is exactly one reduction operator
that is a branching operator. This operator’s termination function will create
subdomains for some (typically one) of the variables. The system will generate a
new node for each of these subdomains, cloning the domains of the other variables.
The original internal node can now be discarded, and the new nodes are stored
in the set of nodes that await constraint propagation.

The second selector plug-in selects nodes from this latter set. These nodes are
moved to the middle set of Figure 3.3, where they will be subjected to constraint
propagation, as we described at the beginning of this section. In case of an all-
solution search or an optimization problem, the constraint solving process ends
when all three sets of nodes are empty. This completes our overview of the solving
process, and the roles of the different plug-ins therein. The solving process is
under tight control of the coordination layer plug-in, which we will discuss next.

3.3 The Coordination Layer Plug-in

Recall that a major design goal was that OpenSolver can be used as a software
component in several solver cooperation schemes. This is realized through the
coordination layer plug-in. Every OpenSolver instance has exactly one plug-in
in this category installed. This plug-in controls the branch-and-propagate tree
search, and through it, the solver can exchange information with its environment.
OpenSolver is almost a full application, but it has to be complemented by a
coordination layer plug-in to be able to function. Even when it is used as a
stand-alone constraint solver, this plug-in is responsible for aspects such as

• all I/O, in particular providing a solver configuration in the language of
Figure 3.2, and dispatching solutions,
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• whether we search for one or all solutions, or whether we just want to count
them.

The coordination layer plug-in is similar to the constraint solving plug-ins
in the sense that it is activated using an identifier-specifier pair, but because
its presence is required for OpenSolver to function, this pair is part of the shell
command used to run the OpenSolver, for example,

opensolver -c SeqFileIO 8queens.inp

starts OpenSolver as a UNIX process, using the SeqFileIO coordination layer
plug-in. This coordinates it as a stand-alone, sequential constraint solver that
reads the configuration script from a file, whose name is read from the specifier
string. The -c option is followed by the identifier-specifier pair for the coordina-
tion layer plug-in. In the case of SeqFileIO the specifier string is a filename. If it
should include spaces (which is not the case for SeqFileIO), it has to be enclosed
in quotes.

The interaction between OpenSolver and its coordination layer plug-in is via a
command loop. After activating the plug-in, OpenSolver continually asks it what
to do next. One of the first commands that are usually issued is the following.

specifier. This tells OpenSolver that a configuration specification is available.
After receiving this command, OpenSolver asks the coordination layer plug-
in for a pointer to a location where this specifier is stored, in ASCII byte
format in the language of Figure 3.2. After processing the specifier string,
OpenSolver notifies the coordination layer that the memory it occupies can
be deallocated.

In total, the current version uses 20 commands that fall roughly in two cat-
egories: controlling the solving process, and interaction with the environment.
Below we describe those commands that are essential for understanding the Open-
Solver architecture, and its use as a software component in the other chapters.

3.3.1 Controlling the Solving Process

The nodes of the search tree reside in a data structure called the world database ,
which is essentially an array of slots that can each hold a single node. When nodes
are deallocated they leave a vacant slot, which can be reused when a new node
must be stored. If no vacant slot is available, new slots are created. The primary
purpose of the world database is to provide a uniform node identification scheme
when several OpenSolvers participate in a distributed constraint propagation al-
gorithm. In that case, the world database of each solver contains an array of slots
for each of the participating solvers. Every node has an owner: the solver that
created it, and all solvers access the data structures for that node through the
same slot, in the array for the solver that owns it. Now a node can uniquely be
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identified by a tuple consisting of the number of the solver that owns it, and the
index of the slot it occupies.

In a distributed setting, the three sets of nodes of Figure 3.3 are distributed
over the cooperating solvers. All solvers maintain the three sets, but a single node
can appear only in the state of one solver, i.e., the global state is distributed
over the cooperating solvers. While only one solver marks a node as pending
propagation, pending splitting, or being subject to propagation, all solvers may
have data structures for the node, containing the local domains and information
on active reduction operators.

We discuss the commands that control the solving process roughly in the order
in which they occur during a regular branch-and-propagate tree search.

schedule propagation. Receiving this command, OpenSolver activates the prop-
agation selector. This will identify a (possibly empty) subset of the set of
nodes that are pending propagation. The nodes in this subset will be trans-
fered to the set of nodes that are subject to constraint propagation.

propagation. For each node in the latter set, run the scheduler of DRFs to ap-
ply constraint propagation. When the scheduler finishes, it signals whether
constraint propagation has terminated, and a flag on the node is set accord-
ingly.

When a node is scheduled for propagation by the propagation selector, this is
signaled to the coordination layer. From that point on, the coordination layer will
monitor the progress of constraint propagation for the node, through the flag that
we just mentioned. This monitoring takes place for all nodes that the coordination
layer knows to be subject to constraint propagation, after each propagation
command. It may seem counterintuitive that this is the responsibility of the
coordination layer, but this is necessary in case several OpenSolver instances
participate in a distributed constraint propagation algorithm, such as the one
that is described in Chapter 9. In a distributed setting, the information on
termination of constraint propagation is local: it applies only to the set of DRFs
known to the solver that issued the propagation command, and the cooperating
solvers have to combine this information in their coordination layers to obtain a
global view.

As a part of a distributed termination detection algorithm, or in a stand-alone
solver after having been informed that constraint propagation has terminated, the
coordination layer may inquire about the status of a node by creating a new node
evaluator, and asking the solver to apply it.

evaluate. Receiving this command, OpenSolver asks the coordination layer for
a pointer to a node evaluator, and applies it to the node of the search tree
for which the command is issued.
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The next time OpenSolver asks the coordination layer for a command after eval-
uate was issued, the coordination layer knows that the node evaluator it created
has been applied to the node of the search tree that it was interested in at that
time. The node evaluator now contains information on whether the node is a
solution, failure, or internal node, regarding the part of problem known to the
present solver. In a distributed constraint propagation algorithm, this informa-
tion must now be combined with the view of the other participating solvers. In a
stand alone solver, the global status of the node is known immediately, and can
be relayed to the solver with the following command.

termination. This command informs the solver that constraint propagation has
terminated in a particular node of the search tree. In the case of distributed
constraint propagation, this information is global. A node evaluator is
provided by the coordination layer to indicate the status of the node.

For solutions, the solver runs the scheduler of reduction operators for the
termination stage. This allows the optimization operators to update their
state according to the current solution (for example, set a new bound). For
failures, the coordination layer is informed that it can start the deallocation
process for the node. Internal nodes are moved to the container of nodes
that are pending branching.

In a distributed setting, the cooperating solvers must negotiate which solver
is allowed to branch on an internal node. Only the coordination layer plug-in
of the identified solver should issue the termination command for the node.
For this purpose, a node evaluator can access information on whether a solver is
configured to split a certain variable, so this decision can be made as a part of
termination detection. For example, in a distributed fail-first policy, as a part of
establishing termination of constraint propagation, the cooperating solvers will
likely be circulating a token (see Section 9.2.3). Before forwarding the token,
the solvers will issue evaluate commands. Through the node evaluator they can
inquire about the sizes of the variable domains, and thus search for the smallest
domain as a part of termination detection. Similarly, the node evaluator can
determine whether a solver is able to branch on this variable, so the token is
annotated with the id of the variable with the smallest domain found so far, the
size of this domain, and if the token has already visited a solver that is able to
split the domain of the variable, the id of this solver.

The following command initiates the actual branching.

schedule branching. This command activates the selector of nodes that are
pending branching. This yields a subset of the nodes in the rightmost set of
Figure 3.3. In each of these nodes, the scheduler of termination functions is
run to actually generate subproblems. The nodes for these subproblems are
added to the set of nodes that are pending propagation. The coordination
layer is informed that it can start the deallocation of the parent nodes.



3.3. The Coordination Layer Plug-in 53

In a stand-alone solver, the process of deallocating a node of the search tree
simply consists of issuing the following command to the solver.

forget world. This command tells the solver to deallocate the data structures
for a particular node of the search tree, and to free the slot it occupies in
the world database. Also any reference to it from within the containers that
implement the sets of Figure 3.3 is removed.

In the distributed case, deallocating a node is less straightforward, though.
The reason is that for processing nodes that descend from it, we may still need to
clone some of the domains. This is done the first time that a solver learns about a
particular node, as a part of constraint propagation, but this may well be after the
solver that created the node has initiated the deallocation of the parent. Therefore
deallocating a node involves counting the number of descendants that have been
created. Only when this matches the total number of generated branches, the
parent node can be deallocated. This tally is kept in the solver, and can be
verified by the coordination layer.

more work? After receiving this command the solver reports to the coordination
layer whether the sets of nodes that are pending branching and pending
propagation are empty or not. In the former case, the traversal of the
search tree has finished. In the latter case, the coordination layer can make
the solver continue the search by issuing more schedule branching and
schedule propagation commands.

The following command sequence coordinates a basic branch-and-propagate tree
search by a stand-alone solver, where propagation runs in a single node, the
scheduler of DRFs runs to completion, and internal nodes are split immediately.

specifier
schedule propagation
propagation
evaluate
termination
schedule splitting
forget world
more work?







































repeated until the solver answers nega-
tive to the more work? question, or
the coordination layer decides to break
out of the loop, for example if the solver
responds to the termination command
with a notification that it has accepted
a solution.

quit

3.3.2 Interaction with the Environment

The specifier command, which we discussed at the beginning of this section,
falls in the category of commands for regulating the interaction of an OpenSolver
instance and its environment. The configuration specifications that it passes to
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the solver typically come from a file, or have been submitted by another program
such as a calculator front-end. The coordination layer plug-in knows where to
get these specifications, which varies for different situations where OpenSolver is
used as a component solver.

In addition to the specifier command, and some commands for generating
textual representations of solutions, and nodes of the search tree in general, the
following commands are of importance for the way OpenSolver is used as a com-
ponent solver in the rest of this thesis.

flush. The solver supplies to the coordination layer plug-in a configuration for
each of the nodes of the search tree stored in the sets of Figure 3.3.

clear WDB. The solver empties the world database, i.e., it forgets what it was
doing, and enters the initial state.

A node is essentially defined by the domains of the variables, and the reduction
operators that are active. Like all plug-ins, variables and reduction operators can
generate a textual representation of themselves, in the language of Figure 3.2, by
which they can be re-created in another solver. This facility is used by the flush
command. The flush command is typically followed by clear WDB.

When a new variable is introduced, OpenSolver will ask the coordination layer
plug-in if the variable is meant to be exported or not. In a distributed constraint
propagation algorithm, exported variables are those that appear in two or more
solvers. Changes to the domains of such variables must be communicated. This
is initiated by the following command.

pending sends. The solver responds to this command with the identifiers of the
variables that have been marked for export, and whose domains have been
modified since the last pending sends command was issued.

The following command takes care of the actual communication:

export. The solver supplies a pointer to the data structure that represents the
domain of a given variable, in a given node of the search tree.

The pending sends and export commands could be combined for the pur-
pose of distributed constraint propagation, but they have been left separated for
the use of exported variables in the operator for nested search, discussed in Chap-
ter 7. After the solver has responded to an export command, the coordination
layer can actually send the modified domain to another solver. This message has
to be tagged with the node of the search tree, to which the information applies.
Because of the world database, this tag need only contain the two integers that
uniquely identify a node during its lifetime.

The default mechanism for communicating domain updates is the text-based
representation that is used for the flush command. This has the benefit of being
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machine independent. For example, we do not have to worry if integers are stored
as big-endians or little-endians. To avoid the overhead of string manipulation,
a coordination layer plug-in can make assumptions about the variable domain
type plug-ins that are used. For example, it can rely on the assumption that
all domains that it will ever export, will be able to write themselves to a binary
representation. This may of course give rise to problems in a heterogeneous
computing environment, but when the environment is homogeneous with respect
to, say, integer representation, the string manipulation can easily be avoided. We
have not experimented with this, but in a shared memory environment, it may
even be feasible to use pointers as representations of the domains, through which
they can then be accessed directly.

When receiving an incoming domain update, the coordination layer recon-
structs the variable domain. Using the default mechanism, this involves inter-
preting an identifier-specifier pair. The resulting domain is then passed to the
solver via the following command:

update. The solver computes the intersection of the domain of a variable in a
particular node of the search tree, and a domain supplied by the coordina-
tion layer. The solver assumes that the domains are instances of the same
plug-in. If the intersection is smaller than the original domain, the inter-
section is used as the new domain for the variable. The change is made
known to the scheduler of reduction operators for the propagation phase,
and the variable is marked as changed for the purpose of the pending
sends command.

We conclude the description of the coordination layer by clarifying its name.

3.3.3 Coordination

In computer science, coordination refers to the orchestration of the interaction
among the various active entities involved in a software system [Arb98]. As Gel-
ernter and Carriero observed, coordination is a ubiquitous aspect of computing:
even the simplest programs interact with their users to exchange input and out-
put [GC92]. Furthermore, on the level of programming languages, the sequential
execution of program statements can be seen as a particular form of coordination
of computing entities.

While coordination can be recognized in all software systems, it is of particular
relevance for concurrent systems, where several interdependent computations
overlap in time. Examples of such systems are

• parallel systems, where concurrency is introduced for reducing the turn-
around time of a computation by distributing the workload over several
hardware processors, and
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• distributed systems, whose state is distributed over several computing
entities that execute concurrently.

Coordination languages are languages for programming the interaction
between the active entities of concurrent systems. Such languages are based on a
particular coordination model , i.e., a set of assumptions on how these entities
interact. Examples of coordination languages, models, and architectures are:

• Linda [CG89], a coordination language based on a coordination model where
processes communicate by injecting and consuming tuples from a shared
tuple space.

• The Manifold [Arb] language, which implements the Idealized Worker Ide-
alized Manager model, and depends on channel-based communication be-
tween processes (see also Chapter 9).

• The Discrete Time ToolBus [BK98], a coordination architecture for the
integration of software components (tools). The integration is specified
through a script that describes all possible interactions between the tools,
and the coordination model supports explicit specification of the timing
behavior of systems.

• Reo [Arb02], a channel-based coordination model, wherein complex coordi-
nators, called connectors, are compositionally built out of simpler ones (see
also Chapter 8).

Sometimes a distinction is made between endogenous and exogenous co-
ordination. The former means that coordination is realized through operations
within the entity that is being coordinated. The OpenSolver command loop, de-
scribed in Section 3.3.1, is an example of endogenous coordination. Conversely,
exogenous coordination is coordination from without : the constructions that
regulate the interaction are outside the interacting entities, and the computation
code is separated from the coordination code. In this classification, Linda is an
endogenous coordination language, and Manifold, ToolBus, and Reo are based
on exogenous coordination models.

Although the field originated in the area of parallel and distributed comput-
ing, coordination now also manifests itself as an approach to component-based
software engineering. From this point of view, a software component is an au-
tonomous system with well defined behavior that has its own thread of control.
Systems that are built from such components will be concurrent systems, and
their composition requires a form of exogenous coordination. ToolBus and Reo
are designed specifically for component-based software engineering.
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Coordination and the Coordination Layer

We already pointed out that the OpenSolver command loop can be seen as a
form of endogenous coordination, but the term “coordination layer” is primarily
meant to emphasize that this software layer makes OpenSolver amenable for
various forms of exogenous coordination.

3.4 Implementation

OpenSolver is an object-oriented application with an extendable class hierarchy.
Defining the basic structure of a branch-and-propagate constraint solver, Open-
Solver can be categorized as an object-oriented framework [Deu83, JF88]. It
employs the typical inverse control mechanism: in principle, OpenSolver calls
member functions on objects of the classes that configure it, not the other way
around. This mechanism is also known as the Hollywood principle : “Don’t
call us, we’ll call you.” [DGS03]

The classes that implement the problem-specific aspects of the solving process
are called “plug-ins” for two reasons:

• to avoid using the word component , emphasizing that OpenSolver has not
been implemented using any form of component-based software engineering,
and

• to emphasize that in addition to being an object-oriented framework, Open-
Solver is also a stand-alone application that can be configured for different
tasks and environments.

For programming new plug-ins, OpenSolver can further be categorized as a
white-box framework: the programmer needs to understand the implementation
of the framework in order to be able to program for it. For some categories of
plug-ins, this is limited to understanding the class interface, but especially for
programming a coordination layer plug-in, it must be known how OpenSolver
reacts to the various commands that can be issued.

As an example of an extendable class in OpenSolver, Program 3.2 shows part
of the definition of the abstract class for reduction operator plug-ins.

• Member functions Compute and Termination are the propagation function
and termination function, respectively. Their arguments parameter passes
an array of pointers, pointing to the domains of the variables that the
reduction operator applies to.

• Member functions Mask and Activate implement protocols for communi-
cating changes to variable domains, as discussed at the end of Section 3.2.2.
They also define an operator’s input scheme.
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• Member functions CanReduce and CanSplit characterize an operator as a
propagation operator, branching operator, or optimization operator, and
define its output scheme.

• The member function Idempotent is used to tell a scheduler plug-in that
the propagation function is idempotent. Recall that a function f is called
idempotent if f(f(x)) = f(x), for all x in the domain of f . If an idempotent
DRF modifies the domain of a variable in its input scheme, this DRF need
not be scheduled again.

class ReductionOperator : public OpenSolverPlugIn

{

public:

static ReductionOperator *Factory(

CoordinationLayer *coordinationLayer,

const char *type,

const char *spec);

virtual ~ReductionOperator( );

virtual const std::vector<char*> &VariableNames( ) const =0;

virtual int Compute( Domain **arguments, unsigned int *changes,

bool *deactivate );

virtual int Termination( TDInfo *tdInfo, Domain **arguments,

Annotation *annotation, bool *deactivate );

virtual bool CanSplit( int i ); // i==-1: do you want to be called

// on termination?

// i>=0: can you split argument i?

virtual bool CanReduce( int i );// i==-1: do you want to be called

// during propagation?

// i>=0: can you reduce argument i?

virtual unsigned int Mask( int i );

// mask for local_changes[i]

virtual bool Activate( int i, unsigned int c );

// If Mask[i] does not match,

// do you want to be activated if

// variable i has been modified

// such that local_changes[i] == c?

virtual bool Idempotent() const;

};

Program 3.2: Part of the definition of the abstract class for reduction operators

While as an open-ended, extendable system, OpenSolver is a white-box frame-
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work, it aims at providing a black-box framework for composing branch-and-
propagate constraint solvers. Plug-ins can be combined with minimal knowledge
of the implementation of the system and the plug-ins. The intention is to establish
a set of atomic plug-ins, from which many different solvers can be composed. New
plug-ins are added only when the desired functionality cannot be realized by com-
position of the readily available facilities, or when this cannot be done efficiently.
OpenSolver is approached as a black-box framework through the configuration
language of Figure 3.2.

Plug-in System

The identifiers for Plug-ins that are available in an OpenSolver installation can
be used in the configuration language of Figure 3.2. This is realized by a static
member function per plug-in category that contains a large conditional statement
to couple the identifiers to the constructors of the classes that implement the plug-
ins. This is the first member function in Program 3.2. For example, the code
on page 40 would pass the identifier RealInterval and the specifier following it
to this function. If a plug-in class for RealInterval is available, an object of
this class is created by calling the constructor for this class, passing the specifier
string [-0.1, 0.1] as an argument.

Currently, adding a plug-in to an OpenSolver installation involves modifying
the actual C++ code for the static member function, by adding a branch to the
conditional statement. For example, for RealInterval, the following lines were
added:

#include "RealInterval.h"

...

else if ( !strcmp( type, "RealInterval" ) )

res = new RealInterval( spec, &syntax_error );

Also, the makefile must be modified in order that the new class is compiled
and linked, and the application must be rebuilt to take these modification into
account. All of these tasks can easily be automated, and a plug-in system based
on a source code distribution is straightforward.

Ideally we would not have to relink, or modify code for adding plug-ins. This
can be realized by dynamic linking of the object code for plug-ins. A potential
problem here is that current C++ compilers do not adhere to a single standard
for encoding class member names (name mangling). There are ways around this
problem, for example we could provide a C interface. An interesting option
is to implement this interface by a general-purpose class in each of the plug-in
categories, whose only purpose is to take on board C code that has been compiled
separately.
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Figure 3.4: Category-dependencies, or assumptions, implemented by type casting.
Arrows are drawn from the class that makes the assumption to the class whose
objects are being cast

Type Casting

In Section 3.2.2 we already mentioned that it is very common for a plug-in to
make assumptions about the plug-ins with which it works in conjunction. The
OpenSolver framework accesses all plug-in through the abstract classes for their
categories. From this point of view, every variable domain is an object of class
Domain. However, a reduction operator for finite domains will assume that the
variable domains to which it is applied are actually instances of a subclass of
Domain that provides specific operations, such as deleting integer values. Such
assumptions are implemented by type casting , and the interaction between
reduction operators and variable domains is just one of many situations where this
happens. Figure 3.4 gives an overview of all cases were plug-ins make assumptions
about other plug-ins.

It is the responsibility of the user or, more likely, the software that generates
a solver configuration in the language of Figure 3.2, to ensure that the correct
plug-ins are used. Violating an assumption leads to undefined behavior. It would
be easy to implement a type checking mechanism that gives a proper run-time
error in case incompatible plug-ins are used. Because checking the types is a
potentially costly operation, we could limit this check to the root node of the
search tree.

Lines of Code

To give an idea of the amount of code that is involved, OpenSolver itself, without
any plug-ins consists of roughly 5,000 lines of C++ code. The plug-ins used for the
experiments in this thesis comprise some 17,500 lines, including a few hundreds
of lines of lex and yacc specifications, and 3,500 lines of peripheral programs and
scripts were used.
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3.4.1 Software Composition

It is tempting, but wrong to characterize the composition of branch-and-propagate
constraint solvers, as supported by OpenSolver, as component-based software en-
gineering. This would suggest that we aim for reuse of the plug-ins, while instead,
we aim for reuse of the design of the solver. This is the case for object-oriented
frameworks in general. In the first place, most plug-ins are of an inherent simplic-
ity that would not make them valuable components. The challenge in designing
a configurable constraint solver is in the definition of the interfaces, rather than
in programming, for example, atomic arithmetic constraints. Secondly, instead of
incorporating the more complex operators as third party components, OpenSolver
promotes the composition of such operators from basic facilities, if possible. In
the next chapters we will see several examples of this. Apart from this, external
code can likely always be taken on board by wrapping it up as a plug-in. In
the case of an autonomous application, OpenSolver could communicate with this
application through a plug-in that acts as a proxy , although we have made no
particular provisions for this form of software composition.

In contrast, OpenSolver itself forms a versatile software component. Through
the coordination layer plug-in it can be adapted to various computing environ-
ments. Because it is a stand-alone application instead of a library, it poses no
restrictions on the programming languages used in these environments. In addi-
tion, the configuration language allows for external manipulation both of solvers
and CSPs. We will see examples of the use of OpenSolver as a software component
in Chapters 7, 8, and 9.

We are convinced that modules or classes are the right units of composition
for realizing a branch-and-propagate constraint solver. As we will argue in Chap-
ter 9, using coordination languages here involves too much overhead. Modules
implementing abstract data types might allow for an easier implementation of
a plug-in system, because they avoid the problem with name mangling that we
discussed on page 59. They may also be a bit more efficient because some over-
head is involved with calling virtual functions. However, we used C++ classes
because of the language support for defining interfaces. Although we did not per-
form experiments, we expect that with modern compilers, the overhead for calling
virtual functions is limited, and the implementation of a plug-in system based on
dynamic loading was not a priority in our experimental setup. However, for a
commercial system, C modules, with some rigorous scheme to enforce compliance
with interfaces for the different categories of components, may be preferable.

3.4.2 Comparison with Other Systems

Several other object-oriented approaches to constraint programming exist. Most
of them have extendable class hierarchies with inverse control, and can therefore
be classified as object-oriented frameworks as well. To put our work into context,
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we compare OpenSolver to the following systems.

ILOG Solver. A commercially available C++ library for constraint program-
ming. Some of its features are support for integer, floating-point, and set
variables, an extensive collection of built-in constraints, and support for
both tree search and local search [Ilo01]. The class hierarchies for con-
straints and search procedures can be extended. ILOG Solver is part of
the ILOG Optimization suite, in which it can cooperate with the CPLEX
mathematical programming engine.

Koalog Constraint Solver (KCS). A commercially available JAVA library for
constraint solving on Boolean, integer and set domains, supporting tree
search and local search [KoaA, KoaB]. The library can be extended with
new constraints, search strategies, and solvers.

Elisa. A C++ library that offers a framework for integrating solvers in applica-
tions [Eli04]. The facilities offered by the 1.0.3 version of the system are
focused on solving constraint on the reals through branch-and-propagate
tree search, and include a large collection of consistency algorithms for such
constraints. In addition, the Elisa class hierarchy can be extended with
respect to many aspects of constraint solving, including domain types, con-
straints, reduction operators, and local search. Elisa is distributed under
the GNU Lesser General Public License.

Disolver. A C++ library that offers a constraint-based optimization engine,
with support for parallel and distributed (DisCSP) search [Ham05]. New
constraints, and tree search and local search procedures can be defined by
users. Disolver is reported to have been used for solving large industrial
problems.

Figaro. A C++ library for finite domains constraint solving [HMN99]. To our
knowledge, Figaro is the only system that is configurable with respect to
state restoration policy (see Section 4.2).

EasyLocal++. A C++ library that provides a framework for realizing local
search algorithms [DGS03].

Localizer++. A C++ library for local search [MVH01]. It is intended to make
the facilities that are usually found in modeling languages (such as Lo-
calizer [MVH00]) available inside a mainstream programming language, to
facilitate the integration in larger software projects. The library is extend-
able with respect to constraints, invariants (a modeling tool), and search
strategies.

Despite the extendable class hierarchies, ILOG Solver, KCS, Disolver, and
Localizer++ are primarily object-oriented toolkits, meaning that some specific
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functionality (in this case, constraint solving) is made available to the developers
who use the toolkit. Instead of a constraint solving toolkit, OpenSolver is a
configurable branch-and-propagate tree search engine, implementing only the core
algorithms of such toolkits. As such, the aspects of constraint solving that are
configurable in OpenSolver are at a lower level than those that are configurable
in toolkits. For example, new constraints can be added to the toolkits, while the
notion of a constraint does not exist in OpenSolver: it only knows about reduction
operators. Also the toolkits typically provide high-level modeling facilities such
as arrays. In our case, these would be provided by a modeling environment that
uses OpenSolver as its solving engine.

Being a configurable branch-and-propagate tree search engine, OpenSolver
gives control over aspects of constraint solving that have hard-wired solutions
in toolkits. Especially, toolkits typically fix the implementation of the domain
types and the constraint propagation algorithms. This makes a constraint solver
that uses OpenSolver as its solving engine a much more flexible system. Because
it aims at black-box composition of constraint solvers through a configuration
language, altering some aspects of the solving engine of an OpenSolver-based
system should only rarely involve C++ programming. Instead, such a system
could offer a menu of available options, which the user can combine at will. In
this respect, OpenSolver is quite similar to the Elisa library, which is also highly
extendable and configurable. To reflect that the system is a white-box framework
that aims at black-box composition of solvers, the Elisa distribution contains both
a programmer’s manual and a user’s manual.

Figaro is configurable on one very low-level aspect of a constraint solving (tree
search) algorithm, namely the state restoration policy [CHN01]. In OpenSolver,
the state restoration policy is fixed (see Section 4.2), and in retrospect, this
limits its applicability for search tasks that rely on a specific, and different policy
(see Section 4.4). However, the state restoration policy is closely related to the
variable domain type implementation, and making both aspects configurable is
not straightforward, and the impact should carefully be assessed.

Finally, the approach of EasyLocal++ is also similar to ours, in the sense
that it is a framework, aiming at reuse of the basic solving algorithm structures.
Apart from implementing a different solving algorithm (local search instead of
tree search), EasyLocal++ is a white-box framework, where composition of a
local search solver always involves C++ programming.

While similarities exists with each of these systems, OpenSolver is unique in
providing a highly configurable and versatile solving engine, that is also an au-
tonomous application. Aiming for black-box composition has led to an inherently
linguistic approach, where every plug-in needs to be able to interpret and gener-
ate textual specifiers. This gives possibilities for external manipulation of CSPs
and solver configurations that we have not found in any other system. An API
would be a valuable extension, and we already use a rudimentary form of such
an interface in Chapter 7, but this would not change the autonomous nature of
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the system. Building a system around OpenSolver is primarily a matter of ex-

ogenous coordination . We will see examples, and discuss further possibilities
of this approach in Chapters 8 and 9.

3.5 Summary

In this chapter we introduced OpenSolver, an open-ended constraint solver that
is based on branch-and-propagate search. We discussed it from two perspectives:

Composing constraint solvers. This is a matter of black-box composition,
by selecting a combination of plug-ins in seven categories that correspond directly
or indirectly to the aspects of branch-and-propagate search identified in the sum-
mary of the previous chapter. OpenSolver is an autonomous application. By
means of a plug-in in a special, eighth, category for its coordination layer , it
can be adopted to different software environments.

Implementation. OpenSolver is an object-oriented framework: it provides
only basic mechanisms and data structures. The plug-ins, which are implemented
as subclasses of abstract classes of the framework, determine the functionality.
Because the coordination layer plug-in has tight control over the solving process,
this facilitates several forms of exogenous coordination, allowing that OpenSolver
is used as a software component for composing constraint solvers beyond a se-
quential branch-and-propagate tree search.

If we return to the concluding remarks at the end of the previous chapter, we
now have an implementation of the model of constraint solving described there,
with some additional features such as the coordination layer. Our next goal is
to evaluate this implementation, from both the perspective of efficiency and the
perspective of composing constraint solvers, on a number of standard and more
advanced constraint solving techniques. This is done in the following six chapters,
where Chapter 7 is a turning point, because there we move from composing con-
straint solvers within the OpenSolver framework to composing constraint solvers
from several OpenSolver instances. At that point, our attention shifts from the
seven categories of constraint solving plug-ins to the coordination layer mecha-
nism.



Chapter 4

Applications

This is the first of three chapters that demonstrate how OpenSolver can be config-
ured for specific application domains. In this chapter, we introduce the facilities
for constraint solving on finite domains, Booleans, and real-valued variables, as
well as some domain-independent plug-ins for constraint propagation and search.
These are basic facilities that are available in many other systems. Together with
the previous chapter, this forms a description of OpenSolver as a basic constraint
solver. Of the other two chapters in this “applications” series, Chapter 5 deals
with constraints on integer interval variables. These are also available in many
other systems, and could therefore have been included in this basic facilities chap-
ter, but because of the lengthy analysis, a separate chapter was devoted to these
constraints.

The research question that underlies this chapter is whether the framework
that we introduced and implemented in the two previous chapters is suitable
for composing five particular solving techniques that would normally be hard-
wired in solvers: limited discrepancy search, best-first search, no-good record-
ing, non-chronological backtracking, and applying domain reduction functions
for decomposed arithmetic constraints in an order that respects their hierarchical
relationships. These techniques are discussed in sections 4.1.2, 4.3, 4.4, and 4.5.

4.1 General-Purpose Facilities

4.1.1 Constraint Propagation

Three scheduler plug-ins are currently available in OpenSolver. These are
general-purpose facilities for constraint propagation that can be used with any
set of reduction operators. The schedulers apply the propagation functions of
reduction operator plug-ins, so they control only the execution of propagation
operators and optimization operators. Branching operators are left untouched.

65
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A Basic Scheduler

The BasicScheduler plug-in implements the following round robin scheduling
strategy, which also forms the basis for the AC-1 algorithm for computing arc
consistency (see, e.g., [Dec03]): apply all operators in sequence, and keep doing
so until a full sequence passes in which no variable domains are modified. This
strategy can be expressed as an instantiation of Algorithm 2.1, having

update(F,D,D′) :=

{

F if D′ 6= D
∅ otherwise

for the select function, we would need to introduce an extra variable that main-
tains the sequence number of the last operator that has been applied.

The plug-in does not use the specifier string of the SCHEDULER statement,
so the default scheduler is replaced by the basic scheduler using the following
command in the OpenSolver input language:

SCHEDULER BasicScheduler { };

Variable-Based Scheduling

The variable-based scheduler maintains a queue of modified variables. It keeps
removing variables off the front of the queue, and for each variable that is removed,
all reduction operators that have the variable in their input scheme are applied
in sequence, in the order in which they are introduced in the solver configuration
script. If the application of an operator modifies the domain of a variable, this
variable is enqueued, unless it already is in the queue. By default, an operator
is deactivated if it signals that it has become redundant in the current branch
of the search tree. As explained in Section 3.2.3, this can have significant costs
in terms of storage, and the variable-based scheduler can be made to ignore this
information as follows:

SCHEDULER VariableScheduler { ignore };

The variable-based scheduler implements the scheduling strategy described in
the ILOG Solver 5.1 reference manual. A potential disadvantage of this scheduler
is that if a reduction operator depends on more than one, say two, variables, and
both these variables have been enqueued, the DRF will be applied twice also if
no relevant changes are made in between dequeueing the two variables.

Operator-Based Scheduling

In correspondence with Algorithm 2.1, the default scheduler plug-in explicitly
maintains a set of reduction operators that still need to be applied. This set is
implemented as an array, containing a bit per operator that is used to mark the
operator as being scheduled for application. Like the basic scheduler introduced
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above, it cycles through the operators, applying those that are marked, and
resetting their marks. If a variable is modified, the operators that have this
variable in their input scheme are marked, but the operator-based scheduler will
not reschedule idempotent DRFs that have modified the domain of a variable in
their input scheme.

The operator-based scheduler maintains a counter of operators that still need
to be applied. In principle, it keeps cycling through the sequence of operators
until this counter reaches zero, but many aspects of this scheduler’s operation can
be configured through the definition of a schedule, as explained below.

Defining a Schedule

A schedule specifies the order in which the operators are considered for appli-
cation, as an alternative for cycling through the sequence. This is not the same
as the order in which they are applied: actual application of a reduction oper-
ator also depends on if it has been marked. In principle, a schedule is a list of
(zero-based) operator indices. These indices refer to the sequence of DRF state-
ments in a configuration script. The scheduler traverses the list, and at the end
it terminates, reporting to OpenSolver whether a fixed point was reached or not.
In the latter case, the node of the search tree where the scheduler was applied
remains in the set of nodes that are subject to constraint propagation, and the
scheduler will be called again for this node, at a later stage.

Parts of a schedule can be enclosed in brackets, to indicate a fixed point
computation. When entering a pair of brackets during the execution of a schedule,
the scheduler will keep executing this subschedule until a common fixed point is
reached for the operators1 that are pointed to from within the brackets. Typically,
the entire schedule is enclosed in brackets, to indicate that the scheduler does not
return control to OpenSolver before a fixed point it reached, but this facility can
also be used to group several operators, and to implement priority schemes.

Two kinds of brackets can be used, for two different ways of performing the
computation of the fixed point.

• Curly brackets specify that the scheduler cycles through the enclosed se-
quence. For example, the following statement specifies that the scheduler
considers the first five operators in sequence, but does not continue with
operators 5 through 9 until a fixed point of operators 10 through 14 has
been reached.

SCHEDULER ChangeScheduler {

schedule = {0,1,2,3,4,{10,11,12,13,14},5,6,7,8,9} };

1Scheduler plug-ins coordinate the computation of a fixed point of the domains extensions
of DRFs (see Section 2.3.1) implemented by the propagation functions of reduction operator
plug-ins. Where this does not lead to confusion, we will sometimes refer to such fixed points as
fixed points of a set of reduction operators.
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This fixed point is computed by cycling through the sequence 10,11,12,13,14,
when considering to apply these operators. Likewise, after considering to
apply operator 9, the scheduler returns to the beginning of the top-level
schedule and considers to apply operator 0.

• Parentheses specify that instead of cycling, each time that a change is
made, the scheduler restarts, and returns to the beginning of the sequence
that they enclose. This is used for priority schemes, e.g., do not execute
computation-intensive operators when less computation-intensive operators
are scheduled for execution. Suppose that we have three groups of op-
erators, with indices 0-4, 5-9, and 10-14, having increasing computational
costs. The following schedule specifies that we do not execute the expensive
operators before a fixed point of the easy operators has been reached, and
as soon as an expensive operator modifies the domain of a variable, we first
compute the fixed points of the less computation-intensive functions again.

SCHEDULER ChangeScheduler {

schedule = (({0,1,2,3,4},5,6,7,8,9),10,11,12,13,14)

};

In addition, the top-level schedule can be enclosed in square brackets. This
specifies that the schedule is executed once, as if no brackets were used at all.
Likely, this does not lead to a fixed point, but the scheduler will still signal that
constraint propagation has terminated. This is useful when we want to enforce a
limit on the number of applications of very expensive reduction operators.

Like the variable-based scheduler, the specifier for the ChangeScheduler plug-
in can be prefixed with the keyword ignore to save the memory costs of taking
into account that certain DRFs have become redundant. In case both ignore

and schedule are used, these are separated by a comma. The full syntax of the
ChangeScheduler specifier language is given in Figure 4.1.

The operator-based scheduler allows for the composition of constraint prop-
agation algorithms, similar to the approach proposed in [GM03]. It implements
two of the three composition operators proposed there: sequence and closure.
The third, decoupling, entails that several operators are evaluated independently
on the same domains, and that the results are combined by intersection. The
language of Figure 4.1 and the implementation of the operator could well be
adapted to support this third mode of composition, but we did not need it for
our experiments. Moreover, it is unlikely that the decoupling could be imple-
mented efficiently for OpenSolver domains in general, because it would require
making working copies of domains during constraint propagation, which is an
expensive operation.
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〈specifier〉 → ǫ
| ignore

| 〈schedule〉
| ignore, 〈schedule〉

〈schedule〉 → schedule = 〈subschedule〉
| schedule = [ 〈sequence〉 ]

〈subschedule〉 → ( 〈sequence〉 )
| “{”〈sequence〉“}”

〈sequence〉 → 〈schedule step〉 {, 〈schedule step〉 }
〈schedule step〉 → 〈Integer〉

| 〈subschedule〉

Figure 4.1: Syntax of the specifier for the DRF-based scheduler

An Assembly Language

Something that actually can go wrong with schedules is that if an index is omit-
ted, the corresponding operator will not be executed, and a fixed point cannot be
reached. In most scenarios, this leads to an infinite loop in the constraint propa-
gation phase for the root of the search tree. This situation can easily be avoided
by having the scheduler verify that all indices are present in the schedule. If not,
a run-time error can be produced, or the scheduler could fall back on a default
schedule for the omitted operators. More interesting than a possible solution is
the fact that such situations may occur. Erroneous schedules are one example,
the inter-category dependencies that we discussed in Section 3.4 are another.

Because configuring OpenSolver is error-prone, in most cases this is done
by other programs. Therefore, it makes sense to consider the language of Fig-
ure 3.2 an assembly language , now used to configure our abstract branch-and-
propagate tree search engine instead of a CPU. Assembler is usually generated
by compilers that bridge the semantic gap to a higher-level programming lan-
guage, and likewise our configuration language is usually produced by peripheral
programs that complement OpenSolver to form a constraint solver with a proper
user interface. As an example, for the experiments reported in Chapter 5 we used
a two-stage translation of arithmetic constraints into OpenSolver configuration
files. The programs involved in this translation are responsible for generating
correct schedules for the operator-based scheduler. Drawing the analogy with
assembly languages further, for a coherent set of plug-ins it could be considered
to develop a compiler for a modeling language such as OPL [VH99].
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Figure 4.2: Four value selection strategies supported by DiscreteDomain: (a)
enumeration, (b) left-enumeration, (c) right-enumeration, and (d) bisection

4.1.2 Search

Basic Strategies

Recall from Section 2.3.2 that search involves branching and traversal. Basic
branching strategies can be defined by a combination of a variable selection strat-
egy and a value selection strategy. To start with the latter, as we discussed in
Section 3.2.1, the variable domain type plug-ins implement basic value selection
strategies. For example, in our finite domains implementation, domains can be
split in several different ways. These are illustrated in Figure 4.2, for the example
domain {1, 2, 3, 4, 5, 6}.

Two reduction operator plug-ins, FailFirst and RoundRobin complement
the basic value selection strategies of the domain types with a variable selection
strategy to form complete branching strategies.

Fail-First. The FailFirst plug-in implements the fail-first variable selection
strategy, discussed in Section 2.3.2. The specifier for this plug-in lists the variables
that the strategy is applied to, preceded by an (integer) indication of the desired
value selection strategy, for example:

DRF FailFirst { 0, x1, x2, ... };

This specifies that from the listed variables x1, x2, . . . , we select a variable
that reports the smallest domain size greater than one. If several such vari-
ables exist, the first one in the list is selected. The integer value 0 specifies how
to create the subdomains for this variable, but interpretation of this value de-
pends on the domain type of the selected variable. For example, if the selected
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variable is of type DiscreteDomain (see Section 4.2), then 0 specifies that the
subdomains are generated through enumeration, 1 specifies left-enumeration, 2
specifies right-enumeration, etc. As another example, for RealInterval variables
(see Section 4.5), only bisection has been implemented, but the integer argument
is used to specify the order in which the subdomains are generated. This allows
for easy switching between leftmost-first and rightmost-first traversal.

The FailFirst plug-in also implements a strategy that is sometimes referred
to as fail-last : select the variable with the largest domain. In either mode, as
an alternative, the search for the variable with the desired domain size can be
started from the middle of the list outwards. The same effect could be achieved
by a permutation of the list of variables. Fail last, and the alternative search for
the smallest or largest domain are specified by prefixing the specifier string (with
a letter l and/or m, respectively).

Round Robin. The RoundRobin plug-in tries to branch on all variables in
turn. Starting from a sequential traversal of the variables in the specifier string,
it selects the variable with domain size greater than one that has least recently
been selected. Therefore, at every node of the search tree we need to remember
the index of the variable that was split to create it. For this purpose we use an
annotation with a single integer.

Program 4.1 shows a typical configuration for round robin search. The first
line installs the integer annotation. The value 0 in its specifier string is the initial
value, which applies to the root node of the search tree. In this case, it indicates
that the first variable in the RoundRobin specifier string, x1, is to be split first.
If the IntegerAnnotation plug-in instance is not present, RoundRobin will just
select the first variable that can be split, resulting in a chronological variable
selection strategy. The specifier string for the RoundRobin plug-in itself is similar
to that for FailFirst, discussed above, so again the leading zero identifies a
specific, but domain type dependent value selection strategy.

