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Control of a random walk with noisy delayed information
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Abstract

Wg consider the control of a random walk on the nonnegative integers. The controller has two actions. It makes
demsxgns based on noisy information on the current state but on full information on previous states and actions. We
establish the optimality of a threshold policy, where the threshold depends on the last action, and the noisy information
We apply the result to flow and service control problems. )
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1. Introduction

In control problems with imperfect state information one assumes that the decision maker has only access
to an observation of the state [5]. A special class of partially observable control problems is the one where
information is delayed; the current state of the system becomes known to the controller only after some time
T (possibly random). Such a model with T fixed was analyzed in [2]. By enlarging the state space to include
the last observation of the state as well as all actions taken since that time, the model was transtormed into
a standard fully observable Markov decision process (MDP). Altman and Nain [2] apply the transformation
to obtain an optimal control policy for a flow control model with a unit information delay. A similar flow
control problem as well as a routing problem, both with a unit time of information delay, were solved in [8]
The case of N-steps delay was considered in [3]. Altman and Koole [1] analyze a problem with two
controllers with delayed information on both actions and state. Koole [7] and Artiges [4] study routing with
delayed information. Some other control problems with more involved information structure were con-
sidered by Hsu and Marcus [6] and Stidham [10], who study decentralized control problems. The
controllers may possess some immediate noisy information about the current state of the system. yet they
have access to nondelayed local information. After a unit of delay the controllers obtain the exact
information. The imperfect state information problem is reduced to a perfect state information (or completely
observable) problem by enlarging the state space.

In this paper we consider a control problem with a single controller with a noisy information structure,
which is a special case of the information structure considered in [6]. We consider the control of a random
walk on the nonnegative integers. A single controller has two actions ao and a;. It makes decisions based on
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noisy information on the current state but on full information on previous states and actions. We establish
the optimality of a threshold policy, where the threshold I(a, v) depends on the noisy information y on the
current state and on the last action a. We then characterize the threshold, and show that
l{ay,y)+ 1= l(ag, y) = l(a,, y). We apply the result to a problem of control of service and a problem of
a control of flow in the presence of uncontrolled flows. The second application is a generalization of the
model studied in [2] both in the information structure and in the more general arrival structure. The paper is
organized as follows. In Section 2, we introduce the model, assumptions and notation. The main result is
presented in Section 3. Extensions and applications are presented in Section 4.

2. Model and assumptions

Consider the control of a random walk in discrete time defined by X,+; = (X, + g(., 4,)) ", where X,
denotes the state and A, the action at time n. The state space X is the set of nonnegative integers, and there
are two actions a, and a, available in each state. The function g is integer valued, and 7, is a sequence of
RX-valued i.i.d. random variables. Further assume that the actions are ordered, i.. ao < a,.Note that for any
f1Z - R such that f(x) = f(0), for all x < 0, we have

E(f(Xo = DXy =x+ 1,4, =a) = E(f(X,)| X, = x, 4, = a). (1)

The applications in Section 4 consider a special case, where 1, consists of two independent components
n. and #,, respectively, governing the arrivals and the departures at a queue.

In the general model, the controller does have full information on the previous states, but not on the
present state. Instead, it has, at time n + 1, noisy information Y, (taking values in some Borel space Y) on
Nt Y, = h(n,, {,) where {, is a sequence of i.i.d. random variables generating the noise. This is a special case of
the information structure studied in [6]. Note that Y, is independent of X, and A,. By (1), this implies that the
posterior transition probabilities are also shift invariant: let f: Z— R be an arbitrary function such that
f(x)=f(0) for all x < 0. Then

E(f(Xo = D)X =x+1LA,=a Y =y)=E(f(X,)|X,=x,4,=0a, Y, =) (2)

We model the random walk as an MDP with partial state observation. By enlarging the state space from X to
XxAxY we obtain an equivalent fully observed MDP. Z,,,, the state at time n + 1, is given by
Zn+1 = (Xna An’ Yn)

Let Y, have probability mass function F,, and let F, be the probability mass function of X, , given
X,, A, and Y,. Thus F,(x|z) = P(X, = x|Z, = z) and F,(B) = P(Y,€B).

The transition probabilities of the MDP, for state z, and action a,, are

P(Z,s e({x'},{d"}, B)|Z, = (x,a,)), A, =d) = 1(a" = a)F,(X'|(x, a, y)) F2(B).