ANNOTATION IntegerAnnotation { 0 };

VARIABLE x1 IS ...

VARIABLE x2 IS ...

...

DRF ...

...

DRF RoundRobin { 0, x1, x2, ... };

Program 4.1: Skeleton of a configuration for search based on a round robin vari-
able selection strategy
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The default traversal strategy is to maintain the search frontier as a stack,
resulting in a depth-first search. Constraint propagation runs to completion, in
a single node of the search tree. Below we will discuss an alternative traversal
strategy called limited discrepancy search, and a variant of this strategy that was
implemented for OpenSolver.

Limited Discrepancy Search

Limited discrepancy search (LDS, [HG95]), can be used when a good heuristic,
in the form of a value selection strategy, is available to guide the search. The
idea is that the heuristic will make only a few mistakes when assigning values to
variables. When reaching the first node of the search tree that is a failure (the
leftmost path in the tree), LDS first tries all alternatives that make exactly one
different decision. In a binary search tree, this corresponds to all paths that follow
the right branch in exactly one internal node, and the left branch everywhere
else. If these new attempts all fail, LDS continues by trying two deviations from
the leftmost path, and so on, gradually increasing the number of deviations, or
discrepancy , until all alternatives have been explored.

LDS can be effective for single-solution search, and for optimization schemes,
such as branch-and-bound (see Section 5.9.2), where it may find better suboptimal
solutions and achieve stronger pruning than a regular depth-first search. For a
purely combinatorial all-solution search it will not improve on any other traversal
strategy.

The straightforward implementation of LDS in OpenSolver uses an integer
annotation to record the discrepancy of each node of the search tree. Just like the
RoundRobin branching operator annotates every node of the search tree with the
index of the least recently selected variable, the branching operator for LDS search
could maintain the discrepancy annotation. Complemented with a container plug-
in that keeps the nodes in the search frontier sorted on the basis of their (integer
valued) annotation, we can explore the nodes with the smallest discrepancy first.

The problem with this implementation is that while exploring the set of nodes
that have discrepancy n (called the n-th wave), we will also be generating nodes
of a higher discrepancy (n + 1, and higher values in case of a non-binary value
selection strategy). The size of the search frontier that we accumulate before
starting the next wave is exponential in the size of the problem. To see this,
consider the search tree for a problem with n binary variables. After processing
all nodes of discrepancy d − 1, the search frontier consists of those nodes of
discrepancy d that are right branches. Let rd denote the number of such nodes.
In the worst case (no pruning), the tree consists of 2n+1−1 nodes, 2n−1 of which
are right branches. With n binary variables, there are n + 1 possible discrepancy
values, so if all nodes were evenly distributed over the discrepancies, there would
be (2n − 1)/(n + 1) nodes of a given discrepancy. This is not the case: there is,
for example, only one node of the highest discrepancy n + 1, so (2n − 1)/(n + 1)
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is a lower bound for the largest rd in r0, . . . , dn. This fraction is exponential in
n, and as a result, even though in practice constraint propagation will prune a
large part of the search space, the size of the search frontier is bounded only by
an exponential function, and this implementation is too memory intensive.

Memory-Bounded LDS

The root of the problem with LDS is that OpenSolver explicitly maintains the
search frontier. The problem is even more severe because OpenSolver is a copying-

based solver (see also the next section) where the nodes in the search frontier
are full copies of their parents, with minor modifications. LDS was originally
formulated as an iterative algorithm: for increasing discrepancy values, a search
procedure is called that performs a depth-first search, pruning all nodes that
exceed the discrepancy value. This iterative algorithm does not suffer from the
memory overhead, but a large amount of work is potentially repeated: for a
purely combinatorial problem, the last iteration of an exhaustive search is a full
depth-first exploration.

However, LDS is used primarily for constrained optimization problems. In
this case, if we want to spend only a limited time on searching, and a trust-
worthy value selection strategy exists, iterative LDS was demonstrated to find
better suboptimal solutions than backtracking [HG95]. We have not found any
results in the literature indicating that iterative LDS outperforms chronological
backtracking for a full best-solution search.

There are several ways to implement an iterative scheme in OpenSolver, but
all of them are slightly artificial. One that we tried is based on nested search
(see Chapter 7): a branching operator enumerates increasing allowed discrep-
ancy values. For each value, by means of nested search we solve a full CSP in
which a constraint has been posted that actively prunes away the nodes with
discrepancy values that exceed the current maximum. For this implementation,
some special-purpose reduction operators were needed to maintain the discrep-
ancy information in regular CSP variables, in order that it becomes amenable to
constraint propagation.

The experiment for which we used LDS (see Section 7.5.4) involves a full best-
solution search for an optimization problem. While good solutions were found
early compared to depth-first search, the stronger pruning did not outweigh the
duplicate work, and overall performance did not improve. Therefore, instead of
the iterative implementation we used a variant of the straightforward implemen-
tation discussed above: store the entire search frontier, and explore the nodes
with the smallest discrepancy annotation first. If, as a result of branching, the
size of the search frontier exceeds a certain threshold, switch to depth-first search
to clean up the search frontier. Only when the size of the search frontier drops
below a second, lower threshold, resume the discrepancy-based traversal.

For this scheme, which we refer to as memory-bounded LDS, the following
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facilities are needed:

• an annotation plug-in LDSAnnotation that allows us to maintain both the
depth and the discrepancy of a node in the search tree,

• a branching operator Discrepancy to annotate the nodes,

• a container MBLDSStack that switches between the two modes of traversal.

Program 4.2 shows a typical configuration file for memory-bounded LDS, using
fail-first as a variable selection strategy. The specifier string for the MBLDSStack

FRONTIER MBLDSStack { 1024, 10240 };

ANNOTATION LDSAnnotation { 0, 0 };

VARIABLE x1 IS ...

VARIABLE x2 IS ...

...

DRF ...

...

DRF Discrepancy { FailFirst { 0, x1, x2, ... } };

Program 4.2: Skeleton of a configuration for memory-bounded LDS search

container plug-in consists of the threshold sizes that trigger switching traversal
modes. In the current implementation, these are numbers of stored nodes. The
actual amount of memory occupied by a node depends on many factors, notably
the number of variables. Therefore an implementation of the container that
measures actual memory usage would be preferable.

Memory-bounded LDS is not as robust as iterative LDS, because potentially
it could be doing a depth-first traversal most of the time. For our experiments,
this did not happen, and we were able to exploit the advantages of LDS for a full
best-solution search, in a copying-based solver.

Adapters

The specifier string for the Discrepancy plug-in contains an identifier-specifier
pair for another branching operator. Internally, it actually creates this other
plug-in instance, for which it serves as a wrapper. The branching is performed
by the inner operator. Discrepancy only annotates the resulting nodes with the
correct depth and discrepancy information.

Plug-ins like Discrepancy are called adapters . They are used to make minor
modifications to the functionality of other plug-ins, usually in the same category,
or to combine the functionality of several such plug-ins. We will see more examples
of adapters in this thesis.
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4.2 Finite Domains

Many combinatorial problems are naturally expressed as a CSP using Z, the set
of all finite sets of integers, as a variable domain type. The variables of such
CSPs are usually called finite domains variables, because of the nature of the
domains in Z, but a more important property is that a representation exists for
all possible subsets of a variable’s original domain.

Plug-ins

The OpenSolver plug-in for finite domains is called DiscreteDomain. It is acti-
vated as follows:

VARIABLE identifier IS DiscreteDomain { specifier };
where identifier is the name of the variable, and specifier is a sequence of integer
ranges.

The following constraints are available for DiscreteDomain:

• The binary disequality constraint x− y 6= c, where c is an integer constant.
It is implemented by a plug-in DDNEQ that works exactly as explained in
Example 2.3.2 on page 19. Its use is demonstrated by Program 4.3 on
page 77.

• The constraint 〈x, y〉 ∈ T , where T is some set of allowable tuples. It is
implemented by the BinaryConstraint plug-in. The following example
shows its use.

DRF BinaryConstraint { <q1,q2> IN {

<1,3>,<1,4>,<2,4>,<3,1>,<4,1>,<4,2> } };

The latter plug-in uses only a very crude algorithm and data structures for veri-
fying that values in one domain are supported, through the list of allowed tuples,
by a value in the other domain. Values that are not supported are removed
from the domains. State-of-the-art algorithms for enforcing arc consistency try
to minimize the number of support checks , and will be more efficient than our
implementation. See notably the work of Van Dongen, e.g., [vD02].

As we mentioned at the end of Section 3.2.2, a set of reduction operators can
maintain a protocol to distinguish different kinds of modifications of domains.
This is used by the reduction operators for finite domains variables: DDNEQ and
BinaryConstraint distinguish between the following events:

• changing the bounds of a domain

• deleting a value that is not a bound

• reducing a domain to a singleton set
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DDNEQ can make a change only if the value of one of the variables that it is applied
to is fixed, so its application is triggered only if a domain becomes a singleton
set. BinaryConstraint is triggered by all three events, and the first event, a
change of the domain bounds, could be used to trigger a reduction operator that
links a DiscreteDomain variable to a variable whose domain has an interval
representation.

Protocols regarding modifications to variable domains can be implemented in
two ways (see also Program 3.2 on page 58):

• By setting bits in an unsigned integer array element for each argument of
a reduction operator. A complementary bitmask per argument is used to
see if a particular operator needs to be scheduled after a domain has been
modified.

• If the bitmask does not match (e.g., because it is set to all-zeros), a second
check is performed to see if a DRF wants to be scheduled for a particular
value of the unsigned integer. This can be used for a different encoding
scheme, using an enumeration of possible cases, when the 32 bits offered by
the bitmask are insufficient to encode all changes that we are interested in.

For the finite domains reduction operators we used the first implementation.

Efficiency of OpenSolver

The unavoidable benchmark problem for finite domains constraint solving is the
n-queens problem: place n queens on an n× n chess board in such a way that
they do not attack each other. This can be formulated as a CSP as follows:

〈 qi 6= qj, qi − qj 6= j − i, qi − qj 6= i − j, for 1 ≤ i < j ≤ n ;
q1, . . . , qn ∈ {1, . . . , n} 〉

Any solution to the n-queens problem will have exactly one queen per column
(and row) of the chess board. This constraint is inherent to our CSP formulation,
which uses a variable per column, indicating the position of the queen in that
column. The constraints of the CSP state that no two queens can be on the same
row or diagonal, in either direction.

Other CSP formulations for the n-queens problem exist, notably one where
the above 3

2
n(n + 1) constraints are replaced by 3 all different constraints, one for

the row constraints, and one for both diagonals. The all different constraint entails
that different values are assigned to all variables that the constraint applies to.
It can be applied to an arbitrary number of variables, and specialized algorithms,
beyond regular constraint propagation exist for enforcing it. Constraints that
have these properties are sometimes called global constraints.
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Because the specialized algorithms used for processing global constraints run
counter to the compositional approach that we experiment with, no global con-
straints have been implemented for OpenSolver. There are, however, no lim-
itations for doing so, and plug-ins for global constraints would make valuable
additions. Typically, global constraint processing algorithms require that addi-
tional information about the CSP is maintained during constraint propagation
and search. Because the state of reduction operator plug-ins is global, this infor-
mation needs to be maintained elsewhere, for example in auxiliary variables of a
special-purpose domain type (see Chapter 6).

While other CSP formulations of the n-queens problem exists, because of its
scalability and simplicity the above formulation is perfectly suited for comparing
the efficiency of the basic machinery of different solvers. For example we do
not have to worry about the efficiency of the implementation of the all different

constraint. In Table 4.1 we report the results of a comparison of OpenSolver
with ILOG Solver 5.1, on a SUN E450. We compare user time, as reported by
the GNU/Linux time command, for counting all solutions. The configurations
are similar to that of Program 4.3, and use the variable-based scheduler, which
resembles the scheduling procedure that is described in the ILOG Solver manual.

VARIABLE q1 IS DiscreteDomain {1..4};

VARIABLE q2 IS DiscreteDomain {1..4};

VARIABLE q3 IS DiscreteDomain {1..4};

VARIABLE q4 IS DiscreteDomain {1..4};

DRF DDNEQ { q1-q2 <> 0 }; DRF DDNEQ { q1-q2 <>-1 };

DRF DDNEQ { q1-q2 <> 1 };

DRF DDNEQ { q1-q3 <> 0 }; DRF DDNEQ { q1-q3 <>-2 };

DRF DDNEQ { q1-q3 <> 2 };

...

DRF DDNEQ { q3-q4 <> 0 }; DRF DDNEQ { q3-q4 <>-1 };

DRF DDNEQ { q3-q4 <> 1 };

DRF FailFirst { 0, q1, q2, q3, q4 };

SCHEDULER VariableScheduler { };

Program 4.3: Configuration for solving the 4-queens problem

Both solvers report the same number of solutions, failures and internal nodes,
from which we can conclude that the computations are comparable. The results
indicate that the efficiency of the basic procedures in OpenSolver is realistic in
the sense that it is comparable to that of a successful commercial solver.
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time (sec.)
n solutions failures internal ILOG Solver OpenSolver
4 2 4 5 0.02 0.01
8 92 292 383 0.05 0.05

10 724 4,992 5,715 0.72 0.76
12 14,200 101,882 116,081 17.61 17.16
14 365,596 2830,370 3,195,965 572.31 512.97
15 2,279,184 16,263,952 18,543,135 4757.66 3056.49

Table 4.1: A comparison of OpenSolver and ILOG Solver for n-queens

State Restoration Policy

An important aspect of a finite domains constraint solver implementation is the
construction of the data structures, notably the variable domains, for the node
of the search tree where search continues. This is usually referred to as the state

restoration policy . While hybrid methods exist, the main options are [Sch99]:

Copying When the search tree is expanded by branching, the data structures
that define the current node are copied for all new nodes. These copies
are then modified to construct subproblems. At potentially high memory
costs, every node of the search frontier is immediately available for further
exploration.

Trailing Only the current node of the traversal is maintained, but all changes
(deletions of values) to the domains of variables leading up to this node
are registered. Backtracking is implemented by undoing changes to reach
an internal node of the search tree, from which search can progress along
an alternative branch. Trailing is the predominant method used in current
constraint solvers.

Recomputation Instead of unwinding a trail of changes, with a recomputation
state restoration policy, the internal nodes are reconstructed from a shal-
lower internal node by repeating a part of the traversal of the search tree.
Iterative schemes such as LDS, which we discussed in the previous section,
can be seen as a form of recomputation. Other forms of recomputation also
exist that represent internal nodes in the search frontier by the branching
decisions that need to be made to arrive at that node.

OpenSolver is copying-based, so the search frontier is maintained explicitly
and the full data structures are available in every node. For finite domains this
is the most memory-intensive option, but it can be justified because OpenSolver
is a general-purpose solver. Interval computations, for example, use very modest
data structures, and for that domain type, copying is a logical choice.
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ILOG Solver DiscreteDomain
n nodes time (sec.) memory time (sec.) memory

100 508,426 528.84 12M 523.53 5992K
500 364,754 3643.97 111M 4210.80 106M

1000 996 819.93 418M 1241.24 453M

Table 4.2: Memory consumption for large n-queens instances (first-solution)

To have an idea about the memory efficiency of our solver, we ran a number of
larger instances of the n-queens problem. Because of the large search space and
many solutions, we did a first-solution search on these instances. For search we
still use the fail-first variable selection strategy, but now starting the search for the
variable with the smallest domain from the middle of the chessboard outwards. In
the ECLiPSe tutorial [CHS+03], this strategy is shown to give better performance
for this problem. Because of the quadratic number of DRFs we let the variable-
based scheduler ignore the information on redundant DRFs. Table 4.2 shows the
results of these experiments. Reported memory usage is the resident set size,
reported by the top command.

ILOG Solver uses a combination of trailing and recomputation [Per99]. These
results suggest that also regarding memory consumption, in spite of using copying
as a state restoration policy, OpenSolver configured as a finite domains constraint
solver is fairly efficient. The difference in running times for these large instances
is partly due to using input files, which have to be parsed. ILOG Solver is
a library, so no I/O is involved with setting up the large number of reduction
operators involved in these instances. Another, more important factor is ignoring
the redundancy of reduction operators. Probably in ILOG solver this information
is subject to recomputation as well, or a more efficient representation is used, for
example one based on instantiated variables. The latter solution fits the specified
scheduling mechanism well, and would be easy to incorporate in OpenSolver.

The default implementation of finite domains uses a bitmap, that is copied
during the cloning operation. As an experiment, we implemented a plug-in
DDTrail that uses an alternative representation, where each variable domain is
represented by a linked list of deleted values. Copying a domain as a part of
branching consists only of replicating a pointer to the last element of this list.
The list then becomes a tree, and different changes can be made in the different
branches. Reference counts are used to manage the deallocation of the trails of
deleted values. During constraint propagation, upon the first membership test,
the bitmap is restored to avoid having to traverse the linked list to the root of
the tree many times. The idea was to exploit some of the benefits of the trail-
ing state restoration policy in a copying-based solver. This will probably work
for problems with large numbers of large finite domains variables, to which little
changes are made between different nodes of the search tree (i.e., many needless
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copies of large bitmaps). For our experiments, this was not the case.

4.3 Best-First Search: the Knight’s Tour

Having introduced finite domains, and the basic facilities for search, we now study
a slightly more complex combinatorial problem that requires an advanced search
strategy for efficient solving. The purpose of this section is to demonstrate how
such search strategies can be composed from a selection of OpenSolver plug-ins.
Being of limited practical relevance yet, the problem is to move a knight piece
around an n × n chess board, in such a way that all positions on the board are
visited exactly once.

The problem can be formulated as a CSP as follows: with each of the n × n
locations that constitute the tour we associate a variable, whose possible values
are the actual positions on the board, numbered 1..n × n. The variables for
all n × n − 1 consecutive steps are constrained such that the positions that they
indicate must be reachable through a knight’s move, and all variables must assume
different values. As an example, for a 3 × 3 board, where the positions are
numbered

7 8 9

4 5 6

1 2 3

and for which there obviously is no solution, the CSP is

〈〈x1, x2〉, 〈x2, x3〉, . . . , 〈x8, x9〉 ∈ {〈1, 8〉, 〈1, 6〉, 〈4, 9〉, 〈4, 3〉, 〈7, 6〉, 〈7, 2〉, 〈2, 7〉,
〈2, 9〉, 〈8, 3〉, 〈3, 4〉, 〈3, 8〉, 〈6, 7〉, 〈9, 2〉, 〈9, 4〉},

all different(x1, x2, x3, x4, x5, x6, x7, x8, x9) ;
x1, x2, . . . , x9 ∈ {1, . . . , 9} 〉

.
OpenSolver can easily be configured for solving this CSP:

• for the n2 − 1 “knight’s move” constraints, whose definition involves an
enumeration of all positions that are linked by such a move, we can use the
BinaryConstraint plug-in, and

• for the all different constraint we can use 1
2
n2(n2 + 1) disequalities, as we

did for n-queens.

The search space is quite large though, and doing a basic fail-first search seems
already intractable for n = 8 (but a better implementation of all different could
improve the situation).
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(a) (b)

Figure 4.3: Search trees for (a) regular branch-and-propagate search and (b)
our implementation of best-first search, vertical branches representing constraint
propagation

Fortunately, a very good heuristic exists, which makes the problem easy to
solve. It is said to have been discovered in 1823, by H.C. von Warnsdorf2. This
heuristic dictates that for the next location of the tour, we always choose the po-
sition that has the smallest number of possibilities for moving on. It is very easy
to exploit this heuristic in a program written specifically for solving the knight’s
tour problem. Alternatively, we could write an OpenSolver branching operator
that knows about the problem, and generates subdomains for the variable hold-
ing the next location of the tour accordingly: a singleton set with the selected
position, and a second subdomain containing all other alternatives. This results
in a dedicated solver as well, but being based on OpenSolver, we benefit from
readily available facilities like the finite domains implementation and search.

Instead of a problem-specific solution, we can aim at a more generalized ap-
proach, and try to formulate the heuristic in terms of aspects of our model of
constraint solving. Observe that with enumeration value selection, the descen-
dants of an internal node of the search tree correspond to the different alternatives
for the next location of the tour. After constraint propagation, the nodes that
comply with the heuristic will have the smallest total size of the variable domains.
Based on this observation, we can implement the heuristic as follows.

• After branching, perform constraint propagation in all descendant nodes.

• Proceed by expanding a node for which the sum of all domain sizes is
minimal.

Compared to the default, where the traversal depends on a selection from the set
of nodes that are pending constraint propagation, we now make the selection from
the set of nodes that are pending branching. Figure 4.3 illustrates the difference
in the resulting search trees.

2Our source of information on this problem is the website http://www.delphiforfun.org/
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Implementation

The search strategy that we just described is implemented in OpenSolver by three
plug-ins:

• a node evaluator AnnotateSize that annotates the nodes of the search tree
with the sum of the domain sizes,

• a container AnnotationOrderedStack that always has a node with the
smallest integer annotation on top,

• a selector RestrictiveBranching that selects a single node from the “pend-
ing branching” (Figure 3.3) set only if the set of nodes that are pending
propagation becomes empty.

These three plug-ins are activated by including the four lines of Program 4.4 in
the configuration script. The ANNOTATION statement is there just to provide an
initial annotation for AnnotateSize to use. Note that AnnotateSize is another
example of an adapter, this one in the node evaluator category. Internally, before
annotating the node, it applies another node evaluator to determine the nature
(solution, failure, or internal) of a node. Here we use the CanonicalDomains

node evaluator, which tests for canonical domains to distinguish solutions.
CanonicalDomains is also the default node evaluator , and therefore it nor-
mally does not occur in configuration scripts. We will see an alternative to the
default in Section 4.5.

TDINFO AnnotateSize { CanonicalDomains { } };

ANNOTATION IntegerAnnotation { 0 };

INTERNAL AnnotationOrderedStack { };

EXPAND RestrictiveBranching{ };

Program 4.4: Activating the plug-ins that implement Warnsdorf’s heuristic

Using RestrictiveBranching to select the nodes where the search tree is
expanded by branching, the set of nodes that are pending propagation is emptied
before new branches are created. The selected node is then split into a number of
subproblems. Constraint propagation is applied in each of these nodes, and if this
does not lead to a failure, the nodes are added to the “pending branching set.”
Only after all descendants have been processed, and the “pending propagation”
set is empty again, a new node is selected for branching. Because branching
reduces the domains, with AnnotateSize and AnnotationOrderedStack this new
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30 33 26 41 16 19 24 21

27 42 29 32 25 22 15 18

34 31 40 43 46 17 20 23

39 28 53 62 57 48 45 14

54 35 56 47 44 63 58 49

3 38 61 52 59 8 13 10

36 55 2 5 64 11 50 7

1 4 37 60 51 6 9 12

Figure 4.4: Knight’s tour for n = 8

selection will be one of the most recent additions. Globally, the search is depth-
first, but at every level, constraint propagation is applied in all siblings. The
resulting search tree is illustrated in Figure 4.3(b).

Warnsdorf’s heuristic is a form of best-first search , where a measure of
quality is associated with the nodes. In this case, this measure is evaluated after
constraint propagation, but this is not typical. Using the new search strategy,
a solution to the knight’s tour problem is found without backtracking, for all
instances that we tried. Figure 4.4 shows a solution for the 8 × 8 problem. It
is found in less than a second on our test machine, and 219 nodes are visited in
the process. For n = 18, the search is still backtrack-free, and 1394 nodes are
visited in 59 seconds. In each of these nodes, a fixed point of 52,649 DRFs is
computed, 323 of which are instances of BinaryConstraint. Table 4.3 shows
some additional information.

We should remark that our scheme is not a fully accurate implementation of
Warnsdorf’s heuristic. In each of the candidate nodes, constraint propagation
may reduce the domains of variables that are more than a single step away,
which could lead to different choices. Since the desired effect is obtained, we

nDRF time memory
n nvar 6= K.M. nodes (sec.) (bytes)
8 64 2,016 63 219 0.400 3584K

10 100 4,950 99 378 1.760 8932K
12 144 10,296 143 574 5.310 20M
14 196 19,110 195 810 13.120 45M
16 256 32,640 255 1,108 29.240 89M
18 324 52,326 323 1,394 58.870 174M

Table 4.3: Statistics; K.M. is the number of “knight’s move” constraints
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have not investigated if this occurs in practice. Although the search is backtrack-
free, a large number of nodes are visited and stored. The time spent to visit
the nodes is justified because we want to evaluate the heuristic using constraint
propagation. A more efficient solver can be obtained by writing a dedicated
branching operator, as we discussed at the beginning of this section. Storing the
nodes could be avoided by writing a generic branching operator that internally
performs a round of constraint propagation to evaluate the alternatives, and then
generates two branches: one for the alternative that evaluates best, and one for
all other alternatives. Such a branching operator would be parameterized by a
set of propagation operators, and possibly a node evaluator. It would be quite
similar to the operator for nested search, discussed in Chapter 7.

It would be interesting to investigate the effect of Warnsdorf’s heuristic on
other constraint satisfaction problems, for example on randomly generated prob-
lems. Perhaps this could help us to identify the properties that a CSP must
possess in order for the heuristic to work. The generic implementation described
in this section facilitates such experiments. To our knowledge, the heuristic is
not normally available in other general-purpose constraint solvers.

4.4 Satisfiability of Propositional Formulas

In this section we configure OpenSolver as a solver for checking the satisfiability
of propositional formulas in conjunctive normal form (CNF). This problem is
usually referred to as the SAT problem, and solvers for it are called SAT solvers.

A propositional formula in CNF is a conjunction of clauses, where a clause
is a disjunction of literals, and literals are propositional variables (positive
literals), or their negations (negative literals). An example is the formula

(x ∨ y ∨ ¬z) ∧ (¬x ∨ z) ∧ (y ∨ z).

Possible values for the variables are true and false. A clause evaluates to true if
at least one of its literals evaluates to true, where a negation of a propositional
variable evaluates to true if the value of the variable is false. A formula is called
satisfiable if there exists an assignment of values to variables for which all clauses
evaluate to true.

Almost all complete solvers for the SAT problem descend from an algorithm
known as DPLL [DLL62], which can be explained as a systematic exploration of
all possible assignments, plus the following inference techniques:

• Unit propagation If a clause contains only a single literal, we can deduce
that this literal must have the value true (the clause is said to be resolved).

• The pure literal rule If a variable occurs only as one form of literal, i.e.,
the negation of this literal does not occur in any unresolved clause, then we
can set the variable such that the literal evaluates to true.
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If a literal is set to true, either as part of the exploration or as a result of inference,
DPLL removes all clauses in which it occurs, and removes its negation from
the remaining clauses. Once we reach an empty formula, we have established
satisfiability of the original formula.

The straightforward way to configure OpenSolver as a SAT solver uses a prop-
agation operator per clause that enforces the constraint that at least one of the
variables occurring as positive literals must have the value true, or at least one
of the variables that occur as a negative literal must have the value false. This
corresponds to the unit propagation step of the DPLL algorithm, except that
OpenSolver does not directly support the modification of constraints. However,
variables whose domains have been reduced to singleton sets do not trigger any
further reduction, and the reduction operators for clauses that evaluate to true

can deactivate themselves in any branch of the search tree. Implementation of
the pure literal rule is not so straightforward, but the SAT community seems to
agree that the application of this rule does not pay off (see, e.g., [ZM02]).

Two plug-ins implement the configuration that we just outlined. Domain type
Bool supports Boolean variables, and propagation operator Clause implements
the constraint that at least one literal of a clause evaluates to true. The code below
demonstrates the use of these plug-ins for the example problem at the beginning
of this section. We could have made the Clause plug-in operate on finite domains,
but for experimenting with SAT specific heuristics that are discussed below, we
used a dedicated variable domain type.

VARIABLE x IS Bool { 0,1 };

VARIABLE y IS Bool { 0,1 };

VARIABLE z IS Bool { 0,1 };

DRF Clause { x,y;z };

DRF Clause { z;x };

DRF Clause { y,z; };

DRF FailFirst { 0,x,y,z };

In their basic form, the Bool and Clause plug-ins consist of 400 lines of code,
and from this perspective, little effort is required to configure OpenSolver as a
SAT solver that is comparable to the DPLL algorithm. However, the DPLL al-
gorithm is only a very basic solver, and contemporary solvers can handle vastly
larger sets of problems. Complete solvers for the SAT problem, such as Chaff
[MMZ+01] and GRASP [MSS96] all descend from the DPLL algorithm, but aug-
ment it with the following techniques:

• a good variable and value selection strategy,

• clause learning, and

• non-chronological backtracking.
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Variable and value selection strategies for the SAT problem can be imple-
mented in OpenSolver. As an example, we implemented the DLIS (Dynamic
Largest Individual Sum) heuristic [Sil99], which entails that the search tree is al-
ways expanded by assigning the value true to the literal that occurs in the largest
number of unresolved clauses. We implemented this heuristic by decorating each
domain of type Bool, through the specifier string, with both the number of clauses
in which it appears as a positive literal, and the number of clauses in which it
appears as a negative literal. When a clause is resolved, it will ask the OpenSolver
scheduler to be deactivated. At the same time, it will tell the Bool instances to
which it applies to decrease one of these two counters, depending on the sign of
the variable in that particular clause. When splitting a variable of type Bool,
it will instantiate itself to false in the node that is added to the search frontier
last, if the counter of negative occurrences is greater than the counter of positive
occurrences, and to true otherwise. By default, the search frontier is managed as
a stack, and the most recently added alternative is explored first. As the final
element of our implementation of DLIS, uninstantiated Bool variables report as
their size 2, plus the largest of their two clause counters, and we select a variable
that reports the largest size (fail-last, see 4.1.2).

Clause learning is based on the observation that each time a failure is
deduced, we can derive a new clause that explicitly prevents the combination of
assignments that has lead to that particular node in the search tree. Not all
assignments are relevant to this failure though, and a careful bookkeeping of the
changes that trigger clause resolution will allow us to isolate exactly the literals
that represent the contradicting assumptions made during the search. A negation
of the conjunction of these literals is itself a clause. Such a clause, or in general,
a constraint that corresponds to a deduced failure is also called a no-good , and
maintaining these constraints is known as no-good recording . No-goods carry
redundant information that is hidden too deep in the problem for the solver to
exploit. As such it makes sense to add a no-good to the problem that we are trying
to solve, because if it had been present in the first place, the current failure would
have been prevented. Moreover, because only a fraction of all assignments that
lead to the failure are actually causing it, the same failure could occur again in
another part of the search tree, and adding a no-good will prevent this.

Maintaining an explanation for the assignments of truth values is straightfor-
ward. This was implemented inside the Bool plug-in by building alongside the
search tree, for each variable, a tree of data structures with leaves for branching
decisions, and internal nodes for resolved clauses, linking to the nodes for the
assignments that trigger the resolution. The Clause plug-in was made aware of
this data structure, and modified to use it for deriving a no-good upon deduc-
tion of a failure. Implementation of clause learning is impeded, though, by the
lack of facilities for adding DRFs during the search. This is not a design deci-
sion, it simply has not been implemented. As a work-around, we can store the
learned clauses in the domain of a special-purpose variable. All Clause instances
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can access this variable, and a dedicated operator, which applies to all Boolean
variables, would then actually enforce the learned constraints. A problem with
this work-around is that the scheduling of the DRFs for the learned clauses then
becomes the responsibility of this last Clause instance, and is separated from the
regular scheduling mechanism.

The conflicting assumptions that lead to a failure can be stored as a no-good,
for more powerful pruning in other parts of the search tree, but analyzing the
conflict may also allow us to skip a part of the search tree that would normally
be explored by backtracking from a failure. This is the case if the most recent
assignment to a variable involved in the conflict occurs at a shallower level in the
search tree than the level directly above the conflict. Techniques for analyzing,
and exploiting conflicts to “jump” to a higher level in the search tree are known
as non-chronological backtracking , or look-back techniques. Conversely,
constraint propagation can be explained as looking forward to future branching
decisions). A comprehensive overview of non-chronological backtracking tech-
niques is given in [Dec03].

While heuristics and clause learning can be implemented, the design of Open-
Solver is unsuited for non-chronological backtracking. The fact that the search
frontier is stored explicitly makes this difficult: the nodes that would be skipped
by a backjump of more than a single level have already been created. The hierar-
chical information that is needed to identify the nodes that can be skipped after
a backjump can be maintained in annotations, but even so there is no mechanism
for discarding these nodes, and they have to be pruned away by propagation of
a no-good for the conflict. Mechanisms for backjumping can be added, but the
copying state-restoration policy used in OpenSolver is probably the worst alter-
native for a proper implementation of backjumping, because expensive copying
operations are involved in creating the nodes that may be discarded later.

The clause learning scheme that we outlined above did not lead to a significant
speedup of SAT solving. It would be interesting to investigate if more advanced
conflict analysis techniques that may deduce more powerful no-goods, and the
implementation of proper backjumping mechanisms would allow us to approach
the performance of modern SAT solvers. For the latter we would also need to
experiment with a trailing state restoration policy, which does not suffer from the
overhead of unnecessary copying.

4.5 Real Numbers

In this section we demonstrate how OpenSolver is configured for solving con-
straints on the reals. The facilities for these constraints are a modification of
those for arithmetic constraints on integer intervals, which are analyzed in more
detail in Chapter 5. Where the same notions apply, we refer to the definitions in
that chapter.
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The model of constraint solving that underlies this thesis, and which we de-
scribed in Chapter 2, applies to combinatorial problems, where we search for
combinations of elements from the domains of the variables that satisfy all con-
straints. In principle these domains are finite sets, but constraints on real valued
variables can be handled by considering finitely many intervals of real numbers.
For this purpose, in Section 2.2.4 we introduced domain type F , containing all
intervals of reals, of which the bounds are floating-point numbers.

Here we limit ourselves to arithmetic constraints that can be written as

p op c

where p is a polynomial, c is a constant, and op ∈ {=,≤,≥} (see Section 5.3).
The way that many constraint systems handle such constraints is by decompos-
ing them into atomic constraints. For arithmetic constraints on the reals, a
suitable set of atomic constraints is the following:

• addition x + y = z

• multiplication x · y = z

• exponentiation x = yn, for n > 1,

• equality x = y,

• disequality x ≤ y

During the search, hull consistency (see Section 2.2.4) is then maintained for
the decomposed problem. This involves the introduction of new variables. It
should be noted that in general, hull consistency for the decomposed problem is
weaker than hull consistency for the original problem: let Pdecomp = 〈C′ ; x1 ∈
D1, . . . , xn ∈ Dn, xn+1 ∈ Dn+1, . . . , xn+m ∈ Dn+m〉 be the decomposition of prob-
lem P = 〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉. Hull consistency of Pdecomp does not imply
hull consistency of P . The following example demonstrates this property. A
detailed analysis is given in [CDR99].

4.5.1. Example. The constraints y = x3, x + y = 0 form a decomposition of
x + x3 = 0. The CSP 〈y = x3, x + y = 0 ; x ∈ [−1, 1], y ∈ [−1, 1]〉 is hull
consistent3, but 〈x + x3 = 0 ; x ∈ [−1, 1]〉 is not. 2

Constraint propagation is usually implemented by inverting the atomic con-
straints to isolate all variable occurrences. These inversions define projections

of the domains of the other variables on the domains of the isolated variables.
For example, for x · y = z we have

• x = z/y, if y 6= 0

3assuming [−1, 1] ∈ F , and using x + y = 0 as a shorthand for x + y = c, with c ∈ {0}.
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• y = z/x, if x 6= 0

• z = x · y

The projections follow from interval extensions of the arithmetic operations. In-
terval extensions form the basis of interval arithmetic, which is due to Moore
[Moo66]. An interval extension of a function f : IRn → IR is a mapping
F : Fn → F , such that for all 〈D1, . . . , Dn〉 ∈ Fn and 〈d1, . . . , dn〉 ∈ D1×. . .×Dn,
f(d1, . . . , dn) ∈ F (D1, . . . , Dn). For example, ignoring bounds +/ − ∞ and us-
ing an infix notation, the interval extension of the subtraction can be defined as
follows

[a, b] − [c, d] = hull([a − d, b − c])

When applied to the domains of the variables in the right-hand side of the in-
versions in the above example, the interval extensions of the division and mul-
tiplication operations yield a set of values for the isolated variable that do not
violate the constraint. The domains of these variables are then intersected by the
smallest F interval that contains this set.

For expressions that involve more than a single operator, an interval extension
can be constructed from the syntactical form of the expression as follows.

• Every constant is replaced by the smallest F interval that contains it,

• every variable is replaced by an interval variable, and

• every operator is replaced by the interval extension of that operator.

This is called the natural interval extension of the expression.

A problem with the natural interval extension is that multiple occurrences
of the same variable are treated as if they were separate variables. Consider for
example the natural interval expression of x − x3, applied to the interval [−1, 1].
The interval extension of the exponentiation applied to this interval yields the
interval [−1, 1], the set of all third powers of values in the original interval. When
subtracted from the interval for the other occurrence of x, we get [−2, 2], but this
interval is wider than the interval of possible outcomes of x − x3. In fact, it is
the interval of all possible outcomes of x − y3, with x, y ∈ [−1, 1]. This is called
the dependency problem of the natural interval extension. It lies at the heart
of the discrepancy between hull consistency for a compound constraint, and hull
consistency of the decomposition, illustrated by Example 4.5.1. The decompo-
sition into atomic constraints entails that the natural interval extension is used.
Alternative interval extensions exists, having properties that may be preferable
to those of the natural interval extension, in some situations. A discussion of
these is outside the scope of this thesis, and the reader is referred to the extensive
literature on constraints on the reals, where [CDR99] is a good starting point.
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Implementation

Domain type F is implemented by a plug-in called RealInterval, of which we
have already seen an example on page 40. The RIARule (Real Interval Arithmetic
Rule) plug-in implements constraint propagation. The syntax is

DRF RIARule {x^n*(m) op p};

where x is a variable, n is an integer, m is a monomial, p is a polynomial with
integer coefficients, and op ∈ {=, <=}. The plug-in instance will evaluate the
natural interval extension of the expression n

√

p/m, and update the domain of x
with the hull of the resulting interval, according to operator op.

Recall from Section 2.2.4 that the hull of a set of reals is the smallest floating-
point interval that contains the set. The plug-ins RealInterval and RIARule

are implemented using the gaol library [Gou], which supports interval arithmetic
based on floating-point intervals. Computing with floating-point numbers entails
that potentially, a rounding error is made. In gaol, the hull of the outcome
of interval arithmetic operations is calculated by outward rounding , i.e., the
lower bound is rounded to the greatest floating-point number smaller than, or
equal to the actual value for the lower bound, and the upper bound is rounded
to the smallest floating-point number greater than, or equal to the actual value
for upper bound.

The RIARule plug-in can compute more complex expressions than needed for
the inversions of the atomic constraints. Formally, as soon as we allow more than
a single interval arithmetic operation per projection function, more than a single
rounding error can be made, and it becomes unclear what level of consistency
we are computing. For example, we could allow arbitrary linear constrains as
atomic constraints, as we do for the integer case in Section 5.7. Consider then
the constraint x+y+z = w. When we evaluate hull(Dx+Dy +Dz), the hull of the
interval that contains all possible sums of an element from Dx, Dy, and Dz each,
we have three options for which two intervals to add first. Because floating-point
addition is non-associative, we would be computing the hull of a decomposition
that has a new variable added for either x + y, x + z, or y + z. Because of the
accumulated rounding errors, this interval can be larger than the proper hull of
Dx + Dy + Dz. What is worse, different inversions likely correspond to different
decompositions, and the level of consistency is no longer clearly defined. Even
though there is no reason to expect that this will be a problem in practice, we
therefore prefer to use RIARule only for inversions of atomic constraints.

It is interesting to compare our approach with the HC4 algorithm [BGGP99],
which employs a single reduction operator for a compound constraint. Internally,
this operator decomposes the constraint into atomic constraints, and enforces hull
consistency for this decomposition. Besides not having to introduce new variables
for the decomposition, the HC4 operator is very efficient because it applies the
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inversions of the atomic constraints in a sequence that respects their hierarchical
relationship. For example, if the constraint 2x = z − y2 is decomposed into

t1 = t2
t1 = 2x t2 = z − t3

t3 = y2

then the HC4 algorithm first updates the domains of the (internal) variables t3,
t2, and t1 in a forward evaluation phase . Then it enforces the top level
constraint t1 = t2, and traverses the decomposition in the opposite direction in a
backward propagation phase to update the domain of t3, and of the original
variables x, y, and z.

Because we associate a reduction operator with every inversion of a constraint,
in our approach we can also exploit these dependencies, but without having to
implement a specialized, and somewhat “heavy-weight” reduction operator like
HC4. Instead, we use the programmable scheduler of Section 4.1.1 to ensure that
first the inversions of the forward evaluation phase are applied, and then the in-
versions of the backward propagation phase. The schedule for the operator-based
scheduler can easily be generated automatically, along with the decomposition.
This way, HC4-like functionality can be composed from readily available facili-
ties. A disadvantage is that the decomposition has to be made explicit, but we
can characterize the variables that are introduced as auxiliary variables. This
way, these variables do not influence the search process, and only imply some
memory overhead. The scheme discussed here is demonstrated in Section 5.9.2
in the context of arithmetic constraints on integer interval variables.

Precision

The last two plug-ins that are part of the facilities for constraints on the reals
are a node evaluator and a branching operator that reduce the precision of the
intervals in the solved forms. For domain type F , the default node evaluator
CanonicalDomains, which we encountered briefly in Section 4.3, implements an
ECSP

〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; D1, . . . ,Dn ; A1, . . . ,An〉,
having

Ai = ⌊F⌋ = {[a, b] | a, b ∈ IF, a ≤ b, ¬∃c ∈ IF a < c < b}
i.e., branching continues until the domains are canonical intervals. Sometimes,
we are interested in less precise solved forms. The Precision node evaluator
plug-in allows us to specify that a precision of ǫ > 0 suffices:

Ai = ⌊F⌋ ∪ {[a, b] | a, b ∈ IF, 0 ≤ b − a < ǫ}

A node evaluator only characterizes a node of the search tree as a solution,
failure, or internal node. If a node is characterized as an internal node, it will be
subject to branching. We want to prevent that a variable is selected for branching,
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whose domain already has the required precision. There are several ways in which
we can realize this:

• Through the specifier string, parameterize RealInterval instances with the
required precision. When asked for their size, an instance representing [a, b]
will report 1 iff 0 ≤ b − a < ǫ.

• Alternatively, we can use an adapter for each plug-in, that overrides the size
reported by the plug-in, with one based on the width of the interval that it
represents. This would look something like

VARIABLE x IS LimitedPrecisionRealInterval { 1.0e-8,

RealInterval { [-1.0, 1.0] } };

• Make it the responsibility of the branching operator. This operator would
then have to know it is dealing with RealInterval instances, in order
that it can inquire about the width of the interval they represent. How-
ever, this means that we would have to re-implement the variable selection
strategies offered by the existing branching operators for the specific case
of RealInterval variables.

In Section 7.3.2 we see a situation where the same RealInterval instance
(or actually, a clone of it) is used in two cooperating solvers that use different
precisions. This is all but prevented by the first two of the above alternatives, and
for this reason, we chose to make it the responsibility of the branching operator
yet. We can avoid re-implementing the general-purpose variable section strategies
by using an adapter:

DRF LimitedPrecision { 1.0e-8, RoundRobin{ 0, x1, x2, ... } };

Internally, the branching function of the adapter passes the array of domain
pointers to the branching function of the inner reduction operator, but before
doing so, it inspects the width of all domains. The pointers to those domains
that already have the required precision are replaced by a pointer to a dummy
domain of size 1, and will not be split.

This concludes the discussion of the facilities for constraints on the reals. We
will see an example application in Section 7.3.2.

4.6 Conclusions

In this chapter we described the plug-ins for solving constraints on domain types
Z, B, and F , and we introduced some basic facilities for constraint propagation
and search. These facilities allowed us to investigate how several existing solving
strategies can be realized in OpenSolver through composition. Our conclusions
are the following.
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• An implementation of iterative limited discrepancy search inside Open-
Solver is possible, but slightly artificial in the sense that some facilities
are not used as intended.4 A non-iterative variant of limited discrepancy
search can be realized by an adapter that annotates the nodes of the search
tree with their discrepancy values, and a container that keeps the search
frontier sorted on their annotations. To limit memory usage, we switch
between LDS and depth-first traversal, depending on the size of the search
frontier.

• Best first-search can be realized by annotating the candidate nodes for con-
tinuing the exploration with a measure of the likelihood that they contain a
solution, according to some heuristic. We demonstrated this for Warnsdorf’s
heuristic for solving the knight’s tour problem. In this case the likelihood
is evaluated after constraint propagation in the candidate nodes, which in-
volves a limited amount of breadth-first traversal. The actual evaluation is
done by a node evaluator plug-in. The traversal strategy is realized by a
combination of a container and a selector plug-in.

• Of the techniques used in SAT solving, clause learning (no-good recording)
can be implemented, but storing the full search frontier and using a copying
state restoration policy makes OpenSolver unsuited for non-chronological
backtracking.

• One of the standard scheduler plug-ins supports programmable schedules.
This allows us to optimize constraint propagation by taking into account
knowledge about how the reduction operators interact, and about their
computational complexity. As an example, if reduction operators imple-
ment a decomposition of a polynomial constraint into atomic arithmetic
constraints, we can apply them in an order that respects their hierarchical
relationship. Normally this is hard-wired in heavy-weight reduction oper-
ators that implement algorithms like HC4 of Granvilliers et al. [BGGP99]
In OpenSolver, the same effect can be realized through composition.

While the efficiency of some plug-ins can be optimized further, we have shown
that OpenSolver is not inherently less efficient than systems that are used in
practice. In particular, we compared performance with that of ILOG Solver
on the n-queens problem, a benchmark that is well suited for testing the basic
machinery of solvers.

Having discussed the implementation of domain types Z, B, and F , in the
next chapter we turn our attention to the one remaining standard domain type
of Chapter 2: that of the integer intervals.

4The coordination layer mechanism offers further possibilities for implementing iterative
schemes, though.





Chapter 5

An Analysis of Arithmetic Constraints
on Integer Intervals

In this chapter we demonstrate how OpenSolver can be configured for solving
arithmetic constraints on variables with integer interval domains. We study a
number of approaches to implement constraint propagation for these constraints.
To describe them we introduce integer interval arithmetic. Each approach is
explained using appropriate proof rules that reduce the variable domains.

Our goal is to determine which approach can be expected to give the best
performance. To this end, we compare them on a set of benchmark problems.
For the most promising approach we provide results that characterize the effect
of constraint propagation.

5.1 Introduction

5.1.1 Motivation

The subject of arithmetic constraints on reals has attracted a great deal of at-
tention in the literature. In contrast, arithmetic constraints on integer intervals
have not been studied even though they are supported in a number of constraint
programming systems. In fact, constraint propagation for them is present in
ECLiPSe, SICStus Prolog, GNU Prolog, ILOG Solver and undoubtedly most of
the systems that support constraint propagation for linear constraints on integer
intervals. Yet, in contrast to the case of linear constraints — see notably [HS03]
— we did not encounter in the literature any analysis of this form of constraint
propagation.

In this chapter we study these constraints in a systematic way. It turns out
that in contrast to linear constraints on integer intervals there are a number of
natural approaches to constraint propagation for these constraints.

It could be argued that since integer arithmetic is a special case of real arith-
metic, specialized constraint propagation methods for integer arithmetic con-

95
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straints are not needed. Indeed, a constraint satisfaction problem (CSP) involving
arithmetic constraints on integer variables can be solved using any known method
for constraints on the reals, with additional constraints ensuring that the variables
assume only integer values. This was suggested in [BO97] and implemented for
example in RealPaver [Gra04b]. However, a dedicated study and implementation
of the integer case is beneficial for a number of reasons.

• In some cases the knowledge that we are dealing with integers yields a
stronger propagation than the approach through the propagation for arith-
metic constraints on the reals.

• The ‘indirect’ approach through the reals is based on floating point numbers,
which are of limited precision. With a library like GNU MP (Multiple
Precision, [Gra04a]) arbitrary precision floating point numbers can be used.
However, for each problem the precision has to be chosen separately.

In contrast, for integer variables, we can use arbitrary length integers. These
are limited only by available memory, and do not involve setting any pa-
rameters, making this approach more flexible and natural.

• Since arithmetic constraints on integer intervals are supported in a number
of constraint programming systems, it is natural to investigate in a system-
atic way various approaches to their implementation. The direct approaches
based on the integers are amenable for a clear theoretical analysis. In par-
ticular, in Section 5.8 and Subsection 5.9.1 we provide the characterization
results that clarify the effect of constraint propagation for the approach that
emerged in our studies as the fastest.

An example that supports the first argument is the constraint x · y = z, where
−3 ≤ x ≤ 3, −1 ≤ y ≤ 1, and 1 ≤ z ≤ 2. When all variables are integers,
there are no solutions having x = 3 or x = −3, and the constraint propagation
methods that we consider here will actually remove these values from the domain
of x. However, if these variables are considered to be reals, these values may
not be removed, and solving the integer problem through constraint propagation
methods for constraints on the reals may lead to a larger search space.

As an indication that integer representation is not entirely a theoretical issue,
consider the following benchmark from [BO97]. Find n integers x1, . . . , xn, 1 ≤
xi ≤ n, verifying the conditions

n
∑

i=1

xi =
n

∑

i=1

i,

n
∏

i=1

xi =
n

∏

i=1

i, x1 ≤ x2 ≤ . . . ≤ xn.

For n = 10 the initial maximum value of the left-hand side expression of the
second constraint equals 1010, which exceeds 232, the number of values that can
be represented as 32-bit integers. For n = 16, there is already no signed integer
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representation of this bound in 64 bits. A small program written specifically for
this benchmark indicates that on our machines, hardware integer operations are
slightly faster than floating-point operations, and using arbitrary length integers
costs less than a factor 4.

5.1.2 Outline of the Chapter

In the next section we define arithmetic constraints, and we relate our analysis to
the model of constraint solving of Section 2.3. The unifying tool in our analysis
is integer interval arithmetic that is modeled after the real interval arithmetic,
see e.g., [HJvE01]. There are, however, essential differences since we deal with
integers instead of reals. For example, multiplication of two integer intervals
does not need to be an integer interval. In Section 5.3 we introduce the integer
interval arithmetic and establish the basic results. Then in Section 5.4 we show
that using integer interval arithmetic we can define succinctly the well-known
constraint propagation for linear constraints on integer intervals.

The next three sections, 5.5, 5.6 and 5.7, form the main part of the chapter.
We introduce there three approaches to constraint propagation for arithmetic
constraints on integer intervals. They differ in the way the constraints are treated:
either they are left intact, or the multiple occurrences of variables are eliminated,
or the constraints are decomposed into a set of atomic constraints.

Then in Section 5.8 we characterize the effect of constraint propagation for
the last approach. In Section 5.9 we discuss in detail our implementation of the
alternative approaches, and in Section 5.10 we describe the experiments that were
performed to compare them. They indicate that an optimized version of the third
approach is superior to the other approaches. Finally, in Section 5.11 we provide
the conclusions.

This chapter is based on joint work with Krzysztof Apt. Preliminary results
were reported in [Apt03] and [AZ04].

5.2 Preliminaries

5.2.1 Arithmetic Constraints

To define the arithmetic constraints use the alphabet that comprises

• variables,

• two constants, 0 and 1,

• the unary minus function symbol ‘−’,

• three binary function symbols, ‘+’,‘−’and ‘·’, all written in the infix nota-
tion.
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By an arithmetic expression we mean a term formed in this alphabet and
by an arithmetic constraint a formula of the form

s op t,

where s and t are arithmetic expressions and op ∈ {<,≤, =, 6=,≥, >}. For exam-
ple

x5 · y2 · z4 + 3x · y3 · z5 ≤ 10 + 4x4 · y6 · z2 − y2 · x5 · z4 (5.1)

is an arithmetic constraint. Here x5 is an abbreviation for x · x · x · x · x and
similarly with the other expressions. If ‘·’ is not used in an arithmetic constraint,
we call it a linear constraint .

By an extended arithmetic expression we mean a term formed in the
above alphabet extended by the unary function symbols ‘.n ’ and ‘ n

√
. ’ for each

n ≥ 1 and the binary function symbol ‘/’ written in the infix notation. For
example

3
√

(y2 · z4)/(x2 · u5) (5.2)

is an extended arithmetic expression. Here, unlike in (5.1), x5 is a term obtained
by applying the function symbol ‘.5’ to the variable x. The extended arithmetic
expressions will be used only to define constraint propagation for the arithmetic
constraints.

Fix now some arbitrary linear ordering ≺ on the variables of the language.
By a monomial we mean an integer or a term of the form

a · xn1

1 · . . . · xnk

k

where k > 0, x1, . . ., xk are different variables ordered w.r.t. ≺, and a is a non-
zero integer and n1, . . ., nk are positive integers. We call then xn1

1 · . . . · xnk

k the
power product of this monomial.

Next, by a polynomial we mean a term of the form

Σn
i=1mi,

where n > 0, at most one monomial mi is an integer, and the power products
of the monomials m1, . . .,mn are pairwise different. Finally, by a polynomial

constraint we mean an arithmetic constraint of the form s op b, where s is a
polynomial with no monomial being an integer, op ∈ {<,≤, =, 6=,≥, >}, and b is
an integer. It is clear that by means of appropriate transformation rules we can
transform any arithmetic constraint to a polynomial constraint. For example,
assuming the ordering x ≺ y ≺ z on the variables, the arithmetic constraint (5.1)
can be transformed to the polynomial constraint

2x5 · y2 · z4 − 4x4 · y6 · z2 + 3x · y3 · z5 ≤ 10

So, without loss of generality, from now on we shall limit our attention to the
polynomial constraints.
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5.2.2 Constraint Solving

In this chapter, the arithmetic constraints are interpreted over elements of domain
type I. Recall from Section 2.2.4 that the domains in I are integer intervals,
or intervals for short, having the form

[a..b]

where a and b are integers; [a..b] denotes the set of all integers between a and b,
including a and b. If a > b, we call [a..b] the empty interval and denote it by
∅. Further, by a range we mean an expression of the form

x ∈ I

where x is a variable and I is an interval.
As final domains we will be using ⌊I⌋, containing all domains with a single

integer. In Sections 5.6 and 5.7 we will be rewriting CSPs to eliminate multi-
ple occurrences of variables, or to decompose constraints into atomic constraints.
This rewriting involves the introduction of new variables, and for these we will
consider all domains in I − {∅} as final domains. In other words, the new vari-
ables introduced by rewriting constraints are auxiliary variables. As a result,
branching never takes place on these variables. This is justified in Section 5.6.
With this information, an explicit reference to ECSPs is not necessary. Also,
all approaches to solving arithmetic constraints considered in this chapter have
the property that if domains are singleton sets and the corresponding assignment
of values to variables is not a solution, a failure is deduced, so all solved forms
correspond to CSP solutions.

Finally, to conform our notation to that of [Apt03] and [AZ04], in this chapter
we describe constraint propagation by means of proof rules that act on CSPs
and preserve equivalence. An interested reader can consult [Apt98] or [Apt03]
for a precise explanation of this approach to describing constraint propagation.
In general it allows the description of transformations of CSPs beyond those of
Section 2.3, but here we will consider only rules of the form

〈C ; x1 ∈ D1, . . . , xn ∈ Dn〉
〈C′ ; x1 ∈ D′

1, . . . , xn ∈ D′
n〉

that modify the domain of a single variable xj, and have D′
i = Di for i 6= j, and

C′ = C[D′
1, . . . , D

′
n], the new domain projected on the constraints. In presence of

integer interval domains, such rules correspond to domain reduction functions of
signature

f : In → I
with input scheme 〈1, . . . , n〉 and output scheme 〈j〉, having

f(D1, . . . , Dn) = D′
j.

A CSP that is closed under application of such rules corresponds then to a com-
mon fixed point of (the domains extensions of) the corresponding DRFs.
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5.3 Integer Set Arithmetic

To reason about the arithmetic constraints we employ a generalization of the
arithmetic operations to the sets of integers. Here and elsewhere ZZ denotes the
set of all integers.

5.3.1 Definitions

For X,Y sets of integers we define the following operations:

• addition:
X + Y := {x + y | x ∈ X, y ∈ Y },

• subtraction:
X − Y := {x − y | x ∈ X, y ∈ Y },

• multiplication:
X · Y := {x · y | x ∈ X, y ∈ Y },

• division:
X/Y := {u ∈ ZZ | ∃x ∈ X∃y ∈ Y u · y = x},

• exponentiation:
for each natural number n > 0,

Xn := {xn | x ∈ X},

• root extraction:
for each natural number n > 0,

n
√

X := {x ∈ ZZ | xn ∈ X}.

All the operations except division are defined in the expected way. We shall
return to it at the end of Section 5.7. At the moment it suffices to note the division
operation is defined for all sets of integers, including Y = ∅ and Y = {0}. This
division operation corresponds to the following division operation on the sets of
reals introduced in [Rat96]:

X ⊘ Y := {u ∈ IR | ∃x ∈ X∃y ∈ Y u · y = x}.
For an integer or a real number a and op ∈ {+,−, ·, /,⊘} we identify a opX with
{a} op X and X op a with X op {a}.

To present the rules we are interested in we shall also use the addition and
division operations on the sets of real numbers. Addition is defined in the same
way as for the sets of integers, and division is defined above. In [HJvE01] it
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is explained how to implement these operations on, possibly unbounded, real
intervals.

Further, given a set A of integers or reals, we define
≤A := {x ∈ ZZ | ∃a ∈ A x ≤ a},
≥A := {x ∈ ZZ | ∃a ∈ A x ≥ a}.

When limiting our attention to intervals of integers the following simple ob-
servation is of importance.

5.3.1. Note. For X,Y integer intervals and a an integer the following holds:

• X ∩ Y , X + Y,X − Y are integer intervals.

• X/{a} is an integer interval.

• X · Y does not have to be an integer interval, even if X = {a} or Y = {a}.
• X/Y does not have to be an integer interval.

• For each n > 1 Xn does not have to be an integer interval.

• For odd n > 1 n
√

X is an integer interval.

• For even n > 1 n
√

X is an integer interval or a disjoint union of two integer
intervals. 2

For example we have
[2..4] + [3..8] = [5..12],

[3..7] − [1..8] = [−5..6],

[3..3] · [1..2] = {3, 6},
[3..5]/[−1..2] = {−5,−4,−3, 2, 3, 4, 5},

[−3..5]/[−1..2] = ZZ,

[1..2]2 = {1, 4},
3
√

[−30..100] = [−3..4],
2
√

[−100..9] = [−3..3],
2
√

[1..9] = [−3.. − 1] ∪ [1..3].

To deal with the problem that non-interval domains can be produced by some of
the operations we introduce the following operation on the sets of integers:

int(X) := I(X)

It is the integer interval counterpart of the hull operation on floating-point inter-
vals, introduced in Section 2.2.4, and has the property that

int(X) =

{

smallest integer interval containing X if X is finite,
ZZ otherwise.

For example int([3..5]/[−1..2]) = [−5..5] and int([−3..5]/[−1..2]) = ZZ.
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5.3.2 Implementation

To define constraint propagation for the arithmetic constraints on integer intervals
we shall use the integer set arithmetic, mainly limited to the integer intervals.
This brings us to the discussion of how to implement the introduced operations
on the integer intervals. Since we are only interested in maintaining the property
that the sets remain integer intervals or the set of integers ZZ we shall clarify
how to implement the intersection, addition, subtraction and root extraction
operations of the integer intervals and the int(.) closure of the multiplication,
division and exponentiation operations on the integer intervals. The case when
one of the intervals is empty is easy to deal with. So we assume that we deal with
non-empty intervals [a..b] and [c..d], i.e., a ≤ b and c ≤ d.

Intersection, addition and subtraction. It is easy to see that

[a..b] ∩ [c..d] = [max(a, c)..min(b, d)],

[a..b] + [c..d] = [a + c .. b + d],

[a..b] − [c..d] = [a − d .. b − c].

So the interval intersection, addition, and subtraction are straightforward to im-
plement.

Root extraction. The outcome of the root extraction operator applied to an
integer interval will be an integer interval or a disjoint union of two integer inter-
vals. We shall explain in Section 5.5 why it is advantageous not to apply int(.) to
the outcome. This operator can be implemented by means of the following case
analysis.

Case 1. Suppose n is odd. Then

n
√

[a..b] = [
⌈

n
√

a
⌉

..
⌊

n
√

b
⌋

].

Case 2. Suppose n is even and b < 0. Then

n
√

[a..b] = ∅.

Case 3. Suppose n is even and b ≥ 0. Then

n
√

[a..b] = [−
⌊

| n
√

b|
⌋

.. −
⌈

| n
√

a+|
⌉

] ∪ [
⌈

| n
√

a+|
⌉

..
⌊

| n
√

b|
⌋

]

where a+ := max(0, a).
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Multiplication. For the remaining operations we only need to explain how to
implement the int(.) closure of the outcome. First note that

int([a..b] · [c..d]) = [min(A)..max(A)],

where A = {a · c, a · d, b · c, b · d}.
Using an appropriate case analysis we can actually compute the bounds of

int([a..b] · [c..d]) directly in terms of the bounds of the constituent intervals.

Division. In contrast, the int(.) closure of the interval division is not so straight-
forward to compute. The reason is that, as we shall see in a moment, we cannot
express the result in terms of some simple operations on the interval bounds.

Consider non-empty integer intervals [a..b] and [c..d]. In analyzing the out-
come of int([a..b]/[c..d]) we distinguish the following cases.

Case 1. Suppose 0 ∈ [a..b] and 0 ∈ [c..d].
Then by definition int([a..b]/[c..d]) = ZZ. For example,

int([−1..100]/[−2..8]) = ZZ.

Case 2. Suppose 0 6∈ [a..b] and c = d = 0.
Then by definition int([a..b]/[c..d]) = ∅. For example,

int([10..100]/[0..0]) = ∅.

Case 3. Suppose 0 6∈ [a..b] and c < 0 and 0 < d.
It is easy to see that then

int([a..b]/[c..d]) = [−e..e],

where e = max(|a|, |b|). For example,

int([−100.. − 10]/[−2..5]) = [−100..100].

Case 4. Suppose 0 6∈ [a..b] and either c = 0 and d 6= 0 or c 6= 0 and d = 0.
Then int([a..b]/[c..d]) = int([a..b]/([c..d] − {0})). For example

int([1..100]/[−7..0]) = int([1..100]/[−7.. − 1]).

This allows us to reduce this case to Case 5 below.
Case 5. Suppose 0 6∈ [c..d].

This is the only case when we need to compute int([a..b]/[c..d]) indirectly.
First, observe that we have

int([a..b]/[c..d]) ⊆ [⌈min(A)⌉ .. ⌊max(A)⌋],

where A = {a/c, a/d, b/c, b/d}.
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However, the equality does not need to hold here. Indeed, note for example
that int([155..161]/[9..11]) = [16..16], whereas for A = {155/9, 155/11, 161/9,
161/11} we have ⌈min(A)⌉ = 15 and ⌊max(A)⌋ = 17. The problem is that the
value 16 is obtained by dividing 160 by 10 and none of these two values is an
interval bound.

This complication can be solved by preprocessing the interval [c..d] so that
its bounds are actual divisors of an element of [a..b]. First, we look for the least
c′ ∈ [c..d] such that ∃x ∈ [a..b] ∃u ∈ ZZ u ·c′ = x. Using a case analysis, the latter
property can be established without search. Suppose for example that a > 0 and
c > 0. In this case, if c′ · ⌊b/c′⌋ ≥ a, then c′ has the required property. Similarly,
we look for the largest d′ ∈ [c..d] for which an analogous condition holds. Now
int([a..b]/[c..d]) = [⌈min(A)⌉..⌊max(A)⌋], where A = {a/c′, a/d′, b/c′, b/d′}.

In view of the auxiliary computation in case 0 6∈ [c..d], we shall introduce in
Section 5.9 a modified division operation with a more direct implementation.

Exponentiation. The int(.) closure of the interval exponentiation is straight-
forward to implement by distinguishing the following cases.

Case 1. Suppose n is odd. Then

int([a..b]n) = [an.. bn].

Case 2. Suppose n is even and 0 ≤ a. Then

int([a..b]n) = [an.. bn].

Case 3. Suppose n is even and b ≤ 0. Then

int([a..b]n) = [bn.. an].

Case 4. Suppose n is even and a < 0 and 0 < b. Then

int([a..b]n) = [0..max(an, bn)].

5.3.3 Correctness Lemma

Given now an extended arithmetic expression s each variable of which ranges
over an integer interval, we define int(s) as the integer interval or the set ZZ
obtained by systematically replacing each function symbol by the application of
the int(.) operation to the corresponding integer set operation. For example, for
the extended arithmetic expression s := 3

√

(y2 · z4)/(x2 · u5) of (5.2) we have

int(s) = int( 3
√

int(int(Y 2) · int(Z4))/int(int(X2) · int(U5))),

where we assume that x ranges over X, etc.
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The discussion in the previous subsection shows how to compute int(s) given
an extended arithmetic expression s and the integer interval domains of its vari-
ables.

The following lemma is crucial for our considerations. It is a counterpart of the
so-called ‘Fundamental Theorem of Interval Arithmetic’ established in [Moo66].
Because we deal here with the integer domains an additional assumption is needed
to establish the desired conclusion.

5.3.2. Lemma (Correctness). Let s be an extended arithmetic expression with
the variables x1, . . ., xn. Assume that each variable xi of s ranges over an integer
interval Xi. Choose ai ∈ Xi for i ∈ [1..n] and denote by s(a1, . . ., an) the result
of replacing in s each occurrence of a variable xi by ai.

Suppose that each subexpression of s(a1, . . ., an) evaluates to an integer. Then
the result of evaluating s(a1, . . ., an) is an element of int(s).

Proof. The proof follows by a straightforward induction on the structure of s.
2

5.4 An Intermezzo: Constraint Propagation for

Linear Constraints

Even though we focus here on arithmetic constraints on integer intervals, it is
helpful to realize that the integer interval arithmetic is also useful to define in a
succinct way the well-known rules for constraint propagation for linear constraints
(studied in detail in [HS03]). To this end consider first a constraint Σn

i=1ai ·xi = b,
where n ≥ 0, a1, . . ., an are non-zero integers, x1, . . ., xn are different variables,
and b is an integer. To reason about it we can use the following rule parametrized
by j ∈ [1..n]:

LINEAR EQUALITY

〈Σn
i=1ai · xi = b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈Σn
i=1ai · xi = b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where

• for i 6= j

D′
i := Di,

•
D′

j := Dj ∩ int
(

(b − Σi∈[1..n]−{j}ai · xi)/aj

)

.



106 Chapter 5. Integer Arithmetic

Note that by virtue of Note 5.3.1

D′
j = Dj ∩ (b − Σi∈[1..n]−{j}int(ai · Di))/aj.

To see that this rule preserves equivalence, first note that taking the intersec-
tion implies D′

j ⊆ Dj, i.e., the domain is not extended by application of the rule.
Further, suppose that for some d1 ∈ D1, . . ., dn ∈ Dn we have Σn

i=1ai · di = b.
Then for j ∈ [1..n] we have

dj = (b − Σi∈[1..n]−{j}ai · di)/aj

which by the Correctness Lemma 5.3.2 implies that

dj ∈ int
(

(b − Σi∈[1..n]−{j}ai · xi)/aj

)

,

i.e., dj ∈ D′
j.

Next, consider a constraint Σn
i=1ai · xi ≤ b, where a1, . . ., an, x1, . . ., xn and b

are as above. To reason about it we can use the following rule parametrized by
j ∈ [1..n]:

LINEAR INEQUALITY

〈Σn
i=1ai · xi ≤ b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈Σn
i=1ai · xi ≤ b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where

• for i 6= j
D′

i := Di,

•
D′

j := Dj ∩ (≤int(b − Σi∈[1..n]−{j}ai · xi)/aj)

To see that this rule preserves equivalence, first note that D′
j ⊆ Dj. Further,

suppose that for some d1 ∈ D1, . . ., dn ∈ Dn we have Σn
i=1ai · di ≤ b. Then

aj · dj ≤ b − Σi∈[1..n]−{j}ai · di. By the Correctness Lemma 5.3.2

b − Σi∈[1..n]−{j}ai · di ∈ int(b − Σi∈[1..n]−{j}ai · xi),

so by definition
aj · dj ∈≤ int(b − Σi∈[1..n]−{j}ai · xi)

and consequently
dj ∈≤ int(b − Σi∈[1..n]−{j}ai · xi)/aj

This implies that dj ∈ D′
j.
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5.5 Constraint Propagation: First Approach

We now move on to a discussion of constraint propagation for the arithmetic con-
straints on integer intervals. The following example illustrates our first approach.
Consider the constraint

x3y − x ≤ 40

and the ranges x ∈ [1..100] and y ∈ [1..100]. We can rewrite it as

x ≤
⌊

3
√

(40 + x)/y
⌋

(5.3)

since x assumes integer values. The maximum value that the expression on the
right-hand side can take is

⌊

3
√

140
⌋

, so we conclude x ≤ 5. By reusing (5.3), now
with the information that x ∈ [1..5], we conclude that the maximum value the
expression on the right-hand side of (5.3) can take is actually

⌊

3
√

45
⌋

, from which
it follows that x ≤ 3.

In the case of y we can isolate it by rewriting the original constraint as y ≤
40/x3 +1/x2 from which it follows that y ≤ 41, since by assumption x ≥ 1. So we
could reduce the domain of x to [1..3] and the domain of y to [1..41]. This interval
reduction is optimal, since x = 1, y = 41 and x = 3, y = 1 are both solutions to
the original constraint x3y − x ≤ 40.

More formally, we consider a polynomial constraint Σm
i=1mi = b where m > 0,

no monomial mi is an integer, the power products of the monomials are pairwise
different and b is an integer. Suppose that x1, . . ., xn are its variables ordered
w.r.t. ≺.

Select a non-integer monomial ml and assume it is of the form

a · yn1

1 · . . . · ynk

k ,

where k > 0, y1, . . ., yk are different variables ordered w.r.t. ≺, a is a non-zero
integer and n1, . . ., nk are positive integers. So each yi variable equals to some
variable in {x1, . . ., xn}. Suppose that yp equals to xj. We introduce the following
proof rule:

POLYNOMIAL EQUALITY

〈Σn
i=1mi = b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈Σn
i=1mi = b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where

• for i 6= j

D′
i := Di,
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•
D′

j := int

(

Dj ∩
np

√

int
(

(b − Σi∈[1..m]−{l}mi)/s
)

)

and

s := a · yn1

1 · . . . · ynp−1

p−1 · ynp+1

p+1 . . . · ynk

k .

To see that this rule preserves equivalence, first note that taking the inter-
section implies D′

j ⊆ Dj, i.e., the domain is not extended by application of the
rule. Next, choose some d1 ∈ D1, . . ., dn ∈ Dn. To simplify the notation, given
an extended arithmetic expression t denote by t′ the result of evaluating t after
each occurrence of a variable xi is replaced by di.

Suppose that Σm
i=1m

′
i = b. Then

d
np

j · s′ = b − Σi∈[1..m]−{l}m
′
i,

so by the Correctness Lemma 5.3.2 applied to b − Σi∈[1..m]−{l}m
′
i and to s

d
np

j ∈ int(b − Σi∈[1..m]−{l}mi)/int(s).

Hence

dj ∈ np

√

int(b − Σi∈[1..m]−{l}mi)/int(s)

and consequently

dj ∈ int

(

Dj ∩
np

√

int
(

(b − Σi∈[1..m]−{l}mi)/s
)

)

i.e., dj ∈ D′
j.

Note that we do not apply int(.) to the outcome of the root extraction oper-
ation. For even np this means that the second operand of the intersection can
be a union of two intervals, instead of a single interval. To see why this is de-
sirable, consider the constraint x2 − y = 0 in the presence of ranges x ∈ [0..10],
y ∈ [25..100]. Using the int(.) closure of the root extraction we would not be able
to update the lower bound of x to 5.

Next, consider a polynomial constraint Σm
i=1mi ≤ b. Below we adopt the

assumptions and notation used when defining the POLYNOMIAL EQUALITY
rule. To formulate the appropriate rule we stipulate that for the extended arith-
metic expressions s and t

int((≤s)/t) := ≥Q ∩ ≤Q,

with Q = (≤int(s))/int(t).
To reason about this constraint we use the following rule:
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POLYNOMIAL INEQUALITY

〈Σn
i=1mi ≤ b ; x1 ∈ D1, . . ., xn ∈ Dn〉

〈Σn
i=1mi ≤ b ; x1 ∈ D′

1, . . ., xn ∈ D′
n〉

where

• for i 6= j
D′

i := Di,

•
D′

j := int

(

Dj ∩
np

√

int
(

≤(b − Σi∈[1..m]−{l}mi)/s
)

)

To prove that this rule preserves equivalence, first note that D′
j ⊆ Dj. Next,

choose some d1 ∈ D1, . . ., dn ∈ Dn. As above given an extended arithmetic
expression t we denote by t′ the result of evaluating t when each occurrence of a
variable xi in t is replaced by di.

Suppose that Σm
i=1m

′
i ≤ b. Then

d
np

j · s′ ≤ b − Σi∈[1..m]−{l}m
′
i.

By the Correctness Lemma 5.3.2

b − Σi∈[1..m]−{l}m
′
i ∈ int(b − Σi∈[1..m]−{l}mi),

so by definition
d

np

j · s′ ∈≤ int(b − Σi∈[1..m]−{l}mi).

Hence by the definition of the division operation on the sets of integers

d
np

j ∈≤ int(b − Σi∈[1..m]−{l}mi)/int(s)

Consequently

dj ∈ np

√

≤int(b − Σi∈[1..m]−{l}mi)/int(s)

This implies that dj ∈ D′
j.

Note that the set ≤int(b − Σi∈[1..m]−{l}mi) appearing in the definition of D′
j

is not an interval. So to properly implement this rule we need to extend the
implementation of the division operation discussed in Subsection 5.3.2 to the
case when the numerator is an extended interval. Our implementation takes care
of this.

In an optimized version of this approach we simplify the fractions of two poly-
nomials by splitting the division over addition and subtraction and by dividing
out common powers of variables and greatest common divisors of the constant
factors. Subsequently, fractions whose denominators have identical power prod-
ucts are added. We used this optimization in the initial example by simplifying
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(40+x)/x3 to 40/x3+1/x2. The reader may check that without this simplification
step we can only deduce that y ≤ 43.

To provide details of this optimization, given two monomials s and t, we
denote by

[s/t]

the result of performing this simplification operation on s and t. For example,
[(2 · x3 · y)/(4 · x2)] equals (x · y)/2, whereas [(4 · x3 · y)/(2 · y2) equals (2 · x3)/y.

In this approach we assume that the domains of the variables y1, . . ., yp−1,
yp+1, . . ., yn of ml do not contain 0. (One can easily show that this restriction is
necessary here). For a monomial s involving variables ranging over the integer
intervals that do not contain 0, the set int(s) either contains only positive numbers
or only negative numbers. In the first case we write sign(s) = + and in the second
case we write sign(s) = −.

The new domain of the variable xj in the POLYNOMIAL INEQUALITY
rule is defined using two sequences m′

0...m
′
n and s′0...s

′
n of extended arithmetic

expressions such that

m′
0/s

′
0 = [b/s] and m′

i/s
′
i = −[mi/s] for i ∈ [1..m].

Let S := {s′i | i ∈ [0..m]−{l}} and for an extended arithmetic expression t ∈ S let
It := {i ∈ [0..m] − {l} | s′i = t}. We denote then by pt the polynomial

∑

i∈It
m′

i.
The new domains are then defined by

D′
j := int

(

Dj ∩
np
√

≤int (Σt∈S pt ⊘ t)
)

if sign(s) = +, and by

D′
j := int

(

Dj ∩
np
√

≥int (Σt∈S pt ⊘ t)
)

if sign(s) = −. Here the int(s) notation used in the Correctness Lemma 5.3.2
is extended to expressions involving the division operator ⊘ on real intervals in
the obvious way. We define the int(.) operator applied to a bounded set of real
numbers, as produced by the division and addition operators in the above two
expressions for D′

j, to denote the smallest interval of real numbers containing that
set.

5.6 Constraint Propagation: Second Approach

In this approach we limit our attention to a special type of polynomial constraints,
namely the ones of the form s op b, where s is a polynomial in which each vari-
able occurs at most once and where b is an integer. We call such a constraint
a simple polynomial constraint . By introducing variables that are equated
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with appropriate monomials we can rewrite any polynomial constraint into a se-
quence of simple polynomial constraints. We apply then to the simple polynomial
constraints the rules introduced in the previous section.

To see that the restriction to simple polynomial constraints can make a dif-
ference consider the constraint

100x · y − 10y · z = 212

in presence of the ranges x, y, z ∈ [1..9]. We rewrite it into the sequence

u = x · y, v = y · z, 100u − 10v = 212,

where u, v are new variables, each with the domain [1..81].

It is easy to check that the POLYNOMIAL EQUALITY rule introduced in the
previous section does not yield any domain reduction when applied to the original
constraint 100x · y − 10y · z = 212. In presence of the discussed optimization the
domain of x gets reduced to [1..3].

However, if we repeatedly apply the POLYNOMIAL EQUALITY rule to the
simple polynomial constraint 100u−10v = 212, we eventually reduce the domain
of u to the empty set (since this constraint has no integer solution in the ranges
u, v ∈ [1..81]) and consequently can conclude that the original constraint 100x ·
y− 10y · z = 212 has no solution in the ranges x, y, z ∈ [1..9], without performing
any search.

The integer interval domains of the introduced variables are fully determined
by the integer interval domains of the original variables. For this reason, no
branching on these variables is needed: when the domains of the original variables
are reduced to singleton sets, the domains of the introduced variables will be
singleton sets as well. It is not efficient to branch on the new variables either.
Consider for example that we have problem variables x, y ∈ [1..10], with a variable
u ∈ [1..100] introduced to represent their product u = x · y. If the domain of u is
bisected, two branches are created in which the domains of the problem variables
x and y have an overlap after propagation of the constraint u = x · y:

left branch: right branch:
u ∈ [1..50] u ∈ [51..100]
x ∈ [1..10] x ∈ [6..10]
y ∈ [1..10] y ∈ [6..10]

This overlap can lead to a larger search space, so branching on the introduced
variables should be avoided. For the search process, such variables can be con-
sidered auxiliary variables, as introduced in Section 2.2.5.
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5.7 Constraint Propagation: Third Approach

In this approach we focus on a small set of ‘atomic’ arithmetic constraints. We
call an arithmetic constraint atomic if it is in one of the following two forms:

• a linear constraint,

• x · y = z.

It is easy to see that using appropriate transformation rules involving auxiliary
variables we can transform any arithmetic constraint into a sequence of atomic
arithmetic constraints. In this transformation, as in the second approach, the
auxiliary variables are equated with monomials so we can easily compute their
domains.

The transformation to atomic constraints can strengthen the reduction. Con-
sider for example the constraint

u · x · y + 1 = v · x · y

and ranges u ∈ [1..2], v ∈ [3..4], and x, y ∈ [1..4]. The first approach without
optimization and the second approach cannot find a solution without search. If,
as a first step in transforming this constraint into a linear constraint, we introduce
an auxiliary variable w to replace x · y, we are effectively solving the constraint

u · w + 1 = v · w

with the additional range w ∈ [1..16], resulting in only one duplicate occurrence
of a variable instead of two. With variable w introduced (or using the optimized
version of the first approach) constraint propagation alone finds the solution u =
2, v = 3, x = 1, y = 1.

We explained already in Section 5.4 how to reason about linear constraints.
(We omitted there the treatment of the disequalities which is routine.) Next, we
focus on the reasoning for the multiplication constraint x · y = z in presence of
the non-empty ranges x ∈ Dx, y ∈ Dy and z ∈ Dz. To this end we introduce the
following three domain reduction rules:

MULTIPLICATION 1

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz ∩ int(Dx · Dy)〉

MULTIPLICATION 2

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx ∩ int(Dz/Dy), y ∈ Dy, z ∈ Dz〉
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MULTIPLICATION 3

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ int(Dz/Dx), z ∈ Dz〉

The way we defined the multiplication and the division of the integer intervals
ensures that the MULTIPLICATION rules 1,2 and 3 are equivalence preserving.
Consider for example the MULTIPLICATION 2 rule. Take some a ∈ Dx, b ∈ Dy

and c ∈ Dz such that a · b = c. Then a ∈ {x ∈ ZZ | ∃z ∈ Dz∃y ∈ Dy x · y = z},
so a ∈ Dz/Dy and a fortiori a ∈ int(Dz/Dy). Consequently a ∈ Dx ∩ int(Dz/Dy).
Because we also have (Dx ∩ int(Dz/Dy)) ⊆ Dx, this shows that the MULTIPLI-
CATION 2 rule is equivalence preserving.

The following example from [Apt03] shows an interaction between all three
MULTIPLICATION rules.

5.7.1. Example. Consider the CSP

〈x · y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉. (5.4)

To facilitate the reading we underline the modified domains. An application
of the MULTIPLICATION 2 rule yields

〈x · y = z ; x ∈ [16..16], y ∈ [9..11], z ∈ [155..161]〉

since, as already noted in Subsection 5.3.2, [155..161]/[9..11]) = [16..16], and
[1..20]∩ int([16..16]) = [16..16]. Applying now the MULTIPLICATION 3 rule we
obtain

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [155..161]〉
since [155..161]/[16..16] = [10..10] and [9..11] ∩ int([10..10]) = [10..10]. Next, by
the application of the MULTIPLICATION 1 rule we obtain

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉

since [16..16] · [10..10] = [160..160] and [155..161] ∩ int([160..160]) = [160..160].
So using all three multiplication rules we could solve the CSP (5.4). 2

Now let us clarify why we did not define the division of the sets of integers Z
and Y by

Z/Y := {z/y ∈ ZZ | y ∈ Y, z ∈ Z, y 6= 0}.
The reason is that in that case for any set of integers Z we would have Z/{0} = ∅.
Consequently, if we adopted this definition of the division of the integer intervals,
the resulting MULTIPLICATION 2 and 3 rules would not be equivalence pre-
serving anymore. Indeed, consider the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [0..0], z ∈ [−8..10]〉.
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Then we would have [−8..10]/[0..0] = ∅ and consequently by the MULTIPLICA-
TION 2 rule we could conclude

〈x · y = z ; x ∈ ∅, y ∈ [0..0], z ∈ [−8..10]〉.

So we reached an inconsistent CSP while the original CSP is consistent.
In the remainder of the chapter we will also consider variants of this third

approach that allow squaring and exponentiation as atomic constraints. For this
purpose we explain the reasoning for the constraint x = yn in presence of the
non-empty ranges x ∈ Dx and y ∈ Dy, and for n > 1. To this end we introduce
the following two rules in which to maintain the property that the domains are
intervals we use the int(.) operation of Section 5.3:

EXPONENTIATION

〈x = yn ; x ∈ Dx, y ∈ Dy〉
〈x = yn ; x ∈ Dx ∩ int(Dn

y ), y ∈ Dy〉

ROOT EXTRACTION

〈x = yn ; x ∈ Dx, y ∈ Dy〉
〈x = yn ; x ∈ Dx, y ∈ int(Dy ∩ n

√
Dx)〉

To prove that these rules are equivalence preserving suppose that for some
a ∈ Dx and b ∈ Dy we have a = bn. Then a ∈ Dn

y , so a ∈ int(Dn
y ) and conse-

quently a ∈ Dx ∩ int(Dn
y ). Also b ∈ n

√
Dx, so b ∈ Dy ∩ n

√
Dx, and consequently

b ∈ int(Dy ∩ n
√

Dx). The set intersection operation prevents the extension of the
domains, as usual.