Note that (2) can be written as

Y Pl x+1Layfx =)= ) Fi(x|x, a y)f(X) 3)
x'eX x'eX
We shall assume CO: F,(-|z2) =, F,(-|z!) for 2 = (x, d', "), i = 1, 2, y' = y* when either a* > a' and
x? = x!, or x* > x'. The relation > is the stochastic ordering, see [9]. This assumption is typical in
queueing models, where the queue length is taken as the state x. CO states intuitively that if we start with
a higher (unknown) initial state we will find ourselves in a higher state after one transition. Typically, the
result of having taken action a, instead of a, will result in a difference of at most one in the queue length. This
is why the initial state is considered to be higher if the last known state was higher, even if the last action used
is ‘smaller’. Applications are presented in Section 4 that further clarify the role of assumption CO.
Consider an immediate cost ¢: X x 4 — R and assume that ¢ satisfies C1 introduced below. For conveni-
ence, we extend the definition of ¢ to Z x A (where Z is the set of integers) such that ¢(y, p) = ¢(0, p) Vy <0,
p=4dop,d;.
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A function f: Z x 4 — R with the property that

S.p)=f0,p) Yy<O0,p=ae a 4

is said to satisfy property C1 if

(1) f:(x, p) — f(x, q) is nondecreasing in x for any actions p > g,

(1) f(x + 1, p) = f(x, g) is nondecreasing in x for any actions p and q.
. It. can be seen that a function g: X x 4 — R satisfies (i), (ii) and monotonicity in x (i.c. g(e. p) is nondecreas-
ing in x for any fixed p) if and only if its extension through (4) satisfies C1. Note that (ii) implies the convexity

and anotone increasingness of f(e, p) in x for all p. This is a realistic feature of the immediate cost, which is
often linear (or quadratic) in the queue size for any fixed action.

3. The optimality of a threshold policy

Let J"(z) denote the cost for a horizon of n steps, and let J°z)=0. Define }17"(z,a)=
E(c(Xy,a)+JYZ,)|Z, =2z A, =a). Then

J"Y(z) = min V"(z, a). 5
1 (3)

The Markov policy u that uses in state z the action that minimizes }7(z, a) when there are n steps to go is
known to be optimal. Denote J"(x, a) = _(J”(xﬂ, a, y) F,(dy). We shall understand below J"(x. a) = J"(0, a) for
x < 0 (we thus consider the extension (4) of J"). Then V"(z,a') =¥ . F{(X'|z)[e(x, @) + J"(X',d")], and (5)
yields

Jri(x, a) = JFz(dw{mi,nZFl(x’i(x. a, el ) + J"(x, a')]}.

Theorem 3.1. Assume CO and that ¢ satisfies C1. Consider the problem of minimizing the expected cost for
a horizon of n and initial state z. Then: (i) There exists an optimal policy u* for Q, which is of a (time-dependent)
threshold type such that if at time n it is optimal to use a, at state (X, a, y) then for any X' > x it is also optimal to
use ay at states (x', a, y). (ii) For all n > 1, J" satisfies Cl.

Proof. A sufficient condition for the existence of an optimal threshold policy at stage n (when there are
n steps to go) is that for z = (x, a, y),

V"(z, ay) — V"(z, ao) is nondecreasing in x. (6)
Since
Vi(z, aq) — V(z a0) = 3. Fi(x'|2)[c(x, ar) — ¢(x', do) + T an) = I o)), (7
XeX

it follows that a sufficient condition for (6) is that both J" and ¢ satisfy C1(i), and CO holds. Indeed,
this implies that the term in the square brackets of (7) is nondecreasing in x’, and (6) then follows from Co.

We show by induction that J" satisfies C1, hence establishing the theorem. Assume that J" satisfies C1.
We show that for every y, J""'(+, y,") also satisfies Cl, from which the inductive claim is establishe_d.
We begin by establishing CI1(). Let p be the action that achieves. the miqimum in
min, Y vexFi(x'|x + 1, ay,y) [e(x,a) + J"(X, a)], and let ¢ be the action that achieves the minimum in
min, ¥ vex Fi (XX, do, Y [e(x,a)+ J"(x,a)]. By inserting min, ¥ vexF1(X'[X, 4, ) [e(x' a) + J"(x" a)]
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for J"*1(%, 4, y),
J"Hx+ Lay, v = J" X + Lag, v) = [J" H(x.ay, y) — J" (X, do, v)]