5.8 A Characterization of the MULTIPLICA-

TION Rules

It is useful to reflect on the effect of the proof rules used to achieve constraint
propagation. In this section, by way of example, we focus on the MULTIPLICA-
TION rules and characterize their effect using the notion of bounds consistency
of [VHSD98]. Let us recall first the definition that we adopt here to the mul-
tiplication constraint. Given an integer interval [l..h] we denote by [l, h] the
corresponding real interval.

5.8.1. Definition. The CSP 〈x · y = z ; x ∈ [lx..hx], y ∈ [ly..hy], z ∈ [lz..hz]〉 is
called bounds consistent if

• ∀a ∈ {lx, hx} ∃b ∈ [ly, hy] ∃c ∈ [lz, hz] a · b = c,
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• ∀b ∈ {ly, hy} ∃a ∈ [lx, hx] ∃c ∈ [lz, hz] a · b = c,

• ∀c ∈ {lz, hz} ∃a ∈ [lx, hx] ∃b ∈ [ly, hy] a · b = c. 2

Then we have the following result.

5.8.2. Theorem (Bounds consistency). Suppose a CSP 〈x · y = z ; x ∈
Dx, y ∈ Dy, z ∈ Dz〉 with integer interval domains is bounds consistent. Then it
is closed under the applications of the MULTIPLICATION 1, 2 and 3 rules.

Proof. See the Appendix. 2

The converse of the above result does not hold. Here is an example. Consider
the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [−3..10], z ∈ [8..10]〉.
It is not bounds consistent, since for y = −3 no real values a ∈ [−2, 1] and
c ∈ [8, 10] exist such that a · (−3) = c. Indeed, it is easy to check that

{y ∈ IR | ∃x ∈ [−2, 1] ∃z ∈ [8, 10] x · y = z} = (−∞,−4] ∪ [8,∞).

However, this CSP is closed (see Section 5.2.2) under the applications of the
MULTIPLICATION 1, 2 and 3 rules since

• [8..10] ⊆ int([−2..1] · [−3..10]), as int([−2..1] · [−3..10]) = [−20..10],

• [−2..1] ⊆ int([8..10]/[−3..10]) as int([8..10]/[−3..10]) = [−10..10], and

• [−3..10] ⊆ int([8..10]/[−2..1]) as int([8..10]/[−2..1]) = [−10..10].

The following result clarifies that this example identifies the only cause of
discrepancy between the closure under the MULTIPLICATION rules and bound
consistency. Here, given an integer interval D := [l..h] we define

〈D〉 := {x ∈ ZZ | l < x < h}.
5.8.3. Theorem (Bounds consistency 2). Consider a CSP φ := 〈x · y =
z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉 with non-empty integer interval domains and such
that

0 ∈ 〈Dx〉 ∩ 〈Dy〉 implies 0 ∈ Dz. (5.5)

Suppose φ is closed under the applications of the MULTIPLICATION 1, 2, and
3 rules. Then it is bounds consistent.

Proof. See the Appendix. 2

Let us mention here that to deal with the constraint x ·y = z in [SS01] similar
rules to our MULTIPLICATION rules were proposed. These rules were defined
without the use of interval arithmetic. The rules for the variables x and y are
different and more complex (also from an implementation point of view) than our
MULTIPLICATION rules 2 and 3. As a result they achieve bounds consistency
for the constraint x · y = z for arbitrary integer interval domains.
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5.9 Implementation Details

5.9.1 Weak Division

We already mentioned in Section 5.3 that the division operation on the intervals
does not admit an efficient implementation. The reason is that the int(.) closure of
the interval division [a..b]/[c..d] requires an auxiliary computation in case when
0 6∈ [c..d]. The preprocessing of [c..d] becomes impractical for small intervals
[a..b], and large [c..d], occurring for example for the constraint

∏n

i=1 xi =
∏n

i=1 i,
of the benchmark problem mentioned in Subsection 5.1.1. To remedy this problem
we have used in our implementation another division operation. We call it weak

division since it yields a larger set (and so is ‘weaker’). This operation is defined
as follows:

[a..b] : [c..d] :=







[⌈min(A)⌉ .. ⌊max(A)⌋] if 0 6∈ [c..d], or
0 /∈ [a..b] and 0 ∈ {c, d} and c < d,

[a..b]/[c..d] otherwise

where A = {a/c′, a/d′, b/c′, b/d′}, and [c′..d′] = [c..d] − {0}.
Then int([a..b] : [c..d]) can be computed by a straightforward case analysis

already used for int([a..b]/[c..d]) but now without any auxiliary computation.
In particular, in our implementation we used the following counterparts of the

MULTIPLICATION rules 2 and 3 :

MULTIPLICATION 2w

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx ∩ int(Dz : Dy), y ∈ Dy, z ∈ Dz〉

MULTIPLICATION 3w

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ Dy ∩ int(Dz : Dx), z ∈ Dz〉

In the assumed framework based on constraint propagation and tree search,
all domains become eventually singletons or empty sets. It can easily be verified
that both division operations are then equal, i.e., [a..b] : [c..d] = [a..b]/[c..d], for
a ≥ b and c ≥ d. For this reason, we can safely replace any of the reduction rules
introduced in this chapter, notably POLYNOMIAL EQUALITY, POLYNOMIAL
INEQUALITY, and MULTIPLICATION 2 and 3, by their counterparts based
on the weak division. For the MULTIPLICATION rules specifically, the follow-
ing theorem states that both sets of rules actually achieve the same constraint
propagation.
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5.9.1. Theorem (MULTIPLICATION ). A CSP 〈x · y = z ; x ∈ Dx, y ∈
Dy, z ∈ Dz〉 with integer interval domains is closed under the applications of
the MULTIPLICATION 1, 2 and 3 rules iff it is closed under the applications of
the MULTIPLICATION 1, 2w and 3w rules.

Proof. See the Appendix. 2

Let us clarify now the relation between the MULTIPLICATION rules and the
corresponding rules based on real interval arithmetic coupled with the rounding
of the resulting real intervals inwards to the largest integer intervals. The CSP
〈x · y = z ; x ∈ [−3..3], y ∈ [−1..1], z ∈ [1..2]〉, which we already discussed in the
introduction, shows that these approaches yield different results. Indeed, using
the MULTIPLICATION rule 2 we can reduce the domain of x to [−2..2], while
the second approach yields no reduction.

On the other hand, the applications of the MULTIPLICATION rules 2w
and 3w to 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉 such that int(Dz : Dx) 6=
int(Dz/Dx) and int(Dz : Dy) 6= int(Dz/Dy) (so in cases when the use of the
weak interval division differs from the use of the interval division) do coincide
with the just discussed approach based on real interval arithmetic and inward
rounding. This is a consequence of the way the multiplication and division of the
real intervals are defined, see [HJvE01]. We did not implement these instances of
the MULTIPLICATION rules 2w and 3w through a detour via the rules for real
intervals for the reasons explained in the introduction.

5.9.2 Implementation

Constraint Propagation

Integer intervals in OpenSolver are implemented by the IntegerInterval domain
type plug-in. This plug-in, and the interval arithmetic operations on it are built
using the mpz type of the GNU MP library [Gra04a], which supports arbitrary
precision (or rather arbitrary length) integers. Domains of type IntegerInterval
consist of an indication of the type of the set (bounded, unbounded, left/right-
bounded, or empty), and the appropriate number (0, 1, or 2) of bounds.

Left-bounded and right-bounded sets have the respective forms {x ∈ ZZ | x >
l} and {x ∈ ZZ | x < h}, which are not integer intervals. Therefore, instead
of I, IntegerInterval is a (rather crude) implementation of the domain type
containing all sets [l..h], with l, h ∈ Z ∪ {−∞,∞}, where Z is a finite subset of
ZZ containing all integers that can be represented on a particular machine, using
type mpz.

The reduction rules are implemented by a plug-in IIARule (Integer Interval
Arithmetic Rule). Its specifier string has the form

x
np

j · (s) op q,
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where op ∈ {≤, =}, s is a monomial, and q is a polynomial. When the domain of
a variable in s or p is modified, IIARule will set the domain Dj of xj to

int(Dj ∩
np
√

int(q/s))

if op is the symbol =, or to

int(Dj ∩
np
√

int(≤(q/s)))

if op is the symbol ≤. With q set to b−Σi∈[1..m]−{l}mi this implements the POLY-
NOMIAL EQUALITY and POLYNOMIAL INEQUALITY rules of Section 5.5,
of which all other rules are instances.

As an example of its use in a solver configuration, the following three operators
implement the constraint x3y − x ≤ 40.

DRF IIARule { x^3 * (1*y) <= 1*x + 40 };

DRF IIARule {!y^1 * (1*x^3) <= 1*x + 40 };

DRF IIARule { x^1 * (-1) <= -1*x^3*y + 40 };

The ! prefix in the second specifier string activates the optimization described
at the end of Section 5.5, which entails that common power products in s and
q are eliminated. This cannot be implemented as a preprocessing stage, because
IIARule needs to know the full monomial s, so that it can select the appropriate
case for sign(s).

Scheduling Reduction Operators

For the second and third approach, we make use of the scheduling facilities of
the operator-based scheduler, described in Section 4.1.1. We distinguish user

constraints from the constraints that are introduced to define the values of
auxiliary variables. Before considering for execution a DRF f that is part of
the implementation of a user constraint, it is ensured that all auxiliary variables
that f relies on are updated. For this purpose, the indices of the DRFs that
update these variables precede the index of f in the schedule. If f can change
the value of an auxiliary variable, its index is followed by the indices of the DRFs
that propagate back these changes to the variables that define the value of this
auxiliary variable.

As an example, the following operators (prefixed by a sequence number that
is not part of the configuration) enforce the constraint 100x · y − 10y · z = 212.

0. DRF IIARule { aux_xy^1 * (1) = x*y };

1. DRF IIARule { aux_yz^1 * (1) = y*z };

2. DRF IIARule { x^1 * (y) = aux_xy };

3. DRF IIARule { y^1 * (x) = aux_xy };

4. DRF IIARule { y^1 * (z) = aux_yz };

5. DRF IIARule { z^1 * (y) = aux_yz };

6. DRF IIARule { aux_xy^1 * (100) = 10*aux_yz + 212 };

7. DRF IIARule { aux_yz^1 * (-10) = -100*aux_xy + 212 };
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The operators with sequence number 6 and 7 correspond to the user constraint.
Operators 1, 2, and 3 constrain the auxiliary variable aux xy to be equal to x · y,
and 0, 4, and 5 do the same for aux yz and y · z. The following schedule is
generated along with the decomposition.

SCHEDULER ChangeScheduler { schedule = { 1,6,2,3,0,7,4,5 } };

It specifies that in principle, operators 6 and 7 are applied in sequence, but
operator 1 is considered before operator 6 in order that aux xy, which appears
in the right-hand side expression for operator 6, is updated before operator 6 is
applied. If this modifies aux yz, operators 2 and 3 will propagate this modification
back to x and y before operator 7 is applied. The example is artificial because
without other constraints on x and y, the “problem” could be solved entirely on
the auxiliary variables, and evaluation and back propagation would only have to
be applied once.

For the third approach, there can be hierarchical dependencies between auxil-
iary variables. Much like the HC4 algorithm of [BGGP99] (see also Section 4.5),
the generated schedule specifies a bottom-up traversal of this hierarchy in a for-
ward evaluation phase and a top-down traversal in a backward propagation phase
before and after applying a DRF of a user constraint, respectively. In the for-
ward evaluation phase, the DRFs that are executed correspond to the MUL-
TIPLICATION 1 and EXPONENTIATION rules. The DRFs of the backward
propagation phase correspond to the MULTIPLICATION 2 and 3, and ROOT
EXTRACTION rules. It is easy to construct examples showing that the use of
hierarchical schedules can be beneficial compared to cycling through the rules.

Optimization

One of our benchmark problems is an optimization problem, where we want to
find the assignment of values to decision variables that yields the optimal value for
an objective function. Our approach to optimization problems is to introduce a
variable for the outcome of an objective function, which can then be evaluated by
constraint propagation. An optimization operator (a particular form of reduction
operator, discussed in Section 3.2.2) then monitors this variable. It records the
best value seen for any solution, and applies the dynamic constraint that new
solutions must improve on this value.

For integer objective functions this is implemented by the Optimize reduction
operator:

DRF Optimize { -x };

Its specifier string is the name of an IntegerInterval variable, prefixed with -

for minimization, or + for maximization. If the objective function is composed of
arithmetic operations, it can be evaluated using the IIARule reduction operator.
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This yields a particular form of branch-and-bound search (see for example
[Dec03]). Branch-and-bound algorithms maintain an estimation for the outcome
of the objective function in the subtree that is currently being explored. This
estimation is a bound for the outcome of the objective function: a lower bound
for minimization, and an upper bound for optimization. Based on this estimation,
it may be possible to conclude that a particular branch of the search tree will
never be able to improve on the current best solution. Such subtrees can then
be pruned away. In our case the estimation is an interval that is guaranteed to
contain the outcome of the objective function for any solutions that descend from
the current node of the search tree.

Approaches

The proposed approaches were implemented by first rewriting arithmetic con-
straints to polynomial constraints, and then to a sequence of DRFs that corre-
spond with the rules of the approach used. We considered the following methods:

1a the first approach, discussed in Section 5.5;

1b the optimization of the first approach discussed at the end of Section 5.5 that
involves dividing out common powers of variables;

2a the second approach, discussed in Section 5.6. The conversion to simple
polynomial constraints is implemented by introducing an auxiliary variable
for every nonlinear monomial. This procedure may introduce more auxiliary
variables than necessary;

2b an optimized version of approach 2a, where we stop introducing auxiliary
variables as soon as the constraints contain no more duplicate occurrences
of variables;

3a the third approach, discussed in Section 5.7, allowing only linear constraints
and multiplication as atomic constraints;

3b idem, but also allowing x = y2 as an atomic constraint;

3c idem, allowing x = yn for all n > 1 as an atomic constraint.

Approaches 2 and 3 involve an extra rewrite step, where the auxiliary vari-
ables are introduced. The resulting CSP is then rewritten according to approach
1a. During the first rewrite step the hierarchical relations between the auxiliary
variables are recorded and the schedules are generated as a part of the second
rewrite step. For approaches 2b and 3 the question of which auxiliary variables
to introduce is an optimization problem in itself. Some choices result in more
auxiliary variables than others. We have not treated this issue as an optimization
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problem but relied on heuristics. For this reason we have to consider the possi-
bility that performance for these approaches can be further improved because in
our experiments we used a suboptimal rewriting. The rewrite steps are executed
by an external program, called pcrewrite (polynomial constraint rewrite), that
could serve as the interface between OpenSolver and a calculator front-end.

5.10 Experiments

5.10.1 Problems

In our experiments we used the following benchmarks.

Cubes. The problem is to find all natural numbers n ≤ 100000 that are a sum
of four different cubes, for example

13 + 23 + 33 + 43 = 100.

This problem is modeled as follows1:

〈1 ≤ x1, x1 ≤ x2 − 1, x2 ≤ x3 − 1, x3 ≤ x4 − 1, x4 ≤ n,
x3

1 + x3
2 + x3

3 + x3
4 = n; n ∈ [1..100000], x1, x2, x3, x4 ∈ ZZ〉

Opt. We are interested in finding a solution to the constraint x3 + y2 = z3 in
the integer interval [1..100000] for which the value of 2x · y − z is maximal.

Program 3.1 on page 38 shows the OpenSolver configuration script for solving
this problem according to approach 2a, which in this case is identical to that for
approach 3c.

Fractions. This problem is taken from [SS02]: find distinct nonzero digits such
that the following equation holds:

A

BC
+

D

EF
+

G

HI
= 1

There is a variable for each letter. The initial domains are [1..9]. To avoid
symmetric solutions an ordering is imposed:

A

BC
≥ D

EF
≥ G

HI

1Note that because the inequality constraints update only one bound, this works only because
the domain type implemented by IntegerInterval supports domains of the form {x ∈ Z|x ≥ l}
and {x ∈ Z | x ≤ h}, with Z a finite subset of ZZ. For using domain type I we would have to
provide initial bounds for x1, x2, x3, and x4.
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Also two redundant constraints are added:

3
A

BC
≥ 1 and 3

G

HI
≤ 1

Because division is not present in our arithmetic expressions, the above con-
straints are multiplied by the denominators of the fractions to obtain arithmetic
constraints. Two representations for this problem were studied:

• fractions1 in which five constraints are used: one equality and four inequal-
ities for the ordering and the redundant constraints,

• fractions2, used in [SS02], in which three auxiliary variables, BC,EF and
HI, are introduced to simplify the arithmetic constraints: BC = 10B + C,
EF = 10E + F , and HI = 10H + I.

Additionally, in both representations, 36 disequalities A 6= B, A 6= C, ..., H 6= I
are used.

Kyoto. The problem (from [DS95]) is to find the number n such that the al-
phanumeric equation

K Y O T O
K Y O T O

+ K Y O T O
T O K Y O

has a solution in the base-n number system. Our representation uses a variable
for each letter and one variable for the base number. The variables K and T may
not be zero. There is one large constraint for the addition, 6 disequalities K 6= Y
... T 6= O and four constraints stating that the individual digits K,Y,O, T ,
are smaller than the base number. To spend some CPU time, we searched base
numbers 2..100.

Sumprod. This is the problem cited in Subsection 5.1.1, for n = 14. We use
the following representation:

〈x1 + . . . + xn = c1 + . . . + cn,
x1 · . . . · xn = c1 · . . . · cn,
x1 ≤ x2, x2 ≤ x3, . . . , xn−1 ≤ xn ;
x1, . . . , xn ∈ [1..n],
c1 ∈ {1}, c2 ∈ {2}, . . . , cn ∈ {n}〉

For n = 14, the value of the expression
∏n

i=1 i equals 14!, which exceeds 232,
and to avoid problems with the input of large numbers, we used bound variables
c1, . . . , cn and constraint propagation to evaluate it.
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5.10.2 Results

Tables 5.1 and 5.2 compare the proposed approaches on the problems defined
in the previous subsection. We used a chronological variable selection strategy
and a bisection branching, and in all experiments we searched for all solutions,
traversing the entire search tree by means of depth-first leftmost-first chronolog-
ical backtracking. The first two columns of table 5.1 list the number of variables
and the DRFs that were used. Column nodes lists the size of the search tree, in-
cluding failures and solutions. The next two columns list the number of times that
a DRF was executed, and the percentage of these activations that the domain of
a variable was actually modified. For the opt problem, the DRF that implements
the optimization is not counted, and its activation is not taken into account. The
elapsed times in the last column are the minimum times (in seconds) recorded
for 5 runs on a 1200 MHz Athlon CPU.

Table 5.2 lists measured numbers of basic interval operations. Note that
for approach 1b, there are two versions of the division and addition operations:
one for integer intervals, and one for intervals of reals of which the bounds are
rational numbers (marked Q). Columns multI and multF list the numbers of
multiplications of two integer intervals, and of an integer interval and an integer
factor, respectively. These are different operations in our implementation.

For the cubes, opt, and sumprod problems, the constraints are already in
simple form, so approaches 1a, 1b and 2b are identical. For cubes and opt all
nonlinear terms involve a single multiplication or exponentiation, so for these
experiments also approaches 2a and 3c are the same. For both versions of the
fractions problem, and for sumprod, no exponentiations are used, so versions a,
b, and c of approach 3 are identical.

The results of these experiments clearly show the disadvantage of implement-
ing exponentiation by means of multiplication: the search space grows because
we increase the number of variable occurrences and lose the information that it
is the same number that is being multiplied. For opt and approach 3a, the run
did not complete within reasonable time and was aborted.

Columns E and I of table 5.1 compare the propagation achieved by our ap-
proaches with two other systems, respectively ECLiPSe Version 5.6 [WNS97]
using the ic library, and ILOG Solver 5.1 [Ilo01] using type ILOINT. For this
purpose we ran the test problems without search, and compared the results of
constraint propagation. A mark ‘=’ means that the computed domains are the
same, ‘+’ that our approach achieved stronger propagation than the solver that
we compare with, and ‘-’ that propagation is weaker. For cubes, ECLiPSe com-
putes the same domains as those computed according to approach 3b, so here
the reduction is stronger than for 3a, but weaker than for the other approaches.
For opt ECLiPSe and ILOG Solver compute the same domains. These domains
are narrower than those computed according to approaches 3a and 3b, but the
other approaches achieve stronger reduction. In all other cases except for kyoto
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elapsed
nvar nDRF nodes activated %eff. (sec.) E I

cubes
1,2b 5 14 169,755 1,876,192 9.52 9.60 + =

2a,3c 9 22 169,755 2,237,590 16.28 6.46 + =
3a 13 34 206,405 3,011,749 20.02 8.46 - -
3b 13 34 178,781 2,895,717 20.62 8.61 = -

opt
1,2b 4 7 115,469 5,187,002 42.16 20.97 + +

2a,3c 8 15 115,469 9,800,017 60.00 21.47 + +
3a 10 21 ? ? ? ? - -
3b 10 21 5,065,195 156,906,444 46.49 406.39 - -

fractions1
1a 9 154 11,289 1,193,579 3.65 16.00 = =
1b 9 154 7,879 734,980 3.45 17.99 = =
2a 37 210 11,289 1,410,436 23.27 4.95 = =
2b 32 200 11,289 1,385,933 21.65 5.41 = =
3 43 208 11,131 1,426,204 27.76 5.07 = =

fractions2
1a 12 105 2,449 270,843 9.72 0.58 = =
1b 12 105 989 94,894 9.12 0.55 = =
2a 20 121 2,449 350,390 22.19 0.48 = =
2b 15 111 2,449 301,865 17.50 0.46 = =
3 22 123 1,525 293,051 27.33 0.41 = =

kyoto
1a 5 37 87,085 3,299,814 6.09 21.80 = =
1b 5 37 87,085 3,288,461 5.94 46.12 + +
2a 13 53 87,085 3,781,514 23.02 10.73 = =
2b 12 51 87,085 3,622,461 21.45 11.06 = =
3a 16 60 87,087 4,276,066 26.70 10.25 = =
3b 16 60 87,085 4,275,957 26.70 10.34 = =
3c 16 59 87,085 3,746,532 23.26 9.33 = =

sumprod
1,2b 28 82 230,233 10,910,441 7.91 112.25 = =

2a 30 86 230,233 9,196,772 9.39 89.37 = =
3 54 134 55,385 3,078,649 18.01 26.57 = =

Table 5.1: Statistics and comparison with other solvers
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root exp div multI multF sum total
cubes

1,2b 1,182 4,224 0 0 4,756 4,245 14,408
2a,3c 180 181 0 0 4,756 4,245 9,363

3a 0 0 589 438 4,927 4,363 10,317
3b 192 198 384 198 4,842 4,305 10,121

opt
1,2b 2,299 4,599 1,443 1,444 11,064 5,187 26,037

2a,3c 1,636 1,538 2,150 738 8,138 4,445 18,645
3a ? ? ? ? ? ? ?
3b 21,066 18,106 54,172 18,285 106,652 57,470 275,751

fractions1
1a 0 0 868 28,916 14,238 13,444 57,466
1b 0 0 51 11,892 8,010 6,727 29,584

1,550 Q 1,355 Q
2a 0 0 734 933 4,736 4,669 11,071
2b 0 0 776 1,509 5,292 5,147 12,725
3 0 0 693 339 4,835 4,769 10,636

fractions2
1a 0 0 142 690 304 212 1,348
1b 0 0 19 127 59 26 344

65 Q 49 Q
2a 0 0 124 149 138 94 505
2b 0 0 124 206 210 118 658
3 0 0 114 46 142 101 403

kyoto
1a 735 11,041 1,963 13,853 10,853 13,946 52,390
1b 735 8,146 218 8,955 12,516 10,592 48,749

4,310 Q 3,277 Q
2a 383 759 1,591 484 5,324 7,504 16,044
2b 383 759 1,597 1,360 5,756 8,008 17,863
3a 0 0 1,991 578 5,324 7,505 15,398
3b < 0.5 < 0.5 1,990 578 5,324 7,504 15,397
3c 1 1 1,554 484 5,324 7,504 14,868

sumprod
1,2b 0 0 4,032 100,791 85,419 149,479 339,721

2a 0 0 2,186 27,948 81,728 149,479 261,340
3 0 0 609 205 25,799 46,960 73,573

Table 5.2: Measured numbers (thousands) of interval operations
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and approach 1b the results of all three solvers are the same.
For the fractions puzzle, the symbolic manipulation of approach 1b reduces the

search tree by a factor 0.70 for the first representation, and by a factor 0.40 for the
second. However, this reduction is not reflected in the timings. For fractions1 the
elapsed time even increases. The reason is that computing the domain updates
involves adding intervals of real numbers. The arithmetic operations on such
intervals are more expensive than their counterparts on integer intervals, because
the bounds have to be maintained as rational numbers. Arithmetic operations
on rational numbers are more expensive because they involve the computation of
greatest common divisors. For kyoto the symbolic manipulation did not reduce
the size of the search tree, so the effect is even more severe.

In general, the introduction of auxiliary variables leads to a reduction of the
number of interval operations compared to approach 1a. The reason is that auxil-
iary variables prevent the evaluation of subexpressions that did not change. This
effect is strongest for fractions1, where the main constraint contains a large num-
ber of different power products. Without auxiliary variables all power products
are evaluated for every POLYNOMIAL EQUALITY rule defined by this con-
straint, even those power products the variable domains of which did not change.
With auxiliary variables the intervals for such unmodified terms are available
immediately, which leads to a significant reduction of the number of interval mul-
tiplications. For sumprod, the difference between approaches 1a and 2a is a bit
artificial, because the operations that are saved involve the computation of the
constant term c1 · . . . ·cn. A comparable number of interval additions can be saved
if we introduce a variable for the constant term c1 + . . . + cn. If we add these
variables to the CSP all variants of approaches 1 and 2 are essentially the same.

The effect that stronger reduction is achieved as a result of introducing aux-
iliary variables, mentioned in Section 5.7, is seen for both representations of the
fractions benchmark, and prominently for sumprod. In the latter case, this effect
depends on a decomposition of the term

∏n

i=1 xi as x1 · (x2 · (. . . · (xn−1 · xn) . . .)),
with an auxiliary variable per pair of brackets. The decomposition then matches
the chronological ordering used to select the variable for branching. If the order-
ing is reversed, the number of nodes is equal to that of the other approaches. The
effect described in Section 5.6 is not demonstrated by these experiments.

If we do not consider the symbolic manipulation of approach 1b, then ap-
proach 3c leads to the smallest total number of interval operations in all cases,
but the scheduling mechanism discussed in Section 5.9 is essential for a consistent
good performance. If for example the schedule is omitted for opt, the number of
interval operations almost triples, and performance of approach 2a and 3c is then
much worse than that of approach 1a.

The total numbers of interval operations in table 5.2 do not fully explain all
differences in elapsed times. One of the reasons is that different interval operations
have different costs. Also some overhead is involved in applying a DRF, so if the
number of applications differs significantly for two experiments, this influences
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the elapsed times as well (opt , 1a, 2a, fractions2 , 2a, 2b). The elapsed times
are not the only measure that is subject to implementation details. For example,
we implemented division by a constant interval [−1.. − 1] as multiplication by a
constant, which is more efficient in our implementation. Such decisions are also
reflected in the numbers reported in table 5.2.

5.11 Conclusions

In this chapter we discussed a number of approaches to constraint propagation for
arithmetic constraints on integer intervals. To assess them we implemented them
using the OpenSolver framework, and compared their performance on a number
of benchmark problems. We can conclude that:

• Implementation of exponentiation by multiplication gives weak reduction.
In our third approach x = yn should be used as an atomic constraint.

• The optimization of the first approach, where common powers of variables
are divided out, can significantly reduce the size of the search tree, but
the resulting reduction steps rely heavily on the division and addition of
rational numbers. These operations are more expensive than their integer
counterparts, because they involve the computation of greatest common
divisors. As a result, our implementation of this approach was inefficient.

• Introducing auxiliary variables can be beneficial in two ways: it may strength-
en the propagation, as discussed in Sections 5.6 and 5.7, and it may prevent
the evaluation of subexpressions the variable domains of which did not
change.

• As a result, given a proper scheduling of the rules, the second and third
approach perform better than the first approach without the optimization,
in terms of numbers of interval operations. Actual performance depends on
many implementation aspects. However for our test problems the perfor-
mance of variants 2a, 2b and 3c does not differ much, except for one case
where the decomposition of a single multiplication of all variables signifi-
cantly reduced the size of the search tree.

Because of the inherent simplicity of the reduction rules and the potential
additional reduction of the search tree, approach 3c is our method of choice.
We decompose polynomial constraints into multiplication, exponentiation, and
linear constraints. A hierarchical scheduling of the resulting reduction rules is
essential for improving the performance of approach 1a. As we noted at the
end of Section 5.9.2, it may be possible to improve the performance further by
treating the decomposition into atomic constraints as an optimization problem,
minimizing the number of auxiliary variables.
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Given that approach 1b can achieve a significant reduction of the search tree,
it would be interesting to combine it with approach 3c. Depending on the effect
of the symbolic manipulation, a selection of the optimized rules that enforce a
particular constraint according to approach 1b could be used as redundant rules.
In this case, the internal computations need not be precise, and we could main-
tain the rational bounds as floating-point numbers, thus avoiding the expensive
computation of greatest common divisors.

Note that our characterization of the third approach is limited to version 3a.
A characterization of the linear equality constraints can be found, for example,
in [Apt03], but the atomic constraint x = yn is not covered. Also a proper
characterization of the first and second approach may help us formalize the im-
proved reduction observed in Sections 5.6 and 5.7. Because of the lengthy proofs
involved, we have left this as an opportunity for future work.

We would like to point out that the operators studied in this chapter are
similar to those for enforcing hull consistency, which we discussed in Section 4.5
for floating-point intervals. In Chapter 7 we will implement a stronger notion of
consistency called box consistency, and apply this both to floating-point inter-
vals and integer intervals. The operators for enforcing box consistency will be
composed from the facilities introduced here and in Section 4.5, plus a generic
operator for nested search.

So far we have only seen examples of constraint solvers on a single domain
type. In the next chapter we will study a hybrid solver, where some of the facilities
introduced here, namely those for optimization, are combined with reduction
operators on special-purpose domain types.



Chapter 6

Job-Shop Scheduling in OpenSolver

As a case study, we demonstrate how OpenSolver can be configured as a solver for
the job-shop scheduling problem (JSSP). For this purpose we will introduce a
small number of dedicated plug-ins. Because we can rely on existing facilities for
search and optimization, building this specialized solver involves only a modest
implementation effort. Two of the new plug-ins are variable domain types, and
this particular OpenSolver configuration demonstrates a technique that we refer
to as constraining special-purpose domain types. We will conclude the
chapter with a discussion of the pros and cons of this technique. Also, JSSP is
considered to be a non-trivial problem that is representative for many scheduling
problems that occur in practice. As such, this case study demonstrates that our
approach leads to solvers that have a relevance beyond puzzle-type problems such
as the ones we used in the previous chapters.

6.1 Introduction

The tools that are available to model a combinatorial problem as a CSP differ for
various constraint solvers. The basic machinery typically includes:

• finite domain and interval representations for the domains of integer vari-
ables, and a floating-point interval representation for real numbers,

• arithmetic constraints on numerical variables,

• global constraints, such as the all different constraint.

Depending on the problem that we want to model, these facilities may or may
not be fully adequate to construct a CSP.

In an open-ended constraint solver, we have the possibility to add new facili-
ties. If a problem is hard to model, it may be easier to add a few special-purpose
facilities, such as a new constraint. This may lead to a CSP that is much closer

129
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to the original problem than a CSP that uses only the built-in primitives. In a
library-based system, like ILOG Solver, the user can write new constraints and
goals to guide the search by writing new subclasses of base classes provided by
the library. In logic programming systems, like ECLiPSe, such facilities can be
written in the host language, usually Prolog. Here we will be using the readily
available facilities for search and optimization of OpenSolver, and complement
these with plug-ins for special purpose domain types and reduction operators for
the job-shop scheduling problem.

The chapter is structured as follows: In Section 6.2 we introduce the job-
shop scheduling problem, and describe an algorithm for solving it. In Section 6.3
we detail the implementation of this algorithm in OpenSolver. We conclude
in Section 6.4 with a discussion of our approach from a software engineering
perspective. An evaluation of our implementation on a set of benchmark problems
is postponed until the next chapter, where we compare it with an alternative
implementation based on nested search.

6.2 The Job-Shop Scheduling Problem

A JSSP instance consists of a set of activities, and a number of machines

(in general, resources). An activity is characterized by the machine that it
must be processed on, and by a processing time , which specifies for how long
the machine is needed. JSSP is a non-preemptive scheduling problem, which
means that activities cannot be interrupted. They acquire the machines for their
full processing time. Activities are grouped in jobs, where all activities of a
job have to be executed in a specified order. The problem is to find for each
activity an interval in which it can be executed on the specified machine, such
that no two activities require the same machine simultaneously (the capacity

constraint : for JSSP, the machines have a capacity of one activity), and such
that the precedence constraints inside the jobs are respected. An optimal
schedule minimizes the completion time of the activities that finish last.

The table in Figure 6.1(a) specifies an example JSSP consisting of three jobs,
each having three activities that require three different machines. Each row of the
table specifies the numbers of the machine needed for the three activities, and
between parentheses the processing time of the activity. An optimal schedule
for this JSSP instance is depicted in Figure 6.1(b). The three bars represent the
machines, with the activities drawn on them. Black areas correspond to machines
being idle.

Algorithm 6.1 is a basic JSSP solver, due to Baptiste, Le Pape, and Nuijten
[BLPN01]. It is a branch-and-propagate algorithm, where branching determines
the relative order of the activities, expanding a partial schedule until all activities
have been ordered, and constraint propagation verifies that the current partial
schedule does not violate any precedence or capacity constraints. Each activity
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Ai has the following data associated with it:

• its release date , or earliest possible starting time, denoted ri,

• its deadline , or latest possible completion time, denoted di, and

• its processing time, denoted pi.

From these follow:

• the earliest possible completion time , denoted ecti, and

• the latest possible starting time of the activity, denoted lsti.

The rule for step 1 of the algorithm is to select the machine that is the critical

resource . Criticality is measured by comparing supply and demand for the
resources. Supply is the time window given by the earliest release date, and the
latest deadline among all activities that require the machine. Demand is their
total processing time. A machine with the smallest difference between these two
quantities, which is called the resource’s slack time , is selected. The rule for
step 2 is to select the activity with the earliest release date. The latest starting
time is used for breaking ties.

Constraint propagation in step 3 of the algorithm narrows the time windows
for the activities by increasing release dates and decreasing deadlines to enforce
the precedence and capacity constraints. In [BLPN01] a number of propagation
techniques are presented for these constraints. From this collection we used the
following techniques:

• For two consecutive activities Ai and Aj of a job, we ensure that di ≤ lstj,
and ecti ≤ rj to enforce the precedence constraint.

• The disjunctive constraint. For every pair of activities Ai and Aj that require
the same machine we know that either Ai precedes Aj, or Aj precedes Ai.
Therefore, if we find that ectj > lsti, we know that Aj cannot precede Ai,
and we can propagate the reverse constraint by enforcing di ≤ lstj, and
ecti ≤ rj, and similarly for the case that ecti > lstj.

• The edge finding algorithm, implementing further pruning for the capac-
ity constraint by identifying activities that must execute first, or last, in
a given set of activities. We implemented the variant of the algorithm de-
scribed in [BLPN01]. Its time complexity is quadratic in the number of
activities that require the same resource.

Edge finding was introduced by Carlier and Pinson [CP89], and provided a break-
through in job-shop scheduling because it allowed that for the first time, the
famous benchmark problem FT10 (also known as MT10) was solved.
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(a) (b)
A1 A2 A3

J1: 2(5) 1(2) 3(3)
J2: 2(4) 3(4) 1(1)
J3: 1(3) 3(3) 2(4)

M1

M2

M3

J3A1 J1A2 J2A3

J1A1 J2A1 J3A3

J3A2 J1A3 J2A2

Figure 6.1: a 3 × 3 JSSP instance and a minimal schedule for it

1. Select a machine for which the activities are not fully ordered

2. Select an activity to execute first among the unordered activities of that
machine. Post the corresponding precedence constraints . Keep the
the other activities as alternatives to be tried upon backtracking.

3. Verify feasibility of the partial schedule by means of constraint propagation.
Backtrack upon failure.

4. Iterate step 2 until all activities on the selected machine are ordered.

5. Iterate step 1 until all activities on all resources are ordered.

Algorithm 6.1: Basic algorithm for solving the job-shop scheduling problem
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6.3 JSSP in OpenSolver

In this section we describe the plug-ins that were developed to implement al-
gorithm 6.1 as an OpenSolver configuration. First, two special-purpose variable
domain types were introduced.

Activity

These are data structures consisting of three integers, that hold the release date,
deadline, and processing time of an activity. Branching on these variables will
enumerate candidate starting times, or candidate completion times, similar to
left/right-enumeration, which is illustrated in Figure 4.2(b) and (c) for finite
domains. Algorithm 6.1 branches only on the order, and not on the actual timing
of the activities, though, but this facility will be used in the solver of Section 7.5.4.
The size reported by an Activity domain is one plus the width of its time
window minus its processing time, which is the actual number of possibilities for
scheduling the activity.

The command for introducing an activity Ai, with (initial) release date and
deadline ri and di and processing time pi is

AUX Ai IS Activity { ri, pi, di };

Here the keyword AUX is used instead of VARIABLE to mark an activity as an
auxiliary variable.

Ranking

OpenSolver does not directly support posting and retracting constraints, as spec-
ified in step 2 of Algorithm 6.1. Instead, we introduced a domain type Ranking

for exploring alternative assignments of a machine to activities. A value for a
variable of type Ranking is essentially a permutation of the numbers 0 . . . na − 1
that specifies a particular order in which na activities that require the same ma-
chine are executed. The domain of such a variable is a set of permutations. It is
implemented as a data structure consisting of

• an array of length na, containing (initially in that order) the different indices
0 through na − 1.

• an integer no, indicating that the first no entries of the array have been
ordered. The remaining na − no entries are considered to be unordered.

• an index i ∈ [0..na−no−1], indicating a specific entry in the unordered part
of the array. This is the next candidate for expanding the ordered part.
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no

i +1

na

no

i

i =0

no+1

Figure 6.2: Branching on a variable of domain type Ranking

The search tree is expanded by splitting variables of domain type Ranking. this
is depicted in Figure 6.2. In the left branch, the element indicated by the index
i is added to the ordered set, and i is set to point to the first element of the new
unordered set. In the right branch, the ordered set is unchanged, and i points
to the next candidate in the unordered set. In other words, the domain in the
left branch corresponds to all permutations where the number pointed to by i is
the next element, and the right branch corresponds to the set of all permutations
where this number is not the next element. If i > na − no − 2 then the Size()

method of a Ranking domain will return 1, indicating that the permutation is
fixed. Otherwise a value greater than 1 is returned (detailed below).

The code for introducing a Ranking variable for machine mj is the following.

VARIABLE mj IS Ranking { na };

A number of reduction operators implement the interaction between logical
variables of domain types Activity and Ranking:

Precedes

This propagation operator enforces the precedence constraint on two activities,
as described in the previous section. The operation is similar to enforcing bounds
consistency for the linear inequality constraint on integer intervals (see Chap-
ter 5), but now operating on Activity domains. This operator is applied to all
consecutive pairs of activities Ai, Aj of the same job:

DRF Precedes { Ai, Aj };
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RankActivities

This operator applies to a variable of domain type Ranking, plus na Activity

variables. It is imposed on the activities that require the same machine. On the
activities whose indices are in the ordered part of the Ranking data structure,
the corresponding precedence constraints are enforced. A precedence constraint
is also enforced on all possible combinations of the last ordered activity and an
unordered activity.

The syntax for introducing the DRF that enforces the constraint that activi-
ties Ai1 , . . . , Aina

are processed on the machine with Ranking variable mj is the
following.

DRF RankActivities { mj, Ai1 , . . . , Aina
};

We would like to remark that RankActivities, and some of the other re-
duction operators used in this chapter, have all the properties of a global con-

straint , as described in Section 4.2. Indeed, as we already discussed there, global
constraints could be implemented in this way, and special-purpose domain types
can be used to store any information that needs to be maintained during con-
straint propagation or search.

The Precedes and RankActivities operators already provide the necessary
ingredients for a JSSP solver that is sound and complete. From this point of
view, the other plug-ins are an optimization:

Disjunctive

The Disjunctive plug-in implements the constraint that two activities that re-
quire the same machine cannot overlap in time. It is applied to all pairs of
activities Ai, Aj that require the same machine:

DRF Disjunctive { Ai, Aj };

EdgeFinding

This plug-in implements the edge finding algorithm. Its specifier string lists the
na Activity variables that require the same machine:

DRF EdgeFinding { Ai1 , . . . , Aina
};

DecorateRanking

This is a branching operator that serves only to decorate a variable of domain
type Ranking with the information that is needed to implement the variable
selection strategy described in Section 6.2. Because no subdomains are created
by the branching operator, we call it a pseudo branching operator . Like
RankActivities, it applies to a variable of domain type Ranking, and a sequence
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of na activities requiring the same machine. For the unordered activities, it
calculates the difference between the size of the available time window, and the
total processing time, as described in the previous section. Ranking variables
that have not been subject to branching report this difference plus one as the size
of the domain. In combination with a regular fail-first variable selection strategy,
this ensures that activities on critical resources are tried first in branching.

In addition to this, the unordered part of the array of Figure 6.2 is sorted
according to increasing release date and latest starting time. When splitting a
Ranking domain, this results in the value section strategy for step 2 of Algo-
rithm 6.1. The specifier string for the DecorateRanking plug-in is identical to
that for the RankActivities plug-in:

DRF DecorateRanking{ mj, Ai1 , . . . , Aina
};

Algorithm 6.1 computes feasible schedules instead of minimal schedules. Op-
timization can be realized by adding an extra step 6, which backtracks after a
solution, and constrains subsequent solutions to have a shorter schedule length
than the current solution. The last solution found is then the optimal sched-
ule. The resulting branch-and-bound search is implemented by introducing an
activity makespan having processing time 0, which is scheduled to start after the
last activity of each job. This approach is described in [VHPP00]. Via another
special-purpose operator BoundActivity, the domain of an integer interval vari-
able is constrained to range from the release date to the deadline of this activity.
The Optimize operator, introduced in Section 5.9.2, constrains the length of the
schedule to decrease for subsequent solutions.

Program 6.1 shows an example configuration file for a JSSP instance. Such
files are generated from JSSP specifications by a small preprocessor program. The
initial release date for the makespan activity is set to the maximum processing
time among all jobs and all sets of activities that are assigned to the same ma-
chine. Its initial deadline is the sum of all activity processing times. All variables
except the instances of Ranking are auxiliary variables. This means that for
any feasible ordering that is found, the time windows for the individual activities
may be wider than their processing times. To avoid having to search actively
for the minimum makespan of a given ordering, which can easily be achieved by
letting all activities start on their release dates, we use an additional operator
FixMakespan. For all (suboptimal) solutions encountered during the search, this
pseudo branching operator collapses the time window for the makespan activity
such that it can only be scheduled at its release date. The minimal schedule
for a feasible permutation of activities follows. We implemented a variant of the
Precedence and Disjunctive operators that apply to any number of activities.
We found that this gives slightly better performance than the binary operators de-
scribed above. A schedule of reduction operators, in the language of Figure 4.1,
is generated to coordinate constraint propagation such that application of the
expensive edge finding operators is postponed until a fixed point of the other
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operators is reached. This fixed point is recomputed if edge finding reduces the
time window of an activity.

Instead of branch-and-bound, the solver described in [BLPN01] performs a
bisection search for the minimal schedule. We compare both optimization algo-
rithms on a set of benchmark problems in Section 7.5.1, where we use nested
search to implement the latter alternative.

6.4 Discussion

Constraining Special-Purpose Domain Types

The scheduling facilities discussed here were developed primarily for the purpose
of testing OpenSolver on benchmarks of arguable relevance, but we believe that
the technique of constraining special-purpose data structures, like the Ranking

and Activity variables, is interesting in itself. On the one hand, it illustrates
the use of OpenSolver as an abstract branch-and-prune tree search engine, that
can be configured in different ways for different tasks. Again, the effort of de-
veloping these plug-ins is modest compared to developing a JSSP solver from
scratch. While these plug-ins have little relevance outside the specific applica-
tion of scheduling, the framework allows for a seamless integration with existing
facilities, notably for search, optimization, and parallel processing.

On the other hand, scheduling is an example of a combinatorial problem for
which an efficient translation to regular constraint programming primitives is not
straightforward. For this reason, other platforms have built-in facilities (for exam-
ple, the OPL Resource data type [VH99]) for scheduling as well (implementing
permutation-based JSSP solving on top of standard modeling facilities is explored
in [Zho97]). In general, these “heavy-weight” application-specific domain types
allow us to write constraint programs that are very close to the original problem,
and are hence more easily verified to be correct. A specific advantage of our ap-
proach is that these facilities are not hard-wired in the system. We expect that
the technique can be applied to other combinatorial (optimization) problems, for
which a direct translation to regular constraints is not straightforward.

A disadvantage of our approach is that heavy-weight domain types like Ranking
do not lend themselves naturally for domain reduction by means of constraint
propagation. For implementing Algorithm 6.1 this is not problematic, but it im-
pedes the implementation of several possible improvements of this algorithm. For
example, if the disjunctive constraint implies that one activity always precedes an-
other in a particular branch of the search tree, we cannot reduce the domain of a
Ranking variable accordingly. Permutations that violate this deduced constraint
will be generated over and over again (trashing), and have to be refuted by prop-
agation of the disjunctive constraint. This may lead to substantially larger search
trees.
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AUX J0A0 IS Activity {0,5,29};

AUX J0A1 IS Activity {0,2,29};

AUX J0A2 IS Activity {0,3,29};

AUX J1A0 IS Activity {0,4,29};

AUX J1A1 IS Activity {0,4,29};

AUX J1A2 IS Activity {0,1,29};

AUX J2A0 IS Activity {0,3,29};

AUX J2A1 IS Activity {0,3,29};

AUX J2A2 IS Activity {0,4,29};

AUX makespan IS Activity {13,0,29};

AUX imakespan IS IntegerInterval { };

VARIABLE M0 IS Ranking { 3 };

VARIABLE M1 IS Ranking { 3 };

VARIABLE M2 IS Ranking { 3 };

DRF RankActivities { M0, J0A1, J1A2, J2A0 };

DRF RankActivities { M1, J0A0, J1A0, J2A2 };

DRF RankActivities { M2, J0A2, J1A1, J2A1 };

DRF Precedes { J0A0,J0A1,J0A2, makespan };

DRF Precedes { J1A0,J1A1,J1A2, makespan };

DRF Precedes { J2A0,J2A1,J2A2, makespan };

DRF Disjunctive { J0A1,J1A2,J2A0};

DRF Disjunctive { J0A0,J1A0,J2A2};

DRF Disjunctive { J0A2,J1A1,J2A1};

DRF EdgeFinding{ J0A1, J1A2, J2A0 };

DRF EdgeFinding{ J0A0, J1A0, J2A2 };

DRF EdgeFinding{ J0A2, J1A1, J2A1 };

DRF DecorateRanking { M0, J0A1, J1A2, J2A0 };

DRF DecorateRanking { M1, J0A0, J1A0, J2A2 };

DRF DecorateRanking { M2, J0A2, J1A1, J2A1 };

DRF BoundActivity { makespan, imakespan };

DRF FixMakespan { imakespan, imakespan };

DRF Optimize { -imakespan };

DRF FailFirst { 0, M0, M1, M2 };

SCHEDULER ChangeScheduler { schedule =

( { 0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18 },

9, 10, 11 ) };

Program 6.1: OpenSolver configuration for the JSSP instance of Figure 6.1
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One way to avoid this problem would be to “virtually” reduce the domain of
Ranking variables by recording this kind of information in the domain data struc-
tures, and preventing that the erroneous permutations are generated. This way,
more and more constraint solving functionality is pushed into the basic value se-
lection strategy offered by the domain type. This is all the more interesting from
a solver cooperation perspective, but other CSP formulations are better suited for
this kind of propagation. One option would be to use a Boolean variable for every
pair of activities on the same machine, and to use so-called reified constraints

to enforce the precedence relations that these variables encode. A reified con-
straint is a constraint of the form b ↔ C, with b a Boolean variable and C a
constraint [SS02]. It reads “b if and only if C,” which entails that if b is false, the
negation of C is enforced, and if C becomes redundant or falsified, the domain of
b is reduced accordingly. Reified constraints are typically used to express logical
connectives between constraints, such as C ↔ C ′.

Search

Another issue is the flexibility of our search strategy. Languages like OPL and
SALSA [LC02] offer richer facilities for specifying search procedures. To illus-
trate the limitations of the current set of plug-ins, consider the variable selection
strategy of Algorithm 6.1. Once a machine is selected, all tasks that require it are
scheduled before another machine is considered. This was implemented by ma-
nipulating the size of the variable domain that is reported by Ranking instances.
When a domain of type Ranking is split, as depicted in Figure 6.2, the resulting
subdomains will always report size 2. Domains that have never been split report
a size greater than 2 that reflects the total slack time of the resource. As a result,
a fail-first variable selection strategy will prefer variables that have been split
before, which leads to the required strategy.

A more elegant implementation of the variable selection strategy would be to
compose it from two basic strategies. Suppose that in addition to fail-first (FF)
we have at our disposal a strategy R that always selects the variable that has been
selected most recently. A SALSA expression for our variable selection strategy
would then be

(R⋆
3 FF)⋆

3 cont

This specifies that we keep applying R until no subdomains are generated by
splitting the most recently split variable. This happens at the beginning of the
search. In that case we apply fail-first. This composite procedure is repeated
until a leaf of the search tree is reached, where instead of terminating the search,
we continue the exploration.

A similar composition can be achieved in OpenSolver through the adapter
mechanism. We can implement a branching operator CompositeBranching that
accommodates two, or any number of branching operators. When one of these
internal branching operators does not yield any subdomains, it applies the next.
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The following code would then result in the variable selection strategy for job-shop
scheduling:

DRF CompositeBranching {

DRF RepeatBranching { 0, M0, M1, M2 };

DRF AnnotateVariableSelection { FailFirst { 0, M0, M1, M2 } };

};

where RepeatBranching branches on the most recently selected variable. The re-
quired variable index can be maintained using an annotation, like the RoundRobin
plug-in does (see Section 4.1.2). Here we assume that FailFirst is modified to
maintain this annotation through an adapter AnnotateVariableSelection.

Using this composition, we do not have to set the size of Ranking subdomains
to two. If, as an experiment, we would like to reconsider the choice of the resource
each time we extend the partial schedule with a new activity, we would just have
to replace the above composite branching strategy with FailFirst. Currently we
would have to modify and recompile the Ranking plug-in for this experiment. In
OPL, Algorithm 6.1 is realized by nesting the value selection in a while statement,
that prevents a new Resource to be selected while the current resource has not
been completely ranked. For our experiment we would simply have to remove
this while statement (see [VHPP00] ).

For computing the slack times, and sorting the unordered part of the ar-
rays of Figure 6.2, there are no good alternatives for using pseudo-branching
operators. If we want to make this the responsibility of the branching opera-
tor, it would need to be aware of the relation between the ranking variables and
the activities. This is possible, but would result in special-purpose branching
operators, while currently, the problem-specific details are hidden in the pseudo
branching operator DecorateRanking. Also we could consider to implement facil-
ities for programmable value selection strategies, as supported by SALSA Choice

specifications. However, it should be realized that the OpenSolver configuration
language is a lower-level language than SALSA and OPL. As we discussed in
Section 4.1.1, it should be seen as an assembly language, and consequently we
have many options for realizing specific techniques. For the present problem, the
pseudo branching operators seem a good solution. However, for a coherent set of
plug-ins, languages that are closer to OPL and SALSA could be implemented on
top of OpenSolver, as a compiler that generates configuration specifications.

6.5 Concluding Remarks

In this chapter we have demonstrated how OpenSolver can be configured as a
basic solver for the job shop scheduling problem. This involves a technique that
we refer to as constraining special-purpose domain types, which entails that new
domain types and reduction operator plug-ins are added when problems cannot
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be modeled efficiently with the facilities that are readily available. Through its
open-ended nature, OpenSolver is particularly suited for this technique, and it
demonstrates its use as an abstract branch-and-propagate tree search engine.

The job-shop scheduling problem is an interesting test case because it is com-
putationally expensive, and because it is considered to be representative for many
scheduling problems that occur in practice. An evaluation of the efficiency of the
solver that we described here is postponed until Section 7.5.1 in the next chap-
ter, where we compare it with an alternative optimization scheme on a set of
benchmark problems.





Chapter 7

Applications of Nested Search

Nested search entails that a limited branch-and-propagate tree search is per-
formed during constraint propagation. In this chapter we propose a generic re-
duction operator for nested search, and investigate the extent to which it can be
used to express a number of well-known techniques, from different application
domains, for improving the efficiency of constraint solving. Generalizing solving
techniques has several advantages. From a modeling perspective, the technique
extends easily to other application domains, and from a software engineering
perspective, it avoids duplicate code with only small variations for different ap-
plications.

This is the first of three chapters that demonstrate the use of OpenSolver as
a software component. In this case OpenSolver implements the generic reduction
operator for nested search. Consequently, we gain rich facilities for expressing the
nested search, at the cost of an overhead for using a general-purpose constraint
solver for very specific search problems. We demonstrate that despite this over-
head, our approach leads to a viable implementation of the techniques that we
are interested in.

7.1 Introduction

Constraint propagation is usually implemented as the repeated application of
reduction operators that enforce some form of local consistency, such as arc con-
sistency, or an approximation thereof. In this context ‘local’ means that only
individual constraints, applying to a small subset of the variables are considered
when removing values from the domains of the variables. For arithmetic con-
straints, these individual constraints are usually the result of a decomposition
of complex constraints into atomic constraints, for which the resulting form of
consistency is weaker than for the original constraints.

Sometimes the efficiency of constraint solving can be improved by enforcing
a stronger, less local form of consistency. Operators that enforce such a form
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of consistency typically still update the domain of a single variable, but more
than a single constraint is considered when removing values. This is achieved by
actively trying different subdomains for the variable that we want to reduce, and
then verifying by means of constraint propagation that this does not violate the
combined constraints. The resulting trial-and-refutation mechanism can be
seen as a limited form of branch-and-propagate search, where branching is on the
domain of a single variable only.

We will look at two examples of such operators: enforcing box consistency

for arithmetic constraints, and removing (shaving off) unfeasible activity start-
ing times and completion times in scheduling problems. Box consistency can be
explained as to consider all atomic constraints in the decomposition of a single
user constraint, and is therefore a stronger notion of consistency than what is
achieved for the decomposition alone. Shaving considers the full set of capacity
and precedence constraints in a scheduling problem, when trying to refute possi-
ble values for the variable that it is applied to. We will show that both operators
can be expressed as applications of a generic operator for nested search. A third
application is optimization by means of a bisection search in the range for the
outcome of an objective function.

Instead of implementing dedicated operators for each of these techniques,
our approach entails that these operators are composed from a limited set of
basic facilities, which includes the generic operator for nested search. This is an
advantage in hybrid solvers, supporting multiple domain types, where we want to
avoid that techniques like shaving are available only for a subset of the domain
types. It is of even greater importance for open-ended solvers, where the set
of domain types can be extended. A disadvantage is that a generic operator is
likely not as efficient as a dedicated implementation. We provide the results of
experiments that show that despite a general-purpose constraint solver is used
for the nested search, we still obtain a workable implementation.

The rest of this chapter is structured as follows. The reduction operator for
nested search is defined in Section 7.2. In Section 7.3 we show how it can be
used to define optimization, box consistency, and shaving. Section 7.4 details the
implementation of the operator, and Section 7.5 describes the experiments.

7.2 An Operator for Nested Search

In this section we propose a generic operator for nested search. It is presented as
a domain reduction function that, like all other DRFs, is used in the context of a
branch-and-propagate search for a solved form of an ECSP. The DRF is evaluated
during the constraint propagation phase, and may yield a smaller domain for one
of the variables of the ECSP. Since we are defining a generic operator, the DRF
for this operator is parameterized with some extra information. This extra
information instantiates the DRF to perform a particular reduction step.
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Inner and Outer ECSP

In this case, the information that parameterizes the DRF is another ECSP. So
unlike the DRFs that we encountered so far, the DRF for nested search involves
more than one ECSP:

1. The ECSP whose domains are reduced by the DRF. For regular DRFs, this
is the only ECSP that we need to consider. Here we will call this ECSP the
outer ECSP.

2. The ECSP that parameterizes the DRF. We will call this ECSP the pa-

rameter ECSP.

3. The parameter ECSP is combined with the domains that the DRF is eval-
uated for (detailed below). This results in a third ECSP that we will call
the inner ECSP.

Evaluation of the DRF for nested search involves solving the inner ECSP by
means of a branch-and-propagate search. The term nested search refers to this
branch-and-propagate search on the inner ECSP, and emphasizes that it occurs as
a single domain reduction step in the encompassing branch-and-propagate search
on the outer ECSP.

The inner ECSP is a modified version of the parameter ECSP. It is obtained
by replacing the domains of certain variables with the domains that the DRF is
evaluated for. We introduce the following notation to describe this modification.

7.2.1. Definition. Let P be an ECSP with variables x1, . . . , xm and corre-
sponding domain types T1, . . . , Tm. For D1 ∈ T1,. . . ,Dn ∈ Tn, and n ≤ m,
let (P, 〈D1, . . . , Dn〉) denote the ECSP obtained by replacing in P the domains of
the first n variables x1, . . . , xn with D1, . . . , Dn, and projecting the new sequence
of domains on the constraints. 2

7.2.2. Example. For

P := 〈CP ; x, y, z ∈ {0, 1, 2} ; Dx, Dy, Dz ∈ Z ; Ax,Ay,Az〉,
(P, 〈{0, 1}, {1, 2}〉) denotes the ECSP obtained by replacing the domain of x in
P with {0, 1}, and the domain of y in P with {1, 2}:

(P, 〈{0, 1}, {1, 2}〉) = 〈C′
P ; x ∈ {0, 1}, y ∈ {1, 2}, z ∈ {0, 1, 2}

; Dx, Dy, Dz ∈ Z
; Ax,Ay,Az〉

where C′
P is CP [{0, 1}, {1, 2}, {0, 1, 2}], the projection of the new domains on the

constraints of P . The domains of x and y in P , and their sets of final domains
are irrelevant for the purpose of this notation. The projection is needed only
to maintain the property that constraints are subsets of Cartesian products of
domains. 2
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Definition of the Operator

The operator for nested search is now defined as follows.

7.2.3. Definition. Given

• an ECSP P with at least n variables, and

• a variable xj with 1 ≤ j ≤ n,

let T1, . . . , Tn be the domain types of the first n variables in P . We define the
function

fP,xj
: T1 × . . . × Tn → Tj

as follows:

fP,xj
(D1, . . . , Dn) =

{

D′
j if (P, 〈D1, . . . , Dn〉) is consistent

∅ otherwise

where if P ′ := (P, 〈D1, . . . , Dn〉) is consistent, D′
j is the domain of xj in a γ solved

form of P ′, for some notion of local consistency γ. 2

To elucidate this definition, note that

• P and P ′ are the argument ECSP and inner ECSP, respectively. fP,xj

is a domain reduction function for an outer ECSP Q that has variables
x1, . . . , xn and the corresponding domain types T1, . . . , Tn in common with
P . For our applications, P can always be defined such that x1, . . . , xn is a
subsequence of the variables of Q.

• If P ′ is consistent, there may exist more than a single γ solved form of P ′.
In this case, the definition is not specific about which γ solved form delivers
the outcome of the function. We will comment on this after the example
below.

Further, recall from Definition 2.2.14 on page 16 that a γ solved form of an ECSP
is a subproblem that is γ consistent, and whose domains are elements of their
respective sets of final domains. γ refers to some notion of local consistency, e.g.,
γ = arc for arc consistency.

Operationally, the evaluation of fP,xj
on a given sequence of argument domains

D1, . . . , Dn consists of the following three steps (see also Figure 7.1).

1. Construction of the inner ECSP (P, 〈D1, . . . , Dn〉)

2. Branch-and-propagate search on the inner ECSP. This is the actual nested
search.
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fP,xj
(D1, . . . , Dn) = �

?
construct P ′ := (P, 〈D1, . . . , Dn〉)1.

?
solve P ′2.

@@R��	
consistent inconsistent3.

?
γ solved form
〈CP ; . . . , xj ∈ D′

j, . . . ; . . . ; . . .〉 -

- ∅

D′
j

Figure 7.1: Evaluation of the DRF for nested search

3. If step 2 determines that the inner ECSP is inconsistent, fP,xj
(D1, . . . , Dn)

evaluates to ∅. Otherwise, fP,xj
(D1, . . . , Dn) evaluates to the domain of

variable xj in the γ solved form that is found in step 2.

In two of the three application considered in the next section, the inner ECSP
has exactly one decision variable, and in all applications, the inner ECSP has
one or more auxiliary variables. As a result, the branch-and-propagate search
of step 2 is limited in the sense that it is not an exhaustive exploration of all
possible combinations of canonical domains. Search takes place on a subset of
the variables only.

An Example

We will see three examples of specific uses of the DRF of Definition 7.2.3 in the
next section. Just to illustrate the interaction between the inner ECSP, the DRF,
and the outer ECSP, we present the following (contrived) example.

7.2.4. Example. Let Q be the ECSP

Q := 〈CQ ; w, x, y ∈ {0, 1, 2} ; Dw, Dx, Dy ∈ Z ; Aw,AQ,x,AQ,y〉

Consider the instance fP,y of the DRF for nested search that is parameterized by
the ECSP

P := 〈x < y, y 6= z ; x, y ∈ ZZ, z ∈ {0, 1, 2} ; Dx, Dy, Dz ∈ Z ; AP,x,AP,y,Az〉

having sets of final domains AP,x = ⌊Z⌋, AP,y = Z − {∅}, and Az = ⌊Z⌋, i.e., x
and z are decision variables, and y is an auxiliary variable in P .

Q and P share variables x and y, so as a DRF on Q, fP,y has the signature

Tx × Ty → Ty
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with Tx = Z and Ty = Z.
If we evaluate this function for the domains of x and y in Q, i.e., we compute

fP,y({0, 1, 2}, {0, 1, 2}), we first construct the inner ECSP

P ′ = (P, 〈{0, 1, 2}, {0, 1, 2}〉).
This is the first step of Figure 7.1, and in this case we have

P ′ = 〈x < y, y 6= z ; x, y, z ∈ {0, 1, 2} ; Dx, Dy, Dz ∈ Z ; AP,x,AP,y,Az〉
This ECSP is consistent, so suppose that the branch-and-propagate search of
step 2 finds the arc solved form

〈x < y, y 6= z ; x = 0, y ∈ {1, 2}, z = 0 ; Dx, Dy, Dz ∈ Z ; AP,x,AP,y,Az〉,
which we also encountered in Example 2.2.15 on page 16. Now as step 3 we select
the domain of y in this arc solved form as the outcome of the function evaluation,
and we have

fP,y({0, 1, 2}, {0, 1, 2}) = {1, 2}
In a branch-and-propagate search on Q, this result is then used as a new domain
for y, and Q is transformed into the following ECSP.

〈C′
Q ; w, x ∈ {0, 1, 2}, y ∈ {1, 2} ; Dw, Dx, Dy ∈ Z ; Aw,AQ,x,AQ,y〉,

with C′
Q := CQ[{0, 1, 2}, {0, 1, 2}, {1, 2}]. 2

One way in which this example is contrived is that the relation between P
and Q is not clear. In our applications, P is constructed so that applying fP,xj

will remove values for which the constraints in CQ cannot be satisfied.
As we mentioned after Definition 7.2.3, the functionality of the operator de-

pends on the solved form that is found by the branch-and-propagate search in
step 2 of Figure 7.1. If in Example 7.2.4, we had found another arc solved
form, for example one having Dx = {0}, Dy = {1}, and Dz = {2}, then
fP,y({0, 1, 2}, {0, 1, 2}) would have evaluated to {1} instead of {1, 2}.

In two of the three applications discussed in the next section, we require a
specific kind of branch-and-propagate search in step 2 of Figure 7.1, namely the
one based on a depth-first, leftmost-first traversal strategy. This traversal strategy
will lead to a specific solved form, which then fully determines the functionality
of the DRF. We will use a a superscript L to indicate this requirement: fL

P,xj
.

Because the output variable xj is also in the input scheme of fP,xj
, and because

fP,xj
(D1, . . . , Dn) evaluates to the domain of xj in a solved form of the inner ECSP,

by Definition 2.2.14 on page 16 we have fP,xj
(D1, . . . , Dn) ⊆ Dj. Returning to

the discussion of DRF properties on page 21, this leads to inflationary updates of
ECSPs, which ensures that instantiations of the operator for nested search will
not cause non-termination of generic iteration algorithms. However, as we shall
see in the next section, the operators are not necessarily monotonic, or, as was
already demonstrated by Example 7.2.4, equivalence preserving.
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7.3 Applications

In our applications, we will not use the operator for nested search to find a
particular value for the output variable xj, but only to update one of its bounds.
However, without special care, the domain of xj may be reduced to a singleton
set during search. This happens if xj is a decision variable of the inner ECSP,
but also if its value is uniquely determined by the decision variables of the inner
ECSP. Therefore we will use a copy of the output variable during the search.
This copy is a regular CSP variable that is added to the parameter ECSP, and
serves to update one of the bounds of the output variable. For this we use the
regular inequality constraints.

The initial domain of the copy variable is set to that of the output variable.
We cannot use an equality constraint here, because that would still reduce the
domain of the output variable to a singleton set, once a solved form is found.
Therefore we introduce the following constraint.

7.3.1. Definition. Given two variables x and y with respective domains Dx

and Dy of the same domain type, let the constraint x := y denote the subset
(Dx ∩ Dy) × Dy of Dx × Dy.

This constraint can be thought of as an assignment operator: modifications of the
domain of y are propagated to the domain of x, but not the other way around.
Our first application below will demonstrate its use.

Of the three example applications discussed in this section, optimization by
means of a bisection search involves inner ECSPs that have the most similarity
with the ECSPs that we have encountered so far: they represent purely combi-
natorial problems to which two auxiliary variables are added for optimization.
Therefore we discuss this application first.

7.3.1 Optimization

As an alternative to branch-and-bound, in optimization we can perform a bisec-
tion search in the range of an objective function that is defined on the variables
of a combinatorial problem. The following search procedure is adapted from
[BLPN01], where it is applied to job-shop scheduling problems. Suppose we want
to minimize an integer objective function that evaluates in the range [l..h]. As-
suming that a solution to the combinatorial problem exists (this is often the case
for constrained optimization problems, and certainly for job-shop scheduling), we
can determine the minimum as follows:

1. Split the domain [l..h] for the outcome of the objective function into two
halves [l..m] and [m + 1..h], with m := ⌊1

2
(l + h)⌋, and first try to solve the

combinatorial problem with the domain for the outcome of the objective
function set to [l..m].



150 Chapter 7. Applications of Nested Search

2. If the combinatorial problem has a solution for which the objective function
evaluates to a value v ∈ [l..m], then if v equals l this is the minimum, and
we are done. If v > l, restart the search at step 1, now using [l..v] as the
range for the objective function.

3. If no solution exists for which the objective function evaluates in [l..m],
restart the search at step 1, now using [m + 1..h] as the range for the
objective function.

We now describe this optimization scheme as an application of our operator
for nested search. Let

R := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; T1, . . . , Tn ; A1, . . . ,An〉
be the ECSP for a combinatorial problem. In what follows we consider that we
want to minimize the outcome of an integer objective function g on variables
x1, . . . , xn.

The Parameter ECSP

We will construct a parameter ECSP P such that evaluating fP,c([l..h]) verifies
that a solved form of R exists, for which g(x1, . . . , xn) falls within the range
[l..h]. If it exists, fP,c([l..h]) evaluates to [l..v] where v is the outcome of g for
the particular solved form found during the evaluation of fP,c. If it does not
exist, fP,c([l..h]) evaluates to ∅. R is the basis of the parameter ECSP P , but two
variables and three constraints are added.

First we add a variable c′ for the outcome of the objective function, and
constrain it accordingly:

c′ = g(x1, . . . , xn).

Assuming that R contains no auxiliary variables, the value of c′ is fixed when g
is evaluated for a solved form of R. Since in general, a solved form for R will not
yield the minimal outcome of g, we can only use this value as an upper bound,
and we add a second variable c, and constrain it to be less than, or equal to c.

c ≤ c′

Now c will be the output variable of the DRF for nested search, and c′ is its copy
for performing the search, as we described just before Section 7.3.1. All that is
needed now is a third constraint that gives c′ its initial domain:

c′ := c

Assuming that c and c′ do not occur in R, the parameter ECSP now becomes

P := 〈CP ; c ∈ ZZ, c′ ∈ ZZ, x1 ∈ D1, . . . ; Tc, Tc′ , T1, . . . , ; Ac,Ac′ , A1, . . .〉
where the underlined elements are the additions to the combinatorial problem R,
and where
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• CP := C ∪ { c′ = g(x1, . . . , xn), c ≤ c′, c′ := c },

• Tc and Tc′ both equal I (g is an integer function), and

• Ac and Ac′ equal I − {∅}.

The sets of final domains Ac and Ac′ render c and c′ auxiliary variables of P :
search is on the variables of R only.

The Domain Reduction Function fP,c

The ECSP P gives rise to the following instance of the generic operator for nested
search:

fP,c : I → I
When fP,c is evaluated for an integer interval domain [l..h], as step 1 of Fig-
ure 7.1, the inner ECSP is constructed by substituting the domain of c in P with
[l..h]. Then, as step 2 of Figure 7.1, branch-and-propagate search is performed
on P ′. Propagation of the constraint c′ := c will set the domain of c′ equal to
[l..h] initially, but during the search, the domain of c′ will be modified further.
According to Definition 7.3.1 these modifications will not propagate back to the
domain of c, but through the constraint c ≤ c′ the upper bound for c is modified
yet. However, these modifications do not affect the outcome of fP,c([l..h]) until
a solved form is found. In such a solved form, the domain of c′ has likely been
reduced to a singleton set {v} because c′ is tied to the decision variables by the
constraint c′ = g(x1, . . . , xn). Through the constraint c ≤ c′, the domain of c in
this solved form equals [l..v], which is the outcome of fP,c([l..h]). When no solved
form of P ′ exists, fP,c([l..h]) evaluates to the empty set.

Optimization as Branch-and-Propagate Search

With fP,c the optimization scheme can be described as a branch-and-propagate
search on an outer ECSP

Q := 〈CQ ; c ∈ [l..h] ; Dc ∈ Z ; Ac = ⌊Z⌋〉

This outer ECSP contains a single decision variable c, with initial domain [l..h],
where l and h are trivial lower bounds for g that follow from the domains of
x1, . . . , xn in R. CQ can be thought of as the constraint that there exists a solved
form of R for which g evaluates to c. Nodes of the search tree are created by
bisection of the domain of c, and in the constraint propagation phase fP,c is applied
once to the domain of c. If we perform a depth-first, leftmost-first traversal, the
first solution is guaranteed to contain the minimum value of the outcome of g for
any solved form of R.
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7.3.2. Example. Let R be an ECSP with variables x1, . . . , xn, and let g be
an integer function on x1, . . . , xn. Suppose that for all possible combinations of
values allowed by the domains of these variables in R, g evaluates in the range
0..100. Suppose further that R is consistent, and that the minimum value of g
for any solved form of R is 23. The search for this minimum proceeds as follows.

Initially, in the outer ECSP Q we have c ∈ [0..100]. As the initial constraint
propagation phase we evaluate fP,c([0..100]). As a part of this evaluation, in
step 1 of Figure 7.1, we transform

P := 〈CP ; c ∈ ZZ, c′ ∈ ZZ, . . . ; . . . ; . . .〉

into
P ′ := 〈CP ; c ∈ [0..100], c′ ∈ ZZ, . . . ; . . . ; . . .〉.

Now in step 2 of Figure 7.1, we search for a solved form of P ′. Through propa-
gation of the constraint c′ := c in CP , the domain of c′ is immediately changed
from ZZ to [0..100]. As the search progresses, the domain of c′ undergoes further
changes, and the upper bound for c is updated accordingly. Suppose that the
nested search in step 2 of Figure 7.1 finds a solved form for which g evaluates to
36, i.e., this yields a suboptimal value for the objective function g. This solved
form looks like this:

〈CP ; c ∈ [0..36], c′ ∈ {36}, . . . ; . . . ; . . .〉,

the domain of c′ is fixed, but c only has its upper bound modified, and fP,c([0..100])
evaluates to [0..36].

In the branch-and-propagate search on the outer ECSP Q, the value of
fP,c([0..100]) is used as the new domain for c. This is not yet a singleton set,
and we proceed by branching on c, yielding subdomains [0..18] and [19..36]. Be-
cause we do a depth-first leftmost-first search on Q, we continue the search in
the c ∈ [0..18] branch. It will turn out that no solution to P exists for which
g(X) lies in this range, i.e., fP,c([0..18]) = ∅, which voids the domain of c in
this branch. Then search proceeds in the c ∈ [18..36] branch, where fP,c([18..36])
yields a tighter upper bound for c, and so on, until finally the domain of c has
been narrowed to {23}. Because the search is depth-first leftmost-first, this is
guaranteed to be the minimum. 2

Discussion

It is important that during the constraint propagation phase, the domain reduc-
tion function fP,c is applied only once, to verify that a solution for the current
domain of the criterion variable exists, and to update the upper bound of this
domain for the actual solution that is found. If unless we deduce a failure, we
keep iterating the function until it makes no more modifications to the domain of
the criterion variable, we will apply it at least once more. This second application
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may find the same solved form that caused the initial reduction, in which case we
just duplicate the work, but because we start the nested search with a different
range for the objective function, we may well find a solved form that implies a
tighter bound. In the latter case, we achieve a further reduction, and the operator
is applied again. This way we embark on a limited branch-and-bound search in
the constraint propagation phase, that could lead all the way to the minimum.
Because the bisection search is proposed as an alternative to branch-and-bound,
this behavior is undesirable.

Note that fP,c is not a monotonic function. In Example 7.3.2, fP,c([0..100])
evaluates to [0..36] because the objective function g evaluates to 36 for the par-
ticular solved form found c ∈ [0..100]. However, it is possible that for a narrower
domain for c, say [0..99], the search on the inner ECSP leads to a solved form
with a higher outcome of the objective function, say 37. While [0..99] ⊆ [0..100],
we then have fP,c([0..99]) 6⊆ fP,c([0..100]), which entails that the transformation is
non-monotonic with respect to the subproblem relation. Returning to the discus-
sion of DRF properties on page 21, this implies that generic iteration is no longer
guaranteed to terminate in the least common fixed point of the DRFs involved.
For this application, this is not a problem, because the operator is applied only
once.

Further, note that our proposed optimization scheme does not lead to a fully
accurate implementation of the procedure described at the beginning of this sec-
tion. As we described it there, the combinatorial problem is solved in left branches
only. Right branches are guaranteed to contain a solution if the left branch fails,
and these are split again immediately. In Section 7.5.1 we see how the same effect
can be achieved with nested search in a branch-and-propagate setting.

Finally, we did not specify the level of local consistency that the nested search
is to be based on. Apart from the requirement that assignments violating the
constraints C in R should be filtered out, we only require that the constraint
c′ := c is bounds consistent, and that the domain of c′ is voided if it does not
contain the outcome of g, for a solved form of R. All further propagation helps
to speed up the solving process. If the constraint c′ = g(x1, . . . , xn) propagates
back to the domains of x1, . . . , xn, the nested search accelerates. As is demon-
strated in Example 7.3.2, the search on the outer ECSP also benefits from bounds
consistency of c ≤ c′.

7.3.2 Box Consistency

In Section 4.5 we introduced hull consistency, which is an approximation of arc
consistency used for arithmetic constraints and floating-point interval domains.
Box consistency [BMVH94] is another such approximation. It was introduced to
avoid decomposing constraints, and as such it partly avoids the dependency prob-
lem that we also discussed in Section 4.5. Before we can define box consistency,
and demonstrate how it is enforced using our generic operator for nested search,
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we first need to recall the notion of an interval extension of a constraint.
An interval extension of a constraint C ⊂ IRn is a relation C ⊆ Fn such

that for all D := 〈D1, . . . , Dn〉 ∈ Fn, D ∈ C if there exists a tuple 〈d1, . . . , dn〉 ∈
D1 × . . . × Dn for which 〈d1, . . . , dn〉 ∈ C.

7.3.3. Example. An interval extension Ceq ⊂ F ×F of the equality constraint
is

〈D1, D2〉 ∈ Ceq iff D1 ∩ D2 6= ∅.
As an example of an interval extension of a particular class of constraints,

we can define interval extensions for the other relational symbols ≤ and ≥ as
well, and modify the definition of the natural interval extension of Section 4.5 to
include not only arithmetic expressions, but also arithmetic constraints. 2

Interval extensions of constraints are called interval constraints.
Now a constraint C ⊂ IRn on variables x1, . . . , xn with associated domains

D1, . . . , Dn ∈ F is said to be box consistent if for all 1 ≤ j ≤ n

Dj = hull(Dj ∩ {r ∈ IR | 〈D1, . . . , Dj−1, hull({r}), Dj+1, . . . , Dn〉 ∈ C})

where C is an interval extension of C.
In [BGGP99] a notion of box consistency is defined that supports using dif-

ferent interval extensions for different occurrences of variables, and that also cap-
tures a number of other, alternative definitions. In what follows, we always use
the natural interval extension for C. We will further limit ourselves to polynomial
equalities, for which we use the interval extension proposed in Example 7.3.3.

7.3.4. Example.

• The constraint x3 + x = 0 on x ∈ hull([−1, 1]) is not box consistent: the
domain of x properly contains hull({−1}), which is not in the interval ex-
tension of the constraint x3 + x = 0.

• The constraint x3 + x = 0 on x ∈ hull({0}) is box consistent. 2

Given a compound constraint, enforcing box consistency for this constraint
may yield narrower domains than enforcing hull consistency for the decomposition
of the constraint [CDR99]. This can be seen by comparing Example 7.3.4 and
Example 4.5.1. However, the accuracy of the condition

〈D1, . . . , Dj−1, hull({r}), Dj+1, . . . , Dn〉 ∈ C

is still subject to the dependency problem. Therefore it will not achieve hull
consistency for the compound constraint in general. In other words, box consis-
tency is weaker than hull consistency, but stronger than hull consistency for the
decomposed constraint.



7.3. Applications 155

j

update for Dj

x

Figure 7.2: The new domain for Dj is bounded by the leftmost and rightmost
canonical intervals that satisfy the unary interval constraint F (Dj) ∩ {0} 6= ∅

Enforcing Box Consistency

The idea behind enforcing box consistency is to fix, for every variable xj that
a constraint applies to, the domains of the other variables to interval constants.
The interval extension of the constraint with all but one variable replaced by an
interval constant is then a unary interval constraint , and we can remove those
subintervals from Dj that do not satisfy it. Because we will take the intersection
of the remaining domain with Dj, and compute the hull of this intersection to
be able to represent it as an F interval again, we only need to know the leftmost
and the rightmost canonical interval that are a subset of Dj, and for which the
unary interval constraint holds. We can then intersect Dj with the hull of the
union of these canonical intervals. This is illustrated in Figure 7.2 for a constraint
f(x1, . . . , xn) = 0. The marks on the xj axis are the floating-point numbers in IF,
which delimit the canonical intervals. The boxes drawn along the curve represent
the ranges for the outcome of f for a particular canonical interval in the domain
of xj, and in presence of the current domains of the other variables.

In [HMD97] a very general algorithm for enforcing box consistency is given.
In this algorithm, procedures LeftNarrow and RightNarrow search in the domain
Dj for the leftmost and rightmost canonical intervals hull({rl}) and hull({rr}) that
satisfy the unary interval constraint described above, and update Dj accordingly.
Both procedures can be described as instances of the generic operator for nested
search. Left narrowing for variable xj of a constraint C ⊂ IRn on variables
x1, . . . , xn is realized by

fL
P,xj

: Fn → F (7.1)
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where P is the following ECSP.

〈 {x′
j/xj}C, x′

j := xj, xj ≥ x′
j

; x1, . . . , xn ∈ IR, x′
j ∈ IR

; D1, . . . , Dn ∈ F , Dx′

j
∈ F

; A1, . . . ,An = F − {∅}, Ax′

j
= ⌊F⌋〉

In this parameter ECSP, {x′
j/xj}C is the constraint that we want to enforce

box consistency for, with all occurrences of xj replaced by x′
j, the copy of xj

introduced for performing the search. Through its set of final domains Ax′

j
=

⌊F⌋ = {hull({r}) | r ∈ IR}, x′
j is the only decision variable in P . All other

variables, including xj have F − {∅} as their set of final domains. They are
auxiliary variables in the inner ECSP, and no branching needs to be performed
on their domains to reach a solved form.

When fL
P,xj

is evaluated for a sequence of intervals D1, . . . , Dn, in step 1 of
Figure 7.1 the domains of x1, . . . , xn in the parameter ECSP P are replaced
by D1, . . . , Dn. This yields the inner ECSP P ′. During step 2, propagation
of the constraint x′

j := xj ensures that the domain of x′
j is equal to that of xj

initially. Because no branching takes place on the domains of x1, . . . , xn, {x′
j/xj}C

now effectively has become a unary interval constraint on the domain of x′
j. If

P ′ is consistent, and we perform a depth-first, leftmost-first search for a solved
form, as specified by the superscript L, then the domain of x′

j in this solved
form is the leftmost canonical interval in Dj that satisfies the unary interval
constraint obtained by replacing in C the domains of x1, . . . , xj−1, xj+1, . . . , xn

with D1, . . . , Dj−1, Dj+1, . . . , Dn, and by taking the natural interval extension.
Propagation of the constraint xj ≥ x′

j updates the lower bound for xj accordingly,
and in step 3 of Figure 7.1, fL

P,xj
evaluates to Dj with the lower bound set to that

of the leftmost canonical interval that satisfies the unary interval constraint.

Coupled with analogous operators for right narrowing, and for the other vari-
ables that participate in the constraint, fL

P,xj
enforces box consistency for con-

straint C. Intuitively, narrowing domains of variables can only move the leftmost
and rightmost canonical intervals in the domain of these, and other variables
inwards. This can be used to demonstrate that operators for enforcing box con-
sistency are in fact monotonic functions, so the order in which they are applied
by an iteration algorithm is irrelevant for the outcome of their combined compu-
tation.

For evaluating the unary interval constraint we can use the facilities described
in Section 4.5. This way the operators for enforcing box consistency are com-

posed from the generic reduction operator for nested search, and the facilities
for enforcing hull consistency for a decomposition of an arithmetic constraint into
atomic constraints.
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7.3.3 Shaving

Shaving is a constraint propagation technique used for solving scheduling prob-
lems. We refer to the description of this technique in [MS96], and use job-shop
scheduling as an example.

Recall from Chapter 6 that a job-shop scheduling problem (JSSP) instance
consists of a set of activities and a number of machines . An activity is charac-
terized by the machine that it must be processed on, and by a processing time .
Activities are grouped in jobs, and all activities of a job have to be executed in
a specified order. The problem is to find for each activity an interval in which it
can be executed on the specified machine, such that no two activities require the
same machine simultaneously, and such that the precedence constraints inside
the jobs are respected. An optimal schedule minimizes the makespan of the
schedule, being the completion time of the activities that finish last.

A possible CSP formulation of the JSSP contains an integer interval variable
for the starting time of each activity. The lower bound for the starting time of
an activity is called the release date , and the upper bound plus the processing
time of the activity is called the deadline . Here we will consider the procedure
for updating release dates. The procedure for deadlines is analogous.