> ZXFl (xX'|x + Lay, e p) + "X p)] — 3 Fux|x + 1, ag, v [e(xX,s p) + (X, p)]
X'e XeX

- [ JZXFI (x'|x+ La,y) e —1g) +J"(x =1, g)]

B .ZXFx(x’IX + Lag. y)[e(x' = 1g) + J"(x' — 1,61)]:]
X €

= Z Fi(xX'|x+ 1,a,, ) [cx,p) —c(x' = 1,9 + Jr(x, p) — j"(x’ - Lq]
X'eX

— ,ZXF‘ (X" x + 1, ap, V[cx,p)—c(x' = 1,9) + f"(x', p) — j"(.\" - 1.q)]
X €

= 0.
The first inequality follows from (3) and the definition of p and g. The last inequality follows from CO and

the fact that the term in square brackets is nondecreasing in x’ due to C1.
It remains to establish C1(ii).

Let p be the action that achieves the minimum in min, ¥ vexFi (X |x + 2, p, y) [c(x), a)+j"(x’, a)]
and let § be the action that achieves the minimum in min, ¥ ve xF1 (X[ x, ¢, y) [c(xX, a) + Jnx, a)]. It follows
from the inductive assumption that (6) holds for n and therefore p < 4. Then, by inserting again
min, TyexFi (x| %, 4, y) [e(x', @) + J"(x', a)] for J"* (%, 4, ),

J N+ 2,y = T+ Lp ) = [ (x4 Lgy ) = I g p)]

> Y Fi(x'|x + 2 p ) [exs p)+ ", 9] = T Fr(xx + 2 p e = Ld) + J"(x' = 1.§)]
xeX xeX

- ( Y Fix'|x + Lg,p)[el, p) + J"(x, 9]

xXeX

— ¥ Fi(<x+ Lg el = 1L,4) + J"x' —1.4)]
xeX

= Y Fi(X|x+2p,0[el,p) —cx — 1,4+ J"(x, p) — Jrx = 1,4)]
x'eX

— ¥ Fi(x|x+ Lg e, p)—cx — 1.4 + Jnx, p) — JMx = 1,4))

x'eX
=0.

The last inequality follows from CO, C1 and the fact that by the inductive assumption J" satisfies C1. This
establishes the proof. [

According to Theorem 3.1, for any a and y, there exists some threshold I(a, y) such that if x > I(a, y), it is
optimal to use ao, and otherwise it is optimal to use a,. [ satisfies the following theorem.

Theorem 3.2. For any yeY,

l(ay,y) + 1 = l(ao, y) = lay, y). (8)
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Proof. Fix n. It follows from (7) that

VA(x, a0, y), o) = V7((x, 4o, p). ay) = [V"((x. ay. y). ag) = V((x. ay. v, ay )]

B .’(Z;XF1 (' (x, ao, W) [e(x', ap) — c(x', ap) + jn(x,a do) — j"(.\", ap)]

- EXFI (xll(xs a, ,V)) [C(X', ao) - C(.\", (11) -+ j"(X’, (10) — j"('\'l‘ a, )]

=0.
%)

The last inequali.ty follows from C0, and from the fact that both ¢ and J" satisfy C1: hence the term in the
square brackets is nonincreasing in x'.
Assume that in state z = (x, o, y), a, is optimal, i.e. V™iz, ay) 2 V"(z, ap). 1t follows from (9) that aq is

optimal also‘ in state (x, ar, ), s'ince Vi ((x, ay, ), ay) = V"((x, ay, y), ao). This implies the second inequality in
(8). To obtain the first inequality, we note that for any p, g€ A,

VA%, P, ¥), ao) = V'((x, p, y), ay) = [V"((x + 1,q, ) ag) — V"(x + 1. g. ¥). ay)]

= L P10 p DL ao) = e(xy ar) + I, a0) = JUx' )]

— 2 FiX'(x + L, g, y)[e(x, ap) — c(x', ay) + J™(X, ap) — J"(x', a;)]

x'eX

= 0. (10)

The last inequality follows from CO, and from the fact that both ¢ and J" satisfy C1; hence the term in the
square brackets is nonincreasing in x.