The shaving technique entails that starting with the release date, we see what
happens if we fix the activity to start at that time. After experimentally fixing
the starting time of an activity we apply constraint propagation. If propagation
of the fixed starting time leads to a failure, we can safely remove this candidate
starting time from the domain of the variable, and we proceed by trying the next
possible starting time, and so on, until we encounter a starting time that does
not lead to a failure. This is then the new release date for the activity. Shaving
can be explained as a leftmost-first search in the domain of a single variable, and
as such it can be expressed as an application of the generic operator for nested
search.

Let

Q := 〈CQ ; x1 ∈ Dn, . . . , xn ∈ Dn ; T1, . . . , Tn ; A1, . . . ,An〉

be an ECSP for a job-shop scheduling problem, and assume that xj, with 1 ≤
j ≤ n is the variable for the starting time of an activity A. Shaving the starting
time of A can be expressed as the domain update

Dj := fL
P,xj

(D1, . . . , Dn)

where P is the ECSP

〈 {x′
j/xj}CQ, x′

j := xj, xj ≥ x′
j

; x1 ∈ T ⊤
1 , . . . , xn ∈ T ⊤

n , x′
j ∈ T ⊤

j

; T1, . . . , Tn, Tx′

j
= Tj

; A1 = T1 − {∅}, . . . ,An = Tn − {∅}, Ax′

j
= ⌊Tj⌋ 〉.
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In this case, the parameter ECSP P is a full copy of the outer ECSP Q, with a
single variable x′

j added. This variable is a copy of the variable whose starting time
we want to update. The set of constraints in the parameter ECSP, {x′

j/xj}CQ,
is the set of constraints of the outer ECSP, with every occurrence of xj replaced
by x′

j. All variables of the outer ECSP are auxiliary variables in the inner ECSP,
and search takes place only on the “copy” variable x′

j. It is coupled to the original
xj in the usual way, through constraints x′

j := xj and xj ≥ x′
j. The domain of

the variables x1, . . . , xn in the inner ECSP are irrelevant, and we set them here
to the largest elements of the corresponding domain types T ⊤

1 , . . . , T ⊤
n . These

domains are replaced by their counterparts in the outer ECSP when the DRF is
evaluated.

7.3.5. Example. The example JSSP of Figure 6.1, on page 132 consists of three
jobs, each having three activities that require three different machines. To imple-
ment shaving for this problem, we need 18 operators: one for each of the 9 activity
starting times, and one for each of the completion times. Consider the operator
for one of the starting times. The nested search finds the smallest value for this
starting time that has the property that if the activity is actually scheduled to
start at that time, regular constraint propagation on the full problem, involving
all 17 other starting times and completion times, does not lead to a failure. In the
global CSP, all earlier starting time are removed from the domain of the variable.

2

The extent to which infeasible starting times are removed depends on the
level of consistency that we enforce during the nested search. In [BLPN01] it
is suggested that we use the level of consistency enforced by the edge finding

algorithm. The precedence constraints inside the jobs propagate modifications to
the other machines, during the nested search. Also the constraint xj ≥ x′

j must
be enforced in order that the infeasible starting times are actually removed.

A depth-first leftmost-first search combined with bisection or enumeration
branching on the domain of x′

j will correctly update the lower bound of xj, but
in [MS96] a different branching scheme is described for step 2 of Figure 7.1. This
alternative scheme entails that we first try to shave off a single value, and double
the size of interval to shave off until an interval is found that allows for a feasible
schedule. Then we search for the lower bound in this interval by regular bisection.

Several different notions of shaving exists. In [VHPP00] a different form is
implemented to demonstrate nested search in OPL. Here the nested search does
not directly modify release dates and deadlines, but only the ranking of the activ-
ities. Constraint propagation verifies whether individual activities can be ranked
first among the set of unranked activities on a machine. If this fails, constraints
are added to ensure that at least one of the other unranked activities is ranked
before that particular activity.

The locality of our shaving operation is in between that of the other two
applications. Box consistency performs nested search on a single variable, and
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Figure 7.3: Almost autonomous OpenSolver instances implement the nested
search

propagates only a single constraint. For optimization, the nested search is on
all variables, propagating all constraints. Like box consistency, nested search
for shaving branches only on one variable, but consistency checking involves all
constraints. Using the same reasoning as for box consistency, we can demonstrate
that DRFs for shaving are monotonic functions.

7.4 Implementation

The plug-in that implements the operator for nested search is an almost1 au-
tonomous OpenSolver instance, acting as a reduction operator. A special coordi-
nation layer plug-in forms the interface between the solver that uses the nested
search, and the solver that performs the nested search. This is illustrated in Fig-
ure 7.3. A benefit of this implementation is that all facilities of the OpenSolver
framework are immediately available for nested search.

Programs 7.1 and 7.2 show examples of how the operator is used. The plug-in
name is NestedSearch, and its specifier string consists of the following:

• The name of a Boolean variable, whose only purpose is that its domain will
be voided if we find that the inner ECSP is inconsistent.

• The names of the variables that the operator applies to (the input variables).
The output variable, whose domain is updated by the reduction operator,
is identified by a prefix &.

• Between curly brackets, an OpenSolver configuration for the parameter
ECSP, in the language of Figure 3.2 on page 37. All input variables must
appear in this configuration, but their domains are irrelevant. These will be
provided by the coordination layer plug-in each time the operator is applied.

The Boolean variable was introduced because the operator cannot make any
assumptions about the domains of the other variables, and hence has no uni-
form way of voiding their domains. It is a deviation from the specification in

1There is a single thread of control throughout.
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Section 7.2, but this is no fundamental difference. Also, more than a single vari-
able can be marked as an output variable. This is a fundamental difference, but
we have not found a use for this facility yet, and taking it into account would
complicate the formal description of the operator further.

When it is activated during constraint propagation, the NestedSearch oper-
ator will pass the domains of the input variables to the interface coordination
layer, and run the local OpenSolver instance. The solver configuration in the
specifier string is parsed the first time that the operator is applied. The interface
coordination layer keeps a copy of the root node of the search tree, in order that
the specifier string need only be parsed once. On each application of the reduc-
tion operator, a fresh copy of this cached root node is made, which is updated
with the current domains of the input variables. The interface coordination layer
issues commands for a regular first-solution search on this modified root node.
When a solution node is found, an export command (see Section 3.3.2) is given
for the output variable. The solver will respond to this command via a call-back
function provided by the coordination layer. In this case, the call-back function
updates the domain of the output variable. If no solution is found, the domain
of the Boolean variable is voided. After the first-solution search, the interface
coordination layer issues the clear WDB command to reset the solver.

7.5 Experiments

In this section we describe the experiments that we performed for the applications
discussed in Section 7.3.

7.5.1 Optimization: Job-Shop Scheduling

We tested the optimization technique described in Section 7.3.1 on the job-shop
scheduling problem, using the plug-ins that were introduced in Chapter 6.

Program 7.1 shows an OpenSolver configuration for the approach of Sec-
tion 7.3.1. The NestedSearch operator is applied through an adapter Idempotent
DRF. This forces the scheduler of reduction operators to treat it as an idempotent
domain reduction function. The operator-based scheduler (see Section 4.1.1),
which is the default, takes idempotency of DRFs into account to avoid unnec-
essary applications of an operator. In this case, it prevents that the operator
is applied more than once in the same node of the search tree, for the reasons
discussed at the end of Section 7.3.1. Also, because all right branches are guar-
anteed to contain a feasible schedule, an adapter PropagateLeft is used to hide
changes that are made by the FailFirst branching operator to variable bound

in right branches. Hiding means suppressing the protocol for communicating do-
main changes, discussed in Section 3.2.2, thus preventing needless activation of
the nested search in these branches.
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VARIABLE bound IS IntegerInterval {1119..5110};

AUX b IS Bool {0,1};

DRF IdempotentDRF { NestedSearch { b, &bound, {

AUX bound IS IntegerInterval {};

AUX imakespan IS IntegerInterval {};

VARIABLE makespan Is Activity {0,0,5110};

...

code for the JSSP, where makespan executes

after the last activity of every job.

...

DRF BoundActivity { makespan, imakespan };

DRF IIARule { imakespan^1 * (1) = bound };

DRF IIARule { bound^1 * (1) <= imakespan };

} } };

DRF PropagateLeft { FailFirst { 0, bound } };

Program 7.1: OpenSolver code for bisection search for the minimal makespan of
a JSSP

The indented code is a configuration for solving a job-shop scheduling prob-
lem, where the length of the schedule is constrained not to exceed the up-
per bound of the domain for the integer variable bound. It is similar to Pro-
gram 6.1 on page 138. The IIARule operators effectively enforce the constraints
imakespan := bound and bound ≤ imakespan. The parameter 0 in the specifier
for the FailFirst plug-in specifies a bisection where the left branch is generated
last. By default, the search frontier is maintained as a stack, so this results in a
depth-first, leftmost-first exploration.

Table 7.1 compares the bisection optimization algorithm that we implemented
by nested search with regular branch-and-bound, as described in Chapter 6, on
the ten 10 × 10 JSSP instances of [AC91], which are also used in [BLPN01].
For each instance we report the number of nodes visited, and the user time in
seconds, as reported by the GNU/Linux time command on a 1200 MHz Athlon
PC. For the bisection search, the number of nodes applies to the nested search
on the JSSP only. The search in the domain of the criterion variable is not taken
into account. Either algorithm outperforms the other in half the cases, but the
total running time for all ten cases is much better for the bisection search, which
seems to suggest that it is more robust. While an evaluation of these approaches
to optimization is beyond the scope of this section, it shows that the bisection
search is a useful tool. Having implemented it using OpenSolver as a software
component increases its value as a building block for solvers, because we can now
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branch-and-bound bisection
instance nodes time (sec.) nodes time (sec.) opt
ft10 238,045 38.87 321,878 61.38 930
abz5 385,699 44.84 586,315 67.23 1234
abz6 57,277 6.28 114,487 12.57 943
la19 319,547 40.80 228,283 34.47 842
la20 106,785 13.78 139,146 18.26 902
orb01 7,331,421 643.40 63,688 10.91 1059
orb02 642,645 63.93 200,350 28.86 888
orb03 14,031,873 2186.06 3,657,439 563.12 1005
orb04 179,037 39.12 278,507 71.62 1005
orb05 4,461,777 621.77 98,268 14.54 887

Table 7.1: A Comparison of Branch-and-Bound and a Bisection Search for the
optimum on ten 10 × 10 JSSP instances

combine it with other facilities, such as memory bounded LDS.
Taking the differences in clock speeds into account, our results for bisection

search on these ten benchmark problems do not match the results reported in
[BLPN01]. For some of the instances, performance is better, but for the majority
of them it is worse. More important, though, is that the instances rank differ-
ently, which indicates that we have not been able to reproduce exactly the same
heuristics.

As a further indication that our technology leads to competitive constraint
solvers, Koalog Constraint Solver (KCS, [KoaA]) is reported to solve the ft10
benchmark, which is also known under the name MT10, in 11 minutes, using
293,000 backtracks. KCS is a commercially available Java library for solving com-
binatorial optimization problems using constraint programming or local search,
and is used in industry.

7.5.2 Box Consistency

The implementation of box consistency for constraints on the reals was tested on
the Broyden banded functions, a benchmark that is often used to demonstrate
the advantage of box consistency over hull consistency, for example in [BMVH94].
The problem is to find the zeros of the functions

fi(x1, ..., xn) = xi(2 + 5x2
i ) + 1 −

∑

j∈Ji

xj(1 + xj) (1 ≤ i ≤ n), (7.2)

where Ji = {j | j 6= i, max(1, i− 5) ≤ j ≤ min(n, i + 1)}, and x1, . . . , xn ∈ [−1, 1].
Every function fi depends on the 2 to 7 variables in the set Ji ∪ {xi}, and for

every variable that a function depends on, two reduction operators are generated:
one for the left narrowing, and one for the right narrowing. Program 7.2 shows
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the operator that implements left narrowing for argument x1 of the function
f3. Variable lx1 corresponds to x′

j used in Section 7.3.2. It is linked to x1

by the first two RIARule operators. Auxiliary variables x1,. . . ,x4 are the input
variables, and they are given their domains each time the operator is applied.
The other RIARule operators evaluate f3, using fx1,. . . ,fx4 to store intermediate
results. The interval for the outcome of f3 is intersected with that of the variable
zero, which contains only the value 0, so effectively this implements a generate-

and-test search for the canonical interval in the domain of x1 that contains the
leftmost zero of f3.

DRF NestedSearch { b, &x1, x2, x3, x4, {

AUX x1 IS RealInterval {};

AUX x2 IS RealInterval {};

AUX x3 IS RealInterval {};

AUX x4 IS RealInterval {};

VARIABLE lx1 IS RealInterval {};

AUX fx1 IS RealInterval {};

AUX fx2 IS RealInterval {};

AUX fx3 IS RealInterval {};

AUX fx4 IS RealInterval {};

AUX zero IS RealInterval { 0 };

DRF RIARule { x1^1 * (-1) <= -1*lx1 };

DRF RIARule { lx1^1 * (1) = x1 };

DRF RIARule { fx1^1 * (1) = 1 + lx1 };

DRF RIARule { fx2^1 * (1) = 1 + x2 };

DRF RIARule { fx3^1 * (1) = 2 + 5*x3^2 };

DRF RIARule { fx4^1 * (1) = 1 + x4 };

DRF RIARule { zero^1 * (1) = x3 * fx3 + 1

- lx1 * fx1 - x2 * fx2 - x4 * fx4 };

DRF RoundRobin { 0, lx1 };

} };

Program 7.2: Left-narrowing for argument x1 of f3(x1, x2, x3, x4) of the Broyden
banded functions

This is a slight deviation from the method outlined in Section 7.3.2. We use a
decomposition, but we do not enforce hull consistency for it. We only use the de-
composition to verify the unary interval constraint. We have this option because
the RIARule operators implement the individual projections of constraints. Since
we do not aim at computing hull consistency of the decomposition, and there-
fore use only one projection per constraint, we do not need to limit ourselves to
atomic constraints, as we discussed in Section 4.5. In fact, the only reason for
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using a decomposition is that RIARule does not support brackets in the specifier
string, while we want to use the syntax of formula (7.2) as a basis for the interval
extension. This form appears to be less sensitive to the dependency problem than
the form

2xi + 5x3
i + 1 −

∑

j∈Ji

(xj + x2
j)

The efficiency of the evaluation could probably be improved with a schedule for
the operator-based scheduler that applies the operators only once.

In our opinion, being able to use RIARule both for computing hull consistency
and for evaluating interval extensions of functions is a definite advantage of the
design decision to separate the individual projections of constraints. The RIARule
and IIARule plug-in are versatile tools for composing constraint solvers, while in
combination with the programmable scheduler of Section 4.1.1, such solvers are
not inherently less efficient than specialized algorithms such as HC4 for computing
hull consistency.

The following results demonstrate the (well known) effect of computing box
consistency for the Broyden banded functions benchmark: computation time in-
creases linearly with the problem size. The target precision is 1.0e-8, but inside
the nested search we split down to machine precision. This is realized by includ-
ing in the top-level configuration two commands to replace the standard node
evaluator, and to prevent branching on RealInterval variables whose domain is
of the required precision:

TDINFO Precision { 1.0e-8 };

DRF LimitedPrecision { 1.0e-8, RoundRobin { 0, x1, x2, ... } };

This way, the system of equations is solved by propagation alone. The reported
numbers are elapsed times in seconds, for problem instances specified by n.

n = 10 20 40 80 160 320
2.536 6.210 13.503 28.467 58.097 118.926

We have described only a basic implementation of box consistency, and there
is much room for improvement. For example, we do not compute hull consis-
tency for the decomposition used inside the nested search, but it may actually
be worthwhile to do so, and propagate back the information that the functions
should evaluate to zero, or in general, that the unary interval constraints should
hold. Also, because the consistency check is implemented by constraint propaga-
tion, it should be easy to add propagators for the Newton reduction step described
in [BMVH94]. It should be investigated in how far our approach supports the use
of other interval extensions than the natural interval extension.

The code of Program 7.2 is currently generated by a program written specif-
ically for this benchmark. We still need to extend the OpenSolver preproces-
sor for arithmetic constraints with an option to generate code for enforcing box
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consistency. The preprocessor could then also generate the reduction operators
corresponding to the Newton reduction step.

7.5.3 Box Consistency for Arithmetic Constraints on the
Integers

Box consistency can also be enforced for arithmetic constraints on integer vari-
ables. In that case, a constraint C ⊂ ZZn on variables x1, . . . , xn with associated
domains D1, . . . , Dn ∈ I is called box consistent if for all 1 ≤ j ≤ n

Dj = int(Dj ∩ {i ∈ ZZ | 〈D1, . . . , Dj−1, {i}, Dj+1, . . . , Dn〉 ∈ C})

where C is an interval extension of C. To illustrate that this is a useful applica-
tion, consider the constraint

x2y2 − 4x2y + 4x2 − 4xy2 + 16xy − 16x + 4y2 − 16y + 16 = 4

and ranges x, y ∈ [0..105]. When we solve this equation by means of decomposi-
tion into atomic constraints, according to the approach proposed in Section 5.7,
the 8 solutions are found in approximately 14 sec. in a search tree of 40255
nodes. When the code for the decomposed constraint is packed in four different
NestedSearch operators, for left and right narrowing of x and y, the search tree
is reduced to 39 nodes, and exploration takes less than 4 seconds.

7.5.4 Shaving

Shaving appears to be efficient only for larger problems. For small instances,
like the ones we used in Section 7.5.1, the effort spent on shaving outweighs the
benefit of the reduced search space. A similar experience is reported in [Zho97].
In this reference, the shaving, or bound trimming is on the domains of the
variables that determine the processing order of the activities, so this technique
is comparable to that of [VHPP00] mentioned at the end of Section 7.3.3.

An example of a larger problem instance, for which shaving is essential, is
swv01. The optimum for this instance was first found by Perron [Per99], using
a combination of limited discrepancy search, shaving, and parallel search. As
we discussed in Section 4.1.2, LDS in OpenSolver is memory-intensive, and for
this reason we used memory bounded LDS , which we introduced in that same
section.

Using memory bounded LDS and the implementation of shaving described
in Section 7.3.3, we were able to prove optimality for swv01 in approximately
100 hours on a 2000 MHz Athlon XP processor. Without shaving, by that time
the current best solution is nowhere near the optimum, and finding it within an
acceptable multiple of the already long running time seems unlikely.
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7.6 Discussion and Concluding Remarks

We have shown that in a branch-and-propagate tree search solver, three pow-
erful pruning techniques from optimization, analysis of nonlinear functions, and
constraint-based scheduling can be expressed as applications of a generic oper-
ator for nested search. In our implementation, each instance of this operator
is itself an almost autonomous OpenSolver instance. This has the advantage
that all facilities of the framework are available for specifying the nested search.
A disadvantage is the overhead of using a general-purpose solver for very specific
search problems, and dedicated implementations of box consistency and shaving
will likely always be more efficient.

An evaluation of the efficiency of our implementation of box consistency and
shaving is currently missing. Because this also depends on, for example, the
interval arithmetic library that we use, this would require the implementation of
dedicated operators for these techniques. There are still opportunities to improve
the efficiency of our solution, though. For example, we plan to extend the set of
commands of Section 3.3 with a command for first-solution search, to bypass the
command loop for a longer period. Often, however, strong consistency notions
like box consistency and shaving determine whether a problem can be solved or
not. In such cases, being able to experiment with enforcing strong consistency
notions is of greater importance than the actual efficiency.

Our approach promotes the composition of constraint solvers as low-level co-
operations of basic solvers. As we discussed, this has further advantages: it avoids
duplicate code in the solver implementation, and techniques carry over to other
domains than those for which they were originally conceived. From this point of
view it is desirable to have a small set of basic operators and combinators, that
can be used to realize a wide range of constraint solving techniques. It seems rea-
sonable that compositionality comes at the cost of some computational overhead
for the framework.

There is an analogy between our operator for nested search and procedures
in procedural programming languages. The input and output variables can be
seen as by-value and by-reference parameters, respectively, and the OpenSolver
input for the local CSP can be seen as a procedure body block. It would be
interesting to investigate this analogy further, perhaps to define some notion of a
parameterized reduction operator. This way we may be able to avoid duplicate
code for activating plug-ins, and ease the rewriting. To illustrate that this is a
useful facility, for the Broyden banded function, the code for each function (as
shown in Figure 7.2) is repeated up to 14 times, with minor differences for left
or right narrowing, and for the particular variable that we want to update. The
OpenSolver input for n = 320 contains over 120,000 lines, with roughly the same
number of plug-in instances created.

If we apply the shaving mechanism to arithmetic constraints, we achieve a
notion of consistency known as 3B consistency [Lho93]. Also shaving itself can
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be nested, which results in a technique known as double shave [MS96]. Both
these techniques can be expressed as further applications of the generic operator
for nested search. Other facilities that could be implemented using nested search
are the squash operator of ECLiPSe, and the absolve operator of the CLIP
system [Hic01].

The operator defined in Section 7.2 performs a single solution search, and
in our applications we use this for updating the bounds of interval variables.
For finite domains variables, it is attractive to have a variant that searches for
all solutions. We can then use enumeration instead of bisection, and use the
union of the domains for each variable as the result of the reduction operator.
A potential application is to enforce singleton arc consistency (SAC, [DB97]).
This notion of local consistency entails that for every value in the domain of every
variable, the CSP can be made be made arc consistent if that value is assigned
to the variable. To implement SAC using the proposed all-solution variant of our
operator for nested search, we would need one such operator per DRF variable.
This operator then searches in the domain of its variable for arc solved forms of
the ECSP obtained by taking the full outer CSP, and making all other variables
auxiliary. The output of the operator is the union of these arc solved forms,
projected on the variable that it is applied to.

It is also possible to define box consistency (and the other applications dis-
cussed here) in terms of this all-solution variant, but then all internal zeros would
be lost because of the interval representation. Therefore the first-solution search
is a more natural and efficient implementation of these techniques.





Chapter 8

A Component-Based Parallel Constraint
Solver

This is the second of three chapters that demonstrate the use of OpenSolver
as a software component. Here we present the design and implementation of
a parallel constraint solver that is composed of several autonomous OpenSolver
instances. A small amount of specialized software coordinates the cooperation
of the component solvers, and in our presentation we focus on the coordination
aspects of the parallel solver. Since the goal of parallel processing is to reduce the
turn-around time of a computation by distributing the workload, it is important to
achieve a good load balance, and to ensure that communication does not dominate
computation. This is realized by a time-out mechanism, implemented in the
coordination layer of the solvers. By means of experiments we investigate whether
the time-out mechanism, and the component-based implementation enabled by
it lead to efficient parallel solvers.

8.1 Introduction

The goal of parallel processing is to reduce the turn-around time of a computation
by distributing the workload over several hardware processors. Because constraint
solving is computation-intensive, it can benefit from parallel processing:

• When the best known heuristics allow that problem instances of certain
dimensions (number of variables, domain sizes) can be solved within ac-
ceptable time, users will probably want to solve problem instances of larger
dimensions, possibly resulting from more detailed models.

• If constraint solving is used to predict the effect of some decision made in
the context of a real-world problem, while the outcome of one experiment
determines the parameters of the next, then being able to solve problems
faster allows that more scenarios can be explored.

169
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The obvious way to parallelize constraint solving is to explore different parts of
the search tree in parallel: even for small problems, the search tree is generally
large (see for example Table 7.1 on page 162), and every node of the search tree is
an ECSP in itself, and can in principle be processed independently of the nodes
in other subtrees.

The efficiency of a parallel computation depends on two factors: load balanc-

ing and the communication overhead . We propose to address both factors
by equipping a branch-and-propagate solver with a time-out mechanism. When
an ECSP can be solved before the elapse of a given time-out, the solver simply
produces all solutions that it has found (or the solution that it has found, if we
are not interested in all solutions). Otherwise it also produces some representa-
tion of the work that still needs to be done. For tree search, this is a collection
of subproblems that must still be explored: the search frontier . These sub-
problems are then re-distributed among a homogeneous set of solvers that run in
parallel. The initial solver is part of this set, and each solver in the set may split
its input into further subproblems, when its time-out elapses.

The time-out mechanism provides an implicit load balancing: when a solver is
idle, and there are currently no subproblems available for it to work on, another
solver is likely to produce new subproblems when its time-out elapses. The time-
out mechanism also gives control over the communication / computation ratio:
when communication dominates, we can increase the time-out value in order that
the solvers spend more time searching in between exchanging subproblems. We
expect to be able to tune the time-out value such that it is both sufficiently small
to ensure that enough subproblems are available to keep all solvers busy, and
sufficiently large to ensure that the overhead of communicating the subproblems
is negligible. The idea of using time-outs is quite intuitive, but to our knowledge,
its application to parallel search is novel.

Rather than a parallel algorithm, we present this scheme as a pattern for
composing a parallel constraint solver from component solvers. The only require-
ment is that these components can publish their search frontiers. We believe that
this requirement is modest compared to building a parallel constraint solver from
scratch. In the particular case of OpenSolver, the coordination-layer facilitates
that the time-out mechanism is implemented without modifying the solver proper.
Our presentation of the scheme in Section 8.3 uses the notion of abstract behav-
ior types, and the Reo coordination model. These are introduced in Section 8.2.
Section 8.4 details the implementation, and in Section 8.5 we describe the exper-
iments that were performed to test the parallel solver. Compared to parallelizing
an existing constraint solver, the component-based approach has further benefits.
These are discussed in Section 8.6, together with related work and directions for
future research.
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8.2 Coordination and Abstract Behavior Types

As we discussed in Section 3.3.3, coordination, as a field of study in computer sci-
ence, provides a perspective on component-based software engineering. From this
perspective, software systems are composed from interacting component system,
whose computations overlap in time. Contrary to modules and objects, which
are the units of composition in the classical software engineering paradigms of
modular and object-oriented programming, an instance of a prospective software
component has then at least one thread of control. For the purpose of compo-
sition, the component is a black box, and we can assume that it communicates
with its environment through a set of ports.

A software system that complies with the above notion of a component can
be specified conveniently by an abstract behavior type (ABT) [Arb02]. ABTs
are reminiscent of abstract data types (ADTs) used in modular programming:

• ADTs hide the internals of data structures. Through ADTs, data structures
are characterized by the operations that are defined on them. This is the
only information that is relevant for modular composition of software.

• ABTs hide the implementation of component systems, and characterize
them by their behavior. This is the only information that is relevant for the
composition of software systems through exogenous coordination. Because
we are dealing with concurrent systems, timing is an important aspect of
the behavior of a component.

Before we can introduce ABTs we first need to recall the definition of timed data
streams. This notion originates from the work of Jan Rutten on co-algebras,
stream calculus, and notably a co-algebraic semantics for the Reo (see below)
coordination model [AR02].

A stream over some set A is an infinite sequence of elements of A. Zero-
based indices are used to denote the individual elements of a stream, e.g., α(0),
α(1), α(2), ... denote the first, second, third, etc. elements of the stream α.
Also α(k) denotes the stream that is obtained by removing the first k values from
stream α (so α(0) is the head of the stream, and α(1) is its tail). Relational
operators on streams apply pairwise to their respective elements, e.g., α < β
means α(0) < β(0), α(1) < β(1), α(2) < β(2), ...

A timed data stream over some set D is a pair of streams 〈α, a〉, consisting
of a data stream α over D, and a time stream a over the set of positive real
numbers, and having a(i) < a(j), for 0 ≤ i < j. The interpretation of a timed
data stream 〈α, a〉 is that for all i ≥ 0, the input/output of data item α(i) occurs
at “time moment” a(i).

An abstract behavior type is a (maximal) relation over timed data streams.
Every timed data stream involved in an ABT is tagged either as its input or
output. For an ABT R with one input timed data stream I and one output



172 Chapter 8. Parallel Constraint Solving

timed data stream O we use the infix notation I R O. Also for two such ABTs
R1 and R2, let the composition R1 ◦ R2 denote the relation

{ 〈〈α, a〉, 〈β, b〉〉 | there exists a timed data stream 〈γ, c〉
such that 〈α, a〉R1〈γ, c〉 and 〈γ, c〉R2〈β, b〉 }.

ABTs specify only the black box behavior of components. For a model of their
implementation, other specification methods are likely to be more appropriate,
but that information is irrelevant for the coordination of the components.

Reo [Arb02, ABRS04] is a channel-based exogenous coordination model where-
in complex coordinators, called connectors are compositionally built out of sim-
pler ones. The simplest connectors in Reo are a set of channels with well defined
behavior. In Section 8.3.2 we use Reo connectors to specify the coordination of
our component solvers.

8.3 Specification

8.3.1 Component Solver

In this section we define an ABT for a constraint solver with the time-out mech-
anism. In Section 2.2.6 we defined constraint solving as the transformation of ex-
tended constraint satisfaction problems, so for formalizing the notion of a solver
we need a domain, or universe, of ECSPs. Let U denote the set of all ECSPs,
and let U denote the set of all finite subsets of U . Also, for p ∈ U we define the
following set

solγ(p) = {p′ ∈ U | p′ is a γ solved form of p}
Next we specify that a constraint solver transforms a problem into a set of

mutually incomparable problems. Let D denote the data domain U ∪ U ∪ {τ},
where τ /∈ U is an arbitrary data element that serves as a token . In the following,
let 〈α, a〉 and 〈β, b〉 be timed data streams over D. Now the behavior of a basic

solver is captured by the BSol ABT, defined as

〈α, a〉 BSol 〈β, b〉 ≡ a < b ∧ S(α, β)

where S is a relation on U and U , such that for all p ∈ U and R ∈ U , S(p,R) iff

• every ECSP in R is a proper subproblem of p,

• no ECSP in R is a subproblem of another ECSP in R, and

• solγ(p) =
⋃

r∈R

solγ(r), for some notion of consistency γ.

The BSol ABT formalizes the notion of an incomplete constraint solver of
Section 2.2.6.
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8.3.1. Example. An example of a software system that complies with the BSol
ABT is a UNIX process that keeps reading (character encoded) ECSPs from
standard input. Some time after reading each ECSP, and before reading the
next, it produces on standard output one of the following (character encoded) set
of ECSPs:

• the empty set if the ECSP that was read is inconsistent, or otherwise

• a set containing the first solved form found with branch-and-propagate tree
search, plus an ECSP for every element of the search frontier of the branch-
and-propagate algorithm.

This can be realized by repeated application of Algorithm 8.1, which is a modified
version of Algorithm 2.2 on page 25.

Figure 8.1 shows the search tree for a possible execution of this algorithm for
the four queens problem (see Section 4.2). We assume chronological variable se-
lection, enumeration value selection, and depth-first leftmost-first traversal. The
nodes in the figure depict the domains of the four variables as columns of four
possible values (rows), where white fields are elements of the domains, and dark
fields have been removed from the domains. Vertical edges denote constraint
propagation, and diagonal edges denote branching. If, by propagation or branch-
ing, the domain of a variable becomes a singleton set, an X in the remaining field
marks the position of the queen on the chess board.

The two leftmost leaves of the search tree are failures (they contain columns
without white fields), and the algorithm backtracks twice to find the first solution
in the third leaf from the left. At this point, the search frontier still contains
two nodes, and the output of our process for an ECSP corresponding to the
four queens problem is a set of three ECSPs, corresponding to the following
configurations, a solution and two internal nodes:

X

X

X

X

X

X

2

The Str (streamer) ABT specifies that a stream of sets of problems, as pro-
duced by a basic solver, is transformed into a stream of problems, where the
sequence of problems for each input set is delimited by a token:

〈α, a〉 Str 〈β, b〉 ≡ a(0) = b(0)
∧ β(k) = τ
∧ α(0) = {β(0), . . . , β(k − 1)}
∧ 〈α(1), a(1)〉 Str 〈β(k+1), b(k+1)〉

where for all i ∈ IN, α(i) ∈ U and β(i) ∈ U ∪ {τ}, and k denotes |α(0) |, the
cardinality of the (finite) set of problems at the head of stream α. Now the
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parameters: function select ,
function propagate.

input: an ECSP P := 〈C ; x1 ∈ D1, . . . , xn ∈ Dn ; T1, . . . , Tn ; A1, . . . ,An〉,
a domain branching function f ,
a set R of domain reduction functions,

output: a set S of sequences of domains such that for all 〈D′
1, . . . , D

′
n〉 ∈ S,

〈C[D′
1, . . . , D

′
n] ; x1 ∈ D′

1, . . . , Xn ∈ D′
n ; T1, . . . , Tn ; A1, . . . ,An〉

is a subproblem of P . If S is non-empty, at least one of these subprob-
lems is also a γ solved form of P , where γ is the notion of consistency
enforced for the constraints in C by propagate and R.

F := {〈D1, . . . , Dn〉}
S := ∅
repeat

select Dw ∈ F
F := F − {Dw}
D′

w := propagate(Dw, R)
if ¬failed(D′

w)
then

if final(D′
w)

then

S := S ∪ {D′
w}

else

F := F ∪ f(D′
w)

end

end

until F = ∅ or S 6= ∅
S := S ∪ F

Algorithm 8.1: A first-solution search version of Algorithm 2.2
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Figure 8.1: First-solution search for the four queens problem

behavior of a constraint solver component is captured by the Sol ABT, defined
as

Sol = BSol ◦ Str

Thanks to the Str ABT, we can reduce the data domain from U ∪ U ∪ {τ} to
U ∪ {τ}: systems that comply with the Sol ABT deal only with ECSPs and the
token τ .

8.3.2. Example. Figure 8.2 shows the input timed data stream 〈α, a〉 and out-
put timed data stream 〈β, b〉 of a system that complies with the Sol ABT. Some
time ts after an ABT for the four queens problem appears on the input timed
data stream, a solution, and two subproblems followed by the token τ appear on
the output timed data stream. 2

Unlike our example solver, existing complete constraint solvers do not usually
produce subproblems other than solutions. The search frontier is inaccessible, and
the token τ can be thought of as the notification “no” that a Prolog interpreter
would produce to indicate that no (more) solutions have been found. Also, if
we model such solvers using the Sol ABT, there is typically no upper bound on
the time that elapses before solutions start to appear on the output timed data
stream.

In contrast, the load-balancing solver component that we propose here stops
searching for solutions after the elapse of a time-out t. At that moment, it
generates a subproblem for every solution that it has found, plus one for every
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Figure 8.2: Input stream and output stream of a solver that complies with the
BSol ABT

subproblem that must still be explored. For t ∈ IR+, the Sol t ABT specifies that
there is an upper bound on the time needed for the solver to produce results.

〈α, a〉 BSol t 〈β, b〉 ≡ 〈α, a〉 BSol 〈β, b〉
∧ ∀i ∈ IN · b(i) − a(i) < t + tǫ

Sol t = BSol t ◦ Str

where tǫ ∈ IR+ is some extra time that allows the solver to finish what it is doing,
after the time-out t has elapsed.

The Solt behavior can be realized trivially by removing the loop from Algo-
rithm 8.1. For an input ECSP, the resulting solver then performs a single round
of constraint propagation and splitting. However, in order to limit the amount
of communication, for our application we want to make the solvers perform as
much work as possible, within the given time-out period.

We can capture this additional requirement by adding the following condition
to the BSolt ABT:

∀i ∈ IN · b(i) − a(i) ≥ t ∨ β(i) = solγ(α(i))

This ensures that unless the search space has been explored exhaustively, the
output is produced between time t and t + tǫ.

Implementing this exact behavior is not straightforward, but an approxima-
tion of it can be realized by modifying the loop of Algorithm 8.1:

repeat

. . .
until F = ∅ or S 6= ∅

as follows.

t0 := clock()
repeat

. . .
until F = ∅ or clock() − t0 ≥ t
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Figure 8.3: 3-way parallel solver

In this modified code t is a new parameter that specifies the time-out value, and
clock is a function that returns the current time, or wall time . Such a function
is typically made available by the operating system. The resulting solver is an
approximation of the required behavior in the sense that the operations inside the
loop cannot be interrupted. Especially constraint propagation may take longer
than the allowed overrun time tǫ. This is not a problem in practice.

8.3.2 Parallel Solver

Figure 8.3 shows a channel-based design for a (3-way) parallel solver. All channels
in this design are synchronous1: read and write operations block until a matching
operation is performed on the opposite channel end. The “resistors” depict Reo
filters: synchronous channels that forward data items that match a certain pattern
(set of allowable data items) and discard data items that do not match this
pattern. At node b in Figure 8.3, all output of the solvers is replicated onto two
filters. Channel bc filters out solutions. Its pattern (p) is

Filter({p ∈ P | p ∈ solγ(p)}).

The channel from b to T discards all solutions. Its pattern (q) is

Filter({p ∈ P | p /∈ solγ(p)} ∪ {τ}).

The ABTs of the channels are specified in [Arb02].
Apart from the channels and the three load-balancing solvers Sol t, there are

three elements of the design that require further clarification: the special-purpose
connector T, the 3-ary exclusive router R3, and the Store. Because we focus on
the component solvers instead of on the coordinating framework, we do not give
full ABTs for the other elements of Figure 8.3, but only an intuitive description.

1The synchronicity of the communication is not an important aspect of the design.
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The special purpose connector T implements termination detection . Ini-
tially, it reads a problem from its left-hand side input port. All subproblems
entering T, through either input port, are forwarded immediately through its
right-hand side output port to the Store. Also T counts the number of problems
forwarded to the Store, and the number of tokens τ received through its bottom
port (from node b). While these numbers do not match, the parallel solver is busy,
and T will accept new (sub)problems from its bottom input port (connected to
node b) only. As soon as the number of problems is canceled out by the number
of tokens, T sends a token τ through its top port (to node c), indicating that the
parallel solver has finished working on its current problem. Then it returns to
its initial state, and accepts a new problem from its left-hand side input port. It
should be noted that termination detection for the parallel solver is much easier
than termination detection for a distributed application in general. The latter
case is discussed in Section 9.2.3.

Connector R3 is a general-purpose 3-ary exclusive router . It operates syn-
chronously, and every data item on its input port is forwarded on exactly one of
its output ports. If none of the channels connected to the output ports is able to
forward a data item, the router blocks. If a data item can be forwarded on more
than one output port, a non-deterministic choice is made. Construction of the
exclusive router from Reo primitives is shown in [ABRS04].

The Store is a channel-like connector that is specific to this application.
It buffers incoming problems, and examines them to determine the level of the
corresponding node of the search tree. This information can be used to enforce a
global traversal strategy. When R3 is ready to accept data (i.e., when one of the
load-balancing solvers has become idle) it forwards a problem according to this
strategy. For example, it may forward a node of the deepest available level in
an attempt to implement depth-first search globally. This effectively drains the
Store. Forwarding a node of the shallowest available level implements breadth-
first search, filling up the Store with more subproblems.

8.4 Implementation

To test the proposed implementation of parallel search, we equipped our Open-
Solver constraint solver with the time-out mechanism, and developed a distributed
program to combine several such solvers into a parallel constraint solver.

8.4.1 Component Solver

A special coordination layer plug-in StreamingIO has been developed that con-
figures OpenSolver as a load-balancing solver, as specified in Section 8.3. When
it is equipped with this plug-in, an OpenSolver instance keeps reading configura-
tion specifications from its standard input. These specifications are sequences of
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ASCII characters, in the language of Figure 3.2 (see Program 4.3 on page 77 for an
example). The individual configuration specifications are delimited by brackets,
and configure OpenSolver for solving a particular ECSP.

When a solver configuration has been read from standard input, the coor-
dination layer plug-in instructs the solver to parse it, and starts the search for
solutions. This coordinates the solver to perform a regular branch-and-propagate
search, as explained at the end of Section 3.3.1. When the time-out elapses, or
when the search frontier becomes empty, the StreamingIO plug-in stops issuing
commands that drive the search for solutions. Instead it issues the flush and
clear WDB commands of Section 3.3.2.

Every plug-in implements a method to write itself into a character string.
When executing the command to flush the search tree, this method is called for
all plug-ins that define a particular node of the search tree, notably the variable
domains and the DRFs. These strings are then passed to the coordination layer.
Normally this mechanism is used to produce the solved forms of an ECSP, but
because we do not perform an exhaustive search, in this case it also produces the
search frontier. This information is used by the StreamingIO coordination layer
plug-in to construct new solver configurations that are written to standard output.
After the flushing operation is complete, the coordination layer plug-in generates
a character-encoded token τ , and proceeds by reading a new problem specification
from standard input. Except for the token, the output of this coordination layer
plug-in can directly be fed into another solver as a stream of solver configurations.

The component solvers are configured to perform a depth-first traversal of
the search tree, but through an adapter, the branching operators are modified to
annotate the nodes with their level in the search tree. These annotations appear
in the solver configurations that are forwarded through the network, and can be
interpreted by the process that implements the Store of Section 8.3.2 to impose
a high-level traversal strategy on top of the depth-first traversal of the solvers.

As we discussed in Section 4.2, OpenSolver is based on copying, so the search
frontier is maintained explicitly. This is a great convenience for publishing the
search frontier, but we are convinced that our method extends to solvers that use
trailing or recomputation. Especially when searching for all solutions, every node
of the search tree must be generated eventually, so no extra work is involved if
this is done for the current search frontier when the time-out elapses.

8.4.2 Parallel Solver

Depending on the complexity of the interaction, it may make sense to use a
dedicated coordination language to orchestrate the interaction of the cooperating
entities in a concurrent system. For example if the population of processes is
highly dynamic, the Manifold coordination language [Arb96] may be a logical
choice (see also Section 9.2.1). In this case, we implemented the coordination
protocol of Section 8.3.2 as a master-slave distributed program coded in C using
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Figure 8.4: Software architecture of the parallel solver

the MPI message passing interface. Without the facilities for gathering statistics,
the size of this “glue code” is just a little more than 600 lines. The slave processes
fork a new UNIX process to start the component solvers, and a pair of pipes is
connected to the standard input and output of these processes to facilitate the
character-based implementation of the timed data streams.

The channels of the coordination model are implemented by directed send and
receive MPI calls. Upon reception of a token τ , a new subproblem is sent to the
solver that generated the token. For this purpose, the character-based encoding
of the token contains the identity of this solver. Also the number of solutions
counted for each subproblem is piggybacked on the token.

When reading from the pipe that is connected to the standard output of a
solver, the slave processes perform some parsing to recognize the beginning of a
new solver configuration. At this point, an entire problem is sent to the master
process as a character string. The master process implements the distribution and
gathering of the problems. Figure 8.4 illustrates this software architecture. In
total, for an n-way parallel run, 2n+1 user processes are running on n processors.

Note that the component solvers are still stand-alone applications that rely
on character-based standard I/O only. Our primary goal was a performance
evaluation of the time-out mechanism, and from that perspective, a master-slave
implementation is acceptable. However, the channel-based design of Section 8.3.2
has many advantages over this rigid scheme. In particular, the decision where to
send the next subproblem is now taken on the basis of solver output, whereas a
true implementation of the exclusive router would be able to detect that a solver
is idle when the channel connecting to that solver is ready to accept new data.
This has the benefit of a better separation of concerns and of a reusable solution.
The Manifold coordination language fully supports the design of Section 8.3.2.
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8.5 Experiments

The parallel solver was tested on three combinatorial problems:

Queens An instance of the n-queens problem, as described in Section 4.2. Pro-
gram 4.3 shows a solver configuration for n = 4. Instead of the variable based
scheduler we used the default, operator-based scheduler. The results reported
here are for n = 15, for which there are 2,279,184 solutions.

Sat An instance of the propositional satisfiability problem, described in Sec-
tion 4.4. For these experiments we use the benchmark formula par16-2-c from
the DIMACS test set2. This formula has 1392 clauses on 349 variables.

Coloring This is a graph coloring problem. In general, the problem is to find
an assignment of colors to the vertices of a graph, such that two vertices that
are connected by an edge have different colors. Here we verify that no 9 coloring
exists for graph DSJC125.5, also from a DIMACS test set, having 125 nodes and
3891 edges. In our model we use a variable for every node, and a disequality
constraint for every edge. The disequalities are implemented using the DDNEQ

DRF plug-in of Section 4.2.

In all cases, we used a fail-first variable selection strategy, selecting a variable
with the smallest remaining number of alternative values. As a second criterion
for Coloring , variables are ordered according to the degree of their corresponding
nodes of the graph. In order to generate a large number of subproblems, we used
an enumeration value selection strategy (see Figure 4.2 on page 70). The compo-
nent solvers perform a depth-first traversal, but using the level annotation of the
configurations generated by the solvers, the master switches between breadth-first
and depth-first traversal, depending on the number of available subproblems. If
this number is below a certain threshold value (512, for these experiments) prior-
ity is given to the shallowest available nodes. These are least likely to complete
before the time-out, and can thus be expected to increase the number of problems
available to the master, making it easier to keep all solvers busy. Also, when the
full problem is first submitted to the first solver, this solver uses a very small
time-out in order to generate work for the other solvers quickly.

The results reported below are for an all-solution search, and solutions are
only counted, not stored or communicated. An all-solution search avoids the ef-
fect known as the speedup anomaly , which entails that for a non-exhaustive
search, part of the speedup is due to the different traversal of the search space.
For example, consider that the search space is split into two subtrees, and that
the root node of the second subtree happens to reduce to a solution. Parallel
search on these two subtrees would find the solution almost immediately, result-
ing in a super-linear speedup over the sequential case where the other subtree

2available at ftp://dimacs.rutgers.edu/pub/challenge
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Figure 8.5: Speedup figures

is processed first. Because we are interested in evaluating the efficiency of our pro-
posed parallelization of tree search, we tried to avoid demonstrating the speedup
anomaly.

Table 8.1 shows the sequential and parallel runtimes (elapsed time) for our
test problems, as well as the parallel efficiency, which is the actual speedup di-
vided by the number of processors. As a further indication that our solver is a
realistic implementation, depending on the search strategy, the standard example
for 15-queens in ECLiPSe 5.5 [WNS97, CHS+03] completes in 900 - 1500 sec. on
the same hardware. The speedup figures (sequential runtime divided by parallel
runtime) are shown in Figure 8.5. All elapsed times shown are averages of 10
repeated runs on a Beowulf cluster built from 1200 MHz Athlon nodes. The en-
tries for “parallel” runs on 1 processor are an indication of the overhead of the
time-out mechanism. For Queens and Sat we used a time-out value of 3200ms.
For Coloring we used 9600ms. These values were found to give good results in
preparatory experiments, but performance did not seem overly sensitive to the
actual time-out used. The master process always runs on the same node as one of
the component solvers and its slave process, and competes with these processes
for CPU time.

As can be seen from Figure 8.5, our parallel solver scales well. For Queens

and Coloring , the parallel efficiency remains practically constant for the num-
bers of processors that we have tested with, and the scalability can be expected
to extend to higher numbers of processors. The difference in efficiency for these
two series of runs, and for the Sat runs on lower numbers of processors can be ex-
plained by the different sizes of the problem representations, and their associated
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Processors
Seq 1 2 3 4

Queens 734.16 760.79 380.85 253.41 190.04
eff. 0.96 0.96 0.97 0.97

Sat 1541.12 1842.55 931.26 619.65 466.08
eff. 0.84 0.83 0.83 0.83

Coloring 419.29 475.92 236.50 156.47 117.70
eff. 0.88 0.89 0.89 0.89

Processors
5 6 8 12 16

Queens 152.01 126.67 95.18 63.32 47.86
eff. 0.97 0.97 0.96 0.97 0.96

Sat 378.14 313.91 240.91 171.43 140.02
eff. 0.82 0.82 0.80 0.75 0.69

Coloring 94.31 78.11 58.23 38.92 30.56
eff. 0.89 0.89 0.90 0.90 0.86

Table 8.1: Elapsed times (sec.) and parallel efficiency

communication costs.

For Sat , parallel efficiency drops after 8 processors. The reason is that be-
cause the variable domains are binary, the search frontiers are smaller than for
the other two problems, and the master has difficulty keeping all solvers busy.
Also the problem seems to have a less balanced search space: submitting a shal-
low subproblem to one of the solvers is less likely to generate new nodes than for
Queens and Coloring . We hope to remedy the problem of the binary search
trees by using a special-purpose branching strategy plug-in, which instantiates
several variables at the same time, thus generating larger search frontiers. How-
ever, this strategy will also generate assignments that would otherwise have been
prevented by constraint propagation, so it is hard to predict the overall effect.

The Queens experiments have also been run overnight on several (mostly
idle) workstations connected by a local area network. While a detailed analysis
of these experiments has not been made, here too we saw good speedup and
scalability. Our approach seems well suited for such an environment: because no
solver will work longer than the specified time-out before sharing work with other
solvers, the proposed implementation of parallel search will likely be insensitive
to the existing load and heterogeneity of the hardware. Because good results
were obtained on a cluster (distributed memory), the parallel solver can also be
expected to perform well on shared memory machines.
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8.6 Discussion

Perspectives and Limitations

As an alternative to implementing the time-out mechanism in the component
solvers, we could move this mechanism into the software that coordinates them. It
would be equally easy to modify a constraint solver to respond to some interrupt,
and somehow an interrupt mechanism seems less alien to constraint solving than
a time-out mechanism. In either case the solver must be able to publish the state
of its search algorithm, for which we use a character-based encoding.

There are other advantages to enabling a solver to publish its search frontier.
For instance, it allows user interaction in constraint solving, e.g., for compu-
tational steering, and supports a mechanism for checkpoints. When the set of
subproblems held by the master process is saved to disk at regular intervals, and
subproblems are not discarded until their results have been processed, the solver
can restart from the last saved set of subproblems after, for example, a power
failure has occurred. Also saving subproblems to disk may increase the applica-
bility of limited discrepancy search in a copying-based solver (see Section 4.1.2),
especially if the I/O can be performed in the background, and does not imply
busy waiting.

Another possibility is to implement in-search transformations of CSPs out-
side the core solver. In OpenSolver, such transformations are currently limited to
deactivating reduction operators that have become redundant. For other transfor-
mation techniques, such as adding redundant constraints, or symbolic rewriting
of arithmetic constraints, it is not immediately clear how to incorporate these in
the branch-and-propagate search in a uniform way. Moreover, extending Open-
Solver to accommodate specialized transformation techniques may make it less
efficient in those cases where these techniques are not needed. By applying trans-
formations outside the branch-and-propagate search, we risk that constraint prop-
agation is weaker than necessary, but because of the time-out mechanism, this
inefficiency will not last long, and the overall effect may be a good compromise
between ease of implementation and efficiency.

Our current implementation is not suited for optimization, because new bounds
for a criterion variable are not communicated between solvers. When a new bound
is discovered, many of the subproblems in the Store may never be able to improve
on this bound, but they have to be processed nonetheless. What is worse, the
new bound remains local to the subproblems of the ECSP in which it was found.
After flushing its search frontier, a solver returns to its initial state, and forgets
the bound, and only the solvers that pick up one of the generated subproblems
will temporarily be able to use it. This can be remedied by adding two processes
to the network of Figure 8.3. One process inspects the value of the criterion
variable for outgoing solutions, and sends this value to the other process, which
adds a reduction operator for enforcing the current best bound to any subproblem
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Figure 8.6: 3-way parallel solver with optimization

leaving the Store. This is illustrated in Figure 8.6.

Branch-and-bound optimization was studied from a coordination point of view
in [Sta02], but in our work, the emphasis is on the component side rather than on
the coordination framework, and on the demonstration of a realistic implementa-
tion. We do not expect that our component-based solution performs worse than
other parallel implementations of branch-and-bound, but this should be verified
by further experiments.

Constraint solving was used as an example application, but our method can
probably be applied to other problems that involve tree search. This is not
surprising, because for many such problems, there exists a more or less efficient
encoding as a constraint satisfaction problem. However, some problems that
involve tree search have special requirements. As an example, we have seen in
Section 4.4 that specialized solvers for the SAT problem rely on so-called learning
search algorithms, which derive new constraints during the traversal of the search
tree. These constraints are redundant, but when they are made explicit they
achieve a stronger pruning of the search tree. It is not directly clear how our
method should be extended to facilitate learning solvers, and the complementing
backjumping techniques.

Related Work

Other approaches to parallel constraint solving often use a scheme where the
parallel solvers exchange nodes of the search tree only when one of them becomes
idle, see for example [MS94, Per99, Sch00, Ham05]. For such schemes, solvers
can potentially run for a long time without having to respond to a request for
work from other solvers, but once a solver becomes idle, it may be more difficult
to find another solver that is willing to share part of its search frontier. In
contrast, our approach aims at having a large repository of work, assuming that
the time-out can be tuned such that publishing the search frontier is relatively
cheap. From a software engineering point of view it is simpler, and better suited
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for a component-based implementation, but from a user’s point of view, our
scheme is more complicated because it introduces a tuning factor. It may well be
possible, though, to use a heuristic for tuning the time-out automatically during
the computation. For example, the Store of Figure 8.3 could increase the time-
out value while enough subproblems are available to keep all solver busy for some
time.

In [HKS01] a shared-memory scheme is described where first the original CSP
is split by assigning values to variables in a generate-and-test phase, until a large
set of subproblems are available. These problems are then solved in a data-parallel
way, using either a static or dynamic partitioning. We expect that scheme to be
more sensitive to load imbalance because it is possible that most of the work is
concentrated in only a few of the generated subproblems.

The approach of Disolver [Ham05] is unique in the sense that load balancing
and bound sharing (in optimization) can be controlled through setting some pre-
defined logical variables. In addition, several properties of the search process
for which we use annotations are reflected in the domains of other pre-defined
variables. Regular constraints can be now be used to activate or deactivate load
balancing and bound sharing depending on properties of the search process. This
way, adaptive cooperations between the parallel running solvers can be specified
through constraints.

For all alternatives discussed here, a comparison of reported efficiency results
is difficult, because the hardware platforms and software environments, and the
benchmark problems used in each case are quite diverse. For example, the re-
sults in [Per99] for ILOG Solver apply to job-shop scheduling problems. Because
these are optimization problems, the experiments are very sensitive to the traver-
sal order, leading to speedup anomalies: for various experiments, the observed
speedup ranges from 1.23 to 3.92 on two processors, and from 2.4 to 28.95 on
four processors. The author mentions that running the parallel solver with one
processor incurs an overhead of 2–3%, which could be comparable to the column
for 1 processor in Table 8.1. This result is for a shared memory system, which
may explain the low overhead compared to our approach.

Some of the results in the other references above do not suffer from the speedup
anomaly, and just to indicate that despite its straightforward load balancing
scheme our parallel solver is fairly efficient, Table 8.2 presents a comparison yet.
For each system, the best and worst speedups among the presented set of exper-
iments are listed. From [Sch00] we did not consider the optimization problems
because of the speedup anomaly. For the same reason, from [HKS01] we cite only
the results for inconsistent problems. Furthermore it should be noted that the
speedup figures of [MS94] were not obtained by comparison with the best possible
sequential run. They apply to the parallelized system, which is less efficient. Also
[HKS01] concerns a shared memory implementation. The quoted results are for
their best (dynamic) partitioning strategy only. The results reported for ECLiPSe

in [MS94] and for the Mozart implementation of Oz in [Sch00] are for distributed
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Speedup
CPUs OpenSolver [MS94] [Sch00] [HKS01]

2 1.65–1.93 1.78–1.99 1.74–1.85
3 2.49–2.9 2.47–2.63
4 3.31–3.86 3.19–3.90 2.92–3.30 3.74–3.96
5 4.08–4.83 3.12–3.51
6 4.91–5.8 3.17–3.81
8 6.4–7.71 4.60–7.56 6.32–7.44

12 8.99–11.59 5.37–10.79
16 11.01–15.34 9.08–13.95

Table 8.2: Comparison of speedup figures

memory (networked) systems, like ours. The last two systems both use recompu-
tation to regenerate nodes of the search tree that have been transferred from one
machine to another. For Disolver, we did not find any results that do not suffer
from the speedup anomaly.

8.7 Conclusions

We proposed an implementation of parallel tree search in constraint solving based
on time-outs. Instead of a parallel algorithm, we presented and implemented the
method as a protocol for the coordination of multiple instances of a component
solver. After equipping a constraint solver with the time-out mechanism, some
600 lines of C/MPI code were sufficient to coordinate several of these component
solvers to perform parallel search. Experiments showed that a good speedup is
obtained on 2 to 16 CPUs, which indicates a good load balance. We conclude
that:

• The time-out mechanism is an effective way to implement parallel search in
constraint solving.

• Once a solver is able to publish its search frontier, building a parallel con-
straint solver becomes a matter of component-based software engineering.

• The OpenSolver plug-in mechanism made it very easy to meet this require-
ment.

• Separating computation and coordination, i.e., adding a protocol instead of
implementing a parallel algorithm is a viable approach.

We also described how to implement parallel optimization. We do not expect
that our component-based solution performs worse than other parallel implemen-
tations of branch-and-bound, but this should be verified by further experiments.





Chapter 9

Distributed Constraint Solving

The subject of this chapter is DICE (DIstributed Constraint Environment), a
framework for distributed constraint solving. In addition to the design of the
framework, and its implementation in the Manifold coordination language, we
will discuss a number of extensions that were proposed to improve the efficiency
of distributed constraint solving in DICE. OpenSolver was originally developed
as a part of DICE, to realize these optimizations, and the material presented
here clarifies some of the design decisions. It also demonstrates a third potential
application of OpenSolver as a software component.

9.1 Introduction

Constraint propagation algorithms can essentially be characterized as a set of
functions, plus a scheduler that coordinates their application. This supports the
observation of Gelernter and Carriero that all useful programs consist of a com-
bination of computation and coordination [GC92]. This observation was made
in the context of coordination languages. Although they originated in the area
of parallel and distributed computing, coordination languages now also manifest
themselves as a technology for realizing component-based software engineering.

As we have seen in the previous chapters, constraint solving comprises a col-
lection of largely independent techniques. To solve a CSP efficiently, a constraint
solver typically combines several procedures, heuristics, and even stand-alone
solvers. This indicates that in addition to providing evidence for the “program-
ming = computation + coordination” proposition, constraint solving might also
benefit from the component-based approach that is facilitated by contemporary
coordination languages.

The above observations suggest a coordination-based implementation of con-
straint solving, which was explored in two articles: [Mon00a], on a coordination-
based constraint propagation algorithm, and [AM00], which complements this
algorithm with facilities for search in a distributed setting, i.e., in absence of a
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centralized representation of CSPs. An additional benefit of the approach pro-
posed in these articles is that because of the concurrent nature of the coordination
language, the solver can be applied in situations that require distributed solving,
or where it can be expected that parallel execution of domain reduction functions
will reduce the turn-around time of solving.

An implementation of the distributed constraint propagation algorithm in the
Manifold coordination language provided the proof of concept, and DICE [Zoe03b]
combined both algorithms into a general purpose coordination-based constraint
solver. Because of its distributed nature (every variable and reduction operator
in DICE had its own thread, possibly running in its own process), constraint solv-
ing in DICE involved massive communication among concurrent threads, which
made it quite inefficient compared to existing, sequential constraint solvers. For
this reason, in [Zoe03a] we proposed an alternative implementation that allows
an arbitrary distribution of variables and reduction operators over a set of co-
operating solvers. The resulting system allows all configurations ranging from a
fully distributed solver to a single sequential constraint solver. OpenSolver was
intended to implement the cooperating solvers of this alternative implementation.

The remainder of this Chapter is organized as follows. Section 9.2 covers the
original DICE system. It briefly introduces the Manifold coordination language,
and recalls the coordination-based constraint solving algorithms of [Mon00a] and
[AM00]. In Section 9.3 we describe the alternative implementation proposed in
[Zoe03a], and in Section 9.4 we relate this proposed alternative to the current
OpenSolver implementation. In Section 9.5 we evaluate the benefits of our ap-
proach, and discuss related work.

9.2 DICE

DICE (DIstributed Constraint Environment) is a framework for distributed con-
straint solving, implemented using the Manifold coordination language. A run-
ning system consists of a number of processes, that cooperate according to coor-
dination protocols for constraint propagation, distributed termination detection,
and search. These are described below in Sections 9.2.2–9.2.4. First we introduce
Manifold and its coordination model.

9.2.1 Coordination Model and Language

Coordination languages offer language support for composing and controlling
software architectures made of concurrently executing entities. In the Idealized
Worker Idealized Manager (IWIM) model of coordination [Arb96], these enti-
ties are represented by processes . In addition to processes, the basic concepts
of IWIM are ports, channels and events . A process is a black box that ex-
changes units of information with the other processes in its environment through
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its input ports and output ports, by means of standard I/O primitives analogous
to read and write. The interconnections between the ports of processes are made
through directed channels. Independent of channels, there is an event mechanism
for information exchange in IWIM. Events are broadcast by their sources, yield-
ing event occurrences . Processes can tune in to specific event sources, and
react to event occurrences.

The IWIM view of a software system is a dynamic ensemble of interconnected
processes. A process can be regarded as a worker process or a manager pro-
cess. The responsibility of a worker process is to perform a (computational) task.
The responsibility of a manager is to coordinate the communications among a
set of worker processes. For this purpose, manager processes can create worker
processes and make channel connections to their ports. A manager process may
be considered a worker processes by another manager. At the bottom of this
hierarchy there is always a layer of atomic workers.

Manifold [Arb96, Arb] is a coordination language for writing program modules
(coordinator processes) to manage complex, dynamically changing interconnec-
tions among sets of independent, concurrent, cooperating processes that comprise
a single application. The conceptual model behind Manifold is based on IWIM.
A Manifold application consists of a (potentially very large) number of processes
running on a network of heterogeneous hosts, some of which may be parallel sys-
tems. Processes in the same application may be written in different programming
languages and some of them may not know anything about Manifold, nor the fact
that they are cooperating with other processes through Manifold in a concurrent
application.

9.2.2 A Distributed Constraint Propagation Algorithm

In contrast to inherently sequential constraint propagation algorithms like Algo-
rithm 2.1 on page 22, DICE implements the coordination-based chaotic iteration
algorithm of [Mon00a]. In this algorithm, each CSP variable is represented by
a process that maintains the domain of that variable. Also each domain reduc-
tion function is represented by a process that receives input from the processes
corresponding to the CSP variables that the function applies to. Channel con-
nections are made between the ports of Variable and DRF processes according to
the structure of the CSP. The DRF processes have a buffer associated with each
input port, which stores the domain last seen on that port. These buffers are
initialized by having a Variable process send its domain each time a connection
to a DRF process is made.

Figure 9.1(a) shows an example process network of this algorithm. Variable
processes send reduction requests to DRF processes. Reduction requests con-
tain the domain of the CSP variable. The DRF process uses this domain to
update the buffer associated with the input port that delivers the reduction re-
quest. Then it applies the domain reduction function to the domains in the
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Figure 9.1: (a) An example process network of the distributed constraint propa-
gation algorithm, (b) the propagation engine is coordinated from the outside to
perform search

buffers1. This yields new domains for the output variables of the domain reduc-
tion function. These domains are dispatched through the output ports of the
DRF process to the corresponding Variable processes as update commands .

Upon receiving an update command, a Variable process computes the inter-
section of the domain held in the update command and the domain of the CSP
variable held in its internal store. If this intersection is a proper subset of the
current domain, the store is updated with the intersection, and the new domain
of the CSP variable is dispatched through the output port of the Variable process
as a reduction request. The reduction request is broadcast to all DRF processes
that connect to this output port. If the intersection does not reduce the domain
of the CSP variable, the update command has no effect.

In [Mon00a] it is argued that this distributed algorithm implements a restric-
tion of the Generic Iteration Algorithm for Compound Domains of [Apt99]. This
allows us to benefit from several properties that have been proven for that algo-
rithm. One of these properties is that the algorithm is guaranteed to terminate
if the domains are finite and the DRFs are inflationary. The latter is effectively
ensured by having Variable processes compute intersections.

The elegance of the coordination-based algorithm is that neither the Variable
processes nor the DRF processes have to know anything about the CSP that
they are solving. The input and output schemes of DRFs, which are used in
Algorithm 2.1 to maintain the set G of DRFs that still need to be applied, are

1In the implementation, application of the domain reduction function is postponed until no
more reduction requests are immediately available on the input ports. Such details are omitted
from this presentation.
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laid down in the network of channels that conveys the domain updates. These
schemes need only be accessed when a DRF is added to the network. However,
the apparent simplicity of not having to maintain the set of pending DRFs comes
at the cost of having to detect termination of a distributed computation.

9.2.3 Distributed Termination Detection

Although this is not strictly necessary, usually we do not want to consider expand-
ing the search tree by branching on the domain of a variable before constraint
propagation has finished. Therefore, we need to know when the propagation al-
gorithm terminates. With a sequential algorithm, like Algorithm 2.1, this is easy:
it terminates when the set of atomic reduction steps that still need to be applied
becomes empty.

In the case of the distributed algorithm of the previous section, the conditions
for concluding that constraint propagation has finished are more difficult to verify.
The algorithm terminates when:

1. all Variable and DRF processes are idle, and

2. there are no pending update commands or reduction requests in the chan-
nels.

DICE employs the algorithm described in [Dij87] to detect these conditions.
For the purpose of this algorithm, the processes of the constraint propagation
algorithm are connected in a ring network. The dashed lines in Figure 9.1(a)
show the extra channels for termination detection. All processes maintain a local
counter of the number of update commands and reduction requests in the network.
The ring network is used for circulating a token. This token is forwarded when the
process that holds it becomes idle. When it returns to the process that created it,
the token has accumulated the local counters of all process. Termination can be
concluded only if this sum equals 0. Together with a black/white coloring of the
processes and the token the algorithm ensures correctness in case of asynchronous
channels. This corresponds to the Manifold communication model.

9.2.4 Search

DICE employs a scheme similar to that of [AM00], where the network of processes
of the constraint propagation algorithm is performing work in several nodes of the
search tree simultaneously. As a result, multiple tokens of the termination detec-
tion algorithm may be circulating on the ring network, one for every instance of
the constraint propagation algorithm, and all administration inside the Variable
and DRF processes for the purpose of the propagation and termination detection
algorithms is per node of the search tree:
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Variable:: DRF ::

v :World
m→ Domain I :ARRAY [1..n] OF World

m→ Domain

color :World
m→ {black, white} color :World

m→ {black, white}
n msg :World

m→ ZZ n msg :World
m→ ZZ

where n is the number of input ports of the DRF process, and World is a datatype
whose elements serve as identifiers for nodes of the search tree. A

m→ B denotes
a map data structure, i.e., a set of tuples 〈a, b〉 ∈ A × B in which every a ∈ A
occurs at most once. Maps v and I[1], . . . , I[n] hold the data for the propagation
algorithm, and color and n msg represent the state of the termination detection
algorithm.

A partial order is defined on the elements of World , by which an ancestor node
is compatible to its descendants, and a descendant is smaller than its parent.
On several occasions, we look for information in the smallest compatible world
of a world w. For example, the update commands of the propagation algorithm
now consist of a world w, and a domain d. If the world w is not yet known to
the Variable process, it intersects d with the domain d′ of the CSP variable in the
smallest compatible world of w. Only if d′ ∩ d ⊂ d′, the element w → d′ ∩ d is
added to the map v of the Variable process.

The facilities offered by this administration per world are used by two new
processes Split and Search , which implement the branching strategy (involv-
ing variable selection and value selection) and traversal strategy, respectively.
These processes have connections to all Variable processes (Figure 9.1(b)), and
coordinate the network of the propagation algorithm to perform search.

The Split process is triggered when propagation finishes in a certain world,
and may query Variable processes for their domains in that world. On the basis
of this information, the Split process can then decide which variable to branch on
(if any), and construct a set of new World-Domain pairs for that variable. The
worlds of this set correspond to the subproblems created by the branching.

Upon receiving new worlds and corresponding domains from the Split process,
a Variable process tells the Search process about these new worlds. This allows
the Search process to maintain an administration of worlds where the constraint
propagation algorithm still needs to be applied. The Search process coordinates
the activities of the propagation network through the search tree, by issuing
commands that start propagation in worlds that it knows about. In the current
implementation of DICE, the Search process may consider starting propagation
in a new world on two occasions: when propagation finishes in a certain world,
and when a Variable process notifies it that new worlds have become available.
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Figure 9.2: Example DICE network

9.3 Cooperating Solvers

The design of the previous section supports the cooperation of solvers on the
level of reduction steps inside the branch-and-propagate search. Because of the
very small grain size of the computational tasks that are typically performed in a
reduction step, this has limited applicability. Therefore, in [Zoe03a], we proposed
to adopt a more general scheme, which is comparable to that of [MR99], from a
constraint propagation point of view. The basic process instance in this scheme
is a solver . A solver process can:

• maintain any number of variables,

• apply DRFs to variables that it maintains,

• branch on the domains of variables that it maintains in order to generate
new nodes in the search tree, and

• start constraint propagation in nodes of the search tree that it knows about.

In Sections 9.3.1 and 9.3.2 we discuss some details and implications of this scheme,
related to constraint propagation and search, respectively. In Section 9.3.3 we
introduce DRF worker processes to support parallel search. Figure 9.2 shows an
example network of solvers.

9.3.1 Grouping Variables and Reduction Operators

Solver processes can have a pair (input and output) of ports for each of the
variables that they maintain. Channel connections can be made to these ports
in order to connect variables in solver processes that correspond to the same
CSP variable. Solvers modify the domains of CSP variables by computing a
fixed point of their local DRFs. When a solver process modifies the domain of
a variable that it maintains, and for this variable there exists an output port
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that has one or more channel connections, the new domain for that variable is
sent through this output port as a propagate command . Propagate commands
are handled like the update commands and reduction requests of Section 9.2.2.
Incoming propagate commands that reduce the domain of a CSP variable trigger
the fixed point computation.

Compared to the design of Section 9.2.2, we can now combine several Variable
processes into a single process. Also domain reduction functions that involve the
corresponding CSP variables can be applied by this same process directly, without
communication. Solvers can have local variables, for which no ports and channel
connections exist. This way, communication takes place only for CSP variables
that are shared by solvers. Based on the results reported in [MR99], we can
expect that for sufficiently large problems, a partitioning of CSP variables and
DRFs can be found for which efficiency can be gained from distributed execution.

The DRF processes of Section 9.2.2 are special cases of solvers that apply a
single DRF. The Variable processes can be implemented as solvers that maintain a
single CSP variable, and do not apply any DRFs. In the original design, Variable
processes served to coordinate the activities of the DRF processes by forwarding
update commands as reduction requests. In DICE, solvers can send each other
updates of variable domains directly. Network topology is no longer centered
around a set of processes whose main task is to forward updated variable domains.
Failing to connect two solvers on a common CSP variable, however, may influence
the level of consistency that is enforced by constraint propagation. Therefore we
should provide a default topology that ensures the maximum level of consistency
that can be achieved by the domain reduction functions.

9.3.2 Search by Cooperating Solvers

More than one branching strategy may be active in a network of solver processes.
This has two potential applications:

• Complementary strategies that cooperate to implement a global strat-
egy. Every solution occurs exactly once in the global search tree. The
obvious example here is that different solvers branch on different variables.

• Competing strategies , where there are different ways of arriving at the
same solution. This can be useful when searching for a single solution. This
is also sometimes called diversification .

For complementary strategies, facilities must be provided that allow cooperating
solvers to adhere to a common variable selection strategy. For example, if in-
deed we use a dedicated process for each variable, as in Section 9.2.2, it makes
sense to let these processes control the branching of their variables. In that case,
to implement fail-first, these processes must be able to determine among them-
selves which process holds the variable with the smallest domain. In the presence
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of competing strategies, in order to control the size of the search tree, we will
probably want to prevent one strategy from splitting a subproblem generated by
another strategy. For this purpose, nodes of the search tree generated according
to different strategies must be distinguishable, and form separate subtrees of the
global search tree.

New nodes that are generated inside a solver by application of a branching
strategy can be handled in two ways:

• they can be stored locally, in a set of nodes that await constraint propaga-
tion, or

• they can be sent to another solver via dedicated ports and channels.

The purpose of the latter option is to allow one solver to coordinate the traversal
of the search tree, in the case that more than one solver is able to generate
new nodes. This solver then plays the role of the Search process of Section 9.2.4.
Reports of new nodes created by another solver are treated by the receiving solver
in the same way as new nodes created internally. If a node is labeled with the
solver process and branching strategy that created it, it is always known what
other solver needs to be instructed to start propagation in a particular node of
the search tree.

Solver processes consult their traversal strategy plug-ins, if available, on two
occasions: (1) when constraint propagation terminates in some node of the search
tree, and (2) when new nodes become available in the solver (created internally,
or reported by another solver). On these occasions propagation may be started
in any node of the search tree that the solver knows about. A special instance of
the termination detection algorithm is needed to detect termination of the global
search, by counting the nodes of the search tree that await constraint propagation.

Compared to the scheme of Section 9.2.4, where the traversal is coordinated
from outside the propagation network by the Search process, we now have the
option to let this be handled by the solvers that are performing constraint propa-
gation. From one point of view this can be regarded as mixing concerns that were
separated in the IWIM design. From another point of view, it can be explained
as a looser form of coordination: in principle propagation is performed as soon as
a new node of the search tree becomes available. But to regulate the traffic in the
network, the processes may choose to hold the messages in several nodes of the
search tree, and release the messages in others, as bandwidth becomes available.
Internally this is implemented by keeping a set of nodes that await propagation,
and selecting nodes from this set according to a traversal strategy.

9.3.3 Parallel Search by Delegation

As a second extension to the design of Sections 9.2.2–9.2.4, solver processes are
allowed to delegate the actual application of domain reduction functions and
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branching strategies (internally these have a common interface) to DRF worker
processes in a master-slave fashion. Using this option, the solvers become IWIM
managers themselves. The main reason for introducing this extra level of coor-
dination is to provide support for parallel search. Constraint propagation may
already be running for several nodes of the search tree simultaneously, but with
only one process instance available for each solver, the network will be multi-
plexing the work in these different nodes, to a large extent. On the one hand, a
pool of DRF workers increases the capacity of the network to actually handle the
propagate commands in different nodes in parallel.

On the other hand, at the task granularity of a single reduction step, the com-
munication overhead will generally outweigh the potential gain from exploiting
parallelism, and there is little justification for doing this. This facility is useful
only for computation-intensive reduction steps. The primary example would be
a solver that autonomously explores a subtree, and splits the root node of this
subtree into a set of nodes that contains a leaf node for every solution, plus several
internal nodes for the part of the subtree that it has not yet explored.

When using DRF workers, for the purpose of the termination detection algo-
rithm a solver is considered to be idle in a particular node of the search tree when
(1) no commands (concerning any node) are immediately available on any of its
input ports, (2) there is no need to compute the fixed point of the DRFs for that
node, and (3) the solver is not expecting any results from DRF workers concern-
ing that node of the search tree. Many options still exist for implementing this
coordination pattern. In particular, we propose to use a pool of DRF workers
per solver, and not to have DRF workers cache variable domains between two
calls. This involves more communication than necessary, but this should not be
a problem for the coordination of autonomous solvers, as suggested above.

9.4 Implementation

A full implementation of the DICE system, as described in Section 9.2, exists. It
is implemented using Manifold, with atomic workers written in C++. The DICE
implementation has a plug-in system comparable to that of OpenSolver, with only
four categories: variable domain types, domain reduction functions, branching
strategies, and traversal strategies. In the context of DICE, the plug-ins are
called components . A more detailed description can be found in [Zoe03b]. As
an optimization, several DICE variables can be combined in a single process, and
also an adapter-like domain reduction function exists that computes a common
fixed point of a set of other DRFs. This gives some control over the amount
of communication in the constraint propagation phase, but cannot prevent that
data is exchanged for every node of the search tree. Given the size of the search
tree even for problems that can be solved within a few seconds (see for example,
Table 7.1 on page 162), this is still an obstacle for competitive performance.
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Figure 9.3: Port footprint of a solver process

OpenSolver was intended to play the role of the cooperating solvers of Sec-
tion 9.3. In this role it would be complemented with a coordination layer plug-in
that offers the set of ports shown in Figure 9.3. These ports can then be connected
by Manifold channels to form networks like that of Figure 9.2. This intended use
has greatly influenced the design of OpenSolver, presented in Chapter 3. It ex-
plains several features that do not follow directly from the model of constraint
solving of Section 2.3, notably

• the world database,

• maintaining a set of nodes that are subject to constraint propagation, and

• the coordination layer, and giving it responsibilities like the final confirma-
tion that constraint propagation has terminated.

Although OpenSolver was designed to implement the cooperating solvers of
the previous section, this system was never fully implemented, and some as-
pects of the design are still missing. The facilities described in Section 3.3.2
have been implemented only to the extent that nested search and parallel search
are supported. Notably the commands pending sends and update, and the
bookkeeping of variable changes for exporting modified domains have not been
implemented. Furthermore, neither the set of commands of Section 3.3.2, nor the
current implementation supports delegating the application of domain reduction
functions to DRF worker processes, as proposed in Section 9.3.3.

Having said this, the design of OpenSolver does support an easy implemen-
tation of these features, and after implementing the distributed solver described
in Section 9.2, we are confident that the design is well suited for distributed con-
straint propagation. The results in Chapter 8 also essentially prove the concept of
parallel search by delegation, so technically, the distributed solver of the previous
section is feasible, but a full implementation was not needed for our experiments.
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9.5 Discussion

9.5.1 Benefits

From our experience with the DICE system we can conclude that the design of
Sections 9.2.2–9.2.4 leads to an effective general-purpose distributed constraint
solver. Given the efficiency of OpenSolver, which was demonstrated on several
benchmark problems in the previous chapters, we can expect that the optimiza-
tions proposed in Section 9.3 lead to an efficient implementation of the system,
allowing local processing where distribution is not required. Nevertheless, we
should be careful in the assessment of the benefits of our approach. We discuss
these on the basis of the following aspects: the role of coordination, the need for
distributed constraint solving, and the contribution of a system that combines
parallel and distributed processing.

The Role of Coordination

As we discussed in Section 9.1, constraint propagation through iteration of do-
main reduction functions can be seen as a form of exogenous coordination. This
is made explicit in the IWIM design of the constraint propagation algorithm of
[Mon00a], which we used in Section 9.2.2, where the processes that apply the
DRFs are coordinated by a layer of processes corresponding to the variables of
a CSP. Both kinds of processes are atomic workers in the sense that they are
largely unaware of the environment that they operate in. The computation that
they perform is determined by the network of channels that connects these pro-
cesses. In this sense, the algorithm can be characterized as a coordination-based
algorithm, but in our opinion, it is primarily a distributed algorithm. Its con-
formance to the IWIM coordination model is an advantage only in comparison
with other distributed algorithms. For example in a distributed algorithm that
relies on message passing, the processes would need to know the identification of
the processes that they communicate with. Compared to such algorithms, the
coordination-based approach is more elegant and flexible, and can more easily be
verified to be correct.

Since we use a distributed algorithm for constraint propagation, we have to
deal with distributed termination detection, and coordination models and lan-
guages could also be of importance here. In the current model and implementa-
tion, the automatic replication of messages through ports with multiple outgoing
channels implies that for counting the number of messages in the network, which
is inherent to many termination detection algorithms, the variables need to know
how many DRFs they are connected to. This runs counter to the inherent simplic-
ity of the constraint propagation algorithm proper. For example, we now have to
temporarily halt a Variable processes before making or removing a channel con-
nection to its output port, in order to correctly update the counter of its outgoing
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channels before it sends any new messages. Because termination detection is such
a common problem, in our opinion, primitives for it would be valuable additions
to a coordination language like Manifold.

Even without support for termination detection, using a proper coordination
language like Manifold is convenient because it has rich facilities for process man-
agement, and for channel-based communication. However, it does not simplify
composing constraint solvers from software components, as we anticipated at the
beginning of this chapter. This has two reasons.

• As we discussed in Section 3.3.3, from a coordination point of view, a soft-
ware component typically has its own thread of control and interacts with
its environment through a set of ports. This model does not fit the majority
of constraint solver building blocks that we categorized in Chapter 3, and
wrapping them up as autonomous processes is artificial.

Conversely, in those cases where we want to use an autonomous solver
that fits the model of an IWIM process, a component-based framework
like OpenSolver can communicate with it through a proxy . Wrapping up
autonomous solvers as objects through proxies is equally artificial, but at
least it entails that the appropriate method of software composition is used
for the majority of units of composition. In other words, do not distribute
everything because in a few cases, this makes software composition easier.

• While some specific instances of these building blocks are of a complexity
that calls for code re-use, most of them entail very simple data structures
and algorithms. The effort of implementing a configurable constraint solver
is in the definition of their interfaces, rather than in writing the code for
these data structures and algorithms. Conformance to the IWIM model, or
the use of a coordination language does not simplify this task.

In summary, if for some reason it is necessary to perform distributed constraint
propagation, the algorithm of [Mon00a] provides an effective solution. Because of
its conformance to the IWIM coordination model it has specific advantages over
other solutions to distributed constraint propagation, and it is convenient to use
a coordination language like Manifold to implement it.

The Need for Distributed Constraint Propagation

Because communication is involved with domain updates, distributed constraint
propagation is communication-intensive. In general, communication will outweigh
computation, and we can expect to be able to apply it efficiently only in the
following cases:

• In case of very computation-intensive reduction operators we may achieve a
reduction of turn-around time if the cooperating solvers run on parallel pro-
cessors. The operator of Section 7.3.1 easily involves seconds of computation
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time per application, and would be a good example. For our application
we need precisely one instance, but there probably exist situations where it
would make sense to use multiple operators of comparable functionality.

• If the problem itself is distributed, while it is impossible or undesirable to
gather all information in a single location, distributed constraint propa-
gation is unavoidable if we want to perform a branch-and-propagate tree
search.

In the first case, if constraint propagation is performed as a part of branch-
and-propagate tree search, it will likely be more efficient yet to parallelize the
search instead of the propagation. The latter case is known as the distributed

constraint satisfaction problem (DisCSP). Our approach is definitely suit-
able for DisCSP solving.

Combining Parallel and Distributed Constraint Solving

The extensions proposed in Section 9.3.1 are a valuable addition to the design
of Sections 9.2.2–9.2.4. It allows us to group variables and DRFs such that
communication is limited to what is absolutely necessary for a given DisCSP
situation. In addition, in Section 9.3.3, we proposed to increase the capacity
of the constraint propagation network by delegating the actual application of
domain reduction functions to DRF worker processes, with the particular goal
to support parallel search. In retrospect, it does not seem likely that parallel
search and distributed propagation need ever be combined, and there is no need
for a system that supports both. The coordination-based approach of Chapter 8
is much simpler and more flexible, and the design of OpenSolver is complicated
enough without the facilities for delegation.

Another justification for the delegation mechanism would be that it prevents
that time-consuming constraint propagation in one node of the search tree pre-
vents progress of the search in other subtrees, that are being explored simultane-
ously. In our opinion, the option to have an OpenSolver scheduler plug-in return
control before a fixed point has been computed, as discussed in Section 3.2.3, is
a better solution.

Finally, since we want to prevent that a branching strategy is applied to a node
that is generated by another branching strategy, the competing branching strate-
gies of Section 9.3.2 can also be implemented by having multiple solvers running
concurrently. For optimization purposes, we can use the time-out mechanism of
Chapter 8, and share bounds implied by new suboptimal solutions between mul-
tiple instances of loop networks as shown in Figure 8.6. If the number of available
processors is smaller than the number of competing strategies, these loops should
then contain only one solver. For competing strategies, the advantage of the in-
terrupt mechanism discussed in Section 8.6 over the time-out mechanism is even
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greater, because it allows that new bounds are taken into account immediately,
without having to wait for the elapse of a time-out.

9.5.2 Related Work

Above we argued that we should not distribute a constraint propagation algorithm
based on generic iteration, just to provide for the case that one of the DRFs that
we want to apply happens to be an autonomous process. BALI [Mon00b] is
a system that supports exactly this mode of solver cooperation. Fixed point
computation is just one of the cooperation patterns of BALI, and likely, BALI
itself could be implemented as an instance of a (distributed) generic iteration
algorithm. From this perspective, it is all a matter of selecting the right method
of software composition for the units that we want to combine. A Manifold
implementation of BALI is investigated in [AM98].

In our opinion, the coordination-based approach is beneficial only in com-
parison to other distributed constraint solvers. In particular, the distributed
constraint propagation algorithm of [MR99] is mentioned in [Mon00a].