Assume that in state z = (x, p, ¥), ao is optimal, i.e. V"(z, a,) = V"(z, ao). It follows from (10) that a, is
optimal also in state (x + 1, ¢, y), since V*((x + 1,4, y), a,) = V"(x + 1, ¢. y). ao). This implies the first
inequality in (8) (by setting p = a; and ¢ = aqp). [

4. Applications and extensions

The results can easily be extended to the case where {, and 7, are independent but not i.i.d. Another
straightforward extension is to the case where the random walk is on the set of all integers (not just the
nonnegative). In that case the dynamics are given by X,+, = X, + (/.. 4,). We now present applications of
Theorem 3.1 to the control of queues with noisy delayed information. We then discuss situations that yield
different type of noisy delayed information.

Service control

Consider a discrete-time queue with an infinite buffer. At the beginning of time n there are 7, = 0 arrivals.
Let X, be the number of customers just before the arrivals occur. Let r,€{0, 1} be a sequence of i.id.
Bernoulli random variables with parameter o, representing potential service completions. The action 4,
corresponds to the decision whether to enable the service at time n. Let 4 ={—1,0}, ie. ap=—1 and
a, = 0; take g(n,, A,) = 1, + Ann,- If the queue is nonempty and 4, = ao then with probability x a customer
will leave the system at the end of the slot. Consider the immediate cost c¢(x, @) = f(x) + ya, where f,
representing a holding cost, is increasing and convex, and y > 0 is a cost for deciding to serve. This structure
of ¢ ensures that C1 holds. It is easily seen that also CO holds.
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Flow control

Consider a discrete-time queue with an infinite buffer. Consider K streams of arrivals. Here nh,
I =1.....K. represents the arrival streams and 7¥ *!" represents the departures. At the beginning of time
n there are 5" = 0 arrivals from sources [ = 1,...,K — 1. These are uncontrolled arrivals. Let n¥ e {0, 1} be
a sequence of i.i.d. Bernoulli random variables with parameter 2. representing potential arrivals from source
K at the beginning of slot n. The action A, denotes the decision of whether to enable or not the potential
arrival at time n. Let 4 = (0.1}, ie. ao = 0 and a, = 1; if 4, = a, then with probability « a customer will
arrive from stream K. At the end of each slot, if the queue is nonempty then service succeeds with probability
B and a customer leaves the system. Let n**!' = — [ if service succeeds, otherwise n &+ =0, Take
GUim A) = Y E 8 + An® + g%+ The immediate cost is ¢(x,a) = f(x) + ya, where [ representing
a holding cost, is increasing and convex, and y < 0 is interpreted as a reward for accepting customers, and
hence a reward for increasing the throughput. This structure of ¢ ensures that C1 holds. Again it is easily seen
that CO holds as well.

For both models we may consider the following types of information:

(1) No information on the current state (i.e. the state information as well as information about arrivals and
service are known with a unit delay). The threshold policy obtained by Theorem 3.1 is then a function of the
last action. The flow control model corresponding to this case was studied in [2] (with only one arrival
stream).

(2) Partial delayed information. The service (or flow) controller gets in time the information from the
beginning of the last slot, yet the information about events occurring at the end of the slot do not arrive in
time for the decision making. Then the controller has all the information about the arrivals in the last slot but
not on service completions. It thus has more information than in the previous case, but less than full
information on the current state. In the case of service control this could mean that Y, = (1), in the case of
flow control Y, = (7i%, ..., 5.

(3) Information with a random delay. In some cases the delay of information has random duration. In
packet switching telecommunication networks, information is often obtained through acknowledgements
from the destination that are piggy-backed on packets going in the opposite direction. Hence the amount of
delay in the information depends on the (random) amounts of congestion of packets on the way back to the
source. In our simple model, we could assume that information on the service in the last slot does not come in
time for the decision making, yet with some positive probability, the information about the arrivals that
occurred in the beginning of the last slot did arrive in time. In the case of the control of service this could be
modeled by Y, = n, + {,, where {, = ({,,...,{x) is a vector whose components may take values 0 or — ,
and are independent; {; = 0 means that the information comes in time, otherwise {; = — .

(4) Noisy delayed information. Owing to some unreliable medium, the information we get is noisy; it
becomes reliable after error correction which makes the information accurate after a unit delay.

(5) Full information. The controller always has full information on the current state is a special case of the
information structure that we consider. Note that even for this case, our results generalize some previous
results for fully observable control models. The optimality of a threshold policy for flow control models are
known, e.g. [11]; the novelty of our model is that we consider the control of one flow in presence of other
uncontrolled ones.
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