In branch-and-propagate tree search, even in the case that different parts
of the search tree are explored in parallel, the expansion of the search tree by
branching and the selection of the nodes for further exploration are inherently
synchronous and sequential operations. In contrast, the asynchronous back-

tracking algorithm distributes the search itself. Different agents , each main-
taining their own variable, propose values for these variables to other agents, with
whom they share a constraint. By exchanging such proposals and no-goods, the
agents will eventually find a solution if it exists. An overview of asynchronous
backtracking and related algorithms is given in [Yok01]. These algorithms still
rely on distributed termination detection, but now it has to be established only
once, to detect that consensus has been reached. The Disolver system [Ham05]
is reported to support this kind of distributed search. It would be interesting
to compare the performance of both approaches, asynchronous backtracking and
that of Sections 9.2.2–9.2.4 with respect to communication, CPU time, turn-
around time, and memory usage. To our knowledge, such a comparison has not
been made.

Diversification, i.e., competing search strategies, in the context of distributed
search are discussed in [RH05]. A variant of the DisCSP problem where con-
straints can also be retracted is known as the dynamic distributed constraint
satisfaction problem (DynDCSP). An algorithm for maintaining arc consistency
for this class of problems is given in [Rin05]. OpenSolver cannot deal with con-
straint retraction, and our approach to constraint solving in general is unsuited
for solving of dynamic CSPs.

A different approach to exploiting parallelism in the constraint propagation
phase is reported in [GH00]. This approach involves an alternative iteration
algorithm that applies the following steps until a fixed point of all reduction
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operators is reached.

1. Apply all pending reduction operators independently of each other to eval-
uate the amount of reduction they achieve on the current set of domains.

2. Compute a fixed point only of those operators that achieve the maximal
reduction.

The first of these two steps can easily be parallelized because the operators are
all applied independently of each other, on the same set of domains. The second
step is computed sequentially, and constitutes a bottleneck for parallel perfor-
mance. As a result, only modest speedup figures are obtained beyond running
the alternative iteration algorithm on a single processor.

Finally, we would like to mention that concurrent constraint program-

ming (CCP, see, e.g.,[SR90]), is a model of concurrent computation, where pro-
cesses or agents interact by communicating with a shared constraint store. The
communication with the store consists of Ask and Tell operations. Via the
Ask operation, an agent inquires whether a constraint is entailed by the store
or not. Via the Tell operator constraints are added to the store. Although
distributed computing introduces concurrency, the algorithms discussed in this
chapter are unrelated to CCP. We expect, however, that they can be used to
realize a distributed implementation of a CCP constraint store, if needed. The
multi-paradigm programming language Oz (see, e.g., [VRBD+03]) incorporates
the CCP model. Its main implementation, Mozart (see http://www.mozart-oz.
org/), is an advanced platform for the development of distributed applications.

9.6 Summary

In this chapter we presented the DICE framework for distributed constraint solv-
ing, and discussed an optimization of it, which entails combining the functionality
of several processes in order to limit communication overhead. Through a special
coordination-layer plug-in, OpenSolver can be configured to implement this op-
timization. The resulting system is well suited for solving the DisCSP problem,
and conformance to the IWIM model makes it a very flexible solution.

We also considered adapting OpenSolver/DICE for parallel search and com-
peting search strategies. We argued that these are better dealt with according
to the component-based approach of Chapter 8. In retrospect, we should not
modify a software component to support functionality that can also be achieved
by exogenous coordination of these components.
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Conclusions

In this thesis we have explored the possibilities for composing branch-and-prop-
agate constraint solvers from a set of solver “building blocks.” We have taken
a practical approach, and implemented OpenSolver, a configurable constraint
solving engine that supports a wide range of relevant solver configurations. Per-
formance comparison with state-of-the-art solvers, some of them commercially
available systems, demonstrates that the approach leads to realistic and efficient
solvers.

In this chapter we review our approach. In Section 10.1 we return to forms of
solver composition identified in Section 2.4, and evaluate what has been achieved.
In Section 10.2 we compare our approach with other systems, this time taking a
broader view than in Section 3.4.2, were we considered only object-oriented frame-
works. In Section 10.3 we discuss the limitations of our approach, and identify
directions for further research and development. In Section 10.4 we summarize
the contributions of our work.

10.1 Composing Constraint Solvers

Propagation

All forms of composition related to constraint propagation that we identified in
Sections 2.4.1 and 2.4.2 are supported by OpenSolver. In particular:

• OpenSolver allows that a separate reduction operator is used for each in-
version of an (atomic) arithmetic constraint. We can then define a schedule
for the operator-based scheduler that respects the hierarchical dependencies
between these rules, following from the decomposition of general arithmetic
constraints. This way we do not need heavy-weight operators like HC4.
Instead, comparable functionality can be composed from the facilities for a
decomposition-based approach, and a scheduler.

205
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• Instead of implementing reduction operators for “stronger” forms of lo-
cal consistency, such as box consistency and shaving, we compose these
from the ingredients of the weaker consistency notions plus an operator for
nested search. The operator-based scheduler allows for the implementation
of priority schemes that postpone the application of computation-intensive
operators until no more “cheap” reductions can be made. It does not sup-
port the dynamic schemes suggested in [SS04], but OpenSolver itself does
not prevent their implementation.

• Because for every variable, a different domain-type plug-in can be used,
hybrid solvers are naturally supported.

Search

OpenSolver has rich facilities for the composition of search strategies, as described
in Section 2.4.3. We have seen the following examples.

• In Section 4.3 we composed a best-first search strategy according to Warns-
dorf’s heuristic for solving the knight’s tour problem from a container, a se-
lector, and an annotation scheme, all having wider applicability than this
particular heuristic.

• In Section 6.4 we discussed how the composition of branching strategies, as
supported by the SALSA language, can be implemented in OpenSolver.

In retrospect, the proposed mechanism for composing branching strategies could
also have been applied to the memory-bounded LDS traversal strategy of Sec-
tion 4.1.2. We did not exploit the full potential of the adapter mechanism here,
and implemented a dedicated container plug-in. Instead, we could have composed
it as suggested in Section 2.4.3.

OpenSolver also supports multiple search probes, to simulate parallel search,
as suggested in that same section. Compared to schemes like interleaved depth-
first search it has the additional benefit that it supports the possibility to abort
constraint propagation before a fixed point has been reached. This would prevent
that slow convergence in one node of the search tree blocks progress in other
nodes. We have not performed experiments in this area, though. Another option
would be to actually run a parallel solver on a single processor. In this case
the multiplexing between the search probes is taken care of by the operating
system, at the cost of unnecessary inter-process communication. In this case
load-balancing is not an issue, and the experiments in Chapter 8 suggest that
for the benchmark problems used in that chapter, the communication overhead
would range from 4% to 16%, depending on the size of the solver configurations
that are being communicated.
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Solver Cooperation

OpenSolver is not intended as a framework for solver cooperation. It does not
support generic solver cooperation schemes, as do BALI [AM98] and the system
of [HSG01].

Other solvers can be embedded in OpenSolver, but this should be the case
for all object-oriented frameworks that can be extended with user constraints.
Conversely, OpenSolver can also be embedded in other solvers, and we have seen
an example of this in Chapter 7. Because the coordination-layer mechanism gives
fine-grained control over the solving process, we expect that OpenSolver is more
versatile than other solvers in this respect.

For optimization purposes, the coordination layer mechanism makes it easy
to incorporate new bounds that are calculated by external solvers. Also the
configuration language makes OpenSolver particularly well suited for cooperation
with symbolic solvers that are applied as a preprocessing step. In fact, this is
how we implemented the decomposition of arithmetic constraints into simple
and atomic constraints for our experiments in Chapter 5. We expect that the
ability to publish the search frontier, which is also the basis for parallel search
in Chapter 8, opens up new possibilities for cooperation with symbolic solvers
during the solving process, instead of only as a preprocessing step. Despite the
flexibility offered by the coordination layer mechanism, we think that for general
cooperation schemes, a proper API would be a valuable addition.

Composition of Parallel and Distributed Solvers

The coordination layer mechanism was specifically designed to support distributed
constraint propagation and parallel search, and OpenSolver is well suited for these
forms of solver composition. While we did not experiment with distributed con-
straint propagation after we moved from DICE to OpenSolver (see Section 3.1
and Chapter 9), the design of OpenSolver supports the basic ingredients of dis-
tributed constraint propagation algorithms: distributed termination detection,
and the communication of domain updates.

For parallel search, we use a time-out mechanism to achieve an implicit load
balancing. This gives a very simple implementation of parallel search, but it
leads to slightly less user-friendly systems because a tuning factor is introduced.
Especially because our experiments indicated that performance is not overly sen-
sitive to the actual time-out value that is used, we expect that it can be tuned
automatically, based on heuristics.

For communicating sub-problems, our parallel solver uses the OpenSolver con-
figuration language. We expect this to have wider applicability than parallel
search, and that it increases the value of OpenSolver as a software component.
We already mentioned the potential for pre-search and in-search transformations
of CSPs and solver configurations. In addition, as we discussed in Section 8.6,
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it facilitates a checkpoint mechanism, where the search frontier is saved to disk
so that a lengthy search process may survive a power failure or system crash.
We use the textual format for steering the parallel search, where depending on
the level annotation of a subproblem, a breadth-first or depth-first search is per-
formed. We expect that in addition to this automated steering, there are also
possibilities for interaction by users. For example, based on an inspection of the
nodes, a user might decide to explore a particular subtree first, or to change the
branching strategy for some areas of the search tree. The ability to publish the
search frontier is essential for all these applications. The textual format of our
configuration language increases the possibilities for external processing of the
published nodes.

Returning to the subject of distributed constraint solving, OpenSolver is un-
suitable for distributed search by asynchronous backtracking, or related algo-
rithms proposed by Yokoo [Yok01]. These algorithms form an alternative ap-
proach, where the processes, or agents that are involved asynchronously propose
value assignments to their peers with whom they share constraints. These algo-
rithms rely less on termination detection than ours, and hence allow for greater
autonomy of agents. It is unclear how the two approaches compare with respect
to efficiency and flexibility.

10.2 Comparison with Other Systems

OpenSolver is an object-oriented framework , aiming at reuse of the basic solver
design. Through its coordination layer mechanism it can be deployed as a soft-
ware component in many environments. In Section 3.4.2 we already compared
OpenSolver with other component-based toolkits and frameworks, namely ILOG
Solver, Koalog Constraint Solver, Elisa, Disolver, Figaro, EasyLocal++, and Lo-
calizer++.

In this section we compare it further with two other types of constraint solving
environments: logic programming systems, and modeling languages. Both kinds
of systems provide declarative languages, that shield the user from implemen-
tation details of the computational model that they are based on. In the category
of logic programming systems we consider the ECLiPSe [WNS97] system. In the
category of modeling languages we consider OPL [VH99] and Comet [MVH02a].

ECLiPSe is a logic programming system with extensive libraries for constraint
solving on various domain types using many different techniques. It sup-
ports tree search and local search, and interfaces with CPLEX, an industrial
solver for linear and mixed-integer programs. Furthermore it has interfaces
for calling routines written in other programming languages, and can also
be embedded in programs written in those languages.

OPL is a language for modeling combinatorial problems, and for specifying
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search strategies. The modeling facilities include high-level abstractions
such as arrays, allowing for very compact and readable specifications that
are close to the combinatorial problems that are being modeled. Compared
to their implementation in a main-stream programming language the search
abstractions are also at a very high level. OPL has dedicated facilities for
specifying scheduling and resource allocation problems.

Comet is an object-oriented language for constraint-based local search. The
modeling facilities are comparable to those of OPL. The facilities for spec-
ifying local search are comparable to those that are made available in a
C++ environment through Localizer++ [MVH01].

From a certain perspective, the designs of ECLiPSe and OpenSolver are oppo-
sites. Both systems mean to provide a platform for composing constraint solvers
by arbitrarily combining different solving techniques, but while OpenSolver is
part of a toolbox of loosely connected building blocks, ECLiPSe provides an
all-encompassing development environment. OpenSolver plug-ins are written in
C++, and solver composition is a matter of black-box composition through a con-
figuration language. A full constraint solver would then complete the OpenSolver
core with an external user interface that offers modeling facilities. Conversely, in
ECLiPSe, everything is done in the same language, which has a Prolog-like syntax.
The basic solving algorithms such as branching strategies, the composite solver,
and the problem specification are all coded in this language. A library mecha-
nism is available to hide implementation details from users of facilities coded in
ECLiPSe.

In our opinion, ECLiPSe and OpenSolver are both good approaches to com-
posing constraint solvers. For users who are not acquainted with logic program-
ming, the ECLiPSe user interface may have a steep learning curve. OpenSolver,
on the other hand, is not intended as a full development environment, and can be
coupled with a graphical “plug-and-play” user interface, or a modeling language,
depending on the intended use. Being a configurable search engine rather than a
development environment, OpenSolver allows for composition at a lower algorith-
mic level. For example, an algorithm like HC4 would be hard-wired in ECLiPSe.
We could also introduce a dedicated OpenSolver plug-in for it, but a compara-
bly efficient way to compute hull consistency can be composed from the facilities
for decomposition-based hull consistency and a schedule for the operator-based
scheduler. ECLiPSe does support parallel search, but being a closed system, we
would not have been able to perform our experiments with the time-out mecha-
nism with it.

As a dialect of Prolog, ECLiPSe is also a full programming language. In
contrast, languages like OPL and Comet are suitable only for specifying combi-
natorial problems and solving strategies, and provide high-level abstractions for
doing so. What is achieved in EasyLocal++ by providing C++ subclasses, can
be accomplished directly by programming in Comet. OPL, which is targeted
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at tree search instead of local search, is at a comparably high level of abstrac-
tion. As we discussed in Section 6.4, at this level of abstraction the OpenSolver
configuration language should be seen as an assembly language . The rich fa-
cilities for specifying search in modeling languages can be implemented only if
several assumptions about the variable domain types are made. For this reason,
such systems depend on a fixed set of built-in data types. In OpenSolver, al-
most nothing is fixed. For a coherent set of plug-ins, though, the same facilities
could probably be implemented as a compilation step, translating a higher level
language to configuration specifications for OpenSolver, which is then used as a
constraint solving engine.

10.3 Perspectives

In this section we identify some areas for further research and development related
to OpenSolver, and composing constraint solvers in general.

In the first place, only a basic set of constraints has been implemented for
OpenSolver. For example, global constraints such as the all different constraint
are missing, and mathematical modeling is currently limited to arithmetic con-
straints. Therefore the range of problems that can currently be solved is limited,
especially compared to the commercial systems. This is not a fundamental limi-
tation, though.

Also a modeling environment with a proper user interface is currently miss-
ing. For many experiments we used some peripheral programs to generate the
configuration file for a problem instance of given dimensions. For other types
of problems we wrote converters from standard file formats such as those used
in the DIMACS test sets. Instead of these ad-hoc solutions, we would like to
have a modeling layer that supports more abstract problem specifications than
the OpenSolver configuration language. Our current program for rewriting arith-
metic constraints could be used as a basis for this layer. It could well be coupled
with a graphical user interface that offers menus from which the user can configure
the solver for a given problem.

In Section 4.4 we concluded that the copying state restoration policy of Open-
Solver impedes realizing efficient SAT solving schemes. The reason is that such
schemes rely on non-chronological backtracking, which in turn is naturally com-
bined with a trailing state restoration policy. It would be interesting to investigate
to what extent this policy can be made configurable, like in Figaro [HMN99]. We
expect that because this policy is closely related to the implementation of the
variable domains, which is not fixed in OpenSolver, this is not straightforward.
Another avenue would be to investigate the implementation of non-chronological
backtracking on the basis of hierarchical information stored in node annotations.

From an implementation point of view, the following areas need attention:

• A problem with the current annotation mechanism is that two techniques
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may have conflicting uses for the annotation field. For example, best-first
search, as discussed in Section 4.3 is now incompatible with the round-
robin variable selection strategy, discussed in Section 4.1.2. This can be
solved using the adapter mechanism, where a special annotation plug-in
implements an array of annotations, and other adapters modify the plug-
ins that access the annotations to use a specific element of this array. It
would be better not to restrict the annotation mechanism to a single slot
in the first place. Probably name/value pairs would be a good solution.

• The facility to break out of constraint propagation, and resume the fixed
point computation has not been implemented in the operator-based sched-
uler. We have not experimented with multiple exploration “probes” as
suggested at the end of Section 3.2.3.

Finally, we are convinced that we have not exploited the full potential of the
combined features of being able to publish the search frontier, and using a textual
format for the generated subproblems. As we already indicated in Section 10.1
this has wider applicability than facilitating parallel search, and should allow
for forms of solver cooperation that would otherwise require that one solver is
embedded in another.

10.4 Summary

Composing constraint solvers based on tree search and constraint propagation
through generic iteration leads to efficient and flexible constraint solvers. This was
demonstrated using OpenSolver, an abstract branch-and-propagate tree search
engine that supports a wide range of relevant solver configurations. We gave an
account of the design and implementation, and of many experiments that were
performed to evaluate the approach.

The efficiency of OpenSolver-based constraint solvers compares well to that
of existing solvers, some of which are successful commercial products. Yet, the
following combination of features gives OpenSolver some unique advantages over
each of the other systems that we considered.

• OpenSolver is a branch-and-propagate constraint solving engine , and makes
configurable those aspects that are hardwired in many other systems, such
as the constraint propagation algorithm and implementation of the data
types. Modeling languages can be implemented on top of it, by means of a
compilation step.

• OpenSolver promotes the composition of complex strategies from atomic
solver “building blocks,” implemented as plug-ins. This prevents duplicate
solver code, and allows that techniques carry over to other data types and
application domains.
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• While it is a white-box framework from the perspective of writing new plug-
ins for it, OpenSolver aims at black-box composition of solvers. This led
to an inherently linguistic approach where solvers are composed through
scripts in a simple configuration language.

• OpenSolver is designed as a stand-alone application. Compared to libraries
for constraint solving, this makes it independent of a particular program-
ming language. Composing constraint solvers around OpenSolver is pri-
marily a matter of exogenous coordination and component-based software
engineering. This is opposite to the approach taken by logic programming
systems, which provide a full development environment.

• Because of the coordination layer mechanism, OpenSolver can be adapted
to many different environments, and the solving process can be controlled
externally. In particular, it is suited for distributed constraint solving.

• In combination with the configuration language, the coordination layer
mechanism opens up new possibilities for implementing parallel search, in-
search transformation of CSPs and solver configurations, and it allows for
checkpoint mechanisms.

Thanks to the flexibility of the system, we could further achieve the follow-
ing results related to the specific research questions addressed in some of the
individual chapters.

• We demonstrated how a number of techniques that are normally hard-wired
in solvers can be realized through composition.

• We performed a comparative study of several approaches to implementing
arithmetic constraints on variables with integer interval domains. The best
performance was observed for decomposition and hierarchical scheduling of
the reduction operators. For this approach we characterized in part the
effect of constraint propagation.

• We demonstrated the technique of constraining special purpose domain
types.

• We demonstrated that several pruning techniques from various application
domains can be expressed and implemented as applications of a generic
operator for nested search.

• We evaluated a novel time-out mechanism for load balancing in parallel
search, and demonstrated that it can lead to efficient and scalable parallel
constraint solvers.
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Proofs

We provide here the proofs of the Bounds consistency Theorems 5.8.2 and 5.8.3,
and the MULTIPLICATION Theorem 5.9.1. This material is taken from unpub-
lished joint work with Krzysztof Apt.

Proof of the Bounds consistency Theorem 5.8.2.
Let φ := 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉. Call a variable u of φ bounds

consistent if the bounds of its domain satisfy the condition of the bounds con-
sistency (see Definition 5.8.1).

Given an integer interval [l..h] denote by [l..h] the corresponding real interval
[l, h]. Suppose that Dx = [lx..hx], Dy = [ly..hy], Dz = [lz..hz]. To show that φ
is closed under the applications of the MULTIPLICATION 1 rule it suffices to
prove that

{lz, hz} ⊆ int(Dx · Dy). (A.1)

So take c ∈ {lz, hz}. By the bounds consistency of z we have c = a · b for some
a ∈ Dx and b ∈ Dy. Since Dx and Dy are integer intervals we have ⌊a⌋, ⌈a⌉ ∈ Dx

and ⌊b⌋, ⌈b⌉ ∈ Dy. To prove (A.1), by the definition of Dx · Dy, we need to find
a1, a2 ∈ Dx and b1, b2 ∈ Dy such that

a1 · b1 ≤ c ≤ a2 · b2.

The choice of a1, a2, b1 and b2 depends on the sign of a and of b and is provided
in the following table:

condition a1 b1 a2 b2

a = 0 a ⌊b⌋ a ⌊b⌋
b = 0 ⌊a⌋ b ⌊a⌋ b
a > 0, b > 0 ⌊a⌋ ⌊b⌋ ⌈a⌉ ⌈b⌉
a > 0, b < 0 ⌈a⌉ ⌊b⌋ ⌊a⌋ ⌈b⌉
a < 0, b > 0 ⌊a⌋ ⌈b⌉ ⌈a⌉ ⌊b⌋
a < 0, b < 0 ⌈a⌉ ⌈b⌉ ⌊a⌋ ⌊b⌋

213
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To prove that φ is closed under the applications of the MULTIPLICATION 2
and 3 rules it suffices to prove

{lx, hx} ⊆ int(Dz/Dy) and {ly, hy} ⊆ int(Dz/Dx). (A.2)

We need to distinguish a number of cases. The case analysis depends on the
position of 0 w.r.t. each of the intervals Dx and Dy. This leads to 9 cases, which
by symmetry between x and y can be reduced to 6 cases. We present here the
proofs for representative 3 cases.

Case 1 . lx ≥ 0, ly ≥ 0.
By the bounds consistency of x for some b ∈ [ly, hy] we have lx · b ∈ [lz, hz].

Then b ≤ hy and lx ≥ 0, so lx · b ≤ lx · hy. Also lz ≤ lx · b, so

lz ≤ lx · hy.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · hy ∈
[lz, hz]. Then lx ≤ a and hy ≥ 0, so lx · hy ≤ a · hy. Also a · hy ≤ hz, so

lx · hy ≤ hz.

So lx · hy ∈ [lz..hz] and consequently by the definition of the integer intervals
division

lx ∈ Dz/Dy and hy ∈ Dz/Dx.

By a symmetric argument

hx ∈ Dz/Dy and ly ∈ Dz/Dx.

Case 2 . lx ≥ 0, hy ≤ 0.
By the bounds consistency of x for some b ∈ [ly, hy] we have hx · b ∈ [lz, hz].

Then b ≤ hy and hx ≥ 0, so hx · b ≤ hx · hy. Also lz ≤ hx · b, so

lz ≤ hx · hy.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · hy ∈
[lz, hz]. Then a ≤ hx and hy ≤ 0, so a · hy ≥ hx · hy. Also hz ≥ a · hy, so

hx · hy ≤ hz.

So hx · hy ∈ [lz..hz] and consequently by the definition of the integer intervals
division

hx ∈ Dz/Dy and hy ∈ Dz/Dx.

Further, by the bounds consistency of x for some b ∈ [ly, hy] we have lx · b ∈
[lz, hz]. Then ly ≤ b and lx ≥ 0, so lx · ly ≤ lx · b. Also lx · b ≤ hz, so

lx · ly ≤ hz.
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Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · ly ∈ [lz, hz].
Then lx ≤ a and ly < 0, so lx · ly ≥ a · ly. Also a · ly ≥ lz, so

lz ≤ lx · ly.

So lx · ly ∈ [lz..hz] and consequently by the definition of the integer intervals
division

lx ∈ Dz/Dy and ly ∈ Dz/Dx.

Case 3 . lx < 0 < hx, ly ≥ 0.
The proof for this case is somewhat more elaborate. By the bounds consistency

of x for some b ∈ [ly, hy] we have lx · b ∈ [lz, hz]. Then ly ≤ b and lx < 0, so
lx · ly ≥ lx · b. But also lx · b ≥ lz, so

lz ≤ lx · ly.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · ly ∈
[lz, hz]. Then lx ≤ a and ly ≥ 0, so lx · ly ≤ a · ly. But also a · ly ≤ hz, so

lx · ly ≤ hz.

So lx · ly ∈ [lz..hz] and consequently by the definition of the integer intervals
division

lx ∈ Dz/Dy and ly ∈ Dz/Dx.

Further, by the bounds consistency of x for some b ∈ [ly, hy] we have hx · b ∈
[lz, hz]. Then ly ≤ b and hx > 0, so hx · ly ≤ hx · b. But also hx · b ≤ hz, so

hx · ly ≤ hz.

Next, we already noted that by the bounds consistency of y for some a ∈
[lx, hx] we have a · ly ∈ [lz, hz]. Then a ≤ hx and ly ≥ 0, so a · ly ≤ hx · ly. But
also lz ≤ a · ly, so

lz ≤ hx · ly.
So hx · ly ∈ [lz..hz] and consequently by the definition of the integer intervals
division

hx ∈ Dz/Dy.

It remains to prove that hy ∈ Dz/Dx. We showed already lx · ly ≤ hz. More-
over, lx < 0 and ly ≤ hy, so lx · hy ≤ lx · ly and hence

lx · hy ≤ hz.

Also we showed already lz ≤ hx · ly. Moreover hx > 0 and ly ≤ hy, so
hx · ly ≤ hx · hy and hence

lz ≤ hx · hy.
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So if either lz ≤ lx ·hy or hx ·hy ≤ hz, then either lx ·hy ∈ [lz..hz] or hx ·hy ∈ [lz..hz]
and consequently hy ∈ Dz/Dx.

If both lx · hy < lz and hz < hx · hy, then

[lz..hz] ⊆ [lx..hx] · hy.

In particular for some a ∈ Dx we have lz = a · hy, so hy ∈ Dz/Dx, as well.
This concludes the proof for this case. 2

Proof of the Bounds consistency Theorem 5.8.3.
We consider each variable in turn. We begin with x. Suppose that Dx = [lx..hx].
φ is closed under the applications of the MULTIPLICATION 2 rule, so

{lx, hx} ⊆ int(Dz/Dy). (A.3)

To show the bounds consistency of x amounts to showing

{lx, hx} ⊆ Dz ⊘ Dy. (A.4)

(Recall that given real intervals X and Y we denote by X ⊘ Y their division,
defined in Section 5.3.)

Case 1 . int(Dz/Dy) = ZZ.
This implies that 0 ∈ Dz ∩ Dy, so by the definition of real intervals division

Dz ⊘ Dy = 〈−∞,∞〉. Hence (A.4) holds.

Case 2 . int(Dz/Dy) 6= ZZ.
So int(Dz/Dy) is an integer interval, say int(Dz/Dy) = [lzy..hzy]. Two sub-

cases arise.

Subcase 1 . Dz ⊘ Dy is a, possibly open ended, real interval.
By (A.3) for some b1, b2 ∈ Dy and c1, c2 ∈ Dz we have

lzy · b1 = c1,

hzy · b2 = c2.

Let

b := min(b1, b2), b := max(b1, b2), c := min(c1, c2), c := max(c1, c2).

So {lzy, hzy} ⊆ [c, c]⊘[b, b]. Also [c, c]⊘[b, b] ⊆ Dz⊘Dy. Hence {lzy, hzy} ⊆ Dz⊘
Dy and consequently, by the assumption for this subcase, [lzy, hzy] ⊆ Dz ⊘ Dy.
This proves (A.4) since by (A.3) {lx, hx} ⊆ [lzy, hzy].

Subcase 2 . Dz ⊘ Dy is not a, possibly open ended, real interval.
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In what follows for an integer interval D := [l..h] we write D > 0 if l > 0,
D < 0 if h < 0. Also recall that 〈D〉 := {x ∈ ZZ | l < x < h}.

This subcase can arise only when Dz > 0 and 0 ∈ 〈Dy〉 or Dz < 0 and
0 ∈ 〈Dy〉, see [Rat96] (reported as Theorem 4.8 in [HJvE01]), where the definition
of the division of real intervals is considered.

Since φ is closed under the MULTIPLICATION rule 3

Dy ⊆ int(Dz/Dx).

So int(Dz/Dx) 6= ∅ since by assumption Dy is non-empty. Also, since 0 6∈ Dz, we
have int(Dz/Dx) 6= ZZ. So int(Dz/Dx) is a non-empty integer interval such that
0 ∈ 〈int(Dz/Dx)〉.

But Dz > 0 or Dz < 0, so if Dx > 0, then int(Dz/Dx) > 0 or int(Dz/Dx) < 0
and if Dx < 0, then int(Dz/Dx) > 0 or int(Dz/Dx) < 0, as well. So 0 ∈ 〈Dx〉.
Hence 0 ∈ 〈Dx〉 ∩ 〈Dy〉 while 0 6∈ Dz. This contradicts (5.5). So this subcase
cannot arise.

The proof for the variable y is symmetric to the one for the variable x.

Consider now the variable z. φ is closed under the applications of the MUL-
TIPLICATION 1 rule, so

Dz ⊆ int(Dx · Dy).

Take now c ∈ Dz. Then there exist a1, a2 ∈ Dx and b1, b2 ∈ Dy such that
a1 · b1 ≤ c ≤ a2 · b2. We can assume that both inequalities are strict, that is,

a1 · b1 < c < a2 · b2, (A.5)

since otherwise the desired conclusion is established.

Let

a := min(a1, a2), a := max(a1, a2), b := min(b1, b2), b := max(b1, b2).

We now show that a ∈ [a..a] and b ∈ [b..b] exist such that c = a · b. Since
[a..a] ⊆ Dx and [b..b] ⊆ Dy, this will establish the bounds consistency of z.

The choice of a and b depends on the signs of a1 and b2. When one of these
values is zero, the choice is provided in the following table, where in each case on
the account of (A.5) no division by zero takes place:

condition a b
a1 = 0 c/b2 b2

a2 = 0 c/b1 b1

b1 = 0 a2 c/a2

b2 = 0 a1 c/a1
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It is straightforward to show that in each case the quotient belongs to the
corresponding interval. For example, when a1 = 0 we need to prove that c/b2 ∈
[a..a]. By (A.5) a2 6= 0. If a2 > 0, then again by (A.5), b2 > 0, so c/b2 ∈ [0..a2].
In turn, if a2 < 0, then also by (A.5) b2 < 0, so, yet again by (A.5), c/b2 ∈ [a2..0].

When neither a1 nor b2 is zero, the choice of a and b has to be argued case by
case.

Case 1 . a1 > 0, b2 > 0.
Then by (A.5) b1 < c/a1 and c/b2 < a2. Suppose that both b2 < c/a1 and

c/b2 < a1. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either c/a1 ≤ b2

or a1 ≤ c/b2, that is either c/a1 ∈ [b1..b2] or c/b2 ∈ [a1..a2].

Case 2 . a1 > 0, b2 < 0.
Then by (A.5) b1 < c/a1 and a2 < c/b2. Suppose that both b2 < c/a1 and

a1 < c/b2. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either c/a1 ≤ b2

or c/b2 ≤ a2, that is either c/a1 ∈ [b1..b2] or c/b2 ∈ [a2..a1].

Case 3 . a1 < 0, b2 > 0.
Then by (A.5) c/a1 < b1 and c/b2 < a2. Suppose that both c/a1 < b2 and

c/b2 < a1. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either b2 ≤ c/a1

or a1 ≤ c/b2, that is either c/a1 ∈ [b2..b1] or c/b2 ∈ [a1..a2].

Case 4 . a1 < 0, b2 < 0.
Then by (A.5) c/a1 < b1 and a2 < c/b2. Suppose that both c/a1 < b2 and

a1 < c/b2. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either b2 ≤ c/a1

or c/b2 ≤ a1, that is either c/a1 ∈ [b2..b1] or c/b2 ∈ [a2..a1].

So in each of the four cases we can choose either a := a1 and b := c/a1 or
a := c/b2 and b := b2. 2

Proof of the MULTIPLICATION Theorem 5.9.1.
The weak interval division produces larger sets than the interval division. As a
result the MULTIPLICATION rules 2w and 3w yield a weaker reduction than
the original MULTIPLICATION rules 2 and 3. So it suffices to prove that
φ := 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉 is closed under the applications
of the MULTIPLICATION 1, 2 and 3 rules assuming that it is closed under
the applications of the MULTIPLICATION 1, 2w and 3w rules. Suppose that
Dx = [lx..hx], Dy = [ly..hy], Dz = [lz..hz]. The assumption implies

{lx, hx} ⊆ int(Dz : Dy) (A.6)

and
{ly, hy} ⊆ int(Dz : Dx) (A.7)

The proof is by contradiction. Assume that (A.6) and (A.7) hold, while φ
is not closed under application of MULTIPLICATION 2 and 3. Without loss
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of generality, suppose that MULTIPLICATION 2 is the rule that can make a
further reduction. This is the case iff

int(Dz/Dy) ⊂ int(Dz : Dy).

By definition, the proper inclusion implies that ly ≥ 0 or hy ≤ 0. Assume
ly ≥ 0, the case for hy ≤ 0 is similar. Let l′y := max(1, ly), and let A :=
{lz/l′y, lz/hy, hz/l

′
y, hz/hy}, and B := {lz/lx, lz/hx, hz/lx, hz/hx}. A further im-

plication of the proper inclusion is that one or both of l′y and hy do not have a
multiple in Dz: otherwise min(A) and max(A) would be elements of Dz/Dy, and
we would have int(Dz : Dy) = int(Dz/Dy). The cases for l′y and hy can be seen
in isolation, and their proofs are similar, so here we only consider the case that
l′y does not have a multiple in Dz. In what follows we can assume 0 /∈ Dz, since
otherwise l′y and hy do have a multiple in Dz.

Case 1 . lz > 0.
From (A.6) it follows that hx ≤ ⌊max(A)⌋, which for the case l′y, hy, lz, hz > 0
that we consider here implies hx ≤ ⌊hz/l

′
y⌋. Because [lz..hz] does not contain a

multiple of l′y, we have ⌊hz/l
′
y⌋ = ⌊lz/l′y⌋, so

hx ≤ ⌊lz/l′y⌋.

A further consequence of (A.6) is that lx, hx > 0. From (A.7) it follows that
l′y ≥ ⌈min(B)⌉, which for lx, lz > 0 implies

l′y ≥ ⌈lz/hx⌉ ≥ lz/hx ≥ lz/⌊hz/l
′
y⌋.

Because l′y is no divisor of lz, and both numbers are positive, we have ⌊lz/l′y⌋ <
lz/l

′
y, and consequently l′y > lz/(lz/l

′
y), leading to l′y > l′y, which is a contradiction.

Case 2. hz < 0.
Similarly, because l′y, hy > 0 and lz, hz < 0, it follows from (A.6) that lx ≥
⌈min(A)⌉ = ⌈lz/l′y⌉, and lx, hx < 0. Because [lz..lh] does not contain a multiple
of l′y, we have ⌈lz/l′y⌉ = ⌈hz/l

′
y⌉, so

lx ≥ ⌈hz/l
′
y⌉.

We use this information in the following implication of (A.7):

l′y ≥ ⌈min(B)⌉ = ⌈hz/l
′
x⌉ ≥ hz/l

′
x

to get l′y ≥ hz/⌈hz/l
′
y⌉. Because |⌈hz/l

′
y⌉| < |hz/l

′
y|, we have l′y > hz/(hz/l

′
y),

leading to l′y > l′y, which is a contradiction. 2
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Samenvatting

Veel vraagstukken uit het dagelijks leven, de wetenschap en de industrie zijn
combinatorische problemen , of combinatorische optimalisatieproblemen .
Een mogelijke oplossing voor dit soort vraagstukken bestaat uit de combinatie
van verschillende keuzes, die elkaar allemaal bëınvloeden, waardoor een menselijke
probleemoplosser het overzicht verliest. Het systematisch nagaan van alle moge-
lijke combinaties van keuzes door een computer kan hier uitkomst bieden, maar
de zoekruimte die zo ontstaat is in het algemeen te groot (men spreekt wel van
een combinatorische explosie) om binnen redelijke tijd een antwoord te kunnen
verwachten.

Voor sommige klassen van problemen zijn echter efficiënte oplossingsmetho-
den gevonden, die in de praktijk goed blijken te werken. In andere gevallen kan
worden volstaan met niet-systematische zoekmethoden, die weliswaar snel tot re-
sultaat kunnen leiden, maar geen uitsluitsel kunnen geven over het bestaan van
een oplossing, of over optimaliteit hiervan. In dit proefschrift richten we ons
echter op systematische methoden voor problemen waarvoor geen specifieke ef-
ficiënte methode voorhanden is, geformuleerd als een verzameling voorwaarden,
of constraints, waaraan de waarden die kunnen worden toegekend aan ver-
schillende variabelen moeten voldoen. Het opstellen en oplossen van dit soort
problemen staat bekend onder de naam constraint programming , en omvat
een groot aantal technieken voor systematisch zoeken, en voor het verkleinen van
de zoekruimte. Doordat op voorhand vaak niet duidelijk is met welke technieken
een dergelijk probleem kan worden opgelost, is het van groot belang dat we kun-
nen experimenteren met het samenstellen, of componeren, van constraint solvers
(oplosprocedures) uit het palet van beschikbare technieken.

Allereerst definiëren we wat we precies verstaan onder het oplossen van een
constraint probleem. In deze definitie staat het concept van een zgn. opgeloste
vorm van een constraint probleem centraal. Een opgeloste vorm van een probleem
is niet noodzakelijk een oplossing, maar alle opgeloste vormen bij elkaar omvatten
wel degelijk alle oplossingen. Op deze manier abstraheren we van beperkingen
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die inherent zijn aan het representeren van reëele getallen in een computer, en
kunnen we sommige variabelen typeren als hulpvariabelen, waarmee we aangeven
dat hun precieze waarde er niet toe doet. Vervolgens illustreren we het belang
van ons werk door een aantal technieken die in de praktijk worden gebruikt te
beschrijven als constraint solver composities.

Om te kunnen experimenteren met constraint solver composities hebben we
een computerprogramma geschreven. Dit programma, OpenSolver, is in de eerste
plaats een uitbreidbare verzameling constraint solver bouwstenen, waarmee op
laag niveau verschillende technieken kunnen worden gecombineerd. In de tweede
plaats is het programma ook een autonome applicatie, die er helemaal op is
ingericht om op verschillende manieren van buitenaf te kunnen worden gecoördi-
neerd, en zo als component aan een groter samenwerkingsverband van software-
componenten te kunnen deelnemen.

Na een beschrijving van deze software vervolgen we het betoog met een demon-
stratie van de wijze waarop een aantal standaardtechnieken voor het oplossen
van constraint problemen in OpenSolver zijn gerealiseerd. Typerend hiervoor
is dat waar deze standaardtechnieken gewoonlijk zijn vastgelegd in de broncode
van constraint solvers, ze in OpenSolver worden opgebouwd uit bouwstenen voor
kleinere deeltechnieken. Dit biedt mogelijkheden voor het combineren, en voor
domeinoverschreidend gebruik van bestaande technieken.

Het open karakter van onze software stelt ons vervolgens in staat te onder-
zoeken wat de efficiëntste manier is om rekenkundige constraints op geheeltallige
variabelen op te lossen. Hierbij richten we ons specifiek op een intervalrepre-
sentatie van de verzamelingen toegestane waarden voor deze variabelen. Veel
bestaande constraint solvers bieden mogelijkheden hiervoor, maar een systema-
tische analyse ontbrak tot nu toe, voor zover wij hebben kunnen nagaan.

Ook laten we zien hoe OpenSolver kan worden aangevuld met bouwstenen die
voor een specifieke toepassing zijn ontwikkeld, in dit geval het oplossen van het
zgn. job-shop scheduling probleem. Op die manier ontstaat een solver voor een
specifiek probleem, maar doordat we voor een groot deel van de functionaliteit
gebruik kunnen maken van reeds bestaande bouwstenen, is de ontwikkeltijd van
zo’n solver gering vergeleken met de ontwikkeling van een volledig nieuwe solver.
Bovendien kunnen nu ook voor het specifieke probleem eenvoudig variaties in de
oplosmethode worden aangebracht.

Na deze voorbeelden van het componeren van constraint solvers uit bouwste-
nen te hebben besproken, verleggen we onze aandacht naar constructies waarin
OpenSolver zelf als software component deel uit maakt van een groter systeem.
Allereerst introduceren we een operator voor genest zoeken, en laten we zien hoe
een drietal veelgebruikte constraint solving technieken kunnen worden beschreven
als toepassingen van deze operator. We implementeren de operator met een vrij-
wel op zichzelf staand OpenSolver exemplaar, en we beschrijven een aantal ex-
perimenten die aantonen dat dit tot bruikbare en flexibele solvers leidt.

Een tweede voorbeeld van het gebruik van OpenSolver als software compo-
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nent is het parallel zoeken naar oplossingen van een constraint probleem. Het
doel van parallellisatie in het algemeen is het reduceren van de rekentijd, door
het rekenwerk te verdelen over verschillende processoren. Onze parallelle solver
bestaat uit een aantal OpenSolver exemplaren, die regelmatig al hun nog te door-
zoeken deelproblemen aan een centraal distributiepunt teruggeven, van waaruit
ze weer worden herverdeeld. Dit gebeurt telkens als een vooraf ingestelde peri-
ode verstrijkt. Voor zover we hebben kunnen nagaan is deze aanpak van parallel
zoeken nieuw, en onze experimenten tonen aan dat dit tot efficiënte en schaalbare
parallelle solvers leidt.

Als derde voorbeeld beschrijven we hoe verschillende OpenSolver exemplaren
kunnen samenwerken aan het verkleinen van de zoekruimte, als onderdeel van
een groter zoekproces. Hoewel dit niet efficiënt is, kan het nodig zijn in het geval
dat het constraint probleem zelf fysiek gedistribueerd is. We gebruiken hiervoor
bestaande algoritmen die in OpenSolver met alle andere beschikbare technieken
gecombineerd kunnen worden.

Tot slot vatten we de behaalde resultaten samen, vergelijken we onze aan-
pak met een aantal alternatieven, en bespreken we mogelijkheden voor verder
onderzoek en ontwikkeling.
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